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Heat capacity of alloys (metals) is one of the crucial thermo-physical parameters used for 

process behaviour prediction in many applications. Heat capacity is an input variable for many 

thermo-dynamical (e.g. Thermocalc, Pandat, MTData,...) and kinetic programs (e.g. IDS-

Solidification analysis package,...). The dependences of heat capacity on common variables 

(temperature, pressure) are also commonly used as the input data in software packages (e.g. 

ProCast, Magmasoft, ANSYS Fluent...) that are applicable in the field of applied research for 

simulations of technological processes. It follows from the above that the heat capacities of 

materials, in our case alloys, play a very important role in the field of basic and applied research. 

Generally speaking, experimental data can be found in the literature, but corresponding (needed) 

data for the given alloy can very seldomly be found or can differ from the tabulated ones. The 

knowledge of proper values of heat capacities of alloys at the corresponding temperature can be 

substantially used for addition to and thus towards the precision of the existing database and 

simulation software. The paper presents the values of Cp measured for the hematite ingot mould 

and comparison of the measured data with the Cp obtained using the software CompuTherm with 

respect to simulation of technological casting process. 
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Introduction 

Heat capacity [1] and other material properties (phase transition temperatures, 

latent heats, surface tension, interface tension,...) [2–9] of alloys (metals) are 

crucial thermo-physical quantities for many applications. Many of these data are 

accessible in the literature, but it is very often difficult to find data for a given 

material (with exact chemical composition), as well as for the required 

temperature interval. The data found for given material in different literature 

resources sometimes even differs [2, 3, 7].  

Heat capacities are typically used as basic data in many calculating 

software packages (SW), e.g. Thermocalc, MTData, PANDAT, IDS and others. 

Proper thermo-physical and thermo-dynamic data are used (necessary for 

simulations) also in SW, such as Magmasoft and ProCAST.  

This paper deals with the investigation of heat capacity (Cp) of a hematite ingot 

mould, Fig. 1, used in VÍTKOVICE HEAVY MACHINERY a.s. for casting of 

steel ingots. This kind of mould is used for the production of heavy steel forging 

ingots that are used for the production of many products in the assortment of 

VÍTKOVICE HEAVY MACHINERY a.s. (steam generators, heat exchangers, 

collectors for conventional and nuclear power engineering,...). Constantly 

increasing demands on higher quality of products lead to the necessity of 

optimization of technological processes. The best way to optimize the production 

process is to have proper data from operation, proper material data and simulation 

SW. In this paper the measured values of heat capacity Cp of a hematite mould are 

compared with Cp values calculated using CompuTherm. Both experimental and 
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calculated dependences of Cp were used for the simulation of process of casting of 

a steel ingot with use of ProCAST SW, and the obtained results are discussed. 

Theory 

Heat capacity can be expressed as heat (Q) absorbed/released by the sample 

(material) during its heating or cooling between the temperatures T1 and T2 [1]: 

Mean value of Cp at constant pressure can be expressed by the equation (1): 

12 TT
QC
−

=                                                                                               (1) 

 For comparison of the heat capacity of different materials it is necessary to relate 

this quantity to the amount of material. If the Cp is related to the (sample) mass 

then the so-called specific heat capacity at constant pressure is defined [1].  

The fastest way to obtain the values of heat capacity is the utilization of 

calculation relation(s) or calculation SW. Considering the multi-component alloys 

(steels and other alloys) it is possible to use the Neumann-Kopp rule to calculate 

Cp dependence on temperature [1]. 

Secondly, it is possible to use SW for calculation of Cp. JmatPro, IDS or 

CompuTherm (ProCast sub module) are very often used for calculation of 

temperature dependence of Cp. Although utilization of the calculation SW is very 

comfortable and fast, this procedure is mostly based on theoretical assumptions, 

limitations and approximations connected with the composition of the alloy, 

temperature interval, calculation model limitations and others. Cp values are 

mostly calculated only with respect to the chemical composition, but the Cp value 

(dependence) may be influenced by structure, phases present in the sample and 

influence of the deformational state. Therefore, the best way to obtain proper data 

for the system under investigation is by carrying out an experiment. 
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Almost all classical DSC devices make it possible to perform two basic methods 

for heat capacity determination. The first is the continuous method and the second 

is the so-called stepwise method. Special equipment is used for the so called 

DROP method. General description of these three methods can be found 

e.g. in [10].  

