
MODELING, SIMULATIONS, AND EXPERIMENTS

TO BALANCE PERFORMANCE AND FAIRNESS IN

P2P FILE-SHARING SYSTEMS

by

YUNZHAO LI

B.E., Jinan University, China, 1995

AN ABSTRACT OF A DISSERTATION

submitted in partial ful�llment of the

requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Electrical and Computer Engineering

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by K-State Research Exchange

https://core.ac.uk/display/10653183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

In this dissertation, we investigate research gaps still existing in P2P �le-sharing

systems: the necessity of fairness maintenance during the content information

publishing/retrieving process, and the stranger policies on P2P fairness.

First, through a wide range of measurements in the KAD network, we present

the impact of a poorly designed incentive fairness policy on the performance of

looking up content information. The KAD network, designed to help peers pub-

lish and retrieve sharing information, adopts a distributed hash table (DHT) tech-

nology and combines itself into the aMule/eMule P2P �le-sharing network. We

develop a distributed measurement framework that employs multiple test nodes

running on the PlanetLab testbed. During the measurements, the routing tables

of around 20,000 peers are crawled and analyzed. More than 3,000,000 pieces of

source location information from the publishing tables of multiple peers are re-

trieved and contacted. Based on these measurements, we show that the routing

table is well maintained, while the maintenance policy for the source-location-

information publishing table is not well designed. Both the current maintenance

schedule for the publishing table and the poor incentive policy on publishing peers

eventually result in the low availability of the publishing table, which accordingly

cause low lookup performance of the KAD network. Moreover, we propose three

possible solutions to address these issues: the self-maintenance scheme with short

period renewal interval, the chunk-based publishing/retrieving scheme, and the

fairness scheme.

Second, using both numerical analyses and agent-based simulations, we evalu-

ate the impact of di�erent stranger policies on system performance and fairness.

We explore that the extremely restricting stranger policy brings the best fairness

at a cost of performance degradation. The varying tendency of performance and

fairness under di�erent stranger policies are not consistent. A trade-o� exists

between controlling free-riding and maintaining system performance. Thus, P2P

designers are required to tackle strangers carefully according to their individual

design goals. We also show that BitTorrent prefers to maintain fairness with an ex-

tremely restricting stranger policy, while aMule/eMule's fully rewarding stranger

policy promotes free-riders' bene�t.

MODELING, SIMULATIONS, AND EXPERIMENTS

TO BALANCE PERFORMANCE AND FAIRNESS IN

P2P FILE-SHARING SYSTEMS

by

YUNZHAO LI

B.E., Jinan University, China, 1995

A DISSERTATION

submitted in partial ful�llment of the

requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Electrical and Computer Engineering

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2013

Approved by:

Co-Major Professor

Don Gruenbacher

Approved by:

Co-Major Professor

Caterina Scoglio

Abstract

In this dissertation, we investigate research gaps still existing in P2P �le-sharing

systems: the necessity of fairness maintenance during the content information

publishing/retrieving process, and the stranger policies on P2P fairness.

First, through a wide range of measurements in the KAD network, we present

the impact of a poorly designed incentive fairness policy on the performance of

looking up content information. The KAD network, designed to help peers pub-

lish and retrieve sharing information, adopts a distributed hash table (DHT) tech-

nology and combines itself into the aMule/eMule P2P �le-sharing network. We

develop a distributed measurement framework that employs multiple test nodes

running on the PlanetLab testbed. During the measurements, the routing tables

of around 20,000 peers are crawled and analyzed. More than 3,000,000 pieces of

source location information from the publishing tables of multiple peers are re-

trieved and contacted. Based on these measurements, we show that the routing

table is well maintained, while the maintenance policy for the source-location-

information publishing table is not well designed. Both the current maintenance

schedule for the publishing table and the poor incentive policy on publishing peers

eventually result in the low availability of the publishing table, which accordingly

cause low lookup performance of the KAD network. Moreover, we propose three

possible solutions to address these issues: the self-maintenance scheme with short

period renewal interval, the chunk-based publishing/retrieving scheme, and the

fairness scheme.

Second, using both numerical analyses and agent-based simulations, we evalu-

ate the impact of di�erent stranger policies on system performance and fairness.

We explore that the extremely restricting stranger policy brings the best fairness

at a cost of performance degradation. The varying tendency of performance and

fairness under di�erent stranger policies are not consistent. A trade-o� exists

between controlling free-riding and maintaining system performance. Thus, P2P

designers are required to tackle strangers carefully according to their individual

design goals. We also show that BitTorrent prefers to maintain fairness with an ex-

tremely restricting stranger policy, while aMule/eMule's fully rewarding stranger

policy promotes free-riders' bene�t.

Acknowledgments

I forever appreciate for my advisors Dr. Don Gruenbacher and Dr. Caterina

Scoglio. I am very proud for receiving their continuous and inspiring guidance for

the past six years. They not only teach me how to do research step-by-step, but

also encourage me how to bravely face the di�culties in my life.

I would also like to give my thanks to my committee members Dr. David

Soldan, Dr. Xinming Ou, and Dr. Todd Easton. Their direct assistance and

insightful comments open me to new research ideas.

Moreover, my thanks also go out to my colleagues Phillip, Hong, Sakshi, Ling,

Su and other Sun�ower networking group members who, though not providing

direct assistance for this work, create a warm, friendly working environment and

share research experience with me.

Finally, I would like to thank my parents Xueli Liand Shumei Yi, my wife

Lei Fan and my daughter Carol for their patience, support, encouragement and

unconditional love.

Table of Contents

List of Figures xii

List of Tables xv

1 Introduction 1

1.1 P2P File-Sharing Systems . 1

1.2 Fairness Challenges in P2P File-Sharing Systems 2

1.3 Prior Work on P2P Fairness . 3

1.4 Motivation of Research . 5

1.5 Thesis Contribution and Organization 7

2 Background 10

2.1 P2P Technologies . 10

2.1.1 Main Characteristics of P2P Technologies 10

2.1.2 P2P Overlay Structure . 12

2.1.2.1 Structured P2P Networks 12

2.1.2.2 Unstructured P2P Networks 13

2.2 P2P File-Sharing Systems . 15

2.2.1 General Principles of P2P File-Sharing Systems 15

2.2.2 Content Exchange Process in P2P File-Sharing Systems . . 16

2.2.2.1 Content Information Publishing/Retrieving in P2P

File-Sharing Systems 16

2.2.2.2 Content Downloading/Uploading in P2P File-Sharing

System . 18

2.2.3 Popular P2P File-Sharing Systems 19

2.2.3.1 aMule/eMule P2P File-Sharing System 19

viii

2.2.3.2 BitTorrent P2P File-Sharing System 21

2.2.4 Fairness Issue in P2P File-Sharing Systems 22

2.2.4.1 BitTorrent's Fairness Policy 23

2.2.4.2 aMule/eMule 's Fairness Policy 24

3 Lookup Performance De�ciencies in the KAD Network 26

3.1 Introduction . 26

3.2 Background of The KAD Network 29

3.2.1 KAD Logical Distances . 29

3.2.2 Routing Table and Publishing Tables 30

3.2.3 Publishing and Retrieving Processes 34

3.3 Related Work . 36

3.4 Measurement-Based Analysis . 38

3.4.1 Lookup Performance of the KAD Network 38

3.4.2 The Routing Table Measurement 40

3.4.2.1 Measurement Metrics 41

3.4.2.2 Measurement Methodology 42

3.4.2.3 Routing Table's Availability Measurement 45

3.4.2.4 Routing Tables' Similarity Measurement 46

3.4.3 The Publishing Table Measurement 50

3.5 Possible Solutions . 55

3.5.1 Self-Maintenance Scheme . 55

3.5.2 Chunk-Based Publishing/Retrieving Scheme 56

3.5.3 Strict Fairness Scheme . 57

3.6 Conclusion . 58

4 Evaluating Stranger Policies in P2P File-Sharing Systems with

Reciprocity Mechanisms 60

4.1 Introduction . 61

4.1.1 The Stranger Policy . 62

ix

4.1.2 Contribution . 65

4.2 Related Work . 68

4.2.1 Research on Performance 68

4.2.1.1 Numerical Analyses 68

4.2.1.2 Experimental Approaches 70

4.2.2 Research on Fairness . 71

4.2.2.1 General Studies on Reciprocity-Based Incentive Poli-

cies . 71

4.2.2.2 Indirect Reciprocity Incentive Mechanism 72

4.2.2.3 Direct Reciprocity Incentive Mechanism 73

4.2.3 Research on the Relation Between Performance and Fairness 74

4.2.4 Summary of Related Work 75

4.3 Stranger Policies Under the Indirect Reciprocity Mechanism 75

4.3.1 An Analytical Model . 76

4.3.1.1 Model Description 76

4.3.1.2 Performance and Fairness Metrics 81

4.3.2 Numerical Analysis and Veri�cation 84

4.3.2.1 Numerical Analysis 84

4.3.2.2 Agent-Based Simulation 88

4.3.3 Stranger Policies Under Di�erent Whitewashers Population

Size . 93

4.3.4 Summary . 95

4.4 Stranger Policies Under the Direct Reciprocity Mechanism 96

4.4.1 An Agent-Based Simulation Model 97

4.4.2 Simulation Results . 99

4.4.3 Case Studies: Stranger Policies in Real P2P File-Sharing

Systems . 102

4.4.3.1 Case Study 1: BitTorrent's Stranger Policy 102

4.4.3.2 Case Study 2: aMule/eMule's Stranger Policy . . . 104

x

4.5 Conclusion . 112

5 Conclusions and Future Work 114

5.1 Conclusions . 114

5.1.1 The Necessity of Fairness Maintenance During The Content

Information Publishing/Retrieving Process 114

5.1.2 Stranger Policies on P2P Fairness 115

5.2 Future Work . 116

5.2.1 Future work on studying fairness design in KAD network . 117

5.2.2 Future Work on Studying Stranger Policies 117

Bibliography 119

A A new free-riding control scheme 127

B Ping-pong message 133

xi

List of Figures

2.1.1 Client-Server infrastructure . 11

2.1.2 P2P Infrastructure . 11

2.1.3 DHT method - Chord . 13

2.1.4 Index server method . 14

2.1.5 Query �ooding method . 14

3.2.1 Logical structure of the routing table. X represents the rest bits . . 31

3.2.2 Publishing and retrieval processes 35

3.4.1 Received average sources information from di�erent source-lookup

methods . 40

3.4.2 (a) average value of Fa measured in di�erent aspects of the KAD

name space; (b) Histogram of the peers availability Fa of the routing

table; (c) CDF of the peers availability Fa of the routing table . . . 47

3.4.3 CDFs of similarity for di�erent number of compared nodes 49

3.4.4 (a) average value of Pa measured in di�erent aspects of the KAD

space; (b) histogram of the source-location-information publish-

ing table; (c) CDF of the availability Pa of the source-location-

information publishing table . 52

3.4.5 The histogram of the percentage of sel�sh peers leaving the system

within one hour after publishing content to the KAD network . . . 55

4.1.1 The relationship among free-riders, strangers, and whitwashers. . . 64

4.1.2 The relationship between the spectrum of di�erent stranger policies

and the percentage of the uploading bandwidth to strangers. The x

axis represents di�erent stranger policies, and the y axis represents

the percentage of the uploading bandwidth to strangers. 66

xii

4.3.1 The analytical model assume peers need to download total K �les.

At state S1, a peer will download its �rst �le, then this peer moves

to state S2 and download the second �le. The process continues

until this peer downloads its last �le at state Sk and leaves the

system. 77

4.3.2 Analytical results for di�erent stranger policies: (a) shows the per-

formance dg and (b) shows fairness Fm as a function of ε (the percent

of uploading bandwidth to known peers) when λg = 5 and λf = 2. . 85

4.3.3 The number of general peers and whitewashers at di�erent down-

loading states Si (i ∈ {1, 2, ..., K}) under the di�erent stranger

policies (ε = 0.1, 0.3, 0.6, and 0.9 respectively) in the steady state. 86

4.3.4 The trade-o� of performance and fairness when designers choose

di�erent weight α. 88

4.3.5 Results of a comparison of analytical modeling and agent-based

simulation under di�erent stranger policies when λg = 5 and λf = 2. 93

4.3.6 Analytical results for di�erent stranger policies: (a) and (b) shows

the performance dg and fairness Fm as a function of ε , (c) and

(d) show whitewashers average downloading rate and general peers

average uploading rate respectively. 94

4.4.1 Simulation results for di�erent stranger policies under the DRMs:

(a) shows the performance dg and fairness Fm as a function of ε

(the percent of uploading bandwidth to known peers) when λg = 5

and λf = 2; (b) is in the condition of λg = 5 and λf = 5; (c) is in

the condition of λg = 5 and λf = 10. 101

4.4.2 (a) general peer's average downloading rate vs. its average upload-

ing rate; (b) general peer's average downloading rate vs. free-rider's

average downloading rate . 109

4.4.3 Simulation result showing a general peer's downloading rate vs. a

free-rider's downloading rate . 111

xiii

A.0.1Simulation results. The average download time of general peers

and fairness ratio R with di�erent values of control parameter β:

(a) β =1; (b) β = 0.1. 131

B.0.1Ping-pong message in the KAD network 134

xiv

List of Tables

3.1 Structure of routing table . 40

3.2 Measurement data for routing table's availability 46

3.3 Measurement data for routing tables' similarity 48

3.4 Structure of SLI publishing table . 50

3.5 Structure of KI publishing table . 51

3.6 Comparison of di�erent modi�cation schemes 58

4.1 Parameters for the analytical model 78

4.2 Agent-based simulation parameters . 90

4.3 Test results in aMule/eMule . 108

4.4 Detailed results of test 6 in aMule/eMule 109

4.5 Detailed results of test 7 in aMule/eMule 110

xv

Chapter 1

Introduction

In this chapter, we brie�y introduce the P2P �le-sharing systems and their unique

features. After that, we present the fairness challenges in P2P �le-sharing systems

and review the related work. Then, we show the motivation of this thesis and

conclude with our contribution.

1.1 P2P File-Sharing Systems

Peer-to-peer (P2P) architecture is a distributed application architecture that as-

signs services and workloads among peers. P2P �le-sharing systems, as the most

popular application using P2P technology, generate a large amount of the tra�c

on the current Internet [1]. In a typical P2P �le-sharing system, users are called

peers, and they run P2P client applications to join the system through the In-

ternet. Each user can connect to other peers for exchanging content like movies,

music, and games.

P2P �le-sharing systems employ several unique features, which can help peers

exchange content e�ectively:

• each peer has dual roles as both server and client,

• the logical structure of P2P �le-sharing systems is decentralized,

• and the management style of P2P �le-sharing systems is self-organized.

1

Chapter 1 Section 1.2

Compared with traditional client-server �le-sharing systems, the dual roles of a

peer bring higher throughput and larger scalability to P2P �le-sharing systems.

In traditional client-server �le-sharing systems like FTP, all clients are just con-

sumers, and they must download content from a certain number of pre-designated

servers. Therefore, client performance will degrade as the number of users in-

creases, since the �xed service throughput must be allocated among all users.

However, in P2P �le-sharing systems, each peer acts as both client and server. As

a client, it can download content from other peers; as a server, it can also upload

content to others at the same time. Thus, the increase in the number of users

not only brings larger workloads, but also leads to higher throughput in P2P �le-

sharing systems. The P2P decentralized logical structure avoids the deadly e�ect

of central service nodes failures and consequently leads to increased robustness.

On the other hand, due to the lack of the central nodes, self-organization manage-

ment style is naturally employed into P2P �le-sharing systems. That is, instead of

centrally collecting global information of the whole system and then using the in-

formation to manage each peer, any peer in a typical P2P �le-sharing system will

individually decide how to exchange content with other peers according to their

own experience. As a result, self-organization also brings additional challenge into

P2P �le-sharing systems like the requirement of maintaining fairness.

1.2 Fairness Challenges in P2P File-Sharing Sys-

tems

Maintaining fairness is necessary in P2P �le-sharing systems, because 1) sys-

tem performance fully relies on the cooperation of each peer, and consequently

peers' sel�sh behavior will reduce system performance, and 2) special peers called

�free-riders� always exist in the system. Compared with general peers existing

in a P2P �le-sharing system, who obey the P2P principle to act as both service

providers and service consumers, free-riders are only service consumers, who spend

2

Chapter 1 Section 1.3

the downloading resource without any contribution to other peers. Previous re-

search already showed that a large number of free-riders can be discovered in P2P

�le-sharing systems [2]. The popularity of free-riding comes from the decentralized

infrastructure and self-organization of P2P networks. Without central manage-

ment nodes, each free-rider can freely choose to partner any number of peers and

can quickly change partners for avoiding punishment. Obviously, since the sys-

tems performance of P2P �le-sharing networks relies on the cooperation of each

peer, free-riding behavior contributes nothing to system performance; moreover,

it is unfair to contributors and eventually degrades system performance. There-

fore, each P2P �le-sharing system must disincentivize this free-riding behavior and

provide fairness to general peers.

Fairness management in P2P �le-sharing systems is also restricted by its de-

centralized infrastructure and self-organization. Thus, a typical P2P �le-sharing

system usually adopts incentive policies instead of obligatory strategies. The gen-

erous behavior of peers is rewarded by promoting more downloading bandwidth,

and the free-riding behavior is punished with the reduction of the downloading

rate. As monetary payment-based incentive policies face many implementation is-

sues in a typical P2P environment [3], reciprocity-based incentive policies become

the fundamental component of fairness strategies [4, 5]. Under this reciprocity-

based incentive mechanism, shareable content or uploading bandwidth is recog-

nized as goods for trading in the system. A peer can then choose their partners

for content exchange according to their individual current or previous behavior.

Generous partners can obtain higher priority and larger bandwidth than sel�sh

partners.

1.3 Prior Work on P2P Fairness

The free-riding issue of P2P �le-sharing systems was �rst found in [2], where the

authors showed that around 70% users of Gnutella P2P �le-sharing network [6]

3

Chapter 1 Section 1.3

did not share any �les. The following study in [7] found 85% of peers in Gnutella

were free-riders. Besides Gnutella, free-riders also exist in other popular P2P �le-

sharing systems like BitTorrent and aMule/eMule. The impact of free-riding on

system performance was evaluated in [8, 9, 10].

To restrain the free-riding behavior, the research community suggested and

evaluated incentive fairness policies. A number of studies focused on designing

the reciprocity-based incentive fairness policy in P2P �le-sharing networks. On

one side, researchers tried to maintain system fairness based on global knowledge of

each peer's behavior information. For example, researchers in [11] suggested that

each peer constructed a trust graph covering itself and its target peers, and then

the reputation levels of these target peers were computed through di�erent trust

paths. Alternatively in [12], the local reputation scores of each peer's partners

would �rst be computed according to their previous behaviors. After that, their

global reputation values were determined using a centralized computing algorithm,

which calculated the eigenvector of a network trust matrix. In [13], the authors

acted to improve system fairness based on an existing social network. In [14], a

general analytical framework was proposed to help researchers evaluate di�erent

incentive strategies of P2P networks.

On the other side, historical information cannot easily be spread and syn-

chronized within a distributed and self-organized P2P system. In reality, P2P

�le-sharing systems tend to employ simpler local information based fairness poli-

cies. For example, aMule/eMule[15, 16] employs a local credit system to maintain

fairness, where a peer, after uploading content to its partners, will be assigned

some credit by these partners, and these credit can only be used in pairs between

this peer and the direct partners in the future. BitTorrent [17] maintains its fair-

ness by using a simple Tit-For-Tat (TFT) incentive policy, where a peer mainly

uploads to others from whom it can download at the same time. However, these

policies were shown not to be robust for maintaining fairness. Free-riders could

even obtain higher download rates than TFT compliant clients [18, 19]. In [20],

4

Chapter 1 Section 1.4

a popular free-riding behavior was also found by crawling aMule/eMule for over

50 days. In [21], the results of real world experiments showed that free-riders in

aMule/eMule can obtain similar downloading rate as general peers.

1.4 Motivation of Research

Due to the importance of fairness for P2P �le-sharing, a large number of related

studies have been conducted. However, the research community needs to investi-

gate several research gaps still existing in two primary areas.

a) The necessity of maintaining fairness during content information pub-

lishing and retrieving processes

Exchanging content in P2P �le-sharing systems includes two fundamental steps:

• the process of publishing/retrieving content information for P2P �le-sharing

networks,

• and the process of exchanging real content with other peers.

While maintaining fairness for content exchange has been widely studied, the

necessity of maintaining fairness for the content information publishing/retrieving

process has been overlooked. The research community should answer the following

questions:

• Do peers need to cooperate during the process of publishing/retrieving con-

tent information? That is, is maintaining fairness necessary in this process?

• What is the performance impact on the publishing/retrieving process which

lacks an e�ective incentive policy?

With the answers to these questions, P2P designers will develop a deep insight

into the fairness issues of the content information publishing/retrieving process.

Thus, they may conduct more e�ective fairness policies.

5

Chapter 1 Section 1.5

b) The stranger policies on P2P fairness

When designing a P2P fairness policy, how to e�ectively deal with strangers has

been overlooked. For any peer, strangers are de�ned to the peers whose previous

behavior is unknown by this peer. So, strangers for a particular peer can be

categorized into 4 groups:

• legitimate peers who just arrive into the system;

• legitimate peers without any content exchange with this peer;

• free-riders whose free-riding behavior are not known by the peer;

• free-riders who pretend to be strangers by frequently changing their identi-

ties.

Since strangers can be either legitimate peers or free-riders, when an uploader

allocates upload bandwidth, promoting more bandwidth to its strangers may also

provide more bene�t to free-riders, while limiting more bandwidth to strangers

may limit bene�t to legitimate peers. Therefore, when designing a stranger pol-

icy, restricting strangers is not necessarily better/worse than rewarding strangers

for system performance and fairness. As few quantitative evaluations for di�er-

ent stranger policies currently exist in literature, the research community should

answer the following questions:

• How does the treatment policy for strangers a�ect system performance?

• How does the treatment policy for strangers a�ect system fairness?

• Does the improved fairness brought by a particular stranger policy also result

in the improvement of system performance?

By answering these questions, the research community may �nd the appropriate

trade-o� between performance and fairness requirements when designing stranger

policies.

6

Chapter 1 Section 1.5

1.5 Thesis Contribution and Organization

We study the existing challenges in P2P �le-sharing systems discussed above, and

we have the following contributions.

In Chapter 3, through a wide range of measurement in the KAD network, we

present the impact of a poorly designed incentive fairness policy on the content

information lookup performance. The KAD network, which is designed to help

peers publish and retrieve sharing content information, adopts a distributed hash

table (DHT) technology and combines itself into the aMule/eMule P2P �le-sharing

network. During the measurements, the routing tables of around 20,000 peers are

crawled and analyzed. More than 3,000,000 pieces of source location information

from the publishing tables of multiple peers are retrieved and contacted. Based

on these measurements, we have the following contributions.

1. We discover that the KAD network has a low lookup performance.

2. We develop a distributed measurement framework which employs multiple

test nodes running on the PlanetLab testbed [22]. The entire identity (ID)

space of the KAD network is uniformly separated into multiple parts, each

of which are measured by an individual PlanetLab test node.

3. We show that the maintenance policy of routing table is well designed. The

availability of the routing table is high, and the similarity of routing tables is

low. More than 80% of the entries in this table are connectable. The entries

of routing tables among peers, who are logically close with each other, are

di�erent.

4. We discover that the maintenance policy for the source-location-information

publishing table is not well designed. The availability of the publishing table

is low. On average, more than 75% entries in this table are stale and cannot

be connected.

5. We also reveal that more than 75% peers leave the system within one hour

7

Chapter 1 Section 1.5

after publishing their downloaded content into the KAD network.

6. By exploring the implementation of the KAD network, we deduct that both

the current maintenance schedule for the publishing tables and the poor

incentive policy on publishing peers eventually result in the low availability

of the publishing table and accordingly cause poor lookup performance of

the KAD network.

7. To deal with these issues, we propose three possible solutions: the self-

maintenance scheme with short period renewal interval, the chunk-based

publishing/retrieving scheme, and the fairness scheme. Both the strengths

and weaknesses of these solutions are also discussed.

In Chapter 4, we also evaluate the impact of di�erent stranger policies on system

performance and fairness using both numerical analyses and agent-based simula-

tions. Followings are the key observations.

1. The extremely restricting stranger policy brings the best fairness at the cost

of the degradation of performance. The extremely rewarding stranger policy

cannot provide the highest performance to the system. Appropriately choos-

ing the intermediate policy can bring the highest performance to the system.

The system performance can be improved when the potential contribution

of general newcomers is quickly promoted, while free-riders could also obtain

bene�t.

2. The varying tendency of performance and fairness under di�erent stranger

policies are not consistent, and the highest performance and the best fair-

ness of the system cannot be reached simultaneously. Speci�cally, when the

system reaches the best fairness, where a very small fraction of uploading

bandwidth is allocated to strangers, free-riders will be signi�cantly restricted

and cannot easily stay on the system, while the system performance will be

negatively a�ected due to the delay of general newcomers' potential contri-

bution. When the system reaches the highest performance where at least

8

Chapter 1 Section 1.5

some part of the uploading bandwidth is allocated to strangers, free-riders

also receive this bene�t and survive in the system. Moreover, due to free-

riders surviving at this point, good peers may tend to free-ride, since they are

rational and receive less bene�t than free-riders, or they may directly leave

the system due to its unfair treatment. Eventually, these consequences will

negatively a�ect the system performance. Taking this design dilemma into

account, P2P designers are required to tackle strangers carefully according

to their individual design goals.

3. We conduct cases studies for the current most popular realistic P2P �le-

sharing systems: BitTorrent and aMule/eMule. Based on the agent-based

simulation results, we show that BitTorrent prefers to maintain fairness by

sacri�cing its performance, while aMule/eMule's fully rewarding stranger

policy promotes free-riders' bene�t. We verify our discovery by both analyz-

ing the TFT incentive policy of BitTorrent and running experiments in the

real aMule/eMule network. Additionally, we simulate the credit incentive

policy in aMule/eMule to verify the inconsistent tendency of performance

and fairness. Finally, we suggest possible alternative improvements for both

of BitTorrent and aMule/eMule.

We organize this dissertation as follows. In Chapter 2, we review the related

background of P2P �le-sharing systems. The review includes the structured and

unstructured overlay infrastructures of P2P �le-sharing systems; the most popular

P2P �le-sharing systems BitTorrent and aMule/eMule; the fairness issue of P2P

�le-sharing systems; and the incentive fairness policies. In Chapter 3 and 4, we

provide our foundational contributions of this research. In Chapter 5, we summa-

rize the entire dissertation and point out the possible future work for P2P fairness

design.

