A Globally Convergent Parallel Algorithm
for Zeros of Polynomial Systems

Alexander P. Morgan
Layne T. Watson

TR 86-25

A Globally Convergent Parallel Algorithm for
Zeros of Polynomial Systemns

Alexander P. Morgan* and Layne T. Watsont

Abstract.

Certain classes of nonlinear systems of equations, such as polynomial systems, have proper-
ties that make them particularly amenable to solution on distributed computing systems. Some
algorithms, considered unfavorably on a single processor serial computer, may be excellent on a dis-
tributed system. This paper considers the solution of polynomial systems of equations via a globally
convergent homotopy algorithm on a hypercube. Some computational results are reported.

1. Introduction.

Supercomputing capability can be achieved in several different ways: sheer hardware speed,
algorithmic efficiency, pipelines and vector processors, or multiprocessor systems. Many {perhaps
too many) different computer architectures have zlready been realized, and computational experience
on these machines is accumulating. The reality is that very fast hardware iz very expensive, and is
likely to remain so, and access to huge vector computers like CRAY-2’s is and will remain limited
for some time to come. Many supercomputer systems developed at universities have both severely
limited access and formidable programming problems. Despite federal initiatives and satellite links,
using national supercomputer centers is awkward at best, and has the flavor of monolithic university
central computer centers, only on a national scale.

The hypercube concept, that of cheap, independent processors connected in a reasopably ef-
ficient yet still manageable topology, seems to offer an opportunity for “supercomputing for the
masses” . A hypercube computer consists of 2" processors {nodes), each with memory, floating-point
hardware, and (possibly) communication hardware. The nodes are independent and asynchronous,
and connected to each other like the corners of an n-dimensional cube.

For the purpose of discussion here, there are three classes of nonlinear systems of equations: (1}
large systems with sparse Jacobian matrices, (2) small transcendental (nonpolynomial) systems with
dense Jacobian matrices, and (3) small polynomial systems with dense Jacobian matrices. Sparsity
for small problems is not significant, and large systems with dense Jacobian matrices are intractable,
50 these two classes are not counted. Of course medium sized problems are also of practical interest,
and the boundaries between small, medium, and large change with computer hardware technology
and algorithmic development. Depending on algorithmic efficiency, hardware capability, and the
significance of sparsity, a medium sized problem is treated like it belongs to one of the above three
classes anyway, so there is no need for a “medium” class. -

Large sparse nonlinear systems of equations, such as equilibrium equations in structural me-
chanics; have two aspects: highly nonlinear and recursive scalar computations, and large matrix,
vector operations. There is a great amount of parallelism in both aspects, but the nature of the

* Mathematics Department, General Motors Research Laboratories, Warren, MI 48090-9055.

{1 Departments of Electrical Engineering and Computer Science, Industrial and Operations En-
gineering, and Mathematics, The University of Michigan, Ann Arbor, MI 48109. Current address:
Department of Computer Science, Virginia Polytechnic Institute & State University, Blacksburg,
VA 24061. The work of this author was supported in part by AFOSR Grant 85-0250.

1

parallelism is very different (or so it seems). Small dense transcendental systems of equations pose
a major challenge, since they involve recursive, scalar intensive computation with a small amount of
linear algebra. It has been argued that the commuuication overhead of hypercube machines makes
them unsuited for such problems, but the issue is still open and algorithmic breakthroughs are yet
‘possible. Polynomial systems are unique in that they have many solutions, of which several may
be physically meaningful, and that there exist algorithms guaranteed to find all these meaningful
solutions. The very special nature of polynomial systems is not fully appreciated, especially by those
who are unfamiliar with probability-one homotopy methods. '

Algorithms for solving nonlinear systems of equations can be broadly classified as (1) locally
convergent or (2) globally convergent. The former includes Newton’s method, various quasi-Newton
methods, and inexact Newton methods. The latter includes continuation, simplicial methods, and
probability-one homotopy methods, These algorithms are qualitatively significantly different, and
their performance on parallel systems may very well be the reverse of their performance on serial
processors. The overall purpose of this research is to study how nonlinear systems of equations
might be solved on a hypercube.

Much work has been done on solving linear systems of equations on parallel computers, mostly
on vector machines [4-7, 9-11, 13-15, 17, 20, 21). Some work has been done on nonlinear equa-
tions and Newton’s method [27, 24], and on finding the roots of a single polynomial equation {8,
23]. Parallel algorithms for polynomial systems have not been studied, nor have parallel homotopy
algorithms for nonlinear systems of equations.

