1 N₂O catalytic decomposition – from laboratory experiment to industry reactor

2

L. Obalová^{a,b}, K. Jirátová^c, K. Karásková^a, Ž. Chromčáková^a

- 3 *VŠB Technical University of Ostrava*, ^{*a*} *Faculty of Metallurgy and Materials Engineering*,
- 4 ^b Centre for Environmental Technologies, 17. listopadu 15, 708 33 Ostrava, Czech Republic
- ^c Institute of Chemical Process Fundamentals CAS v.v.i., Rozvojová 135, 165 02 Prague, Czech
- 6 *Republic*
- 7
- 8 Abstract

9 Paper deals with design of pilot reactor for low temperature N₂O decomposition in off-gases 10 from HNO₃ production. Pseudo-homogeneous one-dimensional model of an ideal plug flow 11 reactor was used for modeling of N₂O decomposition in a laboratory fixed bed reactor filled with 12 grains or pellets of a Co-Mn-Al mixed oxide catalyst. Increase in inlet pressure up to 0.6 MPa 13 did not influence the effective diffusion coefficient, but improved the achieved N₂O conversion. Based on the laboratory data of N₂O decomposition over Co-Mn-Al mixed oxide pellets, catalyst 14 bed of 3400 kg was estimated for target 90 % N₂O conversion (30 000 m³ h⁻¹ of exhaust gases 15 from HNO₃ plant containing 0.1 molar% N₂O, 0.01 molar% NO, 0.01 molar% NO₂, 3 molar% 16 H₂O, 5 molar% O₂) at 420 °C and 600 kPa inlet pressure. 17

18

21

22 **1. Introduction**

In the last years, the catalytic decomposition of N₂O as a method for abatement of N₂O
emissions in waste gases attracted increasing attention due to the expected inclusion of N₂O in
the greenhouse gas trade. Besides Fe-zeolites [1-4] and Rh containing catalysts [5, 6], Co-spinels
[7-10] seem to be promising catalysts for this reaction at temperatures below 450 °C. Among
Catalysis today. 2012, vol. 191, issue 1, p. 116-120.
http://dx.doi.org/10.1016/j.cattod.2012.03.045 1

Key words: N₂O, Catalytic decomposition, Fixed bed reactor, Effectiveness factor, Mixed oxide
 catalysts

27 them, the Co-Mn-Al mixed oxide with spinel structure (Co:Mn:Al = 4:1:1) prepared by thermal treatment of layered double hydroxide (LDH) precursors was active [11] and stable in the 28 29 presence of O₂, H₂O and NO_x [12]. Our effort to increase further catalytic activity of the 30 mentioned catalyst led us to the study of the effect of low amounts of promoter incorporation into the catalyst. Alkali promoters, especially potassium, improved catalytic performance 31 dramatically [12, 13]. The intrinsic laboratory data of N₂O catalytic decomposition over K-32 33 promoted Co-Mn-Al mixed oxide grains prepared by thermal treatment of LDH was used for 34 model of pilot reactor for abatement of N₂O emissions in off-gases from HNO₃ production. Pseudo-homogeneous one-dimensional model of an ideal plug flow reactor was used for reactor 35 36 design [14].

37 In the presented paper, a developed model is being verified, attention will be focused on determination of effective diffusion coefficient and evaluation of mass transfer coefficient effect 38 on N₂O conversion. Pellets of Co-Mn-Al mixed oxide were prepared, tested for N₂O 39 decomposition in an inert gas and the obtained experimental data will be compared with the 40 41 calculated N₂O conversions based on kinetic data over catalyst grains in kinetic regime. The catalytic reactor for N₂O abatement situated downstream the DeNO_x technology (low NO_x 42 43 concentration) in nitric acid production unit will be estimated from laboratory data of N_2O 44 decomposition in simulated off gas over Co-Mn-Al mixed oxide pellets.