9

Chapter 2

Background

In this chapter, we review the related background for this dissertation. We intro-

duce P2P technologies and P2P unstructured and structured overlay infrastruc-

ture. We present the principle of P2P �le-sharing systems and the most popular

P2P �le-sharing systems: BitTorrant and aMule/eMule. After that, we discuss

the fairness issue in P2P �le-sharing systems and the current corresponding coun-

termeasures.

2.1 P2P Technologies

As a special networking technology, P2P helps a single node build connections with

other nodes through the Internet. These nodes are called peers, and they combine

together to form a logical network called P2P network. Unlike physical networks,

P2P networks have their own logical structured or unstructured topologies.

2.1.1 Main Characteristics of P2P Technologies

P2P networks are designed to provide better performance than traditional client-

server networks. The greatest di�erence between client-server networks and P2P

networks is the roles of each node. In a typical client-server network as shown in

Figure 2.1.1, each node can be either a client or a server, but not both. Clients

can only be service consumers, and servers can only be service providers. Usu-

10

Chapter 2 Section 2.1

Servers

Client Client Client Client

Figure 2.1.1: Client-Server infrastructure

Peers

Peers

Peers
Peers

Peers

Peers

Figure 2.1.2: P2P Infrastructure

11

Chapter 2 Section 2.1

ally, servers are pre-designated and have to stay in the system for a long-term

period; clients have to obtain service from servers, and there are no communica-

tions among clients. In a typical P2P network as shown in Figures 2.1.2, the role

of each node is equal: it is both a client and a server. It can obtain service from

other peers, and it can also provide service to others at the same time. Thus,

communications are distributed among all peers. As a result, the increase in the

number of customers in a client-server network usually leads to the degradation of

the system performance; while the increase in the number of customers in a P2P

network not only brings more workload, it also provides higher service capacity

and larger scalability. Furthermore, since each peer can be a service provider, the

failures of peers in P2P networks have less impact on the system than the failures

of servers in client-server networks. Therefore, the robustness of P2P networks is

also stronger than client-server networks.

2.1.2 P2P Overlay Structure

The logical links among peers in a P2P network create an application level based

overlay network. Peers use di�erent methods to create their logical links � to

discover other peers. Depending on these di�erent methodologies, people can

divide this overlay network into two main classes: structured P2P networks and

unstructured P2P networks.

2.1.2.1 Structured P2P Networks

Structured P2P networks are normally built by distributed hash table (DHT)

algorithms. The hash table algorithm, used to speed up the lookup process, creates

the relationship between the index key and the real value. In structured P2P

networks, the whole hash table is separated and distributed to all peers. Each

peer is responsible for maintaining its own part of the entire hash table. By

using maintained information, each peer can also iteratively contact any other

peer in the P2P networks. The advantage of structured P2P networks is that it

12

Chapter 2 Section 2.1

Peer

Peer

Peer

Peer

Peer

Peer

Peer

Peer

Peer

Peer

Figure 2.1.3: DHT method - Chord

almost guarantees that online peers can be located within a short-period of time,

usually within O(logN), where N is the population of online peers in the system.

Based on how to maintain the neighbors, structured P2P networks have their own

logical topologies. For example, the chord system shown in Figure 2.1.3 creates a

circle logical overlay topology by letting each peer maintain the information of its

successors and predecessors [23]. In the Kademlia network, each peer considers

the whole logical system as an unbalanced binary tree [24].

2.1.2.2 Unstructured P2P Networks

In unstructured P2P networks, peers build connections according to an ad-hoc

style. To discover other peers in unstructured P2P networks, two di�erent kinds

of lookup methods are usually adopted: the index server method shown in Figure

2.1.4 and the query �ooding method shown in Figure 2.1.5.

• With the index server method, some central nodes, called index servers,

maintain the information of peers. Online peers register themselves on these

central nodes and then update this information after some time. Conse-

quently, this information can also be retrieved by any peer from these index

13

Chapter 2 Section 2.1

Index Server

Index Server

Index Server

Peer Peer Peer Peer

Peer

Peer
Peer

Peer

Peer
Peer

Figure 2.1.4: Index server method

servers. However, this server-based method su�ers from the failures of these

central nodes, so the scalability and robustness of P2P networks cannot be

well extended.

Peer

Peer

Peer
Peer

Peer

Peer

Peer

Figure 2.1.5: Query �ooding method

• Another lookup method is based on �ooding queries among the system.

When a peer wants to locate another peer, it will send requests to its known

14

Chapter 2 Section 2.2

peers. If these known peers do not have the information of the requested

peer, the known peers will iteratively send the requests to their known peers.

Obviously, this method could be more robust than the index server method.

However, it also introduces a large amount of tra�c with the �ooding queries,

and therefore P2P �le-sharing systems usually limit the �ooding scope [6].

However, with this limited �ooding method, it cannot be guaranteed that

the searched peer may be located.

2.2 P2P File-Sharing Systems

P2P �le-sharing is the most popular application of P2P technology, which is used

for content exchange among peers and produces the largest tra�c currently on

the Internet [1]. In the following subsection, we introduce general principles of

P2P �le-sharing systems and the two most popular P2P �le-sharing systems:

aMule/eMule and BitTorrent.

2.2.1 General Principles of P2P File-Sharing Systems

In P2P �le-sharing systems, peers are grouped together for �le exchange. Each

peer in a P2P �le-sharing system normally undertakes two roles: 2) as a service

consumer, the peer downloads content from other peers; 1) as a service provider,

it also uploads content to other peers. Therefore, P2P �le-sharing systems have

the following feature: with the increase in the number of joined peers, who are

both service consumers and service providers, not only the system downloading

workload but also the system uploading capacity increases. When compared with

the traditional client-server �le-sharing infrastructure, P2P distributed feature

brings higher throughput, larger scalability, and stronger robustness to P2P �le-

sharing systems.

15

Chapter 2 Section 2.2

2.2.2 Content Exchange Process in P2P File-Sharing Sys-

tems

In a P2P �le-sharing system, in order to download desired content, each down-

loader must go through two necessary stages:

• locating peers with sharable content;

• connecting the located peer to download content.

Correspondingly, each uploader also needs two steps for completing content ex-

change:

• publishing shareable content;

• selecting downloaders to upload content.

In the following, we review these two stages respectively.

2.2.2.1 Content Information Publishing/Retrieving in P2P File-Sharing

Systems

In order to help uploaders publish content information and downloaders retrieve

content information, the corresponding peers in the system must �rst be discov-

ered. P2P �le-sharing systems build unstructured or structured logical networks

mentioned in Section 2.1 to facilitate this process, i.e., using the index server

method, the �ood-query method, or the DHT method to discover peers.

• Index server method: This method can be used for both content publishing

and content retrieving processes. With the index server method, a certain

number of nodes, as servers, are popularly known by peers. To let peers

know the information of servers, this information is usually published out-

of-bound, like published on famous websites. Instead of directly uploading

the whole content into these servers, a peer publishes its shareable content

location information (e.g. this peer's location information) into the servers.

16

Chapter 2 Section 2.2

As a result, other peers can retrieve location information of their desired

content from these index servers, and then directly download the content

from sharing peers. The disadvantage of this index server method is obvious

because it breaks the fully distributed structure of P2P systems by intro-

ducing central nodes. The failures of these central index servers will greatly

a�ect functionality and robustness of the system. Currently, popular P2P

�le-sharing systems like BitTorrent and aMule/eMule employ an index server

method as one of their content publishing/retrievaling mechanisms.

• Query-�ooding method: Query-�ooding method, which was adopted by the

Gnutella P2P �le-sharing system [6], helps P2P �le-sharing systems maintain

their fully distributed feature. It is only used to assist peers to look for

content. When a peer wants to retrieve particular content information, the

peer sends requests to its known peers. If these known peers do not hold

the required content, the original request will be forwarded to the other

peers, who are known by these known peers. Under this strategy, each peer

is required to either answer the request, if it holds the content, or forward

the request to its known peers. So, the request has been iteratively �ooded

within the P2P network. Compared with the index server method, the

content information does not need to be published anymore by using the

query-�ooding method. However, since �ooding requests cannot be in�nite,

the maximum hops of requests are usually limited [6], and peers could face

the risk of not �nding the content, even though the content really exists in

the system.

• DHT method: The DHT method also maintains the fully distributed feature

of P2P systems. Like the index server method, it can also be used for

both content publishing and content retrieving processes. In a P2P �le-

sharing network using DHT technology, each peer holds a unique identity

by applying a special hash function. When a peer plans to publish some

content information, a hash value has �rst been obtained by hashing the

17

Chapter 2 Section 2.2

information with the same hash function. After that, the hashed content

information is stored onto several peers whose identities are close to the

hash value. The reason for storing onto several peers instead of one peer

is to improve system redundancy and robustness. If a peer later wants to

retrieve this published information, this peer can also �rst obtain the same

hash value by hashing the desirable content information. And then, it can

search di�erent parts of the entire distributed hash table to locate peers

who have the closer identities with the hash value, and those peers should

be the peers holding the published information. As each peer must keep its

neighbors' information in the DHT network, maintaining the information of

neighbors can utilize a logical structure of the DHT can as a tree, a circle,

a chain, etc. With this logical structure, peers can iteratively send requests

to neighbors to locate other peers in the system in a relatively short period

time. Currently, aMule/eMule builds a DHT called the KAD network for

facilitating the content publishing and retrieving processes. BitTorrent also

began to combine the DHT functionality into its network.

2.2.2.2 Content Downloading/Uploading in P2P File-Sharing System

After obtaining information of peers who share the desired content, downloaders

will build connections with those peers and begin the downloading process. They

can choose to download content from one single peer, and this may require a

relatively long time period, if the size of content is large. In order to speed up

the download process, they can also choose to download content from multiple

peers simultaneously, and this is generally adopted by modern P2P �le-sharing

systems. To implement this multiple-downloading scheme, the content is usually

separated into multiple same-size parts called chunks. If the downloading content

has multiple chunks, instead of fully downloading it from one peer, the downloader

can simultaneously download di�erent chunks from di�erent peers. Furthermore,

with the chunk-based method, each downloaded chunk can be uploaded to other

18

Chapter 2 Section 2.2

peers immediately without waiting to obtain the entire �le. After downloading

di�erent chunks from di�erent peers, the downloader will reorganize those chunks,

and the whole content has been recovered to itsoriginal format.

An uploader also needs to make a decision about how to allocate uploading

bandwidth to downloaders. The uploader can put downloaders into its waiting

queue and assign the entire upload bandwidth to a downloader selected by a

particular policy like �rst in �rst out (FIFO) or round robin. The uploader may

also separate its whole uploading bandwidth into multiple slots and upload to

multiple downloaders at the same time.

2.2.3 Popular P2P File-Sharing Systems

In the following subsection, we introduce the currently most popular P2P �le-

sharing systems: aMule/eMule and BitTorrent.

2.2.3.1 aMule/eMule P2P File-Sharing System

The aMule/eMule P2P �le-sharing system is one of the most popular P2P �le-

sharing systems with around one million online users [25]. It is composed of the

aMule application [15], the eMule application [16], and the eDonkey system [26].

aMule is a Linux-based P2P �le-sharing application, and eMule is a Windows-

based one. Edonkey is a network, used by both aMule and eMule, providing the

content publishing/retrieving service from the index servers. We know that in a

general P2P �le-sharing system, when a peer performs a content exchange, this

peer must �rst collect the information of content sources. In aMule/eMule, several

di�erent source searching approaches are employed.

• ED2K method: the eDdonkey network is composed of index servers call

ED2K servers. These servers do not hold the real content for sharing. In-

stead, the sources' information (sharing content location information) is pub-

lished on to these ED2K servers by peers who share content in the network.

As a result, the information of those sources can be easily retrieved from

19

Chapter 2 Section 2.2

ED2K servers by any peer. aMule and eMule implement the full function-

ality of the ED2K protocol, which speci�es the communication between the

ED2K servers and the P2P �le-sharing clients. Thus, each peer running

aMule/eMule application can easily search for the information of sources

from those ED2K servers.

• KAD method: with the implementation of the DHT function, peers running

the aMule or eMule application also build a DHT network called the KAD

network. In the KAD network, content information can be published and

retrieved with the help of both publishing peers and published peers. Pub-

lishing peers are the source peers with shareable content, and they publish

the content information onto other peers in the KAD network; published

peers are those peers in charge of maintaining the published information. In

the KAD network, each peer needs to maintain its own routing table and

publishing table. Each publishing peer uses its routing table to discover

the corresponding published peers, and then inserts the content location

information into the publishing tables of these published peers. With this

publishing/retrieval methodology, each peer can also use its routing table

to discover published peers and then retrieve needed information from their

publishing tables.

• Source-Exchange method: this method can aid peers obtain more sources.

It assumes that a peer has already obtained some sources from other sources

searching methods like the ED2K mehtod or the KAD method. During the

content exchange process, this peer will continuously ask for more sources

from these already known sources with the Source-Exchange method.

• Passive method: the passive method is an auxiliary method used to obtain

more possible sources. In aMule/eMule, each peer must maintain its knowl-

edge about the whole network. That is, the peer must connect to some other

online peers and make them as its neighbors. The passive method exploits

20

Chapter 2 Section 2.2

this pattern and prescribes that, when building connection with those online

peers, each peer will ask for the connectors whether they can be the sources

of its desired content.

When exchanging real content, peers in aMule/eMule also adopt a chunk-based

content uploading/downloading approach. Each piece of shared content is divided

into equal-sized pieces call chunks (by default the size of each chunk is 9.28MB).

So, both the download capacity and uploading capacity of aMule/eMule can be

improved by this chunk-based exchange process.

2.2.3.2 BitTorrent P2P File-Sharing System

BitTorrent is also one of the most popular P2P �le-sharing systems in the real

world with millions of online users [17]. Same as aMule/eMule, the exchanged �le

in BitTorrents is also divided into multiple same-size chunks (the size of a chunk

is 256KB by default). Peers downloading the same �le are grouped together.

Thus, one grouped peer can exchange desired chunks with other peers in the same

group. Unlike aMule/eMule where sharing content information is published into

its own P2P network, in BitTorrent content information is published from out-

of-band. To implement the out-of-band publication, a .torrent �le related to the

published content must be �rst created. This �le speci�es the information about

the communication information of the tracker (the tracker is very similar to the

index server, but it only services for a speci�c group), the meta data of the shared

�le, such as �le name and �le length, and the hash value of each chunk. This

.torrent �le is not distributed among BitTorrent's network, but it is published onto

some particular websites or online forums, where users can retrieve the .torrent �le

and pick up the information of the tracker. The out-of-band publishing strategy

simpli�es the publishing process in BitTorrent. It also helps BitTorrent avoid some

copyright issues.

After obtaining information of the tracker, the new attended peer will register

itself onto the tracker. In addition, during the content exchange process, each reg-

21

Chapter 2 Section 2.2

istered peer will also periodically update information of their owned chunks onto

the tracker. As the tracker holds the detailed information about which peer holds

which chunks, each downloader can periodically retrieve information of other reg-

istered peers from the tracker and use these located peers as its sources candidates.

2.2.4 Fairness Issue in P2P File-Sharing Systems

Maintaining fairness is necessary in a P2P �le-sharing system due to the existence

of sel�sh behavior of some peers. In a traditional client-server system, each user

can be safely assumed to be obedient; otherwise the user cannot obtain the pro-

vided service. However, for a typical P2P �le-sharing system, in order to keep

the properties of high throughput, large scalability, and strong robustness, the

fully-distributed and self-organized infrastructure must be adopted to attract as

many peers as possible. That is, peers are allowed to own their identities without

any cost and to attend and leave the system freely. Therefore, the environment of

P2P �le-sharing is highly dynamic and hardly manageable. As a result, exploiting

the di�culty of management in such a P2P environment, some peers may attempt

to only consume the uploading bandwidth of other peers in the absence of con-

tributing to others. This kind of peer is called a free-rider, and a large number

of free-riders were discovered in P2P �le-sharing systems lacking the capability

to maintain fairness [2]. Obviously, the free-riding behaviors not only contribute

nothing to system performance, but also brings additional workload to contribu-

tors and eventually degrades system performance. Since system performance of

P2P �le-sharing networks relies on each peer's cooperation, it is vital to alleviate

free-riding behavior through fairness policies.

However, maintaining fairness e�ectively in a P2P �le-sharing system is chal-

lenging. Maintaining fairness is restricted by the decentralized infrastructure and

self-organization of P2P �le-sharing systems. To maintain fairness, it is impracti-

cal to give up the intuitive distributed infrastructure by introducing central control

nodes, and it is also hard to implement a mandatory or monetary payment-based

22

Chapter 2 Section 2.2

fairness schedule due to the high dynamic nature of peers. Thus, reciprocity-based

incentive policies are usually adopted, in which a peer prefers to promote more

downloading bandwidth or higher downloading priority to peers from whom it

formerly obtained bene�ts. Under this kind of incentive mechanism, a peer can

choose their partners for content exchange according to the each partner's indi-

vidual previous behavior. Generous partners obtain higher priority and larger

bandwidth than free-riding partners. Depending on how to obtain the informa-

tion of previous behavior, the reciprocity-based incentive mechanisms can be sub-

divided into indirect reciprocity-based incentive mechanisms (IRMs) and direct

reciprocity-based incentive mechanisms (DRMs). Under the IRMs, a global rep-

utation level for each peer is normally calculated and distributed. Consequently

the service level of peer A to peer B could depend on the former service level of

B to other peers. Under the DRMs, each peer merely maintains the contribution

information of their former partners. This results in the service level of A to B

depending only on B's previous service level to A. IRMs are widely discussed in

[27, 12, 11, 28], but they are complicated and face some implementation issues

for the current P2P �le-sharing systems, such as how to sychronize information

among a large number of peers within a short time period. On the other hand,

due to the simplicity of DRMs, they are popularly adopted in P2P �le-sharing

networks such as BitTorrent and aMule/eMule.

In the following, we will brie�y introduce the fairness policies in BitTorrent

and aMule/eMule.

2.2.4.1 BitTorrent's Fairness Policy

As one of the most popular P2P �le-sharing systems, BitTorrent adopts a TFT

incentive mechanism aiming to reward generous peers and penalize free-riders in

exchanging a single �le. Using TFT incentive policy, an uploader will divide its

entire uploading bandwidth into several equal slots (by default, the number of

slots is 4 according to the o�cial BitTorrent speci�cation). Each slot will be as-

23

Chapter 2 Section 2.2

signed to a downloader candidate from whom the uploader can obtain data with

the highest downloading rate. Each upload will lasts for 10 seconds, and then the

candidates will be re-selected according to their latest measured uploading rates

to the uploader. Additionally, every 30 seconds the uploader runs an optimistic

unchoking strategy [17] to replace one of the current downloaders with a randomly

selected downloader candidate, no matter whether or not this candidate has ex-

changed content with the uploader earlier. The goal of this unchoking strategy is

to discover better potential partners and promote newcomers.

Even though the TFT policy tries to maintain fairness, it was shown not to be

e�ective. According to recent researches [18, 19], Free-riders could survive in Bit-

Torrent, and they could even obtain higher download rates than TFT compliant

clients. This is mainly because free-riders are able to retrieve as many as possi-

ble sources from the tracker. After that, by exploiting the optimistic unchoking

strategy, they can obtain enough downloading bandwidth from these sources.

2.2.4.2 aMule/eMule 's Fairness Policy

As another very popular P2P �le-sharing system, aMule/eMule attempts to main-

tain its fairness with a local credit system [16]. The design goal of the credit system

is to reward sharing behavior. Speci�cally, if peer A uploaded some content to

peer B, peer B would assign some credit to peer A. When peer A later wants

to download desired content from peer B, using the assigned credit, peer A will

be given higher priority service from peer B than B's other partners having less

credit. As the content exchange process in aMule/eMule is a chunk-based process,

the credit operation can also be performed during a single chunk exchange. Thus,

peers with only one chunk can still earn credit from their service recipients, and

peers can use credits for downloading one chunk. In addition, unlike the TFT

policy in BitTorrent which can only be applied on a single �le exchange process,

the credit system in aMule/eMule tries to deal with multiple �le-exchange situa-

tions. To implement this goal, the credit system regulates that the unconsumed

24

Chapter 2 Section 2.2

credits can reside with peers for several months [16], so peers can use the credits

when they download multiple �les in the future. Another noticeable feature of this

credit system is that credit operations only exist between the service provider and

its direct service recipients. In other words, the credit information exists locally

and is not spread among other peers in the system.

The credit system in aMule/eMule also has its weaknesses. For example, the

e�ciency of the credit system may be low, as the credit information is not spread

among all the peers. There is no explicit fairness policy to deal with free-riding

behavior, so the free-riders may easily obtain bene�ts. These kinds of issues were

approved by several research works [20, 21], which show that free-riding behavior

is popular in aMule/eMule and free-riders can obtain high downloading rates.

25

Chapter 3

Lookup Performance De�ciencies in

the KAD Network

In this chapter, we present the impact of a poorly designed incentive fairness policy

on content information lookup performance. We run a wide-range measurement

on the KAD network [29], which adopts a DHT technology and combines itself into

aMule/eMule P2P �le-sharing network. The KAD network, as one of the largest

DHTs in the real world, is designed to help peers publish and retrieve sharing

content information with the routing table and publishing table technology. Our

measurements show that even though the routing table is well maintained, the

current refresh scheme of the publishing table and the lack of the e�ective incentive

policy cause lookup performance de�ciency. To mitigate this problem, we propose

three di�erent modi�cations and analyze their advantages and weaknesses in the

end.

3.1 Introduction

To publish and retrieve content e�ciently in P2P �le-sharing systems, structured

methods based on a DHT technology has been widely proposed [23, 30, 24, 31].

In reality, there is one DHT-based network being widely deployed in aMule/eMule

P2P �le-sharing systems [32, 16] � the KAD network. According to the work of

26

Chapter 3 Section 3.1

Steiner et al. [33], the size of the KAD network is over one million online peers.

Since both aMule and eMule have implemented the full functionality of the KAD

network, each peer in aMule/eMule P2P �le-sharing system is a peer in the KAD

network by default. Consequently, the credit system in aMule/eMule is also re-

sponsible for maintaining the fairness of the KAD network. In the KAD network,

publishing and retrieving content information needs the help of publishing peers

and published peers. Publishing peers are the peers with shareable content who

publish the content information on to particular peers, and published peers are

those particular peers in charge of maintaining the published information. Each

publishing peer (the uploader) uses its routing table to discover the corresponding

published peers, and then inserts the content information (e.g., the content loca-

tion, name, size, etc.), into the publishing tables of these published peers. Each

downloader can also use its routing table to discover published peers, and then

retrieve needed information from their publishing tables.

In this chapter, we thoroughly study the lookup performance of the KAD net-

work by running multiple measurement tests in real world. Previous measurement

studies [19, 25, 34, 35] usually tested the KAD network from the perspective of a

single client. Moreover, due to the huge size of the KAD network, they usually

measured a speci�c aspect of the whole KAD network. In contrast, we measure

the whole KAD network through using multiple test nodes. During the measure-

ments, the routing tables of around 20,000 peers are crawled and analyzed. More

than 3,000,000 pieces of source location information from the publishing tables

of multiple peers are retrieved and contacted. Based on these measurements, we

have the following contributions.

1. We show that the lookup e�ciency of the KAD network is low. In contrast

to other content searching mechanisms (e.g., the Source-Exchange method

and the Passive method) employed in aMule/eMule, little useful content

location information can be retrieved from the KAD network.

2. We develop a distributed measurement framework which employs multiple

27

Chapter 3 Section 3.1

test nodes running on the PlanetLab testbed [22]. The entire identity (ID)

space of the KAD network is uniformly separated into multiple parts, each

of which are measured by an individual PlanetLab test node. Therefore,

di�erent from previous works, our tests provide more reliable results because

of the measurement of the entire KAD network.

3. We show that the maintenance policy of the routing table is well designed.

The availability of the routing table is high. That is, more than 80% of the

entries in this table are connectable. Furthermore, the entries of routing

tables among peers, who are logically close to each other, are di�erent, and

this causes these routing tables to have low similarity or large diversity.

4. We discover that the maintenance policy of the source-location-information

publishing table is not well designed. The availability of the publishing table

is low. On average, more than 75% entries in this table are stale and cannot

be connected.

5. We also reveal that more than 75% peers leave the system within one hour

after publishing their downloaded content into the KAD network.

6. By exploring the implementation of the KAD network, we conclude that

both the current maintenance schedule for the publishing table and the poor

incentive policy (the credit system) on publishing peers eventually result in

the low availability of the publishing tables, which accordingly cause poor

lookup performance of the KAD network.

7. We propose three possible solutions to address these issues: the self-maintenance

scheme with short period renewal interval, the chunk-based publishing/retrieving

scheme, and the fairness scheme. The strengths and weaknesses of these so-

lutions are also discussed.

To improve the performance of KAD network, previous works [34, 36] mainly

focused on how to deal with published peers more e�ciently. However, to our

28

Chapter 3 Section 3.2

knowledge, the impact of the incentive policy on publishing peers has not been

analyzed until this work.

3.2 Background of The KAD Network

In this section, we introduce the related background knowledge on the KAD net-

work. The KAD network is a DHT network based on the Kademlia algorithm

[24]. With the Kademlia algorithm, peers in the aMule/eMule �le-sharing net-

work cooperate together to build a structured overlay network for publishing and

retrieving content information. In the KAD network, peers choose their neighbors

according to the KAD logical distance. Each peer maintains the information of

neighbors by its own routing table. To help peers locate shareable content from

the KAD network, uploaders publish the information of their shareable content

on to publishing tables, and downloaders can also retrieve this information from

the publishing tables.

3.2.1 KAD Logical Distances

To recognize distinctive peers in the KAD network, each peer is assigned a unique

identity, which is called the KAD Identity (KID). By default, the KID of each peer

is generated by the peer itself using a speci�c hash function when it �rst joins the

system. Since the KID is 128-bit long, the whole KID name space can theoretically

cover a total number of 2128 di�erent peers. Following the Kademlia algorithm, the

logical distances among peers can be calculated by bitwise Exclusive-OR (XOR)

operation on their KIDs. A larger value of XOR result represents a longer logical

distance when compared to a smaller value of XOR result. For example, consid-

ering a 4-bit long KAD name space where peer A, B, and C's KIDs are 1010,

0101, and 1100 respectively. With the bitwise XOR operation, the logical dis-

tances between A and B is 1111 and between A and C is 0110. Consequently, C

is recognized logically closer to A than B under this KID name space.

29

Chapter 3 Section 3.2

Each published item in the KAD network is also assigned a 128-bit long iden-

tity. Thus, the logical distance operations are also used to decide where the

publishing items will be published and then be retrieved. Like the KID of each

peer, the identity of a published item can be created by hashing its meta data,

such as the content name, the content type, etc. We will discuss these publishing

and retrieving processes in detail in the following subsection.