The present article considers only polynomial systems and homotopy algorithms. Large sparse
nonlinear systems, small transcendental systems, and quasi-Newton algorithms will be considered
in future work. Section 2 presents the mathematics behind the homotopy algorithm, and sketches
a computer implementation based on ODE techniques. Section 3 briefly describes the “hypercube”
computer architecture. Section 4 discusses the special case of polynomial systems in some detail.
Computational results on an Intel iPSC-32 and several other machines are contained in Section 5.

2. Homotopy algbrithm.

Let EP depote p-dimensional real Euclidean space, and let F : EP — EP be a C? (twice contin-
uously differentiable) function. The general problem is to solve the nonlinear system of equations

F({z)=0.

The fundamental mathematical result behind the homotopy algorithm is
Proposition 1. Let ¥ : E? — E? be a C* map and g : E™ x [0,1) x E® — E* a G? map such that
1) the Jacobian matrix Dp has full rank on o~ 1{0);
and for fixed a € E™
2) p(a,0,2) = 0 has a unique solution W € E?,;
3) p(e,1,2z) = F(z);
4) the set of zeros of pa{A, z) = pla, z) is bounded.
Then for almost all a € E™ there is a zero curve 7 of

-

pa(X, z) = ple, A 2),

along which the Jacobian matrix Dpa(A, z) has full rank, emanating from (0, W) and reaching a zero
z of F at A = 1. Furthermore, 7 has finite arc length if DF(Z) is nonsingular.

2

The general idea of the algorithm is apparent from the proposition: just follow the zero curve
~ of ps emanating from (0, W) until a zero Z of F(x) is reached (at A = 1). Of course it is nontrivial
to develop a viable numerical algorithm based on that idea, but at least conceptually, the algorithm
for solving the nonlinear system of equations F{z) = 0 is clear and simple. A typical form for the

homotopy map 18
(1) ' pw(d, z) =AF(z)+(1-A)(z-W),

which has the same form as a standard continuation or embedding mapping. However, there are two
erucial differences. In standard continuation, the embedding parameter A increases monotonically
from O to 1 as the trivial problem z— W = 0 is continuously deformed to the problem F(z) = 0. The
present homotopy method permits A to both increase and decrease along 7 with no adverse effect;
that is, turning points present no special difficulty. The second important difference is that there are
never any “singular points” which afflict standard continuation methods. The way in which the zero
curve v of p. is followed and the full rank of Dy, along v guarantee this. Observe that Proposition
1 guarantees that + cannot just “stop” at an interior point of [0,1) x EP.

The zero curve -y of the homotopy map pg{}, z) {of which gw (X, 2) in (1) is a special case) can
be tracked by many different techniques; refer to the excellent survey [1} and recent work [30], {31].
The numerical results here were obtained with preliminary versions of HOMPACK [30], a software
package currently under development at Sandia National Laboratories, General Motors Research
Laboratories, Virginia Polytechnic Institute and State University, and The University of Michigan.
There are three primary algorithmic approaches to tracking 4 : 1) an ODE-based algorithm, 2)
a predictor-corrector algorithm whose corrector follows the flow normal to the Davidenko flow (a
“normal flow” algorithm); 3} a version of Rheinboldt’s linear predictor, quasi-Newton corrector
algorithm [22] (an “augmented Jacobian matrix” method).

Only the ODE-based algorithm will be discussed here. Alternatives 2} and 3} are described in
detail in {31] and [2], respectively. Assuming that F(z) is C? and a is such that Proposition 1 holds,
the zero curve v is C'! and can be parametrized by arc length s. Thus A = A(s), z = z(a) along 7,
and

(2) pa(A8),z(8)) = 0

identically in 8. Therefore

d

(3) | = pa(Ms),2(s)) = Dpa(A(3), 2(s)) %& =0,
dz -
FH
d)\ dz
4 =, == =
(4) “(d.s ds) 5
With the mitial conditions
(5) AM0) =0, =z{0)=W, "'

the zero curve 7 is the trajectory of the initial value problem (3-5). When A{g) = 1, the corresponding
z(3) is a zero of F(z). Thus all the sophisticated ODE techniques currently available can be brought
to bear on the problem of tracking v [26], [29].

