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ABSTRACT 

Highly active antiretroviral therapy has substantially improved prognosis in HIV. 

However, the integration of proviral DNA, development of viral resistance and lack of 

permeability of drugs into sanctuary sites (brain, lymphocyte etc) are major 

limitations to current regimens. Previous studies have indicated that the antimalarial 

drug, chloroquine (CQ), has antiviral efficacy and a synergism with HIV protease 

inhibitors. We have screened a panel of antimalarial compounds for activity against 

HIV-1 in vitro. A limited efficacy was observed for CQ, mefloquine (MQ) and 

mepacrine (MC). However, marked synergy was observed between MQ and 

saquinavir (SQV), but not CQ in U937 cells. Furthermore, enhancement of the 

antiviral activity of SQV and 4 other PIs by MQ was observed in MT4 cells, indicating 

a class specific rather than a drug specific phenomenon. We demonstrate that these 

observations are a result of inhibition of multiple drug efflux proteins by MQ; and MQ 

was also shown to displace SQV from orosomucoid (AAG) in vitro. Finally, co-

administration of MQ and SQV in CD-1 mice dramatically altered the tissue 

distribution of SQV, resulting in a >3 fold and >2 fold increase in the tissue:blood 

ratio for brain and testis respectively. This pharmacological enhancement of in vitro 

antiviral activity of PIs by MQ now warrants further examination in HIV positive 

patients.
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INTRODUCTION 

That combination antiretroviral therapy has substantially improved clinical outcome in 

HIV infection is beyond question. Nevertheless there are limitations to its efficacy, 

such as the poor penetration of some components of the regimen into sanctuary 

sites (e.g. central nervous system and genital tract) as well as the high costs of 

therapy that preclude widespread implementation in many parts of the developing 

world.  

 

Recently, there has been much interest in the role of antimalarials such as 

chloroquine (CQ) in HIV therapy. CQ suppresses HIV-1 and -2 replication in vitro 

(Tsai et al., 1990; Savarino et al., 2001a) (as does its its analogue hydroxyCQ 

(Sperber et al., 1997; Boelaert et al., 2001)), possibly by inhibition of HIV gp120 

(Tsai et al., 1990). In-vitro studies examining CQ in HIV-infected cells has shown 

some additivity with zidovudine (Boelaert et al., 2001) and synergy with numerous 

protease inhibitors (PIs) in T-cell lines (Savarino et al., 2004). Clinical trials are now 

underway to assess CQ in HIV infection (www.iatec.com). To date, no studies have 

systematically assessed other antimalarial compounds for antiretroviral activity. 

Other quinolines such as amadiaquine (AQ) and mefloquine (MQ), acridine 

derivatives such as mepacrine (MC) and 9-phenanthrenes such as hyfantrin (HF), 

cross the blood brain barrier and as such may be able to achieve adequate drug 

concentrations in sites that provide sanctuary for virus, thereby preventing or slowing 

the development of resistance.  

 

The accumulation of HIV protease inhibitors into HIV-infected cells or sanctuary sites 

is a complex process (Hoggard and Owen, 2003; Owen and Khoo, 2004) governed 



JPET #86272 

 6 

by physicochemical characteristics of the drug, ion trapping, protein binding, 

metabolism and affinity for drug transport proteins (Hoggard and Owen, 2003; Owen 

and Khoo, 2004). It is clear that for some of these factors (e.g. protein binding, 

metabolism and drug transport) variations in host phenotype plays a major role in 

determining inter-individual variation in response to treatment.  For PIs such as 

saquinavir (SQV), the transporters P-glycoprotein (Pgp) and MRP1 have been 

shown to limit intracellular accumulation (Jones et al., 2001a; Jones et al., 2001b; 

Meaden et al., 2002; Williams et al., 2002) and brain penetration (Glynn and 

Yazdanian, 1998; Choo et al., 2000; Washington et al., 2000; Huisman et al., 2001) 

of drug and the use of a reversal agent has been suggested as a viable co-therapy in 

HIV (Choo et al., 2000). Indeed, we recently showed a linear correlation between 

Pgp expression in lymphocytes and the EC50 of SQV (Owen et al., 2004). Of interest, 

the antimalarial compounds CQ and MQ also interact with Pgp and/or MRP1, and 

both drugs have been shown to enhance intracellular accumulation of substrates in 

cell lines that over-express these transporters (Riffkin et al., 1996; Vezmar and 

Georges, 1998; Fujita et al., 2000; Vezmar and Georges, 2000). 

 

In this study, we screened 5 antimalarial compounds (CQ, MQ, MC, HF and AQ) for 

anti-HIV activity and for any interactions with HIV PIs. Inhibition of HIV replication 

was evaluated in both acutely, and persistently (to assess post-integration effects) 

HIV infected cells. Interactions between antimalarials and HIV PIs were assessed at 

HIV protease level (using a cell-free system containing purified recombinant HIV 

protease) and at cellular level. For the latter, isobolograms were first constructed to 

assess synergy/antagonism, and various cell lines (including those expressing the 

transporters Pgp, MRP1 and MRP2) were utilised to assess the effect of 
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antimalarials on PI transport as well as any effects in modulating the expression of 

these transporters. Expression of these transporters was assessed using Western 

Blotting and flow cytometry. In addition, the ability of MQ to displace SQV from 

orosomucoid and albumin and increase free drug concentration in serum was 

investigated. Finally, we investigated the tissue distribution of SQV in CD-1 mice 

when co-administered with MQ. 
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METHODS 

i) Cells and virus 

U937, CEM (parental), CEMVBL(overexpressing Pgp; (Owen et al., 2003b)), CEME1000 

(overexpressing MRP1; (Owen et al., 2003b)) and MT4 were grown in RPMI 1640, 

supplemented with 10% (v/v) foetal calf serum (FCS) and 2mM L-glutamine, and 

maintained in a humidified atmosphere of 5% CO2 at 37°C.  

