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Abstract 

The first chapter of this dissertation reviews factors affecting E. coli O157:H7 prevalence 

in the gastrointestinal tracts of cattle. Chapter 2 assessed E. coli O157:H7 ability to use bovine 

intestinal mucus and its constituents as substrates for growth in vitro in the presence and absence 

of fecal inoculum and exogenous enzymes. Whole mucus supported the greatest pathogen 

growth (P < 0.05), but all components tested were able to sustain E. coli growth. Chapter 3 

evaluated the impact of crude glycerin feeding on E. coli O157 fecal shedding by cattle fed 

growing and finishing feedlot diets with corn or a combination of corn, distiller’s grains, and 

soybean hulls. Increasing levels of crude glycerin decreased incidence of E. coli O157 in 

growing cattle (linear effect, P < 0.01) and tended to do so in finishing cattle fed corn-based diets 

(P < 0.06). No effect of glycerin was observed in finishing cattle fed the byproduct-based diets 

(P > 0.05), highlighting potential for glycerin use as a means for controlling fecal prevalence of 

E. coli O157 in cattle fed conventional grain-based diets. Chapter 4 evaluated transportation and 

lairage effects on fecal shedding of E. coli in feedlot cattle by mimicking transport to the 

abattoir. Shedding patterns were influenced by transportation, with significantly lower E. coli 

O157 prevalence in transported animals 4 hours after transit (P < 0.05). Additional post-transit 

samplings are, however, needed to confirm effects of transport stress on pathogen prevalence and 

shedding patterns. The experiment summarized in chapter 5 evaluated the potential for utilizing 

fecal long-chain fatty acid (LCFA) profiles as an indicator of E. coli O157 status. Out of 39 

LCFA evaluated, only eicosapentaenoic acid (EPA) concentration was associated with presence 

of the pathogen (P < 0.02). The final chapter assessed the impact of dietary menthol, up to 0.3% 

of diet DM, on antimicrobial resistance in commensal E. coli. Menthol addition affected 

prevalence of tetracycline resistant E. coli, but contrary to our hypothesis, increased their 



  

occurrence after 30 days of treatment (P < 0.006). No hypothesis on mechanism responsible for 

this increase could be made from the present study. 
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shedding patterns. The experiment summarized in chapter 5 evaluated the potential for utilizing 

fecal long-chain fatty acid (LCFA) profiles as an indicator of E. coli O157 status. Out of 39 

LCFA evaluated, only eicosapentaenoic acid (EPA) concentration was associated with presence 

of the pathogen (P < 0.02). The final chapter assessed the impact of dietary menthol, up to 0.3% 
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Chapter 1 Literature review 

INTRODUCTION 

Foodborne diseases are estimated to cause 76 million illnesses in the USA each year, 

resulting in 5,200 deaths and an estimated public health cost of 10 to 83 billion dollars annually 

(Bavaro, 2012). Intensification of agriculture and expansion of large scale retail and distribution 

systems has created a substantial vector for rapid and wide-spread bacterial outbreaks. E. coli 

O157:H7 is notorious for important food recalls across the USA, following more or less severe 

gastrointestinal infections. These events are costly for the food industry and greatly affect 

consumer confidence. Despite considerable efforts spent in past decades to better comprehend 

the pathogen and provide efficient means of intervention, factors leading to colonization, 

proliferation, and shedding of E. coli O157:H7 are still poorly understood. Ruminants, mainly 

cattle, have been recognized as an important reservoir for the pathogen, and research has focus 

on factors influencing pathogen proliferation in their gastrointestinal tracts (GIT). 

This literature review intends to give an overview of current knowledge on E. coli 

O157:H7 colonization of cattle GIT and on the role played by intestinal mucus as a substrate of 

growth. Concurrently, this chapter will summarize data available on the effects of grain 

replacement by byproducts in feedlot diets on E. coli O157:H7 shedding. Finally, implication of 

transport stress on E. coli O157:H7 proliferation in cattle GIT will be analyzed using newly 

developed principles of microbial endocrinology. 
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E. COLI O157:H7 FROM FOOD OUTBREAKS TO CATTLE COLONIZATION 

Commensal and pathogenic E. coli of the human GIT 

Escherichia coli is a genus of the Enterobacteriaceae family. E. coli are mesophilic 

Gram negative bacteria, bile-tolerant, lactose fermenting and commensal inhabitants of the GIT 

of mammals. In spite of their general commensal status, some E. coli strains can be harmful to 

their host. Six classes of intestinal pathotypes have been recognized (Kaper et al., 2004): 

enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), enteroinvasive E. coli (EIEC), 

diffusely adhesive E. coli (DAEC), enteroaggregative E. coli (EAEC), and enterohaemorrhagic 

E. coli (EHEC); yet their identification remains challenging, as pathogenic and commensal E. 

coli share similar biochemical and ecological features. 

Enterohaemorrhagic E. coli: Characteristics and mode of action 

EHEC have the capacity to produce Shiga toxin and to carry a locus of enterocyte 

effacement (LEE) pathogenicity island encoding for attaching effacing (AE) lesions (Figure 1-1).  

Figure 1-1 Enterohaemorrhagic Escherichia coli virulence factors 

 

EHEC were first described in 1982 during a severe bloody diarrhea outbreak in Oregon and 

Michigan (Riley et al., 1983). This bacteria has since been shown to trigger hemorrhagic colitis, 
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non-bloody diarrhea, and hemolytic uremic syndrome in humans; the latter being in some cases 

lethal. Shiga toxins are EHEC key virulence factors and are found as two types, Stx1 and Stx2, 

both of which consist of a pentamer of identical B subunits that allow binding to cell surface 

glycolipid receptors (globotriaosylceramides; Gb3), and an A subunit, that enzymaticaly cleaves 

ribosomal RNA (Johannes and Romer, 2010). Stx2 is epidemiologically more important than 

Stx1 (Boerlin et al., 1999); however, release of either of these toxins by bacteria in the human 

colon lumen can induce disruption of protein synthesis, apoptosis of epithelial cells, and damage 

to colonic tissues. Hemolytic uremic syndrome develops when toxins enter the bloodstream and 

reach the kidneys, causing damage to endothelial cells and impairing vascular function (Kaper, 

2005). The locus of enterocyte effacement, another EHEC characteristic trait, encodes a type III 

secretion system, protein effectors, and an intimin (eaeA). Protein effector EspA forms a hollow 

filamentous extension into host epithelial cells, allowing translocation of other effectors into the 

cell (Figure 1-1). Once within the host cell, protein effector Tir acts as a receptor on cell 

membranes for eaeA intimin, resulting in attachment effacement of the EHEC (Roe et al., 2003). 

Over one hundred EHEC serotypes sharing these characteristics have been discovered 

(Bettelheim, 1998); however, focus has been on E. coli O157:H7, thus EHEC are often referred 

to as EHEC O157 or EHEC non-O157 serotypes. 

Focus on E. coli O157:H7 

E. coli O157:H7 is characterized by the lack of β-glucoronidase and its inability to 

ferment sorbitol, whereas most other E. coli do (Viazis and Diez-Gonzalez, 2011). In addition, E. 

coli O157:H7 is resistant to acidity, as low as pH of 2.5 (Castanie-Cornet et al., 1999), and only 

requires 1 to 100 organisms to induce infection in humans (Paton and Paton, 1998). Although 
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this pathogen has been the subject of intense investigation for decades, 8% of patients infected 

with E. coli O157:H7 still develop HUS and 5% do not survive (Garg et al., 2003; Tarr, 2009). 

E. coli O157 transmission to humans 

Human infections can occur in many ways, but pathogens most frequently originate from 

the GIT of ruminants. Cases of bloody diarrhea have been observed in children after petting 

goats at a zoo (Goode et al., 2009), demonstrating risk for direct ingestion of fecal pathogens. 

Nevertheless, E. coli O157:H7 remains mostly a food-borne pathogen found in various food 

products, including meat, vegetables, and drinking water. In 2011, E. coli O157:H7 was 

responsible for recall of 1 million pounds of beef product, representing 59% of the total beef 

product recalled by the Food Safety and Inspection Services (FSIS) for potential hazard to 

human health in the US (FSIS, 2011). Contamination of meat occurs at slaughter when fecal 

deposits present on hides come into contact with carcasses as hides are removed (Arthur et al., 

2004). Meat products then carry E. coli O157:H7, and if not properly cooked will contain viable 

pathogenic organisms capable of causing illness in consumers after ingestion (Wiegand et al., 

2009). Contamination of vegetables and water is indirect, but also linked to ruminants. Excreted 

E. coli O157:H7 in cattle feces have the ability to survive in extra-intestinal environments for up 

to 3 months (Nicholson et al., 2005; Semenov et al., 2007). Over this period, pathogens can 

contaminate water sources (Vernozy-Rozand et al., 2002; Wang and Doyle, 1998) and spread to 

surrounding environments by runoff (Jaffrezic et al., 2011). Contaminated manure and irrigation 

water can lead to E. coli O157:H7 contamination of leafy vegetables such as spinach, sprouts, 

lettuce, and others (Charkowski et al., 2002; Mootian et al., 2009; Olaimat and Holley, 2012). 

Moreover, insects and wildlife can further contribute to crop contaminations (Renter et al., 2001; 
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Talley et al., 2009). Although the incidence of contamination of leafy vegetables with E. coli 

O157:H7 has been increasing, meat contaminations remain the predominant vector and 

mitigation procedures have been developed to limit risk of outbreaks. 

Control of E. coli O157:H7 in meat processing 

Post-harvest interventions are considered to be most effective means of reducing 

pathogen loads in meat products. Since hides are the major source of contamination within 

abattoirs (Antic et al., 2010; Arthur et al., 2004), researchers have developed interventions that 

reduce risk of meat product contamination during hide removal. Many of these processes are 

based on hides wash with organic acids (Baird et al., 2006), cetylpyridinium chloride (Bosilevac 

et al., 2004), sodium hydroxide (Bosilevac et al., 2005a), or ozonated water (Bosilevac et al., 

2005b). Hides washes have been shown to successfully reduce E. coli O157:H7 prevalence on 

hides of freshly slaughtered cattle and to limit carcass contamination during hide removal. Fecal 

contaminations that occur subsequent to hide removal can be controlled  by steam vacuuming 

(Huffman, 2002), hot water wash (Bosilevac et al., 2006), and steam pasteurization (Phebus et 

al., 1997) of intact carcasses after evisceration. Intervention on final meat products are more 

challenging, as they should not alter shelf life or sensory attributes of meat products. Recently 

developed irradiation techniques using E-beam technology have demonstrated promising 

reductions in occurrence of E. coli O157:H7 in meat products without altering sensory qualities 

(Arthur et al., 2005). In spite of all these precautions, E. coli O157:H7 outbreaks still occur, thus 

underscoring the necessity to further reduce pathogen loads in market ready cattle to support 

post-harvest interventions. To do so it is imperative to understand colonization processes of E. 

coli O157:H7 in the GIT of ruminants. 
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Cattle gastrointestinal tract and E. coli O157:H7 

Colonization of cattle GIT by E. coli O157:H7 

E. coli O157:H7 have been shown to persist throughout the GIT of ruminants, and have 

been isolated from the esophagus, rumen, omasum, duodenum, jejunum, ileum, cecum, colon, 

gall bladder, and terminal rectal junction. Despite an apparent ubiquitous presence of the 

pathogen in the GIT of cattle, E. coli O157:H7 seem to prefer the lower tract ecosystem (Cray 

and Moon, 1995; Grauke et al., 2002). Recent works have identified the terminal rectal mucosa 

as an important site for E. coli O157:H7 colonization (Naylor et al., 2003). Specificities of this 

site are still unclear, although the authors hypothesized that abundance of lymphoid follicles 

could be responsible for the tropism. Peyer’s patches, which also are rich in lymphoid follicles, 

have been shown to be site of predilection for Salmonella enterica serovar Typhimurium, 

Listeria monocytogenes, and Shigella spp. (Jensen et al., 1998; Vazquez-Torres and Fang, 2000), 

and similar mechanisms could exist at the terminal rectal mucosa. Presence of E. coli O157:H7 

in bovine GIT and observation of attaching effacing lesions on the mucosa (Naylor et al., 2005; 

Phillips et al., 2000) without inducing pathogenicity in animals remained an enigma for a long 

time. Stx receptors appear to be present in colonic crypts of the cattle GIT (Hoey et al., 2002). 

Absence of Shiga toxin receptors on ruminant blood vessels and limited access to cryptic 

receptors by toxins (Schuller et al., 2004; Stamm et al., 2008) have been presented as 

explanations for the absence of enterotoxicity in cattle (Pruimboom-Brees et al., 2000). This lack 

of pathogenicity makes detection of E. coli O157:H7 even more challenging and further 

emphasizing the need to determine component(s) of GIT that maintain and promote pathogen 

growth. 
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Intestinal mucus as E. coli O157:H7 substrate of growth 

Previous studies have shown that bovine intestinal mucus supports bacterial colonization 

and can selectively influence composition of the bacterial population (Deplancke and Gaskins, 

2001), yet little is known of nutrients and metabolic pathways used by E. coli (Miranda et al., 

2004). 

Intestinal mucus structure 

Mucus acts as lubricant and physical barrier within the GIT, protecting epithelial cells 

from unwanted invasion (Deplancke and Gaskins, 2001), but also represents a substrate for 

bacterial growth (Atuma et al., 2001). Intestinal mucus is comprised of mucins, glycoproteins, 

glycolipids, epithelial cell debris, and electrolytes (Conway et al., 2006). Mucin molecules are 

large complexes of heterogeneous glycoproteins linked by disulfide bonds. Mucin subunits are 

formed by a protein backbone that is rich in serine and threonine, which allow attachment of O-

linked oligosaccharides. Calf intestinal mucin is composed of 47.4% carbohydrates, namely 

galactose, N-acetylglucosamine, N-acetylgalactosamine, fucose, mannose, and sialic acids, and 

52.6% proteins (Montagne et al., 2000). Mucins are divided in two groups – neutral and acidic – 

depending on the charge of carbohydrate groups they carry. Acidic mucins are more resistant to 

bacterial degradation due to the presence of a sialic acid or sulfate groups on the oligosaccharide 

chain, classifying them as non-sulfated or sulfated mucin, respectively (Deplancke and Gaskins, 

2001). Mucin type prevalence is influenced by GIT location, and acidic mucins are most 

commonly found within the large intestine in rats and humans (Deplancke et al., 2002). Dietary 

factors also appear to influence mucin composition. High fiber diets have been observed to 

increase proportions of acidic mucin (Montagne et al., 2004) in rat models. Microflora can, as 
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well, modulate mucin composition as shown by higher ratio of neutral to acidic mucins found in 

germ-free animals compared to conventional animals (Szentkuti et al., 1990). 

Intestinal mucus degradation by E. coli O157 

Degradation of mucin complexes by bacteria is accomplished through the actions of 

multiple enzymes. Proteases are first in line and effectively alter mucus from a viscous to a more 

fluid state. Endoglycosidases can then act upon internal bonds to release oligosaccharide 

fragments. Further degradation of oligosaccharide fragments, by glycosidases and beta-

galactosidases, is only possible after sialic acid removal by neuraminidases (Corfield et al., 

1992). Lack of polysaccharide-degrading enzyme activity in E. coli (Chang et al., 2004) thus 

limits carbohydrate utilization by the bacteria to mono- or disaccharides (Mayer and Boos, 

2005). The serotype O157:H7 lacks, in addition, neuraminidase activity (Hoskins et al., 1985), 

and consequently has limited capability to degrade complex mucin molecules. Hence, presence 

of other anaerobes within the GIT that have capacity to degrade mucin polysaccharides into 

smaller fragments is primordial to ensure E. coli O157:H7 growth (Jones et al., 2008). 

Competition between E. coli O157 and microflora for mucus 

Access to nutrients is the key factor to ensure GIT colonization by E. coli. Presence of 

pathogenic bacteria in the GIT, such as E. coli O157:H7, will depend on the principle of 

competitive exclusion (Tkalcic et al., 2003), whereby other microflora can effect changes in 

pathogen prevalence by limiting access to substrates of predilection. Environments with lower 

complexity are, indeed, more readily colonized by pathogens (Stecher et al., 2010). Bacteria have 

for a long time be thought to have a single preferred nutrient as a substrate of growth (Freter, 

1988); however, this idea has been challenged by recent studies illustrating that E. coli relies  on 
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a diverse range of nutrients for its growth (Chang et al., 2004), having successfully propagated 

with galactose, mannose, gluconic acid, glucuronic acid, and galacturonic acid as substrate 

(Alpert et al., 2009; Fox et al., 2009). Fucose, even if a minor component of intestinal mucus 

(Montagne et al., 2000), appears important for bacterial development, as colonization of bovine 

rectal mucus by E. coli mutant lacking the catabolic pathway for L-fucose was largely decreased 

(Snider et al., 2009). Ability of E. coli O157:H7 to use multiple substrates is certainly an 

advantage when it comes to competition and colonization of the bovine GIT; however, 

specificities of this competitive advantage are still unknown. Regardless of the nature of mucus 

component(s) supporting pathogen growth, there is a growing body of evidence illustrating that 

E. coli O157:H7 can colonize and thrive on intestinal mucus. Other factors, such as mucus 

secretion/availability, may also play an important role in pathogen prevalence in feedlot cattle. 

Manipulation of intestinal mucus secretion by E. coli O157 

Goblet cells and mucus secretion 

Mucus is synthesized in goblet cells and is either secreted as a baseline or, when needed, 

excreted in granule form into the intestinal lumen (Forstner and Forstner, 1994; Sharma et al., 

2009). Areas of the GIT rich in goblet cells are associated with a thicker mucus layer 

(Brunsgaard, 1998), and goblet cells generally are more abundant in the colon and rectum of 

most species (Specian and Oliver, 1991). These findings corroborate heterogeneity found in 

mucus thickness across the human and rat GITs, where mucus was thickest within the colon 

(Atuma et al., 2001; Freitas et al., 2002; Robbe et al., 2004). Bovine mucus is believed to display 

similar patterns, and this heterogeneity could be responsible for part of E. coli O157:H7 tropism 
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to the terminal colon (Robbe et al., 2004; Snider et al., 2009), which may be characterized by the 

presence of greater amounts of mucus as substrate for growth. 

Mucus secretion regulation 

Mucin secretion is regulated by epithelial cell signaling factors, dietary factors, and also 

microbial signaling molecules and fermentation products (Dharmani et al., 2009; McGuckin et 

al., 2011). Cytokines releases by epithelial cells increase mucin secretion and goblet cell 

proliferation (Blanchard et al., 2004; Deplancke and Gaskins, 2001) in GIT to reinforce physical 

barrier protection in presence of potential invaders. Diets fed to animals also influence mucus 

secretion. Rats fed high fiber diets have higher goblet cell proliferation rate and increased mucus 

production when compared to rats receiving traditional diets that contain lesser amounts of fiber 

(Montagne et al., 2004). Moreover, microbial fermentation of food within the GIT releases 

volatile fatty acids (VFA), such as acetate and butyrate, which positively affect release of mucus 

within the intestinal lumen (Barcelo et al., 2000; Sakata and Setoyama, 1995; Shimotoyodome et 

al., 2000). Therefore, observations of lower numbers of goblet cells and reduced mucus 

production in germ-free rats (Kandori et al., 1996) comes with no surprise, and further 

underscores the important role played by microflora regulating mucus secretion. Virulence 

factors expressed by pathogenic bacteria also can modulate mucus secretion. Lipopolysaccharide 

(LPS) and flagellin present on most Gram negative bacteria are able to activate the transcription 

factor, nuclear factor κB (NFκB), inducing the production of mucin (Hedemann et al., 2009). 

Likewise injection of guanylin, a polypeptide produced by goblet cells similar to E. coli 

enterotoxins, is able to trigger rapid secretion of mucus by rat goblet cells (Furuya et al., 1998), 

and similar effects are observed with enterotoxins when applied to the intestinal lumen (Moon 
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and Whipp, 1971). Secretion regulation systems are intended to protect the GIT from pathogenic 

bacteria; however, E. coli O157:H7 appears to be able to exploit these systems to benefit its own 

substrate requirement. 

In spite of the abundance of research that has focused on food-borne pathogens, factors 

influencing colonization of the ruminant GIT by E. coli O157:H7 is still poorly understood. 

Continuing research efforts aimed at understanding mechanisms and factors influencing E. coli 

O157:H7 prevalence in cattle are thus needed. 

NEW FACTORS AFFECTING E. COLI O157 COLONIZATION IN CATTLE 

There are many factors affecting growth and survival of E. coli O157:H7 within the GIT 

of cattle, but this thesis will focus on two emerging factors, namely the effect of biofuels 

byproduct inclusion in cattle diets and their influence on E. coli O157:H7 shedding, and the 

impact of transport stress on prevalence of E. coli O157:H7 in market ready cattle. 

E. coli O157 and byproduct-based diets 

Biofuels, such as ethanol and biodiesel, are defined as a renewable energy sources 

produced from natural materials (Demirbas, 2009). Throughout the last decade production of 

biofuels across the world has expanded considerably (Figure 1-2). Ethanol production worldwide 

grew from 17,371 million liters in 2000 to 109,573 millions of liters in 2010, 57% of which were 

produced in the United States (R.F.A., 2012). World biodiesel production also increased from 

882 million liters in 2000 to 19,476 million liters in 2010, with Europe being the main producer 

(55%), and the United States accounting for approximately 7% of world production (EIA, 2010). 
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Figure 1-2: Historic of US ethanol (solid line) and biodiesel (broken line) production. Data 

from (EIA, 2010). 