3.2.2 Routing Table and Publishing Tables

Since the KAD network is fully distributed and self-managing, each peer in the

KAD network individually maintains a routing table for its knowledge on other

peers. The entries in the table are the connecting information of its known peers

(the neighbors), such as KIDs of these peers, these known peers' IP addresses, UDP

ports, TCP ports, etc. The logical structure of a peer's routing table is represented

by a binary tree as shown in Figure 3.2.1. Each level of the tree corresponds to

one bit of the KID. Theoretically, the tree's height can be extended to 128 levels

corresponding to the total length of the KID. Connecting information of peers is

collected into the leaf nodes of the tree, and these leaf nodes are named buckets.

The KIDs of the peers belonging to a bucket at a speci�c level will have the same

pre�x bits until that level. For instance, the KIDs of peers within a same bucket

in level 10 have the same 10 pre�x bits. A bucket may hold at most 10 entries,

beyond which the bucket must be split into two buckets in the next level for

holding more information. Thus, for a bucket in level 10, if more than 10 peers

belonging to this bucket are known, the level 10 bucket will be split into 2 buckets

in level 11.

The position of known peers are not directly assigned into the binary tree

according to their KIDs. Instead, each entry's position in the binary tree is decided

by its XOR distance from the routing table's owner. That is, peers, belonging to

the left branch at a speci�c level of the binary tree, have a di�erent corresponding

bit from the routing table's owner, while peers on the right branch have the same

30

Chapter 3 Section 3.2

1

1011X 1010X 1001X 1000X

1 0 0 1

1111X 1110X 1101X 1100X

1 0 0

0 0 1 1

1

1

0

Level

2

1

3

4

0

(a) left binary tree

1

0111X 0110X 0101X

1 0 0

0

0

0 0

0 0

1

1

1

1 1

0

1

2

3

4

5

6

126

127

(b) right binary tree

Figure 3.2.1: Logical structure of the routing table. X represents the rest bits

corresponding bit. In other words, the closer to the most left part a peer's position

in the tree is, the further from the routing table owner this peer is, while the closer

to the most right part a peer's position in the tree is, the closer to the routing

table owner this peer is. For instance, considering the above example: peer A is

the routing table's owner, and a bucket of its routing table in level 10 is split into

2 buckets in level 11. The bucket in the left side of the level 11 holds peers whose

11th bit of KID is di�erent from the 11th bit of A's KID, and the other bucket in

the right side holds peers whose 11th bit of KID is the same as the 11th bit of A's

KID. However, peers in both buckets still have the same 10 pre�x bits.

It is impractical and unnecessary for each peer to maintain the information of

all other peers within its routing table. Otherwise, the size of the routing table will

be extremely large due to millions of online peers in the KAD network, and the

routing table must be refreshed frequently because of the high dynamic behavior

of peers. In reality, each peer in the KAD network is only required to maintain

information from more peers with a closer match of KIDs to its KID and maintain

31

Chapter 3 Section 3.2

fewer peers whose KIDs are farther away. With this regulation, the binary tree

� the logical structure of the routing table � becomes unbalanced. That is, the

number of leaf nodes on the left-hand branch of the tree is far less than the number

of leaf nodes on the right-hand branch. In addition, there are no buckets in the

levels from 0 to 3. Otherwise, these buckets must be split soon with the growing

knowledge of the entire network. The left-hand branch of the whole tree shown in

Figure 3.2.1(a), which holds peers that are logically far from the routing table's

owner, always stops at level 4. This regulation leads the left-hand branch of the

whole tree to hold a total of 8 buckets and a total amount of 80 peers at most

(the �rst 4 bits of the XOR distances from the owner of the routing table are also

shown in Figure 3.2.1(a)). These 8 buckets cannot be split into the next level.

For the right-hand branch shown in Figure 3.2.1(b), there are 3 buckets in level

4. Beginning from level 5, the 5 left-most buckets in each level cannot be split

anymore; while each of the other 5 right-most buckets can be split into the next

level, if more than 10 peers in its range are known.

We know that there are around one million online users in the KAD network,

and the number can be roughly represented by 2^20. Thus, a binary tree with a

total of 20 levels can hold all of the peers within the KAD network. When ap-

plying the 20 levels to this particular structure of the binary tree, we can roughly

calculate the total number of peers npthat can actually be held in a routing table

with the following equation:

np = (8 + 3 + 5× 15 + 10)× 10 = 960. (3.2.1)

The formula within the braces calculate the total number of buckets, where

the number 8 + 3 represents the total buckets in the �rst to 4th levels. 5 × 15

represents that there are 5 buckets in each of the following 5th to 19th levels,

and the last 20th level has 10 buckets and is represented by the number 10. The

32

Chapter 3 Section 3.2

other multiplier 10 represents the maximum number of peers in each bucket. As

a result, each peer's routing table keeps the information of less than 1000 peers.

With the help of this special unbalanced tree structure of the routing table, a

peer can easily locate the connecting information of any peer, even though this

information does not exist in its current routing table. By using the routing table,

the lookup process for a particular peer can be described as follows.

• When peer A wants to connect to another online peer B, A �rst calculates

its logical distance from B, and then looks up the corresponding bucket from

its routing table. If B is close to A, the probability of �nding B is high since

A knows more peers around itself; otherwise, the probability of �nding B is

low.

• If peer B is not found from peer A's own routing table, A will do the fol-

lowing. A searches for peers from its routing table who have the longest

pre�x-matching bits with B, and then sends lookup requests to these peers.

These peers receiving the requests will run the same lookup process. They

either �nd the information of B in their routing tables and reply this infor-

mation back to A, or they retrieve additional peers much closer to B from

their routing tables and reply them back to A.

• When peer A receives those closer peers, iteratively, A sends requests to

those peers again until A can obtain the connecting information of B.

Maintaining the routing table includes adding new peers and removing stale peers.

Each peer can obtain the information of new peers, either when these new peers

directly send requests to it; or when the peer requires its known peers to send the

information of more peers back to it and some of sent peers are unknown to it.

On the other hand, by periodically verifying the online status of each peer, the

information of stale peers in the routing table can also be removed.

33

Chapter 3 Section 3.2

3.2.3 Publishing and Retrieving Processes

Publishing the entire content into other peers could bring a large amount of net-

work tra�c into the KAD network. Therefore, uploaders only publish the related

content location information into the KAD network, and consequently download-

ers only retrieve this information from the KAD network. As mentioned in previ-

ous subsection, each content location information has a 128-bit long identity. With

the hash table technique, the location information is the value, and the identity

is used as the corresponding key. When a peer wants to share some content, both

the content location information (e.g., the peer's IP address, its TCP and UDP

ports) and its corresponding identity are published onto peers from the KAD net-

work. However, instead of publishing the information on to randomly selected

peers, this information will be published on to some particular online peers whose

KIDs have enough pre�x-matching bits with the identity of the publishing infor-

mation (16 bits by default). Obviously, this publication approach also simpli�es

the lookup process of the KAD network, because in order to retrieve a needed con-

tent, downloaders just need to search for the peers whose KIDs are close enough

to the identity of the content information.

During the publishing or retrieving process in the KAD network, each peer

may act two di�erent roles: a publishing peer or a published peer.

• A publishing peer is the peer who plans to publish its shareable content

information onto the KAD network. So a publishing peer normally is an

uploader of a P2P �le-sharing system.

• A published peer is the peer who keeps the published content information

for future retrieval by other peers, and the published peer can be either an

uploader or a downloader in a P2P �le-sharing system.

In order to serve the publishing/retrieving process, each peer, as both a potentially

published and publishing peer in the KAD network, must maintain its routing

table and publishing table. Since in theory any online peer can be found through

34

Chapter 3 Section 3.2

the routing table, the routing table is also used to locate the exact published peers.

After the published peers have been found, the exact information about how to

�nd the real content location will be retrieved from their publishing tables. The

processes of publishing and retrieving content information are shown in Figure

3.2.2. The dotted lines shown in Figure 3.2.2 represent the publishing process.

Publishing TableFinger Table

Finger Table

Sharing Content

Publishing
Peer

Published
Peer

KAD User

1

2

3

4

5

6

Publish Process:
Retrieve Process:

Figure 3.2.2: Publishing and retrieval processes

• When a peer publishes its shareable content location information with an

identity k, this peer will select several published peers in its routing table

or iteratively from routing tables of other peers whose KIDs have enough

pre�x-matching bits with k. The set of these peers is de�ned as a tolerance

zone of k (step 1).

• After that, the peer inserts the identity k and its location information (e.g.,

its own IP address, transmission ports, etc.) into the publishing tables of

the published peers (step 2).

The solid lines shown in Figure 3.2.2 represent the retrieving process.

• When a user wants to download the same content, equivalently, this user

will either look up its own routing table or iteratively request other known

peers to obtain the information of corresponding published peers within the

same tolerance zone of k (step 3).

35

Chapter 3 Section 3.3

• After that, the user sends requests to these corresponding peers (step 4).

• These corresponding peers will search their local publishing tables, retrieve

the content location information, and reply them back to the user (step 5).

• With the received location information, the user can �nally connect to the

publishing peers and conduct a downloading process (step 6).

3.3 Related Work

The KAD network is one of the largest deployed DHT networks integrated into

the aMule/eMule P2P �le-sharing system [15, 16] with millions of users [33]. Its

implementation is based on the Kademlia algorithm [24], which uses the binary

tree as its logic structure of the routing table and uses the XOR operation to

calculate the logic distance among peers. Due to its large deployment, the research

community has shown great interest in the KAD network.

Brunner et al. [29] presented a detailed analysis on the implementation of

the KAD network in his master thesis. This thesis introduced the communication

protocol of the KAD network, the logical structure of the routing table, the lookup

process, etc. All of these analyses provided researchers a deep insight into the KAD

network.

Memon et al. [37] developed a measurement tool that could accurately monitor

the KAD tra�c. In order to measure the whole DHT network, previous measure-

ment tools were required to insert a large number of monitor peers into the system.

Thus, the proper pattern of the DHT will be signi�cantly a�ected by these moni-

tor tools. However, Memon designed a monitor application that only replied to a

limited number of targeted peers, which made the monitor invisible to most peers

and consequently reduced the impact on the measured system.

Steiner et al. [38] discussed the possible auxiliary usage of the KAD network.

For example, as peers could join and leave the KAD network freely, a Sybil attack

[39] could be easily implemented by introducing a large number of malicious peers.

36

Chapter 3 Section 3.3

Furthermore, misusing the KAD network would easily conduct a DDOS attack.

On the other hand, due to the open feature of the KAD network, it was a rare

research platform with millions of online nodes for studying a distributed system.

The KAD network could also be used to study how to deal with a Sybil attack

and a DDOS attack [40].

Steiner et al. [41] also discovered several very interested behaviors of peers

in the KAD network by their measurement study. For example, there existed a

heavy-tailed distribution for the session length of peers. Some sessions sustain

for multiple days, while others were over within hours. The availability of peers

changed day by day and hour by hour. The KIDs were changed by peers frequently.

Peers were distributed among di�erent geographical regions such as China, Europe,

Brazil, etc.

Stutzbach et al. [34] developed a tool called kFetch to measure the accuracy

of the routing table. kFetch randomly chose an online peer in the KAD network

and crawled its entire routing table and veri�ed the online status of each entry.

However, Stutzbach's method had the disadvantage that this measurement was

issued from a single node, and the whole picture of the KAD network could not

be easily obtained. According to the measurement results, about 90% of entries of

a routing table were fresh. After that, Stutzbach proposed to improve the lookup

performance by using a parallel lookup and increasing the number of published

peers.

Steiner et al. [36] �rst analytically modeled the content information pub-

lishing/retrieving process. They thoroughly studied the impact of some design

parameters like the number of requests for published peers and the number of

actual published peers. With the measurement, they evaluated the latency of the

lookup process under these di�erent parameters. In the end, the authors suggested

to reduce the lookup latency by adaptively adjusting the related parameters for

published peers.

Kang et al. [42] discovered the lookup issue that users can only �nd few

37

Chapter 3 Section 3.4

published peers in the KAD network. They measured the KAD network through

a modi�ed client and found a high similarity of the routing tables belonging to

peers close to each other. However, as their measurement method was not detailed,

their thinking about high similarity among routing tables causing the poor lookup

performance was inconvincible.

In conclusion, previous works tried to improve the lookup performance of KAD

network by dealing with published peers more e�ciently. However, the usage of the

publishing peers was ignored, and the impact of the incentive policies on system

performance was not addressed until this work.

Compared to previous measurement studies, we believe that our work measures

the whole KAD network by adapting a distributed measurement framework via

the PlanetLab testbed in the �rst time. We are also the �rst to analyze the

publishing tables in the KAD network and to reveal the key factors that a�ect the

KAD lookup performance: the current maintenance scheme for publishing tables

and the lack of an e�ecitve incentive policy on publishing peers.

3.4 Measurement-Based Analysis

In this section, we �rst introduce our work that measures the lookup performance

of the KAD network from a user's perspective. Then, we investigate the mainte-

nance of both the routing table and the publishing table with real world measure-

ments.

3.4.1 Lookup Performance of the KAD Network

To explore the lookup performance of the KAD network, we �rst conduct a mea-

surement from the client's viewpoint in the real world. In aMule/eMule, each

peer searches sources information with 4 di�erent methods: the ED2K method,

the KAD method, the Source-Exchange method, and the Passive method. We try

to measure the e�ciency of searching sources' information from the KAD network

38

Chapter 3 Section 3.4

by comparing it with other three methods.

We chose a popular P2P client application�eMule v0.49c and install it on a

typical PC with a 100Mb Internet connection. This peer was required to run as

a general peer aiming to download its desired content. Of course, it uploaded

its obtained chunks at the same time by following the content exchange rule. To

download each piece of desired content, this peer joined aMule/eMule network

and looked up related sources by these 4 sources information searching methods.

the ED2K method only provides sources at the beginning of search, while the

KAD method, the Source-Exchange method and the Passive method can discover

additional sources during the downloading process. We let this peer complete

the whole downloading process for each content. After downloading one piece of

content, the peer left the system, chose another piece of desired content and ran

the downloading process again. During each downloading, we recorded the number

of useful sources coming from di�erent source information searching methods. In

addition, we selected the downloaded content from a large range of popular, but

non-copyright types like audio, video, Linux ISO-distributions, etc. The size of

the content also varied from several MBs to thousands of MBs. This measurement

took place over more than two months beginning at Aug. 2009. During the entire

measurement, this peer downloaded over 100GB of content.

Our measurement result is shown in Figure 3.4.1. For each downloading of

content, our tested peer receives 267 useful sources on average. Due to the copy-

right issue, the current client application does not publish information on to the

ED2K servers. Thus, the ED2K method provides few useful sources. However,

while the Source-Exchange method and the Passive method together provide 95%

of useful sources, the KAD network only provides much fewer sources' information

in comparison. As the KAD network is based on DHT technology that has been

approved with high usability, apparently, we must ask what the reasons are for

this low lookup performance of the KAD network. Considering the key roles of the

routing table and the publishing table on the lookup process of the KAD network,

39

Chapter 3 Section 3.4

Average Number of Sources from Different Source

Discovery Methods for Each Test

Passive

132 (50%)
SourceExchange

121 (45%)

KAD

13 (5%)

ED2K

1 (0%)

ED2K

KAD

SourceEx

Passive

Figure 3.4.1: Received average sources information from di�erent source-lookup
methods

Table 3.1: Structure of routing table

Name Description

Entry_ID 128-bit identity (KID) of the entry

Distance the distance between this entry and the owner of the routing table

Entry_IP IP address of the source

Entry_TCP TCP port of the entry, it is used for content exchange

Entry_UDP UDP port of the entry, it is used for KAD communication

we are motivated to explore their performance.

3.4.2 The Routing Table Measurement

The routing table is responsible for maintaining the information of online peers.

The structure of a routing table is shown in Table 3.1. During publishing and

retrieving processes, it is used to locate the related published peers. Thus, a

poorly maintained routing table may lead to the poor lookup performance of the

KAD network. For example, if the routing table is full of stale entries, uploaders

may not locate enough online published peers for publishing, and downloaders

may not �nd online published peers for retrieving. Under this kind of situation,

we consider the availability of the routing table is low.

Additionally, there exists another subtle situation. When an uploader tries to

40

Chapter 3 Section 3.4

publish its content, the uploader may not be able to �nd the corresponding peers

directly in its own routing table. Instead, the uploader will send requests to a group

of peers whose KIDs are closest to the identity of the content. This group is de�ned

as a search tolerance zone, and the default number of peers in the group is 3. The

group of peers continuously searches closers in their own routing tables and may

reply closers from their search tolerance zones to the uploader. Then the uploader

will send requests to these replied peers. This process is iteratively sustained until

the uploader �nds published peers whose KIDs are close enough to the identity of

the content. After that, the uploader will publish content information on to these

found peers. Similarly, downloaders must locate the published peers by performing

the same steps. If peers within a search tolerance zone have a large amount of

same entries among their routing tables (high similarity), their returned peers to

the requestors will be the same. Thus, even though many peers, whose KIDs

are close enough to the identity of the content, may exist in the KAD network,

uploaders/downloaders can only obtain a small part of those peers due to this

high similarity. Since uploaders and downloaders maintain their routing tables

independently, their �nally located peers may not be the same. As a result, the

downloaders cannot �nd the exactly published peers, and consequently the lookup

performance becomes ine�cient. Kang et al.[42] measured the similarity of the

routing tables, and they believed that a high value of similarity exists, and this

leads to the poor lookup performance of the KAD network.

3.4.2.1 Measurement Metrics

To verify these potential causes, we introduce two measurement metrics: the avail-

ability Fa(t) and the similarity Fs(t) of the routing table. To calculate Fa, we let

nf and nl represent the total number of entries and the total number of the living

nodes in a routing table respectively, the availability Fa of a routing table at a

speci�c measurement time equals:

41

Chapter 3 Section 3.4

Fa =
nl

nf

. (3.4.1)

As a result, a high value of Fa usually indicates that the entries in a routing

table have high availability, and accordingly the routing table is well maintained.

Similarly, to measure the similarity Fs among m peers belonging to a speci�c

search tolerance zone at a particular measurement time, we denote nf (i) as the

total number of entries in peer i's routing table and ns as the total number of the

same items among all routing tables in all m peers. Therefore, the similarity Fs of

a group of m peers can be de�ned as the total number of the same entries in the

routing tables of these m peers divided by the average number of entries in these

routing tables:

Fs =
ns

m∑
i=1

nf (i)/m
. (3.4.2)

Considering the impact of this similarity on lookup performance, the smaller

the value of Fs, the better the routing table is maintained for lookup.

3.4.2.2 Measurement Methodology

We build a distributed measurement framework and deploy it on to multiple nodes

from the PlanetLab testbed. Previous measurement studies [19, 25, 34, 35] inves-

tigated the KAD network from the viewpoint of a single client. This client was

inserted into the real KAD network and either actively crawled other peers or

passively monitored the communication tra�c. However, due to the existence of

millions of online peers, these measurements only measured a speci�c aspect of

the whole system. Thus, their measurement results may not disclose the charac-

teristics of the KAD network fully and accurately. In contrast, our measurement

42

Chapter 3 Section 3.4

framework can test di�erent parts of the KAD network simultaneously. Conse-

quently, we believe our measurement results are more accurate. We uniformly

separate the entire KID name space into 16 parts. The KIDs of all peers in each

part have the same most signi�cant four bits and di�erent 124 remaining bits,

while the peers belonging to di�erent parts have the KIDs with di�erent most

signi�cant four bits. Each PlanetLab node is responsible for measuring a single

part.

We develop two measurement applications: KADmon and RoutingTCrawl.

KADmon is a customized KAD client by modifying a popular aMule client appli-

cation � aMule v2.26, as our monitors. RoutingTCrawl, which is responsible for

crawling the routing table of measured peers and calculating the corresponding

Fa and Fs, is a crawl application developed with Python [43]. Both of these ap-

plications are installed on 16 di�erent PlanetLab nodes. The most signi�cant four

bits, among the total 128-bit long KID of each node, are uniquely assigned from

0, 1, 2...... E, F, while the 124 remaining bits are randomly generated. Therefore,

each node can measure a single part of the whole KAD network. During the mea-

surement, each PlanetLab node joins the KAD network by running KADmon and

maintains their routing table accordingly. To reduce the impact of the test on the

real system, these PlanetLab monitors neither download content from any other

peers nor share content with them. On the other hand, RoutingTCrawl veri�es

the online status of each entry from the routing table of the monitor via Ping-Pong

requests (see the appendix B for detail). If the corresponding peer is online, its

whole routing table is crawled, and the online status of each entry in its routing

table is tested with the corresponding Ping-Pong requests.

How to crawl the routing table is minimally discussed in previous work [42, 33,

44]. However, a poor crawling method may introduce unnecessary measurement

tra�c and inaccurate measurement results. We present our routing table crawling

method shown in Algorithm 1 in detail. In order to get more peers' information,

each peer can send Kademlia-Request packets [29] to other peers in the KAD net-

43

Chapter 3 Section 3.4

Algorithm 1 Crawling routing Table
Data:

list: requestList=generated requests packets
list: targetList=peers retrieved from a routing table
list: livingList=veri�ed online peers
hash(128): KID=peer's KID
timestamp: t=timeout
int: retrycount=# of retry when timeout
int: parallelcount=# of requests in parallel

Initialization:
/*according to the crawled peer's KID*/
targetList=generateTargetKIDs()
/*according to the targetkidList*/
requestList=generateRequests()

Test:
for each entry in requestList, do in parallel

send request to the target peer
if received response, then

add to the livingList
else if no response and timeout then

if retrycount>0 then
retrycount-1
send request again
wait for response

else
mark the peer o�ine

/*livingList/targetList*/
calculate availability Fa

44

Chapter 3 Section 3.4

work. To answer this request, the information of up to 11 peers is added into the

corresponding reply message according to the KAD communication protocol. As

the maximum number of entries within one bucket is 10, by carefully choosing the

KID, our crawler can retrieve an entire bucket by sending one single Kademlia-

Request packet. On the other hand, according to the discussion in the background

section, each peer's routing table includes the information of less than 1000 peers

(our measurements presented below show that on average each routing table holds

the information of less than 600 peers). This also helps us design a more e�cient

crawler. That is, by sending less than 100 carefully created Kadmelia-Request

packets in parallel, our crawler can retrieve the whole routing table of any peer

within one minute. Additionally, KAD messages are transmitted by UDP packets,

and both request packets and reply packets can be lost during the transmission.

In order to ensure that a tested peer is o�ine, our crawler implements a retrans-

mission mechanism that can �lter out the lost packet situation. Moreover, by

employing a multi-threading method, our crawler can test the routing tables of

multiple peers at the same time. This also speeds up the measurement process and

brings more accurate results when required to measure a large number of peers in

a short time period.

3.4.2.3 Routing Table's Availability Measurement

We �rst ran our PlanetLab monitors KADmon to collect the information of enough

tested peers. To obtain a uni�ed perspective of the KAD network, this initial pro-

cess on each PlanetLab node was both performed at the same time and terminated

after 24 hours. After that, the RoutingTCrawl application at each monitor node

was called immediately, and this application retrieved the whole routing table of

the monitor and crawl each obtained peer from the table. Around six thousand

peers, distributed among the entire KID name space, were crawled. Every entry

of the routing table of each crawled peer was retrieved, and the online status of

each retrieved peer was tested.

45

Chapter 3 Section 3.4

The measured data is shown in Table 3.2. Figure 3.4.2(a) shows the average

values of availability Fa for each of these 16 di�erent aspects of the KID name

space. No signi�cantly di�erent values of Fa exist among these 16 parts. As the

histogram and the CDF of Fa shown in Figure 3.4.2(b) and 3.4.2(c) respectively,

there are more than 80% of living peers in the routing table during the measure-

ments. With this high availability, users can �nd their needed online peers from

the routing tables for their publication/retrieval. This high availability of the

routing table bene�ts from the current maintaining schedule of the routing table,

with which each bucket is refreshed every minute and stale peers are removed at

the same time. In conclusion for this measurement, the availability of the routing

table is not an issue for the lookup performance.

Table 3.2: Measurement data for routing table's availability

Data Value

Total Number of Crawled

Peers

5985

Average Number of Entries 549

Average Availability Fa 0.819

Standard Deviation of Fa 0.050

3.4.2.4 Routing Tables' Similarity Measurement

Kang et al. [42] measured the routing tables between two peers within a 16-bit

search tolerance zone and indicated that those routing tables have a high similarity

of 70%. They empirically selected the number 16 by considering millions of peers

uniformly distributed among the KAD network, and the 16-bit search tolerance

zone will cover more than 20 peers. However, only testing the similarity between

two peers is not enough. In order to publish or retrieve information within the

KAD network, each time, peers must conduct at least three peers in the same zone

and obtain information from their routing tables [36]. Therefore, in our similarity

measurement, besides testing the routing tables' similarity of two peers, we also

measure the routing tables' similarity among more than two peers.

46

Chapter 3 Section 3.4

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

KID name space (4 msb)

A
va

ila
bi

lit
y

F a

(a)

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

100

200

300

400

500

600

Availability F
a

N
um

be
r

of
 te

st
s

(b)

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Availability F
a

th
e

F
ra

ct
io

n
of

 F
a (

C
D

F
)

(c)

Figure 3.4.2: (a) average value of Fa measured in di�erent aspects of the KAD
name space; (b) Histogram of the peers availability Fa of the routing table; (c)
CDF of the peers availability Fa of the routing table

Following Kang's work, we measured the routing tables' similarity of peers

belonging to a 16-bit search tolerance zone. Within this zone, the KIDs of all

peers have at least 16-bit pre�x-matching. In order to obtain more accurate results,

we measured di�erent parts of the KAD network by our distributed framework.

Using our measurement component KADmon, we collected a large number of peers

after 48-hour monitoring. These peers were retrieved by another measurement

component RoutingTCrawl, and then their routing tables were crawled. From the

crawled routing tables, the peers belonging to the same 16-bit search tolerance

zone were selected, and their routing tables were crawled again for calculating

the similarity Fs according to Equation 3.4.2. In order to obtain more peers for

47

Chapter 3 Section 3.4

Table 3.3: Measurement data for routing tables' similarity

of compared

routing tables

of tested

tolerance

zones

of tested

peers

average value

of Fs

Standard

Deviation of

Fs

2 4120 8240 0.171 0.050

3 1018 3054 0.093 0.043

4 329 1316 0.069 0.029

5 102 510 0.060 0.022

Summary 5569 13120

comparison, we also continuously retrieved new appropriate peers from the routing

tables of these crawled peers and crawled their routing tables again. During the

test, the routing tables of a total number of more than 13,000 peers belonging to

more than �ve thousand di�erent search tolerance zones have been crawled and

compared.