 

A laboratory-adapted HIVIIIB strain (X4-tropic) was titrated by limiting dilution assay 

and the TCID50 calculated. Viral production was measured immunoenzymatically 

using commercially available p24 antigen enzyme-linked immunosorbent assay 

(ELISA) kits, according to the manufacturer’s instructions (Sim et al., 1998).  

 

For all infectivity assays, the cells were resuspended and a fraction was removed for 

cytotoxicity assays. Cell viability and cytotoxicity (throughout this manuscript) was 

assessed using the standard methyl-tetrazolium (MTT) assay as previously validated 

within our laboratory (Sim et al., 1998). For viral quantitation, an aliquot (100µL) was 

centrifuged at 13 000 x g for 10min and the supernatant taken for p24 antigen assay 

as described above.  

 

ii) Antiviral activity of antimalarial compounds 

The U937 cell line was used to screen for anti-HIV-1 activity of the antimalarials (CQ, 

MQ, MC, HF or AQ). For acute infection, U937 cells were inoculated with viral 

suspensions (1 x 10-2 TCID50 per cell) at 37ºC for 1h in the presence of SQV, CQ, 

MQ, MC, HF or AQ (0.1-100µM in third logs). Cells were then washed three times 

before re-suspension at 2.5 x 105 cells in 2mL fresh culture medium in the presence 
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and absence of SQV, CQ, MQ, MC, HF or AQ (0.1-100µM in third logs). Persistently 

infected U937 cells (to assess the effects on the post-integration steps in the HIV-1 

life cycle) were suspended in culture medium in the presence or absence of SQV, 

CQ, MQ, MC, HF or AQ (0.1-100µM in third logs). Viral replication was then allowed 

to occur in the presence and absence of test compounds for 7 days. 

 

In both acute and persistent infection models, IC50 (toxicity) and EC50 (antiviral 

activity) values were calculated using GraphPad Prism and the selectivity indices 

calculated as the IC50/EC50 ratio. 

 

iii) Isobolograms and modulation of PI activity by CQ and MQ 

In order to investigate the potential for combination of CQ or MQ with SQV, 

isobolograms were constructed. The effect of the combination of CQ with SQV and 

MQ with SQV on viral p24 production (after acute infection) was tested by titration of 

the two drugs at fixed ratios proportional to their EC50 values. Following 7-days 

incubation, viral replication and cellular toxicity were assessed as described above. 

This allowed calculation of the fractional inhibitory concentrations (FIC) of the 

resulting EC50 values for each drug which were plotted as isobolograms as 

previously described (Berenbaum, 1978). These were interpreted according to 

recently published guidelines (Odds, 2003) i.e. FIC interpretations of ‘synergy’ (FIC ≤ 

0.5), ‘antagonism’ (FIC > 4.0) or ‘no interaction’ (FIC = 0.5 - 4.0). 

 

The antiviral efficacy of SQV, ritonavir (RTV), nelfinavir (NFV), indinavir (IDV) and 

amprenavir (APV) in the presence and absence of MQ or CQ (10µM) were also 

assessed against HIV-IIIB in MT4 cells. MT4 cells are highly sensitive to virally 
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induced cytopathic effects that allow infection to be quantified directly by cytotoxicity 

assay, allowing EC50 to be easily calculated. MT4 cells were centrifuged (400 g, 

5min) and the supernatant fraction discarded. Cells were resuspended in RPMI 1640 

containing 10% FCS, counted using a haemocytometer and the concentration 

adjusted to 1 x 106/mL. HIVIIIB cell free supernatant was added to the cell 

suspension (1 x 10-2 TCID50 per cell). Cell suspension was added to all wells (50mL, 

final cell concentration 5 x 105/mL containing PI in doubling dilutions (100 - 0.015nM) 

with or without MQ or CQ (10µM) except cell free negative controls, which contained 

media only. Drug free positive controls containing cells alone were also included. 

Following incubation (37°C, 5% CO2, 7 days) plates were assayed for cytotoxicity as 

described above. 