 

Both ethanol and biodiesel are obtained from crops that are, also, used as feeds for animal 

production. Expansion of the biofuels industries has, therefore, diverted use of these crops from 

feed to energy supply, and in so doing has contributed to increases in cereal grain prices (Figure 

1-3). 

Figure 1-3: US price history of corn (+), wheat (■), and soybeans (▲). Data from (USDA, 

2012) 

 

Nevertheless, the conversion of cereal grains into ethanol, also, yields large quantities of the 

byproduct, distiller's grain, approximately one-third of the weight of the original grain. Distiller's 

grain is, frequently, priced at a discount relative to cereal grains in addition to being a valuable 

source of both protein and energy, and thus is attractive to feedlots as an economical alternative 

to traditional cereal grains. 
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Distiller’s grain and E. coli O157  

Distiller’s grain a by-product of the ethanol industry 

Distiller’s grains originate from corn, sorghum, barley, and wheat, which is dictated in 

large part by geographical location of the ethanol production facility. In the dry mill ethanol 

process, grains are first cleaned, grounded in a hammermill, and water is added to create a mash 

(Figure 1-4).  

Figure 1-4: Ethanol production by dry mill process. From (ICM, 2012). 

 

Enzymes are added and the mash is heated to break down starches and to facilitate liquefaction. 

The liquefied product is sterilized, yeast is added, and the resulting mixture undergoes 

fermentation, producing ethanol and carbon dioxide as major fermentative end products. The 

fermented mixture, referred to as whole stillage, is then distilled to recover ethanol The 

remaining portion is centrifuged to separate the liquid and particulate fractions, yielding liquid 

“thin stillage” and wet cake fractions. The thin stillage is concentrated by evaporation, producing 

a thick syrup, referred to as condensed solubles. The wet cake and solubles are mixed and 

merchandised in the wet form as wet distiller’s grain with solubles (WDGS), or are dried to 

approximately 10% moisture to yield dried distiller’s grain with soluble (DDGS; (Stock et al., 

2000). Twenty five kilograms of corn yields approximately yields 10.4 liters of ethanol and 7.6 
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kg of distiller’s grains using this process (Dinneen, 2008). WDGS and DDGS obtained are 

concentrated in non-starch nutrients making them a good source of energy, protein and fiber for 

animals (Spiehs et al., 2002). Moreover, addition of solubles to wet cake makes the final product 

palatable to animals (Klopfenstein et al., 2008). 

Distiller’s grain as a grain replacement in cattle diets. 

Distiller’s grains frequently are included in cattle diets as an energy or protein 

replacement. Substitution of part of the corn, 0 to 30%, with DDGS or WDGS has yielded 

satisfactory animal performance and meat quality. Cattle fed up to 30% distiller’s grains had 

ADG, DMI and G:F similar to animals fed diets without by-products (Depenbusch et al., 2009; 

Klopfenstein et al., 2008). Furthermore, inclusion of distiller’s grains had no apparent effect on 

carcass characteristics and sensory analysis (Depenbusch et al., 2009; Jenschke et al., 2007; 

Roeber et al., 2005). Comparable performance results and overall lower price of distiller’s grains 

(USDA, 2012) when compared to corn (Figure 1-5) make this byproduct very appealing for the 

cattle feeding industry.  

Figure 1-5 Price history of corn (■) and distiller’s grains (∆) in the US. Data from (USDA, 

2012). 
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Impact of distiller’s grains inclusion on E. coli O157 shedding in cattle 

 Increased E. coli O157 prevalence with distiller’s grains 

Multiple studies have revealed higher fecal shedding of E. coli O157 in cattle fed WDGS, 

DDGS, and brewer’s grains when compare to traditional cereal-based diets. A large study across 

12 US feedlots reported animals fed brewer’s grains to be 6 times more likely to shed pathogens 

in their feces when compared to steers fed diets without brewer’s grains (Dewell et al., 2005a). 

In 2007, a study on terminal rectum colonization rate showed a strong correlation between E. 

coli O157:H7 carriage and increasing levels of distiller’s grains in animal diets (Peterson et al., 

2007). These results were confirmed with E. coli O157:H7 inoculated calves fed 25% of DDGS 

who had increased prevalence of pathogen compared to control (Jacob et al., 2008b). Moreover, 

commensal E. coli O157 and inoculated E. coli O157 were shown to survive longer in feces of 

cattle fed 20% WDGS or higher (Varel et al., 2008). Similarly, pathogen hide counts from cattle 

receiving WDGS were, also, higher than counts from animals receiving no byproduct (Wells et 

al., 2009), illustrating increased survival capacity of the pathogen in the presence of distiller’s 

grains in diets. Increases in pathogen shedding have been noted for both wet and dried distiller’s 

grains (Jacob et al., 2010). Considering the effect of distiller’s grains inclusion on E. coli O157 

prevalence and the increased risk of contamination at slaughter, a study was done to analyze the 

effect of a reduction of distiller’s grains inclusion prior to harvest. Results showed complete 

removal or partial removal (70% to 15%WDGS) of by-product from diet 28 days prior harvest 

was ineffective as an intervention, but a 56-day withdrawal period did decrease prevalence of the 

pathogen in feces and hides at slaughter (Wells et al., 2011). Effect of distiller’s grains on E. coli 
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O157 appears, therefore, to be reversible but advantage(s) provided to the pathogen by byproduct 

inclusion in diets are still unclear. 

 Reasons for E. coli O157 increase 

A few hypotheses have been made to explain higher prevalence of E. coli O157:H7 in 

cattle fed diets including distiller’s grains. The main idea being that substitution of cereal grains 

with distiller’s grains alters digestive characteristics, and thus hindgut ecology. During ethanol 

production processes most of the starch is converted to ethanol, leaving only trace quantities of 

starch in distiller’s grains. Consequently, ingestion of byproduct diets will lead to a lower 

amount of starch reaching the hindgut and to an overall higher pH that is more favorable to 

proliferation of E. coli O157:H7 (Berg et al., 2004; Fox et al., 2007; Jacob et al., 2008b). This 

relationship was, however, not confirmed by in vitro and in vivo studies that found no correlation 

between fecal pH, diets, and E. coli O157 prevalence (Depenbusch et al., 2009; Wells et al., 

2009; Yang et al., 2010). It also has been postulated that the relative increase in protein content 

of WDGS and DDGS compared to corn could have an effect on concentrations of VFA and 

branched amino acids (Klopfenstein et al., 2008). Indeed, only part of proteins are degraded in 

the rumen, and greater supply of protein reaching the hindgut will increase microbial 

fermentation and production of VFA and branched amino acids. Bacteria have been shown to 

benefit from VFA and branched amino acids, which could favor pathogen survival in hindgut. 

Once again, experiments failed to verify this hypothesis (Huntington et al., 2006). Likewise, L-

lactate concentrations have been investigated, as it is known to have antimicrobial properties 

(McWilliam Leitch and Stewart, 2002) and lower levels of this product in feces could benefit E. 

coli O157 persistence. Concentration of L-lactate in feces of cattle fed WDGS were, indeed, 
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significantly decreased when compared to concentration in feces of cattle fed corn-based diets 

(Varel et al., 2008; Wells et al., 2009); however, despite a significant decrease L-lactate 

concentrations still averaged 3.72 mM, which presumably is far below inhibitory concentrations 

previously observed, 50 to 200mM, and thus is an unlikely explanation for increased prevalence 

of E. coli O157 in feces of cattle fed distiller’s grain. Distiller’s grain-based diets provide 

nutrients with different characteristics than cereal-based diets, and these differences may cause 

shifts in digestion and in microflora selection (Yang et al., 2010). Changes in microflora could 

make E. coli O157:H7 more competitive and allow its establishment in the gastrointestinal tract 

of cattle, but this hypothesis has yet to be tested. Another hypothesis is that specific components 

within distiller’s grains may benefit, directly or indirectly, growth of the pathogen, facilitating its 

colonization of the bovine GIT (Dewell et al., 2005a; Jacob et al., 2008a; Viazis and Diez-

Gonzalez, 2011). Analysis of distiller’s grains composition revealed the presence of glycerin, 

ranging from 3.5 to 10% on DM basis, in addition to carbohydrates and proteins (Kingsly et al., 

2010; Wu, 1994), which could potential play a role in pathogen establishment. Glycerin found in 

distiller’s grains is a secondary metabolite of yeast fermentation during ethanol production, but 

also is a byproduct resulting from the biodiesel industry, and occasionally is used as a corn 

replacement. 

Glycerin and Escherichia coli O157 

Glycerin a by-product of biodiesel production 

Crude glycerin is a co-product of the biodiesel industry obtained through 

transesterification of vegetable oils or animal fats with methanol in presence of a catalyst. Each 

liter of biodiesel produced will lead to the synthesis of 0.079 kg of crude glycerol (Thompson 
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and He, 2006). Crude glycerin is used for multiple purposes, including pharmaceuticals, 

cosmetics, food and beverage, and chemical industries. Glycerin is generally recognized as safe 

(GRAS) for use in animal feed as long as methanol content represents less than 0.5% (FDA, 

2004). Excess methanol remaining in crude glycerol can affect its potential as a feed supplement 

which is why refinement treatments are often applied to meet the 0.5% requirement (Yang et al., 

2010). Crude glycerin obtained through transesterification processes usually contains 80% 

glycerin, 0.5% methanol or less, 5% salts (sodium chloride), 1.2% organic substances other than 

glycerin, and water, making it an excellent source of energy for cattle. 

Glycerin as a feed additive 

Glycerin is a glycogenic compound that was first used in dairy production to overcome 

ketosis (Johnson, 1954). Most research on this compound originates from this field and inclusion 

of up to 10% glycerol in dairy cattle diets repeatedly has proven to have no deleterious effects on 

performance (Schröder and Südekum, 1999), and may improve milk production when included 

at 5.6% or less of the diet (Bodarski et al., 2005; DeFrain et al., 2004). Despite differences 

between dairy and feedlot production systems, results derived from dairy cows can be 

extrapolated to growing and finishing cattle. Indeed, inclusion of 10% crude glycerin in feedlot 

diets containing rolled corn and distiller’s grains improved feed efficiency by 19% (Pyatt et al., 

2007). Parsons et al. (2009) and Trabue et al. (2007) observed similar benefits on efficiency with 

12 and 10% inclusion rates. Other authors observed no impact of glycerin on animal efficiency 

(Elam et al., 2003; Mach et al., 2009). In several of these studies a decreases in dry matter intake 

(DMI) have been observed with increasing levels of glycerin in diets (Elam et al., 2003; Parsons 

et al., 2009; Pyatt et al., 2007). Carcass characteristics and meat sensory properties were also 



19 

 

assessed and 8% or less of glycerin inclusion appeared to have no deleterious effects on overall 

meat quality (Mach et al., 2009; Parsons et al., 2009). These results show potential for crude 

glycerin as a replacement for cereal grains in feedlot diets. Moreover, rapid development of the 

biodiesel industry led to sharp declines in market value of crude glycerin, with prices decreasing 

from $0.55/kg in 2004 to between $0.07 and 0.10/kg in 2006 (Johnson and Taconi, 2007), thus 

presenting glycerin as an economical substitution for cereal grains. Biodiesel byproduct inclusion 

in feedlot cattle diets is fairly recent, so little is known of its effects on E. coli O157:H7 

prevalence. 

Glycerin inclusion in cattle diets and Escherichia coli O157 prevalence 

Important information can be derived from studies on glycerol metabolism within the 

rumen and from observations made on its effect on rumen microflora to try to understand 

possible effects on E. coli O157:H7 shedding in feedlot cattle. 

 Glycerol metabolism in the rumen  

Glycerol is found in cell wall phospholipids or in lipidic storage of seeds (Roger 1992). 

Once in the rumen, glycerol is rapidly metabolized by bacteria, mainly Selenomonas (Krehbiel, 

2008), to produce mostly propionate (Johns, 1953). Propionate is a precursor for 

gluconeogenesis and is able to supply 32 to 73% of the energy demands of ruminants (Rico et 

al., 2012), which is why glycerol was first used as a remedy for ketosis. Propionic acid, however, 

is not the only product of glycerol metabolism (Garton et al., 1961). Part of ingested glycerol is 

directly absorbed by the rumen epithelium as evidenced by the presence of glycerol in plasma 

after dosing ruminally cannulated bulls with glycerin (Kijora et al., 1998). The remaining 

glycerol is converted to carbon dioxide and volatile fatty acids, and the volatile acids produced 
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are still a subject of debate. Wright showed production of acetate (Wright, 1969), whereas 

Remond and Kijora demonstrated production of butyric acids at the expense of acetic acid 

(Kijora et al., 1998; Remond et al., 1993). More recent studies showed no butyrate production 

(Trabue et al., 2007) or a decrease in butyrate and valerate concentrations with increasing 

inclusion of crude glycerin in the diet (AbuGhazaleh et al., 2011; Lee et al., 2011; Parsons and 

Drouillard, 2010). These changes in final products of glycerol metabolism are likely related to 

differences in rumen microflora and differences in basal diets among experiments, and may also 

reflect the potential for adaptation of the rumen microorganisms to presence of glycerol. After 

few days of glycerol feeding, bacteria seem to be able to metabolize glycerol without any lag 

time (Ferraro et al., 2009). 

 Glycerol effect on rumen fermentation and microflora 

Despite potential microbial adaptation, glycerol appears to affect ruminal microflora in 

many ways. Consistent observation of a decrease in cellulolytic activity in the rumen has been 

reported (Paggi et al., 2004; Roger et al., 1992). In vitro assay showed that addition of 5% 

glycerol inhibited growth and activity of Ruminococcus flavefaciens and Fibrobacter 

succinogenes (Roger et al., 1992) two rumen cellulolytic bacteria. Butyrivibrio fibrisolvens DNA 

concentrations also were depressed by replacement of 30% of corn substrate by glycerin in a 

continuous fermentation, leading the authors to speculate that glycerin was preventing 

attachment of bacteria to fiber and, hence, impairing their proliferation and persistence 

(AbuGhazaleh et al., 2011). Related observations were done in feeding studies where apparent 

digestibility of neutral detergent fiber was decreased by increasing amount of glycerin 

incorporated in diets (Donkin et al., 2009; Parsons and Drouillard, 2010). In addition to its effect 
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on cellulolytic bacteria, glycerol was found to decrease proteolytic activity by 20% when added 

to culture media at concentration of 50mM or more (Paggi et al., 1999). Bacterial protein 

synthesis was, as well, decreased by infusion of glycerol into the rumen of bulls (Kijora et al., 

1998). Furthermore, glycerin appears to affect rumen pH which in turn can affect rumen 

microflora; however like with distiller’s grains observations are not always consistent. In vivo 

and in vitro assays related a decrease in rumen pH with increasing levels of glycerin (Kijora et 

al., 1998; Lee et al., 2011), whereas others failed to detect any effect of glycerol on pH (Rico et 

al., 2012) or, in contrast, observed an increase in pH (Parsons and Drouillard, 2010). Regardless 

of the exact effects of glycerin in the rumen, its capacity to affect rumen microorganisms and pH 

can easily affect rumen equilibrium state, thus impacting pathogens such as E. coli O157:H7. 

 Glycerol effect on E. coli O157:H7 

As of today very few studies are available to assess the effect of this byproduct on E. coli 

O157:H7 shedding in cattle. Most of the research has focused on distiller’s grains inclusion and 

little attention has been given to glycerol. The presence of significant quantities of glycerol in 

final WDGS or DDGS has, however, brought to our attention a potential role played by glycerin 

in the increase of pathogen prevalence in byproduct-based diets. Literature relates two studies 

conducted on this topic. The first one evaluated the effects of glycerin inclusion at 10% to diets 

containing dry rolled corn, steam flaked corn and DDGS on prevalence of E. coli O157:H7 in 

feces of inoculated calves. Researchers observed no effect of glycerin inclusion on pathogen 

prevalence (Paulus et al., 2011). The second experiment used naturally infected cattle fed a 

combination of DDGS and glycerin in a steam-flaked corn and hay grass diet, and once again did 

not observe any effect of glycerin inclusion on E. coli O157:H7 prevalence in cattle feces 
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(Jaderborg et al., 2011). Despite the absence of effect of glycerin inclusion in these two 

experiments, it would be interesting to investigate the relationship between pathogen prevalence 

and glycerin inclusion in feedlot diets. 

As previously discussed, diet has an important impact on fecal shedding of E. coli 

O157:H7, and constant adaptation of animal production to crop availability brings new 

challenges to mitigate the risk of food product contamination. A recent development in microbial 

endocrinology has highlighted a cross talk between bacteria and their host during stressful 

events, which may ultimately benefit the proliferation of pathogens. Such phenomenon could 

anile all efforts made pre-harvest to limit E. coli O157:H7 shedding in cattle, as cattle undergo a 

certain level of stress immediately before slaughter. 

Escherichia coli O157 and transport stress 

The following paragraphs are a review of stress definition and quorum sensing principles 

and their possible relevance to pathogen shedding in market ready cattle. 

Notion of stress 

Definition of stress 

–All of the vital mechanisms, however varied they may be, have always one goal, to 

maintain the uniformity of the conditions of life in the internal environment […]– (Bernard, 

1878), this notion is known as homeostasis (Cannon, 1932). Any stimuli capable of disrupting 

this equilibrium is considered a stressor (Mostl and Palme, 2002) whether it is pleasurable or not. 

In today’s animal husbandry settings, it is important to minimize stress to improve animal 

welfare, productivity, and product quality. Cattle stressors are divided in two main categories: 
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physiological (hunger, thirst, fatigue, injury, thermal extremes) and psychological (handling, 

restraint, novelty). Weaning, castration, and transport are highly stressful events for animals. 

This literature review will focus on transport stress and its impact on animal physiology and 

bacterial susceptibility. 

Transport stress 

Numerous factors are involved in the induction of transport stress (Nielsen et al., 2011) 

and animals have different capacity to cope with it depending on their genetics and history (Hahn 

and Becker, 1984). Significant among these factors is the impact of feed and water depravation. 

Cattle are usually taken off feed 12 hours or more before transport to limit gut fill (Warriss et al., 

1995) and may have limited, or no, access to water over the course of the journey, impacting 

normal control of pathogenic bacteria in the rumen and increasing risk for gastrointestinal 

infections (Hogan et al., 2007). Cattle are, also, exposed to psychological stressors, including 

handling by humans, commingling with unfamiliar animals, and through exposure to new 

environments. These factors disrupt the social organizations among cattle populations and create 

novelty (Grandin, 1997), both of which are recognized as stressors. Another major factor is the 

fact that animals are prevented from lying down during transport. Ruminants spend on average 

12 hours laying every day (Munksgaard et al., 2005), and preventing them from doing so induces 

fatigue. Finally, cattle are exposed to large bacterial loads and potentially novel species or strains 

of bacteria during transit, after their arrival at the abattoir, within lairage areas and stunning 

boxes, all of which are sources of contamination for E. coli O157:H7 (Avery et al., 2004). All of 

these factors contribute to the overall transport stress and will ultimately disturb homeostasis, 
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triggering the central nervous system and immune system to work toward reinstatement of 

animal equilibrium. 

Stress physiology in cattle 

Nervous system response to stress 

The nervous system will be the first affected by stressful conditions. In cattle, two types 

of responses can be observed: fight or flight response or general adaptation response (Figure 1-

6).  

Figure 1-6: Neuroendocrine response to stress. Adapted from (Matteri et al., 2000) 

 

The first response relies on the activation of the sympathetic adrenal medullary axis (SAM). 

Splanchnic nerves release acetylcholine which induces synthesis and secretion of the 

catecholamines, epinephrine and norepinephrine, by the adrenal medulla into peripheral tissues. 

Catecholamines prepare the body for an intense effort, such as fight or flight, by redirecting 

energy to muscle and accelerating heart rate. This response is rapid but has short lasting effects. 

General adaptation response relies on actions of the hypothalamic pituitary adrenal axis (HPA). 
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Corticotropic-releasing hormones (CRH) are synthesized in the hypothalamus and released into 

portal blood, inducing synthesis and release of adrenocorticotropic hormone (ACTH) by the 

anterior pituitary. Presence of elevated concentrations of ACTH activates production and release 

of the glucocorticoids, cortisol and corticosterone, by the adrenal cortex into the circulatory 

system (Matteri et al., 2000). Glucocorticoids stimulate conversion of fat and protein, in liver, to 

their metabolites as precursors for glucose production to fulfill energy needs of animals during 

stress. General adaptation response is slower than the fight or flight response, but can be 

maintained for a longer period of time. 

Immune system response to stress 

Immune system, as neuroendocrine system, is involved in maintaining homeostasis in the body. 

Immunity is composed of innate and adaptive immunity. Innate immunity is the non-specific first 

line of defense against pathogens (Figure 1-7). It occurs quickly, allowing time for the organism 

to develop adaptive immunity specific to an invader. Innate immunity relies on recognition of 

highly conserved structures in microorganisms: pathogen-associated molecular patterns 

(PAMPs). 