The measurement results are shown in Table 3.3 and Figure 3.4.3, where the

average value of the similarity Fs, the standard deviation of Fs, and the CDF of

Fs among 2, 3, 4 and 5 peers within a speci�c tolerance zone are presented. Our

measurement reveals that the similarity Fs within two individual peers is only

less than 20%, which is in contrast to Kang's work. Furthermore, the similarity

signi�cantly reduces to less than 10% when comparing to more than two individual

peers within a same tolerance zone. Therefore, the routing tables of the peers

within a 16-bit tolerance zone have little similarity, and actually a large amount

of diversity. The reason for this low similarity can be explained as follows. Under

an open KAD environment, individual peers have their own individual behaviors:

they may arrive and leave the system at di�erent times, or they may meet di�erent

peers when sharing or requesting di�erent content. Consequently, their perspective

to the KAD network becomes di�erentiated. Moreover, the design of the KAD

network may also deliberately aggravate the highly diversi�ed viewpoint among

each peer. According to the KAD rule of maintaining the routing table, when

a peer attempts to �ll out its routing table, it is designed to randomly search

for more new peers instead of explicitly synchronizing the routing tables among

48

Chapter 3 Section 3.4

its close peers. There is a large di�erence between our measurement results and

Kang's work. Since Kang et al. [42] did not present their measurement in detail,

the accuracy of their test cannot be evaluated.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Similarity F
s

th
e

F
ra

ct
io

n
of

 F
s (

C
D

F
)

2−node similarity
3−node similarity
4−node similarity
5−node similarity

Figure 3.4.3: CDFs of similarity for di�erent number of compared nodes

On the other hand, we believe the low similarity of routing tables does not

degrade, but improves the lookup performance in the KAD network. The low

similarity can keep publishing peers having a much broader perspective to the

whole KAD network. As a result, more peers who belong to the same search

tolerance zone can be found and chosen for the publication. This also causes

peers to retrieve the published information more easily, even though some of the

published peers leave the system, when peers look up all of them. In contrast, if

the routing tables of the peers within a search tolerance zone have a high similarity,

the information will be published onto a small portion of published peers. When

this small portion leaves the system or when the left portion of peers are tried to

be located, little useful information can be obtained from the KAD network. In

summary, high similarity is not the critical issue for the poor lookup performance,

since it is not detected.

49

Chapter 3 Section 3.4

Table 3.4: Structure of SLI publishing table

Name Description

Content_ID 128-bit content identity

Source_ID 128-bit uploader identity (KID)

Source_IP IP address of the source

Source_TCP TCP port of the source, it is used for content exchange

Source_UDP UDP port of the source, it is used for control communication

3.4.3 The Publishing Table Measurement

Poorly maintaining publishing tables will also tremendously a�ect the lookup per-

formance. After peers, through their routing tables, �rst locate the published

peers whose publishing tables are holding the desired content, peers must eventu-

ally look up uploaders from these publishing tables. If entries in the publishing

tables are stale, the retrieved information will be useless.

In the KAD network, two kinds of publishing tables are used to maintain

publishing information: the source-location-information (SLI) publishing tables

and the keyword-information (KI) publishing tables. The main structure of these

tables are shown in Table 3.4 and Table 3.5 respectively. The source location

information will be inserted into SLI publishing tables of published peers. The

related keywords for the publishing content will be inserted into the KI publishing

tables. While the KI table conveniently helps users look for desirable content

by meta data, such as �le name, �le type, etc., the SLI publishing table is more

important because it contains the actual location information of content. In the

following, we conduct real world measurements to verify the availability of the SLI

publishing table. Then, we use the obtained results to evaluate the maintenance

of the KI table, for the KI table is also maintained by the same schedule of the

SLI table.

Following the same distributed measurement methodology in Section 3.4.2, we

test the publishing tables of multiple nodes that are uniformly distributed on the

entire KID name space. We still use the application KADmon as the monitor,

but develop a new crawl application called PublishTCrawl to crawl publishing

50

Chapter 3 Section 3.4

Table 3.5: Structure of KI publishing table

Name Description

Content_ID 128-bit content identity

Source_ID 128-bit uploader identity (KID)

Content_Name the full name of the content

Content_Size the byte size of the content

Content_Format the type of the content (.mp3, .iso, ...)

tables. PublishTCrawl employs the same technique used by the RoutingTCrawl

component in Section 3.4.2. It is also deployed on each PlanetLab monitor node.

This time all 16 monitors from the PlanetLab testbed act as published peers. They

accept the relevant publishing information and build their own publishing tables

accordingly. Every half hour, the entire SLI publishing table of each monitor is

recorded into a local log �le. At the same time, PublishTCrawl is triggered. It

reads this local log �le and tests the online status of each entry from the SLI

publishing table by sending the KAD Ping-Pong packets. Similar to the routing

table measurement metric Fa, we also de�ne a measurement metric Pa to measure

the availability of the SLI publishing table. For a single SLI publishing table, Pa

is equal to the total number of the information of living peers ne divided by the

total number of the information recorded peers nr in the table.

Pa =
ne

nr

. (3.4.3)

The measurement was run on 16 PlanetLab-based monitors for a total of 25

hours. In each half-hour trial, on average, the online status of four thousand peers

retrieved from publishing tables were tested. As a result, 800 measurement trials

were totally conducted, and a total number of more than 3,000,000 peers have

been connected.

The measurement results shown in Figure 3.4.4 explicitly reveal that the SLI

publishing table is not well maintained. We believe this poorly maintained pub-

lishing table causes the poor lookup performance in the KAD network. According

51

Chapter 3 Section 3.4

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

KID name space (4 msb)

A
va

ila
bi

lit
y

P
a

(a)

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

10

20

30

40

50

60

70

80

90

100

Availability P
a

N
um

be
r

of
 te

st
s

(b)

0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Availability P
a

th
e

F
ra

ct
io

n
of

 P
a (

C
D

F
)

(c)

Figure 3.4.4: (a) average value of Pa measured in di�erent aspects of the KAD
space; (b) histogram of the source-location-information publishing table; (c) CDF
of the availability Pa of the source-location-information publishing table

to Figure 3.4.4(b) and (c) shown, on average, only less than 25% of peers recorded

in the publishing table are actually online. Consequently, when users request

source location information from these SLI tables, more than 75% of the entries

from the corresponding replies are useless. Additionally, the minimum value of

measured Pa is even closer to 0.15, while the maximum value of measured Pa is

less than 0.35. Figure 3.4.4(a) also indicates that this trend is consistent within

the entire KAD name space.

Why is the publishing table not well maintained? To answer this question, we

�rst explore the KAD maintenance algorithm for the SLI publishing table. The

KAD protocol requires each publishing peer to be responsible for maintaining their

52

Chapter 3 Section 3.4

published information. According to the identity of the published information,

this information is inserted into publishing tables of the published peers whose

KIDs are close. In addition, when the source location information is inserted

into publishing tables for the �rst time, a living-time period of 5 hours is also

attached to this record. After 5 hours, if the corresponding publishing peers are

still online, they will renew this information for another additional 5 hours. If

the publishing peers are o�ine, their publishing information will be automatically

removed out of the publishing tables after 30 minutes. Thus, even though the

publishing table is held by published peers, the right of maintenance belongs

to remote publishing peers. This method has no problem when the publishing

peers stay online for a long period. However, if publishing peers leave the system

within 5 hours after its publication, both the published location information and

the published keywords information become useless when the users subsequently

retrieve the information during the rest of the time period. Additionally, the KI

publishing table is also maintained by the same scheme, except that the living-

time period for each publishing entry is extended to 24 hours. Thus, it also su�ers

from the same weakness as this maintenance scheme.

An incentive policy that is called a credit system is actually employed in

aMule/eMule P2P �le-sharing systems [45]. This credit system aims to promote

sharing and accordingly to penalize the sel�sh. Since a peer in the aMule/eMule

is also the same peer in the KAD network, incenting peers in aMule/eMule also

incents peers in the KAD network. In aMule/eMule, after downloading the whole

content, the downloaders are forced to publish the content information onto the

KAD network immediately (they also become uploaders). If the credit system can

prolong the stay time of uploaders, they can be located through the publishing

table in the future. Otherwise, if peers leave the system within 5 hours of pub-

lication, the entries from publishing tables cannot be reached any more for the

rest of the time. This will be one of main issues that cause the low availability

of publishing tables and consequently one of the critical reasons for the ine�cient

53

Chapter 3 Section 3.5

lookup performance.

Can the credit system prolong the stay time of publishing peers for at least 5

hours? To answer this, we conduct another measurement study to examine the

behavior of publishing peers. We still use our distributed measurement framework.

The 16 monitors as published peers are responsible for collecting the information

of publishing peers. Every 30 minutes, the crawler component PublishTCrawl

retrieves each entry from the publishing table of the monitor and tests its online

status. This test has been performed for 24 hours. Our measurement data shown

in Figure 3.4.5 veri�es that the majority of the publishing peers (more than 75% of

them) leave the system within one hour after they publish their content. According

to our discovery, even though a credit incentive policy has been employed by both

aMule/eMule P2P �le-sharing system and the KAD network, the majority of

peers will still leave the system quickly after they �nish their downloading tasks.

Therefore, peers in aMule/eMule and the KAD network are sel�sh, and the current

credit system is less useful.

In conclusion, the reasons for the low availability of the publishing tables and

the poor lookup performance of the KAD network can be summarized as follows:

• the sel�shness of the publishing peers and the poor incentive policy;

• the publishing tables of published peers are maintained by the publishing

peers;

• the poorly designed 5/24 hours maintaining schedule for both the SLI publish

tables and the KI publishing table.

We noticed that in previous works[36, 34, 42] the main focus is improving the

performance at the side of published peers. However, with the sel�sh departure of

the publishing peers, the publishing information becomes meaningless. Therefore,

we argue that controlling behaviors of peers should become a necessary consider-

ation for the KAD design. Actually, a more e�ective incentive policy should be

designed to deal with the high level of sel�shness.

54

Chapter 3 Section 3.5

�

��

��

��

��

��

��

��

	�

�

���

�
��

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
	

�
��

�
�	

�
�	
�

�
�	
�

�
�	
�

�
�	
�

�
�	
�

�
��
�
�
�
�
��

	�����
����������������������
�����
����
���

�������

Figure 3.4.5: The histogram of the percentage of sel�sh peers leaving the system
within one hour after publishing content to the KAD network

3.5 Possible Solutions

To solve the low lookup performance issue of the KAD network, we discuss three

possible schemes in this section and show their advantages and weaknesses respec-

tively.

3.5.1 Self-Maintenance Scheme

One possible scheme is to assign the task of maintaining publishing tables back to

the local peers (published peers) themselves. The published peers can verify the

online status of entries in their publishing tables within a short time period (e.g.

10 minutes). They can also directly synchronize the information of peers from

their well-maintained routing tables. With this modi�cation, stale records in the

publishing tables can be signi�cantly reduced, and retrieved information by other

peers can be more useful. Other advantages of this self-maintenance scheme may

include: it does not change any fundamental structure of the current system; it

uni�es the maintenance pattern of the routing table and the publishing tables; it

may also be easily implemented. However, the self-maintenance scheme improves

55

Chapter 3 Section 3.5

the availability of the publishing tables just based on reducing the number of use-

less records. Because of the sel�sh behavior of peers and poor incentive policy,

this scheme cannot fundamentally improve the lookup performance of the KAD

network. The total amount of useful information available to users was not in-

creased. Additionally, since it needs to renew publishing tables frequently, it may

also introduce far more table-maintaining tra�c into the system.

3.5.2 Chunk-Based Publishing/Retrieving Scheme

We can use a chunk-based publishing/retrieving scheme to replace the current

�le-based publishing/retrieving scheme. In aMule/eMule, the chunk-based down-

loading and uploading scheme has already been employed to speed up the content

sharing process. Under the chunk-based scheme, a �le is usually separated into

several chunks. Each chunk can be downloaded from di�erent peers and uploaded

to others simultaneously. However, instead of publishing the information of an ob-

tained chunk immediately, a peer in aMule/eMule publishes the information of an

entire �le into the KAD network. That is, under the current publishing/retrieving

scheme, the �le will not be published into the KAD network until it has been fully

obtained.

In a typical P2P �le-sharing environment, a peer usually runs both the upload-

ing and the downloading processes concurrently, and this peer will not leave the

system before it completes its download tasks. Thus if the information of peers,

who possesses some chunks of the whole �le, can also be published, the availabil-

ity of the publishing table will be signi�cantly improved. The obvious advantage

of this modi�cation is that it can increase the amount of useful information for

users retrieving in the future. However, this scheme requires a redesign of the

publishing/retrieving scheme, which may not be easily implemented. Moreover, it

will also complicate the maintenance of the publishing tables and introduce more

tra�c into the system.

56

Chapter 3 Section 3.5

3.5.3 Strict Fairness Scheme

The third solution is to adapt some e�ective incentive policy to mitigate the self-

ish behavior of peers. Currently, aMule/eMule has already deployed a local credit

system to reward the sharing behavior. However, this policy is neither e�cient

nor fair [45]. The KAD network has not employed any fairness strategy to pro-

mote the publishing and retrieving process exclusively. Since the sel�sh behavior

of peers will lead to the low lookup performance of the KAD network, some strict

fairness modi�cation must be introduced into the KAD network. One possible

strict fairness scheme may base on how to fairly allocate sources location infor-

mation among requestors. After receiving requests for sources location, the KAD

network will return a di�erent number of sources according to the credit that the

requester has, while the credit value depends on peers' previous sharing behavior

in the KAD network. The detailed policy is as follows.

• For the requester who stays longer and shares enough content location infor-

mation in the KAD network, i.e., it will be awarded a high value of credit,

the requestor would be provided all known sources information for the KAD

network. Through this rule, publishers may be promoted to stay in the

system longer for obtaining more credit.

• For the requester whose credit value is lower than a threshold or without

credit, the number of returned sources information would be proportional

to the requester's credit. This rule aims to punish publishers who will leave

the system soon after publishing their downloaded content into the KAD

network.

With this scheme, if a publisher leaves the system soon, the publisher's bene�t

will be decreased when it tries to retrieve information in the future and vice

versa. In addition, since adopting the fairness-based modi�cation will keep the

publishing/retrieving scheme of the KAD network unchanged, it may make the

implementation relatively easy. However, even though the modi�cation based on

57

Chapter 3 Section 3.6

Table 3.6: Comparison of di�erent modi�cation schemes

Methods improve Pa improve the

amount of useful

information

reduce

sel�sh

behavior

change

current

structure

introduce

more tra�c

current scheme No No No No No

self-maintenance Yes No No No Yes

chunk-based Yes Yes No Yes Yes

fairness policy Yes Yes Yes Yes Yes

the fairness design has a great advantage by fundamentally reducing the sel�sh

behavior of peers and accordingly improve the lookup performance of the KAD

network, the introduction of a strict fairness policy will still increase the complexity

of the KAD network.

We have summarized the comparison of these modi�cations in Table 3.6. It

looks like no modi�cation is perfect. We believe that a combination of these

possible modi�cations will be the most valid scheme to deal with the lookup per-

formance issue of the KAD network.

3.6 Conclusion

This chapter focuses on investigating the reasons for the poor lookup performance

of the KAD network. As the key components in the publishing/retrieving process,

the maintenance of both the routing table and the publishing table are tested by

several large-scale measurements. To keep the results accurate, the distributed

measurement framework is deployed onto multiple nodes from the PlanetLab

testbed. First, the availability and the similarity of peers' routing tables are

tested. For the availability of the routing table, test results show that on average

more than 80% of nodes in the routing table are online. For similarity, test results

show that less than 25% of records are the same among di�erent routing tables

of peers belonging to a tolerance zone. Therefore, the routing table is shown to

be well maintained, and it can help peers �nd their desired partners easily. After

that, the source-location-information publishing table is tested. Test results show

58

Chapter 3 Section 3.6

that on average only around 25% of items in this table are online. Furthermore,

the average staying time of the publishers is also measured, and the measurement

results reveal that over 75% of publishers leave the system within one hour after

publishing content. As the publishers are required to maintain its published con-

tent information, the maintenance policy regulates that their published content

information will stay online for a relative long period (5 hours by default). Noticed

that the current incentive policy, the credit system, cannot keep publishers staying

at the KAD network for such a long time. The current maintaining method for the

publishing table, the poor incentive policy, and the sel�shness of the publishing

peer are the reasons for the low availability of the publishing tables, which ac-

cordingly cause the poor lookup performance of the KAD network. Finally, three

possible modi�cations are proposed to deal with this lookup performance de�cien-

cies: a self-maintenance scheme, a chunk-based publication/retrieval scheme and

a strict fairness scheme. Their advantages and drawbacks are also compared.

59

Chapter 4

Evaluating Stranger Policies in P2P

File-Sharing Systems with

Reciprocity Mechanisms

Treating strangers carelessly in a P2P �le-sharing system will cause the degrada-

tion of system performance and fairness. In this chapter we evaluate the impact of

di�erent stranger policies on system performance and fairness. First, we present

the necessity of designing an e�ective stranger policy in a typical P2P �le-sharing

system. Then, we review the related research work about P2P's performance and

fairness. After that, in the case of the indirect reciprocity incentive mechanism

being used, we adopt both numerical analyses and agent-based simulations to eval-

uate the impact of a broad range of stranger policies from extremely rewarding

strangers to extremely restricting them. In the case of the direct reciprocity incen-

tive mechanism being used, we conduct an agent-based simulation model and use

it to reveal the impact of stranger policies on system performance and fairness.

Finally, two cases studies on BitTorrent and aMule/eMule provide deep insight

into the design trade-o� of stranger policies.

60

Chapter 4 Section 4.1

4.1 Introduction

A typical P2P �le-sharing system usually holds a large number of users and pos-

sess the features of distribution, self-organization, and self-management. P2P

�le-sharing systems prefer a large population because it can bring high system

throughput, large scalability, and strong robustness. In order to attract as many

peers as possible, P2P �le sharing systems, like BitTorrent [17] and aMule/eMule

[15, 16], tend to provide open environments (i.e. allowing peers to create their

own identities independently and without any cost; permitting peers to attend

and leave the system freely). However, even though this open environment can

promote the population of peers, it may also provide additional bene�ts to self-

ish peers. The extremely sel�sh peers only consuming the downloading resource

without any contribution, called free-riders, always easily exist in an open P2P

�le-sharing environment. The system performance of P2P �le-sharing systems

fully relies on each peer's cooperation. Obviously, free-riding behavior contributes

nothing to system performance, in addition, it harms contributors and eventually

degrades system performance.

To maintain system performance, the free-riding issue has to be treated se-

riously, and fairness, which promote generous behavior and alleviate free-riding,

usually has to be maintained in P2P �le-sharing systems. Otherwise, free-riding

may become popular. A previous measurement study in [2] indicated that around

70% of peers in Gnutella, a famous P2P �le sharing system which lacks a fairness

mechanism, were free-riders. The characteristics of P2P �le-sharing systems in au-

tonomy, self-organization, and self-management give much more freedom to peers.

A peer in a P2P �le-sharing system is controlled by an individual person who has

the ability to choose, independently, whether to contribute or not. In addition,

peers may locate in di�erent regions or belong to di�erent service providers. They

may have di�erent uploading bandwidths and downloading bandwidths. Thus, a

low contribution level may not represent sel�sh behavior. As a result, mandatory

management in term of a uniform standard may introduce additional unfairness

61

Chapter 4 Section 4.1

to them. Consequently, a fairness policy based on incentive mechanisms is natu-

rally the appropriate method, in which collaboration is promoted and free-riding

is prevented.

Fairness in P2P �le-sharing systems is usually maintained by reciprocity-based

incentive mechanisms [3, 4], in which the bene�t of peers is based on their historical

sharing behavior. These reciprocity-based incentive mechanisms are commonly

divided into two typical classes [4]: indirect reciprocity mechanisms (IRMs), which

are widely discussed in [27, 12, 11, 28], and direct reciprocity mechanisms (DRMs),

which are popularly adopted in P2P �le-sharing networks such as BitTorrent and

aMule/eMule. Under the IRMs, a global reputation level for each peer is normally

calculated and distributed, and consequently, peer A's service to peer B could

depend on B's former service to other peers. Under the DRMs, each peer merely

maintains the information of their former partners, and this results in A's service

to B depending only on B's previous service to A.

4.1.1 The Stranger Policy

To design an e�ective reciprocity-based incentive mechanism, we believe how to

deal with strangers is indispensable. When contributors choose uploading candi-

dates, they must make decisions on whether or not to provide content to strangers

whose historical behavior information are not known. In a P2P �le-sharing sys-

tem, there may exist di�erent de�nitions for strangers, which will a�ect how to

design stranger policies considerably. For instance, if the strangers are recognized

as peers just arriving into the system, the time factor must be included to judge

strangers, such as how long a stranger will be a known peer. If the strangers are

de�ned as peers without any sharing behavior, a strict policy should be adopted

to penalize strangers. In this chapter, we de�ne the stranger from the viewpoint of

the uploaders. Considering that each uploader in a P2P �le-sharing system must

individually choose downloading requesters for uploading, a stranger is a candidate

peer, who has been unknown by the uploader, no matter how long this candidate

62

Chapter 4 Section 4.1

peer stays in the system. The word `unknown' here means either the uploader has

not exchanged content with this stranger before, or the uploader cannot obtain

the behavior information of this stranger from other peers. Corresponding with

strangers (unknown peers), another kind of peer called known peers also exist in

the system. For an uploader, known peers are a kind of peer who either exchanged

content with this uploader, or their sharing information with other peers can be

obtained by this uploader. According to an incentive policy, a known free-rider

cannot be serviced by its uploader. Thus, the known peers in the following parts

will refer to the known general peers, who legitimately upload and download by

following P2P rules. In the following sections, the word �strangers� is used to

represent the unknown peers.

The reciprocity-based incentive mechanisms work according to the historical

behavior of peers. Thus, these mechanisms are helpful for managing known peers.

However, the mechanisms are incapable of tackling the strangers because strangers

do not have any behavior information for their uploaders. In a typical P2P �le-

sharing system with a reciprocity-based incentive mechanism, strangers are the

following peers:

• Under the IRMs, strangers can be new arrival general peers (legitimate new-

comers) or whitewashers. The general newcomers are peers who arrive into

the system for the �rst time. They have not exchanged data to others and are

considered strangers by their current partners. However, the general new-

comers can potentially become known peers after uploading content to their

partners. The whitewashers [9] are free-riders who pretend to be newcomers

for more bene�ts by leaving and rejoining the system with updated new IDs.

By frequently changing their IDs, whitewashers become strangers to their

partners. We know that to obtain the bene�ts intended for strangers, free-

riders in a P2P �le-sharing system with the IRM have strong motivations to

whitewash. Otherwise, they could be easily recognized and isolated.

• Under the DRMs, the strangers for a uploader can be divided into three

63

Chapter 4 Section 4.1

categories: general newcomers, free-riders who have not downloaded content

from this uploader (otherwise, they will be recognized as free-riders by this

uploader), and general peers who have not exchanged content with the up-

loader (but they have exchanged content with other peers). We know that

free-riders do not need to whitewash to bene�t under the DRMs. This is

because the local knowledge of general peers is not spread to others. There-

fore, free-riders do not have to worry about their sel�sh behavior toward one

peer being known and accordingly being punished by other peers.

To help readers �gure out the scopes of free-riders, strangers, and whitewashers,

we illustrate them in Figure 4.1.1

�
�������������� �� �	
����������
�����������

Figure 4.1.1: The relationship among free-riders, strangers, and whitwashers.

Since every uploader (the resourceable general peer) faces the issue of how

to deal with such strangers e�ciently in an open P2P environment, treatment

policies need to be established. Even though the impacts of stranger policies to

general newcomers and free-riders are respectively intuitive, the impacts of di�er-

ent stranger policies to system performance and fairness cannot be decided easily,

because we cannot distinguish free-riders from general newcomers in a typical P2P

environment [9]. For system fairness, restricting strangers policy is not necessarily

better than rewarding strangers policy. The reason is that the policy of restricting

strangers treats free-riders fairly, but treats general newcomers unfairly; while the

policy of rewarding strangers treats general newcomers fairly, but treats free-riders

64

Chapter 4 Section 4.1

unfairly. Similarly, for performance, rewarding strangers is also not necessarily

better than restricting them. As we know, promoting the potential contribution

of general newcomers will also promote sel�sh consumption of free-riders. Thus,

rewarding strangers can provide more uploading bandwidth to systems, but may

also provide more bandwidth to sel�sh competitors at the same time. On the

other hand, limiting the consumption of free-riders will unavoidably limit the con-

tribution of general newcomers. As a result, restricting strangers reduces sel�sh

competitors in systems, but also reduces the total uploading bandwidth. Even

though the treatment policy for strangers a�ects system performance and fairness

remarkably, few quantitative evaluations for di�erent stranger policies currently

exist in literature [3, 46].

4.1.2 Contribution

Maintaining fairness in P2P �le-sharing systems normally focuses on how to fairly

allocate resources (i.e. the upload bandwidth of resourceable general peers) among

peers. Speci�cally, each uploader needs to independently make the decision of

how to allocate their uploading bandwidth to others. In this chapter, we focus on

an anonymous, open P2P �le-sharing environment with the IRMs/DRMs, where

each peer can independently assign upload bandwidth to their known peers and

strangers according to an adopted stranger policy. We evaluate the impact of dif-

ferent stranger policies on system performance and fairness through the following

methodology.

1. We de�ne a performance metric (Equation 4.3.5) and a fairness metric

(Equation 4.3.4). The performance metric is used to measure the average

downloading rate of general peers in the system. The fairness metric is used

to evaluate whether or not peers are treated fairly.

2. We de�ne stranger policies as the total percentage of the uploading band-

width of each resourceable general peer assigned to strangers. As shown in

65

Chapter 4 Section 4.1

Stranger
policies

The percentage of uploading
bandwidth to strangers

Extremely
reward

Extremely
restrict

Intermediate

aMule/eMule

BitTorrent

Figure 4.1.2: The relationship between the spectrum of di�erent stranger policies
and the percentage of the uploading bandwidth to strangers. The x axis represents
di�erent stranger policies, and the y axis represents the percentage of the uploading
bandwidth to strangers.

Figure 4.1.2, the leftmost point represents the extremely rewarding stranger

policy that gives most of the uploading bandwidth to strangers. In con-

trast, the rightmost point represents the extremely restricting stranger policy

which assigns an extremely small percentage of the uploading bandwidth to

strangers. The intermediate points represent the stranger policies giving the

gradually decreasing uploading bandwidth to strangers with the direction of

the arrow of x axis.

