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Abstract

R. Häggkvist proved that every 3-regular bipartite graph of order
2n with no component isomorphic to the Heawood graph decomposes
the complete bipartite graph K6n,6n. In [2] the first two authors es-
tablished a necessary and sufficient condition for the existence of a
factorization of the complete bipartite graph Kn,n into certain families
of 3-regular graphs of order 2n. In this paper we tackle the problem
of decompositions of Kn,n into certain 3-regular graphs called gener-
alized prisms. We will show that certain families of 3-regular graphs
of order 2n decompose the complete bipartite graph K 3n

2
, 3n
2

.
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Decomposition of complete bipartite graphs 2

1 Introduction

All graphs considered in this paper are simple, finite and undirected. We use
standard terminology and notation of graph theory.

Graph decompositions have been widely studied in many different set-
tings. We say that a graph B has a G-decomposition if there are subgraphs
G1, G2, . . . , Gs of B, all isomorphic to G, such that each edge of B belongs
to exactly one Gi. If each Gi for i ∈ {1, . . . , s} contains all vertices of B,
then we say that B has a G-factorization.

Recall that a prism is a graph of the form Cm×P2. As in [2] we generalize
prisms and let the (0, j)-prism (pronounced “oh-jay prism”) of order 2n for
j even be the graph with two vertex disjoint cycles Ri

n = vi0, v
i
1, . . . , v

i
n−1, v

i
0

for i ∈ {1, 2} of length n called rims and edges v11v
2
1, v

1
3v

2
3, v

1
5v

2
5, . . . and v

1
0v

2
j ,

v12v
2
2+j, v

1
4v

2
4+j, . . . called spokes of type 0 and type j, respectively (see Fig. 1).

It is easy to observe that an (0, j)-prism is a 3-regular graph and is isomorphic
to an (0,−j)-prism, (j, 0)-prism and (−j, 0)-prism. We can therefore always
assume that j ≤ n

2
. In our terminology the usual prism is an (0, 0)-prism.
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Figure 1: (0, j)-prism.

For many years, one of the most popular problems in graph decomposi-
tions has been the problem of decompositions and factorizations of complete
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Decomposition of complete bipartite graphs 3

and complete bipartite graphs into 2-regular graphs, that is, into cycles and
unions of cycles. Investigation of analogous problems for 3-regular graphs is
a natural next step in this field of research.

The problem of factorization of Kn,n into (0, j)-prisms was solved in [2].
In this paper we approach the decomposition problem of Kn,n into (0, j)-
prisms. As in [5] we denote by G[H] the composition of graphs G and H
which is obtained by replacing every vertex of G by a copy of H and every
edge of G by the complete bipartite graph K|H|,|H|. We say that G[H] arose
from G by blowing up by H and recall that Km is the complement of Km,
i.e., the graph consisting of m independent vertices.

A labeling of a graph G is a function from V (G) into a group Γ. A. Rosa
[8] introduced several types of graph labelings as tools for decompositions of
complete graphs. In this paper we will use a decomposition method based
on certain vertex labeling.

Definition 1 Let Za be a cyclic group of order a and let G be a bipartite

graph with k edges. Let V (G) = V0 ∪ V1, V0 ∩ V1 = ∅ and |V0| 6 |V1| 6 k.
Let λ be an injection such that λ : Vi → {(u, v)i : u ∈ Za, v ∈ Zb, ab = k}
for i ∈ {0, 1}. We define the dimension of an edge x0y1 with λ(x0) = (u, v)0
and λ(y1) = (t, z)1 as dim(x0y1) = ((t−u) mod a, (z− v) mod b) for x0 ∈ V0
and y1 ∈ V1.

