This is the author's final, peer-reviewed manuscript as accepted for publication. The publisher-formatted version may be available through the publisher's web site or your institution's library.

A versatile and green mechanochemical route for aldehyde-oxime conversions

Christer B. Aakeröy, Abhijeet S. Sinha, Kanishka N. Epa, Christine L. Spartz and John Desper

How to cite this manuscript

If you make reference to this version of the manuscript, use the following information:

Aakeröy, C. B., Sinha, A. S., Epa, K. N., Spartz, C. L., & Desper, J. (2012). A versatile and green mechanochemical route for aldehyde-oxime conversions. Retrieved from http://krex.ksu.edu

Published Version Information

Citation: Aakeröy, C. B., Sinha, A. S., Epa, K. N., Spartz, C. L., & Desper, J. (2012). A versatile and green mechanochemical route for aldehyde-oxime conversions. Chemical Communications, 48(92), 11289-11291.

Copyright: © The Royal Society of Chemistry 2012

Digital Object Identifier (DOI): doi:10.1039/c2cc36315a

Publisher's Link: http://pubs.rsc.org/en/content/articlepdf/2012/cc/c2cc36315a?page=search

This item was retrieved from the K-State Research Exchange (K-REx), the institutional repository of Kansas State University. K-REx is available at <u>http://krex.ksu.edu</u>

Cite this: DOI: 10.1039/coxx00000x

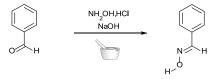
www.rsc.org/xxxxx

Communication

A versatile and green mechanochemical route for aldehyde-oxime conversions

Christer B. Aakeröy,^a Abhijeet S. Sinha, Kanishka N. Epa, Christine L. Spartz and John Desper

Received (in XXX, XXX) XthXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x


A robust, facile and solvent-free mechanochemical path for aldehyde-oxime transformations using hydroxylamine and NaOH is explored; the method is suitable for aromatic and aliphatic aldehydes decorated with a range of substituents.

- ¹⁰ Aldoximes form an important class of compounds in fundamental organic chemistry which is employed for protection, purification¹ and characterization of aldehydes.² They are useful starting materials for various functional groups such as nitriles,³ nitro compounds,⁴ amines⁵ and amides.^{6,7} Furthermore, they can offer ¹⁵ structure-directing capabilities in supramolecular chemistry by
- virtue of being strong hydrogen-bond donors (as well as being self-complementary synthons).⁸ Finally, upon deprotonation, they serve as efficient ligands in the field of coordination chemistry for complexation with various metals.⁹ As a result of their broad-
- ²⁰ based utility there is a growing interest in finding better (high yielding, solvent free) and more convenient (short reaction times, easy work-up) synthetic routes.

Aldoximes are typically prepared using solution-based methods involving refluxing alcoholic/aqueous solutions of ²⁵ aldehyde with hydroxylamine hydrochloride and base.2 The long reaction times, elevated temperatures, and the extensive use of organic solvents mean that these procedures are both expensive and environmentally stressful and there is obviously a need for better options. Mechanochemistry, which is normally carried out

- ³⁰ in the absence of, or with minimal use of, solvents, could potentially offer both cheaper and greener alternatives.¹⁰ A solidstate based mechanochemical process conforms to most of the aspects of green chemistry and thus is appealing for use in the areas of covalent synthesis and supramolecular chemistry.¹¹ Some
- ³⁵ advances have been made in the synthesis of aldoximes from aldehydes, for example through the use of catalysts such as $BF_3 \cdot OEt_2$,¹² basic Al_2O_3 ¹³ and CaO^{14} have been developed in conjunction with microwave irradiated synthesis. Also, grinding in presence of Bi_2O_3 ¹⁵ or ball-milling at elevated temperatures¹⁶
- ⁴⁰ has resulted in the formation of oximes in good yields, and oxime-functionalized cavitands have been prepared using solidstate grinding.¹⁷ A previous study of carbonyl-oxime transformation included five aldehydes,¹⁸ but no systematic investigation into the versatility of an environmentally friendly, ⁴⁵ facile, and solventless mechanochemical path to aldehyde-oxime

conversions has been reported. In this paper we present the synthesis of 20 different oximes from their corresponding aldehydes using a mechanochemical route of solvent-drop grinding in the presence of hydroxylamine ⁵⁰ hydrochloride and sodium hydroxide, (Scheme 1). The grinding is done at room temperature and the reaction time ranges from 5-10 minutes. This synthetic route is green as it is essentially solvent-free, and involves short reaction times at ambient conditions. The workup of each reaction involves a simple ⁵⁵ aqueous washing procedure of the ground mixture to remove inorganic salts resulting in a pure product.

