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Abstract
Knowledge of the genetic bases of grain quality traits will 
complement plant breeding efforts to improve the end-use 
value of sorghum [Sorghum bicolor (L.) Moench]. Candidate 
gene association mapping was used on a diverse panel of 
300 sorghum accessions to assess marker–trait associations 
for 10 grain quality traits measured using the single kernel 
characterization system (SKCS) and near-infrared refl ectance 
spectroscopy (NIRS). The analysis of the accessions through 
1290 genomewide single nucleotide polymorphisms (SNPs) 
separated the panel into fi ve subpopulations that corresponded 
to three major sorghum races (durra, kafi r, and caudatum), one 
intermediate race (guinea-caudatum), and one working group 
(zerazera-caudatum). These subpopulations differed in kernel 
hardness, acid detergent fi ber, and total digestible nutrients. 
After model testing, association analysis between 333 SNPs 
in candidate genes and/or loci and grain quality traits resulted 
in eight signifi cant marker–trait associations. A SNP in starch 
synthase IIa (SSIIa) gene was associated with kernel hardness 
(KH) with a likelihood ratio-based R2 (RLR

2) value of 0.08, a SNP 
in starch synthase (SSIIb) gene was associated with starch content 
with an RLR

2 value of 0.10, and a SNP in loci pSB1120 was 
associated with starch content with an RLR

2 value of 0.09.

SORGHUM IS AN IMPORTANT CEREAL CROP used as human 
food in the semiarid tropics of the African and Asian 

continents by approximately 500 million people (De Wet, 
1978). It is a gluten-free cereal used as whole grain as 
well as ground fl our and it is a source of energy, protein, 
vitamins, minerals, and nutraceuticals such as antioxi-
dant phenolics and cholesterol-lowering waxes (Taylor 
et al., 2006). Grain quality varies among diff erent types 
of sorghum and their cultivated environments. Genetic 
improvement of grain quality can help sorghum to adapt 
to varying demands for end-use products.

Grain quality is diff erentiated by biochemical and 
physical characteristics in sorghum. Kernel hardness (KH) 
aff ects grain mold resistance (Jambunathan et al., 1992), 
grain storage ability, insect resistance (Bueso et al., 2000), 
milling behavior (Suhendro et al., 2000), fl our particle size, 
cooking properties (Anglani, 1998; Bettge et al., 2000), 
and parameters such as adhesion, cooked grain texture, 
alkali gel stiff ness (Cagampang and Kirleis, 1984), porridge 
quality (Akingbala and Rooney, 1987), and production of 
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high-quality couscous granules (Aboubacar and Hamaker, 
1999). Sorghum kernels are round and small in size and 
vary from about 3 to 4 mm in diameter. Variation in kernel 
diameter (KD) exists among cultivars (Wills and Ali, 
1983a). Large sorghum kernels with corneous endosperm 
are usually preferred for human consumption and are 
associated with desirable physical and chemical quality 
parameters such as high protein concentration, low ash, 
high milling yields, high water absorbance fl our, bright 
white color, and large particle size (Lee et al., 2002). Small-
kernel sorghum that is more likely to be harder and more 
diffi  cult to mill is not popular in the grain market (Wills 
and Ali, 1983b). Kernel weight (KW) contributes to grain 
yield, and its components (kernel moisture content and 
kernel density) are correlated with milling value. Sorghum 
grain contains higher levels of acid detergent fi ber (ADF) 
than yellow corn (Zea mays L.), and high-tannin varieties 
contain higher amounts of ADF than non-tannin sorghum 
(Douglas et al., 1990). Chemical quality parameters such 
as crude protein (CP), fat, P, starch, and total digestible 
nutrients (TDN) directly infl uence sorghum nutritional 
value. Starch content in sorghum kernels aff ects the 
consistency of thick porridge, cooked couscous fi rmness, 
and rollability (Beta et al., 2001).

Genetic mapping of grain quality traits has been 
conducted in diff erent cereal crops such as maize (Cook 
et al., 2012; Wilson et al., 2004), rice (Oryza sativa 
L.) (Tian et al., 2009), wheat (Triticum aestivum L.) 
(Bordes et al., 2011; Reif et al., 2011), and sorghum (de 
Alencar Figueiredo et al., 2010). Starch is one of the 
most important grain quality parameters in cereals that 
provide the basis of subsistence for world population. 
Four enzymes, adenosine diphosphate glucose 
pyrophosphorylase, starch synthase, starch branching 
enzyme, and starch debranching enzyme, catalyze starch 
biosynthesis in cereals (Preiss, and Sivak, 1998). Given 
that the pathways and enzymes related to grain quality 
are similar in cereals, it was not unexpected to have 
similar results through earlier mutational studies and 
recent association studies at the population level.