 

iv) Interactions with HIV protease 

A fluorescent-based, cell-free assay was developed and the effect of SQV on 

recombinant HIV-1 protease both alone and in combination with MQ or CQ was 

assessed. Recombinant HIV-1 protease (0.22 µg/mL; NISBC) was combined with 

SQV (0.3nM to 10µM) with or without MQ or CQ (10µM) in protease buffer (0.1M 

NaAc; 1M NaCl; 1mM EDTA; 1mM DTT; 10% DMSO; 1mg/mL BSA; pH 4.7). To 

start the reaction a final concentration of 0.1µM HIV protease substrate 1 (Molecular 

Probes, Leiden, NL) was added.  The sequence of this substrate includes the HIV 

protease cleavage site, along with two covalently modified amino acid residues, one 

that has been linked to a fluorophore (5-(aminoethyl)aminonaphthalene sulfonate, 

EDANS) and the other to an acceptor chromophore (4-dimethylaminoazobenzene-4-

carboxylate, dabcyl), resulting in quenching of the nearby fluorophore through 

resonance energy transfer. Excitation was therefore performed at 340nm and the 
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emission simultaneously measured at 490nm for 10min. The mean velocity for 

formation of the cleaved substrate was calculated for each drug concentration and 

normalised to controls. Comparisons were then made between SQV inhibition in the 

presence and absence of MQ or CQ (10µM). 

 

v) Cellular accumulation studies 

In order to determine whether transport of SQV was inhibited by MQ, SQV 

accumulation was assessed in U937, CEM, CEME1000 (overexpressing MRP1) and 

CEMVBL (overexpressing Pgp) cells in the presence of MQ. Following preincubation 

for 10min with 0, 1, 3, 10, 30 or 50µM MQ, cells were incubated in the presence of 

1µM [3H]-SQV (specific activity 26µCi/mg) for 30min at 37°C in serum-free media. 

 

At the end of the incubation period, the samples were removed and centrifuged 

(15,000g for 2min) in a chilled microcentrifuge. An aliquot (50µl) of the supernatant 

was taken for scintillation counting and the cell pellets were washed three times in 

ice-cold PBS before the cells were solubilised by adding 100µl of a cocktail 

containing five parts tissue solubiliser, two parts H2O2, and two parts glacial acetic 

acid. The samples were then analysed by liquid scintillation counting. The cellular 

accumulation ratio (CAR) of SQV is the concentration of SQV in the cell to the 

concentration of SQV in the extracellular media after incubation. 

 

vi) Transporter expression  

Real-time reverse transcriptase polymerase chain reaction: Quantification of mRNA 

transcripts for MDR1, MRP1 and MRP2 was achieved by real-time PCR using an 

Opticon2 Sequence Detection System. GAPDH was used as the housekeeping 
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gene. 40ng of cDNA was combined with Universal master mix, sense and antisense 

primers (0.4µM each) and oligonucleotide probe (0.2µM) in a final volume of 25µl. 

Amplification was carried out for 40 cycles with a combined annealing / extending 

temperature of 60°C. Quantification of MDR1, MRP1 and MRP2 was then achieved 

using the comparative C(t) method. Primers and probes were obtained via the 

Assays-on-Demand™ Gene Expression products available through the Applied 

Biosystems website.  

 

Western blot analysis: Infected and non-infected U937 cells (typically 5x106 cells/mL) 

were incubated in the presence or absence of SQV (10nM), CQ (10µM), MQ (10µM), 

CQ/SQV or MQ/SQV for three days. The cells were then collected and western blot 

analysis was carried out for Pgp, MRP1 and MRP2 as described previously (Owen et 

al., 2003b). In addition, U937 membrane preparations were used in order to enrich 

the transporter-containing fraction of the cells. Breifly, U937 cells were homogenised 

in ice-cold homogenization buffer (250 mM sucrose, 10 mM 4(-2-hydroxyethyl)-1-

piperazineethanesulfonic acid [HEPES], 1 mM ethylenediaminetetraacetic acid 

[EDTA] and 1 mM phenylmethylsulfonyl fluoride [PMSF]) and the nuclei pelleted at 

500 x g for 10min. The supernatant fraction was then further centrifuged at 100,000 x 

g for 30min in order to pellet the membrane fraction.  

 

Briefly, 50µg total protein from each cell line was electrophoresed on 3-12% Tris-

Acetate gels. Following transfer, membranes were blocked with 10% non-fat dried 

milk in Tris-buffered saline containing Tween 20. Monoclonal antibodies C219, 

MRPm5 and MRP2I-4 were used for specific detection of Pgp, MRP1 and MRP2 

respectively (1:2000). Membranes were then incubated with horseradish peroxidase-
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conjugated secondary antibody specific for the primary (1:10000) and transporters 

were detected using enhanced chemiluminescence (ECL) reagent. 

 

Flow cytometry: flow cytometric analysis was carried out for Pgp and MRP1 in U937 

cells in order to characterise these cells with respect to efflux transporters known to 

transport SQV. MRP2 flow cytometry was also attempted but the antibody was found 

to be non-compatible with this technique (data not shown). Pgp flow cytometry was 

carried out using monoclonal antibody UIC2 as previously validated in our laboratory 

(Chandler et al., 2003). Briefly, cells (1 x 106) were fixed with CellFIX (4°C; 30min) 

and incubated with UIC2 (RT; 60min). Following 3 washes with HBSS, cells were 

stained with PE-conjugated secondary antibody (RT; 60min). After another 3 

washes, cells were resuspended in CellFIX for analysis by flow cytometry. 