Problems of decomposition of graphs into k-regular graphs were studied
widely. R. Häggkvist [6] proved that every 3-regular bipartite graph of or-
der 2n with no component isomorphic to the Heawood graph decomposes
the complete bipartite graph K6n,6n. In [2] it was proved that Kn,n can be
factorized into (0, j)-prisms of order 2n if and only if n ≡ 0 (mod 6). It is
natural to consider also a more general problem. In this paper we decom-
pose complete bipartite graphs Kk,k into (non-spanning) (0, j)-prisms on 2n
vertices. It is obvious that for n ≡ 0 (mod 6) we can decompose every graph
Kmn,mn by first decomposing it into m2 copies of Kn,n and then factorizing
each copy into the (0, j)-prisms. Hence, for (0, j)-prisms our construction for
n 6≡ 0 (mod 6) gives stronger results than Häggkvist’s theorem. On the other
hand, we notice that the obvious necessary conditions allow wider classes of
complete bipartite graphs than just Kmn,mn for consideration. For if we want
to decompose Kk,k into (0, j)-prisms of order 2n, then it follows that k2 ≡ 0
(mod 3n), because the number of edges of the (0, j)-prism is 3n. Moreover,
since an (0, j)-prism has to be bipartite in order to decompose Kk,k, it fol-
lows that n must be even and the (0, j)-prism has an even number of edges.
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Therefore, k must be even, which implies that k ≡ 0 (mod 6). However,
these conditions may be in some cases satisfied even when k 6= mn. For
instance, if n ≡ 0 (mod 4), then K 3n

2
, 3n
2

satisfies the necessary conditions.
In this paper we will deal with two cases of decomposition of K 3n

2
, 3n
2

into

(0, j)-prisms.

2 Decomposition for n ≡ 0 (mod 8)

The underlying idea of the proof of the main result of this section is the
following. First we decompose Kn

2
,n
2
into Cn, then we blow up Kn

2
,n
2
into

K 3n

2
, 3n
2

= Kn

2
,n
2
[K3] and each Cn into Cn[K3]. Then we “glue together”

certain pairs of Cn[K3] and decompose the resulting graphs into six copies
of (0, j)-prisms.

The decomposition of Kk1,k2 into cycles was completely solved by J.C.
Bermond, C. Huang [1], and D. Sotteau [7].

Theorem 2 [1, 7] Kk1,k2 can be decomposed into Cn if and only if n, k1, k2
are all even, n divides k1k2 and both k1, k2 >

n
2
.

In order to prove the main result of this section, we first need the following
three lemmas.

Lemma 3 [3] Let G be an (0, 0)-prism of order 2n, where n is even. Then

Kk1,k2 can be decomposed into G if 9n divides k1k2, both k1, k2 >
3n
2

and 6
divides both k1 and k2.

Lemma 4 [3] Let n ≡ 0 (mod 4) and G be an (0, 2)-prism of order 2n. Then
Kk1,k2 can be decomposed into G if 18n divides k1k2 and both k1, k2 >

3n
2
and

k1, k2 ≡ 0 (mod 12).

In the proof of Theorem 6 we want to find a pair of (0, 0)-prisms with the
property that we can remove every other spoke in each of them and mutually
swap the two sets of spokes between the two prisms so that they become type
j spokes and hence we obtain two (0, j)-prisms. Therefore we need to make
sure that we can decompose K 3n

2
, 3n
2

into unions of these pairs of (0, 0)-prisms.

Lemma 5 [3] Let m ≡ 0 (mod 4), c ≡ 0 (mod 2), m/gcd(c,m) be even and

H be a 4-regular bipartite graph with bipartition X = {x0, x1, . . . , xm−1}, Y =
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Decomposition of complete bipartite graphs 5

{y0, y1, . . . , ym−1} and edges xiyi, xiyi+1, xiyi+c, xiyi+c+1 for some positive c 6
(m− 2)/2, where the addition in subscripts is taken modulo m. Then Km,m

can be decomposed into H.

The main result of this section is restricted to the case when n ≡ 0
(mod 8), and j/gcd(j, n) is odd. Recall that j is always even.

In the following section we prove another result for n ≡ j ≡ 0 (mod 4)
without the restriction that j/gcd(j, n) is odd.

Theorem 6 Let n ≡ 0 (mod 8), and n/gcd(j, n) be even. If G is an (0, j)-
prism of order 2n, then G decomposes K 3n

2
, 3n
2

.