A community resource sorghum diversity panel was 
recently established by a collection of sorghum accessions 
representing all major cultivated races, including lines 
from the Sorghum Conversion Program (SCP), elite 
breeding lines, and their progenitors from all around 
the United States (Casa et al., 2008). Th ese accessions are 
available on request from the National Plant Germplasm 
System (http://www.ars-grin.gov/npgs/index.html) at 
Plant Genetic Resources Conservation Unit, Griffi  n, 
GA. Th e SCP converted tropical lines to photoperiod-
insensitive short plants (Stephens et al., 1967). Th e level 
of population structure and familial relatedness in this 
diversity panel was previously assessed using 47 simple 
sequence repeat markers (Casa et al., 2008). Another 
study analyzed 216 SCP lines using 434 single nucleotide 
polymorphisms (SNPs) and classifi ed the lines into four 
subpopulations that corresponded closely to four major 
races of sorghum. A combined analysis of the breeding 

lines and lines from the SCP program has not been 
conducted with a large number of markers; furthermore, 
genetic mapping studies will complement breeders’ eff orts 
to improve grain quality in sorghum. Th e present research 
was undertaken to identify marker–trait associations for 
grain quality traits in sorghum.

MATERIALS AND METHODS
Plant Germplasm and Phenotypic Characterization
Th ree hundred lines from the sorghum diversity panel, 
including 251 SCP lines, and 49 important breeding lines 
and their progenitors from the United States served as 
the genetic material for this study. Th e sorghum acces-
sions were planted with randomized complete block 
design in Manhattan, KS, and West Lafayette, IN, with 
two replications in 2007 and 2008. Seeds harvested from 
10 selfed sorghum heads were analyzed for grain quality 
using the single kernel characterization system (SKCS) 
(Martin et al., 1993) and near-infrared refl ectance spec-
troscopy (NIRS) (Pasquini, 2003). Th e SKCS provided 
data on KH, KD, and KW and NIRS provided data on 
ADF, Ca, CP, fat, P, starch, and TDN.

Single Kernel Characterization System
Th e SKCS was the device used to measure physical proper-
ties of sorghum kernels such as KH and size characteristics 
(Bean et al., 2006; Pedersen et al., 1996). Seeds of 287 lines 
from 2 yr and two replications were analyzed through 
SKCS. Th ree hundred individual grains were crushed 
between a serrated rotor and a crescent, and parameters 
for KH, KD, and KW were estimated and reported. Kernel 
hardness was reported as kernel hardness index.

Near-Infrared Refl ectance Spectroscopy
Near-infrared refl ectance spectroscopy utilizes the near-
infrared region of the electromagnetic spectrum (about 
800–2500 nm) to determine the concentration of physical 
and chemical constituents in agricultural materials (Pas-
quini, 2003). Near-infrared refl ectance spectroscopy was 
used to predict the amount of ADF, CP, fat, Ca, P, starch, 
and TDN in sorghum kernels. A total of 15 g of seed were 
ground in a UDY cyclone mill (UDY Corporation) with a 
1-mm screen, a stainless steel grinding ring, and an alu-
minum impeller. Two hundred sixty-nine lines from two 
replications in Manhattan (2007) were scanned using a 
Foss NIRSystem 6500 monochromator (NIR Systems Inc.). 
High R2 values were obtained for various traits using a val-
idation set of 52 samples. Th e R2 for starch, CP, fat, ADF, 
and P contents were 0.99, 0.98, 0.91, 0.88, and 0.88, respec-
tively. On the basis of the statistical parameters mentioned 
above, NIRS was demonstrated to be effi  cient and accurate 
in predicting chemical grain quality traits in this panel.

Genotyping and Candidate Genes
Two diff erent genotyping assays were conducted: (i) a 
genomewide assay of 1536 SNPs (Yu et al., 2011) and (ii) 
a candidate gene and/or loci assay of 384 SNPs (Murray 
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et al., 2009). Th e 1536 SNP assay was designed to achieve 
maximum genome coverage. Th e average distance 
between SNPs was 400 kb except in the centromere 
regions. Th e 384 SNP assay was developed from SNPs 
discovered in previously published studies (Hamblin et al., 
2004, 2005, 2006, 2007), starch pathways (Hamblin et al., 
2007), sucrose pathways (Murray et al., 2009), and carot-
enoid pathways (Salas Fernandez et al., 2009). Out of 226 
loci represented in the 384 SNP assay, 39 loci were candi-
date genes from starch, sucrose, and carotenoid pathways 
and the remainder were candidate loci distributed across 
10 chromosomes. An Illumina GoldenGate assay was used 
to genotype the samples. Out of the 1536 SNP assay, 1290 
SNPs and, out of the 384 SNP assay, 333 SNPs were suc-
cessful and polymorphic. Th e program fastPHASE was 
used to impute missing data (Scheet and Stephens, 2006).