 

The expression of MRP1 was determined by modification of a previously reported 

method (Chen et al., 2002). Briefly, cells were fixed with CellFIX (30min, 4°C) and 

permeablised with saponin (0.1 mg/mL in HBSS). Cells were then labelled with the 

MRP1 specific mouse anti human primary antibody, QCRL-1 (200µL, 0.12 µg/mL) 

and detection was achieved with FITC conjugated-IgG secondary antibody (200µL, 

0.2 µg/mL) Cells were then fixed with CellFIX for analysis by flow cytometry. 

 

For all analyses the forward and side scatters of the cells were measured 

simultaneously on an EPICS-XL flow cytometer (Coulter Electronics, Luton, Beds.  

UK) and the lymphocyte population was electronically gated to exclude debris.  The 

fluorescence of the cells was plotted against the number of events and the data were 

registered on a logarithmic scale. The median fluorescence for an appropriate 
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isotype control antibody was then deducted from the median fluorescence of the test 

antibody in order to calculate the antibody-specific fluorescence. 

 

vii) Assessment of SQV protein binding in the presence and absence of MQ. 

In order to determine any effects of MQ on SQV protein binding, 3H-SQV (10µM) 

was incubated with recombinant orosomucoid (150mg/dL; median physiological 

concentration), recombinant albumin (4.5g/dL; median physiological concentration) 

or FCS (10%) in RPMI. In addition, the ability of MQ to increase SQV free drug 

concentration in human serum was assessed (n=6). A range of MQ concentrations 

(0-100µM) were pre-incubated with protein-containing RPMI or serum for 10min prior 

to the addition of SQV. Following 30min incubation at 37°C, the samples (500µL) 

were applied to an Amicon Centrifree Filter System (molecular weight cutoff 30,000 

kDa; Millipore Corporation, Bedford, MA), and centrifuged (1500 g, 60 minutes; 

constant temperature of 37°C to prevent altered drug protein binding). Each sample 

provided approximately 200 µL of ultrafiltrate containing the unbound drug. SQV 

concentrations in the total and unbound fractions were then assessed by liquid 

scintillation counting. 

 

viii) Murine tissue distribution of SQV in the presence and absence of MQ. 

Male CD-1 mice were administered a bolus intravenous dose of MQ (10mg/Kg) 10 

minutes prior to a bolus intraperitoneal dose of SQV (10mg/Kg). Following 1 hour, 

the animals were sacrificed with a rising concentration of CO2 and a cardiac puncture 

performed in order to obtain blood samples. The brain, testis, liver and kidneys were 

then removed and frozen in liquid nitrogen. On the following day, tissues were 
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homogenised and SQV concentrations assessed by LC/MS/MS as previously 

reported (Khoo et al., 2002). 

 

ix) Data analysis 

Unless otherwise stated, results are presented as the mean of n=4 experiments 

(conducted in triplicate). Statistical analyses were carried out for normally distributed 

data (assessed by Shapiro-Wilk test) using an unpaired t-test. For non-normally 

distributed data a Mann-Whitney statistical test was employed. 
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RESULTS 

Antiviral activity of antimalarial drugs 

Selective inhibition of HIV-1 was observed for SQV, and to a much lesser extent for 

CQ, MQ and MC (Table 1). The rank order, as illustrated by the selectivity index 

(IC50/EC50), was SQV (2716) >>> MQ (2.5) > CQ (2.2) > MC (1.6). Neither HF nor 

AQ exhibited any selectivity towards HIV (selectivity index <1). In persistently HIV-

infected cells, only SQV was found to have an effect on viral replication with a 

selectivity index of 488. None of the antimalarials screened exhibited selectivity 

against HIV (selectivity index <1 for CQ, MQ, MC, HF and AQ). 

 

Isobolograms for MQ/CQ in combination with SQV 

In order to investigate the potential for combination of CQ or MQ with SQV, 

isobolograms were constructed. Combination of CQ with SQV had an antagonistic 

effect on viral p24 production in U937 cells (Figure 2A) but no effect on cellular 

toxicity as measured by MTT (data not shown). Conversely, the combination of MQ 

with SQV resulted in a synergistic effect on viral p24 in U937 cells (Figure 1B) 

despite no effect on cellular toxicity (data not shown). In both cases MTT data 

followed the line of additivity (data not shown).  

 

Effect of MQ/CQ on antiviral activities of PIs in MT4 cells 

In order to investigate whether the synergy observed between MQ and SQV were a 

drug specific or a class specific occurrence, the effect of MQ and CQ on RTV, SQV, 

NFV, IDV and APV were investigated in HIVIIIB infected MT4 cells (Figure 2A). A 

significant decrease in the EC50 (relative to control) by MQ was observed for SQV 

(0.3 ± 0.06 versus 0.1 ± 0.07; p = 0.01; 95% CI = 0.06, 0.27), RTV (4.2 ± 1.3 versus 
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0.8 ± 0.7 p = 0.005; 95% CI = 1.56, 5.19), NFV (0.7 ± 0.3 versus 0.1 ± 0.07; p = 0.05; 

95% CI = 0.12, 0.89), IDV (8.5 ± 2.0 versus 3.7 ± 0.8; p = 0.005; 95% CI = 2.10, 

7.47) and APV (6.6 ± 1.4 versus 2.3 ± 0.8; p = 0.005; 95% CI = 2.40, 6.35). The fold 

enhancement of EC50 were in the rank order of RTV (5.2) > NFV (3.7) > APV (2.9) > 

SQV (2.4) = IDV (2.3). CQ did not significantly alter the EC50 of any of the PIs tested 

in these experiments (Figure 2B). Toxicity was not observed in non-infected cells 

incubated with these concentrations (data not shown).  