3. With the IRMs, we use both numerical analyses and agent-based simulations

to evaluate the whole spectrum of these di�erent stranger policies shown in

Figure 4.1.2.

4. With the DRMs, we adopt an agent-based simulation to study the impact

of these di�erent stranger policies on system performance and fairness.

5. We illustrate the validity of this simulation model by analyzing and testing

the stranger policies in BitTorrent and aMule/eMule.

66

Chapter 4 Section 4.1

Based on this methodology, the following are the key �ndings:

1. The extremely restricting stranger policy brings the best fairness at the

cost of the degradation of performance. The extremely rewarding stranger

policy cannot provide the highest performance to the system. Appropriately

choosing the intermediate policy shown in Figure 4.1.2 can bring the highest

performance to the system. The system performance can be improved when

the potential contribution of general newcomers is quickly promoted, while

free-riders could also obtain bene�ts at that point.

2. The results reveal that under di�erent stranger policies, the varying tendency

of performance and fairness are not consistent, and the optimal performance

and fairness (free-riders will not survive) of the system cannot be reached

simultaneously. Speci�cally, when the system reaches the best fairness where

a very small fraction of uploading bandwidth is allocated to strangers, free-

riders will be signi�cantly restricted and cannot easily obtain bene�ts from

the system. However, the system performance will be negatively a�ected

due to the delay of potential contribution of general newcomers. When the

system reaches the highest performance where at least some part of the

uploading bandwidth is allocated to strangers, free-riders also receive this

bene�t and survive in the system. Moreover, due to free-riders surviving at

this point, general peers may tend to free-riding since they are rational and

receive less bene�t than free-riders, or they may directly leave the system

due to being treated unfairly. Eventually, these consequences will negatively

a�ect the system performance. Taking this design dilemma into account,

P2P designers are required to tackle strangers carefully according to their

individual design goals.

3. Di�erent realistic P2P �le-sharing networks have di�erent design objectives.

According to the agent-based simulation, we show that BitTorrent prefers

to maintain fairness by sacri�cing its performance, while the fully rewarding

67

Chapter 4 Section 4.2

stranger policy of aMule/eMule promotes the bene�t of free-riders. We also

suggest some possible alternative improvements for both BitTorrent and

aMule/eMule.

4.2 Related Work

Researches on P2P �le-sharing systems have grown in the past years. Not only the

performance, but accordingly the fairness and the major management approach

on maintaining performance in P2P systems, have also been widely studied. This

section presents the related work in studying the performance and fairness of P2P

systems.

4.2.1 Research on Performance

To evaluate the performance of P2P �le-sharing systems, the research community

adopted di�erent approaches, such as mathematical analyses and empirical studies.

4.2.1.1 Numerical Analyses

Typical P2P systems have tremendous population. The behavior of each peer is

random. Thus, compared to other research approaches, mathematical analysis

would be a fast and e�ective method that can capture the main performance

characteristics of P2P systems. The following paragraphs summarize the relative

contributions from numerical analysis of P2P performance.

Z. Ge et al. [47] was the �rst paper to analytically study the performance of

P2P systems. They modeled P2P systems with multiple class queuing networks,

where peers with di�erent behavior belonged to di�erent classes (e.g. the class of

general peers and the class of free-riders). In their model, there was a single queue

serving all queries from di�erent peers, while each sharing �le was served by its

own service queue. Thus, the rate about servicing the queries was in proportion

to the number of online peers, while the capacity of servicing a sharing �le was

68

Chapter 4 Section 4.2

proportional to both the number of online peers and the popularity of the �le.

With these assumptions, the service capacity of a distinctive �le was described

by the Zipf's distribution [48], and system throughputs under distinctive P2P ar-

chitectures were compared: queries through centralized nodes, queries through

�ooding, and queries through DHT. However, their assumption of �a newly arriv-

ing peer being available to serve �les to its peers� is not true in reality, and this

can negatively a�ect the accuracy of this model.

M. Lin et al. [49] proposed a stochastic framework to investigate the perfor-

mance of P2P �le-sharing. Based on the density dependent jump Markov process

model [50], they studied the performance of P2P �le-sharing systems where a �le

with K chunks was distributed among a number of peers. In their model, the

system states were described by peers having di�erent number of chunks. Using

the theory of Markov process, the authors deduced the formulas for a system's

average downloading time. They also provided the upper bound and lower bound

of the average downloading time and sojourn time of a peer when the peer's down-

loading �le included a total of K chunks. However, the assumption of new arrival

peers always holding one chunk limited the application scope of this model.

In addition to these studies in general P2P �le-sharing systems, the perfor-

mance of BitTorrent and aMule/eMule, the largest P2P �le-sharing systems in

the real world, have also been widely analyzed.

D. Qiu et al. [51] developed a �uid model to study the performance of Bit-

Torrent. In their model, peers were divided into downloaders and seeders. The

change rates of downloaders and seeders were formulated by the di�erences be-

tween their arrival rates and departure rates. The system average downloading

time was derived by Little's law [52]. With their analytical results, the authors

believed that BitTorrent was very e�cient at distributing �les.

L. Guo et al. [53] adopted the same model in Dongyu's work to study the

evolution of a single-torrent system. They found the service availability became

poor quickly when the arrival rates of peers were reduced exponentially. After that,

69

Chapter 4 Section 4.2

they developed a graph model to analyze the correlation of a multiple-torrent

system, where peers exchanged more than one �le simultaneously. Finally, the

authors suggested that the collaboration among multiple-torrent system could be

used to solve the issue of service availability in a single-torrent system.

Y. Tian et al. [54] presented an analytical model to explore the distribution

of peers who download a distinctive �le in BitTorrent. With the extension of

Dongyu's model, they explored a �le sharing process with the Markov chain, with

which the transfer rates between two adjacent states were a function of both the

number of peers and the e�ect of TFT incentive policy [17] among them. Their

numerical results showed that the distribution of peers at the di�erent levels of

their downloading completeness presented a U-shaped curve. They believed this

was because BitTorrent's TFT policy limited the rate of peers obtaining content

when they had very small or very large portions of the sharing �le.

S. Petrovic et al. [55] also presented a �uid model to study the performance of

eMule. By applying Little's law and the conservation law that the total uploading

capacity equals the total downloading capacity, the model could build the rela-

tionship between the average download time of a �le and the popularity of this

downloading �le. However, this approach has been limited by the assumption of

each peer connecting to all the other peers in the system.

4.2.1.2 Experimental Approaches

Experimental methods have also been widely employed to study the performance

of P2P systems in the real world. These methods usually measure the real P2P

systems for a relatively long period with either passive monitors or active crawls.

M. Izal et al. [56] analyzed a 5-month track log, which was recorded while a

tracker monitored the content exchange process of peers. They observed that P2P

�le systems like BitTorrent had good scalability and high average downloading

rates. Using a modi�ed BitTorrent client to achieve a series of content exchanging

processes, they also showed that a correlation existed between the downloading

70

Chapter 4 Section 4.2

rate and uploading rate.

J. A. Pouwelse et al. [57] collected the information of peers from a BitTorrent

tracker and measured the downloading progress of these peers. Their measure-

ments revealed that the average downloading rate of peers was high, the availabil-

ity of sharing content depended on their popularity, and the availability of peers

was low because of the de�ciency of the incentive policy to seeders.

J. Yang et al. [58] adopted an active probing method to measure aMule/eMule.

They developed several applications to crawl hundreds of index servers and millions

of eMule/aMule clients separately. With these measurements, they presented the

geographic distribution of these clients and the capacity of each index server.

L. Plissonneau et al. [59] focused on a large number of residential aMule/eMule

users with ADSL connection. By monitoring the TCP connection of these cus-

tomers, they distinguished the aMule/eMule's �ows from others via their special-

ized transfer ports. With the measurements, they revealed that the popularity of

sharing �les were not Zipf distributed, while the waiting time before downloading

was correlative with the popularity of the downloading �le, and the downloading

rate was not as fast as the connection capacity.

4.2.2 Research on Fairness

Due to their self-organizing and self-managing features, the system performance

of P2P �le-sharing networks fully relies on each peer's cooperation on a fair foun-

dation. As a result, a number of studies have also focused on the fairness issue in

P2P �le-sharing networks.

4.2.2.1 General Studies on Reciprocity-Based Incentive Policies

To maintain fairness in a distributed P2P system, reciprocity incentive policies

might become a fundamental component. The relative studies are summarized

below.

D. S. Menasche et al. [4] focused on studying the e�ciency of reciprocity in-

71

Chapter 4 Section 4.2

centive policy in a general P2P �le-sharing system. By de�ning the reciprocity

mechanism into two types: direct and indirect, they compared the e�ciency dif-

ference between them. Their analytical results showed the e�ciency of an indirect

reciprocity mechanism could reach at most twice of the e�ciency of a direct pol-

icy. However, their classing the incentive policy of aMule/eMule into the indirect

reciprocity type is not believed to be correct.

M. Feldman et al. [5] studied the reciprocity mechanism of P2P �le-sharing

systems with game theory. The authors presented that an indirect reciprocity

mechanism could provide a higher level of cooperation to a system than a direct

reciprocity mechanism. They were also the �rst to discuss the stranger policies for

P2P systems and pointed out that inappropriately dealing with strangers could col-

lapse the system. To deal with the whitewashing issue, the authors also proposed

a stranger adaptive policy, but this policy had only been veri�ed by simulation.

B. Q. Zhao et al. [14] designed a general framework to analyze the incentive

policy in P2P networks. In this framework, the incentive policy was modeled with

the gain obtained by a peer when this peer contributed service to other peers.

However, the prediction of their model about the mirror incentive policy (like

BitTorrent's TFT policy) leading to system collapse had not been founded in the

real world. Moreover, the impact of stranger policy had not been considered in

this work.

4.2.2.2 Indirect Reciprocity Incentive Mechanism

As a reminder, an indirect incentive mechanism can help a peer choose their

partners according to their individual global reputation levels. The following part

summarizes the relative studies.

R. Sherwood et al. [11] designed a cooperative system for P2P with the indirect

incentive mechanism. In this system, each transaction was assigned a trust value.

When calculating the trust level of a single peer, a peer �rst built a trust graph

including multiple direct or indirect transaction paths from itself to this peer.

72

Chapter 4 Section 4.2

After that, the trust value was computed with the combination of the transaction

values along di�erent paths. However, how to deal with newcomers had not been

considered within this work.

S. D. Kamvar et al. [12] presented an algorithm to assign a global trust value

to every peer. The local reputation score of each peer would �rst be computed

by itself independently, and accordingly each peer's global reputation value was

determined by using the local scores from its partners, weighted by the global

reputation of these partners. A distributed algorithm was then developed, which

allocated the computing and storing tasks to each peer. Unfortunately, the new-

comer issue had not yet been discussed in this work.

Z. Y. Liu et al. [13] designed an indirect incentive algorithm based on the

assumption that each peer in the system belonged to a social network. By using

the knowledge of the underlying social network, the authors showed that this

algorithm had a good e�ciency under di�erent service demands.

4.2.2.3 Direct Reciprocity Incentive Mechanism

The direct reciprocity incentive mechanism, due to its simplicity, has also been

adopted by popular P2P �le-sharing systems like BitTorrent and aMule/eMule.

However, because of some design issues, both BitTorrent and aMule/eMule did

not provide su�cient incentive to peers and therefore could not e�ciently limit

free-riding behavior. The related research is summarized below.

T. Locher et al. [60] developed a free-riding BitTorrent client called BitThief

to examine the e�ciency of the o�cial Tit-For-Tat incentive policy. Using some

design issues of BitTorrent, this client could retrieve many more sources from

trackers than the o�cial BitTorrent client. As a result, their experiments showed

that a BitThief client could always achieve a high downloading rate, even though

it never contributed any data to others.

M. Sirivianos et al. [18] also modi�ed a BitTorrent client that knew more

peers than the compared o�cial client. Like Locher's work, they also showed

73

Chapter 4 Section 4.2

that this modi�ed client achieved free-riding easily, and its average downloading

rate was higher than that of the compared o�cial client. Using PlanetLab-based

experiments, they indicated that the system performance would be degraded with

the increment of the population of the free-rider.

S. Handurukande et al. [20] modi�ed an eDonkey client and used it to crawl the

eDonkey network for over 50 days. Besides showing the existence of the clusters,

their work also found a popular free-riding behavior in the system. However, the

reason for the popularity of free-riding in eDonkey network had not been pointed

out in this paper.

4.2.3 Research on the Relation Between Performance and

Fairness

A few researches [8, 9, 61, 62] have investigated the relation between system per-

formance and system fairness as shown below.

R. Krishnan et al.[8] considered the shared content as public goods. During

the content exchanging process, each peer tried to maximize its own utility. Using

game theory, the authors proved that free-riders could still exist under the socially

optimal outcome. Their conclusion is consistent with our work's observation,

where optimal system performance comes from allocating partial bandwidth to

strangers instead of extremely punishing free-riders.

M. Feldman et al. [9] modeled the impact of incentive policies on system

performance on the basis of game theory. The author showed that system perfor-

mance would be improved by punishing free-riding. The authors also considered

that the punishing free-rider policy could not avoid restricting newcomers, but

this only caused the decrease of system performance when the turnover rates were

high. However, the authors had not studied the system fairness explicitly and

quantitatively. Moreover, no veri�cation has yet been given in this work.

B. Fan et al. [61] did not focus on a general P2P network, but a speci�c P2P

�le-sharing system: BitTorrent. The trade-o� of BitTorrent's performance and

74

Chapter 4 Section 4.3

fairness was further investigated via an uplink-sharing �uid model, where system

performance was assumed to be decided by the total uploading rate. With both the

analytical and simulation results, the authors considered the design of BitTorrent

emphasized fairness more than performance.

4.2.4 Summary of Related Work

Even though a great amount of researches focusing on studying the performance

and the fairness of P2P system already existed, the stranger issue, during their

studies, had either been inappropriately ignored or not been well modeled. In-

spired by the previous works, we investigated the stranger issue in general P2P

�le-sharing systems in the remainder of this chapter.

4.3 Stranger Policies Under the Indirect Reciprocity

Mechanism

Indirect reciprocity mechanisms (IRMs) are recognized as being more scalable, but

more complex than direct reciprocity mechanisms (DRMs). The global reputation

system is the most popular application of IRMs. It has been popularly proposed

to maintain the fairness of P2P systems in [27, 12, 11, 28]. In a P2P �le-sharing

network with a global reputation system, each peer will normally receive a unique

reputation score according to their previous sharing experience. Since this infor-

mation is globally available, each uploader will allocate their uploading bandwidth

to other peers according to their scores. With the global score, general peers can

be easily rewarded, and free-riders can easily be punished. If some peers pursue

bene�ts by sharing content for a period and then free-riding, their counterfeit be-

havior could be easily distinguished and restricted by assigning di�erent weights to

the long-time behavior of peers and their short-time behavior in the calculation of

their reputation score. However, the IRMs are usually vulnerable to whitewashing

[3, 9, 46] because whitewashers cannot be distinguished from general newcomers.

75

Chapter 4 Section 4.3

Therefore, stranger policies under the IRMs may either compromise the penalty

to whitewashers, or delay the cooperation of general newcomers. In this section,

we explore the impact of di�erent stranger policies with numerical analyses and

agent-based simulations.

4.3.1 An Analytical Model

To study stranger policies, we conduct mathematical analyses based on the �uid

modeling method. The �uid-based models were popularly adopted in [49, 51, 54,

55, 61] for studying P2P �le-sharing systems. In this work, We modify the classic

�uid model that assumes peers provide the same uploading bandwidth during the

whole content exchange process. Speci�cally, we take into account the amount of

available uploading bandwidth that each resourceable general peer (the uploader)

can provide, when these peers experience di�erent content exchange periods.

4.3.1.1 Model Description

In a P2P �le-sharing system with the IRM, peers are mainly divided into two

classes: strangers and known peers. The strangers include general newcomers and

whitewashers, and the IRM has no information about these peers. It is worth not-

ing that free-riders must whitewash for survival in a P2P system with the IRM.

Otherwise, free-riders without whitewashing could be easily recognized and iso-

lated. We assume that, to obtain the bene�ts intended to strangers, free-riders

have strong motivations to whitewash, and consequently they are all whitewash-

ers. The known peers are peers with sharing experiences. Since free-riders without

whitewashing are isolated by the IRM, known peers are considered to be legitimate

peers. In other words, they are resourceable general peers. With this classi�ca-

tion, di�erent stranger treatment policies can be evaluated according to the truth

that each resourceable general peer independently assigns di�erent percentages of

uploading bandwidth to the known peers and the strangers respectively.

Our model considers a download task that requests each peer to download

76

Chapter 4 Section 4.3

s1 s2 s3 Sk

Peers without
file

Peers with one
file

Peers with two
files

Peers with k-1
files

General
newcomers

Free-riders

Peers with K
files

Figure 4.3.1: The analytical model assume peers need to download total K �les.
At state S1, a peer will download its �rst �le, then this peer moves to state S2

and download the second �le. The process continues until this peer downloads its
last �le at state Sk and leaves the system.

K �les. As shown in Figure 4.3.1, a general peer arrives into the system as a

general newcomer without any �les downloaded yet. In state S1 this general peer

randomly chooses its �rst �le for downloading from other peers. The general peer

then moves to state S2 where it has one downloaded �le. As state S2, the general

peer randomly choose its second �le for downloading, and it also uploads the �rst

�le to other peers simultaneously. Continuing these uploading and downloading

operations, this general peer will eventually reach state SK , where it downloads its

last �le and completes the entire download task. On the other hand, when a free-

rider tries to download the same K �les, it will only process the same downloading

steps without uploading any content at each state Si (1 ≤ i ≤ K). Meanwhile, the

free-rider will change its ID for whitewashing at each state Si when downloading

a new �le. Naturally, this method can also directly model a chunk-based P2P

downloading process for one �le with K chunks, where each chunk is continuously

downloaded when a peer passes through each state Si.

This model follows the assumption in [61]: peers dynamically join and leave the

system. The average arrival rates of general peers and whitewashers are denoted

by λg and λf respectively. Peers will stay in the system until completing the task

of downloading all K �les. As illustrated in Table 4.1, gi(t) and fi(t) represent

77

Chapter 4 Section 4.3

Table 4.1: Parameters for the analytical model

Parameters Meaning

λg average arrival rate of general peers

λf average arrival rate of free-riders (whitewashers)

ε percent of uploading capacity of a resourceable general peer allocated to the

known peers

Si download state i, where i is an integer

K the total number of �les in the download job

gi(t) the number of general peers in state Si (i = 1, 2, ...,K)

fi(t) the number of free-riders (whitewashers) in state Si (i = 1, 2, ...,K)

µ peer's average upload capacity

pm,n the probability that a general peer with m �les can upload content to

another peer with n �les (m,n = 0, 1, 2, ...,K − 1)

Rs a peer's sharing ratio

Rc a peer's comparing ratio

dg general peer's average downloading rate (performance metric)

ug general peer's average uploading rate

df free-rider's (whitewasher's) average downloading rate

Fm fairness metric

the number of general peers and whitewashers at state Si respectively. Without

loss of generality, each �le is assumed to be the same size.

Some previous �uid-based models [51, 61, 55] assumed that the uploading

capacity µ of each resourceable general peer is fully used. However, a general peer

can not provide uploading service to other peers when its content is not useful

to those peers. For example, if the content held by peer A is possessed by all

other peers, the uploading capacity of peer A cannot be used, even though A

prefers to provide service to others. Following the method in [49], we remove

this capacity assumption and introduce a novel parameter pm,n. Before explaining

the de�nition of pm,n, we make an assumption that all downloading �les in the

system are uniformly distributed among peers. We believe this assumption can be

guaranteed by the policy used in our model: the downloading order of the total

K �les is random. The parameter pm,n indicates the probability that a general

peer with m �les can upload content to another peer with n �les. Additionally,

as peers in di�erent states possess di�erent amounts of shareable content, they

have di�erent abilities to earn a reputation score. For example, peers in state S1

78

Chapter 4 Section 4.3

only possess one �le, compared with peers in the following states, their ability

of sharing this �le with others and according earn scores is lower. Consequently,

pm,n can also be used to represent di�erent reputation scores of peers in di�erent

states.

To model di�erent stranger policies, we introduce a parameter ε to repre-

sent the percent of uploading bandwidth of a resourceable general peer allocated

to known peers. Consequently, 1 − ε represents the percentage of the upload-

ing bandwidth allocated to strangers. Consequently, people can model di�erent

stranger policies by changing the value of ε. For instance, an extreme restricting

stranger policy can be represented by choosing a large value of ε, while an extreme

rewarding stranger policy can be represented by choosing a small value of ε.

Based on the principle of each peer's downloads coming from the other peers'

uploads and according to the property of continuous Markov chains [50], the vary-

ing tendency of the number of peers in the state S1 and Si (1 < i ≤ K) can be

described by the following di�erential equations. The de�nitions of the variables

used in these equations are given in Table 4.1.

For whitewashers at state S1 and state Si(i = 2, 3, ..., K), Equations 4.3.1

model the change in the number of whitewashers in each state. The �rst part on

the right in Equation 4.3.1 represents the number of whitewashers �owing into the

state, and the second part represents the number of whitewashers �owing out. It

should be noted that the �ow out from state Si equals the �ow into state Si+1. To

represent the whitewashers �ow out of one state, their received uploading rates

need to be summed. These rates are from the resourceable general peers at all the

states except state S1. These resourceable general peers allocate a fraction 1 − ε

of their uploading rate to strangers. We use µ to represent the average uploading

capacity of the general peers. The uploading rate of the uploader at state Sj up

to the download peers at state Si are modeled by µpj,i. Since each resourceable

general peer possibly uploads content to peers at any state, these rates for one

given state are partitioned by the ratio of the number of whitewashers at this given

79

Chapter 4 Section 4.3

state to the total number of peers at all states.

df1(t)
dt

= λf −
f1(t)

K∑
j=1

(gj(t) + fj(t))

K∑
j=2

gj(t)(1− ε)µpj−1,0

dfi(t)
dt

=
fi−1(t)

K∑
j=1

(gj(t) + fj(t))

K∑
j=2

gj(t)(1− ε)µpj−1,i−2

− fi(t)
K∑
j=1

(gj(t) + fj(t))

K∑
j=2

gj(t)(1− ε)µpj−1,i−1

(4.3.1)

where

pm,n =

1 if 0 ≤ n < m ≤ K − 1

1− Cn−m
n

Cm
K−1

if 0 ≤ m ≤ n ≤ K − 1 Cy
x is the binomial coe�cient

.

(4.3.2)

Similarly, we use Equations 4.3.3 to model the change in the number of general

peers at each state S1, and state Si(i = 2, 3, ..., K). The �rst part on the right

in these equations represents the number of general peers �owing into the state,

and the second part represents the number of general peers �owing out. The

�ow out from state Si equals the �ow into state Si+1. The uploading rates to

general peers at state Si are from the resourceable general peers at all the states

except state S1. These resourceable peers allocate a fraction ε of their uploading

rates to known peers. Meanwhile, general newcomers at states S1 are recognized as

strangers, and then these newcomers obtain downloading rates from the remaining

1 − ε percentage. Likewise, the uploading rate of an uploader at state Sj up to

download peers at Si are modeled by µpj,i. Furthermore, since each resourceable

80

Chapter 4 Section 4.3

general peer can possibly upload content to peers at any state, these rates for one

given state are partitioned by the ratio of the number of general peers at this given

state to the total number of peers at all states.

dg1(t)
dt

= λg −
g1(t)

K∑
i=1

(gj(t) + fj(t))

K∑
j=2

gj(t)(1− ε)µpj−1,0

dgi(t)
dt

=
gi−1(t)

K∑
j=1

(gj(t) + fj(t))

K∑
j=2

gj(t)ξµpj−1,i−2

− gi(t)
K∑
j=1

(gj(t) + fj(t))

K∑
j=2

gj(t)εµpj−1,i−1

(4.3.3)

where,

ξ =

1− ε if i = 2

ε otherwise

.

4.3.1.2 Performance and Fairness Metrics

To measure system performance and fairness, we de�ne measurement metrics as

follows (These metrics are also used in the subsequent sections):

• Performance metric dg denotes the average downloading rate of the general

peers. A large value of dg usually represents a high system performance.

• Fairness metric Fm combines two kinds of in�uencing factors: the sharing

ratio Rs and the comparing ratio Rc. Rs indicates the di�erence of a general

peer's cost from its payo�, and Rs represents the fairness from a single peer's

viewpoint, while Rc reveals the system viewpoint on fairness by comparing

the free-rider's average bene�t with the general peer's average bene�t. Since

81

Chapter 4 Section 4.3

the upper limit of Rs and Rc is one (ug ≥ dg due to the whitewashers'

existence), the closer Fm is to one, the more fair the system is.

Fm = α1Rs + α2Rc = α1
dg
ug

+ α2
dg

dg + df
, (4.3.4)

where α1 and α2 are the weights of these ratios, and α1+α2 = 1, 0 ≤ α1 ≤ 1,

0 ≤ α2 ≤ 1. According to di�erent design policies, P2P designers may as-

sign di�erent weights to Rc and Rs. For example, they may regard the

sharing ratio Rs as more practicable than the comparing ratio Rc, because

peers themselves can directly measure their own downloading and upload-

ing rate, and accordingly calculating Rs in the system can much easier be

implemented than calculating Rc. Alternatively, some designers may ar-

gue that punishing free-riding behavior should be given higher priority than

other design objectives, since the accumulation of free-riders will cause seri-

ous damage to the whole system. We believe an area of future studies could

focus on the methodology of accurately assigning di�erent weights via using

social-science techniques.

Once the system reaches a steady state, the transfer rate into state Si equals the

transfer rate out of state Si, and the left hand of Equation 4.3.3 and of Equation

4.3.1 will become zero. By incorporating this feature with another important

property of P2P �le sharing systems, i.e., total uploading rates of the system are

always equivalent to its total downloading rates, we can calculate the parameters

dg, df and ug respectively.

As shown in Equation 4.3.5, the general peer's average downloading rate, dg,

equals the sum of the uploading rates, which are coming from all resourceable

general peers at states S2 to SK and allocated to general newcomers and the

uploading rates allocated to known general peers, normalized by the total number

of general peers.

82

Chapter 4 Section 4.3

dg =
1

K∑
j=1

gj

(
g1

K∑
j=

(gj + fj)

K∑
j=2

gj(1− ε)µpj−1,0 +
K∑
i=2

gi
K∑
j=1

(gj + fj)

K∑
j=2

gjεµpj−1,i−1).