45

46 **2. Experimental**

The Co-Mn-Al (Co:Mn:Al molar ratio of 4:1:1) mixed oxide catalyst was prepared by
calcination (500 °C) of coprecipitated LDH precursor [10]. Five batches were prepared
altogether. Four batches were crushed, sieved, marked as Grain-1, Grain-2, Grain-3 and Grain-4
and fraction 0.16 – 0.315 mm was used for the catalytic measurements. The catalysts were
characterized in our previous publications [10, 12, 13]. As a fifth batch of the catalyst, we used
the pellets (2.7x1.8 mm) prepared by pelletizing of the coprecipitated LDH precursor under such
Catalysis today. 2012, vol. 191, issue 1, p. 116-120.
http://dx.doi.org/10.1016/j.cattod.2012.03.045 2

pressure in order sufficient mechanical strength was achieved (30 MPa). The pellets, calcined 4 h
at 500 °C, were marked as Pellets .

The grained catalysts were tested in an integral fixed bed reactor R1. N₂O catalytic decomposition was performed at 300 - 450 °C and 100 - 265 kPa. Inlet gas contained 0.1 molar% N₂O in He and space velocity $20\ 000 - 60\ 000\ 1\ kg^{-1}\ h^{-1}$ was applied.

The catalyst pellets were tested in an integral fixed bed reactor R2. N₂O catalytic decomposition was performed at atmospheric pressure, in temperature range of 240 - 450 °C and space velocity of 6 530 l kg⁻¹ h⁻¹. Inlet gas contained 0.1 molar% N₂O in N₂, but gas composition simulating real waste gas from HNO₃ production downstream the DeNO_x (0.1 molar% N₂O, 0.01 molar% NO, 0.01 molar% NO₂, 3 molar% H₂O, 5 molar% O₂) was also applied.

A care was taken to ensure sufficient approach to plug flow conditions in both R1 and R2
reactors. It is supposed that a rectangular velocity profile can be considered [15-17] for ratio:

$$65 \qquad \frac{D_i}{d_p} > 10 \text{ to } 15 \tag{1}$$

66 Axial dispersion is negligible [15-17] for:

67
$$\frac{L_b}{d_p} > \frac{a}{Pe_p} ln\left(\frac{l}{l - X_A}\right)$$
, where $a = 8$ or 20 (2)

Description of both reactors and verification of validity of conditions (1) and (2) are summarized in Table 1. Both reactors can be considered as isothermal due to the low N_2O concentration leading to maximal adiabatic temperature rise of 4 °C. From the same reason, the absence of internal and external heat transport limitations is supposed [18]. The criterions for 0.95% avoiding the external (3) and internal (4) diffusion limitations [16] were confirmed for all experimental runs in the R1 and R2 reactors.

74 Mears:
$$\frac{-r_A \cdot \rho_c \cdot r_p \cdot n}{k_c \cdot c_{Ab}} < 0.15$$
 (3)

75 Weisz-Prater :
$$\frac{-r_A \cdot \rho_c \cdot L^2}{D_{eff} \cdot c_{As}} < 0.15 \frac{2}{n+1}$$
(4)

76

77 **3. Mathematical model**

Pseudo-homogeneous one-dimensional model of an ideal plug flow reactor in an isothermal regime mentioned in our previous paper [14] was used for modeling of the reactors. The effect of internal and external mass transport was described by overall effectiveness factor Ω , which was incorporated into the 1st order kinetic equation $-r_A = \Omega k c_A$. In this paper, details of determinations of effective diffusion and mass transfer coefficients are described only.

83 The effective diffusion coefficient D_{eff} is dependent on morphology of porous catalyst:

$$84 D_{eff} = \frac{\varepsilon_p}{q} \overline{D} (5)$$

85 The ε_p/q ratio between 0.05 - 0.1 was published previously [16]. For the determination of the 86 overall diffusivity of N₂O in a multicomponent mixture (\overline{D}), the contributions of molecular ($D_{i/j}$)

87 and Knudsen (D_{k,N_2O}) diffusivity was considered together with stoichiometry of the reaction [15]:

$$88 \qquad \frac{1}{\overline{D}} = \frac{1}{D_{k,N_2O}} + \frac{x_{N_2O} + x_{N_2O}}{D_{N_2O/N_2}} + \frac{0.5 \cdot x_{N_2O} + 0.5 \cdot x_{N_2O}}{D_{N_2O/O_2}} + \sum_{j=1}^{n} \frac{x_{N_2O}}{D_{N_2O/j}}$$
(6)