Typical ODE software requires (dA/ds, dz/ds} explicitly, and (3), (4) only implicitly define the
derivative (dA/ds,dz/ds). (It might be possible to use an implicit ODE techmique for (3-4}, but
that seems less efficient than the method proposed here.) The derivative (dA fds,dz/ds), which is a
unit tangent vector to the zero curve 7, can be calculated by finding the one-dimensional kernel of
the p x {p + 1} Jacobian matrix

Dpa(A(s), z(s)),

which has full rank by Proposition 1. It is here that a substantial amount of computation is incurred,
and it is imperative that the number of derivative evaluations be kept small. Once the kernel has been
calculated, the derivative (dA/de,dz/ds) is uniquely determined by (4) and continuity. Complete
details for solving the initial value problem (3-5) and obtaining z(3) are in [28] and [29]. A discussion
of the kernel computation follows.

The Jacobian matrix Dp, is p x {p+ 1) with (theoretical) rank p. The crucial observation is that
the last p columns of Dp,, corresponding to D, p,, may not have rank p, and even if they do, some
other p columns may be better conditioned. The objective is to avoid choosing p “distinguished”
columns, rather to treat all columns the same (not possible for sparse matrices). There are kernel
finding algorithms based on Gaussian elimination and p distinguished columns [16]. Choosing and
switching these p columns is tricky, and based on ad hoc parameters. Also, computational experience
has shown that accurate tangent vectors (d)/ds,dz/ds) are essential, and the accuracy of Gaussian
elimination may not be good enough. A conceptually elegant, as well as accurate, algorithm is to
compute the QR factorization with column interchanges [3} of Dp,,

* LRSI *
Q Dp, PPz = .o) Pz=0,
0 £ %

where @ is a product of Householder reflections and P is a permutation matrix, and then obtain a
vector z € ker Dp, by back substitution. Setting (P2)y41 = 1 is a convenient choice. This scheme
provides high accuracy, numerical stability, and a uniform treatment of all p + 1 columns. Finally,

(dA dz -
(EE’E) =T

where the sign is chosen to maintain an acute angle with the previous tangent vector on « . There
is a rigorous mathematical criterion, based on a (p+ 1) x (p + 1) determinant, for choosing the sign,
but there is no reason to believe that would be more robust than the angle criterion.

Several features which are a combination of common sense and computational experience should
be incorporated into the algorithm. Since most ordinary differential equation solvers only control
the local error, the longer the arc length of the zero curve 7 gets, the farther away the computed
points may be from the true curve 4. Therefore when the arc length gets too long, the last computed
point {A,Z) is used to calculate a new parameter vector a such that

(6) pa(X,2) =0

4

exactly, and the zero curve of pa(A, z) is followed starting from (X,z). A rigorous justification for
this strategy was given in [29]. If p, has the special form in (1), then trivially

(AF(z)+(1 —7).) z) /(1 - X).

i

For more general homotopy maps p,, this computation of @ may be complicated.

Remember that tracking v was merely a means to an end, namely a zero % of F(z). Since 7
itself is of mo interest (usually), one should not waste computational effort following it too closely.
However, since v is the only sure way to Z, losing v can be disastrous. The tradeoff between
computational efficiency and reliability is very delicate, and a fool-proof strategy appears difficult to
achieve. None of the three primary algorithms alone is superior overall, and each of the three beats
the other two (sometimes by an order of magnitude) on particular problems. Since the algorithms’
philosophies are significantly different, a hybrid will be hard to develop.

In summary, the algorithm is:

1. Set 8 :=0, y: = (0, W), ypold : = yp : = (1,0,...,0), restart : = false, error : = initial error
tolerance for the ODE solver.
2. K y; < 0 then go to 23.
3. If ¢ > some constant then
4. 8:=0.
5. Compute a new vector a satisfying (6). If

lnew a — old a] > 1+ constant * ||old af,

then go to 23.

6. ode error : = error.

7. X [lyp — ypold||ce > (last arc length step) * constant, then ode error : = tolerance < error.

8. ypold : = yp.