Figure 1-7: Immune response to stress. 
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Macrophages and neutrophils recognize PAMPs and initiate killing. Simultaneously, natural 

killer cells target pathogen infiltrated cells and secrete pro-inflammatory cytokines (Il-1, IL-6, 

and IL-12), allowing the activation of acute phase response and adaptive immunity. Adaptive 

immunity is specific to an antigen previously encountered. The B cells recognize, bind, and 

ingest the specific antigen to present it to naïve T cells. The T cells then mature into either T 

helpers cells (Th), expressing CD4
+
 proteins, or cytotoxic T lymphocyte cells (CTL), expressing 

CD8
+
 proteins. There are two kinds of Th – Th1 and Th2 – which are responsible for different 

immune functions and produce different cytokines. Th1 are involved with CTL in cellular 

adaptive immunity, also known as cell-mediated immunity. These lymphocytes target cells that 

have been infiltrated by specific antigens and induce apoptosis without using antibodies. On the 

other hand, Th2 are involved in humoral adaptive immunity, also known as antibody-mediated 

immunity. The Th2 stimulate B cell differentiation into plasma cells which produce specific 

antibodies against free pathogens. Differentiation of T cells towards Th1 or Th2 depends on the 

nature of initial innate response (Janeway and Medzhitov, 2002). Coffman demonstrated that 

IFN-γ inihibits differentiation of naïve T-cells toward Th2, whereas synthesis of IL-4 and IL-10 

inhibited differentiation into Th1 (Coffman, 2006). 

Nervous system/Immune system cross talk during stress 

Glucocorticoids produced by the nervous system during stress have an effect on 

cytokines synthesis and release. Glucocorticoids increase production of immunosuppressive 

cytokines, such as IL-10, and decrease the synthesis of pro inflammatory cytokines, such as IL-

12, IL-2, and IFN-γ (Hickey et al., 2003; Richards et al., 2000). Similar observations have been 

made with catecholamines, which increase IL-10 secretion but inhibit IL-12 (Elenkov et al., 
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1996). Cytokines also are able to stimulate the HPA axis, increasing glucocorticoid 

concentrations (Salak-Johnson and McGlone, 2007). In this manner, overstimulation of the 

immune system during stress can be prevented (Wiegers et al., 2005). Conversely, 

glucocorticoids by their capacity to regulate cytokine production can induce a shift in maturation 

of T cells from Th1 to Th2, resulting a shift from cellular immunity to humoral immunity. 

Glucocorticoids also can suppress cytotoxic T lymphocyte (CTL) proliferation and neutrophil 

function (Elenkov, 2002), which impairs cellular and innate immunity. Multiple studies on 

transport stress showed an increase in neutrophil (Blecha et al., 1984; Dixit et al., 2001) and 

lymphocyte counts (Ishizaki et al., 2005) in cattle, but also a loss of function of these cells in 

these animals (Stanger et al., 2005; Weber et al., 2001). Many authors attribute 

immunosuppression in cattle after transport to elevated glucocorticoid concentrations (Dixit et 

al., 2001; Grandin, 1997; Mackenzie et al., 1997; Mormede et al., 1982). All of these 

observations underline a cross talk between the neuroendocrine and immune systems, which has 

important repercussions for capacity to resist bacterial infections, as bacteria have been shown to 

sense eukaryotic signals through quorum sensing. 

Stressed animal and bacteria 

Quorum sensing and interkingdom signaling 

The ability of bacteria to communicate is called quorum sensing. Bacteria metabolize 

hormone like compounds called autoinducers (AI) using LuxS enzymes. Genes encoding for 

LuxS are found in commensal and pathogenic bacteria (Clarke and Sperandio, 2005). The AI are 

aromatic compounds, hydrophobic by nature, that are not able to cross cell membranes (Hughes 

and Sperandio, 2008). Adrenergic receptors for AI, such as QseC and QseE, are found on 
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bacterial membranes (Chen et al., 2006; Kendall and Sperandio, 2007). The AI-3/LuxS system 

notifies bacteria when they reach a favorable environment to proliferate and, in some cases, to 

attach (Clarke and Sperandio, 2005). Binding of AI-3 to the QseC receptor activates 

phosphorylation of the two-component quorum sensing system QseBC, which in turn activates 

the two-component system QseEF, the LEE genes, the motility genes flagella regulon (FlhDC), 

and Shiga toxin genes (Hughes and Sperandio, 2008). 

Pathogens, such as E. coli O157:H7, have developed the ability to hi-jack signals from 

eukaryotic cells to serve their own needs. One example of the inter-kingdom signaling is 

revealed in the capacity of catecholamines secreted during stress (i.e., epinephrine and 

norepinephrine) to substitute the autoinducer 3 (Clarke and Sperandio, 2005) and activate 

phosphorylation of the two-component quorum sensing system QseBC of E. coli O157:H7, 

thereby stimulating an increase in motility, adherence, and virulence (Figure 1-8). 

Figure 1-8: Interkingdom signaling. Adapted from (Hughes and Sperandio, 2008). 
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Norephineprhine and bacterial growth 

Simultaneously, the production and release of norepinephrine can be beneficial to the 

growth of the pathogens in iron sequestering environments. Pathogenic bacteria need iron to 

express virulence. Iron-sequestering glycoproteins (lactoferrins and transferring) are secreted in 

the GIT to prevent pathogens virulence. Norepinephrine releases Fe
3+

 bound to lactoferrin and 

transferrin, making iron available for bacterial uptake (Freestone and Lyte, 2008; Freestone et 

al., 2007). 

E coli O157 prevalence during stress transport 

Effect of stress on the neuroendocrine and immune systems and the ability of bacteria to 

utilize eukaryotic signals for their own needs are likely to induce changes in prevalence of E. coli 

O157:H7 in transported cattle, thus presenting a higher risk of contamination at slaughter. As 

previously noted, glucocorticoid and catecholamine secretion will render animals more 

susceptible and will support E. coli O157:H7 growth and shedding. Studies have illustrated an 

increase in detection of E. coli O157:H7 following transportation (Arthur et al., 2007; Bach et 

al., 2004; Dewell et al., 2005b; Dewell et al., 2008), while others did not reveal any significant 

effect of transport (Barham et al., 2002; Fegan et al., 2009; Minihan et al., 2003) on pathogen 

shedding. Discrepancies in the results come in part from the many factors involved in transport 

stress, as well as from difficulties associated with obtaining samples during transport, and finally 

from the differences of sampling and analysis techniques used in the various publications. 

Despite conflicting results, quorum sensing and interkingdom signaling represent potentially 

important mechanisms to take into account when studying E. coli O157:H7 colonization of cattle 
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GIT and in attempting to design interventions aimed at limiting bacterial loads in market ready 

cattle. 

SUMMARY 

In summary of this chapter, E. coli O157:H7 is an important foodborne pathogen that is 

yet to be fully understood. Cattle are undoubtedly a main reservoir for this pathogen but bacterial 

tropism and competitive growth of E. coli O157:H7 is still unclear. Moreover, adaptation of 

animal production systems to changing agriculture has brought to light new challenges, such as 

the increase of pathogen prevalence in cattle receiving ethanol byproduct-based diets which has 

so far no concrete explanation. Potential for glycerin to be a key player in this effect will be 

further investigated in this dissertation. Impact of quorum sensing and eukaryote signaling 

during transport stress will also be further evaluated in regards to their impact on E. coli O157 

fecal shedding patterns. 
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ABSTRACT  

Colonization of the gastrointestinal tract of cattle by Shiga toxin-producing Escherichia 

coli increases the risk of contamination of beef carcasses at slaughter. Our study aimed to shed 

more light on the mechanisms used by E. coli O157:H7 to thrive and compete with other bacteria 

in the gastrointestinal tract of cattle. We evaluated bovine intestinal mucus and its constituents in 

vitro for their capacity to support growth of E. coli O157:H7 in the presence or absence of feces, 

with and without various enzymes. Growth of E. coli O157:H7 was proportionate to the amount 

of mucus added as substrate, whereas the quantity of total anaerobic organisms was unchanged. 

Growth of E. coli O157:H7 was similar for small and large intestinal mucus as substrate, and was 

partially inhibited with the addition of fecal inoculum to cultures, presumably due to competition 

from other organisms. Whole mucus stimulated growth to the greatest degree compared with 

other evaluated compounds, but the pathogen was capable of utilizing all substrates to some 

extent. Addition of enzymes to cultures failed to affect growth of E. coli O157:H7 except for 

neuraminidase, which resulted in greater growth of E. coli O157 when combined with sialic acid 

as substrate. We concluded that E. coli O157 has the capacity to utilize small or large intestinal 

mucus, and growth is greatest with whole mucus rather than individual mucus components. 

There are two possible explanations for these findings: (i) multiple substrates are needed to 

optimize growth, or (ii) a component of mucus not evaluated in this experiment is a key 

ingredient for optimal growth of E. coli O157:H7. 

Keywords: Escherichia coli O157:H7, intestinal mucus  
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IMPLICATIONS  

These studies offer insight into the potential of intestinal mucus and its components to 

promote growth of E. coli O157:H7 in the gastrointestinal tract of cattle. Factors that influence 

intestinal mucus secretion in cattle may be important determinants of E. coli O157:H7 

colonization rates. 

INTRODUCTION  

Escherichia coli are commensal copiotroph bacteria found in the intestinal mucus layer 

(Montagne et al., 2000, Moller et al., 2003, Naylor et al., 2003) of mammalian digestive tracts 

(Ihssen and Egli, 2005). Some strains of E. coli are pathogenic to humans, such as the well 

known Enterohemorrhagic (EHEC) E. coli O157:H7. Infection with EHEC often originates from 

the ingestion of contaminated food products. Escherichia coli O157:H7 is non-pathogenic to 

cattle, and cattle are recognized as an important reservoir for the pathogen. Exposure in human 

populations can occur either directly through contact with cattle or their waste products or 

indirectly through water, meat, or other food products that have been contaminated by cattle 

feces. To control contamination in the food chain, it is essential to understand how this pathogen 

is able to grow and compete with other bacteria in the bovine gastrointestinal tract. Previous 

studies have shown that bovine intestinal mucus supports bacterial colonization and can 

selectively influence composition of the bacterial population (Deplancke and Gaskins, 2001), yet 

little is known of the nutrients and metabolic pathways used by E. coli (Miranda et al., 2004). 

Intestinal mucus comprises mucins, glycoproteins, glycolipids, epithelial cell debris, and 

electrolytes (Conway et al., 2006). Degradation of the complex mucin components to simpler, 

more readily fermentable substrates requires multiple enzymes; for example, proteases convert 
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the mucus from a viscous to a fluid state, and endoglycosidases act at internal sites to release 

oligosaccharide fragments. Sialic acid is then removed from these fragments by neuraminidases, 

allowing degradation of the remaining chain by glycosidases and beta-galactosidases (Corfield et 

al., 1992). Escherichia coli does not produce polysaccharide-degrading enzyme (Chang et al., 

2004), thus restricting its capacity for carbohydrate utilization to mono- or disaccharides (Mayer 

and Boos, 2005). Moreover, E. coli O157:H7 lacks neuraminidase activity (Hoskins et al., 1985), 

and therefore has limited ability to degrade complex mucin molecules. The organism therefore 

depends on other anaerobes in the gastrointestinal tract to degrade mucin polysaccharides and 

release fragments beneficial for their growth (Jones et al., 2008). To be maintained in the 

gastrointestinal tract of cattle, E. coli O157:H7 need to compete with other bacteria to colonize 

the mucus layer. In the 1980s, researchers believed that bacteria have a single preferred nutrient 

as a substrate of growth (Freter, 1988); however, recent studies have illustrated that E. coli relies 

on a diverse range of nutrients for its growth (Chang et al., 2004), allowing EHEC to proliferate 

in cattle and be shed in their feces, thus providing opportunity for contamination of carcasses at 

harvest. This series of in vitro experiments was conducted to gain insight into the mechanisms 

used by E. coli O157:H7 to thrive and compete with other bacteria of the gastrointestinal tract of 

cattle in the presence or absence of feces and various enzymes. 

MATERIAL AND METHODS 

Intestinal mucus harvest 

Intestinal tissues were collected from freshly harvested cattle and immediately 

transported to the Preharvest Food Safety Laboratory (Kansas State University, Manhattan, KS, 

USA). Sections of the ileum and colon were excised with sterile scissors and washed with a 
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HEPES-Hanks buffer (pH 7.4) to remove digesta. Mucus was collected from each of the sections 

by gently scraping the epithelium with a sterile microscope slide. Harvested mucus was 

centrifuged twice at 27,000 x g for 20 min to remove cellular debris and impurities. Supernatant 

containing the crude mucus was dialyzed overnight at 4°C in HEPES-Hanks buffer, lyophilized 

and stored at -20°C. 

Bacterial strains 

Five Shiga toxin-producing E. coli O157:H7 strains (STEC), supplied by Dr. Nagaraja 

(Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, 

USA), were used in this experiment. Mutants resistant to nalidixic acid (Nal
R
) were obtained by 

serial transfer into Luria-Bertani broth (LB; Neogen, Inc., Baltimore, MD, USA) containing 

increasing concentrations of nalidixic acid (from 0.2 to 50 mg/L; Sigma-Aldrich, St. Louis, MO, 

USA) following the procedure outlined by Schamberger et al. (2004). 

Bacterial inoculum preparation 

All five Nal
R
 STEC were plated onto blood agar containing 5% sheep’s blood and were 

incubated overnight at 37°C. A single colony was selected from each plate and grown overnight 

at 37°C in 10 mL tryptic soy broth (TSB) to be transferred to five other 9-mL TSB tubes. After 

18 h incubation at 37°C, the five broths were combined in equal proportions to create a five-

strain cocktail of Nal
R
 STEC. 

Fecal inoculum preparation 

Feces were collected by rectal palpation from a steer fed a concentrate-based diet and 

transported to the Preharvest Food Safety Laboratory in a pre-warmed thermos. Feces were 
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blended in an Osterizer blender for 60 s with McDougall’s buffer (6 mL/g of feces) under a 

stream of CO2
 
and strained through two layers of cheesecloth. 

In vitro fermentation assay 

Fecal inoculum, at 10
4
 CFU/mL, or a similar amount of McDougall’s buffer was added to 

the tubes containing the substrates to be tested. Tubes were inoculated with 10
3
 CFU/mL of the 

five-strain bacterial inoculum, gassed with CO2, capped with butyl stoppers fitted with Bunsen 

valves, and incubated on a shaker at 40°C. A volume of 100 µL was extracted from each 

fermentation tube after 0, 6, 8, 12, and/or 24 h and diluted into 900 µL of Butterfield’s phosphate 

buffer (pH 7.2). Subsequent dilutions (100 µL) were plated onto MacConkey sorbitol agar with 

cefixime (0.05 mg/L), potassium tellurite (2.5 mg/L) and nalidixic acid (50 mg/L; CTN-SMAC). 

Plates were incubated at 37
°
C for 24 h, and non-sorbitol fermenting colonies were enumerated. 

Dilutions also were plated on tryptic soy agar (TSA) and coliforms/E. coli Petrifilm plates to 

enumerate total anaerobic bacteria, coliforms and commensal E. coli. The TSA plates were 

inoculated with 100 µL of the cultures and incubated at 40°C in a Coy rigid anaerobic chamber 

(Coy Laboratory Products, Grass Lake, MI) containing 90% N, 5% CO2 and 5% H. Petrifilm 

plates were inoculated with 1 mL of the cultures and incubated at 37°C under aerobic conditions. 

Nitrogen and organic matter content of mucus 

Organic matter (OM) contents of mucus harvested from the small and large intestine 

were determined by ashing the samples (Undersander et al., 1993). Briefly, mucus samples were 

dried in aluminum pan overnight at 105°C to determine dry matter content. Pans were then 

heated to 450°C overnight, slowly cooled and transferred to a desiccator to be weighted. Organic 

matter percentage was obtained by subtracting ash content from 100. A bicinchoninic acid assay 
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(BCA, Thermo Scientific, Rockford, IL, USA) was performed to assess CP contents on those 

samples. In-vitro fermentation performed in this study was carried out in tubes containing mucin 

from the small and large intestine with an equal level of OM, 4.4 mg of OM/mL (7.5 and 9.2 µg 

of protein/mL, respectively), if not stated otherwise. 

Increasing concentrations of mucus 

Increasing concentration of mucus from the small intestine (0, 0.5, 1.0, 2.0, 4.4, 10, and 

15 mg OM per mL of inoculum) were tested in an in-vitro fermentation assay as described 

previously. 

Mucus and mucus components  

Mucin from the ileum and the colon (4.4 mg of OM/mL), as well as mucus components 

such as the lipid L-alpha-phosphatidylserine, (1 mg/mL; CAS number: 840032P, Avanti Polar 

Lipids Inc., Alabaster, AL), and the carbohydrates, D-gluconic acid (CAS number: G9005), D-

glucuronic acid (CAS number: 6556-12-3), N-acetyl-D-glucosamine (NAG; CAS number: 7512-

17-6), D-galacturonic acid (CAS number: 91510-62-2), sialic acid (CAS number: 131-48-6), 

galactose (CAS number: G5388) and mannose (10 mg/mL; CAS number: 3458-28-4, Sigma-

Aldrich, St. Louis, MO, USA), were tested as growth substrate in the in-vitro fermentation 

assays. 

Enzymes and enzyme inhibitors 

All enzymes and inhibitors were added to tubes containing small or large intestinal mucin 

and McDougall’s buffer to be subjected to a fermentation assay. A protease from bovine 

pancreas (CAS number: 9001-92-7), an endoglycosidase from Elizabethkingia meningoseptica 

(PNGase F; CAS number: 83534-39-8), a neuraminidase from Clostridium perfringens (CAS 
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number: 9001-67-6) and a lipase from Candida antarctica (CAS number: 9001-62-1) all were 

purchased from Sigma-Aldrich and tested at a concentration of one unit per milliliter of 

McDougall’s buffer. Beta-galactosidase (CAS number: 9031-11-2; Sigma-Aldrich, St. Louis, 

MO, USA) and phenylethyl beta-D-thiogalactopyranoside (PETG; CAS number: P-1692; 

Invitrogen, Grand Island, NY) were inoculated at a concentration of 100 µM and 200 µM, 

respectively. Finally, bacterial protease inhibitor cocktail containing 4-(2-

aminoethyl)benzenesulfonyl fluoride (AEBSF), EDTA disodium salt, bestatin, pepstatin A, and 

E-64 (P8465; Sigma-Aldrich, St. Louis, MO, USA) was added at two different concentrations, 

0.25 and 2.5 mL/g of Nal
R
 E. coli O157:H7 culture. 

Statistical analysis 

Colony-forming unit (CFU) counts were transformed to the log10 scale. Fermentation 

assay statistical analysis was performed using the MIXED procedure of SAS (SAS 9.2, SAS 

Institute Inc., Cary, NC, USA). Sampling times, substrate types and presence or absence of fecal 

inoculum were included in the model as fixed effects. Effects of increasing level of small 

intestinal mucus on Nal
R
 E. coli O157:H7 and total anaerobes were analyzed using the MIXED 

procedure of SAS and linear contrast. Differences were considered significant at P<0.01 and 

P<0.05. 

RESULTS 

Mucus anatomical origin and composition  

The analysis of the N and OM content of the mucus collected at the ileum and colon 

revealed slight differences in composition, with 1.068 µg of protein and 627 µg of OM per 

milligram of small intestinal mucus versus 0.910 µg of protein and 442.6 µg of OM per 
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milligram of large intestinal mucus. Figure 2-1 depicts the growth of Nal
R
 E. coli O157:H7 in the 

presence or absence of a fecal inoculum with small intestinal mucus, large intestinal mucus or no 

substrate overtime. It reveals no significant differences (P>0.10) in growth between the two 

mucus anatomical origins (ileum and colon). The bacteria increased from 10
3
 CFU/mL of 

culture, at h 0, to 10
7
–10

8
 CFU/mL at h 8. An overall time effect was observed on the growth of 

the bacteria (P<0.01); however, there was no significant difference between h 8 and h 12, which 

drove us to use h 8 as a point of comparison. The presence of fecal inocula in the culture affected 

the growth of E. coli O157:H7 (P<0.01). The final concentration of bacteria decreased from 10
7
 

CFU/mL in tubes containing no fecal inoculum to 10
5
 CFU/mL in tubes containing fecal 

inoculum. 

Increasing concentrations of mucus 

Growth of total anaerobic bacteria and Nal
R
 E. coli O157:H7 was tested with increasing 

levels of small intestinal mucus. Growth of total anaerobes was significantly influenced by the 

levels of substrate addition at h 6 and 12 (Table 2-1; SI concentration effect, P<0.01). Linear 

increase in anaerobe concentration was observed with increasing concentration of small 

intestinal mucus (linear effect, P<0.01). Cultures containing 15 mg of mucus OM/mL supported 

a 28% increase in anaerobe growth after 12 h incubation compared with culture receiving no 

mucus. Growth of Nal
R
 E. coli O157:H7 increased at every time point in response to increased 

concentrations of mucus (linear effect, P<0.01). Counts of Nal
R
 STEC counts were increased by 

72% in the presence of 15 mg of mucus OM/mL of culture compared with tubes containing 0 mg 

of mucus/mL after 12 h of fermentation. 
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Mucus and mucus components  

Figure 2-2a depicts the growth of E. coli O157:H7 after 8 h of anaerobic incubation with 

fecal inoculum and either whole mucus or selected components of mucus as substrates. With the 

notable exceptions of mannose and galactose, all substrates allowed the growth of E. coli 

O157:H7 in the presence of a fecal inoculum (P<0.05). Growth was numerically greatest with L-

alpha-phostatidylserine and glucuronic acid as substrates but was not different from that obtained 

with whole mucus from the small or large intestines (P>0.17). 