Statistical Analysis
DNA Marker Profi le
PowerMarker version 3.25 (Liu and Muse, 2005) was used 
to calculate Chord distance (Cavalli-Sforza and Edwards, 
1967) among accessions. It was also used to compute 
molecular diversity statistics and to construct the neighbor 
joining (NJ) tree with 100 replications of bootstrapping.

Population Structure Analysis
Th e program STRUCTURE, version 2.2.3 (Pritchard et 
al., 2000), was used to detect population structure and 

assign individuals to subpopulations. Th e STRUCTURE 
program was run 10 times for each subpopulation (k) 
value, ranging from 1 to 15, using the admixture model 
with 20,000 replicates for burn-in and 20,000 replicates 
during analysis. Th e fi nal subpopulations were deter-
mined on the basis of (i) likelihood plot of models, (ii) 
stability of grouping patterns across 10 runs, (iii) germ-
plasm information or “breeder’s knowledge,” (iv) cluster 
analysis (NJ tree), and (v) principal component analysis 
(PCA). On the basis of this information, we chose k = 
5 as the optimal grouping. Out of the 10 runs for k = 5, 
the run with the highest likelihood value was selected to 
assign the posterior membership coeffi  cients (population 
structure [Q]) to each accession (Supplemental Table S1). 
A graphical bar plot was then generated with the pos-
terior membership coeffi  cients (Fig. 1A), and plots were 
also plotted for k = 2, 3, 4, and 5 for result interpretation.

To validate the genetic structure and to test 
marker–trait associations, PCA and nonmetric 
multidimensional scaling (nMDS) were conducted and 
kinship (K) matrix was calculated. Principal component 
analysis was conducted to construct a plot of the most 
signifi cant axes for grouping pattern variation and to 
obtain axes for further model testing and association 
mapping (Patterson et al., 2006; Price et al., 2006; Zhu 
and Yu, 2009). Th e combined display of the color-
coded subpopulation memberships from STRUCTURE 
(Pritchard et al., 2000) with other analyses, NJ tree 

Figure 1. Diversity analysis of the sorghum accessions. (A) STRUCTURE (Pritchard et al., 2000) results: fi ve subpopulations (G) 
corresponded to races. (B) Neighbor joining tree: branches (B1–B5) generally agreed to subpopulations (G) based on STRUCTURE 
results. (C) Number of accessions from specifi c races within each subpopulation. D, durra; K, kafi r; ZC, zerazera-caudatum; B, bicolor; 
GB, guinea-bicolor; MF, milo-feterita; SB, sudanese-broomcorn; C, caudatum; GC, guinea-caudatum.
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(Fig. 1B) and PCA (Fig. 2A), are shown. Kinship was 
calculated with SPAGeDi 1.3 (Loiselle et al., 1995; Hardy 
and Vekemans, 2002).

Model Comparison and Association Analysis
We compared diff erent models to assess the eff ect of popu-
lation structure on association mapping of various grain 
quality traits measured in this diversity panel. Following 
the previously recommended procedures (Yu et al., 2006; 
Zhu and Yu, 2009), we tested various mixed models with 
subpopulation membership percentage (Q), nMDS, and 
PCA as fi xed covariates and kinship as random eff ect. Th e 

dimension of PCA and nMDS were determined for each 
trait individually. Among all possible models (the simple 
model, Q, K, PCA, nMDS [Zhu and Yu, 2009], Q plus 
K [Yu et al., 2006], PCA plus K, and nMDS plus K), the 
best fi t model was determined for each trait based on the 
Bayesian information criterion (BIC). Th e selected models 
were then used to test marker–trait associations between 
333 SNPs and 10 grain quality traits. Marker–trait associa-
tions were tested in TASSEL (Bradbury et al., 2007) and 
were also verifi ed in SAS 9.1 soft ware (SAS Institute, 2000). 
Subsequently, quantile–quantile (Q-Q) plots of the F-test 
statistics for the SNP markers were plotted to assess the 