9. Take a step along the trajectory of (3-5) with the ODE solver. yp = y'(8) is computed for the

ODE solver by 10-12:
10. Find a vector z in the kernel of Dp,(y} using Householder reflections.
11. ¥ 2* ypold < 0, then z : = —2,
12. yp : = z/llz]l. .
13. If the ODE solver returns an error code, then go to 23.
14. If y; < 0.99, then go to 2.
16. X restart = true, then go to 20.
16. restart : = true.
17. error : = final accuracy desired. _
18. If y; > 1, then set (a,y) back to the previous point (where y; < 1).
19. Goto4.
20. If y; < 1 then go to 2.
21. Obtain the zero {at y; = 1) by interpolating mesh points used by the ODE solver.
22. Normal return.
23. Error return.

%0 011 1011 f
0001 1004
11
] S e~ 9 ‘03‘
2, 10
T §
vl10 12i0 1110
6 14
0000 o1
0) 1000 1100
4 B 12

Figure 1. 4-cube structure and node labelling.

S. The hypercube.
The word “hypercube” refers to an n-dimensional cube. Think of a cube in n dimensions as
sitting in the positive orthant, with vertices at the points

(vi,...,1,), v;€{0,1}, i=1,...,n.

There are thus 2" vertices, and two vertices v and w are “adjacent”, i.e., connected by an edge, if
and only if v; = w; for all 1 except one. The associated graph, also sometimes referred to as an
“n-cube”, has 2" vertices (which can be labelled as above with binary n-tuples) and edges between
vertices whose labels differ in exactly one coordinate {see Figure 1).

A “hypercube computer architecture” is a computer system with 2" {node) processors, corre-
sponding to.the 2" vertices (nodes), and a communication link corresponding to each edge of the
n-cube. Thus each processor bas a direct communication link to exactly n other processors. The
distance between any two of the P = 2" processors is at most n = logy P = log,(2"), considered an
ideal compromise between total connectivity (distance = 1} and ring connectivity (distance < P/2).
Figure 1 shows how a 4-cube is built up from two 3-cubes.

Typically the node label (v,,...,v,} is viewed as a binary number vyv, ...v,, and in this view
two nodes are adjacent if and only if their binary representations differ in exactly one bit. Typically
node addresses are computed in programs by a gray code, a bijective function

g:{0,...,2" -1} = {0,...,2" - 1}

6

such that the binary representations of g(k (mod 2”)) and g(k +1 (mod 27)) differ in exactly
one bit for all £ (¢f. [12]).

Realizations of this abstract architecture have one additional feature: a “host” processor with
communication links to all the node processors. This host typically loads programs into the nodes,
starts and stops-processes executing in the nodes, and interchanges data with the nodes. In current
hardware implementations only the host has external I/O and peripheral storage; the nodes consists
of memory, a CPU, and possibly communication and floating-point hardware.

The Intel iPSC has 32, 64, or 128 nodes. Each node is an 80286/80287 with 512K bytes of
memory. The host is also an 80286/80287, but with 4 MB of memory, a foppy disk drive, a hard
digk, an Ethernet connection, and Xenix. The nodes have only a minimal monitor for communication
and process management.

The NCUBE has up to 1024 nodes in multiples of 64, each with 128K of memory and commu-
nication and floating-point hardware. The host is an 80286, running NCUBE’s operating system,
a primitive version of UNIX. The node chip is NCUBE’s own design, with a unique feature being
communication hardware.

4. Polynomial systems.
Suppose that the components of the nonlinear fanction F (z) have the form

(7) | Ea.knzd"" t=1,...,n.

=1 JF=1

The ith component F;(z) has n; terms, the a;; are the (real) coefficients, and the degrees d;;1 are
nonnegative integers. The total degree of F; is

d,‘ =‘m£1x Z d.‘_,'k.

j=1

For technical reasons it is necessary to consider F(z) as a map F : C" — C", where C™ is n-
dimensional complex Euclidean space. A system of n polynomial equations in n unknowns, F(z) = 0,
may have many solutions. It is possible to define a homotopy so that all geometrically isolated
solutions of (7) have at least one associated homotopy path. Generally, (7} will have solutions at
mﬁmty, which forces some of the homotopy paths to diverge to infinity as A approaches 1. However,
(7) can be transformed into a new system which, under reasonable bypotheses, can be proven to have
no solutions at infinity and thus bounded homotopy paths. Because scaling can be critical to the
success of the method, a general scaling algorithm is applied to scale the coefficients and variables
in (7) before anything else is done. ' _

Since the homotopy map defined below is complex analytic, the homotopy parameter A is
monotonically increasing as a function of arc length [19]. The existence of an infinite number of
solutions or an infinite number of solutions at infinity does not destabilize the method. Some paths
will converge to the higher dimensional solution components, and these paths will behave the way
paths converging to any singular solution behave. Practical applications usually seek a subset of
the solutions, rather than all solutions {18, 19]. However, the sort of generic homotopy algorithm
considered here must find all solutions and cannot be limited without, in essense, changing it into a
heuristic.