Continuous method is the fastest method for Cp determination and was used for 

experimental measurements in this work. The scheme of the continuous method is 

shown in Figure 2.  

The heat capacity determined on the basis of DSC experiment comprises three 

main sequences: 1st sequence - adjusted isothermal dwell, 2nd sequence - linear 

heating in the whole measured temperature interval and the 3rd sequence is 

isothermal dwell at the temperature that makes it possible to cover the desired 

temperature interval. All three sequences must be performed with empty crucibles 

(B), with the sample (S) and with the reference sample (C). Consecutively, the 

heat capacity can be calculated according to the following formula [10]:  

)(
)(

BCS

BSC
pCp AAm

AAmCC
−×
−×

×=                                                                                  (2) 

where, AB, AS, AC in [mW] are segments corresponding to the heat effects detected 

for the measurement of blank (empty crucibles), measurement with the sample 

and the reference sample, CpC [J K-1 g-1] is the heat capacity of the reference 

sample, Cp [J K-1 g-1] is the heat capacity of the measured sample, mS [mg] and mC 

[mg] are masses of the sample and the reference sample. 

Numerical simulation of real casting process 

The principle of numerical simulation, as published in [11–17], is the numerical 

solution of each task divided into the three stages: pre-processing, processing and 

post-processing. 
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Pre-processing includes the geometric modelling and the computational mesh 

generation process, and definition of calculation. The whole 3D ingot mould 

geometry was created in the CAD system SolidWorks. Comparison of the real and 

CAD geometry of the casting system is shown in Figs. 1 A and B. The 

computational mesh was generated in Visual-Mesh, which is a part of the packet 

of ProCAST software. Figure 1C presents the final computational mesh of the 

casting system. Figure 1 D shows the final 3D ingot geometry.  

Determination of some boundary, operating and initial conditions is not usually 

difficult. The quality of the results of the numerical simulation of the temperature 

field, volume defects in ingots, especially macro-segregation of elements, is 

mainly determined by the quality of the thermo-dynamic and thermo-physical 

properties of steel and of ingot mould material. In the simulation section this 

paper is focused on comparison of temperature fields in an ingot mould obtained 

using the values of Cp calculated using CompuTherm (Computherm enables 

calculation only of the enthalpy dependence on the temperature, not the specific 

heat temperature dependence, not the separately specific heat temperature 

dependence and latent heats of the running phase transitions. Therefore, the 

dependence of enthalpy on temperature was recalculated to the heat capacity 

dependence including the latent heat of the phase transition in the investigated 

region. So, the so-called apparent heat capacity was obtained [18, 19]) with the 

values of Cp (apparent Cp) obtained experimentally using the DSC measurements, 

other conditions (parameters) during simulation were unchanged. 
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Experimental 

Samples characterisation 

Samples of the ingot mould were supplied by VÍTKOVICE HEAVY 

MACHINERY a.s. Samples were machined into the form of cylinders (5 mm in 

diameter and 17 mm in height with a mass of ~2100 mg for DSC analysis and 

3.5 mm in diameter and 3 mm height with mass of ~160 mg for TG/DTA 

analysis), chemical composition is shown in Table 1 (supplied by VÍTKOVICE 

HEAVY MACHINERY a.s., the analyses were performed with use of 

spectroscopy with glow discharge and combustion analysers). Prior to the 

performed TG/DTA and DSC analyses the samples were ground in order to 

remove a possible oxidation layer, then cleaned in acetone by simultaneous 

ultrasound impact. 