89 where *j* is component of gas mixture. The Knudsen diffusivity D_{k,N_2O} for pore with radius r_o was 90 determined [16] as:

91
$$D_{k,N_2O} = 97 \cdot r_o \cdot \sqrt{\frac{T}{M_{N_2O}}}$$
 (7)

92 Binary diffusion coefficients $D_{i/j}$ were calculated according to Fuller, Schettler and 93 Giddings [19]:

94
$$D_{i/j} = \frac{\frac{10^{-2} \cdot T^{\frac{7}{4}} \cdot \left(M_{j}^{-1} + M_{i}^{-1} \right)^{\frac{1}{2}}}{\left[\left(v_{j}^{\frac{1}{3}} + \left(v_{j}^{\frac{1}{3}} \right)^{\frac{1}{2}} \right]^{2}}$$
(8)

95 where $(v_{\mu_2}) = 17.9$, $(v_{\mu_2 0}) = 35.9$, $(v_{\mu_2}) = 16.6$, $(v_{\mu_2 0}) = 12.7$,

96
$$(v)_{He} = 2.88, (v)_{HO} = 11.17.$$

Mass transfer coefficient was determined according to correlation of Wakao and Funazkri [20]
recommended for fixed bed and 3 < Re < 1000:

99
$$Sh = 2.0 + (Re)^{1/2} 1.1(Sc)^{1/3}$$
 (12)

100

101 **4. Results and discussion**

102 Chemical composition and results of analysis of porous structure of the prepared catalysts103 used in catalytic performance modeling are summarized in Table 2.

104

105 **4.1 N₂O decomposition over grained Co-Mn-Al mixed oxide catalysts**

Temperature dependencies of N₂O conversion over grained Co-Mn-Al mixed oxide 106 catalysts are shown in Fig. 1. The relative error of measured conversions (which includes 107 108 reproducibility of catalyst preparation and reproducibility of kinetic measurements) increased with decreasing N₂O conversion from 9% to 88%. Kinetic parameters, evaluated according to 1^{st} 109 110 order rate law by the integral method (Table 2), were used for model verification of the R1 111 reactor (Table 3). As was required, internal (η) and overall (Ω) effectiveness factors are close to 112 value 1. Only at the highest reaction temperature of 450 °C, the reaction rate is hindered by internal diffusion, whereas at lower temperatures the measurements proceeded in kinetic regime 113 114 as was confirmed by the values of Mears and Weisz-Prater numbers. Good description of the 115 experimental data was achieved (Fig. 2).

117 **4.2 Influence of pressure on the rate of N₂O catalytic decomposition**

Since HNO₃ plants are working at higher pressure, it is important to examine the 118 119 influence of pressure on the N₂O decomposition rate. The increase of pressure led to the 120 considerably higher N₂O conversions (Fig. 3) due to the increase of N₂O partial pressure and consequent higher reaction rate. The change of pressure can also influence surface species 121 concentrations. When the catalysts surface is covered only slightly, the pressure increase causes 122 123 higher surface coverage. However, no changes in surface concentrations are observed in the case 124 of saturated surface. The effect of pressure on surface coverage by O₂, NO_x and H₂O will be the 125 subject of our further research.

126 Higher pressure also lowers binary diffusion coefficients what follows from Eq. (8). The 127 results of the calculated diffusion coefficients in the pressure range of 0.1 - 0.6 MPa are shown in Table 4. Only slight decrease of $D_{i/j}$ was observed in this pressure range, while \overline{D} remained 128 constant and nearly the same as the value of $D_{k,N,O}$ indicating that Knudsen diffusion is still 129 130 prevailing in the pores. Further increase of pressure will cause higher gas density leading to the 131 higher frequency of mutual molecule collisions and then, molecule diffusion will become 132 involved, too. Due to decrease in $D_{i/j}$, when the pressure increases, the mass transfer coefficient 133 increased.