Proof. For j = 0 or j = 2 we are done by Lemma 3 or 4, respectively. From
now on assume that j > 4 and let p = j

2
. By the definition of an (0, j)-prism

that j is always even.
Notice that if G is an (0, j)-prism of order 2n where n is even, then we

can label vertices of G in such a way that R1
n = (0, 0)1, (0, 1)0, (1, 0)1, (1, 1)0,

(2, 0)1, (2, 1)0, (3, 0)1, . . . , (
n
2
− 1, 1)0, (0, 0)1, R2

n = (0, 2)0, (1, 2)1, (1, 2)0,
(2, 2)1, (2, 2)0, (3, 2)1, . . . , (

n
2
− 1, 2)0, (0, 2)1, (0, 2)0 and (i + 1, 0)1(i, 2)0,

(i, 1)1(i+p, 2)0 ∈ E(G), where i ∈ Zn

2
(see Fig. 2). Observe that such a label-

ing implies that spokes have dimension either (1, 1) or (−p, 1). Notice that we
can also label the end-vertices of the spokes as (i, 1)0(i, 2)1, (i, 2)0(i+p+1, 0)1,
where i ∈ Zn

2
and then they have dimension either (0, 1) or (p+ 1, 1).

(0, 0)1

(0, 1)0

(1, 0)1

(1, 1)0

(p, 0)1

(p, 1)0

(p+ 1, 0)1

(0, 2)0

(1, 2)1

(1, 2)0

(2, 2)1

(p, 2)0

(p+ 1, 2)1

(p+ 1, 2)0

Figure 2: Labeling of (0, j)-prism.
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Decomposition of complete bipartite graphs 6

The graph Kn

2
,n
2
can be decomposed into Cn by Theorem 2. For (0, 0)-

prisms the method is based on decomposition of Cn[K3] into three prisms,
but for general (0, 2p)-prisms we need to pair up two (0, 0)-prisms and swap
half of their spokes (of type 0) so that they will be of type j = 2p in the
other prism.

So we need two cycles C1
n and C2

n, which together give us an appropriate
collection of (0, 2p)-prisms. We denote the union C1

n ∪C
2
n of the appropriate

cycles by H. Obviously, H is a bipartite 4-regular graph of order n. Let
the partite sets be X = {x0, x1, . . . , xn

2
−1} and Y = {y0, y1, . . . , yn

2
−1}. If

the neighbors of vertex xi ∈ X in H are yi, yi+1, yi+d, yi+d+1 for some even
d > 2, H consists of cycles B1

n = y0, x0, y1, x1, . . . , yj, xj , yj+1, xj+1, . . . , yn

2
−1,

xn

2
−1, y0 and B

2
n = yd, x0, yd+1, x1, . . . , yd+j , xj , yd+j+1, xj+1, . . . , yd+n

2
−1, xn

2
−1,

yd. Now if n/2gcd(d, n/2) is even, then Kn

2
,n
2
can be decomposed into H by

Lemma 5.
We now construct cycles C1

n and C2
n and present their mapping onto B1

n

and B2
n for d = p. We denote the vertices of C1

n by 01, 00, 11, 10, . . . , (
n
2
−

1)1, (
n
2
− 1)0. By blowing up C1

n by K3 we obtain C1
n[K3]. Then we can

decompose C1
n[K3] into three (0, 0)-prisms with the spokes of dimension either

(1, 1) or (0, 1). We consider the following cases:
Case 1. p is odd.
We use C1

n[K3] and C
2
n[K3] in such a way that we swap spokes of type 0 and

dimension (0, 1) between C1
n[K3] and C

2
n[K3] and obtain spokes of dimension

(−p, 1) that will be of type j = 2p in their new prisms.
It implies that we need edges 00p1, 10(p+1)1, 20(p+2)1, . . . and 00x1, 10(x+

1)1, 20(x+2)1, . . . in the cycle C2
n. Because these two matchings need to form

the cycle C2
n of length n, we must have px− x− p2 + p+ x ≡ 0 (mod n

2
).

Because x ≡ (p− 1) (mod n
2
) is a solution, we can set x = p− 1 and get

C2
n = p0, 11, (p+1)0, 21 . . . , (p−1)0, 01. Now we define a mapping β taking C1

n

and C2
n onto B1

n and B2
n as β(k1) = xk−1 and β(k0) = yk. It can be checked

that β(C1
n) = B1

n and β(C2
n) = B2

n and d = p. We assumed that n/gcd(j, n)
is even and j = 2p. Using Lemma 5 for c = p = j/2 and m = n/2 we can
see that H decomposes Kn

2
,n
2
.

Now we blow up graph H by K3 to obtain from each vertex ji three
vertices (j, 0)i, (j, 1)i, (j, 2)i. Using this labeling we will show that we can
decompose the graph H[K3] into six copies of (0, 2p)-prisms.