Simultaneous TG/DTA analysis 

Alloys containing carbon are predisposed to the decarburisation at higher 

temperatures (due to the high carbon diffusivity) [20]. Therefore, simultaneous 

thermal analysis (TG/DTA) was performed in order to check the possible 

decarburisation (mass loss) of an ingot mould sample during the analysis. The 

TG/DTA was performed in the temperature interval of 300–1700 K in an inert 

atmosphere of Ar (6N). Analyses were performed for two heating rates, 

10 and 20 K min-1. Simultaneous TG/DTA analyses were performed in corundum 

crucibles.  

TG and DTA curves obtained for different heating rates are presented in Figure 3. 

According to the obtained DTA curves the running phase transitions were 

checked and compared with the DSC results. The observed TG curve, in 

dependence on temperature, showed whether the mass of sample was changed 

during the experiment or not.  
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TG/DTA analyses were performed until the complete melting of the sample. 

During the heating rate of 10 K min-1 mass loss was observed, which 

corresponded with high probability with the decarburisation degree of the sample. 

The start of the carbon loss was observed at around 950 K. The constant trend in 

the mass loss of carbon was observed up to the temperature of ~1300 K. Then the 

mass loss was substantially faster than between the temperatures of 950–1300 K. 

Over 1300 K the sample melting was observed and therefore also the faster 

decarburisation, as observed from the TG curve(s). The sample mass loss was 

1.9 %. Assuming that the sample mass loss is 1.9 wt %, then the carbon content 

decrease is more than 50 %. On the basis of the preliminary TG/DTA analyses (at 

10 K min-1) it was necessary to modify the conditions of thermal analyses 

experiments in order to avoid possible decarburisation that might have 

corresponding influence on the values of heat capacity. Another heating rate was 

set to be 20 K min-1. The mass loss of the sample was not observed (Figure 3) at 

such a fast heating rate in the temperature region from 300–1300 K. In the melting 

region the decrease of mass was approx. 0.1 %. That means that the maximum 

reduction of the carbon content was no more than 4 % (if complete melting of the 

sample was realised).  

With respect to the observed facts, the heating rate of 20 K min-1 was chosen as 

suitable for the performed DSC analyses (blank, calibration with corundum, 

analysed sample).  

Moreover, the temperature calibration was performed with use of standard metals 

(Sn, Al, Ag, purity 5N) at corresponding heating rates. 
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DSC analysis 

Heat capacity (apparent heat capacity, heat capacity including latent heat of the 

phase transition) of the ingot mould was measured with use of the Setaram MHTC 

96 Line (Multi High Temperature Calorimeter) equipped with 3D heat flux DSC 

B-type measurement sensor making it possible to perform experiments up to 

1823.15 K. Measurements were performed in the temperature interval between 

500–1100 K in an inert atmosphere of He (6N, flow rate 20 ml min-1; helium is 

more suitable for obtaining the Cp values using scanning methods because of a 

substantially high thermal conductivity in comparison with Ar). The resulting 

value of heat capacity dependence was obtained from three measurements. The 

prepared cylinders of the samples were put into the corundum sleeve (shut by 

corundum lid), the sleeve was inserted in to the Pt–crucible and shut by the Pt–lid, 

and consequently the Pt crucible was inserted into the 3D DSC sensor and 

covered by the corundum plate.  

The temperature programme started from 300 K by linear heating (5 K min-1) of 

the sample up to the temperature of 423.15 K. At this temperature the first 

isothermal dwell was realised. Subsequently the linear heating (20 K min-1) to the 

second isotherm (1373.15 K) followed. Experimental values of Cp were obtained 

from the temperature interval of 500–1300 K (temperature interval without 

disturbing effects caused by change of isotherms and heating mode, Figure 3). 

The same temperature programme was set for calibration measurements with 

corundum (purity 4N8) and for the blank. 

Heat capacity measurements were checked with respect to the known heat 

capacity of corundum. The relative standard deviation from three measurements 

(computed from three runs performed with corundum) for the temperature interval 

between 500–1300 K was ± 0.2 %. Comparison with the generally accepted Cp 
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values of corundum was performed. The standard deviation (mean value) 

calculated from experimentally obtained values and from the generally accepted 

Cp for the specific temperature is 5 % (in the measured temperature interval).  