Figure 2. General congruence among principal component analysis (PCA), STRUCTURE (Pritchard et al., 2000) classifi cation, and race 
classifi cation. (A) Principal component analysis and STRUCTURE classifi cation were consistent. Each color represents a subpopulation 
based on STRUCTURE results. (B) Geographical origin differences between the subpopulations in sorghum diversity panel shown on 
world map. Red triangles represent G1, green triangles represent G2, blue circles represent G3, yellow boxes represent G4, and pink 
boxes represent G5. PC, principal component.
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adequacy of the best model in controlling type I errors 
(Supplemental Fig. S1). Single nucleotide polymorphisms 
that passed the threshold of p-value < 10−03 were deemed 
signifi cant if minor allele frequency (MAF) was greater 
than 5%. Th e threshold p-value was determined jointly 
by considering that these are SNPs from candidate genes 
and their numbers are not very large and by consider-
ing the pattern of the Q-Q plot of the selected model and 
the point at which the observed F-test statistics deviated 
from the expected F-test statistics. In addition, likelihood-
ratio-based R2 (R

LR
2) was calculated for signifi cant SNPs to 

provide a general measure for the eff ect of SNPs in mixed-
model association mapping of the traits (Sun et al., 2010). 
Likelihood ratio-based R2 is a generalized form of R2 in 
linear regression model that allows comparisons across 
models with diff erent random and fi xed components.

RESULTS
Population Structure and Genetic Diversity
From the SNP data, the STRUCTURE (Pritchard et al., 
2000) analysis revealed fi ve subpopulations (G1, G2, G3, 
G4, and G5) that contained 49, 46, 52, 49, and 69 acces-
sions, respectively (Fig. 1A). Th e NJ tree analysis also clus-
tered the data into fi ve branches (Fig. 1B). Th e color-coded 
branches support the fi ve subpopulation classifi cation. 
Each subpopulation closely corresponded to durra, kafi r, 
zerazera-caudatum, guinea-caudatum, and caudatum 
(Fig. 1C). Subpopulation G1 mainly consists of accessions 
from the race durra (79.6%), G2 comprises kafi r (91.3%), 
G3 consists of the zerazera-caudatum working group 
(75%), G4 comprises the guinea-caudatum intermedi-
ate race (61.2%), and G5 consists of the caudatum race 
(63.8%). Th e genetic group guinea-caudatum is the race 
guinea in traditional classifi cation. We used information 
from two earlier studies about the sorghum diversity panel 
to classify the accessions into genetic groups and races 
(Brown et al., 2011; Casa et al., 2008).

Th e results from PCA showed that principal 
component (PC) 1 explains 11.6% variation in the data 
by separating G1 from G2, G3, G4, and G5 and PC2 
explains 6.9% variation in the data by separating G4 
from G1, G2, G3, and G5 (Fig. 2A). Th e PCA was color-
coded based on the structure results and it generally 
agrees with STRUCTURE (Pritchard et al., 2000) 
classifi cation of fi ve subpopulations. Even though bicolor 
is a major race of sorghum, it did not form a specifi c 
subpopulation in this diversity panel. We also generated 
a world map of the accessions based on their sources 
and/or origins (Fig. 2B). Results from STRUCTURE 
analysis, NJ tree, and PCA were consistent. Taken 
together, the sorghum diversity panel was classifi ed into 
fi ve subpopulations: three main sorghum races (durra, 
kafi r, and caudatum), one intermediate race (guinea-
caudatum), and a working group (zerazera-caudatum).

Trait Variation
Data analysis showed a high amount of diversity for 
grain quality traits. Kernel hardness, KW, and KD from 
SKCS showed high consistency across years and environ-
ments that were recorded from two locations for 2 yr. Th e 
repeatability of KH, KW, and KD were 0.79, 0.84, and 
0.78, respectively. Th e correlation coeffi  cients (r) were 
calculated for all traits. Kernel hardness was signifi cantly 
correlated with all traits except starch. Kernel weight and 
KD were positively correlated (r = 0.91). Protein content 
and P content were positively correlated (r = 0.75). Kernel 
diameter and fat were negatively correlated (r = −0.24). 
Crude protein was signifi cantly associated with all traits 
except KW, KD, and fat. Starch content was negatively 
correlated with ADF (r = −0.68), Ca (r = −0.31), CP, (r = 
−0.75), fat (r = −0.25), and P (r = −0.68) (Table 1).