Define G : C" — C™ by
(8) G,(z) = biz; % — ay, 7=1,...,n,

where a; and b; are nonzero complex pumbers and d; is the (total) degree of Fy(z), forj = 1,...,n.
Define the homotopy map

(9) | pc()\am) = (I—A) G(:E) +AF(I)7

where ¢ = (a,b), a = {a1,...,8,) € C" and b = (b1,...,bs) EC". Let d =d, - dn be the total
degree of the system. :
Theorem. For almost all choices of a and b in €™, p1(0) consists of d smooth paths emanating

from {0} x €™, which either diverge to infinity as A approaches 1 or converge to sohutions to F(z) = 0
as) approaches 1. Bach geometrically isolated solution of F(z) = 0 has a path converging to it.

A number of distinct homotopies have been proposed for solving polynomial systems. The
homotopy map in (9) is from [19]. As with all such homotopies, there will be paths diverging
to infinity if F{z) = 0 has solutions at infinity. These divergent paths are (at least) a nuisance,
since they require arbitrary stopping criteria. Solutions at infinity can be avoided via the following

projective transformation.
Define F'{y) to be the homogemzatmn of F():

(10) FIY) = Va1 Fi(u1/vassse - ¥nftnsr), 7=1..,m
J

Note that, if F*(y°)} = 0, then F'{ay®) = 0 for any complex scalar a. Therefore, “solutions” of
F'(y) = 0 are (complex) lines through the origin in C"**. The set of all lines through the origin

in C"t! is called complex projective n-space, denoted CP™, and is a smooth compact {complex)
n-dimensional manifold. The solutions of F'(y)} = 0 in CP™ are identified with the solutions and
solutions at infinity of F{z) = 0 as follows.” If L € CP" is a solution to F'(y) = 0 with y =
(¥1,92, -+ Ynt1) € L a0d yngy # 0, then 2 = (§1/¥n+1,¥2/¥n415- > Un/¥n+1) € C" 18 & solution
to F(z) = 0. On the other hand, if z € C™ is a solution to F(z) = 0, then the line through y = (z,1)
is a solution to F'(y) = 0 with yn41 = 1 # 0. The most mathematically satisfying definition of
solutions to F(z) = 0 at inﬁru'ty'is simply eolutions to F’(y) = 0 fin CP™") generated by y with
Yns+1=0.

A basic result on the structure of the solution set of polynomlal system is the following ciassma.l

theorem of Bezout:
Theorem. There are no more than d isolated solutions to F'(y) = 0 in CP*. If E'{y} = 0 bas only
a finite number of solutions in CP", it has exactly d solutions, counting multiplicities.

Recall that a solution is isolated if there is a neighborhood containing that solution and no other
solution. The multiplicity of an isolated solution is defined to be the number of solutions that
appear in the isolating neighborhood under an arbitrarily small random perturbation of the system
coefficients. If the solution is nonsmgular (i.e., the system Jacobian matrix is nonsingular at the
solution), then it has multiplicity one. Othermse it has multiplicity greater than one.

Define a linear function '

(g, s ¥ntr) = Eayr + Loy + -+ Lnt1Ungr

8§

where £;,...,£,41 are nonzero complex numbers, and define F" : Cnt! o Ontt by

_F‘;'(y) = F;(y)‘l j = 15---,“,

(11)
Fla(y) =u(y) -1

So F"(y}) = 0 is a system of n + 1 equations in n + 1 unknowns, referred to as the projective
transformation of F(z) = 0. Since u(y) is linear, it is easy in practice to replace F”{y) = 0 by an
equivalent system of n equations in n unknowns. The significance of F”(y) is given by

Theorem. If F'(y) = 0 has only a finite pumber of solutions in CP", then F"(y) = 0 has exactly
d solutions (counting multiplicities) in C"*! and no solutions at infinity, for almost all £ € C"H1.