The temperature calibration was performed also with use of standard metals (Sn, 

Al, Ag, purity 5N) at the heating rate of 20 K min-1.  

Results and discussion 

Phase transitions 

DTA and DSC analysis also revealed two thermal effects, see Figs. 3 and 4. The 

first thermal effect corresponds with the change of magnetic properties 

(ferromagnetic to paramagnetic, temperature of the Curie point was evaluated, 

TC = 1019 K (DTA, 20 K min-1). The second heat effect (DTA, 20 K min-1) can 

be, with high probability, attributed to the transition α + Cgrafitic → γ [6] (α –

 ferrite, Cgrafitic-graphitic carbon, γ-austenite). This transition takes place between 

the temperatures of 1071–1108 K. Identical thermal effects were observed during 

the DSC analysis, TC = 1036 K and α + Cgrafitic → γ takes place between 1079–

1131 K. Transition temperatures obtained using DSC are shifted to the higher 

temperatures, whereas the main reason for this phenomenon is the amount of the 

sample used for the DSC analysis. The bigger the mass, the longer the time 

needed for heat transfer (the transitions must not take place in each part of the 

sample at the same time) within the whole volume of the sample. The shift of 

temperatures might have been caused also by the detection limit of the sensor. In 

the case of large samples and at relatively high heating rates, the beginning and 

termination of the heat effect followed by the phase transition can be very often 

more unclear in comparison with the experiments with small samples and lower 

heating rates (this fact might have also influenced the results). 
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Enthalpy and consequently the apparent heat capacity Cp of the hematite ingot 

mould was calculated using the CompuTherm SW, Fig. 4. When using this SW 

only one phase transition can be observed (1007-1067 K), which is in contrast 

with the real DSC and DTA experiments, when two transitions were observed. 

Probably, the authors of CompuTherm SW suppose, that the peak (heat effect) 

includes both the magnetic transition and transition of α + Cgrafitic → γ in close 

proximity (heat effects could overleap over each other). The authors of this SW do 

not present the models used for thermo-physical and thermo-dynamic quantity 

calculations in their instruction manuals and thus it is not clear which algorithm 

the authors used for the Cp calculation. So in fact it is not clear, whether the 

received Cp (enthalpy respectively) is just calculated, calculated and corrected 

with respect to the experiment or whether it is only experimental. Probably the 

calculation model with its limitations and simplifications may give somewhat 

different results in comparison with the experiments. 

Heat capacity 

Experimentally obtained and calculated values of apparent heat capacity are 

presented in Table 2 and graphically shown in Figure 4. 

The experimentally obtained Cp values (on the basis of three measurements) are 

very close to the values calculated with use of the Computherm SW in the 

temperature interval of 500–1000 K, and in the interval of 1175–1300 K. The 

differences between experimental and calculated values are also presented in 

Table 2. The Cp dependence trends are the same. The experimentally obtained 

dependence shows mild curvature in the observed intervals. Heat capacity values 

significantly differ between the temperatures of 1000–1175 K due to running 

phase transition(s). The differences could probably be attributed to the 

simplifications and limitations that are implemented in the calculation models. 
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The calculating relations and models are also often derived on the basis of 

experimental data (that are at present insufficient) and theoretical assumptions, 

which are valid most often for a certain interval of chemical composition. The 

data obtained by extrapolation beyond this interval (e.g. concentration interval) 

can be less relevant.  

Comparison of simulation results using calculated and experimental 
Cp values 

Simulations were performed with use of the ProCAST SW. Comparison of the 

calculated results with the experimental and theoretical results are presented in 

Figure 5. A very important parameter was observed: the temperature field in the 

hematite ingot mould, which defines, together with the heat flux, also the heat 

transfer coefficients and ambient temperature, and also the character of the 

solidification, as well as the size of the volume defects, such as shrinkage or 

porosity. Figure 5 presents the temperature fields of real mould acquired with 

thermo-vision measurements compared with the results obtained with calculated 

and experimental Cp dependences after one hour, 2 hours and 3 hours and 20 

minutes after the casting process. The temperature fields (real, calculated by the 