 

Effect of MQ/CQ on recombinant protease assay 

A fluorescence based recombinant HIV protease assay was developed to assess for 

direct interactions between drugs, and effects on HIV protease. Production of 

fluorescent cleavage product by recombinant HIV protease was inhibited by SQV 

with an EC50 of 97.4 ± 11.7 µM. Addition of MQ (10µM) had no appreciable effect 

(EC50 = 116.1 ± 23.2 µM). Addition of CQ did not attenuate the inhibitory effect of 

SQV, suggesting that a direct chemical interaction was unlikely to account for the 

observed antagonism between the two compounds.  

 

Effect of MQ/CQ on cellular accumulation of SQV in U937 cells 

In order to examine the effects of CQ and MQ on the intracellular accumulation, [3H]-

SQV (1µM) was incubated with increasing concentrations of MQ and CQ (0-50µM) in 

U937 cells (Figure 3).  

 

CQ decreased cell associated SQV in a dose dependant manner from a cellular 

accumulation ratio of 101 ± 13 in controls to 80 ± 21 at 1µM (p = 0.08), 71 ± 13 at 

3µM (p = 0.02; 95% CI = 5.8, 50.9), 65 ± 12 at 10µM (p = 0.005; 95% CI = 12.1, 
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57.1), 61 ± 5 at 30µM (p = 0.003; 95% CI = 15.5, 60.5) and 62 ± 4 at 50µM (p = 

0.003; 95% CI = 14.8, 59.8).  Conversely, MQ increased cell associated SQV in a 

dose dependant manner from a cellular accumulation ratio of 101 ± 13 in controls to 

121 ± 12 at 10µM (p = 0.01; 95% CI = -37, -5), 124 ± 5 at 30µM MQ (p = 0.004; 95% 

CI = -41, -9) and 135 ± 4 at 50µM MQ (p = 0.0002; 95% CI = -52, -20).   

 

Drug transporter expression in U937 cells 

In order to determine whether transporters known to transport SQV were expressed 

in U937 cells, real-time RT-PCR was carried out for MDR1, MRP1 and MRP2 

(Figure 4A). Comparisons were made to pooled human liver and pooled human 

PBMC cDNAs. MDR1 mRNA was ~230 and ~460 fold lower in U937 cells than 

PBMC and liver respectively. MRP1 mRNA was found to be ~3.5 and 7.5 fold higher 

in U937 cells than PBMC or liver respectively. For MRP2, the transcript was found to 

be ~3-fold higher in U937 cells than PBMC but ~7.5 fold lower than liver.   

 

Western blot analysis was carried out for Pgp, MRP1 and MRP2 (Figure 4B). 

Although a band of approximately 170kDa for Pgp (using C219 monoclonal 

antibody), 190kDa for MRP1 (using MRPm5 monoclonal antibody) and MRP2 (using 

M2I-4 monoclonal antibody) were observed in appropriate controls, no Pgp, MRP1 or 

MRP2 were stained in either non-infected U937 cells or U937 cells treated with CQ 

(10µM), MQ (10µM), SQV (10nM), CQ/SQV or MQ/SQV (protein analyses were 

carried out on infected cells treated with drugs and combinations of drugs in order to 

ensure that no increase in transporter expression occurred during the EC50 

experiments). Furthermore, Pgp and MRP1 transporter proteins were undetectable 

using flow cytometry with UIC2 and QCRL-1 for Pgp and MRP1 respectively. 
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However, when membrane preparations were utilised for Western blotting (to enrich 

the transporter-containing fraction of the cells), MRP1 and MRP2 but not P-gp were 

detectable in the U937 cells.  

 

For MT4 cells, detection of Pgp and MRP1 was achieved using flow cytometry. For 

Pgp, median FL-2 fluorescence was significantly higher for UIC2 (1.01 ± 0.07) than 

isotype control antibody (0.73 ± 0.02; p = 0.005; 95% CI = -0.36, -0.19) confirming 

expression of this transporter. Similarly for MRP1, median FL-1 fluorescence was 

significantly higher for QCRL-1 (1.44 ± 0.07) than isotype control antibody (1.31 ± 

0.03; p = 0.005; 95% CI = -0.19, -0.04) confirming expression of this transporter. The 

expression indexes for these transporters in MT4 cells were 0.28 ± 0.07 and 0.13 ± 

0.07 for Pgp and MRP1 respectively. Expression of MDR1, MRP1 and MRP2 mRNA 

were also confirmed in these cells (data not shown). 