Under the hypothesis of the theorem, all the solutions of F'(y) = 0 can be obtained as lines
through the solutions to F"(y) = 0. Thus all the solutions to F(z) = G can be obtained easily from
the solutions to F"(y) = 0, which lie on bounded homotopy paths (since F"{y} = 0 has no sclutions
at infinity).

The projective transformation functions essentially as a scaling transformation. Its effect is to
shorten arc lengths and bring solutions closer to the unit sphere. The coefficient and variable scaling
1s different, in that it directly addresses extreme values in the system coefficients. The two scaling

schemes work well together.

X

~

-

v 1
Figure 2. The set p1(0) for a polynomial system.

Figure 2 shows the nature of the zero curves for a polynomial system. There are d (the total
degree of F) of them, they are monotone in A, and have finite arc length.

9

5. Computational resulis.

Polynomial systems arise in such diverse areas as solid modelling, robotics, chemical engineering,
mechanical engineering, and computer viston. A small problem has total degree 4 < 100 and a large
problem has d > 1000. Given that d homotopy paths are to be tracked, there are two extreme
approaches using a hypercube. '

The first extreme, with the coarsest granularity possible, is to assign one path to each node
processor, with the host controlling the assignment of paths to the nodes, keeping as many nodes
busy as possible, and post-processing the answers computed by the nodes.

The second extreme, with the finest granularity, is to track all d paths on the host processor,
distributing the numerical linear algebra, polynomial system evaluation, Jacobian matrix evaluation,
and possibly other tasks amongst the nodes. Because of the high communication overhead (whether
‘hardware or software) on a hypercube, this approach requires an immense amount of sophistication
and analysis to prevent the communication costs from overwhelming the computational costs. Also
the algorithm at this granularity would have to be a major modification of the serial algorithm. A
possible advantage is that the load could be balanced better, resulting in an overall speedup over a
coarser grained algorithm.

These issues are not simple, and much more research is needed on these and intermediate
approaches. Neither extreme can be declared inferior @ priors. The first approach, having a node
track an entire path, has been tried, and some results are shown in Table 1. The problem number
refers to an internal numbering scheme used at General Motors Research Laboratories; problem data
is available on request. These problems are all real engineering problems that have arisen at GM

and elsewhere.

Table 1. Execution time (secs).

Problem | total 80286/ VAX | VAX |IBM |SUN-2 | SUN-3
number {degree | 80287 |iPSC-32 |11/750 |11/780 {3090 /50| /160
102 256 | 16257 G645 | 2438 1248 | 77| 105451 8041
103 625 | 34692 1616 | 5260 | 2606 163 | 22634 17126
402 4 255 54 41 18 2 158 111 |
403 4 84 19 14 6 1 o4 38 |
405 64 | 3669 335 702 334 14| 2958 2429
601 60| 9450 2571 1707 796 | 78 7417 5903
602 60 | 28783 2795 | 4332 | 2064 | 124 21897 16831
. 603 12 1200 243 325 152 9: 1339 1060
803 266 — 11527 | 29779 | 16221 | 667 /130311 | 77113
1702 16 | 1655 163 216 112 7 986 658
1703 161 1657 162 216 112 7 984 668
1704 16! 1628 108 216 112 61 1005 667
1705 31| 14336 378 | 1884 999 | 55| B8907| 6313
5001 | = 576 — 11786 ; 49736 | 27815 |1997 — | 237685

10

It is worthwhile to comment here on some realities of parallel computation. The parallel com-
putation scheme of assigning a path to each node seems completely transparent and straightforward.
Why this is not so is illustrative of the difficulty of the whole field of parallel computation. The
following is a list of tasks that should be trivial, with comments as to why they were not:

1. Assigning paths to nodes.

There are exactly d paths and starting points, completely determined by the parameters in the
homotopy map p.. Once p. 13 chosen, these starting points are fixed, and may not be changed in
any way. In production use of HOMPACK, not every solution may be desired, so only some of the
paths may need to be tracked. Thus the parallel computer code has to keep track of all the paths,
which of those are being tracked and have been assigned to a node, and which are to be tracked
but have not yet been assigned to a node, This is further complicated by the fact that the mumber
of paths does not equal (in general) the number of nodes. Also the nodes are finishing paths at
random (thus becoming available to track another path), and so must be reused in random order.
Now all this bookkeeping can, of course, be done, but the point is that these considerations do not
even arise for the serial program.