Figure 2-2b depicts growth of Nal
R
 E. coli O157:H7 after 8 h of anaerobic incubation in 

the absence of fecal inoculum. With the exception of L-alpha-phosphatidylserine, all of the 

mucus components tested increased growth of the bacteria in comparison to the batch containing 

no substrate (P<0.05), but mucus originating from the large and small intestines supported 

greater growth than the individual mucus fractions (P<0.05). This is in contrast to results 

observed in the presence of fecal inoculum. Gluconic acid was the only single compound to yield 

growth similar to that obtained with whole large intestinal mucus (P>0.09) but still was less than 

that observed for whole small intestinal mucus (P<0.0001). 

Figure 2-3 illustrates the growth of Nal
R
 E. coli O157:H7 in response to small intestinal 

mucus or sialic acid substrates in the presence or absence of a fecal inoculum. Nal
R
 E. coli 

O157:H7 growth was significantly lower in sialic acid than in mucus (P<0.01) in the absence of 

feces. When fecal inoculum was added to the culture with small intestinal mucus, there was a 

significant decrease in the growth of Nal
R
 E. coli O157:H7 compared with the same culture 

without feces (P<0.0001). When fecal inoculum was added to the culture containing sialic acid, 

growth of Nal
R
 E. coli O157:H7 increased compared with the same culture without feces 
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(P<0.0002). The addition of neuraminidase to cultures containing sialic acid fermentation 

increased growth of the bacteria compared with tubes containing sialic acid with (P<0.025) or 

without feces (P<0.0001), but was still lower than in cultures containing small intestinal mucus 

as substrate (P<0.0001). 

Enzymes and enzyme inhibitors 

Figure 2-4 illustrates our attempt to evaluate the stimulatory effect of mucus-degrading 

enzymes on the growth of Nal
R
 E. coli O157:H7. There was no effect of protease, 

endoglycosidase, lipase, beta-galactosidase, neuraminidase, or protease inhibitor addition to 

cultures (data not shown; P>0.05). Conversely, the addition of beta-galactosidase enzyme 

inhibitor increased the growth of Nal
R
 E. coli O157:H7 cultured with either small or large 

intestinal mucus (P<0.05). 

DISCUSSION 

Previous studies have shown heterogeneity in mucus composition and thickness across 

the human and rat gastrointestinal tracts (Atuma et al., 2001, Freitas et al., 2002, Robbe et al., 

2004). Bovine mucus is believed to display a certain level of heterogeneity between the different 

sections of the intestine, and this diversity is considered partly responsible for the bacterial 

tropism (Robbe et al., 2004, Snider et al., 2009). Our analysis of the ileum and colon mucus 

composition did not reveal any major differences in N or OM content; moreover, Nal
R
 E. coli 

O157:H7 was equally capable of growing on large and small intestinal mucus. These 

observations led us to postulate that heterogeneity in bovine mucus is either less important than 

in other species or that differences in composition do not appreciably influence bacterial growth. 
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The growth of Nal
R
 E. coli O157:H7 was highly modulated by the presence or absence of 

feces in the assay. In presence of fecal inoculum, Nal
R
 E. coli O157:H7 growth was reduced by 

at least 2 log units, which likely is due to competition for nutrients between fecal bacteria and 

our introduced strains of Nal
R
 E. coli O157:H7. These observations are consistent with the 

principle of competitive exclusion (Tkalcic et al., 2003), by which the presence of other bacteria 

in the medium limits the substrate availability to the pathogen, thus reducing its growth. 

Another interesting observation was the linear increase in Nal
R
 E. coli O157:H7 and total 

anaerobes with the increasing level of small intestinal mucus. Small intestinal mucus at 15 mg of 

OM/mL supported a 72% increase in growth of Nal
R
 E. coli O157:H7 after 12 h incubation, 

whereas the total anaerobe counts increased by only 28%. Our results suggested that intestinal 

mucus may preferentially stimulate Nal
R
 E. coli O157:H7 or that these bacteria were better 

equipped to compete with other anaerobes for utilization of whole mucus. 

Nal
R
 E. coli O157:H7 was able to grow on all mucus components tested in this 

experiment, indicating that the bacteria were able to metabolize all these compounds. As seen in 

previous studies (Fox et al., 2009), galactose, mannose, gluconic acid, glucuronic acid, and 

galacturonic acid yielded the greatest growth, with gluconic acid numerically superior. Despite 

the ability of the pathogen to grow on all substrates, whole mucus stimulated the greatest degree 

of growth; therefore, it is likely that a combination of substrates may more closely meet 

requirements of the pathogen or, alternatively, that a component of mucus not tested in this 

experiment is a key ingredient for optimal growth of Nal
R
 E. coli O157:H7. For example, an E. 

coli mutant deficient in the catabolic pathway for L-fucose demonstrated a marked decrease in 

colonization of rectal mucus (Snider et al., 2009). Similar results were also observed in mice and 

in vitro with E. coli MG1655 (Chang et al., 2004, Fabich et al., 2008). Because fucose is only a 
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minor component of the calf ileal mucus (Montagne et al., 2000), it was not evaluated in this 

study but could be a key constituent supporting optimal growth of Nal
R
 E. coli O157:H7. 

Cultures of Nal
R
 E. coli O157:H7 alone with sialic acid as substrate resulted in modest 

bacterial growth, whereas in the presence of fecal inoculums, growth of the pathogen closely 

resembled that obtained with whole mucus. The E. coli strains used in our experiment appeared 

to have limited ability to use sialic acid but seem to be able to use intermediate products or 

metabolites synthesized by other fecal bacteria in the degradation of sialic acid. This observation 

could partly explain why feeding distiller’s grains to feedlot cattle stimulates E. coli O157:H7 

shedding (Jacob et al., 2008, Jacob et al., 2009). Distiller’s grains are rich in yeasts that contain a 

substantial percentage of sialic acid, up to 3% of the dry weight of yeast (Malhotra and Singh, 

2006). In such conditions, it would be conceivable that sialic acid is the active component that 

stimulates proliferation of the pathogen in cattle fed dried distiller’s grains. 

One of our initial hypotheses was that E. coli O157:H7 would have little ability to use 

whole mucus to support its growth because the organism is not known to produce 

endoglycosidase (Chang et al., 2004) or neuraminidase (Hoskins et al., 1985), but our results 

suggest otherwise. First, Nal
R
 E. coli O157:H7 grew best on whole mucus rather than individual 

components. Secondly, addition of protease, endoglycosidase, lipase or neuraminidase to the 

medium did not improve growth of the pathogen. Only beta-galactosidase inhibitor had an effect 

on the growth of the bacteria and, surprisingly, increased the Nal
R
 E. coli O157:H7. Presence of 

β-galactosidase activity is used in chromogenic medium as a means of distinguishing E. coli 

O157:H7 from other E. coli that are β-galactosidase-negative and glucuronidase-positive. 

Therefore, we were expecting the addition of beta-galactosidase inhibitor to decrease growth of 

the organism. It is possible that galactosides are more stimulatory to growth of Nal
R
 E. coli 
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O157:H7 than degradation products derived from galactosides, or that the inhibitor itself was 

used as a source of nutrients by the bacteria. The latter explanation seems unlikely based on the 

very small amount of inhibitor (200 µM) added in this assay. Additional experiments are needed 

to further investigate this effect. 

In conclusion, this series of experiments provided information regarding metabolism of 

mucus and mucus components by Nal
R
 E. coli O157:H7. We were, however, unable to identify a 

single component as a key stimulator or inhibitor of growth of these bacteria. Further 

investigation of the relationship between E. coli O157:H7 or other STEC and the gastrointestinal 

colonization of cattle is necessary to develop innovative and efficient preharvest intervention 

measures.  
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Figure 2-1 Growth of Nal
R
 E. coli O157:H7, with buffer (○), small (∆) or large (□) intestinal 

mucus as a substrate in the presence (filled symbols) or absence of fecal inoculum (open 

symbols). SEM = 0.21, effect of mucus origin, P>0.01; effect of addition of fecal inoculum, 

P<0.01. 
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Table 2-1: Growth of Nal
R
 E. coli O157:H7 and total anaerobes with increasing levels of 

small intestinal (SI) mucus over a 12-h fermentation at 40°C. SEM= 0.3. 

 

  

SI mucus concentration, mg of OM/mL P-value 

CFU/mL, Log10 Hour 0 0.5 1 2 4.4 10 15 trt  linear  

E. coli O157:H7 

0 3.15 3.13 3.08 3.18 3.16 3.38 3.40 >0.05 >0.05 

6 4.08 4.29 4.86 4.66 5.01 4.90 5.74 <0.01 <0.01 

8 4.18 4.50 4.62 5.05 4.97 5.12 5.88 <0.01 <0.01 

12 4.64 4.73 4.64 4.90 5.06 5.15 5.84 <0.05 <0.01 

Total anaerobe 

0 6.82 6.82 6.82 6.82 6.82 6.82 6.82 >0.05 >0.05 

6 7.88 7.89 7.96 7.91 8.95 9.03 8.98 <0.01 <0.01 

8 8.57 8.57 8.13 8.45 8.56 8.73 8.86 >0.05 >0.05 

12 7.71 8.04 8.00 8.10 8.11 8.62 8.72 <0.01 <0.01 
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Figure 2-2: Growth of Nal
R
 E. coli O157:H7 after 8 h incubation at 40°C with mucus or 

single mucus components as a substrate for growth in the presence (a) or absence (b) of 

fecal inoculum. Means without common superscript are different, P<0.05. 
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Figure 2-3: Growth of Nal
R
 E. coli O157:H7 in response to small intestinal mucus (∆) and 

sialic acid (○) in the presence (filled symbols) or absence of fecal inoculum (open symbols) 

and in response to sialic acid with neuraminidase (◊). Effect of time, P<0.01; effect of 

substrate, P<0.01; effect of addition of fecal inoculum, P<0.01; interaction between 

substrate and fecal inoculum, P<0.01. 
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Figure 2-4: Growth of Nal
R
 E. coli O157:H7 after 8h incubation at 40°C with no substrate, 

small (SI) or large (LI) intestinal mucus and in the presence or absence of beta-

galactosidase inhibitor. Means without common superscript letters are different, P<0.05. 
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ABSTRACT 

Two experiments were conducted to evaluate the effects of crude glycerin feeding on E. 

coli O157 prevalence in feces of growing and finishing cattle. In study 1, crude glycerin was 

included at 0, 4 or 8% of dry matter in growing cattle diets comprised of dry-rolled corn, corn 

silage, alfalfa hay, and corn steep liquor. Heifers (n = 368; initial body weight = 234 ± 3.2 kg) 

were housed in partially covered, concrete-surfaced pens (36.5 m
2
) with 7 to 8 animals per pen 

and 16 pens/treatment for the 90-day experiment. Study 2 was a finishing experiment with a 2 x 

2 factorial treatment arrangement. Factor 1 consisted of the level of crude glycerin (0 or 2% of 

dry matter) and factor 2 was the presence or absence of a combination of soybean hulls and 

distiller’s grains as grain substitutes. Heifers (n = 232; initial body weight = 427 ± 8.8 kg) were 

fed in pens containing 7 to 8 heifers each, with 8 replicates per treatment. Fresh fecal samples 

were taken from growing and finishing animals via rectal palpation. One gram of feces was 

incubated for 6 h at 40ºC in Gram negative broth with cefixime (0.05 mg/L), cefsulodin (10 

mg/L), and vancomycin (8 mg/L) and then subjected to immunomagnetic separation (IMS) with 

E. coli O157 beads. Recovered beads were plated onto MacConkey agar with sorbitol, cefixime, 

and tellurite (CT-SMAC), and non-sorbitol fermenting colonies were tested for indole production 

and O157 antigen agglutination. Positive colonies for both tests were confirmed as E. coli O157 

using the API 20E kit. Treatment effects and interactions were analyzed using Proc Glimmix of 

SAS. Fecal incidence rates of E. coli O157 were affected by sampling day in the growing study 

(P<0.01) but not in the finishing study (P>0.1). Increasing levels of crude glycerin decreased 

incidence of E. coli O157 in growing cattle (linear effect, P<0.01; 4.4, 3.2, and 1.8% for heifers 

fed 0, 4, and 8% glycerin, respectively) but not in finishing cattle (P>0.05) despite a strong 

tendency for a decrease in finishing cattle receiving corn-based diets (P=0.0597). There was no 
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interaction between WDGS inclusion and glycerin level (P>0.1) and no WDGS effect on 

prevalence of E. coli O157 in finishing cattle (P>0.1). Glycerin may be useful as a means for 

decreasing fecal prevalence of E. coli O157 in cattle, but effects may depend on the type of diet 

that is fed. 

Keywords: Glycerin, Escherichia coli O157, distiller’s grains  
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INTRODUCTION: 

Expansion of biofuels production has diverted the use of corn, sorghum, wheat, and 

soybeans from livestock feed to energy feedstocks. Utilization of cereal grains and oilseeds for 

production of renewable fuels yields large quantities of co-products that can be used as animal 

feeds. Ethanol production from cereal grains generates distiller’s grains, as a byproduct, which is 

merchandised in wet (WDGS) or dried (DDGS) forms. These byproducts commonly constitute 

10 to 50% of cattle diets in the United States whilst maintaining acceptable animal performance 

and meat quality (Jacob et al., 2010). Feeding distiller’s grains has, however, been shown to 

increase prevalence of  pathogenic bacteria, such as E. coli O157:H7, in cattle feces (Wells et al., 

2009, Jacob et al., 2010, Wells et al., 2011) and persistence in manure (Varel et al., 2008, Varel 

et al., 2010). This can increase the risk of hide contamination with pathogens (Wells et al., 

2009), as well as indirect contamination of crops by fertilization with manure or though exposure 

to water runoff from confined animal feeding operations. The mechanism by which pathogen 

shedding increases in cattle fed distiller’s grains remains unclear. It has been hypothesized that 

changes in the hindgut environment creates a more favorable environment for the pathogen 

(Berg et al., 2004, Fox et al., 2007, Klopfenstein et al., 2008). Others suggested the presence of a 

compound in distiller’s grain responsible for creating a selective niche for E. coli O157 (Dewell 

et al., 2005, Jacob et al., 2008, Viazis and Diez-Gonzalez, 2011). Analysis of distiller’s grains 

has revealed the presence of 3.5 to 10% glycerin, which is formed by yeast during fermentation 

of carbohydrates (Kingsly et al., 2010; Wu, 1994). Crude glycerin also is a byproduct of the 

biodiesel industry and frequently is fed to swine, poultry, and ruminants as an alternative source 

of energy (Hampy et al., 2008, Parsons et al., 2009, Gunn et al., 2010). Glycerin also has been 

shown to influence microbial populations in ruminants (Roger et al., 1992, Paggi et al., 2004, 
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AbuGhazaleh et al., 2011). Based on these observations we chose to focus our work on the 

impact of glycerin on the prevalence of E. coli O157 in feces of feedlot cattle. Our objectives 

were to investigate the effects of glycerin on pathogen prevalence in cattle feces, and to 

determine if the impact of glycerin feeding would be influenced by feeding distiller’s grains. For 

this purpose, we conducted two experiments: one in growing cattle fed diets containing 0, 4, or 8 

% of glycerin, and another in finishing cattle fed diets with and without added distiller’s grains 

and with 0 or 2% crude glycerin.  

MATERIALS AND METHODS 

Animals and Experimental designs 

Study 1. Crossbred heifers (n=368; initial body weight 234 ± 3.2 kg) were randomly assigned to 

growing diets containing dry-rolled corn, corn silage, alfalfa hay, corn steep liquor and one of 

three levels of crude glycerin: 0, 4 or 8% of diet dry matter (Table 3-1). Diets were fed once 

daily ad libitum. Each treatment was represented by 16 pens (36.5 m
2
) of cattle, each containing 

7 to 8 animals. Approximately half of each pen, including the feed bunk, was covered by a 

corrugated steel roof. Pens were equipped with fenceline feed bunks (3.65 linear m), and a 

fenceline water fountain was shared between two adjacent pens. Fecal samples were obtained 

from individual animals in each pen by rectal palpation once each week for 6 weeks on days 55, 

62, 69, 76, 83, and 90. 

Study 2. Crossbred heifers (n=232; initial body weight 427 ± 8.8 kg) were stratified by weight 

and randomly assigned (within strata) to the previously described pens, using a total of 32 pens 

containing 7 to 8 animals each. The study utilized a 2 x 2 factorial treatment arrangement, with 

factor 1 consisting of the level of crude glycerin added to the diet (0 or 2%, dry matter basis), 
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and factor 2 consisting of type of basal diet (corn or corn plus soybean hulls and WDGS; Table 

3-2). Pens within block were randomly assigned to treatment, thus providing 8 replicates per 

treatment. Cattle were fed once daily ad libitum. Fecal samples were collected on days 160, 164, 

168, 172, 176, 180 and 184 after beginning of the treatment. On each sampling day, fresh fecal 

pats were obtained from 5 randomly selected heifers in each pen. 

Crude glycerin analysis 

Crude glycerin used in the diets was analyzed by a commercial laboratory and contained 

14.3% moisture, 6.68% ash, 2.58% Na, 0.04% N, and less than 0.01% methanol. Composite 

samples of wet distiller’s grains and corn silage also were analyzed and contained 7.2% and less 

than 0.1% of glycerol on a DM basis, respectively. 

Escherichia coli O157 isolation 

Samples were placed into plastic bags and stored on ice immediately after sampling, and 

rapidly transported 3 km to the Preharvest Food Safety Laboratory for analysis. Feces (1 g) were 

weighed and transferred to 9-mL of Gram negative broth (Difco, Franklin Lakes, NJ) containing 

0.05 mg/L cefixime, 10 mg/L cefsulodin, and 8 mg/L vancomycin (GNccv) for a 6-hour 

incubation at 40°C. After incubation, samples from study 1 were thoroughly vortexed, and 1 mL 

of the inoculated GNccv broth was added to a sterile tube containing E. coli O157 specific 

Dynabeads (Invitrogen Dynal AS, Oslo, Norway) and subjected to immunomagnetic separation. 

GNccv tubes from study 2 were pooled by pen after incubation and subjected to 

immunomagnetic separation using a Pathatrix device (Matrix Microscience, Life Technologies, 

Grand Island, NY). Escherichia coli O157 beads resulting from both immunomagnetic 

separations were resuspended in 100 µL of phosphate buffer and plated onto two MacConkey 
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sorbitol plates (CT-SMAC) containing cefixime (0.05 mg/L) and potassium tellurite (2.5 mg/L). 

Up to 6 non-sorbitol fermenting colonies were selected from the CT-SMAC plate and inoculated 

into 5 mL Tryptic soy broth (TSB). Colonies were grown overnight at 37°C and tested for indole 

production. Indole-positive colonies were plated onto SMAC and further tested for O157 antigen 

agglutination (Oxoid, Hampshire, United Kingdom). Colonies positive for indole production and 

antigen agglutination were confirmed as E. coli O157 by Gram staining and API 20E 

(Biomerieux, Durham, NC). 

Statistical analysis 

Effect of glycerin inclusion on prevalence of E. coli O157 in study 1 was analyzed as 

binary data using Proc Glimmix of SAS (SAS Inst. Inc., Cary, NC). Levels of glycerin and 

sampling day were included in the model as fixed effects, while animal and pen were random 

effects. Linear and quadratic contrasts were analyzed for the different levels of glycerin. In study 

2, effect of sampling day, glycerin, WDGS and the combination of glycerin and WDGS 

inclusion on prevalence of E. coli O157 were analyzed using Proc Glimmix. Glycerin levels, 

byproduct inclusion and sampling day were the fixed effects and weight strata the blocking 

factor. 

RESULTS 

Study 1. 

There were no interactions between sampling day and glycerin levels (P>0.1), therefore 

only main effects are presented. Prevalence of E. coli O157 in fecal samples was influenced by 

sampling day (P<0.01). Figure 3-1 represents shedding of the pathogen over the experimental 
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period. Pathogen prevalence was low for the first two weeks, 1.3 and 0.8%, respectively. 

Prevalence then increased to 4.0% in the third week (P<0.021), peaking at 8.4% during the 

fourth week (P<0.014), and then going back down to 4.0% on the fifth week (P<0.014) to 

stabilize at 5.0% during the final week of sampling (P=0.07). Figure 3-2 illustrates the effect of 

glycerin on E. coli O157 prevalence. Fecal incidence rates of E. coli O157 were 4.4, 3.2, and 

1.8% for heifers fed 0, 4, and 8% glycerin, respectively (linear effect of glycerin, P<0.01). The 

prevalence observed in heifers fed 8% glycerin was less than that of cattle fed 0% glycerin 

(P<0.05), while prevalence in cattle fed 4% glycerin was not different from other treatments (P> 

0.18). 