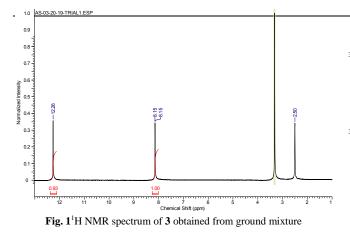
Scheme 1 One-pot mechanochemical conversion of aldehydes to oximes

The synthetic targets were selected with a view to establishing ⁶⁰ versatility and robustness of this mechanochemical approach, (Table 1). Six of the aldehydes contained electron withdrawing substituents (1-6), one was decorated with electron donating substituent (7), nine aldehydes contained structurally active functional groups such as -COOH (8-9), -OH (10-13) and pyridyl ⁶⁵ group (14-16), three other aldehydes were multifunctionalized (17-19) and finally we also included an aliphatic aldehyde (20). The broad spectrum of aldehydes examined was meant to provide sufficient data to determine the limits and limitations (if any) of a solvent-free grinding for the conversion of aldehydes to oximes.

The products were characterized by ¹H NMR spectroscopy in order to establish the complete disappearance of the aldehyde proton and the emergence of the two oxime protons. In none of the 20 reactions, was any evidence of an aldehyde found in the crude solid taken directly from the mortar, indicating the 75 efficiency of the conversion, (Figure 1), and no organic side products could be detected. The work-up needed for removing inorganic salts involved a simple aqueous washing procedure. We were also able to grow single crystals of 1,3,5benzenetrisaldoxime, (Figure 2). In 15 of the 20 reactions, (1-4,

80 7, 9-10, 12-15, 17-20) we obtained perfect ¹H NMR data directly from the mortar. No organic side reactions took place, and the inorganic salts were easily removed through a simple aqueous wash. In five cases, (5, 6, 8, 11 and 16) the crude ¹H NMR showed an additional set of aromatic peaks which we ascertained 85 was due to small amount of deprotonated oxime. Upon washing with water, a perfect ¹H NMR was again obtained in each case.

Table 1 Series of the synthesized oximes							
#	Product 5 F	M.p. (⁰ C) ^{<i>a</i>}	Yield %	#	Product	M.p. (⁰ C) ^{<i>a</i>}	Yield %
1		128-132 (133)	100 ^b (78) ^c	11	N-OH H OH	110-116 (117)	71 ^{<i>c</i>}
2	Br F N-OH	138-140 dec (138 dec)	$100^{b}(80)^{c}$	12	Br N-OH H OH	112-114	100 ^b (83) ^c
3		165-169	100 ^b (87) ^c	13	Г → → № −ОН н	124-126	$100^{b}(76)^{c}$
4	Br N-OH	119-121	100 ^b (85) ^c	14	N-OH	130-132 (132)	$100^{b}(83)^{c}$
5		101-103	61 ^{<i>c</i>}	15	N-OH N-H	146-148 (150)	$100^{b}(81)^{c}$
6	N-OH H	66-68	59 ^c	16		110-114 (114)	65 ^c
7	H ₃ CO N-OH H ₃ CO	112-114 (117)	$100^{b}(89)^{c}$	17	но-м М-он	202-204 (201-202)	$100^{b}(69)^{c}$
8	ноос	212-216 (218)	67 ^c	18		180-182 (181-184)	100 ^b (67) ^c
9	N-ОН Н СООН	126-128 (128-130)	100 ^b (73) ^c	19		239-241	100 ^{<i>b</i>} (64) ^{<i>c</i>}
10	м—ОН НО	83-90 (87-88)	$100^{b}(62)^{c}$	20	H _{3C} () N OH	70-72 (72)	$100^{b}(77)^{c}$


Table 1 Series of the synthesized oximes

^a All references for the literature melting points of the products can be found in the supplementary information.