(4.3.5)

As shown in Equation 4.3.6, the whitewasher's average downloading rate df

equals the total uploading rates, which are coming from all resourceable general

peers at states S2 to SK , allocated to whitewashers, divided by the total number

of whitewashers.

df =
1

K∑
j=1

fj

K∑
i=1

f i

K∑
j=

(gj + fj)

K∑
j=2

gj(1− ε)µpj−1,i−1. (4.3.6)

As shown in Equation 4.3.7, the general peer's average uploading rate ug equals

the sum of the uploading rates allocated to general newcomers, the uploading rates

allocated to known peers, and the uploading rate allocated to whitewashers, which

are coming from all resourceable general peers at states S2 to SK , normalized by

the total number of resourceable general peers.

ug =
1

K∑
j=2

gj

(
g1

k∑
j=

(gj + fj)

K∑
j=2

gj(1− ε)µpj−1,0 +
K∑
i=2

gi
k∑

j=1

(gj + fj)

K∑
j=2

gjεµpj−1,i−1

+
K∑
i=1

f i

K∑
j=

(gj + fj)

K∑
j=2

gj(1− ε)µpj−1,i−1) . (4.3.7)

It should be noted that the property of the total uploading rates of the system

being equivalent to the system total downloading rate doesn't mean that the

average downloading and uploading rates can keep the same equation of ug =

dg + df , because dg, df and ug are all average values, and di�erent kinds of peers

83

Chapter 4 Section 4.3

have a di�erent population size.

4.3.2 Numerical Analysis and Veri�cation

In this subsection, we use the mathematical model to numerically analyze the

impact of di�erent stranger policies on system performance and fairness. After

that, we develop an agent-based simulation to verify the numerical results. The

di�erent stranger policies will be modeled by di�erent values of the parameter ε.

4.3.2.1 Numerical Analysis

Using Equations 4.3.4, 4.3.5, 4.3.6, and 4.3.7, we numerically analyze the system

performance and fairness of P2P �le-sharing under di�erent stranger policies. The

related parameters in these equations are assigned as follows. We assign the pa-

rameter K the number 20, which means we focus on a �le downloading process

where each peer is required to download a total number of 20 �les. Consequently,

the total number of states in the model also equal 20. Without loss of generality,

the size of each �le is the same, and the average upload capacity µ of general

peers is equal to one. During the time period of downloading one �le, the arrivals

of both general peers and free-riders follow Poisson processes with arrival rates

λg = 5/timeslot and λf = 2/timeslot. The values of ε are varied from 0.1, 0.2,

0.3, ... to 0.9. ε = 0 represents strangers getting all of the uploading bandwidth,

and therefore, resourceable general peers are blocked. ε = 1 represents strangers

getting none of the uploading bandwidth and accordingly general newcomers are

blocked. Both ε = 0 and ε = 1 are impractical values for a P2P �le-sharing sys-

tem with an open environment, and consequently they are ignored in the following

analysis. ε = 0.1 and ε = 0.9 represent the extremely rewarding stranger policy

and extremely restricting stranger policy as shown in Figure 4.1.2 respectively,

and the other values of ε represent the intermediate points in Figure 4.1.2, where

strangers are assigned some uploading bandwidth. To calculate the fairness metric

Fm, both α1 and α2 are assigned to 0.5, which means we give the same emphasis

84

Chapter 4 Section 4.3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ε

P
er

fo
rm

an
ce

d

g

d
f

u
g

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ε

F
ai

rn
es

s

F

m

R
s

R
c

(b)

Figure 4.3.2: Analytical results for di�erent stranger policies: (a) shows the per-
formance dg and (b) shows fairness Fm as a function of ε (the percent of uploading
bandwidth to known peers) when λg = 5 and λf = 2.

on fairness from both systems viewpoint and users' viewpoint.

Running our analytical model, we show changes of system performance in

Figure 4.3.2(a). We discover that neither the extremely rewarding stranger policy

nor the extremely restricting stranger policy can provide the highest performance.

Instead, the largest value of the average downloading rate of general peers is

obtained at one intermediate point of the value of ε being close to 0.6, and at that

point 40% of uploading bandwidth is assigned to strangers. In addition, with less

and less uploading bandwidth going to strangers (the increment of the value of ε),

the average downloading rates of whitewashers keep falling. The results in Figure

4.3.2(a) also indicate that the contribution of general peers (their average upload

rate ug) is always greater than their bene�ts (their average download rate dg).

This makes sense because of the existence of both newcomers and whitewashers,

who consume services without making any contribution.

The analytical results about fairness are shown in Figure 4.3.2(b). We �nd

that the extremely restricting stranger policy helps the system achieve its best

fairness, while the extremely rewarding stranger policy gives the worst fairness to

the system. Obviously, restricting strangers also reduces the bene�t of whitewash-

ers, and promoting strangers improves the bene�t to whitewashers at the same

85

Chapter 4 Section 4.3

0 5 10 15 20
10

0

10
1

10
2

10
3

Download States S
i

th
e

nu
m

be
r

of
 p

ee
rs

General Peers g
i

ε = 0.1
ε = 0.3
ε = 0.6
ε = 0.9

(a) general peers

0 5 10 15 20
10

0

10
1

10
2

10
3

Download States S
i

th
e

nu
m

be
r

of
 p

ee
rs

Whitewashers f
i

ε = 0.1
ε = 0.3
ε = 0.6
ε = 0.9

(b) whitewashers

Figure 4.3.3: The number of general peers and whitewashers at di�erent down-
loading states Si (i ∈ {1, 2, ..., K}) under the di�erent stranger policies (ε =
0.1, 0.3, 0.6, and 0.9 respectively) in the steady state.

time. Furthermore, the positive slope of the fairness metric Fm indicates that

the system could distinctly limit whitewasher's bene�t when the enforcement of

restricting strangers increases. Regarding the changing trends of Rs and Rc shown

in Figure 4.3.2(b), the increasing trend of Rc can be attributed to the continually

decreased uploading bandwidth assigned to whitewashers with the growth of ε,

while the decreasing trend of Rs can be associated with more and more general

newcomers being delayed at the �rst state S1.

Next, we clarify the impact of di�erent stranger policies on the population

of peers in the system. We verify the value of ε and plot the number of peers

remaining at each state Si in Figure 4.3.3 when the system reaches a stable state.

If the number of peers remaining in the system is small, we can say that the peers

leaving the system should have already obtained enough downloading bandwidth

to complete their tasks and accordingly have left the system. If the number of peers

remaining in the system is larger, peers may not able to get enough downloading

bandwidth. In other words, the average downloading rate of peers varies inversely

with the number of peers remaining in the system. Like Figure 4.3.3(a) shown,

the total number of general peers remaining in the system when ε = 0.6 is smaller

than those when we assign ε other values. Correspondingly, Figure 4.3.2(a) shows

86

Chapter 4 Section 4.3

that general peers obtain the largest downloading rate at this point. Similarly,

the total number of whitewashers shown in Figure 4.3.3(b) monotonically increases

with the increasing of ε, which is also consistent with the df 's variation shown in

Figure 4.3.2(a). Therefore, by showing the population of peers remaining in the

system, we can provide convincing evidence to explain the results shown in Figure

4.3.2(a). In addition, when ε = 0.1, the number of remaining general peers is

much larger than the number of remaining whitewashers. Under this extremely

rewarding stranger policy, newcomers including whitewashers always receive far

more bandwidth than known peers. When ε = 0.9, the remaining numbers of

both general peers and whitewashers are very high. This is because the potential

contributors are restricted at state S1, and consequently they cannot contribute

to others soon.

P2P designers usually have to decide which stranger policy may be suitable for

their design goals: focusing on performance or paying more attention on fairness.

We develop the following simple formula to help P2P designers calculate the design

trade-o�s DT .

DT = αdg + (1− α)Fm (4.3.8)

To �nd an appropriate stranger policy, P2P designers can assign a weight α

to system performance and accordingly assign 1 − α to fairness respectively. For

example, if designers pay most of their attention to system performance (α =

1), according to Equation 4.3.8, they may assign an intermediate value to ε for

their stranger policy as shown in Figure 4.3.4(a). By contrast, according to our

analysis, restricting stranger policy at ε = 0.9 may be used when designers prefer

fairness (α = 0) as shown in Figure 4.3.4(b). Of course, as shown in Figure

4.3.4(c), designers can choose stranger policy ε = 0.6 for best trade-o�, if they

treat performance and fairness equally (α = 0.5).

87

Chapter 4 Section 4.3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ε (α = 1)

T
ra

de
of

f
(D

T
)

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ε (α = 0)

T
ra

de
of

f
(D

T
)

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ε (α = 0.5)

T
ra

de
of

f
(D

T
)

(c)

Figure 4.3.4: The trade-o� of performance and fairness when designers choose
di�erent weight α.

4.3.2.2 Agent-Based Simulation

Using a typical agent-based simulation tool, NetLogo [63], we also develop an

agent-based simulation to verify the analytical results. Agent-based simulation,

as a class of computational modeling, has already been widely used in the research

of ecology, economic, demography, etc. [64]. The agent-based simulation recently

attracted the attention of P2P researchers [65, 66] for its capacity to simulate the

behavior of autonomous agents and their interactions in a complex network.

Simulation Steps

In this simulation, we de�ne two classes of agents coexisting in an open environ-

ment, general peers and whitewashers. The general peers can obtain reputation

scores according to their contribution. The whitewashers will change their IDs

88

Chapter 4 Section 4.3

after downloading a �le, so they have no reputation scores and are recognized as

strangers. Each resourceable general peer maintains two uploading queues: one

uploading queue holds the known peers, and the other holds strangers. Following

the stranger policy, the resourceable general peer allocates its uploading band-

width into two parts at any time; one part is allocated to a known peer chosen

from the queue for known peers, and the other part is allocated to a stranger

chosen from the queue for strangers.

To capture the functionality of the global reputation system, previous re-

searchers have designed the IRM with either a decentralized or a centralized in-

frastructure [12, 11, 67, 68]. From the viewpoint of making the reputation score

of each peer globally available to other peers, both centralized methods and dis-

tributed methods could provide the same ability. Peers in an IRM system have

consistent opinions about who are known peers and who are strangers. However,

both of these infrastructures also have their own issues in reality. For example,

the centralized infrastructure may su�er from the scalability problem when there

are millions of peers online, while the decentralized infrastructure faces the issue

of how to synchronize the information e�ectively and quickly. Since our work does

not focus on evaluating the structure of global reputation systems, we introduce

a typical hybrid P2P infrastructure to simplify our simulation architecture. That

is, a central index server is introduced into our simulation. It is globally available

to every peer and responsible for maintaining the information of peers, such as

the shareable content information and the reputation information of each peer.

We de�ne the information publishing and retrieving processes as follows. After

a general peer downloads content from another peer, this general peer will regard

this contributor as its known peer and send its identi�cation information to the

central index server. At the same time, as a resourceable general peer (the po-

tential uploader), this general peer will also publish its content information into

this server. Both of these pieces of information have been recorded in the server's

database. Similarly, a downloader will request the uploaders' information about

89

Chapter 4 Section 4.3

desired content from the index server. The server replies to the requests from

downloaders with a list of content providers who are randomly selected from the

server's database. After receiving the reply from the index server, downloaders

can send content-downloading requests directly to these content providers. To

deal with the downloading requests from di�erent peers, each uploader will try

to obtain reputation information about each downloader from the index server.

If the reputation information of the requesting peer has been obtained from the

index server, the uploader will insert this requesting peer into its uploading queue

for know peers. Otherwise, it will add the requesting peer into its uploading queue

for strangers, if the downloader is unknown. Additionally, in this simulation we

assume the published information of each peer is trustworthy and ignore the pos-

sible attacks to the global reputation system such as peers lying about knowing

other peers, Sybil attacks, or coalition attacks. There are many proposals about

how to maintain the belief of each peer and how to deal with these attacks, but

those are beyond this work's scope.

Table 4.2: Agent-based simulation parameters

Name Value

�les need to be downloaded 20

each �le size 1000KB

general peers average arrival rate 5/time slot

free-riders average arrival rate 2/time slot

simulation time slot 100 sec.

peers maximum uploading capacity 20KB/sec.

initial peers in the system 100

1-ε: percentage of the uploading bandwidth

of a resourceable general peer to the strangers

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

We explore di�erent stranger policies by running simulations with di�erent

values of ε (ε = 0.1, 0.2, ..., 0.9 respectively). Each uploader will choose two peers

from its two queues respectively and upload to them according to the assigned

stranger policy. The simulation parameters are shown in Table 4.2. The whole

simulation time is divided into discrete time slots, and each time slot represents

100 seconds. In the simulation, new joined peers are required to download a total

90

Chapter 4 Section 4.3

of 20 �les with the same size of 1000KB. Initially, there are 100 peers in the

system. Each of them holds an arbitrary number of the downloading �les, but

the maximum number of held �les is less than 20. By following a Poisson process,

general peers and whitewashers arrive at the system with average arrival rates

of 5/time slot and 2/time slot respectively. We ignore the possible downloading

failure due to computer issues or transfer lines problems, and we, by following the

previous work [61], also believe the probability of peers' voluntary departure when

they are downloading their desired content is small. As a result, we assume each

peer will stay in the system until they complete the entire downloading task.

At the beginning of a time slot, each resourceable general peer will randomly

choose a known peer and a stranger from their uploading queues respectively.

Then, the resourceable general peer separates its whole uploading bandwidth

according to the stranger policy and uploads to both the known peer and the

stranger. For the current mainstream access links, such as the ADSL and cable

modem, the downloading bandwidth is no less than the uploading bandwidth.

Thus, we assume the downloading rate is not the limiting factor for the simula-

tion. Instead, we assume each peer has a 20KB/second uploading capacity for

simplicity, and this is the maximum uploading rate that an uploader can provide.

However, as we mentioned in the previous section, the uploading capacity may

not be fully used, and the uploading rate of each resourceable general peer will

be dynamically changed by the amount of their holding content. As a result, a

downloader may have a very high downloading capacity, but this capacity may

not be fully used during its downloading process. We believe this assumption is

closer to the situation in the real world. For instance, considering the following

situation: if downloader B has all the content that uploader A owns, A is not

able to provide uploading service to its partner B. Therefore, A's uploading rate

greatly depends on the total shareable content it possesses, and the uploading rate

of a general peer will increase with the amount of its holding content. However,

we also decide that the uploading rate is still limited by the de�ned uploading

91

Chapter 4 Section 4.3

capacity of 20KB/second.

We ran this simulation on a standard desktop PC with Intel i7 core and 8GB

memory. Each round of the simulation was about a total of 15000 cycles, which

approximately equaled 17 days (one cycle represents 100 seconds). Since we logi-

cally simulated the uploading and downloading process within each time interval

(there is no real downloading/uploading during the simulation), the actually run-

ning time for simulating each stranger policy was between 1 to 2 days. During

each simulation, more than 100,000 peers attended the system for data exchange,

and approximately 4000GB of data were simulated for downloading and upload-

ing. During the simulation, we recorded each general peer's uploading rate and

downloading rate and each whitewasher's downloading rate. At the end of the

simulation, we calculated the average value of these uploading and downloading

rates respectively.

Simulation Results

Both analytical results and simulation results about dg, Fm, df , and ug are

compared in Figure 4.3.5(a), (b), (c) and (d) respectively. As shown in these

�gures, the simulation results are consistent with the analytical results in the

previous section. Therefore, this veri�cation con�rms that our analytical model

can capture the characteristics of stranger policies and can be used for the design

of future P2P stranger policies. Most importantly, we have the following �ndings

of both the numerical analysis and the simulations:

• The highest system performance comes from a trade-o� of allocating up-

loading bandwidth to both known peers and strangers, but not from an

extremely promoting stranger policy.

• The best fairness is reached when applying an extremely restricting stranger

policy, while system performance is poor at this point.

• The variations of performance and fairness are di�erent.

There are some negligible di�erences between the analytical and simulation results.

92

Chapter 4 Section 4.3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ε

G
en

er
al

 P
ee

rs
 A

vg
. D

ow
nl

oa
d

R
at

e

Analytical Result
Simulation Result

(a) dg

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ε

F
ai

rn
es

s
M

et
ric

 F
m

Analytical Result
Simulation Result

(b) Fm

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ε

F
re

e−
rid

er
s

A
vg

. D
ow

nl
oa

d
R

at
e

Analytical Result
Simulation Result

(c) df

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ε

G
en

er
al

 p
ee

rs
 A

vg
. U

pl
oa

d
R

at
e

Analytical Result
Simulation Result

(d) ug

Figure 4.3.5: Results of a comparison of analytical modeling and agent-based
simulation under di�erent stranger policies when λg = 5 and λf = 2.

We attribute these di�erences mainly to the downloading pattern of peers used

in the simulation. In fact, in the simulation, we assume that if a peer completes

downloading a �le before the end of a time slot, the peer will be idle until the next

time slot begins.

4.3.3 Stranger Policies Under Di�erent Whitewashers Pop-

ulation Size

In this section, we attempt to provide more insights on the trade-o� between

performance and fairness by using the mathematical model in Equations 4.3.4

4.3.5, 4.3.6 and 4.3.7. Our previous analysis revealed the e�ect of stranger policies

on system performance and fairness, when general peers were the majority of the

93

Chapter 4 Section 4.3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ε

pe
rf

or
m

an
ce

 (
d g)

λ

f
=2

λ
f
=5

λ
f
=10

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ε

 F
ai

rn
es

s
(F

m
)

λ

f
=2

λ
f
=5

λ
f
=10

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ε

w
hi

te
w

as
he

r
do

w
nl

oa
d

ra
te

 (
d f)

λ

f
=2

λ
f
=5

λ
f
=10

(c)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ε

ge
ne

ra
l p

ee
r

up
lo

ad
 r

at
e

(u
g)

λ

f
=2

λ
f
=5

λ
f
=10

(d)

Figure 4.3.6: Analytical results for di�erent stranger policies: (a) and (b) shows
the performance dg and fairness Fm as a function of ε , (c) and (d) show white-
washers average downloading rate and general peers average uploading rate re-
spectively.

whole system (λg � λf). Naturally, we also want to know what will happen

for system performance and fairness when whitewashers begin to dominate the

system, because this scenario is crucial and has been discovered in current P2P

�le-sharing systems [2]. To answer this question, we run the mathematical model

under the following two scenarios where the general peer's arrival rate is still

λg = 5/timeslot, but the whitewasher's arrival rates become λf = 5/timeslot and

λf = 10/timeslot respectively.

The analytical results are shown in Figure 4.3.6. The curve of both performance

and fairness as functions of ε keeps the same shape of the previous analytical re-

sults, when the arrival rate of whitewashers was low. However, by comparing

94

Chapter 4 Section 4.3

the exact values of dg and Fm under the same stranger policy, we �nd overall

system performance and fairness decreases with the increase of whitewashers as

shown in Figure 4.3.6. We attribute this to the growing trend of whitewashers

and to the fact that whitewashers cannot be distinguished from general newcom-

ers under IRMs. Furthermore, we �nd the value of ε for reaching the highest

performance become smaller with the increment of λf , and consequently at these

optimal points the strangers will receive more uploading bandwidth. When the

arrival rates of whitewashers increase, keeping the same value of ε will cause less

bandwidth assigned to general newcomers, who are competing with more and more

whitewhashers. Accordingly, this will reduce the average download rate of general

peers. On the contrary, decreasing the value of ε will allocate more bandwidth

to strangers. Consequently, this will support general newcomers obtain upload-

ing bandwidth relatively quickly, and it will bring more new contributors to the

system early. Unfortunately, as Figure 4.3.6(c) shown, rewarding strangers also

bene�ts whitewashers, who may gain identical or even higher average download

rates than general peers at those optimal performance points.

4.3.4 Summary

Both our analytical and simulation results reveal that, with stranger policies under

the IRMs, the highest system performance and the best fairness cannot be reached

at the same time. The highest performance can be obtained via a trade-o� be-

tween rewarding strangers and restricting them, and the trade-o� level depends

on the population size of free-riders. In other words, free-riders will survive when

the highest performance is reached, which is consistent with the previous discov-

ery in [8], where the authors mathematically proved that free-riders can still exist

under the socially optimal outcome. On the other hand, the extremely restricting

stranger policy could bring the best system fairness, but it also produces the low-

est performance when the load of free-riding is high. In contrast, the extremely

rewarding stranger policy cannot provide the highest performance to the system,

95

Chapter 4 Section 4.4

and it leads to the lowest performance when the load of free-riding is low, addition-

ally, it also degrades the system to the worst fairness. Therefore, we suggest P2P

designers, when designing the indirect reciprocity incentive mechanisms, carefully

choose their stranger policies according to their individual goals.

4.4 Stranger Policies Under the Direct Reciprocity

Mechanism

In this section, we study the stranger policies under the DRMs. The direct reci-

procity incentive mechanisms are used in current popular P2P �le-sharing systems

such as BitTorrent and aMule/eMule. In these P2P �le-sharing systems, each peer

independently exchanges resources with other peers on the basis of its own individ-

ual experience. Compared with the IRMs, the DRMs simplify system implemen-

tation and reduce network tra�c. However, a resourceable general peer under the

DRM may be recognized as a stranger by another resourceable general peer if these

two peers have not exchanged content before. This is because resourceable general

peers will di�erentiate their partners only in accordance with their local historical

knowledge. On the other hand, unlike a P2P system with the IRM, a free-rider in

a P2P network with the DRM can easily obtain the bene�ts intended for strangers

without whitewashing. The reason is that the local knowledge of general peers is

not spread to others, and the current P2P �le-sharing systems have no mechanism

to help peers �nd their previous partners. As a result, free-riders do not need to

worry about their sel�sh behavior toward one peer being known and consequently

being punished by other peers. Thus, whitewashing also becomes unnecessary in

a P2P �le-sharing system with a DRM. This easy free-riding behavior has been

con�rmed by the experimental studies in [2, 18, 21].

Instead of mathematically modeling stranger policies in P2P �le-sharing sys-

tems with the DRMs, we explore them directly through an agent-based simulation

model for accuracy. Otherwise, the probabilities of resourceable general peers be-

96

Chapter 4 Section 4.4

ing recognized as strangers need to be adopted, but this probability is believed to

be very dynamic and will be changed according to many di�erent factors. Follow-

ing those simulation results, we also conduct two case studies about the stranger

policies in both BitTorrent and aMule/eMule.

4.4.1 An Agent-Based Simulation Model

As de�ned in the previous section, each resourceable general peer in this agent-

based simulation model classi�es its partners into two parts - known peers and

strangers. We believe this classi�cation simpli�es the evaluation of stranger poli-

cies. The known peers for a resourceable general peer are its previous partners

uploading content to it. But the resourceable general peer keeps the information

of its known peers locally instead of spreading them globally through a central

server. On the other hand, from the viewpoint of the resourceable general peer,

its stranger may be categorized into 3 types:

• a general newcomer,

• a resourceable general peer without exchanging content before,

• or a free-rider.

Accordingly, each resourceable general peer independently decides the percentage

of its uploading bandwidth to strangers based on the assigned stranger policy.

During the simulation, the central index server is retained. However, unlike our

previous agent-based simulation on stranger policies under the IRMs, this index

server is only in charge of the task related to publishing and retrieving content

information. There are other content searching methods like decentralized-based

query-�ooding and DHT, but searching content centralized or distributed does

not a�ect the usage of stranger policy. Moreover, searching content from central

nodes is still the main method in BitTorrent, and the current design of DHT

prevents them from e�ectively being used [69]. Thus, we ignore the other content

searching methods in the simulation implementation and only adopt the central

97

Chapter 4 Section 4.4

index server for searching content. In this simulation model, the central server is

not responsible for collecting the information of known peers. Instead, each peer

individually maintains its known peers through its local database. Speci�cally,

when a general peer A downloads a �le from another peer B, it will assign a

reputation score to B (this score will be increased when A downloads more content

from B) and record B as a known peer in its local database. If B requests content

from A later, A's uploading bandwidth to known peers will be allocated back to

B according to its own data records rather than consulting with the central index

server. In addition, a free-rider in this model is not a whitewasher any more, so

the free-rider will never change its ID during the whole downloading task.

The remaining settings in the simulation model are the same as in our previous

agent-based simulation under IRMs. Each resourceable general peer maintains two

uploading queues: one for known peers and the other for strangers. In each time

slot, this resourceable general peer assigns ε percentage of its uploading bandwidth

to the peer with the highest reputation score chosen from its uploading queue for

known peers, while it assigns the remaining uploading bandwidth to a peer which

is randomly selected from its uploading queue for strangers. The downloading rate

of each peer is not the limiting factor. The uploading rate of each resourceable

general peer varies with the total amount of its holding content, but the uploading

rate is limited by the uploading capacity 20KB/second. The simulation parameters

are shown in Table 4.2.

We also ran the simulations for di�erent stranger policies (ε = 0.1, 0.2, ..., 0.9

respectively). The general peer's arrival rate was still λg = 5/100sec, but the

whitewasher's arrival rates changed based on the following values: λf = 2/100sec,

λf = 5/100sec and λf = 10/100sec respectively. Each simulation ran for a total

of 15000 cycles, which approximately equaled 17 days (one cycle represents 100

seconds). For each simulation, more than 100,000 peers had participated in the

system for content exchange, and approximately 4000 GB of content had been

simulated for downloading and uploading. During the simulation, we recorded

98

Chapter 4 Section 4.4

each general peer's uploading rate and downloading rate and each free-rider's

downloading rate. At the end of the simulation, we calculated the average value

of these uploading and downloading rates respectively.

4.4.2 Simulation Results

The simulation results under di�erent loads of free-riders are shown in Figure 4.4.1.

We �rst illustrate some intriguing �ndings which are di�erent from the previous

discovery under the IRMs.

• The curve of system performance dg stays relatively �at until a high level

of restricting strangers policy causes dg to decline sharply. Moreover, free-

riders cannot obtain a much higher downloading rate than general peers in

the condition of more preferring to reward strangers (ε < 0.5). The reason is

that in contrast with all resourceable general peers always being recognized

as known peers under the IRMs, some of them are recognized as strangers

under the DRMs. Accordingly, general peers can always be allocated band-

width whenever rewarding stranger policies or restricting stranger policies

are adopted. So the values of d′gs are relatively similar. On the other hand, dg

has a sharp decline because extremely restricting strangers will delay the po-

tential cooperation of general newcomers and consequently reduce the whole

number of uploaders. As a result, the average downloading rate of general

peers is negatively a�ected. To explain the reduced downloading rate of

free-riders, we believe that some resourceable general peers being recognized

as strangers will compete for downloading bandwidth with free-riders, and

consequently, this competition reduces the average downloading rate of free-

riders. It should be pointed out that the above analysis cannot be evidence

of the DRMs being superior to the IRMs. Since the DRMs reduce the cost

of free-riding when compared with IRMs, they may attract more free-riders

to the system.