Study 2. 

In this experiment there was no overall sampling day effect (P>0.1). E. coli O157 fecal 

shedding, illustrated in Figure 3-3, was highest at the first sampling (23%), d 160, but rapidly 

decreased to 8.2% on day 164 and 168 (P>0.1). Prevalence reached its lowest point on day 172 

(2.7%), which was significantly different from day 160 (P<0.04). On day 176, E. coli O157 

shedding again increased to 16.9%, which tended to be different from the previous sampling date 

(P<0.08). For the last two sampling days, pathogen prevalence again declined, which likely is 

due to seasonality of prevalence. Presence of a high number of E. coli O157 negative samples in 

this experiment did not allow us to statistically characterize the sampling day by glycerin level 

by WDGS inclusion interactions. Analysis of the combination of glycerin inclusion and presence 

of WDGS in the diet was, however, possible and revealed the absence of an interaction (P>0.1). 

WDGS inclusion alone (Figure 3-4) had no effect of WDGS on prevalence of E. coli O157 

(P>0.1). Heifers fed corn-based diets or diets containing corn with soybean hulls and WDGS but 
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without glycerin presented 11.64% E. coli O157 positive isolates over the course of the 

experiment. Heifers fed corn diets with 2% glycerin had a 2.7% pathogen prevalence and 

animals fed corn with soybean hulls and WDGS diets with 2% glycerin had a 10% prevalence; 

but the difference between these two treatments only tended to be significant (P=0.0957). There 

was a tendency for glycerin inclusion in the diet to decrease pathogen prevalence (P=0.0871), 

and pathogen prevalence, also, tended to differ between animals fed corn diets with and without 

glycerin (P=0.0597), with 2.7% and 11.6% prevalence, respectively. In diets containing soybean 

hulls and WDGS the difference in prevalence with the addition of 2% glycerin was not 

significant (10 vs. 11.6%, respectively; P>0.10). 

DISCUSSION 

Increases in prevalence of E. coli O157 have frequently been associated with addition of 

distiller’s grains, wet or dried, in feedlot diets (Dewell et al., 2005, Varel et al., 2008, Jacob et 

al., 2010). Nevertheless, explanations for this interaction are still unclear. It was first thought that 

replacement of part of the corn in the diet by DDGS or WDGS modified the amount of starch 

reaching the hindgut (Jacob et al., 2010). Such modification would, in turn, increase pH, 

potentially creating an environment that is more hospitable toward pathogen growth and survival 

(Berg et al., 2004, Fox et al., 2007). In vitro and in vivo studies have failed to establish a clear 

relationship among pH, diets, and E. coli O157 prevalence (Depenbusch et al., 2009, Wells et 

al., 2009, Yang et al., 2010). Similarly, it has been hypothesized that differences in 

concentrations of VFA and branched amino acids might explain changes in pathogen prevalence. 

Distiller’s byproducts contain much higher levels of protein compared to corn (Klopfenstein et 

al., 2008), and only a portion of this protein is degraded in the rumen. Consequently, greater 
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supplies of protein reach the hindgut, potentially yielding increased levels of VFA and branched 

amino acids that could influence pathogen survival. Definitive evidence supporting this 

hypothesis is, however, lacking (Huntington et al., 2006). Concentration of L-lactate has also 

been proposed as a contributing factor, recognizing that L-lactate has antimicrobial properties 

(McWilliam Leitch and Stewart, 2002) and its rarefaction could benefit pathogen persistence in 

manure. Inclusion of WDGS in cattle diets has been shown to decrease significantly L-lactate 

concentration in feces compared to cattle fed corn (Varel et al., 2008, Wells et al., 2009); 

however, these concentrations, 3.72 mM on average, are far below the 50 to 200 mM 

concentrations that have been identified as having inhibitory effects, and cannot solely explain 

increased prevalence of E. coli O157 in feces. Other authors (Dewell et al., 2005, Jacob et al., 

2008) suggested the presence of a compound in distiller’s grains that would benefit, directly or 

indirectly, the pathogen. Previous publications have reported distiller’s grains to contain between 

3.5 and 10% glycerin on DM basis (Wu, 1994, Kingsly et al., 2010). Glycerin is formed during 

yeast fermentation in the early stage of ethanol production. Its concentration in the final 

byproduct depends on ethanol process, grain type, yeast type, and treatment of distiller’s grain 

used. In our experiment WDGS consumed by finishing heifers contained 7.2% glycerol, thus 

contributing 1% glycerol to the total diet. Feedlot diets with higher inclusion levels of 

byproducts could contain significant amount of glycerin. We hypothesized that glycerin would 

influence shedding of E. coli O157 in feces of cattle fed distiller’s grains. Based on present 

results, inclusion of glycerin, in presence or absence of byproduct in the diet, did not increase 

pathogen prevalence. Addition of glycerin to growing diets significantly decreased the E. coli 

O157 shedding, and numerically decreased it in grain-based finishing diets. Based on these 

findings, glycerin could be a potential way to mitigate pathogen prevalence. Explanation of the 
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mechanism behind E. coli O157 prevalence reduction is, however, not yet understood. Glycerin 

is known to reduce cellulolytic activity in the rumen (Roger et al., 1992, Paggi et al., 2004). One 

percent excess glycerol inhibited growth and activity of Ruminococcus flavefaciens and 

Fibrobacter succinogens in an in vitro assay (Roger et al., 1992). Likewise, replacing 30% of the 

corn by glycerin, in a continuous fermenter, reduced DNA concentrations of Butyrivibrio 

fibrisolvens by preventing its attachment to fiber (AbuGhazaleh et al., 2011). Feeding studies 

corroborate with these observations, as apparent digestibility of neutral detergent fiber (Donkin 

et al., 2009, Parsons and Drouillard, 2010) was decreased by increasing amount of glycerin 

incorporated into cattle diets. In addition, glycerol was found to decrease proteolytic activity by 

20% when added to culture media at concentration of 50 mM or more (Paggi et al., 1999). 

Bacterial protein synthesis was decreased by infusing glycerol into the rumen of bulls (Kijora et 

al., 1998). Overall, effects of glycerin on fiber and protein digestion within the rumen could be 

responsible for eliciting changes in nutrients flowing to the hindgut of animals, thus creating 

conditions that are less favorable for the pathogen. It could, as well, alter conditions within the 

gut to increase populations that effectively compete with E. coli O157. Many microorganisms 

are able to use glycerol as a substrate, but only few of them can do so under anaerobic 

conditions. In the rumen, Selenomonas is one of the key glycerol fermenters, producing 

propionate, lactate, succinate and acetate (Krehbiel, 2008). Increase of glycerol supply to the 

rumen could potentially benefit Selenomonas and have a negative effect on Escherichia coli. 

Additionally, decline in rumen pH observed in vivo and in vitro with increasing levels of glycerin 

(Kijora et al., 1998, Lee et al., 2011) could be another factor explaining the reduction in E. coli 

O157 shedding. Effects of glycerin on pH have not, however, been consistent, and some 

experiments have failed to illustrate an effect of glycerol on pH (Rico et al., 2012) or, in 
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contrary, observed an increase in pH (Parsons and Drouillard, 2010). Discrepancies in results 

may be explained in part by differences in basal diets or glycerol levels used among studies. 

Therefore, the relationship between E. coli O157 prevalence reduction by glycerin and pH is not 

definite and would need more attention. 

Despite the mechanisms involved in reduction of pathogen shedding, addition of glycerin 

efficiently reduced percentage of feces positive for E. coli O157 in animals fed the grain-based 

diet. We speculate that numerical differences observed in E. coli O157 prevalence in grain-based 

diets with and without glycerin might have been significant with higher rates of inclusion, as a 

linear effect of glycerin was observed in our first study. The absence of an effect of glycerin in 

cattle fed diets containing byproducts tempers the potential to use glycerin as a mitigating agent. 

Comparison of 2% glycerin grain-based diet and the 2% glycerin byproduct-based diet 

underscore potentially important differences in fiber content, 11.8 and 28.8% respectively, and 

fat content, 2.5 and 6.6%, respectively. It is conceivable that glycerin effects are different for 

microflora from an animal fed a typical corn-based diet compared to cattle fed diets with greater 

concentrations of fiber and fat. Finally, in our finishing experiment, we did not observe any 

difference in shedding of E. coli O157 in animal fed 0 or 15% WDGS with soybean hulls, which 

contradicts previous findings (Dewell et al., 2005, Varel et al., 2008, Jacob et al., 2010). Even if 

the large majority of the studies did show a relationship between distiller’s grains inclusion and 

pathogen prevalence, few others did not observed any effect of the byproduct inclusion on E. coli 

O157:H7 fecal prevalence (Jacob et al., 2009, Klopfenstein et al., 2009) which might be 

explained by the variability in nutrients content between various distiller’s grains (Kleinschmit et 

al., 2007). Glycerol content of the byproduct used in previous studies have rarely been reported, 

it is possible that the presence of 1.09% of glycerin in the initial byproduct-based diet used in 
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this experiment might have affected the prevalence of E. coli O157, inhibiting its increase. The 

subsequent addition of 2% glycerin in the diet may not have been sufficient to lead to a 

significant difference in E. coli O157 prevalence, but did induce a numerical decrease. 

Taken together that glycerin is not the compound responsible for increased prevalence of 

E. coli O157 in animal fed distiller’s grains and that WDGS did not have an effect on pathogen 

prevalence, it is probable that the compound allegedly benefiting E. coli O157 was absent or in 

too low concentration in the WDGS used in this study. 

In conclusion, glycerin inclusion ranging from 2 to 8% decreased the shedding of E. coli 

O157 in feces of growing heifers, and tended to do so in finishing heifers. Based on our results, 

we can conclude that glycerin is unlikely to be the component of distiller’s grains responsible for 

greater shedding of E. coli O157 in feedlot cattle. Glycerin could indeed be a means of 

mitigating prevalence of the pathogen in feces, though its utility for this purpose may be 

influenced by composition of the basal diet, and explanations for this difference are still lacking. 

Given the increasing availability of glycerin from biodiesel production and the need for 

preharvest intervention to control pathogen shedding in feedlot cattle, glycerin may prove useful 

as a potential candidate to alleviate pathogen shedding in cattle fed grain-based diets. 
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Table 3-1: Composition of growing experimental diets (dry basis). 
Ingredients, % 0% Glycerin 4% Glycerin 8% Glycerin 

Corn silage 62.50 62.50 62.50 
Wet corn gluten feed 32.90 28.30 23.90 
Crude glycerin1 - 3.70 7.50 
Soybean meal - 1.60 3.10 
Limestone 0.50 0.50 0.50 
Urea 0.70 0.90 0.90 
Vitamin/mineral premix2 1.60 1.40 - 
Feed additive premix3 2.50 2.50 2.50 
    
Nutrient Composition, %    
   Dry matter 43.30 43.70 44.20 
   Crude protein 12.80 12.50 11.90 
   Neutral detergent fiber 36.20 34.60 33.00 
   Crude fat 2.57 2.45 2.34 
   Calcium 1.00 1.10 1.10 
   Phosphorus 0.66 0.61 0.56 
   Glycerol 0.06 3.41 6.86 
1Contained 14.3% moisture, 6.68% ash, 2.58% Na, 0.04% N, and less than 0.01% methanol. 

2Formulated to provide 0.1 mg Co, 10 mg of Cu, 0.6 mg of I, 60 mg of Mn, 0.25 mg Se, 60 mg Zn, and 
2640 IU vitamin A per kg diet DM. 
3Provided 300 mg of Rumensin (Elanco Animal Health, Greenfield, In) per animal daily in a ground corn 
carrier. 
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Table 3-2: Composition of finishing grain-based diets and byproduct-based diets with or 

without 2% crude glycerin (dry basis). 

 Grain-based Diets  Byproduct-based Diets 

Ingredients, % 0% Glycerin 2% Glycerin  0% Glycerin 2% Glycerin 

Corn 80.60 78.20  46.60 44.20 
Soybean hulls - -  25.00 25.00 
Wet distiller’s grains - -  15.00 15.00 
Corn silage 6.00 6.00  6.00 6.00 
Soybean meal 4.40 4.80  - 0.40 
Alfalfa hay 3.00 3.00  3.00 3.00 
Crude glycerin1 - 2.00  - 2.00 
Limestone  1.70 1.70  1.40 1.40 
Urea 1.20 1.20  0.40 0.40 
Vitamin/mineral premix2 0.90 0.90  0.40 0.40 
Feed additive premix3 2.20 2.20  2.20 2.20 

      
Nutrient Composition, %      

Dry matter 76.10 76.30  64.60 64.70 
Crude protein 14.80 14.80  14.70 14.70 
Neutral detergent fiber4 11.90 11.80  28.90 28.80 
Crude fat5 2.50 2.50  6.60 6.60 
Calcium 0.70 0.70  0.90 0.90 
Phosphorus 0.30 0.30  0.30 0.30 
Glycerol 0.01 1.82  1.09 2.90 

1Contained 14.3% moisture, 6.68% ash, 2.58% Na, 0.04% N, and less than 0.01% methanol 

2Formulated to provide 0.1 mg Co, 10 mg of Cu, 0.6 mg of I, 60 mg of Mn, 0.25 mg Se, 60 mg Zn, 2640 
IU vitamin A, and 11 IU vitamin E per kg diet DM. 
3Feed additive premix provided 300 mg of monensin (Elanco Animal Health, Greenfield, IN), 90 mg 
tylosin (Elanco), and 0.5 mg of melengestrol acetate (Pfizer Animal Health, Exton, PA) per animal 
daily in a ground corn carrier. Zilpaterol HCl (Intervet Inc., Millsboro, DE) was fed for 21 d before 
harvest at the rate of 8.33 mg/kg of diet DM, followed by a 3-d withdrawal period. 
4NRC (2000) feed library NDF values for soybean meal were used in calculation of NDF content. 
5NRC (2000) feed library fat values for soybean meal and soybean hulls were used in calculation of 
crude fat content. 
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Figure 3-1: E. coli O157 prevalence in feces of growing cattle at each sampling days. 

Letters on top of the bars represent the comparison between sampling days. Bars with 

different superscript are significantly different (P<0.05). Sampling day effect P<0.001. 

SEM = 0.01 
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Figure 3-2: E. coli O157 prevalence in feces of cattle fed growing diets containing 0, 4, and 

8% crude glycerin. Letters above bars represent the comparison between treatments. Bars 

with different superscripts are significantly different (P<0.01). Treatment effect P=0.0052. 

linear effect of treatment P=0.0012. SEM = 0.008 
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Figure 3-3: E. coli O157 prevalence in feces of finishing cattle at each sampling day. Letters 

above bars represent comparisons among means between sampling days. Bars with 

different superscript are significantly different (P<0.05). Sampling day effect P>0.1. SEM = 

0.08. 
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Figure 3-4: E. coli O157 prevalence in feces of cattle fed a finishing diets based on grain or 

byproduct with or without 2% glycerin over the 24-day period. Letters above bars 

represent the comparison between treatments. Bars with different superscripts are 

significantly different (P<0.05). SEM = 0.041. 
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ABSTRACT 

Our objective was to evaluate the effects of transportation and lairage on fecal shedding 

of E. coli in feedlot cattle. The study was a randomized complete block design with 20 steers per 

block (10/treatment), 3 blocks (replications), and 2 treatments: a non-transported group and 

transported steers that were placed into a trailer, hauled for 1 h, and subsequently allowed to rest. 

Fecal samples were taken pre-transport and after 4 and 28 h lairage. Fecal samples were 

collected from both groups at h 0, 5, and 29 from freshly voided fecal pats. One gram of feces 

was transferred to a phosphate buffer saline (PBS) tube, serially diluted, and plated onto 

Petrifilm for enumeration of total coliforms. Another sample (1 g) was added to gram-negative 

broth containing cefixime, cefsulodin, and vancomycin, and subjected to immunomagnetic 

separation. Resulting beads were plated onto MacConkey agar with sorbitol, cefixime, and 

tellurite. Non-sorbitol fermenting colonies were selected and tested for indole production and 

O157 antigen agglutination. Results were confirmed using an API 20E kit. Prevalence of E. coli 

O157 was transient across replications. E. coli O157 occurrence in the transported group was 

relatively constant across the three sampling times (10, 3.3, and 16.7%, for h0, 5, and 29, 

respectively; P > 0.37). Prevalence increased numerically in the control group at h 5 (33%) 

compared with h 0 (17%; P = 0.37) and 29 (13%; P < 0.28) but was not significant. Numbers of 

coliforms remained fairly constant across replication. Prevalence of E. coli O157 was not 

correlated with concentration of coliforms (P > 0.35). Coliform concentrations in control steers 

remained stable from 0 to 28 h post-transit. Transported animals had lower coliform 

concentrations at h5 (3.2 log cfu/gram; P < 0.001), but returned to pre-transport levels of 4.5 log 

cfu at h 29 (P > 0.9). Results suggest that shedding can vary greatly within a period of 29 h. 

Additional post-transit sampling times are needed to be able to conclude the effects of transport 
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stress on E. coli O157 prevalence and the changes undergone in pathogen shedding patterns after 

transportation. 

Keywords: E. coli O157, transport 
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INTRODUCTION 

Foodborne illness from Escherichia coli O157:H7 is a major concern for the food indus-

try. Contamination of food products can occur at slaughter by contact with hide or feces; 

therefore, limiting E. coli O157:H7 shedding is important to prevent outbreaks. Previous studies 

have demonstrated a relationship between stress and levels of pathogens shed in feces (Freestone 

and Lyte, 2010). Transport to the abattoir represents a significant stressor for cattle (Grandin, 

1997). When subjected to stress, cattle develop a stress response through the sympathetic adrenal 

medullary axis and the hypothalamic pituitary adrenal axis, releasing epinephrine, 

norepinephrine, and cortisol (Matteri et al., 2000) into the gastrointestinal tract and into general 

circulation.  

Bacteria use hormone-like compounds, or autoinducers (AI; Hughes and Sperandio, 

2008) to communicate with each other. This phenomenon is known as quorum sensing. Binding 

of AI to adrenergic receptors on the membrane of bacteria (Chen et al., 2006; Kendall and 

Sperandio, 2007) triggers a cascade of phosphorylation that activates the locus of enterocyte 

effacement (LEE) genes, flagella regulon (FlhDC) motility genes, and Shiga toxin genes 

(Hughes and Sperandio, 2008).  

Recent studies have shown that communication through this system is not limited to 

signaling molecules produced by prokaryotic organisms. Eukaryote signaling molecules, 

norepinephrine and epinephrine, are able to substitute autoinducer 3 (AI-3; Clarke and 

Sperandio, 2005) and increase E. coli O157:H7 motility, adherence, and virulence. Furthermore, 

norepinephrine releases iron sequestered by lactoferrin and transferrin in the lumen of the gut, 

thus making iron available for bacterial growth (Freestone and Lyte, 2008; Freestone et al., 

2007). 



94 

 

Based on these mechanisms, we hypothesized that transported animals will be at greater 

risk for E. coli O157 colonization than non-transported animals, and that the increase in 

pathogenic bacteria could also induce a shift in concentrations of total E. coli and coliforms. 

MATERIALS AND METHODS 

Study design  

The study was a randomized complete block design with a split-plot design. There were 

20 steers per block, 3 blocks (replications), and 2 treatments (10 steers/treatment): a non-

transported group and a transported group. Transported animals were placed into a trailer, 

transported for 1 h, and, upon return to the research facility, unloaded and placed into concrete-

surfaced pens (36 m
2
) with an overhead shade covering approximately 50% of the pen and ad 

libitum access to water, thus mimicking pre-slaughter lairage. Neighbor pens were empty to 

prevent contact with other animals. Non-transported steers remained in their pens at all times 

throughout the experiment. The experiment was repeated 3 times (blocking factor) on 

consecutive days in August 2011. The summer time frame was chosen to increase the likelihood 

of high E. coli O157 prevalence in the cattle. Steers were randomly allocated to treatment. A new 

set of 10 steers was used for both groups for each replication to avoid the potential for adaptation 

to transport stress. 

Animals  

Crossbred steers (527 ± 110 kg initial BW) were used in this experiment. Animals were 

present at the feedlot prior to the experiment and were accustomed to their housing arrangements 

and penmates. Steers were fed a finishing diet based on dry-rolled corn, corn silage, and steep 

corn liquor (Table 4-1) once a day at 0830 h and had ad libitum access to water in their 
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respective pens. Steers from the transported group were loaded into a trailer at 0800 h, before 

feeding, on experiment day and were left to rest in a different pen. These steers only had access 

to food the next day at 0830 h.  

Collection of fecal samples  

Fecal samples were taken pre-transport (h 0), and at 4 and 28 h post-transport (h 5 and h 

29) from freshly voided fecal pats (Figure 4-1). Samples were placed into plastic bags and kept 

on ice until they were transported to the Preharvest Food Safety Laboratory at Kansas State 

University. 

Total Escherichia coli and coliform counts. One gram of feces was transferred to a tube 

containing PBS. The PBS tube was serially diluted, plated on Petrifilm, and incubated for 24 h at 

37 °C for enumeration of total coliforms and E. coli. Most E. coli bacteria produce glucuronidase 

and will appear as blue colonies on Petrifilm, whereas the other coliforms will appear red. 

Escherichia coli O157 does not produce beta-glucuronidase, and thus is enumerated along with 

other coliforms. 