134

135 4.3 N₂O decomposition over Co-Mn-Al mixed oxide pellets

Effective diffusion coefficient is the most uncertain parameter of the presented model due to the unknown tortuosity and average value of pore size of catalyst particles. Value of ε_p/q in the range of 0.05 – 0.1 is mentioned in literature [16]. In our case D_{eff} determined as $D_{eff} = 0.12 \overline{D}$ fits the N₂O conversion curves over pellets satisfactory (Fig. 4). Parameters calculated according to the model for N₂O decomposition over catalyst pellets at temperature 450 °C are summarized in Table 3. From Fig. 4 we can see that values of N₂O conversion below 300 °C obtained over

142 pellets are very close to those obtained for the Grain-2 catalyst in kinetic regime (black dot-anddash line in Fig. 4). Influence of mass transport limitation appears at higher temperatures i.e. at 143 144 higher reaction rate. The internal diffusion limitation influences the reaction rate at temperatures 145 higher than 300 °C. According to the value of Mears criterion (Eq. 3), concentration gradients 146 between the bulk gas phase and catalyst surface in the R2 reactor at temperatures higher than 360 °C exist (Table 3). For the purpose of scale-up, the internal diffusion limitation in the pellets can 147 148 be accounted to kinetic constant, which is considered as microscopic phenomenon. Nearly 149 identical values of the internal and overall effectiveness factor (Table 3) indicate that the reaction 150 rate in R2 reactor is hindered by internal diffusion only. The reason is the order of magnitude 151 higher resistance to the internal mass transfer in comparison with the resistance towards external 152 diffusions. The hindering effect of external mass transport is overlapped by the internal diffusion 153 limitation in the pores of pellets, since the intrusion of the reaction mixture to porous structure is difficult. This is important fact, since we can use the kinetic data obtained over industrial catalyst 154 particles in the R2 laboratory reactor directly for the design of a pilot unit. 155

Kinetic parameters evaluated according to 1st rate law from the data of N₂O 156 decomposition over pellets in an inert gas and in simulated waste gas are summarized in Table 2, 157 the comparison of calculated and experimental data is shown in Fig. 2. It is evident that 1st order 158 159 kinetic does not describe the conversions curves precisely. The reason of it can be the 160 complicated temperature dependence of complex kinetic constant, which includes kinetic constant and effectiveness factor. The dependencies of N₂O conversion on space-time for pilot 161 unit designated for abatement of N₂O emission from HNO₃ plant are shown in Fig. 5. For 162 instance, 3 400 kg of Co-Mn-Al mixed oxide pellets (2.7 x 1.8 mm) are necessary for cleaning 163 (90% N₂O conversion) of 30 000 m³/h (420 °C, 0.6 MPa) leading to the catalyst bed height of 164 1.7 m in the reactor with diameter of 1.7 m and the pressure drop of 276 kPa. 165

166

167 **5. Conclusions**

168	Recently developed pseudo-homogeneous one-dimensional model of a fixed bed reactor
169	was verified with N ₂ O decomposition over Co-Mn-Al mixed oxide catalysts grains and pellets.
170	Higher working pressure had positive impact on the N_2O decomposition rate. Therefore, the
171	suitable position of N_2O decomposition reactor in HNO_3 plant is upstream the expansional
172	turbine. Kinetic data measured over the catalyst pellets and described by 1 st order rate law can be
173	directly used for estimation of the catalytic unit for N ₂ O abatement in HNO ₃ plant.

174

175 Acknowledgements

This work was supported by the Technology Agency of the Czech Republic (project No. TA
01020336) and EU project No. CZ.1.05/2.1.00/03.0100 "Institute of Environmental
Technologies".

179

180 Nomenclature

181	C_A	Concentration of A	$(\text{mol } \text{m}^{-3})$
182	c_{Ab}	Concentration of A in bulk of gas	$(\text{mol } \text{m}^{-3})$
183	C_{As}	Concentration of A on the catalyst surface	$(\text{mol } \text{m}^{-3})$
184	d_p	Catalyst particle diameter	(m)
185	\overline{D}	Overall diffusivity	$(m^2 s^{-1})$
186	D_a	Axial dispersion coefficient	$(m^2 s^{-1})$
187	$D_{e\!f\!f}$	Effective diffusion coefficient	$(m^2 s^{-1})$
188	$D_{i/j}$	Binary diffusion coefficient of molecular diffusivity	$(m^2 s^{-1})$
189	D_{k,N_2O}	Knudsen diffusivity	$(m^2 s^{-1})$
190	D_t	Reactor tube diameter	(m)
191	E_a	Activation energy	$(J \text{ mol}^{-1})$
192	k	Kinetic constant, 1 st order rate law	$(m^3 s^{-1} kg^{-1})$
193	k_c	Mass transfer coefficient	$(m s^{-1})$
194	k_o	Pre-exponential factor	$(m^3 s^{-1} kg^{-1})$
195	L	Characteristic dimension of catalyst particle	(m)
196	L_b	Length of catalyst bed	(m)
197	M_{i}	Molar weight of <i>i</i> compound	$(g \text{ mol}^{-1})$
198	n	Reaction order	(-)