2. Transmitting data to the nodes.

In the serial version of HOMPACK, all work arrays {below the level of the main program} have
variable dimensions, and there are absolutely no static arrays limiting the size of the problem. Cur-
rent hardware implementations of the hypercube architecture have nodes with relatively small mem-
ories {128K or 512K}, and the nodes do not support virtual memory. Furthermore, what executes
on the nodes is a “main program”, not a “subroutine”. Thus memory is tight, and arrays canpot be
dynamically allocated. Since the actual storage needed depends on several factors—-dimension, total
degree, number of terms, etc.-it is difficult to optimally fit a problem into the available memory.
Another annoyance is that only short messages may be sent {on the NCUBE the node program
itself must be transmitted by the host program), so the data defining the problem must be broken
up and transmitted in pieces. All this communication sending, receiving, queueing, blocking, and
unblocking is currently (and unfortunately) the responsibility of the appl:catlon programs.

8. Tranemitting answers to the host.

To appreciate the situation here, consider the following three facts: 1) the complete answer
(point (1,Z) at end of path and concomitant path statistics) cannont be sent all in one message; 2)
the nodes finish tracking their assigned paths asynchronously; 3) for hardware and software reasons,
the host cannot just “listen” to one node. No matter how the host resolves this situation, it is gomg
to be nontrivial. : _

One possibility is to maintaiu a huge data structure, and as the answer pieces arrive, insert
them in the correct slot in the structure. This requires an identification. stamp with each message,
and some blocking and unblocking overhead at the ends. A second possablhty 18 to establish a
“handshake” protocol, whereby each node simply informs the host that its path is complete, and
does not transmit its solution until the host requests it. Even in this case an answer reception may be
punctuated by completion notices from other nodes, which must be queued. This second approach _
was the one used for the times reported in Table 1. There are many other reasonable approaches to
this issue; more research is needed.

4. Replicating performance measurements.

Message transmission is a combination of hardware and software, and may involve several
* (intermediate) nodes between the sender and recipient. All this happens asynchronously in real

11

time, and the temporal order of events may depend on such things as buffer status, free space list
size, timer interrupts, and even random (corrected) hardware errors. The state of the node operating
systems and disk file fragmentation on the host can affect durations and the temporal order of events,
sometimes by as much as 10%. Obtaining performance data is difficult, and for complex, realistic
codes, replicating performance results may be impossible.

These problems were also attempted on the NCUBE, but as of this writing the NCUBE 77
compiler would not correctly compile HOMPACK, which is written in ANSI standard FORTRAN
77. '

6. References,

[1} E. Allgower and K. Georg, Simplicial and continuation methods for approzimating fized points,
SIAM Rev., 22 (1980), pp. 28-85.

[2] S. C. Billups, An augmented Jacobion matriz algorithm for tracking homotopy zero curves, M.S.
Thesis, Dept. of Computer Sci., VPT & SU, Blacksburg, VA, Sept., 1985.

[3] P. Businger and G. H. Golub, Linear least squares solutions by Householder transformations,
Numer. Math., 7 (1965), pp. 269-276.

[4] A. C. Chen and C. L. Wu, Optimum solution to dense lincar systems of equations, Proc. 1984
Internat, Conf. on Parallel Processing, August 21-24, 1984, pp. 417-425.

[5] M. Y. Chern and T. Murata, Fast algorithm for concurrent LU decomposition and matriz snyer-
sion, Proc. Internat. Conf. on Parallel Processing, Computer Society Press, Los Alamitos, CA,
1983, pp. 79-86.

[6] E. Cloéte and G. R. Joubert, Direct methods Jor solving systems of linear equations on a parallel
processor, Proc. 8th South African Symp. on Numerical Mathematics, Durban, South Africa,
July 19-21, 1982. .

[7] M. Cosnard, Y. Robert, and D. Trystran, Comparison of parcllel diagonalization methods for
solving dense linear systems, Sessions of the French Acad. of Sci. on Math., Nov., 1985, p. 7814.

[8] G. H. Ellis and L. T. Watson, 4 parallel algorithm for simple roots of polynomials, Comput.
Math. Appl., 10 (1984), pp. 107-121.

[9] D. D. Gajski, A. H. Sameh, and J. A. Wisniewski, fterative algorithmas for tridiagonal matrices
on a WSI-multiprocessor, Proc. Internat. Conf. Parallel Processing, Bellaire, MI, Aug. 24-27,
pp. 82-89, 1982.