CompuTherm Cp and experimental Cp) are identical for the observed times: 1 hour 

and 3 hours and 20 minutes after the casting process. Only at the time of 2 hours 

after the end of the casting process was a mild deviation observed in the 

temperature interval 684.15–744.15 K between simulation results based on 

theoretical and experimental Cp. The differences can be seen at a border of 

concave regions of the mould, where the more distinct warming is evident. This 

feature, obtained by experimental Cp dependence, is very similar (more close) to 

the results obtained by real thermo-vision measurements in comparison with the 

results obtained with calculated Cp. Furthermore, a very important fact is that the 
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temperature field on the ingot surface, after stripping, is identical with the 

calculated temperature field using the dependence of Cp on the temperature 

obtained by the DSC experiment. 

It is possible to state from the obtained results that the experimental value of Cp 

temperature dependence in the observed temperature interval contributed to the 

results (simulations) that were more accurate and closer to the results obtained by 

real thermo-vision measurements. Although the differences in Cp dependences in 

the region of phase transitions significantly differ, the simulation results are very 

close (in majority the same). It is possible to state that a lack of proper basic 

experimental data still persists and that there are differences between the used 

data. More precise data are necessary for improvement of simulations and 

consequently for more precise setting of real conditions of technological processes 

leading to the improvement of properties of the final product. 

Conclusions 

The following conclusions were formulated on the basis of the obtained 

experimental results from DTA, DSC analyses and from comparison of real 

thermo-vision measurements and simulations using heat capacity calculated by 

the CompuTherm and experimental heat capacity measured using continuous 

method and SETARAM MHTC (Multi High Temperature Calorimeter) equipped 

with the 3D DSC sensor: 

- The experiments must be performed very carefully with respect to the possible 

massive decarburisation. 

- Two running phase transitions were detected by DTA and DSC analyses in the 

studied ingot mould. 
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- Temperature of the Curie point was found to be 1019 K (DTA) and 1036 K 

(DSC) respectively.  

- The second one is the transition α + Cgrafitic→γ, which takes place between the 

temperatures 1071–1108 K (DTA) and 1079–1131 K (DSC) respectively. 

- The heat capacity dependence obtained by the CompuTherm shows only one 

running phase transition (peak). It is not clear, to which phase transition this peak 

is related to. Probably, the authors of the CompuTherm suppose that the peak 

includes both: magnetic transition and transition of α + Cgrafitic → γ. 

- The experimental Cp values are very close to the calculated values in the 

temperature interval of 500–1000 K and in the interval of 1175–1300 K. More 

distinct deviations are in the temperature interval of 1000–1175 K. 

- The results of simulations of casting process using experimental and calculated 

Cp values differed slightly after only 2 hours after the end of casting process. The 

results obtained by experimental Cp dependence (after 2 hours) are closer to the 

results obtained using thermo–vision measurements.  

- The simulation results obtained using experimental Cp dependence seem to be 

more precise in comparison with the calculated Cp dependence.  

- Despite relatively significant differences in the Cp dependence in the phase 

transition region it seems that these differences have no considerable impact on 

the simulation results (it is possible to use the calculated and measured Cp 

dependence also for obtaining very close–almost the same results).  

Experimental measurements were performed in order to obtain our own data of 

the temperature dependence of Cp on the temperature for a hematite ingot mould. 

Simulations leading to description of temperature fields in the ingot mould were 

performed. The obtained results showed the necessity of experimental 
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measurements and consequently improvement of present databases, as well as SW 

used for thermo–dynamical calculations and simulations. 