Catalysis today. 2012, vol. 191, issue 1, p. 116-120. http://dx.doi.org/10.1016/j.cattod.2012.03.045 8

×	
DSpace VSB-TUO htt	p·//hdl handle net/10084/95680
Dopuee 100 100 m	

199	р	Pressure	(Pa)
200	Δp	Pressure drop	(Pa)
201	$Pe_p = \frac{v.d_p}{D_a}$	Peclet number	(-)
202	q	Tortuosity	(-)
203	$-r_A$	Reaction rate of component A	$(\text{mol s}^{-1} \text{ g}^{-1})$
204	r_o	Catalyst pore radius	(m)
205	r_p	Catalyst particle radius	(m)
206	$Re = \frac{v.d_p.\rho}{\eta_g}$	Reynolds number	(-)
207	$S_{\rm BET}$	Specific surface area	(m^2g^{-1})
208	$Sc = \frac{\eta_g}{\rho . D_{N2O/j}}$	Schmidt number, <i>j</i> is carrier gas	(-)
209	$Sh = \frac{k_c d_p}{D_{N2O/j}}$	Sherwood number, <i>j</i> is carrier gas	(-)
210	Т	Thermodynamic temperature	(K)
211	v	Superficial velocity	$(m s^{-1})$
212	W	Weight of catalyst	(kg)
213	X_{N_2O}	Molar fraction of N ₂ O	(-)
214	X_A	Conversion of component A	(-)
215			
216	Greek letters		
217	\mathcal{E}_p	Porosity of catalyst particle	(-)
218	η	Internal effectiveness factor	(-)
219	η_g	Dynamic viscosity	(Pa s)
220	ρ	Density of gas	(kg m^{-3})
221	$ ho_c$	Bulk density of catalyst	(kg m^{-3})
222	Ω	Overall effectiveness factor	(-)
223	(Σv)	Diffusion volume	(-)

225 **References**

S. Sklenak, P. C. Andrikopoulos, B. Boekfa, B. Jansang, J. Nováková, L. Benco, T.
Bucko, J. Hafner, J. Dědeček, Z. Sobalík, J.Catal. 272 (2010) 262-274.