  

Accumulation of SQV in CEM, CEME1000 and CEMVBL cells 

In order to assess selective reversal of P-gp and MRP1 mediated transport of SQV, 

accumulation experiments were conducted in CEMVBL and CEME1000 cells. In 

CEME1000 cells MQ enhanced accumulation of SQV at both 10µM (53.6 ± 8.0; p = 

0.17) and 100µM (64.5 ± 10.5; p < 0.03; 95% CI for the difference = -31.3, -1.3) 

relative to no MQ controls (48.2 ± 6.6; Figure 5). Similarly, in CEMVBL cells MQ 

enhanced accumulation of SQV at both 10µM (21.0 ± 2.3; p < 0.0001; 95% CI = -

17.9, -11.6) and 100µM (54.9 ± 7.9; p < 0.0001; 95% CI = -58.5, -38.8) relative to 

controls (6.2 ± 1.2; Figure 5). Taken collectively these data indicate that transport of 

SQV by MRP1 and Pgp is inhibited in a dose dependent manner by  MQ. Counter 

intuitively; MQ decreased the accumulation of SQV in the CEM parental cell line from 
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98.2 ± 7.2 to 88.0 ± 0.2 at 10µM (p = 0.04; 95% CI = 0.55, 17.76) and 68.5 ± 7.8 at 

100µM (p < 0.0001; 95% CI = 20.1, 39.3). 

 

Displacement of SQV protein binding by MQ. 

In order to assess the impact of MQ on SQV free drug concentrations, protein-

binding experiments were performed. A significantly higher SQV free drug 

concentration was observed when orosomucoid and SQV were pre-incubated with 

1µM (10.1 ± 0.2 % unbound; p = 0.004; 95% CI = -5.22, -1.21), 10µM (13.3 ± 0.3 % 

unbound; p < 0.0001; 95% CI = -8.38, -4.38) or 100µM (26.4 ± 2.6 % unbound; p < 

0.0001; 95% CI = -21.5, -17.5) MQ as compared to the control (6.9 ± 0.12 % 

unbound). MQ did not displace SQV when incubated in recombinant albumin, FCS 

or human serum (data not shown). 

 

Murine tissue distribution of SQV in the presence and absence of MQ. 

In order to assess the impact of MQ on SQV disposition in vivo, a tissue distribution 

was conducted for SQV in the presence and absence of MQ. Tissue:blood ratios 

were found to be consistently higher in the MQ-coadministered animals as compared 

to the SQV alone animals (Figure 6). A significantly higher tissue:blood ratio was 

observed  for brain (0.07 ± 0.04 versus 0.02 ± 0.01; p = 0.0003; 95% CI = -0.09 to -

0.02) and testis (0.19 ± 0.15 versus 0.07 ± 0.04; p = 0.02; 95% CI = -0.19, -0.01) but 

not liver (1.8 ± 1.5 versus 0.8 ± 0.4; p = 0.16) or kidney (2.2 ± 1.7 versus 1.0 ± 0.4; p 

= 0.19). Importantly, although differences were observed in blood concentrations 

between MQ-co-administered animals (117.7 ± 51.3 µg/mL) and controls (240.0 ± 

49.9 µg/µL), the brain concentrations of SQV were significantly higher in the former 

(4.2 ± 1.9 pg/g versus 7.1 ± 2.4 pg/g; p = 0.01; 95% CI = -5.2, -0.5). 
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DISCUSSION 

CQ is relatively inexpensive, is widely available and has been shown to inhibit HIV-1 

replication by disrupting the formation of glycoproteins in the viral envelope resulting 

in a broad spectrum of antiviral activity (Tsai et al., 1990; Savarino et al., 2001a). In 

keeping with previous reports (Savarino et al., 2001a), we found that CQ exhibited 

anti-HIV activity. We also present data suggesting similar activity (based on 

selectivity index) was observed for MQ and MC. However, these effects were 

extremely modest in comparison to SQV, and only observed at high concentrations 

and in acutely infected cells (suggesting a pre-integration site of action). No antiviral 

effects were observed with HF and AQ. The narrow therapeutic index of these drugs 

combined with the high concentrations required to inhibit HIV suggest that chronic 

dosing with these agents is unlikely to prove effective or successful against HIV-1 

(Martin et al., 1987). This seems to be confirmed by a study reporting a 1.3 log drop 

in viral load in treatment naïve patients receiving didanosine and hydroxyurea plus 

hydroxyCQ for 12 weeks, less than the median 1.7 log drop seen with didanosine 

and hydroxyurea alone (Biron et al., 1996).  

We demonstrate MQ-SQV and MQ-PI synergy in U937 and MT4 cells respectively. 

In contrast, CQ-SQV antagonism was observed in these cells. We provide evidence 

that the synergy (MQ) and antagonism (CQ) with SQV in U937 cells was at the level 

of transport. Indeed, our cell-free recombinant protease assay demonstrated no 

modulation of SQV activity (as judged by velocity of formation of cleaved fluorescent 

substrate) with MQ or CQ. This suggests in particular that a direct chemical 

interaction (e.g. inactivation by complexing) was highly unlikely to account for the 

observed antagonism between CQ and SQV. This enhancement in the CAR of SQV 

by MQ is in keeping with previously reported effects of MQ in other cell lines (Fujita 
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et al., 2000). Thus the increased intracellular accumulation of SQV by MQ in the 

U937 cells, coupled possibly with similar modulatory effects of MQ on the 

intracellular accumulation of SQV and other PIs in the MT4 cells may explain the 

enhanced in vitro antiviral activities of the drugs in these cells. 