Escherichia coli O157 isolation  

One gram of feces was transferred to 9 mL Gram-negative broth (Difco-BD, Franklin 

Lakes, NJ) with 0.05 mg/L cefixime, 10 mg/L cefsulodin, and 8 mg/L vancomycin (GNccv). The 

GNccv tubes were incubated at 40 °C for 6 h. After incubation, tubes were subjected to 

immunomagnetic separation using serotype-specific beads for E. coli O157 (Invitrogen Dynal 

AS, Oslo, Norway). Beads were resuspended in 200 μL of phosphate buffer and plated onto two 

MacConkey sorbitol plates (CT-SMAC) containing cefixime (0.05 mg/L) and potassium tellurite 

(2.5 mg/L). Up to 6 non-sorbitol fermenting colonies from the CT-SMAC plate were selected 
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and inoculated into 5 mL Tryptic soy broth (TSB). Colonies were grown overnight at 37 °C and 

tested for indole production. Indole-positive colonies were plated onto SMAC and further tested 

for O157 antigen agglutination. Colonies positive for indole production and antigen agglutination 

were confirmed as E. coli O157 by Gram staining and API 20E (Biomerieux, Durham, NC).  

Statistical analyses 

In this experiment, the experimental unit was a group of 10 steers, and individual steers 

were considered a subsample. Replication was the blocking factor. Sampling times and 

treatments were the fixed effects. Sampling time was considered a split-plot factor (repeated 

measurement) after verifying that the covariance between experimental units at h0 and h5 was 

similar to the covariance between experimental units at h 5 and h 29. Total coliforms and E. coli 

data were log-transformed and analyzed as continuous variables using the MIXED procedure of 

SAS (SAS 9.2 Inst. Inc., Cary, NC). Escherichia coli O157 prevalence was expressed as the 

number of positive samples over the number of animals for the specific treatment and the 

specific sampling time and analyzed using a GLIMMIX procedure of SAS. To assess the effect 

of E. coli O157 on total coliforms and total E. coli a MIXED procedure of SAS was used with E. 

coli O157, treatments and sampling times as fixed effects and steers, replications, and interaction 

between replication x treatment and replication x treatment x sampling time x E.coli O157 as 

random effects. 

RESULTS  

Overall prevalence of E. coli O157 in fecal samples varied with replications (Figure 4-2). 

Transport did not affect the prevalence of the pathogen (Figure 4-3; P > 0.09). Additionally, we 

observed no sampling time effect (P > 0.9) and no interaction between sampling time and 
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treatment (P >0.17). Prevalence of E. coli O157 in the transported group was fairly constant 

across the 3 sampling times (10, 3.3, and 16.7%, respectively; P > 0.37), with a slight decrease at 

h 5. Non-transported group also showed fairly constant prevalence across the 3 sampling times 

(17%, 33%, and 13%; P > 0.37), with a slight increase at h 5. Even if the effect of treatment was 

not significant, prevalence of the pathogen in feces of transported cattle was significantly lower 

than their counterpart at h 5 (P < 0.05). 

As a secondary objective, we evaluated concentrations of E. coli (Figure 4-4) and other 

coliforms (Figure 4-5) in samples to determine if these populations were related to variations in 

E. coli O157 prevalence. We observed no effect of treatment (P > 0.7) or sampling time (P > 

0.09) and no interaction between treatment and sampling time (P > 0.08) on total E. coli. 

Numbers of E. coli or other coliforms remained fairly constant across replications. The non-

transported group had total enumerable E. coli numbers (log cfu/gram; Figure 4-4) of 6.10 at h 0, 

5.84 at h 5, and 5.88 at h 29, which were not significantly different (P > 0.18). The transported 

group enumerable E. coli numbers were not different when comparing h 0 to h 5 (5.92 vs. 5.77 

log cfu/gram; P > 0.3), or h 0 to h 29 (5.92 vs. 6.25 log cfu/gram; P < 0.07); however, E. coli 

counts increased significantly from h 5 to h 9 (5.77 vs. 6.25 log cfu/g; P < 0.02). Unlike total E. 

coli, coliform concentrations revealed a sampling time effect (P < 0.004) and a tendency for a 

treatment × sampling time interaction (P = 0.059), but no treatment effect (P > 0.7). Coliform 

counts for the non-transported group (Figure 4-5) remained relatively stable over the different 

sampling times (4.77, 4.18, and 4.13 log cfu/gram; P > 0.14). Transported cattle had decreased 

fecal coliform concentrations at h 5 (3.2 log cfu/gram; P < 0.001) compared with h 0 (4.57 log 

cfu/gram) but returned to pre-transport levels of 4.54 log cfu at h 29 (P > 0.9). No significant 
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correlation was observed between the prevalence of E. coli O157 and concentrations of total 

fecal coliforms (P > 0.35) or total E. coli (P > 0.95; Figure 4-6). 

DISCUSSION 

We had hypothesized that transported cattle would be at greater risk for E. coli O157 

colonization than non-transported animals and that increase in pathogenic bacteria might also 

induce shifts in total E. coli and coliform concentrations. We observed that concentrations of 

total E. coli and total coliform were fairly constant across treatments and replications. Coliform 

and E. coli concentrations decreased numerically at h 5 regardless of treatment. The similarity in 

patterns in transported and non-transported groups suggests that transport was not the causative 

factor in this change. Variation in population could be attributed to a circadian rhythm; however, 

h 5 and h 29 samplings occurred at the same time during the day with a 24-h interval. 

Differences observed between these two sampling times questioned the hypothesis of a circadian 

rhythm; moreover, animals from the transported group did not have access to feed on the first 

day of sampling, which could be responsible for the variation in concentration of coliform and 

total E. coli in that group. Data collected in this study were not sufficient to draw a conclusion 

about this change. 

Contrary to our expectations, we found no correlations between prevalence of E. coli 

O157 in feces and concentrations of total E. coli or coliform. Escherichia coli O157 lacks beta-

glucuronidase, and thus is confounded with total coliform counts (Thompson et al., 1990), 

potentially explaining why were unable to detect correlations between increases in pathogens and 

total coliforms. The binomial nature of pathogen prevalence also may not be sufficiently robust 

to detect this relationship. 
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Prevalence of E. coli O157 4 and 28 h after transport revealed an important variation of 

E. coli O157 shedding from one replication to the other. The transient nature of E. coli O157 is 

well known, and although we conducted the experiment during the summer when expected 

pathogen prevalence is greatest (Chapman et al., 1997; Hancock et al., 1997), variation between 

replicates was not unexpected. The absence of a statistically significant interaction between 

sampling time and treatment, as well as a sampling time or treatment effect, suggests that 

transport may not have influenced fecal pathogen shedding in this experiment. Nevertheless, it is 

important to note that non-transported animals had increased shedding of the pathogen at h 5, 

whereas transported animals showed a slight but insignificant decrease at that time. Such change 

in shedding patterns of transported cattle relative to their non-transported counterparts could be 

the consequence of transport-related stress. Animals under stress tend to defecate and urinate 

more often than non-stressed animals (Friend, 1991). Increased defecation due to transport stress 

could induce a rapid washout of the pathogen, depleting numbers by h 5. Another hypothesis is 

that under stressful conditions, E. coli O157:H7 virulence and attachment is amplified by action 

of catecholamine on LEE and motility genes (Hughes and Sperandio, 2008), delaying excretion 

of the pathogen in feces. The locus of enterocyte effacement (LEE) encodes a type III secretion 

system, which introduces virulence associated proteins into host epithelial cells via a hollow 

filamentous extension of the needle complex encoded by the espA gene (Roe et al., 2003) and 

causes attachment effacement of the EHEC. Likewise, flagellar regulon (FlhDC) encodes for a 

flagella-mediated motility and has been shown to play a role in the adherence of the pathogen to 

the epithelium cells (Giron et al., 2002). Greater attachment of the pathogen to the 

gastrointestinal tract would likely make the bacteria more resistant to washing off. Independently 

from the explanation of the change in timing of fecal shedding, it is important to note that the 
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pathogen prevalence was highly transient within a period of only 29 h, which implies that 

pathogen populations can amplify and decay relatively quickly. Such observations underscore 

the importance of the choice of sampling time to assess the effects of stress on E. coli O157 

shedding patterns. 

In our design, fecal samples were obtained at only two time points post-transport, h 5 and 

h 29. The 4-h lairage period was chosen arbitrarily based on the time animals commonly spend 

in the lairage area at abattoirs before harvest. Considering the rapid fluctuation in pathogen 

populations within feces, additional sampling times appear to be needed to better qualify the 

changes in E. coli O157 shedding under transport stress. In future studies, all feces produced by 

the animals, including in the trailer, should be collected to portray E. coli O157 prevalence 

patterns following transport. 

The present E. coli O157 analysis was qualitative and not quantitative; in such 

conditions, the potential for presence of supershedder animal(s) in the non-transported group 

cannot be excluded. Supershedders are defined as cattle shedding more than 10
3
 to 10

4
 cfu/g of 

feces, and their incidence in a pen has been shown to increase the prevalence of E. coli O157 for 

the whole pen (Cobbold et al., 2007; Stephens et al., 2009). To overcome this limitation, 

quantifying E. coli O157 present in feces of individual animals would be useful. 

Another measurement that would be beneficial to our design is the pathogen prevalence 

on the hides of cattle. Hides have been shown to be a main vector for carcass contamination 

(Arthur et al., 2009; McGee et al., 2004). Animal hides, with transport space limitations, are 

likely to be contaminated with feces from others and disseminate the pathogen. 

We hypothesized that handling, loading, transport, unloading, and confronting cattle with 

unfamiliar housing conditions (i.e., new pens) would induce stress responses in the cattle used in 
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our experiment. We made no attempt to quantify stress response to confirm this, and thus cannot 

exclude the possibility that our model failed to induce the desired stress response. Assessment of 

stress response typically requires blood sampling and subsequent characterization of the 

secretion of cortisol, epinephrine, norepinephrine, or other stress-related compounds. Handling 

of animals to obtain these samples arguably would induce some degree of stress, potentially 

masking effects of our desired treatments. Analysis of cortisol levels in feces has been reported 

as a reliable indicator of stress (Mostl and Palme, 2002), and may have been a useful addition to 

the present experiment. Cortisol released into circulation in response to stressful events is 

metabolized and excreted in urine and feces (Mostl and Palme, 2002). On average, the 

metabolite can be detected in feces about 12 h following a stress event, and concentrations in 

feces parallel those of circulating cortisol immediately after induction of stress (Palme et al., 

2000). Our intent was to minimize exposure to stress in the non-transported group, but we cannot 

exclude the possibility that these animals were stressed by the mere presence of humans in their 

pens waiting to collect fresh fecal pats. 

Previous studies have been performed to assess the impact of transportation on 

prevalence of E. coli O157 in cattle, but none of these studies compared shedding patterns of the 

pathogen in transported animals vs. non-transported animals. These studies evaluated E. coli 

O157 prevalence in fecal samples collected at the feedyard and after transport in the lairage pens 

or right after slaughter. Some authors observed an increase in E. coli O157 following 

transportation (Arthur et al., 2007; Bach et al., 2004; Dewell et al., 2005; Dewell et al., 2008), 

whereas others observed no significant effect of transport (Barham et al., 2002; Fegan et al., 

2009; Minihan et al., 2003) on pathogen shedding. 
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Differences in detection techniques used can account for part of the discrepancy in the 

results. Animal genetics, age, gender, and management history have been shown to influence 

stress perception (Stanger et al., 2005). These criteria should be taken into consideration when 

comparing results from studies, because they confer a unique capacity on each animal to cope 

with stress. Multiple factors are involved in transport stress (Nielsen et al., 2011), and variation 

in each of these factors could affect findings. Over the course of their journey, cattle are 

subjected to feed and water depravation (Warriss et al., 1995); psychological stressors, such as 

handling, novelty, and disruption of their social organization (Grandin, 1997); repression of their 

basic behaviors, such as lying down (Munksgaard et al., 2005); and they may be exposed to large 

bacterial loads (Avery et al., 2004) from other animals and the surrounding environment. 

Variations in the effects of transport on E. coli O157 prevalence in fecal samples are thus to be 

expected. 

In conclusion, our hypothesis was that stress from transport would alter fecal shedding of 

E. coli O157. Results suggest that shedding patterns for pathogens can vary greatly within a 

period of 29 h. Additional post-transit sampling times with pathogen quantification and 

collection of stress-related measurements are needed to conclude the effect of transport stress on 

E. coli O157 prevalence and the changes undergone in pathogen shedding patterns after 

transportation. Change in shedding patterns could have important ramifications for beef safety. 
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Table 4-1. Diet composition (dry basis). 

Ingredients, % Finishing diet 

Dry-rolled corn           74.20 

Corn silage           12.00 

Steep corn liquor             8.00 

Vitamin/mineral premix
1 

            3.63 

Feed additive premix
2 

            2.16 

  

Nutrient composition, %  

   DM           72.23 

   CP           14.00 

   NDF           11.36 

   Crude fat             0.007 

   Ca             0.70 

   P             0.45 
1
Formulated to provide 0.1 mg Co, 10 mg Cu, 0.6 mg I, 60 mg Mn, 0.25 

mg Se, 60 mg Zn, and 2640 IU vitamin A and 11 IU vitamin E per 

kilogram of diet DM. 
2
Provided 300 mg of Rumensin (Elanco Animal Health, Greenfield, IN), 

90 mg tylosin (Elanco) per animal daily in a ground corn carrier. 
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Figure 4-1. Experimental design. 
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Figure 4-2. Total prevalence of Escherichia coli O157 within each replication. 
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Figure 4-3. Prevalence of Escherichia coli O157 in feces collected at h 0, 5, and 29 from 

cattle subjected (□), or not (■), to 1-h transport. Letters above bars represent comparisons 

among means between and within treatments. Bars with different superscript are 

significantly different (P < 0.05). Treatment effect P = 0.0919; sampling day effect P = 

0.9369; treatment × sampling time interaction P = 0.1786. SEM = 0.063. 
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Figure 4-4. Fecal concentrations of Escherichia coli in feces collected at h 0, 5, and 29 from 

cattle subjected (□), or not (■), to 1-h transport. Letters above bars represent comparisons 

among interaction means between and within treatments. Bars with different superscript 

are significantly different (P < 0.05). Treatment effect P = 0.7715; sampling day effect P = 

0.0919; treatment × sampling time interaction P = 0.0874. SEM = 0.094. 
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Figure 4-5. Fecal concentrations of coliforms other than Escherichia coli in feces collected 

at h 0, 5, and 29 from cattle subjected (□), or not (■), to 1-h transport. Letters above bars 

represent comparisons among interaction means between and within treatments. Bars with 

different superscript are significantly different (P < 0.05). Treatment effect P = 0.7171; 

sampling day effect P = 0.0044; treatment × sampling time interaction P = 0.0597. SEM = 

0.43. 
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Figure 4-6. Fecal concentrations of coliforms (■) and Escherichia coli (□) in relation to E. 

coli O157 prevalence (■) in feces collected at h 0, 5, and 29 from cattle subjected, or not, to 

1-h transport. E. coli O157 prevalence effect on total coliform P > 0.35; E. coli O157 

prevalence effect on total E. coli P > 0.95. 
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Chapter 5 Long-chain fatty acids profile of cattle fecal samples as an 

indicator for the shedding of E. coli O157 

Celine C. Aperce, James Higgins and James S. Drouillard, 

Kansas State University, Manhattan, Kansas, USA 

Running Title: Indicator of E. coli O157 presence in cattle feces 
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ABSTRACT: 

We analyzed long-chain fatty acid profiles of fecal samples to determine if these metabolites 

could be useful indicators of the presence or absence of E. coli O157. Of the 39 methyl esters of 

long-chain fatty acids evaluated, only eicosapentaenoic acid concentration was associated with 

the presence of the pathogen. 

Keywords: Escherichia coli O157, LCFA 
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INTRODUCTION 

E. coli O157 is well known for its pathogenic action in humans, and cattle are recognized 

as an important reservoir for the pathogen (1). Studies designed to increase knowledge of factors 

influencing E. coli O157 shedding in ruminants are challenging due to the transient nature of the 

bacteria (2). To overcome this problem, experiments often require a large number of replicates 

and multiple sampling times. Detection methods used are labor-intensive, costly, and often lack 

sensitivity to detect an infectious dose of E. coli O157, which can be as low as 1 to 100 CFU (3). 

Progress in identifying effective preharvest interventions within commercial feedlot settings 

would be facilitated by the development of detection methods that could be implemented on a 

large scale, at relatively low cost, and that would be suitable for high-volume screening. We 

investigated the potential for exploiting long-chain fatty acid metabolites produced by bacteria as 

an indicator of the presence of E. coli O157 in feces. We hypothesized that fecal samples 

positive for E. coli O157 would have fatty acid profiles that could differentiate them from 

negative samples. Our objective was to identify one or more long-chain fatty acids, or 

combinations thereof, which could serve as a “signature” for E. coli O157 presence in feces. 

THE STUDY 

Fecal samples were obtained from the weekly sampling of 368 crossbred heifers (234 ± 

3.2 kg BW) over a 6-week period. Heifers were fed a growing diet containing 2 levels of crude 

glycerin (0 or 8% of diet dry matter), dry-rolled corn, corn silage, alfalfa hay, and corn steep 

liquor. All diets were formulated to be isonitrogenous (Table 5-1). 

Animals were held briefly within a hydraulic restraining device to facilitate sampling of 

feces via rectal palpation. Fresh fecal samples were immediately placed on ice and transported 3 
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km to the Preharvest Food Safety Laboratory (Kansas State University, Manhattan, KS) for 

analysis. Approximately 1g of feces was weighed and placed in 9 mL gram-negative broth 

(Difco-BD, Franklin Lakes, NJ) with cefixime (0.05 mg/L), cefsulodin (10 mg/L), and 

vancomycin (8 mg/L; GNccv) for a 6-hour incubation at 40°C. The remaining portion of each 

fecal sample was placed into a -20°C freezer. One milliliter of the GNccv broth was then added 

to a sterile tube containing 20 µL of E. coli O157 specific beads and subjected to 

immunomagnetic separation. Resulting E. coli O157 beads were resuspended in 100 µL of 

phosphate buffer and plated onto a selective agar for E. coli O157, sorbitol-MacConkey agar 

with cefixime (0.5 mg/L), and potassium tellurite (2.5 mg/L), for an overnight incubation at 

37°C. Following incubation, 6 non-sorbitol fermenting colonies were selected and tested for 

indole production and O157 antigen agglutination. Colonies positive for both agglutination and 

indole production were considered E. coli O157. Results were confirmed by Gram staining and 

API 20E kit (Biomerieux, Durham, NC).  

Fatty acids analyses were performed on fecal samples obtained during weeks 3, 4, and 5 

of the experiment. Animals were classified as E. coli O157 positive if at least 1 sample over the 

3-week period tested positive for the pathogen. Animals were classified as E. coli O157 negative 

only if all samples during the 6-week experiment tested negative for E coli O157. A subset of 21 

positive and 61 negative samples were obtained. For analysis of long-chain fatty acids, samples 

were thawed, ground, derivatized with methanolic-HCl (4), and subsequently analyzed for 

concentrations of 38 fatty acids (from C6:0 to C24:1) by gas chromatography using a Supelco 

SP-2560 capillary column.  

Fatty acid concentrations were expressed as a percentage of the sample weight. Statistical 

analyses of the data were performed using stepwise regression (SAS 9.2, Cary, NC). First, the 
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relationship between individual fatty acid concentrations in the fecal samples and E. coli O157 

status was evaluated using a Pearson correlation and Kendall’s tau coefficient. Fatty acids with a 

P-value less than 0.200 were retained in the model as possible indicators (Table 5-2), and 

included lauric acid (12:0), stearic acid (18:0), elaidic acid (18:1 trans-9), cis-vaccenic acid (18:1 

n-11), oleic acid (18:1 cis-9), linoleic acid (18:2 trans-6), conjugated linoleic acid cis-9, trans-11 

and trans-10, cis-12 (18:2 cis-9, trans-11 and 18:2 trans-10, cis-12), 20:1 fatty acid, 

eicosapentaenoic acid (EPA; 20:5 n-3), and docosapentaenoic (DPA; 22:5 n-3). Analysis of 

variance were then performed using the Generalized Linear Models procedure (SAS 9.2, Cary, 

NC) to determine if week of sampling (week 3, week 4, and week 5) and dietary glycerin level 

(0% or 8%) affected the fatty acid content of the sample and the presence of E. coli O157 . 

Neither sampling time (p = 0.4114), nor glycerin inclusion (p = 0.3851) influenced fatty acid 

composition of samples. However both sampling time (p = 0.0321) and glycerin inclusion (p = 

0.0207) affected E. coli O157 prevalence in the samples. Consequently both sampling and 

dietary glycerin level were conserved in the model. A logistic regression was then performed on 

the model to further select variables that would be useful indicators of E. coli O157 status of the 

sample. Out of the 14 variables present in the model, EPA was the only fatty acid determined to 

be related to presence of the pathogen in feces (p < 0.0153). 