228	[2]	N. Liu, B. Chen, Y. Li, R. Zhang, X. Liang, Y. Li, Z. Lei, J. Phys. Chem. C 115
229		(2011) 12883-12890.
230	[3]	MY. Kim, K. W. Lee, JH. Park, CH. Shin, J. Lee, G. Seo, Korean J. Chem. Eng.
231		27 (2010) 76-82.
232	[4]	H. Guesmi, D. Berthomieu, L. Kiwi-Minsker, J. Phys. Chem. C 112 (2008) 20319-
233		20328.
234	[5]	H. Beyer, J. Emmerich, K. Chatziapostolou, K. Köhler, Appl. Catal. A 391 (2011)
235		411-416.
236	[6]	J. Haber, M. Nattich, T. Machej, Appl. Catal. B 77 (2008) 278-283.
237	[7]	M. Inger, P. Kowalik, M. Saramok, M. Wilk, P. Stelmachowski, G. Maniak, P.
238		Granger, A. Kotarba, Z. Sojka, Catal Today 176 (2011) 365-368.
239	[8]	H. Cheng, Y. Huang, A. Wang, L. Li, X. Wang, T. Zhang, Appl. Catal. B 89 (2009)
240		391-397.
241	[9]	K. Asano, C. Ohnishi, S. Iwamoto, Y. Shioya, M. Inoue, Appl. Catal. B 78 (2008)
242		242-249.
243	[10]	L. Obalová, K. Jirátová, F. Kovanda, K. Pacultová, Z. Lacný, Z. Mikulová, Appl.
244		Catal. B 60 (2005) 297-305.
245	[11]	L. Obalová, K. Pacultová, J. Balabánová, K. Jirátová, Z. Bastl, M. Valášková, Z.
246		Lacný, F. Kovanda, Catal. Today 119 (2007) 233-238.
247	[12]	L. Obalová, K. Karásková, K. Jirátová, F. Kovanda, Appl. Catal. B 90 (2009) 132-
248		140.
249	[13]	K. Karásková, L. Obalová, K. Jirátová, F. Kovanda, Chem. Eng. J. 160 (2010) 480-
250		487.
251	[14]	L. Obalová, K. Jirátová, K. Karásková, F. Kovanda, Chin. J. Catal. 32 (2011) 816-
252		820.
253	[15]	M. Kraus, P. Schneider, L. Beránek, Chemická kinetika pro inženýry, SNTL, Praha,
254		1978.
255	[16]	F. Kaptejn, J. A. Moulijn, in: G. Ertl, H. Knözinger, J. Weitkamp, Handbook of
256		Heterogeneous Catalysis, Vol. 3, Wiley, Weinheim, 1996.
257	[17]	H. S. Fogler, Elements of Chemical Reaction Engineering, third ed., Prentice Hall
258		PTR, New Jersey, 1999.
259	[18]	K. Galejová, L. Obalová, K. Jirátová, K. Pacultová, F. Kovanda, Chem. Pap. 63
260		(2009) 172-179.
261	[19]	E. N. Fuller, P. D. Schettler, J. C. Giddings, Ind. Eng. Chem. 58 (1966) 19-24.

262 [20] N. Wakao, T. Funazkri, Chem. Eng. Sci. 33 (1978) 1375-1384.

Table 1 Description of experimental reactors R1 and R2 264

Reactor	D_t	Catalyst weight	Catalyst size	Length of bed ¹⁾	$D_t/d_p^{(2)}$	$L_b/d_p^{(2)}$
	(mm)	<i>w</i> (g)	(mm)	$L_b (mm)$		
R1	5	0.1000	spheres 0.160-0.315	20	16	63 (required minimal value $15-38$) ³⁾
R2	40	4.5940	pellets 2.7 x 1.8	150	15	55 (required minimal value 48-120) ³⁾

¹⁾ Including inert particles with approximately same diameter, ²⁾ The biggest particles are considered for verification of plug flow, ³⁾ Calculated for 95% N₂O conversion and $Pe_p = 0.5$ valid for low *Re* [15] 265

266

269 **Table 2** Chemical composition, porous structure and kinetic parameters determined for 1st order

270 rate law from experiments of N_2O decomposition

Catalyst	Molar ratio	$S_{\rm BET}$	r_0	${ ho_c}^{3)}$	E_a	$\ln k_0$
	Co:Mn:Al	$(m^2 g^{-1})$	(nm)	(kg m ⁻³)	(J mol ⁻¹)	$(m^3 s^{-1} g^{-1})$
Grain-1	4:1.15:1.57	93	12.0^{1}	880	114 908 ⁴⁾	$9.76^{4)}$
Grain-2	4 : 1.39 : 1.58	98	n.d. ⁶⁾	n.d. ⁶⁾	106 985 ⁴⁾	8.31 ⁴⁾
Grain-3	4 : 1.29 : 1.56	92	n.d. ⁶⁾	n.d. ⁶⁾	97 290 ⁴⁾	6.75 ⁴⁾
Grain-4	4:1.05:1.05	93	12.0 ¹⁾	n.d. ⁶⁾	109 421 ⁴⁾	9.38 ⁴⁾
Pellets	n.d. ⁶⁾	115	14.8 ²⁾	1 282	75 799 ⁴⁾ 116 521 ⁵⁾	1.96 ⁴⁾ 7.53 ⁵⁾

271 ¹⁾ Average pore radius determined from desorption branch of N_2 adsorption isotherm, ²⁾ Average pore radius determined from Hg porozimetry, ³⁾ Bulk density determined from Hg porozimetry, ⁴⁾ Inert gas, ⁵⁾ Waste gas,

⁶⁾ Not determined.