However, our observations with CQ, when coincubated with SQV, are contrary to 

recently published findings (Savarino et al., 2004). Interestingly, CQ elicited a 

decrease in the accumulation of SQV in U937 cells and one can only speculate that 

this observation may be due to inhibition of as yet uncharacterised influx systems. It 

has recently been reported that CQ had a synergistic effect with IDV, RTV and SQV 

in CD4+ T-cell lines (Savarino et al., 2004). It is important to note that these cells are 

known to express Pgp and MRP1, indicating that the reported synergy between CQ 

and SQV may not only be transporter-mediated but also due to cell-specific effects of 

CQ. Furthermore, it is important to recognise that there are a number of differences 

between the studies by Savarino et al (Savarino et al., 2001a; Savarino et al., 2001b; 

Savarino et al., 2004) and our present study. Firstly, we have assessed the ability of 

CQ (and other antimalarials) to directly inhibit acute and chronic HIV replication 

whereas in the previous studies the supernatants from formerly infected and treated 

cells were used to infect fresh cells to assess the effects of CQ on viral budding and 

infectivity (Savarino et al., 2001a). Secondly, the synergy described between CQ and 

PIs in the previous study were conducted in cells expressing P-gp (Savarino et al., 

2004). In our study, we have shown that P-gp is absent from the U937 cell model 

both at the mRNA and protein level. However, the discord between our and previous 

studies cannot be explained purely on the basis of P-gp expression since MT4 cells 

cultured in our lab do express this protein. Therefore, one can only speculate that 

this phenomenon is due to global differences in transporter expression between 



JPET #86272 

 23 

U937 cells and the cells utilised in previous studies, coupled with inherent 

differences in transporter-inhibition between MQ and CQ. 

If the enhanced in vitro antiviral activities of MQ-PI combinations are at the level of 

transport, what drug efflux transporters could mediate these observed effects? Here 

we demonstrate by flow cytometric and Western blot analyses that Pgp was not 

detectable in U937 cells. Similarly, mRNA for MDR1 was undetectable in these cells. 

Conversely, MRP1 and MRP2 mRNA were detected, along with the corresponding 

proteins when Western blotting was conducted on membrane preparations. This 

indicates that inhibition of multiple drug efflux transporters or membrane effects may 

have contributed to the enhanced accumulation of SQV and MQ-SQV or MQ-PI 

synergy in these cells. The observation that P-gp is absent from the U937 cells 

cultured in our laboratory is contradictory to previous reports (Gollapudi and Gupta, 

1990; Andreana et al., 1994; Bailly et al., 1995). There are a number of possible 

explanations for this: 1) we have previously reported other phenotypic differences 

between cell lines cultured in different laboratories (Speck et al., 2002; Owen et al., 

2003a). 2) The previous studies were conducted over 10 years ago and as such 

phenotypic differences may have arisen during this time. 3) The antibodies utilised in 

previous studies are different to those utilised here and as such there may be 

differences in reactivity.  

In the CEMVBL and CEME1000 models of P-gp and MRP1 overexpression, dose 

dependant reversal of altered accumulation of SQV by MQ was observed indicating 

that MQ is able to inhibit drug efflux of SQV by these transporters. Curiously, in the 

parental cell line, the opposite of what was noted in U937 and the CEM sub-lines 

was observed. Again, one can only speculate that this phenomenon may be due to 

inhibition of an as yet unidentified influx transporter within these cells. 
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In order to assess any potential interactions of MQ with SQV protein binding, we 

assessed the potential for displacement from orosomucoid, albumin, FCS and 

human serum. We conclude from these experiments that protein binding effects are 

unlikely to contribute to the in-vitro synergy observed, since MQ did not displace 

SQV from FCS. However, we observed a dose dependent displacement of SQV 

from orosomucoid but not albumin by MQ. In order to assess whether SQV free drug 

concentrations could be modulated in-vivo, we carried out similar experiments using 

human serum. Although data indicated that free drug concentrations were not altered 

in serum, one cannot rule out the possibility that the high affinity binding to 

orosomucoid was displaced, and albumin simply "mopped up" the excess. This has 

important implications since, theoretically, the shift from high affinity to low affinity 

binding may influence the ability of compounds to cross biological membranes. 

Indeed, differences in orosomucoid binding have been shown to alter hepatic 

extraction ratio of quinidine (Mansor et al., 1991), a drug that is bound to both 

orosomucoid and albumin (Mihaly et al., 1987). 

Given the potent enhancement in antiviral activities of SQV and other PIs and the 

displacement of SQV from orosomucoid when co-incubated with MQ, we 

investigated the potential for MQ to increase the tissue penetration of SQV in CD-1 

mice. Interestingly, we observed an increased tissue distribution of SQV in the MQ 

co-administered group compared to control, suggesting that the bioavailability and 

tissue permeation of SQV was enhanced by MQ. Indeed, the ratio of tissue to blood 

concentrations were increased in every tissue assayed. Although this was partly 

explicable by the observation that the MQ-treated animals had lower blood 

concentrations (as you would expect if more of the drug is free to infiltrate 

surrounding tissue), the concentration in brain was doubled even when not corrected 
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for blood concentration. A potential question that arises from the presented data 

relates to the location of the SQV in brain. For example, whether MQ increases 

trans-endothelial transport of SQV or simply increases sequestration in the choroid 

plexus. Microdialysis experiments would clarify these issues. 