In addition, KH, ADF, and TDN showed signifi cant 
diff erences among the fi ve subpopulations (Fig. 3). 
Caudatum in G5 had the lowest KH (Fig. 3A) and TDN 
(Fig. 3C) and the highest ADF (Fig. 3B) values. Th e 

Table 1. Mean, standard deviation, and correlation of grain quality traits across sorghum accessions. The number 
of accessions used was 247 for kernel hardness (KH), kernel weight (KW), and kernel diameter (KD) and 274 for 
acid detergent fi ber (ADF), Ca, crude protein (CP), fat, P, starch, and total digestible nutrients (TDN).

Correlation (r)
Traits Mean SD KH KW KD ADF Ca CP Fat P Starch TDN

KH 78.15 18.97 –
KW 24.40 5.20 −0.32*** –
KD 1.70 0.38 −0.33*** 0.91*** –
ADF 4.81 0.91 −0.18** −0.07 −0.08 –
Ca 0.06 0.01 0.23*** −0.07 −0.12 0.21*** –
CP 13.85 1.67 0.18** 0.13 0.05 0.43*** 0.31*** –
Fat 3.25 0.41 0.33*** −0.22*** −0.24*** 0.05 0.52*** −0.05 –
P 0.45 0.05 0.23*** 0.04 −0.04 0.28*** 0.33*** 0.75*** 0.20*** –
Starch 69.26 2.44 −0.09 0.02 0.10 −0.68*** −0.31*** −0.75*** −0.25*** −0.68*** –
TDN 84.84 1.40 −0.16** 0.07 0.08 −0.99*** −0.21*** −0.43*** −0.05 −0.28*** 0.67*** –

**Signifi cant at the 0.01 probability level.

***Signifi cant at the 0.001 probability level.
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accessions that formed G3, zerazera-caudatum, had 
the highest KH and TDN values followed by guinea-
caudatum (G4). Durra (G1) and kafi r (G2) accessions 
had higher KH values than the caudatum (G5) but 
lower values than zerazera-caudatum (G3) and guinea-
caudatum (G4). Caudatum in G5 were signifi cantly 
diff erent from other subpopulations for these three traits. 
Other phenotypic traits were not signifi cantly diff erent 
among the subpopulations.

Marker–Trait Association Analysis
Model comparisons revealed that the mixed model with 
K matrix was the best model for eight phenotypic traits: 
KH, KW, KD, ADF, CP, fat, starch, and TDN. Th e simple 
model was the best model for testing Ca and the nMDS2 
model was the best for testing P. Th e intersection of phe-
notypic data (300 accessions) and genotypic data (265 
accessions) yielded a combined data set of 200 accessions 
with both genotypic and phenotypic data. Eight signifi -
cant marker–trait associations between the SNPs on the 
candidate genes and grain quality traits were detected 
aft er fi ltering for MAF of 0.05 (Table 2). Th e Q-Q plots 
for each phenotype showed that the model tested were 
eff ective in controlling type I error (Supplemental Fig. 
S1). Single nucleotide polymorphisms associated with 
grain quality traits were checked for the distribution of 
alleles among subpopulations (Supplemental Fig. S2).

Data analysis revealed three signifi cant SNPs 
associated with KH, SB00214.1, SB00214.2, and 
SB00116.3, have p-values of 1.84 × 10−04, 1.84 × 10−04, and 
7.94 × 10−04, respectively. Th e consistency of association 
between signifi cant SNPs and alleles with the trait 
was checked by plotting the number of alleles in the 
accessions among fi ve subpopulations (Fig. 4). Accessions 
with allele A in the SNP SB00214.1 and the accessions 
with allele T in the SNP SB00214.2 had signifi cantly 
higher KH values in all subpopulations except in G1 (Fig. 
4). SB00214.1 and SB00214.2 were located in the locus 
pSB1700, and SB00116.3 was in starch synthase IIa (SSIIa) 
gene. Th e values of R

LR
2 for these SNPs were 8 to 10%. 

Except in G2 and G4, accessions with allele A in the SNP 
SB00116.3 had higher KH values.

Calcium, P, and starch had signifi cant SNPs 
associated with it (Table 2). Two signifi cant SNPs were 
associated with Ca. SB00156.1 and SB00054.1 were 
signifi cantly associated with Ca; with p-values 5.36 × 
10−04 and 9.04 × 10−04, respectively, each explained 6% 
of the variation. Except in G4, accessions with allele A in 
the SNP SB00156.1 had higher Ca content values. In the 
SNP SB00054.1, accessions with allele C had higher Ca 
content values except in G2. SB00068.1 in candidate loci 
pSB0140 in chromosome 6 was signifi cantly associated 
with P content with a p-value of 5.83 × 10−04. Th is SNP 
explained 5% of the variation in P. Accessions with allele 

Figure 3. Variations in three grain quality traits among different subpopulations of sorghum diversity panel. (a) Kernel hardness (KH). (b) 
Acid detergent fi ber (ADF). (c) Total digestible nutrients (TDN). The error bar represents the standard error. G1, G2, G3, G4, and G5 
consist of 49, 46, 52, 49, and 69 accessions, respectively.