99

Chapter 4 Section 4.4

• The overall system performance declines little compared with the signi�cant

increase in the load of free-riders. When general peers compete with more

and more free-riders, they obtain less downloading bandwidth and conse-

quently must stay longer in the system to complete their tasks. This con-

versely extends the contribution of general peers to the whole system (This

can be veri�ed with the growing trend of general peer's average uploading

rate ug shown from Figure 4.4.1(a) to 4.4.1(b) to 4.4.1(c).). As a result,

peers can bene�t from general peers' staying longer.

• System fairness also stays relatively �at except when very high levels of re-

stricting strangers is adopted. Even though rewarding stranger policies may

provide bene�t to free-riders, they are also able to bene�t these resourceable

general peers who are considered strangers. As a result, the concrete values

of Fm under the DRMs in Figure 4.4.1 are higher than those under the IRMs

in Figure 4.3.6 when rewarding stranger policies are assigned.

Certainly, these simulation results also show similarity in some respects to the

previous observations under the IRMs. For example, the highest performance and

best fairness of the system under the DRMs cannot be simultaneously reached.

Speci�cally, the extremely restricting stranger policy also brings the best level of

fairness at a cost of performance degradation. The extremely rewarding stranger

policy also leads to the worst fairness. With an increase of free-riding load, both

the system performance and fairness decrease. Thus, a delicate trade-o� in deal-

ing with strangers is also required. In summary, these similar characteristics of

stranger policies under both the IRMs and DRMs will simplify the P2P incentive

design in the future.

100

Chapter 4 Section 4.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ε

 P
er

fo
rm

an
ce

d

g

d
f

u
g

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ε

 F
ai

rn
es

s

F

m

R
s

R
c

(a) λf = 2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ε

 P
er

fo
rm

an
ce

d

g

d
f

u
g

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ε

 F
ai

rn
es

s

F

m

R
s

R
c

(b) λf = 5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ε

 P
er

fo
rm

an
ce

d

g

d
f

u
g

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ε

 F
ai

rn
es

s

F

m

R
s

R
c

(c) λf = 10

Figure 4.4.1: Simulation results for di�erent stranger policies under the DRMs:
(a) shows the performance dg and fairness Fm as a function of ε (the percent of
uploading bandwidth to known peers) when λg = 5 and λf = 2; (b) is in the
condition of λg = 5 and λf = 5; (c) is in the condition of λg = 5 and λf = 10.

101

Chapter 4 Section 4.4

4.4.3 Case Studies: Stranger Policies in Real P2P File-

Sharing Systems

In this section, we elaborate the accuracy of this simulation model through an-

alyzing the currently most popular P2P �le-sharing systems: BitTorrent and

aMule/eMule, which achieve di�erent design goals by adopting di�erent stranger

policies.

4.4.3.1 Case Study 1: BitTorrent's Stranger Policy

BitTorrent adopts an incentive mechanism based on TFT strategies [17]. This

incentive policy aims to maintain fairness in exchanging a single �le. With the

TFT incentive policy, each peer independently chooses its content exchange part-

ners according to their current sharing behaviors. The information of generous or

sel�sh behavior of partners is neither spread nor saved, so BitTorrent's incentive

policy belongs to the DRM. To complete a content exchange process, a resource-

able general peer divides its whole uploading bandwidth into several equal parts.

Following the TFT policy, this resourceable general peer is going to �nd a �xed

number of downloading peers (in the o�cial BitTorrent speci�cation, this number

is set to 4 by default) and upload to them every 10 seconds. These downloaders,

chosen with the TFT policy, are the peers from whom the resourceable general

peer will obtain data with the highest download rates. In addition, the resource-

able general peer also runs an optimistic unchoking strategy [17] every 30 seconds.

With the optimistic unchoking strategy, one of the current downloaders will be

replaced with a randomly selected requester, even though this requester may not

have exchanged content with the resourceable general peer earlier. The goal of

this unchoking strategy is to discover better potential partners and to promote

newcomers.

Through the above analysis, we can deduct that known peers and strangers are

treated di�erently in BitTorrent. The TFT policy is obviously responsible for how

to provide uploading bandwidth to known peers; while the optimistic unchoking

102

Chapter 4 Section 4.4

strategy plays a role of how to allocate partial uploading bandwidth to strangers.

We use �partial bandwidth to strangers�, not the �full bandwidth�, because known

peers can also be selected by optimistic unchoking strategy and therefore possess

some probability of receiving uploading bandwidth.

To explore the design goal of BitTorrent's fairness policy, we develop the fol-

lowing simple analysis. We assume the total number of known peers, general

newcomers, and free-riders in the system are nk, nn, and nf respectively. We also

assume the total upload slots of a resourceable peer ism. The percent of uploading

bandwidth to known peers ε can be directly estimated as follows:

ε =
(m− 1) + (2

3
+ 1

3
nk−m

(nk−m)+nn+nf
)

m
(4.4.1)

≥
m− 1

3

m

= 0.92 when m = 4.

Our estimated value ε is consistent with the result of the previous work in [70],

where the authors indicated ε is equal to 0.94 by carefully modeling the BitTorrent

protocol. After estimating the value of ε, we can analyze the fairness design

goal in BitTorrent according to our agent-based simulation model. Based on our

simulation results that large values of ε will lead to high fairness, we can conclude

that fairness is preferred to performance in BitTorrent. This conclusion is identical

to the discovery shown in [61], where the authors have mathematically modeled

the design trade-o�s of performance and fairness in BitTorrent. Their analysis and

subsequent experiments also revealed that the optimal performance and fairness

in BitTorrent cannot be reached simultaneously, and fairness in BitTorrent is more

emphasized than performance.

Our simulation results also indicate that the large values of ε may bring poor

system performance, which means BitTorrent performance can be further im-

proved. Thus, we believe that BitTorrent performance could still be improved

103

Chapter 4 Section 4.4

when strangers are assigned a little more bandwidth. This can be easily imple-

mented by allocating a few more downloading slots to the optimistic unchoking

strategy, which could consequently reduce the value of ε. Meanwhile, we admit

that BitTorrent's fairness cannot remain at the same level any more as shown in

Figure 4.4.1.

Even though a restricting strangers policy is employed by BitTorrent, previous

works [60, 18] showed that in the real BitTorrent network, free-riders may still

obtain more bene�t (df ≥ dg) than general peers. We believe this situation does

not weak the usage of our simulation model. In fact, the bene�t of free-riders

shown in these researches comes from other design vulnerabilities of BitTorrent.

For example, there is no limitation regarding the searching for sources frequency for

a single peer in BitTorrent. As a result, free-riders can gather many more sources

than general peers by looking up for sources more often, and accordingly, they can

gain more downloading bandwidth than compliant peers [18]. These vulnerabilities

degrade system fairness even if an extremely restricting stranger policy is adopted.

Therefore, in order to implement a speci�c design goal such as keeping the system

fairness in BitTorrent, other appropriate strategies are essentially to be used in

conjunction with the proper stranger policies.

4.4.3.2 Case Study 2: aMule/eMule's Stranger Policy

As another very popular P2P �le-sharing system, aMule/eMule attempts to main-

tain its fairness with a credit-based incentive system. Unlike the TFT policy in

BitTorrent, credit in aMule/eMule is used to maintain the fairness of content ex-

change over a long-term period. The credit system regulates that the unconsumed

credit can reside with peers for several months [8], so peers can use the credit

when they download multiple �les in the future. Since credit operations only exist

between the service provider and its direct service recipients, the fairness policy in

aMule/eMule belongs to DRMs. Considering the few investigations about the fair-

ness strategy of aMule/eMule to strangers, in the following we study the stranger

104

Chapter 4 Section 4.4

policy of aMule/eMule with real world experiments and agent-based simulations.

Design Goal of Fairness Policy to Strangers

The credit system is designed to reward sharing behavior explicitly. Speci�cally,

when downloader A �nds uploader B with desired content, A sends downloading

request to B. B, upon receiving the request, will put A into its uploading queue.

A's position in the queue depends on its credit score Cs [16] obtained from B

previously. The credit system uses the following equation to calculate the credit

score:

Cs = Rm × Tc (4.4.2)

In this equation, Tc represents the duration that peer A stays in B's uploading

queue, and Rm denotes the level of the previous contribution from A to B. More

than that, Rm is normalized between 1 and 10, which not only avoids explicitly

punishing any peer, but also tries to promote cooperation of strangers by assigning

Rm = 10 to strangers. In other words, with the same uploading queue staying

time, a stranger will normally obtain higher priority for downloading than a peer

contributing to the uploader as before, but its contribution level is less than 10.

Therefore, we can say that an extremely rewarding stranger policy is employed

in aMule/eMule. According to our simulation results shown in Figure 4.4.1, we

believe that the fairness in aMule/eMule is low, even though its performance

under the current stranger policy can be high. In addition, we have the following

predictions based on our simulation:

• Free-riders will have similar average downloading rates as general peers in

aMule/eMule.

• The uploading rate of general peers is much higher than its downloading

rate.

105

Chapter 4 Section 4.4

• Improving system fairness gradually will avoid a large reduction of system

performance.

Experiment in Real aMule/eMule

To verify our prediction, we develop an experimental study in the real aMule/eMule.

• To implement a free-rider client, we modi�ed one of the popular client ver-

sions of aMule/eMule, eMule v0.49C. This modi�ed client will only down-

load content from others and will not upload content at all. We also use an

unmodi�ed client eMule v0.49C to represent the general peer. These two

clients are set up to have the same download capacity and upload capacity.

They are separately installed on two computers with the same con�guration

in the same local network.

• After choosing the same desired content, we enabled these two peers to

join the real network at the same time and leave the system when their

downloading jobs were completed. Using the sources searching algorithm

in aMule/eMule, both peers randomly selected their partners with di�erent

uploading/downloading capacities and di�erent distances during the tests.

At the end of the downloading process, each peer's average downloading rate

and average uploading rate were calculated.

As the credit system tries to maintain fairness among single �le/multiple �les

downloading processes over a long time period, we accordingly implement seven

di�erent tests. Tests 1-5 represent measuring the downloading process of a single

�le with di�erent sizes; Tests 6 and 7 represent measuring the downloading process

of multiple �les within a long-term period. In addition, in our tests the general

peer and the free-rider are assigned non-credit at the beginning of tests, so we can

evaluate our prediction with the same credit baseline for both of these two peers.

For the �rst 5 tests, the total amount of downloading content is within 100MB,

100-300MB, 300-600MB, 600-900MB, and 900-1800MB respectively. To keep the

test accurate, we test each of them multiple times and sample a wide range of

106

Chapter 4 Section 4.4

downloading material of di�erent types of popular non-copyright content (free

Audio, free Video, free Books, etc.) for each trial. After each download, the

content is moved out of the sharing folder, and the test peers' IDs are randomly

recreated to remove the previous credit e�ect.

For the sixth test, we select a very popular Asian TV show series (15 episodes)

which are new and published online on and o� for about two months as the

downloading resources. The total amount of downloading content is 4250MB. For

the seventh test, the downloaded content is selected more generally from a large

scope of popular non-copyright materials with di�erent sizes. The total amount

of content is 6040MB, and the total test time is about one month. During both of

these two tests, each peer's ID is retained until they downloaded the last piece of

content. Since the free-rider client does not change its ID during these two tests,

these tests also attempts to verify our prediction: under the DRM free-riders do

not need to whitewash.

Experimental Results

The experiments in the real aMule/eMule took place over more than two months

from August 2009 to October 2009. Each peer downloaded over 100GB content.

The experimental results are shown in Table 4.3, Table 4.4, Table 4.5, and Figure

4.4.2 respectively. As predicted with our simulation model, we �nd that under the

extremely rewarding stranger policy:

• the free-rider receives a very similar average downloading rate as the general

peer,

• and the average uploading rate of the general peer is much higher than its

average downloading rate.

The accuracy of the simulation model is veri�ed again by the match of the ex-

perimental results and our predictions. On the other hand, a concern about the

e�ciency of the fairness policy in aMule/eMule may be issued due to the ease of

free-riding. Our simulation results indicate to set the value of ε relatively larger

107

Chapter 4 Section 4.4

Table 4.3: Test results in aMule/eMule

Test No. 1 2 3 4 5 6 7

Number of

Chunks

≤10 10~32 32~65 65~97 97~194 461~563 71~699

Total Amount

(MB)

0 ~ 100 100 ~ 300 300 ~ 600 600 ~ 900 900~1800 4250 6040

Test Trials 32 36 31 32 36 1 1

General Peer's

Avg. Source No.

110 177 245 556 167 232 223

Free-Rider's Avg.

Source No.

101 186 249 506 152 228 210

General Peer's

Avg. Download

Rate (KB/s)

17.84 30.23 32.44 65.96 42.08 47.5 35.18

General Peer's

Avg. Upload

Rate (KB/s)

35.4 85.2 144.4 118.4 83.0 85.6 60.43

Free-Rider's Avg.

Download Rate

(KB/s)

17.14 31.46 29.19 52.67 36.39 49 37.63

Free-Rider's Avg.

Upload Rate

(KB/s)

0 0 0 0 0 0 0

can mitigate this problem. That is, increasing the value of ε can restrict free-riding

as well as to maintain the same level of system performance. This mitigation can

be easily implemented in aMule/eMule, if each resourceable peer adaptively ad-

justs the value of the modi�er Rm assigned to its strangers, instead of directly

giving the maximum value 10 to them.

Fairness vs. Performance for aMule/eMule

With the prediction of our simulation results, we can avoid largely decreasing

system performance while gradually improving system fairness. To control free-

riding behavior, we could require each resourceable peer to adaptively adjust the

value of the modi�er Rm assigned to its strangers, instead of directly assigning the

maximum value 10. That is, giving more uploading bandwidth to known peers.

By simulating aMule/eMule through the agent-based technology, we verify the

impact of changing the stranger policies on the system performance. The simula-

108

Chapter 4 Section 4.4

Table 4.4: Detailed results of test 6 in aMule/eMule

Trial No. File Size (MB) General Peer's

Download

Rate (KB/s)

General Peer's

Upload Rate

(KB/s)

Free-Rider's

Download

Rate (KB/s)

1 295 31.59 81.12 26.68

2 328 42.18 84.46 44.31

3 348 67.31 87.26 79.09

4 311 40.88 88.99 42.25

5 293 64.72 89.09 55.98

6 315 45.65 84.62 55.38

7 286 51.02 86.22 59.6

8 305 48.19 87.98 48.85

9 289 65.65 81.84 66.4

10 299 35.67 89.26 35.16

11 296 33.74 74.33 25.47

12 296 55.25 86.46 58.94

13 288 44.38 85.42 49.91

14 286 42.54 85.93 42.98

15 289 43.75 87.81 44.56

�

��

��

��

��

���

���

���

���

� � � � � � 	

���������

����������������������

�������������������

����������

(a)

�

��

��

��

��

��

��

��

	�

�

���

� � � � � � �

�������������������

����������

������ �

����������������������

(b)

Figure 4.4.2: (a) general peer's average downloading rate vs. its average uploading
rate; (b) general peer's average downloading rate vs. free-rider's average down-
loading rate

tor comprises two components: one ED2K index server node, and client nodes of

aMule/eMule. The server node undertakes the publication of sharing content in-

formation and maintains the list of on-line nodes. Each client node independently

exchanges content with others by running most of the functions of the client soft-

ware of aMule/eMule. For example, each node in the simulator maintains its

uploads by queuing technology. Each node will also perform aMule/eMule's in-

herent source searching methods such as eD2K server mehtod, Source-Exchange

109

Chapter 4 Section 4.4

Table 4.5: Detailed results of test 7 in aMule/eMule

Trial No. File Size (MB) General Peer's

Download

Rate (KB/s)

General Peer's

Upload Rate

(KB/s)

Free-Rider's

Download

Rate (KB/s)

1 388 62.12 102.19 92.88

2 427 19.19 30.18 41.78

3 433 14.37 30.23 12.38

4 394 41.29 66.36 29.7

5 328 56.26 78.01 55.22

6 377 5.46 10.00 4.95

7 365 31.86 55.49 23.91

8 348 38.59 70.66 48.15

9 385 25.84 52.37 28.59

10 419 61.01 110.08 60.02

11 364 38.63 50.95 34.21

12 446 28.93 55.77 25.6

13 407 7.64 12.27 6.5

14 347 16.25 35.05 58.78

15 135 17 30.22 15.24

16 252 55.15 55.15 57.72

17 699 60.41 97.85 63.73

18 74 31.75 70.24 23.24

19 71 18.15 40.33 15.62

20 277 73.71 155.20 53.3

Average 302 35.18 60.43 37.63

method, and Passive method to locate content sources. Since currently few use-

ful sources can be obtained from the KAD network, we choose to not implement

the KAD network function in the simulation. On the other hand, to evaluate

the di�erent impacts of stranger policies on system performance, we fully imple-

mented the function of the credit system of aMule/eMule. As a result, general

peers sharing di�erent amount of content are assigned di�erent credit values.

Simulation Setup

We introduced 10,000 client nodes and a single ED2K index server node into

our simulation. The server node was always on-line, while the client nodes were

randomly on-line or o�-line. For these clients, 10 percent of them are free-riders,

and the others are general peers. To simplify the simulation and concentrate on

evaluating the stranger policies, we assigned each client node the same download

110

Chapter 4 Section 4.4

and upload bandwidth, 20KB/second. In the simulation, each client node must

download a total of 48 �les of the same size, 1000KB. The simulation time slot

was de�ned as 100 seconds. At the beginning of each simulation, 100 general peers

were already on-line in the system, and each of them randomly shared a di�erent

number of �les, while the maximum numbers of shareable �les were limited to

48. Every general peer performed content exchange processes according to the

sequence: �rst discovering sources via di�erent sources searching algorithms, and

then both downloading from these sources and sharing �les to other peers; while

every free-rider did the same steps except for uploading their content. The peers

�nishing a �le download might be continuously on-line to download the next �le, or

temporarily o�-line with 2 time slots (200 seconds) on average, and then resuming

the task again. This process kept running until the peers completed the whole

task and chose to be permanently o�-line.

To verify the prediction of our simulation model, we simply test two stranger

policies for comparison. One is the original policy where strangers are given the

maximum value of Rm: 10. The other one is the kindly restricting stranger policy

where strangers are given the value of Rm: 5. Since we still keep the maximum

value of Rm: 10, this setting will give less uploading bandwidth to strangers.

�

����

���

����

���

����

���	��� ��	�

��������������������

����

������������

����������������

Figure 4.4.3: Simulation result showing a general peer's downloading rate vs. a
free-rider's downloading rate

The simulation result is shown in Figure 4.4.3. With less uploading rate given

111

Chapter 4 Section 4.5

to strangers, the average downloading rate of general peers is not reduced too

much, while the average downloading rate of free-riders has a noticeable decrease.

Again, this simulation veri�es our prediction that improving system fairness grad-

ually will avoid the large reduction of system performance. However, simply reduc-

ing uploading bandwidth to strangers cannot entirely solve the free-riding issue,

because free-riders can still obtain enough bene�t from other design issues in the

P2P �le-sharing systems. For example, as we mentioned earlier, free-riders in the

BitTorrent network can obtain similar downloading rate as general peers by col-

lecting more downloading sources. Similarly, free-riders in aMule/eMule can also

collect much more sources than general peers. To solve this issue, our previous

work [45] proposed a novel free-riding control scheme for strengthening system

fairness, and the details are shown in Appendix A.

In the real world, users may feel that the downloading rate in BitTorrent is

higher than that in aMule/eMule, even though the performance is further em-

phasized in aMule/eMule. The reason is that system performance is also a�ected

by other factors, e.g. the chunk size of a �le and the e�ciency of the searching

downloading sources. A previous study in [71] pointed out that the overlarge of

the chunk size (over 2MB) in P2P �le-sharing networks will signi�cantly reduce

system performance. Correspondingly, the chunk size of a �le is de�ned as 256KB

in BitTorrent, while 9.28MB in aMule/eMule. So again, to develop a successful

P2P �le-sharing system, other appropriate strategies are essentially to be used in

conjunction with an appropriate stranger policies.

4.5 Conclusion

In this chapter, we focuses on better understanding the challenge of designing

stranger policies in a general P2P �le-sharing system with an open environment.

Current P2P systems use reciprocity-based incentive mechanisms to maintain sys-

tem fairness. However, since free-riders/whitewashers cannot easily be distin-

112

Chapter 4 Section 4.5

guished from general newcomers, inappropriately treating strangers may reduce

system performance or fairness. Therefore, the impact of a broad range of stranger

policies from extremely rewarding strangers to extremely restricting them is evalu-

ated under the indirect reciprocity incentive mechanism and the direct reciprocity

incentive mechanism.

• In the case of indirect reciprocity incentive mechanisms being used, both an

analytical model and an agent-based simulation are adopted for evaluation.

Performance and fairness as functions of stranger policies are shown in Figure

4.3.6 and are characterized by speci�c behaviors. The highest performance

of the system is obtained when both known peers and strangers are allocated

some bandwidth, and accordingly free-riders will survive. Correspondingly,

the best fairness is obtained when the extremely restricting stranger policy

is used. Thus, highest performance and best fairness cannot be reached at

the same time.

• In the case of the direct reciprocity incentive mechanism being used, an

agent-based simulation model is developed. The simulation results reveal

that the system performance and fairness have gradually change under dif-

ferent stranger policies except when extremely restricting strangers (Figure

4.4.1). When the extremely restricting stranger policy is applied, systems

will obtain the best fairness but the lowest performance. When the ex-

tremely rewarding stranger policy is applied, systems almost achieve their

highest performance. This simulation model also provides insight on di�erent

design emphases for dealing with strangers in BitTorrent and aMule/eMule.

Through two case studies, we verify the prediction from our simulation re-

sults that strangers are extremely restricted in BitTorrent while extremely

rewarded in aMule/eMule.

113

Chapter 5

Conclusions and Future Work

This dissertation focuses on several research challenges on P2P fairness. In this

chapter, we summarize the main results obtained in studying these research prob-

lems, and then we suggest possible future work for additional research topics.

5.1 Conclusions

Maintaining fairness is necessary in P2P �le-sharing systems. In this dissertation,

we study P2P �le-sharing fairness issues: the issue of maintaining fairness during

the content information publishing/retrieving process and the issue of designing

e�ective stranger policies on P2P fairness.

5.1.1 The Necessity of Fairness Maintenance During The

Content Information Publishing/Retrieving Process

Exchanging content in P2P �le-sharing systems includes two fundamental steps:

the process of publishing/retrieving content information and the process of ex-

changing real content with other peers. While maintaining fairness for real con-

tent exchange has been widely studied, the necessity of maintaining fairness for

the content information publishing/retrieving process has been overlooked.

In Chapter 3, through experiments in the KAD network, we attempt to analyze

114

Chapter 5 Section 5.1

the necessity of maintaining fairness during the content information lookup pro-

cess in P2P networks. We conduct several large-scale measurements to analyze the

maintenance of both routing and publishing tables which are the key components

in the publishing/retrieving process. By deploying our distributed measurement

framework on the PlanetLab testbed, we �rst test the availability and the simi-

larity of peers' routing tables. Our results show that on average more than 80%

of nodes in the routing table are online and less than 25% of records are the same

among di�erent routing tables of peers belonging to a searching tolerance zone.

This means that the routing table is well maintained, and a peer can use it to �nd

desired peers easily. After that, we measure the SLI publishing table and �nd that

on average only around 25% of items in this table are online. Furthermore, our

measurement reveals that over 75% of peers leave the system within one hour after

publishing content. By analyzing the KAD protocol, we discover that the current

maintenance method for the publishing table, the poorly designed incentive policy,

and the sel�shness of the publishing peer are the reasons for the low availability

of the publishing table. Consequently, these reasons cause the poor lookup per-

formance of the KAD network. Therefore, our experiments' results show that the

system, designed for helping users publish and retrieve content information, could

be almost useless, if it lacks an e�ective incentive policy. Based on our discoveries,

we propose three possible schemes to improve the lookup performance.

5.1.2 Stranger Policies on P2P Fairness

Since strangers in P2P �le-sharing systems can be either general peers or free-

riders, when designing a stranger policy, restricting strangers is not necessarily

better/worse than rewarding strangers for system performance and fairness. How-

ever, few quantitative evaluations for di�erent stranger policies currently exist in

literature.

In Chapter 4, we focus on better understanding the challenge of designing

stranger policies in a general P2P �le-sharing system with an open environment.

115

Chapter 5 Section 5.2

Current P2P systems either solely reward strangers or restrict them alternatively,

which may reduce system performance or fairness. In the case of the indirect

reciprocity incentive mechanism being used, we adopt both a numerical analysis

and an agent-based simulation to evaluate the impact of a broad range of stranger

policies from extremely rewarding strangers to extremely restricting them. We

found the highest performance and the best fairness cannot be reached at the

same time. The highest performance of the system is obtained when some band-

width is allocated to both known peers and strangers, and accordingly, free-riders

will survive. Correspondingly, the best fairness is obtained when the extremely

restricting stranger policy is used. In the case of the direct reciprocity incentive

mechanism being used, we design an agent-based simulation model and use it to

reveal that the system performance and fairness changed gradually under di�erent

stranger policies except when extremely restricting strangers. We �nd that sys-

tems will obtain the best fairness, but the lowest performance when an extremely

restricting stranger policy is applied. On the other hand, systems almost achieve

their highest performance when an extremely rewarding stranger policy is applied.

With this simulation model, we can also predict the di�erent design emphases for

dealing with strangers in BitTorrent and aMule/eMule, where strangers are ex-

tremely restricted in BitTorrent while extremely rewarded in aMule/eMule. These

predictions are veri�ed with experimental studies and agent-based simulations.

5.2 Future Work

In the future, the possible research topics in maintaining fairness of the content

information publishing/retrieving process in the KAD network and on the design

of stranger policies can be directed as follows.

116

Chapter 5 Section 5.2

5.2.1 Future work on studying fairness design in KAD net-

work

According to several possible improvements discussed in Chapter 3 on overcoming

low lookup e�ciency in the KAD network, future work can be to study the impacts

of these modi�cations on the KAD performance through quantitative analysis or

simulation. Moreover, additional work has to been done on designing an e�cient

incentive policy for the KAD network. In order to achieve this task, designers may

need to answer the following questions:

• which kind of incentive scheme (e.g. incenting generous behavior of peers

through monetary payment or through reciprocity trading) should be em-

ployed?

• How can we e�ectively alleviate sel�sh behavior and prolong peers' staying

time?

• To implement the fairness policy, should the fully distributed infrastructure

of the KAD network be maintained? Or should some central control nodes

be introduced into the system?

• Can the new designed fairness policy been easily implemented in the current

KAD network?