We show here improvements in the in vitro antiviral effects of SQV (and other PIs) 

when co-administered with MQ and potentiation of the retention of SQV in sanctuary 

sites of CD-1 mice. Given these exciting observations, more preclinical studies are 

now warranted in order to define this drug-drug interaction more clearly with the use 

of a clinically relevant co-dosing regimen. 
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LEGENDS FOR FIGURES 

Figure 1 A) Isobologram illustrating the effect of chloroquine (CQ) in combination 

with saquinavir (SQV) on viral p24 in U937 cells acutely infected with HIV-1 IIIB. 

Inset: representative dose response curves for SQV with CQ (CQ:SQV 9:1; -■-) 

versus SQV alone (-▲-). b) Isobologram illustrating the effect of mefloquine (MQ) in 

combination with SQV on viral p24 in U937 cells acutely infected with HIV-1 IIIB. 

Inset: representative dose response curves for SQV with MQ (MQ:SQV 7:3; -■-) 

versus SQV alone (-▲-).   Incubations were carried out for 7 days and data is 

expressed as the mean and standard deviation of n = 4 experiments. The dashed 

lines illustrate the theoretical line of additivity. FIC = Fractional inhibitory 

concentration. 

 

Figure 2 The effects of MQ (A; 10µM) and CQ (B; 10µM) on antiretroviral activity 

(EC50) of RTV, NFV, SQV, IDV and APV in MT4 cells infected with HIVIIIB. MT4 cells 

were infected with HIVIIIB in the presence of MQ and PIs and syncytia-mediated cell 

death was assessed by MTT toxicity assay. Data represent the mean and standard 

deviation of n = 4 experiments conducted in triplicate. * = P < 0.01 see text for 

details. 

 

Figure 3 Effect of mefloquine (MQ) on the intracellular accumulation of saquinavir 

(SQV) in U937 cells. SQV (1µM) was incubated with U937 for 30min in the presence 

and absence of MQ (0-50µM). Data are presented as mean and standard deviation 

of n=4 experiments conducted in quadruplicate. * = P < 0.05, ** = P < 0.01 see text 

for details. CAR = Cellular accumulation ratio. 
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Figure 4 (A) MDR1, MRP1 and MRP2 transcripts in U937 cells relative to pooled 

cDNA from peripheral blood mononuclear cells (PBMC) and liver. (B) Western blot 

analysis of Pgp, MRP1 and MRP2 in U937 cells. Separate lanes include non-

infected cells (NV) as well as HIVIIIB infected controls (CTL) and infected cells 

incubated with MQ (10µM), CQ (10µM), SQV (10µM) or combinations of these for 3 

days. Positive controls (PC) for Pgp, MRP1 and MRP2 were also included as 

indicated. The right panels correspond to Western blots conducted on membrane 

preparations from non-infected cells. 

 

Figure 5 Cellular accumulation of SQV (1µM) in CEMVBL (Pgp-overexpressing) and 

CEME1000 (MRP1-overexpressing) cells and the effect of MQ (10 and 100µM) on the 

observed accumulation. Data are presented as mean and standard deviation of n = 4 

experiments conducted in duplicate. * = P < 0.05, ** = P < 0.01, *** = P < 0.001 see 

text for details. 

 

Figure 6 Tissue distribution of SQV in the presence and absence of MQ. CD-1 mice 

received a intra-venous (tail-vein) dose of MQ (10mg/kg) or vehicle alone 10min prior 

to an intra-peritoneal dose of SQV (1mg/kg). Tissues were isolated 1h later and SQV 

concentrations assessed. Data are presented as the mean and standard deviation of 

values obtained from 10 mice in each group. * = P < 0.05, *** = P < 0.001 see text 

for details. 

 

  

 



TABLES 

Table 1 

The effects of saquinavir (SQV), chloroquine (CQ), mefloquine (MQ), 

mepacrine (MC), halofantrin (HF) and amadioquine (AQ) (0.1-100µM) on viral 

p24 (EC50) and U937 MTT (toxicity; IC50) in cells acutely and persistently 

infected with HIV-1 following incubation for 7 days. Data are calculated from 

the mean of n=4 experiments. 

 

 Acutely infected U937 cells Chronically infected U937 cells 

Drug EC50 
(antiviral) 

IC50 
(toxicity) 

Selectivity 
index 

EC50 
(antiviral) 

IC50 
(toxicity) 

Selectivity 
index 

SQV 0.03 µM 73.8 µM 2716 0.13 µM 61.7 µM 488 
CQ 11.1 µM 24.6 µM 2.2 22.9 µM 11.3 µM 0.5 
MQ 3.3 µM 8.0 µM 2.5 7.5 µM 7.0 µM 0.9 
MC 7.4 µM 12.1 µM 1.6 4.8 µM 3.9 µM 0.8 
HF 3.7 µM 1.2 µM 0.3 62.7 µM 4.8 µM 0.08 
AQ 12.9 µM 9.3 µM 0.7 22.9 µM 19.9 µM 0.9 
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Figure 4



Figure 5
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Figure 6
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