CONCLUSIONS 

Total fatty acid content of the fecal samples was not influenced by the inclusion of 

glycerin in the diet, sampling date, or the presence or absence of E. coli O157. Stearic acid, 

palmitic acid, oleic acid, elaidic acid, and linoleic acid were the predominant fatty acids in both 

O157-positive and -negative fecal samples. This observation was supported by the fact that 

concentrate diets usually contain 15 to 20% palmitic acid, 1–5% stearic acid, and 25–35% oleic 
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acid (5); moreover, linoleic acid is the primary fatty acid found in grain-based diets  (30–60%; 

(6)), and is converted to cis-9, trans-11 conjugated linoleic acid by linoleic acid isomerase in the 

rumen (7) to be hydrogenated to vaccenic acid (8). The content of these major fatty acids was not 

significantly affected by the presence of the pathogen; in fact, only the EPA content was notably 

increased in fecal samples that tested positive for E. coli O157 (0.0044 vs. 0.0027% for positive 

and negative samples, respectively). Eicosapentaenoic acid is commonly found in the bacterial 

genera Shewanella (9) and Colwellia (10), which are mainly deep-sea environment 

microorganisms. In contrast, E. coli are not known to produce polyunsaturated fatty acid (11), 

and the synthesis of EPA from α-linolenic acid in the rumen is considered to be limited. In such 

conditions, the increased concentration in E. coli O157 positive sample cannot be attributed to a 

direct production of EPA by the pathogen. It is possible, however, that composition of the overall 

microbial population that exists in the presence of E. coli O157 is less capable of hydrogenating 

long-chain fatty acids, or that the environment favors EPA producing microorganisms. 

Nevertheless, based on our analysis, EPA appears to be the only long-chain fatty acid linked to 

the E. coli O157 status of the sample. The lack of differences between the fatty acid profiles of 

positive and negative samples may be explained by the technique used to initially classify the 

samples. IMS has a detection limit for E. coli O157 of 10
2
 CFU/mL. Samples classified as 

negative could contain low concentrations of the pathogen, potentially yielding smaller amounts 

of the fatty acids of interest, thus impeding our ability to establish clear relationships between 

pathogen presence and fatty acid concentrations. Utilizing quantitative data for E. coli O157 

concentrations in feces could help alleviate this bias, potentially allowing for the identification of 

a “signature” metabolite for the pathogen. 
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Table 5-1: Composition of experimental diets (dry basis) 

Ingredients, % 0% Glycerin 8% Glycerin 

Corn silage           60          60 

Wet corn gluten feed           35          25.4 

Crude glycerin -            8 

Soybean meal - 1.6 

Limestone 1.6 1.6 

Urea 0.4 0.4 

Vitamin/mineral premix
* 

0.3 0.3 

Feed additive premix
† 

2.7 2.7 

   

Nutrient composition   

Dry matter, %          43.3         44.2 

Crude protein, %          13.0         12.1 

Neutral detergent fiber, %          36.2         33.2 

Calcium, % 0.75 0.75 

Phosphorus, % 0.51 0.42 
*
Formulated to provide (dry basis) 0.1 mg cobalt, 10 mg copper, 0.6 mg 

iodine, 60 mg manganese, 0.25 mg selenium, 60 mg zinc, 0.3% salt, and 

2200 IU vitamin A per kg of diet dry matter. 
†
Provided 300 mg of monensin (Elanco Animal Health; Greenfield, IN) 

per heifer daily in a ground corn carrier. 
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Table 5-2. Pearson correlation and Kendall's tau coefficient analysis between the 

concentration of single long-chain fatty acids and the E. coli O157 status of the fecal 

samples 

 
E. coli O157-negative E. coli O157-positive 

 
Pearson Kendall 

LCFA, % of 

sample weight 
Mean SD Mean SD 

 
r p value r p value 

12:0* 0.0166 0.0044 0.0182 0.0045 
 

0.1574 0.158 0.1396 0.127 

14:0 0.0347 0.0110 0.0382 0.0136 
 

0.1313 0.240 0.1054 0.249 

14:1 0.0003 0.0006 0.0002 0.0005 
 

-0.1124 0.315 -0.1210 0.243 

15:0 0.0264 0.0077 0.0252 0.0071 
 

-0.0714 0.524 -0.0520 0.570 

15:1 0.0216 0.0063 0.0212 0.0063 
 

-0.0286 0.798 -0.0117 0.899 

16:0 0.2821 0.0983 0.2545 0.0789 
 

-0.1286 0.249 -0.0887 0.331 

16:1 0.0426 0.0086 0.0425 0.0086 
 

-0.0020 0.986 0.0019 0.983 

17:0 0.0438 0.0146 0.0401 0.0094 
 

-0.1178 0.292 -0.0602 0.510 

17:1 0.0027 0.0016 0.0026 0.0015 
 

-0.0243 0.829 -0.0171 0.853 

18:0* 0.7859 0.4209 0.6595 0.3700 
 

-0.1354 0.225 -0.1178 0.197 

18:1 trans-9* 0.0764 0.0366 0.0642 0.0318 
 

-0.1502 0.178 -0.1349 0.140 

18:1 n-11* 0.0129 0.0072 0.0101 0.0047 
 

-0.1836 0.099 -0.1230 0.179 

18:1 cis-9* 0.0556 0.0194 0.0503 0.0197 
 

-0.1181 0.291 -0.1233 0.177 

18:1 n-7 0.0085 0.0032 0.0090 0.0049 
 

0.0703 0.531 -0.0068 0.941 

18:2 trans-6* 0.0014 0.0012 0.0022 0.0022 
 

0.2163 0.051 0.1238 0.183 

18:2 cis-6 0.0454 0.0204 0.0422 0.0138 
 

-0.0741 0.508 -0.0209 0.819 

18:2 cis-9, trans-11* 0.0024 0.0026 0.0015 0.0027 
 

-0.1473 0.187 -0.1791 0.063 

18:2 trans-10, cis-12* 0.0044 0.0014 0.0042 0.0025 
 

-0.0442 0.693 -0.1550 0.093 

18:2 cis-9, cis-11 0.0008 0.0007 0.0009 0.0006 
 

0.0120 0.915 0.0225 0.811 

18:2 trans-9, trans-11 0.0037 0.0013 0.0038 0.0013 
 

0.0320 0.775 0.0304 0.742 

18:3 n-6 0.0030 0.0047 0.0026 0.0033 
 

-0.0435 0.698 0.0060 0.949 

18:3 n-3 0.0111 0.0032 0.0108 0.0026 
 

-0.0462 0.680 -0.0298 0.746 

20:0 0.0193 0.0065 0.0178 0.0065 
 

-0.1003 0.370 -0.1084 0.236 

20:1* 0.0028 0.0022 0.0025 0.0032 
 

-0.0571 0.610 -0.1361 0.140 

20:2 0.0028 0.0015 0.0029 0.0016 
 

0.0497 0.658 0.0250 0.786 

20:3 n-6 0.0021 0.0018 0.0022 0.0017 
 

0.0203 0.857 -0.0029 0.975 

20:4 n-6 0.0038 0.0008 0.0038 0.0009 
 

-0.0143 0.899 -0.0424 0.647 

20:5 n-3* 0.0027 0.0022 0.0044 0.0036 
 

0.2846 0.010 0.1615 0.081 

21:0 0.0084 0.0023 0.0082 0.0022 
 

-0.0487 0.664 -0.0361 0.694 

22:0 0.0217 0.0042 0.0216 0.0044 
 

-0.0169 0.880 -0.0122 0.894 

22:5 n-3* 0.0044 0.0019 0.0048 0.0022 
 

0.0989 0.377 0.1228 0.182 

22:6 n-3 0.0023 0.0015 0.0019 0.0011 
 

-0.1010 0.367 -0.0796 0.389 

24:0 0.0250 0.0048 0.0242 0.0034 
 

-0.0745 0.506 -0.0404 0.659 

24:1 0.0055 0.0026 0.0062 0.0030 
 

0.1094 0.328 0.0396 0.667 

Total LCFA† 1.5898 0.6157 1.4115 0.5282 
 

-0.1312 0.240 -0.1023 0.262 

*Statistical correlation (p<0.200) between the concentration of the long-chain fatty acid and the E. coli status of the 

sample. 

†Total LCFA represent the percentage of fatty acids (C6:0 to C24:1) in the fecal sample. 
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ABSTRACT 

The important pool of antibiotic resistance found in our environment and, more precisely, 

in ruminant microflora is becoming a growing concern, as these bacteria can transfer drug 

resistance determinants to pathogenic bacteria that affect humans and endanger the future of 

antimicrobial therapy. Moreover, the occurrence of multiple drug resistance genes on the same 

mobile genetic elements, such as plasmids, facilitates spread of multidrug resistance. Recent 

work uncovered anti-plasmid capacities of menthol in vitro, and the present study aimed to 

determine if this characteristic could be exploited in vivo to decrease the prevalence of multidrug 

resistant bacteria in feedlot cattle by supplementing their diet with menthol. Menthol crystals 

were crushed and added to the diets of steers at 0.3% of DM content. Fecal samples were then 

collected once each week for 4 weeks and analyzed for total E. coli population, as well as 

minimum inhibitory concentration of E. coli isolates and tet gene determinants. Results revealed 

no effect of menthol supplementation on total E. coli population or resistance profile to 

azithromycin, ceftriaxone, ciprofloxacin, gentamicin, nalidixic acid, cefoxitin, amoxicillin, 

ceftiofur, sulfamethoxazole, kanamycin, streptomycin, sulfisoxazole, chloramphenicol, and 

ampicillin; however, 30-day of menthol addition to steer diets increased prevalence of 

tetracycline resistant E. coli (P < 0.006) and tetB detection. Though it still is unclear how 

menthol exerts its effects, results of our study corroborate earlier in vitro observations, 

suggesting that exposure to menthol may impact the expression of antimicrobial resistance in gut 

bacteria. 

Keywords: Escherichia coli, antibiotic resistance, menthol 
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INTRODUCTION 

The rise of antibiotic resistant bacteria is observed worldwide (31) and has become a 

growing concern due to its potential for endangering the future of antimicrobial drug therapy. 

Excessive use of therapeutic and non-therapeutic antimicrobials in human and animal health is 

held responsible for the dissemination of antimicrobial resistance (5, 15). Livestock represent a 

large reservoir for antibiotic resistant bacteria and resistance gene determinants that can spread to 

environmental bacteria and human microflora (29) by horizontal gene transfer. This 

dissemination is alarming insofar as genes encoding for multidrug resistance (MDR) are 

emerging on mobile genetic elements, such as plasmids, transposons and integrons (6, 18), and 

can easily propagate from commensal to pathogenic bacteria and from livestock to human 

microflora. Consequently, compounds capable of limiting or preventing plasmid activity and 

dissemination are of interest for their potential role in restricting the occurrence of multidrug 

resistant bacteria. 

Menthol is a monoterpene alcohol known for its cooling property, anesthetic quality, anti-

pruritic activity, and antibacterial and antifungal activities (23). In addition to these many 

attributes, menthol was recently shown to have some anti-plasmid activity. Schelz et al. (25) 

investigated the effect of peppermint oil and menthol in vitro on bacteria and their plasmids and 

demonstrated that menthol and peppermint oil have anti-plasmid activity similar to sodium 

dodecyl sulfate. SDS is used for plasmid bacterial curing (8), disrupting the membrane sites of 

plasmid attachment. Anti-plasmid activity of menthol in vivo has not been verified, but we 

speculated that inclusion of menthol in cattle diets could lead to a reduction in plasmid 

prevalence in bacterial populations and therefore to a reduction in multidrug resistant bacteria in 

the gut. 
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Our objective was to investigate the effect of menthol addition in the diet of feedlot cattle 

on fecal Escherichia coli population, minimum inhibitory concentration and tetracycline gene 

resistance. 

MATERIAL AND METHODS 

Animals 

Twenty six Holsteins steers (568.8 ± 55 kg) were blocked by body weight and allocated 

to individual feeding pens within 3 barns containing, respectively, 10, 10, and 6 steers. Each 

concrete-surfaced pen measured 1.5 m × 6 m, was covered with corrugated roofing and equipped 

with individual feed bunks. Water fountains were shared between two adjacent pens. Two 

treatments were randomly assigned to animals and were equally represented in each of the barns. 

Treatments consisted of a control group receiving a basal diet with no menthol, and a menthol 

group receiving 0.3% menthol in their diet on a dry matter basis. Crushed menthol (99.71%, 

Prinova USA LLC, Carol Stream, IL) was included in the basal diet consisting of steam flaked 

corn, corn gluten feed, and corn silage (Table 6-1). Animals were fed ad libitum and had free 

access to water. 

Sample collection and processing 

Fresh fecal samples were obtained from each animal, by rectal palpation, before feeding 

on days 0, 16, 23 and 30. Samples were immediately placed on ice and transported 3 km to the 

Preharvest Food Safety Laboratory of Kansas State University. Fecal samples were homogenized 

in a stomacher, and 1 g of each sample was added to a 9 mL phosphate buffered saline (PBS) in 
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a falcon tube and thoroughly vortexed. The remaining portions of feces and PBS diluted feces 

were stored for later analyses at -80°C. 

Escherichia coli isolation 

A 100-µL volume of fecal suspension was spread-plated on MacConkey agar (BD 

Diagnostic Systems, Franklin Lakes, NJ) and incubated overnight at 37°C. Three lactose-

fermenting single colonies were selected on each plate and re-plated onto tryptic soy agar (TSA; 

Thermo Fisher Scientific, Lenexa, KS). After an overnight incubation at 37°C, colonies were 

tested for indole production by a spot indole test. Positive colonies were picked and stored on 

cryobeads (Cryocare
tm

; Key Scientific Products, Stamford, TX) at -80°C until further analysis. 

Total Escherichia coli counts 

Fecal samples stored at -80°C were thawed and 1 g of feces was resuspended in 9 mL 

PBS. Tubes were thoroughly vortexed and further diluted in PBS if needed. Tubes were vortexed 

again and a 4-mL aliquot was pipetted into a micro beaker. Debris was allowed to settle for 3 

min. A 50-µL volume of the suspension was then plated in duplicate onto MacConkey agar using 

an Eddy Jet spiral plater (IUL instruments, Barcelona, Spain), and incubated overnight at 37°C. 

After incubation, lactose-fermenting colonies were counted following spiral plating guidelines 

and total Escherichia coli concentrations were established. 

Minimum inhibitory concentration (MIC) determination 

Isolates from control and high menthol groups were selected to test MIC for cefoxitin, 

azithromycin, chloramphenicol, tetracycline, ceftriaxone, amoxicillin, ciprofloxacin, gentamicin, 

nalidixic acid, ceftiofur, sulfisoxazole, trimethropim/sulfamethoxazole, kanamycin, ampicillin, 
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and streptomycin using the broth microdilution method. Isolates were revived on blood agar 

plates (Thermo Fisher Scientific Remel Products, Lenexa, KS) by an overnight incubation at 

37°C. Resulting colonies were mixed with demineralized water (Trek Diagnostics Systems, 

Cleveland, OH) to obtain a 0.5 McFarland turbidy. A 50-µL aliquot of the mix was added to 

cation adjusted Mueller-Hinton broth (Trek Diagnostics Systems, Cleveland, OH). Tubes were 

vortexed and placed in the Sensititre® automated inoculation delivery system (Trek Diagnostics 

Systems, Cleveland, OH) to inoculate the Gram-negative NARMS panel plates (CMV2AGNF, 

Trek Diagnostics Systems, Cleveland, OH) with 100 µL of Mueller-Hinton broth. Plates were 

incubated for 18 h at 37°C and read manually using the Sensititre® manual viewer 

(Sensitouch®). Resistance or sensitivity of the bacteria were determined based on CLSI 

guidelines (7). 

Tetracycline resistance gene analysis by polymerase chain reaction 

DNA extraction on every isolate tested for MIC was performed as follows: colonies were 

revived on blood agar plates, and after an overnight incubation at 37°C one colony was mixed 

with 500 µL of deionized water in a 1.5 mL microcentrifuge tube and boiled for 10 min at 

100°C. Tubes were then centrifuged at 10,000 x g for 5 min and refrigerated until use. 

Polymerase chain reaction assays for resistance genes against tetracycline, tetA and tetB were 

performed in duplex (12). Primers for tetA and tetB (Integrated DNA Technologies, Coralville, 

IA; Table 6-2) were rehydrated with DNase free water (QIAgen, Valencia, CA) to obtain a stock 

solution of 100 µM. Ten microliters of each primers were added to 460 µL of DNase free water 

to obtain a primer mix at 2 µM. Final reaction mix to be loaded in the QIAgility (Qiagen, 

Valencia, CA) was prepared by adding 1734 µL of DNase free water, 2550 µL PCR master mix 



130 

 

(Promega Corp., Madison, WI), and 510 µL Primer mix. QIAgility was programmed to dispense 

47 µL of the final reaction mix and 3 µL DNA template into each well. A 1:1 mixture (Agilent 

Tech., Santa Clara, CA) of the DNA obtained from E. coli ATCC 47042 (tetB control) and XL1-

Blue E. coli strain (tetA control) was used as positive control (10 ng/µL). 

The 96-well plates were amplified using an Eppendorf Mastercycler® gradient thermal cycler 

(USA Scientific, Inc., Ocala, FL). The thermal profile used was 95°C for 15 minutes, 31 cycles 

of 94°C for 30 s, 60°C for 90 s, and 72°C for 90 s, followed by a single final extension step of 

72°C for 10 min. Ninety six-well plates containing PCR products were then transferred to the 

Automated QIAxcel System (QIAgen, Valencia, CA). Microcapillary electrophoresis was 

performed using a QIAxcel DNA screening cartridge (QIAgen, Valencia, CA), a QX alignment 

marker (15bp/1 kb; QIAgen, Valencia, CA) and a 50 to 800 bp QX size marker (QIAgen, 

Valencia, CA). The electrophoresis was documented and analyzed for the presence of specific 

bands. 

Statistical Analysis 

Total Escherichia coli CFU were log10 transformed and normality of the results was verified. 

Results were then analyzed using the GLIMMIX procedure of SAS (9.2, Cary, NC). Treatment 

and sampling day were included in the model as fixed effects, while Escherichia coli isolates 

were considered a random effect. Frequency analyses of resistant Escherichia coli isolates to the 

multiple antibiotics tested were performed using the FREQ procedure of SAS. Chloramphenicol, 

streptomycin, sulfisoxazole, ampicillin, and tetracycline resistance data were further analyzed 

using the GLIMMIX procedure of SAS, where treatment and sampling day were included as 

fixed effects and Escherichia coli isolates were included as random effect. Low prevalence of 
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resistant or susceptible isolates, for chloramphenicol, streptomycin, and sulfisoxazole, precluded 

us from including in the model the interaction between sampling day and treatment. Escherichia 

coli isolates were considered multidrug resistant in this study when presenting resistance to 5 or 

more of the antibiotics tested. Multi-drug resistant phenotypes, tetA, tetB, and the number of 

isolates resistant to tetracycline but not carrying tetA or tetB gene, were analyzed using the 

previously described Glimmix model. 

RESULTS 

Total Escherichia coli population in fecal samples was not influenced by the presence or 

absence of 0.3% menthol in the diet of cattle (P = 0.84; Figure 6-1) or by the day of sampling (P 

= 0.23). Minimum inhibitory concentrations of Escherichia coli isolates from steers fed diets 

with or without 0.3% menthol are presented in Table 6-3. All isolates, regardless of treatment, 

were sensitive to azithromycin, ceftriaxone, ciprofloxacin, gentamicin and nalidixic acid. In 

addition, cefoxitin, amoxicillin, ceftiofur, sulfamethoxazole, and kanamycin had an overall 

prevalence of resistant isolates equal to or lower than 3.3%, and there were no differences in 

frequencies between isolates originating from animals fed diets with and without menthol (P > 

0.05). Chloramphenicol and streptomycin resistant isolates were found in 2.6 and 10.3% of the 

control group and 4.6 and 6.5% of the high menthol group; however, there were no significant 

effects due to treatment (P > 0.5) or sampling day (P > 0.2). Ninety one percent of E. coli 

isolates from steers receiving control diets and 92.2% of E. coli isolates from steers receiving 

diets with 0.3% menthol were resistant to sulfisoxazole (treatments not different; P > 0.9). 

Resistance to sulfisoxazole was influenced by the day of sampling, with a significant decrease in 

resistance for both treatment groups on day 16 compared to days 0, 23, and 30 (P = 0.04). There 
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was no interaction effect between sampling day and treatment (P > 0.29) on ampicillin 

resistance, and no treatment (P > 0.66) or sampling day (P > 0.66) effects. After 30 days of 

menthol supplementation, 20.5% of E. coli isolates from the menthol group were resistant to 

ampicillin, which tended to be greater than that of the control group, for which only 5.1% of 

isolates expressed resistance (effect of treatment, P = 0.06). There was no apparent interaction 

between sampling day and treatment (P > 0.2) on tetracycline resistance, as well as, no sampling 

day effect (P > 0.05), but a treatment effect was observed (P <0.01). Percent of isolates resistant 

to tetracycline tended to increase between day 0 and day 30 in the menthol group (51.3% to 

71.8%; P < 0.07), whereas there was no significant change in the control group (41% to 38.5%; 

P > 0.8). After 30 days of menthol supplementation, isolates from the menthol group were 33% 

more likely to be resistant to tetracycline than isolates from the control group (P < 0.004). Table 

6-4 presents the percentage of multidrug resistant (MDR) isolates in each treatment group. 