Table 2. Signifi cant single nucleotide polymorphisms (SNPs) in candidate genes associated with grain quality traits.

SNP Locus and/or gene Chromosome Position† (bp) MAF‡ Trait§ p-value (best model) RLR
2¶ (SNP) Predicted gene function

SB00214.1 pSB1700 3 60,981,646 0.17 KH 1.84 × 10−04 0.10 Hypothetical protein
SB00214.2 pSB1700 3 69,011,869 0.17 KH 1.84 × 10−04 0.10 Hypothetical protein
SB00116.3 SSIIa 10 8,211,818 0.28 KH 7.94 × 10−04 0.08 Starch synthase IIa
SB00156.1 pSB0289 3 58,654,927 0.22 Ca 5.36 × 10−04 0.06 Serine/threonine-protein kinase
SB00054.1 PRC1044 6 59,450,034 0.36 Ca 9.04 × 10−04 0.06 Hypothetical protein
SB00068.1 pSB0140 6 52,406,868 0.07 P 5.83 × 10−04 0.05 Peptide transporter PTR2
SB00115.3 SSIIb 4 58,000,108 0.17 Starch 3.67 × 10−04 0.10 Starch synthase IIb
SB00086.1 pSB1120 3 45,665,466 0.31 Starch 6.19 × 10−04 0.09 3-ketoacyl-CoA synthase
†Physical location of the SNP in the chromosome in sorghum genome browser v2.39 on Phytozome (http://www.phytozome.net/sorghum [accessed 4 Sept. 2012]; Goodstein et al., 2012).
‡MAF, minor allele frequency.
§KH, kernel hardness.
¶RLR

2, likelihood ratio-based R2.
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G had higher P content values in all subpopulations, and 
the allele A was fi xed in G1, G2, and G3. Two signifi cant 
SNPs were associated with starch. SB00115.3 in candidate 
gene SSIIb was associated with a p-value of 3.67 × 10−04, 
and SB00086.1 in pSB1120 was associated with a p-value 
of 6.19 × 10−04. Th e SNP in SSIIb explained 10% of the 
variation and the SNP SB00086.1 explained 9% of the 
variation in starch. Accessions with allele A in the SNP 
SB00115.3 had higher starch content values in G1 and 
G5. Th e accession with allele C in the SNP SB00086.1 had 
higher starch content values except in G3 (Fig. 4).

DISCUSSION
Diversity and Classifi cation in Sorghum
Sorghum is considered to have been domesticated around 
5000 to 7000 yr ago in the northeastern part of Africa, 
the present-day Ethiopia (Jennings and Cock, 1977). 
Earlier eff orts to classify sorghum were mainly based on 
color of grains and glumes, presence or absence of awn, 
and stem characteristics. Th e most complete classifi ca-
tion of sorghum was in the early part of the last century 
(Snowden, 1936). In 1972, another classifi cation based on 
the spikelet characteristics was proposed (Harlan and De 
Wet, 1972), and cultivated sorghum was mainly classifi ed 
into fi ve major races. According to that system, bicolor 
and guinea races have open panicles, kafi r and durra races 
have compact heads, and caudatum spikelets vary in their 
head type. Broomcorn generally falls in bicolor type, and 
feterita is considered to be of caudatum type (Harlan and 
De Wet, 1972). Notably, no barrier between these sorghum 
races prevents them from crossing and mixing, so a con-
siderable amount of variation within the fi ve races results 
from admixture that separates them into about 15 mixed 
races and nearly 70 working groups (Murthy et al., 1967). 
Sorghum races also vary in their geographical origin and 
adaptation (Fig. 2B). Th e race bicolor is grown almost 
everywhere in Africa and does not have a characteristic 

geographical distribution or ecological adaptation. Guin-
eas have hard seeds and are resistant to insects and mold 
damage under wet conditions. Th ey are grown in the high 
rainfall areas of West Africa.