[10] W. Gentzsch and G. Schafer, Solution of large linear systerms on vector computers, Parallel
Computing 83, North Holland, Amsterdam, 1984, pp. 159-1686, L

[11] D. Heller, A survey of parallel algorithms in numerical linear algebra, SIAM Rev., 20 (1978},
pp. T40-777. - '

[12] Intel Corporation, $PSC Users’ Manual, 1985, -

[13] Y. Kaneda and M. Kohata, Highly parallel computing of linear equations on the matriz-broadcast-
memory connected array processor system, 10th IMACS World Congress, Vols. 1-§, pp. 320-322,
1082. . ' _

[14] 3. 8. Kowalik, Paralle! computation of linear recurrences and tridiagonal equations, Proc. IEEE
1982 Internat. Conf. on Cybernetics and Society, 1982, pp. 580-584,

_[15] J. 8. Kowalik and §. P. Kumar, An efficient parallel block congugate gradient method for linear
equations, Proc. Internat. Conf. Paralle] Processing, Bellaire, MI, Aug. 24-27, pp. 47-52, 1982,

[16] M. Kubicek, Dependence of solutions of nonlinear systems on a paremeier, ACM Trans. Math.
Software, 2 (1976), pp. 98-107.

12

[17] S. Lakshmivarahan and S. K. Dhall, Parallel algorithms for solving certain classes of linear
recurrences, Foundations of Software Technology and Theoretical Computer Science, Lecture
Notes in Computer Science, Vol. 206, Springer-Verlag, Berlin, 1985, pp. 457-477.

{18] A. P. Morgan, A fransformation to avosd solutions at snfinsty for poiynomtal systeme, Appl.
Math. -Comput., 18 (1986}, pp. 77-86.

[19) —, A homotopy for solving polynomial systems, Appl. Math. Comput., 18 (1986}, pp. 87-92.

[20] D. Parkinson, The solution of N linear equations using P processors, Parallel Computing 83,
North Holland, Amsterdam, 1984, pp. 81-87.

[21] D. A. Reed and M. L. Patrick, 4 model of asynchronous iterative algorithms for solving large
sparse linear systems, Proc. 1984 Internat. Conf. on Parallel Processing, August 21-24, 1984,
pp. 402-410.

(22] W. C. Rheinboldt and J. V. Burkardt, Algorithm 596: A program for a locally parameterized
continuation process, ACM Traus. Math. Software, 9 (1983}, pp. 236-241.

[23] T. A. Rice and L. J. Siegel, A parallel algorithm for finding the roots of & polynomial, Proc.
Internat. Conf. Parallel Processing, Bellaire, MI, Aug. 24-27, pp. 57-61, 1982.

[24] H. Schwandt, Newton-like interval methods for large nonlinear systems of equations on vector
computers, Computer Phys. Comm., 37 (1985), pp. 223-232.

[25] C. L. Seitz, The cosmsc cube, Commun. ACM, 28 (1985), pp. 22-33.

[26] L. F. Shampine and M. K. Gordon, Computer Solution of Ordinary Differential Equations: The
Initial Value Problem, W. H. Freeman, San Francisco, 1975.

[27] H. 1. Sips, A parallel processor for nonlinesr recurrence systems, Proc. 1st Internat. Conf. on
Supercomputing Systems, IEEE Computer Society Press, Los Alamitos, CA, 1984, pp. 660-671.

[28] L. T. Watson and D. Fenner, Chow-Yorke algorithm for fized points or zeros of 02 maps, ACM
Trans. Math. Software, 6 (1980), pp. 252-260.

[20) L. T. Watson, A globally convergent algorsthm for computmg fized points of C* maps, Appl.
Math. Comput., 5 (1979), pp. 297-311.

[30] L. T. Watson, S. C. Billups, and A. P. Morgan, HOMPACK: A suite of codes for giobally
convergent homotopy algorithms, Tech. Rep. 85-84, Dept. of industnal and Operations Eng.,
Univ. of Michigan, Ann Arbor, MI, 1985.

[31] L. T. Watson, Numerical linear algebra aspects of globally convergent homotopy methods, Tech.
Report TR-85-14, Dept. of Computer Sci., VPI&SU, Blacksburg, VA, 1985.

i3