Isolates were considered MDR if resistant to 5 or more antibiotics. Frequency analysis showed 

that overall prevalence of MDR isolates in the control group (1.3%) was lower than in the 

isolates obtained from steers receiving 0.3% menthol in their diets (6.5%; P = 0.02). There was 

no difference in MDR frequency between treatments on day 0, 16, and 23 (P > 0.2). However 

after 30 days of treatment, isolates from steers receiving 0.3% of menthol exhibited significantly 

higher levels of MDR isolates when compared to isolates from the control group (P = 0.03). 

Table 6-5 and table 6-6 summarize the prevalence of, respectively, tetA- and tetB-positive fecal 

Escherichia coli in steers fed diets with or without 0.3% menthol. No interaction between 

sampling day and treatment (P > 0.2) was observed on the presence of tetA gene in E. coli 

isolates. Sampling day (P > 0.1) and menthol treatment (P > 0.2) did not affect tetA gene 

detection, and there was overall 23 isolates from the control group and 19 isolates from the 
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menthol group carried tetA. Detection of tetB gene was not significantly influenced by the 

interaction between sampling day and treatment (P > 0.18), but it was influenced by sampling 

day (P < 0.02) and treatment (P < 0.02). Isolates from animals fed menthol had higher tetB 

prevalence than the control group on day 0, (41% and 12.8%, respectively; P < 0.01), and on day 

30, (38.5% and 15.4%, respectively; P < 0.03). All isolates expressing tetA or tetB were found to 

be phenotypically resistant to tetracycline, except two isolates, one of which was classified as 

intermediate (MIC = 8 µg/mL) and the other one was considered susceptible (MIC ≤ 8 µg/mL). 

Conversely, 17 and 21 isolates from the control and high menthol groups, respectively, were 

found to be resistant to tetracycline but did not express tetA or tetB (Figure 6-2). No treatment 

effect (P > 0.7) or day effect (P > 0.1) was observed. On day 30, 25.6% isolates in the menthol 

group and 12.8% isolates in the control group were resistant to tetracycline and did not carry 

either tetA or tetB, but treatments were not different (P > 0.1). Isolates from the menthol group 

resistant to tetracycline but not carrying tetA or tetB, however, appeared to increase between day 

0 (7.7%) and day 30 (25.6%; P < 0.05). This difference was not observed in the control group. 

Table 6-7 illustrates the various antibiotic resistance phenotypes found among the E. coli isolates 

tested. Only 5.2% of the total isolates were found to have no resistance to any of the antibiotics 

tested. Of the E. coli isolates, 50.2% were found to be resistant to sulfisoxazole only, and 28.2% 

were resistant to both sulfisoxazole and tetracycline. Most of the bacteria resistant to 5 

antibiotics or more, as previously observed, came from the menthol group, and one of isolates 

from this treatment was found to be resistant to 8 antibiotics. 
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DISCUSSION 

The microflora of ruminants constitute an important pool for antimicrobial-resistant 

bacteria and antimicrobial resistance gene determinants (1). Escherichia coli are prevalent in 

feces of cattle (21) and are often used to study drug resistance patterns. These bacteria, indeed, 

carry antibiotic resistance genes which can be intrinsically transferred to their progeny or 

disseminated by horizontal gene transfer (HGT; (17)). The occurrence of many of the antibiotic 

resistance genes on highly mobile genetic elements such as plasmids, transposons, or integrons 

(22) thus supports the potential for dissemination. Horizontal gene transfer occurs through 3 

mechanisms: transformation by uptake of free DNA from environment, transduction by insertion 

of DNA in the cell by a bacteriophage, or conjugation by contact-transfer of genetic material 

from one bacterium to the other (27). Antibiotic resistances can therefore be transmitted between 

commensal and pathogenic bacteria as well as between livestock and human microflora, thereby 

presenting drug resistant organisms which may endanger drug therapy for humans and animals. 

Multiple drug resistance determinants have been found to be located on the same plasmid, 

further facilitating their propagation and co-selection. For instance, the multidrug resistance 

plasmid IncA/C found in enteric bacteria, such as Salmonella enterica and Escherichia coli, very 

often encodes for resistance to tetracycline (tetA), chloramphenicol/florfenicol (floR), 

streptomycin/spectinomycin (aadA2), sulfonamides (sul1 and sul2) and extended spectrum β-

lactamases (blaCMY-2; (9)) and its spread to pathogenic bacteria may limit antibacterial means to 

fight infections caused by these bacteria. Therefore, all compounds eliminating or inactivating 

mobile genetic elements may be of use to control antibiotic resistance dissemination and 

preserve antimicrobial efficacy. We had hypothesized that previously demonstrated in vitro anti-
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plasmid activity of menthol would affect the prevalence of drug resistance in commensal E. coli 

in cattle fecal samples. 

The first objective of this work was to investigate the effect of menthol addition to the 

diets of feedlot cattle on fecal E. coli populations. Menthol is known to have antimicrobial 

activity against E. coli. Previous studies have demonstrated inhibitory effects with concentrations 

of 75 mM for E. coli O157:H7 (14) and as low as 16 mM with E. coli ATCC15221 (28). 

Menthol metabolism in the rumen is poorly understood, leading us to investigate the impact of 

0.3% dietary menthol on E. coli populations in feedlot cattle. The lack of difference between 

total fecal E. coli count in the control group and menthol supplemented groups suggests either 

that the level of menthol reaching the hindgut was insufficient to inhibit the microflora or that 

bacteria were able to adapt to menthol presence in the GIT. Landau and Shapira (2012) recently 

showed entherohemorrhagic E. coli (EHEC) to have the ability to adapt to increasing levels of 

subinhibitory concentration of menthol (14) and a similar adaptation process could be anticipated 

for commensal E. coli.  

Our second and main objective was to investigate if menthol inclusion in feedlot diets 

would affect E. coli resistance to antibiotics and prevalence of MDR organisms. Although total 

E. coli populations were not affected by 30 days of menthol supplementation, MDR E. coli 

increased by 13% in the menthol treated group. These findings were in contrast to our 

expectations, but clearly indicate an effect of menthol supplementation on multidrug resistance 

in bacteria. To further investigate this effect, we analyzed individual minimum inhibitory 

concentration (MIC) of fecal Escherichia coli isolates from the control group and the group 

receiving 0.3% of menthol daily after 0, 16, 23, and 30 days of exposure to treatments. Results of 

MIC evaluations revealed that all isolates were susceptible to azithromycin, ceftriaxone, 
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ciprofloxacin, gentamicin and nalidixic acid, and only a small percentage of isolates were 

resistant to cefoxitin, amoxicillin, ceftiofur, sulfamethoxazole, and kanamycin, regardless of 

treatment received by the animals and of sampling day. Similar observations were made by 

Mirzaagha et al., who found all 531 E. coli isolates collected from feedlot cattle fed diets with 

and without chlortetracycline and/or sulfamethazine were susceptible to ceftriaxone, cefoxitin, 

gentamicin and nalidixic acid (20). Gow et al. also failed to detect any fecal E. coli resistance to 

ceftriaxone, ciprofloxacin, or nalidixic acid among the 207 isolates collected from cow calf herds 

in western Canada, and observed that only 1% were resistant to gentamicin, 1.5% to ceftiofur, 

and 4.8% to amoxicillin and cefoxitin. They did, however, observe higher resistance rates for 

kanamycin (15%) and sulfamethoxazole (55.1%) compared to our study. Chloramphenicol 

resistance, like previous antibiotics, was not affected by treatment in our experiment. The 

presence of resistant isolates (3.6% overall) was somewhat surprising, as chloramphenicol use in 

animal production systems was banned more than 30 years ago (10). Our observations are, 

however, not isolated, as other authors have reported even higher prevalence in commensal E. 

coli from cattle that range from 14.5 to 31% (11, 16, 24). Persistence of chloramphenicol 

resistance in the environment is thought to be due to the use of closely related antibiotics, such as 

florfenicol, or to a co-selection phenomenon (30). Unfortunately, low prevalence of 

chloramphenicol resistant isolates in this study did not allow us to reveal any resistance pattern 

associated with the presence of chloramphenicol resistance. Like chloramphenicol, prevalence of 

isolates resistant to streptomycin was not affected by treatment or sampling day. Overall, 16.8% 

of E. coli isolates tested in this experiment were resistant to streptomycin. Gow et al. reported 

41.6% E. coli resistant isolates from cow calf (11), and Ma et al. found that 89.1% of E. coli 

isolates from dairy cows were resistant (16). Differences in animal production system practices 
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could explain the lower prevalence observed in our study, as animal exposure to antimicrobials 

are likely to be different. Resistance to sulfisoxazole was found in 91.6% of the E. coli isolates 

tested in our study, and was not influenced by menthol inclusion in the diet. A large scale study 

conducted in a feedlot in Texas also reported high resistance rate, with 65% of the 7,097 E. coli 

isolates tested being resistant to sulfisoxazole. Prevalence in the Texas study was not influenced 

by the type of growth promotants received by the animals (3), and further underscores the 

widespread nature of sulfisoxazole resistance determinants in commensal bacteria. The 12% 

decrease in resistance prevalence in the second week of our study could not be explained, but 

previous studies have also found drug resistance to be transient in repeated sampling (20). 

Overall ampicillin resistance, 8.7%, was not affected by the inclusion of menthol in the diets. 

This prevalence was lower than previously observed prevalence in E. coli from cattle, which 

have ranged from 18 to 48% (11, 19, 24). Despite the absence of a significant effect of menthol, 

the 15.4% increase in the number of E. coli isolates resistant to ampicillin in the menthol group 

compared to the control group after 30 days of treatment is worthy to mention. These 

observations could be indicative of an effect of menthol on ampicillin resistance, but our 

experimental design may not have been sufficiently robust to detect this effect. Conversely, 

menthol supplementation did have a significant effect on tetracycline resistance. After 30 days of 

treatment, 71% of the isolates from the menthol group tested resistant to tetracycline compared 

to only 38% in the control group. Moreover, E. coli isolates resistant to tetracycline within the 

menthol group increased by 20% between day 0 and day 30. These observations underline a clear 

effect of menthol on tetracycline resistance phenotypes, suggesting that further investigation of 

genotype profiles of these isolates may be warranted. 
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As of today, there are 40 known tet resistance determinants, most of which are found on 

mobile genetic elements that encode for efflux pump (26). TetA and tetB genes are most 

prevalent in tetracycline resistant E. coli (4), which is why we choose to focus on these two. 

TetA and B encode for an efflux pump in the lipid bilayer of the bacteria, which removes the 

tetracycline/cation complex from the cell by exchanging a proton (32). TetB is usually more 

predominant than tetA and is linked to higher minimum inhibitory concentration (2). Out of the 

309 isolates investigated in our experiment, 18.7% were found to carry tetB and 13.6% to carry 

tetA. Moreover, no isolates were found to carry both determinants, which corroborates previous 

findings (2, 13). TetA and tetB are both believed to be most often located on plasmids, but from 

different incompatibility groups (13), potentially explaining why they are, rarely, detected 

simultaneously in bacteria. The absence of effect of menthol inclusion on the tetA expression 

seems to exclude the implication of tetA in the difference observed in tetracycline phenotypes in 

E. coli isolates from steers fed diets with and without menthol. TetB was, however, affected by 

menthol inclusion, as tetB detection was greater among E. coli isolates originating from the 

steers fed menthol. One could speculate that menthol was selecting for bacteria carrying tetB 

gene, thus increasing the number of tetracycline isolates after 30 days of treatment. We 

hypothesized that menthol anti-plasmid effects shown in vitro could also be observed in vivo, 

and that menthol would in that case decrease drug resistance by inhibiting plasmid transfer. The 

increase in phenotypic tetracycline resistance and tetB gene presence could, in fact, result from 

an anti-plasmid effect of menthol. Research by Sawant et al. showed that tetB may be located on 

genomic DNA rather than on a mobile genetic element as previously thought (24). Considering 

our initial hypothesis and the findings of Sawant, it is thus reasonable to think that menthol may 

displace plasmids contained in bacteria and give a selective advantage to bacteria carrying 
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tetracycline resistance determinants on their DNA. The presence of higher tetB gene presence in 

isolates from the menthol group on the first sampling is, however, difficult to explain, and could 

temper this hypothesis. Increased detection cannot be associated to menthol inclusion as at that 

time menthol was not yet received by any animals. The difference between groups can only be 

explained by the transient nature of antibiotic resistance and the small number of experimental 

units. 

Higher prevalence of tetracycline resistance in the menthol group was also accompanied 

by greater frequency of E. coli isolates phenotypically resistant to tetracycline but not expressing 

either tetA or tetB. Indeed, these isolates were three times more likely to be found resistant to 

tetracycline, but not to express the determinant tested after 30 days of menthol supplementation. 

Presence of other tet resistance determinants in E. coli isolates from steers receiving 0.3% 

menthol could be responsible for the increase in tetracycline resistance observed, but other 

determinants were not investigated in this study. 

In conclusion, menthol supplementation of feedlot diets at a 0.3% rate for 30 days did not 

alter the total E. coli population in fecal samples and did not affect prevalence of resistance to 

azithromycin, ceftriaxone, ciprofloxacin, gentamicin, nalidixic acid, cefoxitin, amoxicillin, 

ceftiofur, sulfamethoxazole, kanamycin, streptomycin, sulfisoxazole, chloramphenicol, and 

ampicillin. Menthol supplementation did, however, increase the number of MDR bacteria, the 

prevalence of tetracycline resistant E. coli isolates, and the detection of tetB gene. The 

underlying mechanism associated with this increase could not be explained based on the present 

findings; nevertheless this study demonstrates a clear effect of menthol on bacterial drug 

resistance.  
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 Table 6-1. Diet information 

 Menthol (%) 

Ingredients (% DM) 0 0.3 

  Steam flaked corn 50.39 49.89 

  Corn gluten feed 33.63 33.83 

  Corn silage 10.00 10.00 

  Vitamin/mineral premix
1
   2.16   2.16 

  Feed additive premix
2
   1.82   1.82 

  Menthol 0 0.3 

Analyzed composition (%)   

  Dry matter  65.20 65.19 

  Crude protein 14.00 14.00 

  Calcium   0.62   0.62 

  Phosphorus   0.51   0.51 
1
Formulated to provide 0.1 mg Co, 10 mg of Cu, 0.6 mg of I, 

60 mg of Mn, 0.25 mg Se, 60 mg Zn, 2,205 IU vitamin A, and 

22 IU vitamin E per kilogram of diet DM. 
2
Feed additive premix provided 300 mg of monensin (Elanco 

Animal Health, Greenfield, IN), 90 mg tylosin (Elanco 

Animal Health, Greenfield, IN), and 0.4 mg melengestrol 

acetate (MGA; Pfizer Animal Health, Exton, PA) per animal 

daily in a ground corn carrier.  
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Table 6-2. tetA and tetB primer sequences 

Gene Sequence (5’-3’) Tm°C Product Size (bp) Accession no. 

tetA F: GCTACATCCTGCTTGCCTTC 56 
210

 c
 X61367 

R: CATAGATCGCCGTGAAGAGG 57 

tetB F: TTGGTTAGGGGCAAGTTTTG 56 
659

 c
 J01830 

R: GTAATGGGCCAATAACACCG 56 
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Figure 6-1 Total fecal Escherichia coli counts (log10) from fecal samples of animals fed diets 

with (■) and without (□) 0.3% of menthol. SEM = 0.3632. 
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Table 6-3. Antimicrobial susceptibilities of fecal Escherichia coli isolates from steers fed diet supplemented with or without 

0.3% menthol  

 Number of resistant isolates/total isolates tested 

 Day 0 Day 16 Day 23 Day 30 Total (%) 

Menthol levels, % 0 0.3 0 0.3 0 0.3 0 0.3 0 0.3 

Cefoxitin 0/39 0/39 0/39 1/36 0/39 1/39 0/39 3/39 0/156 (0) 5/153 (3.3) 

Azithromycin 0/39 0/39 0/39 0/36 0/39 0/39 0/39 0/39 0/156 (0) 0/153 (0) 

Chloramphenicol 2/39 0/39 1/39 0/36 1/39 5/39 0/39 2/39 4/156 (2.6) 7/153 (4.6) 

Tetracycline 16/39 20/39 13/39 12/36 12/39 20/39 15/39
a
 28/39

b
 56/156 (35.9)

a
 80/153 (52.3)

b
 

Ceftriaxone 0/39 0/39 0/39 0/36 0/39 0/39 0/39 0/39 0/156 (0) 0/153 (0) 

Amoxicillin
†
 0/39 0/39 0/39 1/36 0/39 1/39 0/39 3/39 0/156 (0) 5/153 (3.3) 

Ciprofloxacin 0/39 0/39 0/39 0/36 0/39 0/39 0/39 0/39 0/156 (0) 0/153 (0) 

Gentamicin 0/39 0/39 0/39 0/36 0/39 0/39 0/39 0/39 0/156 (0) 0/153 (0) 

Nalidixic acid 0/39 0/39 0/39 0/36 0/39 0/39 0/39 0/39 0/156 (0) 0/153 (0) 

Ceftiofur 0/39 0/39 0/39 1/36 0/39 1/39 0/39 2/39 0/156 (0) 4/153 (2.6) 

Sulfisoxazole 36/39 39/39 33/39 30/36 35/39 37/39 38/39 35/39 142/156 (91.0) 141/153 (92.2) 

Sulfamethoxazole* 1/39 0/39 0/39 0/36 0/39 0/39 0/39 2/39 1/156 (0.6) 2/153 (1.3) 

Kanamycin 1/39 0/39 0/39 0/36 0/39 0/39 0/39 0/39 1/156 (0.6) 0/153 (0) 

Ampicillin 3/39 3/39 3/39 1/36 3/39 4/39 2/39 8/39 11/156 (7.0) 16/153 (10.5) 

Streptomycin 3/39 0/39 6/39 3/36 3/39 4/39 4/39 3/39 16/156 (10.3) 10/153 (6.5) 

* with trimethoprim 
† 

with clavunic acid 
a, b

Data with different superscript letters are significantly different, P <0.01 
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Table 6-4. Multidrug resistance (≥ 5 antimicrobials) prevalence (%) in fecal Escherichia 

coli from steers fed diet supplemented with or without 0.3% menthol  

 Number of MDR isolates/total isolates tested 

 Day 0 Day16 Day23 Day 30 Total (%) 

Control 0/39 1/39 1/39 0/39 2/156 (1.3) 

0.3% Menthol 0/39 1/36 4/39 5/39 10/153 (6.5) 
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Table 6-5: Prevalence of tetA-positive fecal Escherichia coli in steers fed diets supplemented 

with or without 0.3% menthol 

 Number of tetA-positives isolates/total isolates tested 

 Day0 Day16 Day23 Day30 Total (%) 

Control 7/39 6/39 6/39 4/39 23/156 (14.7) 

0.3% Menthol 1/39 7/36 8/39 3/39 19/153 (12.4) 
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Table 6-6: Prevalence of tetB-positive fecal Escherichia coli in steers fed diets supplemented 

with or without 0.3% menthol 

 
Number of tetB-positive isolates/total isolates tested 

Day0 Day16 Day23 Day30 Total (%) 

Control 5/39 5/39 2/39 6/39 18/156 (11.5) 

0.3% Menthol 16/39 3/36 6/39 15/39 40/153 (26.1) 
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Figure 6-2 Fecal Escherichia coli isolates phenotypically resistant to tetracycline but not 

carrying either tetA or tetB gene, from animal receiving diets with (■) or without (□) 0.3% 

menthol. SEM = 0.07. 
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Table 6-7: Overall phenotype prevalence of antibiotic resistant in Escherichia coli isolates 

from cattle receiving diet with or without 0.3% of menthol. 

Phenotypes 

0% 

Menthol 

0.3% 

Menthol Total (%) 

_FIS 89 66 155 (50.2) 

_FIS_TET 35 52 87 (28.2) 

No resistance 10 6 16 (5.2) 

_STR_FIS_TET 5 6 11 (3.6) 

_TET 4 6 10 (3.2) 

_AMP_STR_FIS_TET 9 0 9 (2.9) 

_AMP_FIS_TET 0 6 6 (1.9) 

_AMP_CHL_STR_FIS_TET 2 3 5 (1.6) 

_AUG_AMP_FOX_XNL_FIS_TET 0 3 3 (1.0) 

_AMP_CHL_FIS_TET_SXT 0 2 2 (0.6) 

_AUG_AMP_FOX_FIS_TET 0 1 1(0.3) 

_AUG_AMP_FOX_XNL_CHL_STR_FIS_TET 0 1 1 (0.3) 

_CHL_FIS 0 1 1 (0.3) 

_CHL_FIS_SXT 1 0 1 (0.3) 

_CHL_KAN_FIS_TET 1 0 1 (0.3) 

Amoxicillin-clavulanic acid, AUG; ampicillin, AMP; azithromycin, AZI; ciprofloxacin, CIP; 

cefoxitin, FOX; ceftiofur, XNL; ceftriaxone, AXO; chloramphenicol, CHL; gentamicin, GEN; 

kanamycin, KAN; nalidixic acid, NAL; streptomycin, STR; sulfamethoxazole, SXT; 

sulfisoxazole, FIS; tetracycline, TET. 

 

 