We found that the genetic group guinea-
caudatum forms a subgroup with high KH values 
compared with caudatum (Fig. 3A). Th is genetic group 
closely corresponds to the race guinea in traditional 
classifi cation (Brown et al., 2011). Th e caudatum race is 
one of the most important; almost all modern hybrid 
sorghums in the United States are caudatum or are 
mixed with caudatum. Caudatum has higher yielding 
ability, bright seed color, and good seed quality. Th is 
race is found mixed with other races of sorghum and the 
working group zerazera-caudatum had the highest KH 
index (Fig. 3A). Th e race kafi r is found in the southern 
part of Africa and India. Durra is a drought-tolerant race 
and is present in India and northern parts of Africa; it is 
also found mixed with guinea and caudatum.

Earlier eff orts to support phenotype-based racial 
classifi cation in sorghum with genotypic data were 
successful (Aldrich and Doebley, 1992; Perumal et al., 
2007; Folkertsma et al., 2005; Casa et al., 2008; Brown 
et al., 2011), but there is some disagreement between 
phenotype- and genotype-based racial classifi cations. 
One hypothesis is that, in phenotype-based racial 
classifi cation of sorghum, the traits used (panicle and 
spikelet characters) are controlled by a limited number 
of genomic regions but, in genotype-based classifi cation, 
a large number of markers are used to classify sorghum 
races, that is, STRUCTURE (Pritchard et al., 2000) 
classifi cation is based on random markers distributed 
across the genome that can capture the genomic variation 
among sorghum races. However, in an earlier study, 216 
SCP lines were classifi ed into four genetic groups that 
closely corresponded to major traditional races (Brown et 
al., 2011) except bicolor, and bicolor didn’t form a separate 
subpopulation. Our study showed similar patterns; the 

Figure 4. Consistency of single nucleotide polymorphism (SNP) alleles is shown across fi ve subpopulations. Each bar represents mean 
value of accessions with signifi cant SNP allele. Error bar represents the standard error. KH, kernel hardness.
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race bicolor was present in G2 through G5 but was not 
present in the subpopulation G1, which had mostly kafi r. 
Although bicolor is considered the progenitor of all 
sorghum races (De Wet, 1978), parallel domestication and 
theories of multiple origin of the sorghum races remain 
valid. Th e race kafi r might have originated from an early 
bicolor or a wild race Sorghum bicolor (L.) Moench subsp. 
verticillifl orum (Steud.) de Wet ex Wiersema & J. Dahlb. 
[syn. Sorghum verticillifl orum (Steud.) Stapf] (Smith and 
Frederiksen, 2000). Electrophoresis data from an earlier 
study suggest that the race kafi r was diff erent from the 
other four major races in protein patterns (Shechter and 
De Wet, 1975).

A recent study of domestication of the shattering 
gene in cereals reported multiple Shattering1 (Sh1) alleles 
for domesticated races in sorghum, and the Sh1 allele in 
Tx623 (an important breeding line) found in kafi r and 
bicolor from south and east Africa is diff erent from the 
alleles found in guinea and durra, which is diff erent from 
caudatum (Lin et al., 2012). Th e race bicolor had multiple 
alleles of the sh1 gene and didn’t have a dominant sh1 
haplotype that indicates wide distribution of this race. 
Th e four major races of sorghum probably have multiple 
independent domestication events (Lin et al., 2012). 
However, in this sorghum diversity panel zerazera-
caudatum formed a separate subpopulation. Our 
results indicated that this diverse collection of sorghum 
clustered into fi ve diff erent subpopulations that closely 
corresponded to three major traditional races, one mixed 
race, and a working group.

Association Analysis
We followed the unifi ed mixed model approach to 
account for spurious associations that result from 
population structure and familial relatedness (Yu et al., 
2006). In deciding the best model to test marker–trait 
associations, we compared and tested diff erent models 
for the best fi t to the phenotypic data. Testing a mixed 
model with the K matrix in SAS (SAS Institute, 2000) 
is not a straightforward approach and may encounter 
convergence problems. Th e best-fi t model (the lowest BIC 
model) was selected for testing markers for each trait; 
if each phenotype were not tested with the best model, 
directly fi tting both Q and K may overcorrect population 
structure and familial relatedness for some traits and 
result in type II error (Zhu and Yu, 2009).

Th e SNPs that were signifi cant with MAF < 0.05 
were not reported and improved methods are needed to 
address and identify the true positives (Zhu et al., 2011). 
Th e percentage of variation explained was calculated 
as R

LR
2 that is appropriate for mixed model-based 

association mapping. Aft er controlling for population 
structure and admixture, we found eight SNPs on the 
candidate genes to be signifi cantly associated with 
the grain quality traits. In general, candidate gene 
association mapping approach complements genomewide 
association studies and traditional linkage mapping. By 
using suffi  cient number of SNPs coupled with careful 

selection of candidate genes, this approach can establish 
the gene–trait relationship at the population level.