Future work is planned and will be focused on the study of the origin of possible 

defects and on segregation processes that are strongly dependent on the changes 

of the temperature field in the ingot alone, and in the ingot mould as well.    
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Figure Captions 
 

Fig. 1 Ingot mould, A-real ingot mould, B-CAD geometry of ingot mould, C-final computational 

mesh of ingot mould, D-final computational mesh of ingot  

Fig. 2 Scheme of continuous Cp method, X - section of values used for Cp evaluation 

Fig. 3 Comparison of TG and DTA curves obtained at 10 and 20 K min-1
  

Fig. 4 Comparison of apparent heat capacities calculated with use of CompuTherm and 

experimentally obtained values  

Fig. 5 Comparison of measured and calculated temperature fields of ingot mould 

 

Table Captions 

Table 1 Chemical composition of studied ingot mould, wt. % 

Table 2 Apparent heat capacity of studied ingot mould, experimental (Exp.) and calculated (Calc.) 

values 
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Table 1 Chemical composition of studied ingot mould, wt % 

Sample C Si Mn P S Cr 
Hematite 

mould 3.6 1.5 0.7 0.02 0.02 0.1 

Table 2 Apparent heat capacity of studied ingot mould, experimental (Exp.) and calculated (Calc.) values 

T/K 
Cp/J K-1 g-1 

        Exp.a Calc. ∆b 
500 0.57±0.02 0.50 12.7 
525 0.56±0.02 0.52 8.7 
550 0.57±0.02 0.54 5.6 
575 0.57±0.02 0.56 3.2 
600 0.58±0.02 0.58 1.5 
625 0.60±0.02 0.60 0.0 
650 0.61±0.02 0.62 1.2 
675 0.62±0.01 0.64 2.4 
700 0.63±0.01 0.66 3.5 
725 0.65±0.01 0.68 4.7 
750 0.66±0.01 0.70 5.8 
775 0.67±0.01 0.72 6.9 
800 0.68±0.01 0.74 7.9 
825 0.70±0.01 0.76 8.6 
850 0.71±0.01 0.78 8.8 
875 0.73±0.01 0.80 8.5 
900 0.76±0.01 0.82 7.4 
925 0.79±0.01 0.84 5.4 
950 0.84±0.01 0.86 2.4 
975 0.89±0.01 0.88 1.6 

1000 0.96±0.01 0.90 6.5 
1005 0.97±0.02 0.90 7.6 
1010 0.99±0.01 1.13 13.9 
1015 1.01±0.02 1.50 48.7 
1020 1.03±0.01 1.87 82.3 
1025 1.04±0.02 2.24 114.5 
1030 1.06±0.02 2.21 108.2 
1035 1.08±0.02 2.01 85.0 
1040 1.05±0.02 1.80 70.4 
1045 1.01±0.02 1.59 56.7 
1050 0.98±0.02 1.38 40.8 
1055 0.95±0.02 1.17 22.8 
1060 0.93±0.02 0.96 3.0 
1065 0.92±0.08 0.75 18.4 
1070 0.91±0.14 0.72 21.7 
1075 0.97±0.14 0.72 26.1 
1080 1.13±0.14 0.72 36.1 
1085 1.26±0.13 0.72 42.6 
1090 1.37±0.13 0.72 47.1 
1095 1.45±0.14 0.73 50.0 
1100 1.51±0.06 0.73 51.9 
1125 1.08±0.04 0.74 31.8 
1150 0.85±0.02 0.75 12.4 
1175 0.78±0.02 0.76 2.7 
1200 0.77±0.02 0.77 0.1 
1225 0.77±0.03 0.78 1.2 
1250 0.76±0.04 0.79 4.1 
1275 0.74±0.04 0.80 7.4 
1300 0.77±0.03 0.81 4.8 

aUncertainties are the standard deviations of three replicates

b∆=100(|Cp,Exp.-Cp,Calc|/Cp,Exp.) 
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Fig. 1 Ingot mould, A-real ingot mould, B-CAD geometry of ingot mould, C-final computational mesh of ingot 

mould, D-final computational mesh of ingot  

 
 

Fig. 2 Scheme of continuous Cp method, X - section of values used for Cp evaluation 

 
 

Fig. 3 Comparison of TG and DTA curves obtained at 10 and 20 K min-1
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Fig. 4 Comparison of apparent heat capacities calculated with use of CompuTherm and experimentally obtained 

values  

 
 

Fig. 5 Comparison of measured and calculated temperature fields of ingot mould 
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