275	i
-----	---

276	Table 3 Parameters calculated for N_2O decomposition over catalyst Grain-1 and Pellets
277	Conditions: 0.1 molar% N ₂ O in He (Grain-1) or in N ₂ (Pellets) in laboratory reactor R1 and R2, respectively,
278	temperature 450 °C, 0.1 MPa

Catalyst	$\begin{array}{c} GHSV\\ (l h^{-1} kg^{-1}) \end{array}$	v (m/s)	Re (-)	\overline{D} (m ² /s)	${D_{N_2O/j}}^{1)}$ (m ² /s)	$D_{\rm eff}$ (m ² /s)	D_{k,N_2O} (m ² /s)	<i>k</i> _c (m/s)	η (-)	Ω (-)	Mears (-)	Weisz- Prater (-)	Δp (Pa)
Grain-1 ²⁾	60 000	0.22	0.1	4.72 ⁻¹⁰⁻⁶	2.36.10-4	4.72.10 ^{-7 3)}	4.72.10-6	2.35	0.92	0.92	0.003	0.252	4750
Pellets	6 530	0.02	0.7	5.80 ⁻¹⁰⁻⁶	6.98 ⁻ 10 ⁻⁵	6.96 ^{-7 4)}	5.80 ^{-10⁻⁶}	0.07	0.22	0.21	0.874	28	280
279	¹⁾ $j =$ He for grains, $j = N_2$ for pellets, ²⁾ Average grain size, ³⁾ $D_{eff} = 0.1 \overline{D}$, ⁴⁾ $D_{eff} = 0.12 \overline{D}$												

282 **Table 4** Influence of pressure on diffusion coefficients and mass transfer coefficient

Pressure (MPa)	$D_{N_2O/He}$ (m ² /s)	D_{N_2O/O_2} (m ² /s)	$D_{N_2O/N_2} \ (m^2/s)$	D_{k,N_2O} (m ² /s)	\overline{D} (m ² /s)	$\frac{D_{eff}}{(\mathrm{m}^2/\mathrm{s})}^{1)}$	k _c (m/s)
0.1	1.87^{-4}	5.43 [.] 10 ⁻⁵	5.53 [.] 10 ⁻⁵	$4.42^{-10^{-6}}$	4.41^{-6}	4.41.10-7	0.19
0.6	3.18.10-5	9.24 [.] 10 ⁻⁶	9.40.10-6	4.42.10-6	4.41.10-6	4.41.10-7	0.32

283 Conditions: 0.1 molar% N₂O in He, GHSV = 60 000 1 h^{-1} kg⁻¹, Grain-1, 360 °C

284 D_{eff} calculated as $D_{eff} = 0.1 \overline{D}$

285

287 Figure captions

288

Fig. 1 Temperature dependence of N₂O conversion over grained Co-Mn-Al mixed oxide catalysts at GHSV = $60\ 000\ 1\ \text{kg}^{-1}\ \text{h}^{-1}$ and atmospheric pressure.

291

Fig. 2 Comparison of measured N_2O conversions and conversion calculated according to 1st order kinetic equation evaluated from experimental data measured over grains (e.g. in kinetic regime) and over the pellets (e.g. including internal diffusion).

295

Fig. 3 Dependence of N₂O conversion on pressure over Grain-1catalyst.

297 Conditions: 360°C, GHSV = 60 000 l kg⁻¹ h⁻¹, 0.1 molar% N₂O in He.

298

Fig. 4 Dependence of N₂O conversion over the pellets on the effective diffusion coefficient at temperatures 240 - 450 °C.

301 Conditions: GHSV = 6 530 l kg⁻¹ h⁻¹, 0.1 molar% N₂O in N₂, 0.1 MPa, kinetic parameters obtained over Grain-2 302 and $-r_A = \Omega k c_A$ was used for N₂O decomposition modeling.

303

304 **Fig. 5** Dependence of calculated N_2O conversion on space time in pilot reactor for N_2O 305 decomposition in waste gas from HNO₃ plant.

306 Conditions: inlet pressure 0.6 MPa, $D_t = 1.7$ m, v = 0.62 m s⁻¹, kinetic equation $-r_A = exp\left(\frac{-116521}{RT} + 7.53\right)$.

- 311
- 312
- 313
- 314

321