^b% yield calculated based on the stoichiometric conversion of aldehyde to oxime as demonstrated by the crude ¹H NMR spectrum.

^c% yield calculated based on the mass of product obtained after washing the crude mixture with water. Lower yield in some cases is due to loss of product 5 during the washing procedure as some oximes are partially soluble in water. Yields could be improved to 95-100% by carrying out a normal extraction.

Note: In a mortar, 1.0 mole of aldehyde and 1.2 moles (per aldehyde present) of hydroxylamine hydrochloride is ground together with a pestle. Then, 1.2 moles (per aldehyde present) of crushed sodium hydroxide is added and the mixture is ground further with the addition of 2-4 drops of methanol, for 2 minutes at room temperature. The reaction mixture is left for 5 minutes, after which it is ground for another 2 minutes with 2-4 drops of methanol. At this stage the reaction is monitored by TLC. Upon completion of the reaction, a ¹H NMR of the crude mixture is taken in d₆ DMSO to confirm the formation of aldoxime. The crude mixture is washed with water to get rid of any inorganic salts and it is air dried, after which the melting point is taken to confirm the formation of pure product.

The relative efficiency of this mechanochemical approach is seemingly not influenced by the presence/absence of electronwithdrawing or electron-donating groups. Furthermore, the aldehyde-oxime conversion can also be carried out successfully using this grinding procedure even in the presence of functional groups such as -COOH, -OH, and a heterocycle (pyridine). Furthermore, the process can be carried out on multiple aldehydes is simultaneously (**17-19**), as well as on aliphatic aldehydes (**20**) with no adverse effects. To further characterize the product of the reaction between hydroxylamine hydrochloride, NaOH and the 1,3,5-trisaldehyde we were able to grow crystals suitable for single-crystal diffraction, which provided supporting evidence of the successful conversion, (Figure 2).

is the successful conversion, (Figure 2)

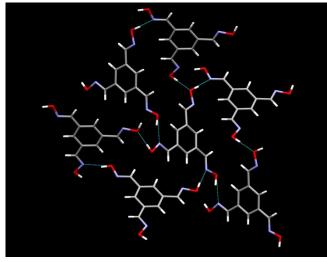


Fig. 2 Primary intermolecular interactions in the crystal structure of 19

An examination of the crystal structure of **19** shows that two of the three hydrogen-bond donors (the –OH moieties) are engaged ²⁰ in O-H…N interactions with an oxime nitrogen atom (the C=N moiety) of a neighbouring molecule, (O21…N23 2.804(3) Å, O21-H21…N23 1.87(4) Å), and (O25…N21 2.851(3) Å, O25-H25…N21 1.88(4) Å), respectively. The third oxime moiety forms an O-H…O interaction (O23…N25 2.799(3) Å, O23-H23 N25 1.01(4) Å) with a psighbouring molecule.

²⁵ H23…N25 1.91(4) Å) with a neighbouring molecule.

Conclusions

A versatile and facile mechanochemical path to aldehyde-oxime transformations has been established by examining 20 different aldehydes with different substituents such as electron ³⁰ withdrawing (1-6), electron donating (7), structurally active (8-16), multifunctionalized (17-19) and aliphatic (20) groups. The synthetic path seems to be substituent insensitive (across the range examined herein), and the ambient reaction conditions, ease of scalability and straightforward work-up procedure make this ³⁵ route environmentally friendly, and a better and greener alternative to existing methods for aldoxime synthesis.

Acknowledgments

We are grateful for financial support from NSF (CHE-0957607) and from the Johnson Center for Basic Cancer Research.