Let G be an (0, 2p)-prism of order 2n. Notice that we can find two edge-
disjoint copies G0, G3 of G in H[K3] in such a way that for G0 we define

European journal of combinatorics. 2013, vol. 34, issue 1, p. 104-110. http://dx.doi.org/10.1016/j.ejc.2012.07.018
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the rims R10
n = (0, 0)1, (0, 1)0, (1, 0)1, (1, 1)0, (2, 0)1, (2, 1)0, (3, 0)1, . . . , (

n
2
−

1, 1)0, (0, 0)1, R
20
n = (0, 2)1, (0, 2)0, (1, 2)1, (1, 2)0, (2, 2)1, (2, 2)0, (3, 2)1, . . . ,

(n
2
−1, 2)0, (0, 2)1 and the spokes (i+p, 1)0(i, 2)1, (i+1, 0)1(i+1, 2)01 ∈ E(G0),

where i ∈ Zn

2
. Whereas for G3 we define the rims R13

n = (p − 1, 0)0, (0, 1)1,
(p, 0)0, (1, 1)1, (p+1, 0)0, (2, 1)1, (p+2, 0)0, . . . , (p−2, 0)0, (

n
2
−1, 1)1, (p−1, 0)0,

R23
n = (p− 1, 2)0, (0, 2)1, (p, 2)0, (1, 2)1, (p+ 1, 2)0, (2, 2)1, (p+ 2, 2)0, . . . , (p−

2, 2)0, (
n
2
− 1, 2)1(p− 1, 2)0 and the spokes (i, 1)0(i, 2)1, (i+ p− 1, 2)0(i, 0)1 ∈

E(G3). We obtain six edge-disjoint copies G0, G1, . . . , G5 in H[K3], where
Gm = φm(G0) and φm((a, b)i) = (a, b + m)i, and G3+m = φm(G3) and
φ3+m((a, b)i) = (a, b+m)i for m ∈ {0, 1, 2} and i ∈ {0, 1}.
Case 2. p is even.
In that case we want to “glue together” two C1

n[K3] and C2
n[K3] in such

a way that we can swap spokes of type 0 and dimension (1, 1) obtaining
spokes of dimension (p + 1, 1), which are now of type j = 2p. It fol-
lows that C2

n = (p + 1)1, 10, (p + 2)1, 20 . . . , p1, 00, (p + 1)1. Here we have
β(k0) = xk and β(k1) = yk. Define a graph H as a union C1

n ∪ C2
n. Simi-

larly as in Case 1, H decomposes Kn

2
,n
2
by Lemma 5. By blowing up H by

K3 we obtain from each vertex ji three vertices (j, 0)i, (j, 1)i, (j, 2)i. As in
Case 1 we show that we can decompose the graph H[K3] into six copies
of (0, 2p)-prisms. Let G be an (0, 2p)-prism of order 2n. We can find
two edge-disjoint copies G0, G3 of G in H[K3] in such a way that G0 has
the rims R10

n = (0, 0)1, (0, 1)0, (1, 0)1, (1, 1)0, (2, 0)1, (2, 1)0, (3, 0)1, . . . , (
n
2
−

1, 1)0, (0, 0)1, R
20
n = (0, 2)1, (0, 2)0, (1, 2)1, (1, 2)0, (2, 2)1, (2, 2)0, (3, 2)1, . . . ,

(n
2
− 1, 2)0, (0, 2)1 and the spokes (i, 1)0(i + p, 2)1, (i, 2)0(i + 1, 0)1 ∈ E(G0),

where i ∈ Zn

2
. Whereas G3 has the rims R13

n = (p, 0)1, (0, 1)0, (p + 1, 0)1,
(1, 1)0, (p+ 2, 0)1, (2, 1)0, (p+ 3, 0)1, . . . , (p− 1, 0)1, (

n
2
− 1, 1)0, (p, 0)1, R

23
n =

(p, 2)1, (0, 2)0, (p+ 1, 2)1, (1, 2)0, (p+ 2, 2)1, (2, 2)0, (p+ 3, 2)1, . . . , (p− 1, 2)1,
(n
2
−1, 2)0(p, 2)1 and the spokes (i, 1)0(i+p, 2)1, (i, 2)0(i+1, 0)1 ∈ E(G3), We

obtain six edge-disjoint copies G0, G1, . . . , G5 in H[K3], where Gm = φm(G0)
and φm((a, b)i) = (a, b + m)i and G3+m = φm(G3) and φ3+m((a, b)i) =
(a, b+m)i for m ∈ {0, 1, 2} and i ∈ {0, 1}.