5.2.2 Future Work on Studying Stranger Policies

Our studies covers the stranger policies under both the IRM and the DRM. How-

ever, there still exists a potential research direction: the stranger policies under

regional incentive mechanisms. Regional incentive mechanisms have just been pro-

posed recently in [38, 41], where the historical behavior of a peer could be spread

within a limited scope. Since dealing with strangers bring additional complexity to

fairness design, it is necessary to consider the possibility of distinguishing general

strangers from free-riding strangers. For example,

117

Chapter 5 Section 5.2

• is the popular social network technology helpful in distinguishing strangers

in a P2P �le-sharing system?

• Which kind of technology is suitable for analyzing stranger policies under

the regional incentive mechanisms?

Another possible research direction is to improve the accuracy of both our ana-

lytical and simulation model. For example,

• in the analysis model, we assume peers' arrival according to the Poisson

distribution. In reality, the arrival pattern may also be a�ected by the

content popularity. Thus, other possible distributions should be considered

when modeling the arrival of peers.

• We also assume peers will stay into the system until they complete the entire

task. However, due to some uncontrollable reasons, peers may permanently

leave the system during the downloading process. Considering this situation

will also bring more accuracy to our model.

• In the simulation model, the simulation ability of our method may be lim-

ited by the central node. However, this situation can be mitigated through

distributed simulation methods. With the introduction of additional super

nodes, the original simulation structure can be replaced by a new hierar-

chical distributed structure, so the scalability of simulation system will be

expended and the delay of simulation will be reduced.

118

Bibliography

[1] Internet Study Retrieved Nov 12 2010 from,

�http://www.ipoque.com/resources/internet-studies/internet-study-2008-

2009.�

[2] E. Adar and B. A. Huberman, �Free riding on gnutella,� 2000. [Online].

Available: http://www.�rstmonday.dk/issues/issue510.2000

[3] M. Feldman and J. Chuang, �Overcoming free-riding behavior in peer-to-peer

systems,� SIGecom Exch., vol. 5, pp. 41�50, 2005.

[4] D. S. Menasche, L. Massoulie, and D. Towsley, �Reciprocity and barter in

peer-to-peer systems,� in Proc. IEEE INFOCOM, 2010, pp. 1�9.

[5] M. Feldman, K. Lai, I. Stoica, and J. Chuang, �Robust incentive techniques

for peer-to-peer networks,� in Proceedings of the 5th ACM conference on Elec-

tronic commerce. New York, NY, USA: ACM, 2004, pp. 102�111.

[6] Gnutella Retrieved Dec 12, 2012, from,

�http://http://en.wikipedia.org/wiki/gnutella.�

[7] D. Hughes, G. Coulson, and J. Walkerdine, �Free riding on gnutella revisited:

the bell tolls?� IEEE Distributed Systems Online, vol. 6, p. 1, 2005.

[8] R. Krishnan, M. D. Smith, Z. Tang, and R. Telang, �The impact of free-riding

on peer-to-peer networks,� in Proc. 37th Annual Hawaii Int System Sciences

Conf, 2004.

[9] M. Feldman, C. Papadimitriou, J. Chuang, and I. Stoica, �Free-riding and

whitewashing in peer-to-peer systems,� IEEE JOURNAL ON SELECTED

AREAS IN COMMUNICATIONS, vol. 24, no. 5, pp. 1010�1019, 2006.

119

http://www.firstmonday.dk/issues/issue510. 2000

[10] L. Ramaswamy and L. Liu, �Free riding: A new challenge to peer-to-peer �le

sharing systems,� In Proceedings: HICSS, 2003.

[11] R. Sherwood, S. Lee, and B. Bhattacharjee, �Cooperative peer groups in nice,�

Computer Networks, vol. 50, no. 4, pp. 523�544, 2006.

[12] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, �The eigentrust algo-

rithm for reputation management in p2p networks,� in Proceedings of the 12th

international conference on World Wide Web. Budapest, Hungary: ACM,

2003, pp. 640�651.

[13] Z. Liu, H. Hu, Y. Liu, K. W. Ross, Y. Wang, and M. Mobius, �P2p trading in

social networks: The value of staying connected,� in Proc. IEEE INFOCOM,

2010, pp. 1�9.

[14] B. Q. Zhao, J. C. S. Lui, and D.-M. Chiu, �Analysis of adaptive incentive

protocols for p2p networks,� in Proc. IEEE INFOCOM 2009, 2009, pp. 325�

333.

[15] aMule O�cical Website Retrieved Feb 12, 2012, from,

�http://www.amule.org.�

[16] eMule O�cical Website Retrieved Dec 12, 2012, from,

�http://www.emule/edonkey-project.net/.�

[17] B. Cohen, �Incentives build robustness in bittorrent,� 1st Workshop on Eco-

nomics of Peer-to-Peer Systems 2003, 2003.

[18] M. Sirivianos, J. H. Park, R. Chen, and X. Yang, �Free-riding in bittorrent

networks with the large view exploit,� IN IPTPS 2007, 2007.

[19] T. Locher, D. Mysicka, S. Schmid, and R. Wattenhofer, �A peer activity

study in edonkey and kad,� in International Workshop on Dynamic Networks:

Algorithms and Security (DYNAS), 2009.

120

[20] S. Handurukande, A. Kermarrec, F. L. Fessant, L. Massoulie, and S. Patarin,

�Peer sharing behaviour in the edonkey network, and implications for the

design of server-less �le sharing systems,� ACM SIGOPS Operating Systems

Review, vol. 40, p. 371, 2006.

[21] Y. Li, D. Gruenbacher, and C. Scogolio, �Only reward is not enough: Eval-

uating and improving the fairness policy of the p2p �le sharing network

emule/edonkey,� Journal of Peer-to-Peer Networking and Applications, vol. 5,

pp. 40�57, 2012.

[22] PlanetLab Retrieved Dec 12, 2012, from,, �http://www.planet-lab.org/.�

[23] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,

�Chord: A scalable peer-to-peer lookup service for internet applications,�

in Proceedings of the ACM SIGCOMM Conference, San Diego, California,

August 2001.

[24] P. Maymounkov and D. MaziÃ²res, �Kademlia: A peer-to-peer information

system based on the xor metric,� in In Proceedings of the 1st International

Workshop on Peer-to-Peer Systems (IPTPS), 2002.

[25] M. Steiner, T. En-Najjary, and E. W. Biersack, �A global view of kad,� in In

ACM Internet Measurement Conference (IMC), 2007.

[26] eDonkey Retrieved Dec 12, 2012, from,

�http://en.wikipedia.org/wiki/edonkey-network.�

[27] C. Dellarocas, �Immunizing online reputation reporting systems against un-

fair ratings and discriminatory behavior,� 2nd ACM conference on Electronic

commerce 2000, 2000.

[28] H. Nishida and T. Nguyen, �A global contribution approach to maintain fair-

ness in p2p networks,� IEEE TRANSACTIONS ON PARALLEL AND DIS-

TRIBUTED SYSTEMS, vol. 21, pp. 812�826, 2010.

121

[29] R. Brunner, �A performance evaluation of the kad-protocol,� Master's thesis,

Institute Eurecom, 2006.

[30] A. I. T. Rowstron and P. Druschel, �Pastry: Scalable, decentralized object

location, and routing for large-scale peer-to-peer systems,� in Proceedings of

the IFIP/ACM International Conference on Distributed Systems Platforms.

London, UK: Springer-Verlag, 2001, pp. 329�350.

[31] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Ku-

biatowicz, �Tapestry: A resilient global-scale overlay for service deployment,�

IEEE Journal on Selected Areas in Communications, vol. 22, no. 1, pp. 41�53,

Jan. 2004.

[32] aMule O�cical Website, �amule,� http://amule.forumer.com/index.php.

[33] M. Steiner, E. W. Biersack, and T. Ennajjary, �Actively monitoring peers in

kad,� in In Proceedings of the 6th International Workshop on Peer-to-Peer

Systems (IPTPS), 2007.

[34] D. Stutzbach and R. Rejaie, �Improving lookup performance over a widely-

deployed dht,� in In 25th IEEE International Conference on Computer Com-

munications (INFOCOM), 2006.

[35] J. Yu, C. Fang, J. Xu, E.-C. Chang, and Z. Li, �Id repetition in kad,� in IEEE

International Conference on Peer-to-Peer Computing, 2009.

[36] M. Steiner, D. Carra, and E. W. Biersack, �Faster content access in kad,� in

in IEEE Peer-to-Peer Computing (IEEE P2P), 2008.

[37] G. Memon, R. Rejaie, Y. Guo, and D. Stutzbach, �Large-scale monitoring

of dht tra�c,� in In Proceedings of 8th International Workshop Workshop on

Peer-to-Peer Systems (IPTPS), 2009.

[38] M. Steiner, T. En-najjary, and E. W. Biersack, �Exploiting kad: Possible uses

and misuses,� ACM SIGCOMM CCR, vol. 37, pp. 65�69, 2007.

122

[39] J. Douceur and J. S. Donath, �The sybil attack,� USENIX IPTPS, 2002.

[40] Distributed Denial of Service Attack Retrieved Dec 12, 2012, from,

�http://en.wikipedia.org/wiki/denial-of-service-attack.�

[41] M. Steiner, T. En-Najjary, and E. W. Biersack, �Long term study of peer be-

havior in the kad dht,� IEEE/ACM TRANSACTIONS ON NETWORKING,

vol. 17, pp. 1371�1384, OCTOBER 2009.

[42] H. J. Kang, E. Chan-Tin, N. J. Hopper, and Y. Kim, �Why kad lookup fails,�

in in IEEE Peer-to-Peer Computing (IEEE P2P), 2009.

[43] Python O�cal Website Retrieved Dec 21, 2012, from,

�http://www.python.org.�

[44] D. Stutzbach and R. Rejaie, �Understanding churn in peer-to-peer networks,�

in In Internet Measurement Conference(IMC), 2006.

[45] Y. Li, D. Gruenbacher, and C. Scoglio, �Reward only is not enough: Eval-

uating and improving the fairness policy of the p2p �le sharing network

emule/edonkey,� Peer-to-Peer Networking and Applications, vol. 5, pp. 40�57,

2011.

[46] M. R. Rahman, �A survey of incentive mechanisms in peer-to-peer systems,�

Cheriton School of Computer Science, University of Waterloo, Tech. Rep.,

2009.

[47] Z. Ge, D. R. Figueiredo, S. Jaiswal, J. Kurose, and D. Towsley, �Modeling

peer-peer �le sharing systems,� INFOCOM, 2003.

[48] Zipf's Law Retrieved Dec 12, 2012, from, �http://en.wikipedia.org/wiki/zipfs-

law.�

[49] M. Lin, B. Fan, J. C. S. Lui, and D.-M. Chiu, �Stochastic analysis of �le-

swarming systems,� Perform. Eval., vol. 64, no. 9-12, pp. 856�875, 2007.

123

[50] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi, Queueing Networks

and Markov Chains Modeling and Performance Evaluation with Computer

Science Applications. Johe Wiley & sons, 1998.

[51] D. Qiu and R. Srikant, �Modeling and performance analysis of bittorrent-like

peer-to-peer networks,� in In ACM SIGCOMM. Portland, Oregon, USA:

ACM, 2004, pp. 367�378.

[52] Little's Law Retrieved Dec 12, 2012, from,

�http://en.wikipedia.org/wiki/littles-law.�

[53] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang, �A perfor-

mance study of bittorrent-like peer-to-peer systems,� IEEE JOURNAL ON

SELECTED AREAS IN COMMUNICATIONS, vol. 25, no. 1, pp. 155�169,

2007.

[54] Y. Tian, D. Wu, and K.-W. Ng, �Modeling, analysis and improvement for

bittorrent-like �le sharing networks,� IEEE INFOCOM 2006, 2006.

[55] S. Petrovic and P. Brown, �Large scale analysis of the edonkey p2p �le sharing

system,� in In Processings of INFOCOM 2009, IEEE, Rio de Janeiro, Apr.

2009.

[56] M. Izal, G. Urvoy-Keller, E. W. Biersack, P. A. Felber, A. A. Hamra, and L. G.

Erice, �Dissecting bittorrent: Five months in torrent's lifetime,� Passive and

Active Network Measurement In Passive and Active Network Measurement

(2004), pp. 1�11, 2004.

[57] J. A. Pouwelse, P. Garbacki, D. H. J. Epema, and H. J. Sips, �The bittorrent

p2p �le-sharing system: Measurements and analysis,� In 4th International

Workshop on Peer-to-Peer Systems (IPTPS) 2005, 2005.

[58] J. Yang, H. Ma, W. Song, J. Cui, and C. Zhou, �Crawling the edonkey net-

work,� in Proc. Fifth Int. Conf. Grid and Cooperative Computing Workshops

GCCW '06, 2006, pp. 133�136.

124

[59] L. Plissonneau, J.-L. Costeux, and P. Brown, �Detailed analysis of edonkey

transfers on adsl,� in Proc. 2nd Conf. Next Generation Internet Design and

Engineering NGI '06, 2006.

[60] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer, �Free riding in bittorrent

is cheap,� IN HOTNETS 2006, 2006.

[61] B. Fan, J. C. S. Lui, and D.-M. Chiu, �The design trade-o�s of bittorrent-

like �le sharing protocols,� IEEE/ACM Transactions on Networking (TON),

vol. 17, no. 2, pp. 365�376, 2009.

[62] Y. Li, D. Gruenbacher, and C. Scoglio, �Evaluating stranger policies in p2p

�le-sharing systems with reciprocity mechanisms,� Computer Network Jour-

nal, Elsevier, vol. 4, pp. 1470�1485, 2012.

[63] NetLogo Retrieved Dec, 12, 2012 from,

�http://ccl.northwestern.edu/netlogo/.�

[64] F. C. Billari, T. Fent, A. Prskawetz, and J. Sche�ran, �Agent-based compu-

tational modelling: An introduction,� In book: Agent-Based Computational

Modelling - Applications in Demography, Social, Economic and Environmen-

tal Sciences, pp. 1�16, 2006.

[65] M. Niazi and A. Hussain, �Agent-based tools for modeling and simulation

of self-organization in peer-to-peer, ad hoc, and other complex networks,�

Communications Magazine, IEEE, vol. 47, pp. 166 � 173, 2009.

[66] M. Sasabe, N. Wakamiya, and M. Murata, �User sel�shness vs. �le availability

in p2p �le-sharing systems: Evolutionary game theoretic approach,� Peer-to-

Peer Networking and Applications, vol. 3, pp. 17�26, 2009.

[67] M. Yang, H. Chen, B. Y. Zhao, Y. Dai, and Z. Zhang, �Deployment of a

large-scale peer-to-peer social network,� In Proceedings of Usenix workshop

on real, large distributed systems (WORLDS)., 2004.

125

[68] G. Swamynathan, K. C. Almeroth, and B. Y. Zhao, �The design of a reliable

reputation system,� Electron Commer Res (2010) 10, 2010.

[69] Y. Li, D. Gruenbacher, and C. Scoglio, �Understanding lookup performance

de�ciencies in the kad network,� in 8th IEEE International Conference on

Collaborative Computing: Networking, Applications and Worksharing, Octo-

ber 14-17, Pittsburgh, PA, USA, 2012.

[70] Y. Tian and D. Wu, �Performance analysis and improvement for bittorrent-

like �le sharing systems,� Concurrency and Computation: Practice and Ex-

perience, CCPE Journal 2007, Jun. 2007.

[71] P. Marciniak, N. Liogkas, A. Legout, and E. Kohler, �Small is not always

beautiful,� In IPTPS' 2008, 2008.

126

Appendix A

A new free-riding control scheme

To deal with free-riding behavior, we could require each resourceable peer adap-

tively adjusts the value of the modi�er Rm assigned to its strangers, instead of

directly giving the maximum value 10 to them. That is, give more uploading

bandwidth to known peers. However, this strategy cannot entirely solve the free-

riding issue, because free-riders can still obtain enough bene�t from the other

design issues in the P2P �le-sharing systems. For example, as we mentioned ear-

lier, free-riders in the BitTorrent network can obtain similar downloading rate

as general peers by collecting more downloading sources. Similarly, free-riders in

aMule/eMule can also collect much more sources than general peers. To solve

this issue, we propose a novel free-riding control scheme for strengthening system

fairness.

As we mentioned in the background section, two steps are necessary to com-

plete the downloading task: one is to �nd the content sources at �rst, and then

downloading the content from these sources. Since more download sources usually

means higher download rate in P2P �le sharing networks, the basic concept of our

control scheme is to assign di�erent number of sources to each peer according to

its credit. Therefore, not only would contributors be rewarded with credit but also

free-riders would be penalized by the restricted knowledge of available sources.

Our policy for allocating source information is based on the credit of peers.

127

After receiving sources requests, the general peer will return a di�erent number of

sources according to the credit that the requester has. The detailed policy is as

follows.

• For the requester who contributed enough content to this general peer, i.e.,

the credit earned from this general peer is high, the general peer would

provide all its known sources information. To judge whether the requester's

contribution is enough, we can require the general peer to use a threshold

like the average credit value of its former service providers as the judgment

metric.

• For the requester whose credit value is lower than the threshold or with-

out credit, the number of returned sources from this general peer would

be proportional to the requester's credit. This rule addresses the situation

of rate-limit contributions, where peers prefer to control their upload rate

according to their download rate.

• For the strangers who has no documented data-exchange, i.e., it hasn't any

credit, the general peer will return only very few sources to this free-riding

suspect. Moreover, it also concurrently assigns a negative credit to such

a suspect. The negative credit, which is stored by the general peer itself,

will become positive if suspects show sharing behavior, or will become more

negative as the suspect continues only to ask for sources. When the nega-

tive credit reaches a pre-de�ned value, e.g., negative three (the suspect has

requested three times without contribution), the suspect will be judged as a

free-rider and eligible for no more source information.

• Since we want to treat the general newcomer di�erently from a real free-

rider (yet as the general newcomer has no shareable content, consequently

it could be considered a free-rider), the general peer still provides sources

rather than none to the stranger in the new scheme. However, the free-

rider may avoid the punishment through the whitewashing attack where it

128

repeatedly change new identities[9], we require the general peer returns the

same source information each time to every free-riding suspect, no matter

what the suspect's ID is. Thus, di�erent IDs can't bene�t the free-rider any

more. On the other hand, we admit that this scheme may delay the general

newcomer's downloading progress, the limitation will disappear when the

newcomer begins to share content.

Based on the main searching methods in aMule/eMule, our scheme can deal with

the possible situation that free-riders may obtain enough sources through iter-

atively requesting their known resources. Under the Passive method, general

peers agree to be sources of a requester only if this requester has their credit.

Free-riders cannot obtain bene�t from this Passive method. Under the Source-

Exchange method, not only free-riders but also general peers will iteratively ask

for more sources from their already known sources. Since our free-riding control

scheme limits the number of returned peers to free-riding suspects (for example,

only 10% back to suspects in contrast with 100% return to general peers), the

number of sources obtained by general peers should be much larger than that

obtained by free-riders. As a result, this could ensure that free-riders have less

bene�t than general peers. Furthermore, with the Source-Exchange method, we

can naturally avoid the side-e�ect of the churn phenomenon, which may block a

general peer when its sources are o�-line. Instead of requesting a list of sources

from one special peer, the Source-Exchange method helps peers actively and it-

eratively searches additional sources. Therefore, a general peer can still �nd out

other online sources from its already known lists of sources who have assigned

enough credit to it, even though it may be blocked by a special peer.

Of course, we can limit the total number of sources that free-riders can obtain

in a special time period, but all those methods have their own advantages and

disadvantages. For example:

1. instead of returning its known sources to the strangers at once, the requested

peer will answer its strangers' requests after a special time interval. This can

129

delay the free-riders' ability to obtain sources quickly, and accordingly help

the general peers join the uploaders uploading queue earlier than free-riders

on average. However, it may also a�ect the general peers bene�t when they

are considered to be free-riding suspects;

2. to answer the requests from free-riding suspects, each requested peer can

independently map the name of the requested �le into an IP address format

using a consistent map function. Then based on the knowledge of this same

fundamental IP address, each requested peer selects its known sources whose

IPs are among the closest to this IP address as their reply. This method can

give free-riders almost the same sources no matter which nodes they request.

However, it also increases the burden of those chosen sources;

3. each requested peer can return few sources to free-riding suspects, but this

will postpone general newcomers potential contributing behavior, and ac-

cordingly reduces the system performance.

We admit that our scheme is a free-riding control method and not a free-riding

removal method. Free-riders can still obtain information about some sources un-

der this scheme. The reason is our scheme attempts to limit their bene�t without

modifying the infrastructure of aMule/eMule. Currently, the aMule/eMule is fully

distributed and it has not any central control nodes. Moreover, the local knowl-

edge of each peer is neither spread nor synchronized among other peers. This

infrastructure makes the implementation of eMule/eDonkey simple and reduces

the network tra�c. Meanwhile, it cannot reliably �ght sel�sh behavior or reward

generous behavior, because neither free-riding nor contributing to one peer can be

observed by other peers. To mitigate this issue, a global incentive policy can be

an alternative of the local incentive policy, but it is more complicated even though

it may be more e�cient. Considering the success of aMule/eMule, our goal in this

scheme is to keep its infrastructure unchanged and to try to �nd a trade-o� be-

tween controlling free-riding and maintaining system performance. Consequently,

130

020406080
100120140160180

3 15 30
Free Riders Arrival Rate

(a)

G
en

er
al

 P
ee

rs
 A

ve
ra

ge
 D

ow
nl

oa
d

T
im

e

1.051.061.061.071.07

Fa
ir

ne
ss

 R
at

io
 R

General Peer Free Rider Fairness Ratio R

050100150200250300350400450500
3 15 30

Free Riders Arrival Rate
(b)

G
en

er
al

 P
ee

rs
 A

ve
ra

ge
 D

ow
nl

oa
d

T
im

e

2.502.552.602.652.702.752.802.852.902.953.00

Fa
ir

ne
ss

 R
at

io
 R

General Peer Free Rider Fairness Ratio R

Figure A.0.1: Simulation results. The average download time of general peers
and fairness ratio R with di�erent values of control parameter β: (a) β =1; (b)
β = 0.1.

this scheme also inherits the weaknesses of the local infrastructure of aMule/eMule,

which does not allow fully removal of free-riders as well as restricting some general

peers. However, this free-riding control policy remains simple, and the basic local

structure of the credit system is una�ected, and the modi�cation will be easy to

implement in aMule/eMule.

To test the ability of the new scheme to deal with free-riding behavior, we

also implemented the scheme into our agent-based simulation: �rst, the index

server node will provide only a few initial sources to new coming peers and will

no longer reply to repeated requests. Next, for the Sources Exchange method,

we required the general peer to return all its known sources to peers with its

credit, and to give the same small fraction of its known sources to peers without

its credit. Again, remembering a suspect by a new additional �eld in the local

database, peers will refuse to reply after being requested three times by such a

suspect. For the Passive method, general peers agree to be the sources only for

the peers having their credit. Even though we haven't implemented the KAD

network in our simulation, the modi�cation could easily be applied in the KAD

method, which has the same operation pattern as the Sources Exchange method.

To run the simulation, we required the general peer to return 10 percent of its

total known sources to the free-riding suspects.

Our simulation results are shown in Figure. A.0.1. They indicates the validity

131

of our modi�cation for controlling free-riding behavior, i.e., free-riders have to

endure a signi�cant delay in average download time in contrast to general peers.

132

Appendix B

Ping-pong message

The ping-pong message in aMule/eMule is used for testing the online status of

peers. As Figure B.0.1 shown, peers in aMule/eMule can send a special hello-

request message to other peers. If a hello-reply message can be received, the

requested peer is proved online. The KAD protocol messages are transferred with

UDP protocol. A special part of message called �opcode� is inserted after the

UDP header. The hello-request message uses the opcode 0x10, and the hello-reply

message uses the opcode 0x18.

133

Peer BPeer A

Hello-Request

Hello-Reply

Figure B.0.1: Ping-pong message in the KAD network

134

	Title Page
	List of Figures
	List of Tables
	Introduction
	P2P File-Sharing Systems
	Fairness Challenges in P2P File-Sharing Systems
	Prior Work on P2P Fairness
	Motivation of Research
	Thesis Contribution and Organization

	Background
	P2P Technologies
	Main Characteristics of P2P Technologies
	P2P Overlay Structure
	Structured P2P Networks
	Unstructured P2P Networks

	P2P File-Sharing Systems
	General Principles of P2P File-Sharing Systems
	Content Exchange Process in P2P File-Sharing Systems
	Content Information Publishing/Retrieving in P2P File-Sharing Systems
	Content Downloading/Uploading in P2P File-Sharing System

	Popular P2P File-Sharing Systems
	aMule/eMule P2P File-Sharing System
	BitTorrent P2P File-Sharing System

	Fairness Issue in P2P File-Sharing Systems
	BitTorrent’s Fairness Policy
	aMule/eMule 's Fairness Policy

	Lookup Performance Deficiencies in the KAD Network
	Introduction
	Background of The KAD Network
	KAD Logical Distances
	Routing Table and Publishing Tables
	Publishing and Retrieving Processes

	Related Work
	Measurement-Based Analysis
	Lookup Performance of the KAD Network
	The Routing Table Measurement
	Measurement Metrics
	Measurement Methodology
	Routing Table's Availability Measurement
	Routing Tables' Similarity Measurement

	The Publishing Table Measurement

	Possible Solutions
	Self-Maintenance Scheme
	Chunk-Based Publishing/Retrieving Scheme
	Strict Fairness Scheme

	Conclusion

	Evaluating Stranger Policies in P2P File-Sharing Systems with Reciprocity Mechanisms
	Introduction
	The Stranger Policy
	Contribution

	Related Work
	Research on Performance
	Numerical Analyses
	Experimental Approaches

	Research on Fairness
	General Studies on Reciprocity-Based Incentive Policies
	Indirect Reciprocity Incentive Mechanism
	Direct Reciprocity Incentive Mechanism

	Research on the Relation Between Performance and Fairness
	Summary of Related Work

	Stranger Policies Under the Indirect Reciprocity Mechanism
	An Analytical Model
	Model Description
	Performance and Fairness Metrics

	Numerical Analysis and Verification
	Numerical Analysis
	Agent-Based Simulation

	Stranger Policies Under Different Whitewashers Population Size
	Summary

	Stranger Policies Under the Direct Reciprocity Mechanism
	An Agent-Based Simulation Model
	Simulation Results
	Case Studies: Stranger Policies in Real P2P File-Sharing Systems
	Case Study 1: BitTorrent's Stranger Policy
	Case Study 2: aMule/eMule's Stranger Policy

	Conclusion

	Conclusions and Future Work
	Conclusions
	The Necessity of Fairness Maintenance During The Content Information Publishing/Retrieving Process
	Stranger Policies on P2P Fairness

	Future Work
	Future work on studying fairness design in KAD network
	Future Work on Studying Stranger Policies

	Bibliography
	A new free-riding control scheme
	Ping-pong message