40 Notes and references

^a Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA. E-mail: aakeröy@ksu.edu

† Electronic Supplementary Information (ESI) available: Synthesis and 45 characterization of all compounds, Cif file for the structure of 19, see DOI: 10.1039/b000000x/

- 1 R. P. Frutos and D. M. Spero, *Tetrahedron Lett.*, 1998, 39, 2475.
- 2 S. Sasatani, T. Miyazak, K. Maruoka and H. Yamamoto, *Tetrahedron Lett.*, 1983, 24, 4711; S. Negi, M. Matsukura, M. Mizuno and K. Miyake, *Synthesis*, 1996, 991.
- 3 N. Anand, N. A. Owston, A. J. Parker, P. A. Slatforda and J. M. J. Williamsa, *Tetrahedron Lett.*, 2007, **48**, 7761; B. A. Mendelsohn, S. Lee, S. Kim, F. Teyssier, V. S. Aulakh and M. A. Ciufolini, *Org.Lett.*, 2009, **11**, 1539.
- 4 P. R. Dave and F. Forshar, J. Org. Chem., 1996, 61, 8897; G. A. Olah, P. Ramaiah, C. S. Lee and G. K. Suryaprakash, SynLett., 1992, 337.
- 5 H. Q. Li, Z. P. Xiao, Y. Luo, T. Yan, P. C. Lv and H. L. Zhu, *Eur. J. Med. Chem.*, 2009, 44, 2246.
- 6 S. Chandrasekhar and K. Gopalaiah, *Tetrahedron Lett.*, 2001, 42, 8123.
- 7 C. L. Allen and J. M. J. Williams, Chem. Soc. Rev., 2011, 40, 3405.
- 8 C. B. Aakeröy, M. Fasulo, N. Schultheiss, J. Desper and C. Moore, J. Am. Chem. Soc., 2007, **129**, 13772; J. N. Low, L. M. N. B. F. Santos, C. F. R. A. C. Lima, P. Brandão and L. R. Gomes, *Eur. J. Chem.*, 2010, **1**, 61.
- 9 K. F. Konidaris, E. Katsoulakou, M. Kaplanis, V. Bekiari, A. Terzis, C. P. Raptopoulou, E. Manessi-Zoupa and S. P. Perlepes, *Dalton Trans.*, 2010, **39**, 4492; P. Chaudhuri, T. Weyhermüller, R. Wagner, S. Khanra, B. Biswas, E. Bothe and E. Bill, *Inorg. Chem.*, 2007, **46**, 9003.
- 10 S. L. James, C. J. Adams, C. Bolm, D. Braga, P. Collier, T. Friščić, F. Grepioni, K. D. M. Harris, G. Hyett, W. Jones, A. Krebs, J. Mack, L. Maini, A. G. Orpen, I. P. Parkin, W. C. Shearouse, J. W. Steed and D. C. Waddell, *Chem. Soc. Rev.*, 2012, **41**, 413; T. Friščić, *J. Mater. Chem.*, 2010, **20**, 7599.
- A. Delori, T. Friščić and W. Jones, *CrystEngComm*, 2012, 14, 2350;
 T. Friščić, *Chem. Soc. Rev.*, 2012, 41, 3493.
- 12 M. Sridhar, C. Narsaiah, J. Raveendra, G. K. Reddy, M. K. K. Reddy and B. C. Ramanaiah, *Tetrahedron Lett.*, 2011, 52, 4701.
- 13 G. L. Kad, M. Bhandari, J. Kaur, R. Rathee and J. Singh, Green Chemistry, 2001, 3, 275.
- 14 H. Sharjhi and M. H. Sarvari, J. Chem. Res. (S), 2000, 1, 24.
- 15 L. Saikia, J. M. Baruah and A. J. Thakur, *Organic and Medicinal Chemistry Letters*, 2011, 1, 12.
- 16 J. Mokhtari, M. R. Naimi-Jamal, H. Hamzeali, M. G. Dekamin and G. Kaupp, *ChemSusChem*, 2009, 2, 248.
- 17 C. B. Aakeröy and P. D. Chopade, Org. Lett., 2011, 13, 1.
- 18 I. Damljanović, M. Vukićevićand R.D. Vukićević, Monatsh. Chem., 2006, 137, 301.