3 Decomposition for n, j ≡ 0 (mod 4)

The technique used in the previous section cannot be used for the case when
n ≡ 4 (mod 8), because we glued together two (0, 0)-prisms and swapped
spokes, while for n ≡ 4 (mod 8) we want to decompose K 3n

2
, 3n
2

into an odd

European journal of combinatorics. 2013, vol. 34, issue 1, p. 104-110. http://dx.doi.org/10.1016/j.ejc.2012.07.018
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number 3n/4 of (0, j)-prisms of order 2n. The result in this section differs
from the previous one in the following way. We drop the restriction that
n/gcd(j, n) is even and require only n ≡ 0 (mod 4) instead of n ≡ 0 (mod 8)
but on the other hand we assume that j ≡ 0 (mod 4) instead of j ≡ 0
(mod 2).

Theorem 7 If n, j ≡ 0 (mod 4), then K 3n

2
, 3n
2

can be decomposed into (0, j)-
prisms of order 2n.

Proof. Notice that we want to decompose K 3n

2
, 3n
2

into 3n/4 copies of (0, j)-
prisms of order 2n. The main idea of the proof is to “glue together” three
prisms into a graph H and then prove that K 3n

2
, 3n
2

can be decomposed into
H.

Let p = j

2
+ 1. Notice that p is odd for j ≡ 0 (mod 4). We de-

note the vertices of K 3n

2
, 3n
2

by (a, b)i where a ∈ Zn

2
, b ∈ Z3, and i ∈

{0, 1}. Notice that we can find one copy G of an (0, j)-prism in K 3n

2
, 3n
2

in such a way that C1
n = (0, 0)0, (1, 1)1, (1, 0)0, (2, 1)1, (2, 0)0, (3, 1)1, . . . , (

n
2
−

1, 0)0, (0, 1)1, (0, 0)0, C
2
n = (0, 0)1, (0, 1)0, (1, 0)1, (1, 1)0, (2, 0)1, (2, 1)0, (3, 0)1,

. . . , (n
2
−1, 1)0, (0, 0)1 and (i, 0)0(i, 0)1, (i, 1)0(i+p, 1)1 ∈ E(G), where i ∈ Zn

2

(see Fig. 3).

(0, 0)0

(1, 1)1

(1, 0)0

(2, 1)1

(p, 1)1

(p, 0)0

(p+ 1, 1)1

(0, 0)1

(0, 1)0

(1, 0)1

(1, 1)0

(p− 1, 1)0

(p, 0)1

(p, 1)0

Figure 3: Labeling of (0, j)-prism

Claim 1. We can obtain three edge-disjoint copies G0, G1, G2 of G in
K 3n

2
, 3n
2

by setting Gm = φm(G) and φm((a, b)0) = (a, b +m)0, φm((c, d)1) =

(c, d+m)1 for m ∈ {0, 1, 2}.

European journal of combinatorics. 2013, vol. 34, issue 1, p. 104-110. http://dx.doi.org/10.1016/j.ejc.2012.07.018
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Decomposition of complete bipartite graphs 9

We first denote by Ka,c
3,3 the complete bipartite graph with partite sets

{(a, 0)0, (a, 1)0, (a, 2)0} and {(c, 0)1, (c, 1)1, (c, 2)1}. We observe that in any
Ka,c

3,3 for any fixed m ∈ {0, 1, 2} there are precisely three edges of dimension
(c− a,m) and no two of them share a vertex. Now for some fixed a, c let the
copy G0 contain an edge (a, r)0(c, s)1 of dimension (c−a, s−r). By applying
φ1 and φ2, we obtain edges (a, r + 1)0(c, s + 1)1 and (a, r + 2)0(c, s + 2)1,
respectively, both of dimension (c−a, s−r). These three edges are obviously
independent, and the claim is proved.