Marker–Trait Associations
A SNP on the candidate gene SSIIa located on chromo-
some 10 was associated with KH and explained 8% of the 
variation in the trait. Earlier studies on kernel hardness 
in sorghum, wheat, and rice suggest that starch content 
and the distribution of proteins and lipids on the surface 
of starch granules are important factors in determining 
grain hardness (Cagampang and Kirleis, 1984; Chen et 
al., 2012; Guzman et al., 2012; Morris et al., 1994; Yan et 
al., 2009). Sorghum grain hardness is related to the vit-
reousness of the grain and the vitreousness is related to 
amylose content, which is a major component of starch 
(Cagampang and Kirleis, 1984). Th e maize homolog 
of SSIIa gene is sugary2 (su2) gene that is in the starch 
synthesis pathway (Hamblin et al., 2007). Also, the gela-
tinization temperature in rice is genetically controlled 
by the SSIIa gene that is related to KH (Yan et al., 2010). 
So these evidences suggest that the gene SSIIa from the 
starch synthesis pathway plays an important role in KH.

Single nucleotide polymorphisms associated with KH 
(SB00214.1 and SB00214.2) explained 10% of the variation 
in the trait and they were located in the locus pSB1700 
on chromosome 3. A bioinformatics analysis of the locus 
revealed that pSB1700 locus is similar to sad1 protein in 
rice and SUN4 domain protein in maize. Th e translated 
nucleotide of pSB1700 had 49% identity with the SUN4 
protein in maize. Th ese proteins are present in the inner 
nuclear membrane in a cell and form a link between other 
proteins, nucleoskeleton, and cytoskeleton that is important 
in the structure and shape of a cell (Murphy et al., 2010). 
Single nucleotide polymorphisms SB00156.1 and SB00054.1 
associated with Ca content were located in chromosome 3 at 
50 and 59 cM, respectively. SB00156.1 was located in a locus, 
pSB0289, that was predicted to produce serine/threonine-
protein kinase. Th e function of SNP SB00054.1, in locus 
PRC1044 in chromosome 6, is not known from National 
Center for Biotechnology Information searches. A SNP, 
SB00068.1 in pSB0140 locus in chromosome 6, explained 5% 
of the variation in P content. A SNP on the candidate locus 
pSB1120 on chromosome 3 was signifi cantly associated with 
starch content and explained 9% of the variation in the trait. 
BLAST searches (Altschul et al., 1990) provided the function 
of this locus as a gene producing 3-ketoacyl-CoA synthase. 
Th ese fi ve SNP–trait associations are novel associations.

A SNP on the starch synthase IIb (SSIIb) gene on 
chromosome 4 was found to be signifi cantly associated 
with starch content and explained 10% of the variation 
in the trait. Th e maize homolog of this gene is SSIIb. 
Starch synthase is an enzyme required for starch 
synthesis in the endosperm of cereals (Fujita et al., 2011). 
Candidate gene association mapping in maize (Wilson 
et al., 2004) and rice (Tian et al., 2009) suggest that the 
starch synthase is an important enzyme in determining 
starch content and quality in cereals. Th e genes from 
starch synthesis pathways form a regulatory network and 
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infl uence grain quality parameters (Tian et al., 2009). In 
sweet wheat, in the absence of the granule bound starch 
synthase II, starch is not formed in its kernels (Shimbata 
et al., 2011). Th e fi ndings about the trait diff erences 
among diff erent subpopulations and the identifi ed 
SNPs from the present study can be further exploited in 
improving grain quality in sorghum and related cereals.

Supplemental Information Available
Supplemental material is available at http://www.crops.
org/publications/tpg.

Supplemental Fig. S1. Quantile–quantile plots of the 
10 grain quality traits with 1523 single nucleotide poly-
morphism (SNP) markers. Th e quantile–quantile (Q-Q) 
plots showed the control of type I error by the selected 
models. KH, kernel hardness; KW, kernel weight; KD, 
kernel diameter; ADF, acid detergent fi ber; CP, crude 
protein; TDN, total digestible nutrients.

Supplemental Fig. S2. Variation in the frequency of 
signifi cant single nucleotide polymorphisms (SNPs) asso-
ciated with grain quality traits across the fi ve subpopula-
tions. Each bar represents the number of alleles for each 
SNP in the subpopulation.
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