We recall that n, j ≡ 0 (mod 4) and j ≤ n
2
. Also p = j

2
+ 1 and hence

p − 1 is even. Denote by g the greatest common divisor of n
2
and p − 1,

observe that g must be even, say g = 2q, and write n
2
= gk. Then g in the

additive group Zn

2
generates a subgroup 〈g〉 of order k. It is well known that

the order of the subgroup 〈p − 1〉 of Zn

2
generated by p − 1 is the same as

the order of the subgroup 〈g〉 generated by g, which is k.
Now let H = G0 ∪G1 ∪G2 and Hi = δi(H), where we define

δi((a, b)0) = (a, b)0,

δi((c, d)1) = (c+ (p− 1)i, d)1

for i ∈ {0, 1, . . . , k − 1}. Recall that the entries are elements of Zn

2
and Z3,

respectively. We want to show that all these copies are edge-disjoint.
Claim 2. The copies H0, H1, . . . , Hk−1 of H defined above are mutually

edge-disjoint.
First we observe that H0 contains only edges of dimensions (0, 0), (0, 1),

(0, 2), (1, 1), (1, 2) and (p, 0). When we apply δi for i ∈ {0, 1, . . . , k − 1}
to any edge of type (0,m) for m ∈ {0, 1, 2}, we obtain edges of dimensions
(0,m), (p − 1,m), (2(p − 1),m), . . . , ((k − 1)(p − 1),m) and notice that the
first entries form a subgroup 〈p− 1〉 of Zn

2
.

When we apply δi for i ∈ {0, 1, . . . , k− 1} to edges (1,m) for m ∈ {1, 2},
we obtain edges of dimensions (1,m), (p,m), (2p − 1,m), . . . , (i(p − 1) +
1,m), . . . , ((k − 1)(p− 1) + 1,m). The first entries of these dimensions form
the coset 1+〈p−1〉 of Zn

2
. Then we apply δi for i ∈ {0, 1, . . . , k−1} to an edge

of dimension (p, 0) and obtain edges of dimensions (p, 0), (2p − 1, 0), (3p −
2, 0), . . . , (i(p − 1) + p, 0), . . . , ((k − 1)(p − 1) + p, 0), where in fact the last
edge has dimension (1, 0). Therefore, the first entries of these dimensions
again form the coset 1 + 〈p− 1〉. It should be now obvious that the claim is
proved because no two copies of H contain edges of the same dimension.

European journal of combinatorics. 2013, vol. 34, issue 1, p. 104-110. http://dx.doi.org/10.1016/j.ejc.2012.07.018

DSpace VŠB-TUO http://hdl.handle.net/10084/95773 12/12/2012



Decomposition of complete bipartite graphs 10

Now we denote by F0 the union H0∪H1∪. . .∪Hk−1 and recall that g = 2q
for some q ≥ 1. If g = 2, then k = n

4
and the union of the cosets 〈p − 1〉

and 1+ 〈p−1〉 gives the whole group Zn

2
. Because δi fixes all vertices (a, b)0,

we can see that for every fixed vertex (a, b)0 we have used in F0 each edge
(a, b)0(a + t, b +m)1 of every possible dimension (t,m) for t ∈ Zn

2
,m ∈ Z3

exactly once. Therefore, F0 contains precisely the edges of K 3n

2
, 3n
2

and the
proof is complete.

If g > 2, we construct for i ∈ {0, 1, . . . , q − 1} graphs Fi = ψi(F0) by
setting

ψi((a, b)0) = (a, b)0

and
ψi((c, d)1) = (c+ 2i, d)1.

We observe that Fi then contains edges whose first entries are elements of
the cosets 2i + 〈p − 1〉 and 2i + 1 + 〈p − 1〉 and the union D of the graphs
F0, F1, . . . , Fq−1 contains as first entries all elements of the group Zn

2
. Con-

sequently, we observe that again for every fixed vertex (a, b)0 we have used
in D each edge (a, b)0(a + t, b + m)1 of every possible dimension (t,m) for
t ∈ Zn

2
,m ∈ Z3 exactly once.

Now D again contains exactly the edges of K 3n

2
, 3n
2

and the proof is com-
plete.

4 Conclusion

There are still two missing cases for decomposition ofK 3n

2
, 3n
2

into (0, j)-prisms

of order 2n. One of them is the case when n ≡ 0 (mod 8) and n/gcd(j, n) is
odd. The other one is when n ≡ 0 (mod 4) and j ≡ 2 (mod 4).

We also point out that the necessary conditions can be satisfied even
when Kk,k is not K 3n

2
, 3n
2

. For example, when n = 50, then they are met for
K60,60 or K90,90. We do not know whether these graphs can be decomposed
into (0, j)-prisms of order 2n = 100.
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