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Large-time behavior of the weak solution to 3D
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KS 66506, USA; email: ramm@math.ksu.edu

Abstract

The weak solution to the Navier-Stokes equations in a bounded domain
D ⊂ R3 with a smooth boundary is proved to be unique provided that it
satisfies an additional requirement. This solution exists for all t ≥ 0. In a
bounded domain D the solution decays exponentially fast as t → ∞ if the
force term decays at a suitable rate.
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1. Introduction

Consider the problem

v′ + (v,∇)v = −∇p+ ν∆v + f in D, ∇ · v = 0, (1)

v(x, 0) = v0(x); v|S = 0. (2)

Here v = (vm)3m=1 is a vector function, v′ = dv
dt , D ⊂ R3 is a bounded

domain with a smooth boundary S, ν = const > 0 is the kinematic viscosity
coefficient, v0 and f are given functions, v and p are to be found. We assume
throughout that v0(x) ∈ H̊1(D), ∇ · v0 = 0, and f ∈ L2([0, T );H1(D))
for any T < ∞. We also assume that f decays fast as t → ∞. Precise
assumptions will be formulated in Section 2, in the proof of Lemma 2.1.

We use the standard notations: H̊1(D) is the closure of vector-functions
C∞0 (D) in the norm of the Sobolev space H1(D); V is the closure in H1(D)
of the subset of C∞0 (D) consisting of solenoidal vector fields, ∇·v = 0; (u, v)
is the inner product in H := L2(D) of two vector functions in R3,

|u|2 := (u, u), ((u, v)) := (∇u,∇v), ||u||2 := ((u, u)).
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Definition 1. A weak solution to (1)-(2) is a vector function v ∈W :=
L2([0, T );V ) satisfying the relation

(v′, η) + ((v · ∇)v, η) + ν((v, η)) = (f, η) ∀η ∈W. (3)

One proves that (v′, η) ∈ L1([0, T )) if v ∈ V . Indeed, ((v, η)) ∈ L2([0, T ))
because v ∈ L2([0, T );V ) and η ∈ V , so η ∈ L∞([0, T );V ). An integration
by parts and Hölder’s inequality yield

|((v · ∇)v, η)| = | − (vv,∇η)| ≤ ||v||2L4(D)||η||.

Here (vv,∇η) := (vjvm, ηm,j), over the repeated indices summation is un-
derstood, vm is the m−th Cartesian component of the vector function v,
ηm,j := ∂ηm

∂xj
. We use below the multiplicative inequality

||v||2L4(D) ≤ c|v|
1/2||v||3/2, c = const > 0,

(see [5]), and the Young’s inequality

ab ≤ εpap

p
+
ε−qbq

q
, ∀ε > 0;

1

p
+

1

q
= 1, a, b > 0.

By c we denote throughout this paper various positive time independent
constants. Using the Young’s inequality with ε = 1 and p = 4, one gets

|v|1/2||v||3/2 ≤ |v|
2

4 + 3||v||2
4 . Since |v|2 ∈ L1([0, T )) and ||v||2 ∈ L1([0, T )), it

follows from equation (3) that (v′, η) ∈ L1([0, T )) because all other terms in
this equation are in L1([0, T )). If (3) holds for all η ∈W , then it holds for all
η ∈ V , and vice versa, because the set of functions η(x)φ(t) for η ∈ V and
φ ∈ L2([0, T )) is dense in W . Thus, relation (3) is well defined for v ∈ W
and η ∈ V .

The questions of interest are: a) Is the weak solution unique? b) Does
it exist globally, that is, for all t ≥ 0? c) How does it behave as t→∞? d)
Is it smooth if the data are smooth? e) Does the smooth solution to (1)-(2)
exist globally? f) Does its smoothness improves if the smoothness of the
data improves?

These questions were discussed in several books and many papers, see
[1]-[7] and references therein. Existence of the weak solutions was proved in
[5]-[7], but its uniqueness was not proved, and, for a long time, it has been
an open problem to prove uniqueness of the weak solution. Local existence
of the smooth solution and its uniqueness was proved in the cited books.
The smoothness properties of the weak solution are improving locally if the
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smoothness of the data improves. Methods for proving this are developed
in [3],[5]-[7], where theorems of this type can be found.

Let W1 ⊂ W denote a subset of W that consists of the elements v such
that

||v(t)|| ≤ c. (4)

By c here and below various positive constants, independent of t, are de-
noted.

The basic results of this paper include the proof of the uniqueness of
the weak solution v ∈W1 and the decay estimates for the weak solutions as
t→∞.

Theorem 1.1. Problem (3) has at most one solution v ∈W1.

Theorem 1.2. A weak solution in W exists globally and decays exponen-
tially fast as t→∞ provided that the force term decays sufficiently fast.

The decay estimates for the solution of problem (3) are given in Lemma
2.1.

The known sufficient condition for the uniqueness of the weak solution
is the Serrin’s condition (see [7], p.276). If v ∈ W1, or inequality (21) (see
below) holds, then the Serrin’s condition holds. Therefore, the result of
Theorem 1.1 can be obtained as a consequence of the Serrin’s uniqueness
result (cf Theorem 1.5.1 on p.276 in [7]). Our proof is based on the estimates
given in Lemma 2.1, it is short, and it uses minimal background.

The exponential decay of solutions to Navier-Stokes equations has been
discussed in [7], p. 337, for the domains for which the Poincaré inequality
holds. Our proof is different and shorter. Moreover, our estimates are valid,
in contrast to the ones in [7], also in the case when the data do not decay
exponentially fast as t → ∞, see the last statement in Lemma 2.1. We
derive estimates using a nonlinear differential inequality. The presentation
in this paper is essentially self-contained.

In section 2 a proof of Theorem 1.1 is given and estimates of the solution
as t → ∞ are derived in Lemma 2.1. In Section 3 a proof of the existence
part of Theorem 1.2 is given. In Section 4 the case of unbounded domain is
discussed.

2. Proof of Theorem 1.1

2.1. Some inequalities.
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If D ⊂ R3 is a bounded domain then H̊1(D) ⊂ Lq(D), q < 6, and

||v||2L4(D) ≤ c||v||
1/2
L2(D)

||∇v||3/2
L2(D)

≤ ε||v||2 +
c

4ε
|v|2, ∀ε > 0. (5)

Similar inequalities hold also if D = R3. For example,

||v||2L4(R3) = 2||v||1/2
L2(R3)

||∇v||3/2
L2(R3)

≤ ε||∇v||2L2(R3) + c(ε)||v||2L2(R3), (6)

where ε > 0 can be arbitrarily small, and the Young’s inequality was used.
Let η = v in (3) and get

|v|2 + 2ν

∫ t

0
||v||2ds = |v0|2 + 2

∫ t

0
(f, v)ds ≤ c+

∫ t

0
|f ||v|ds, (7)

where ((v · ∇)v, v) = 0 if ∇ · v = 0 and v|S = 0. If
∫∞
0 |f(s)|ds < ∞, then

Lemma 2.1 (see formula (14) below) yields the estimate supt∈[0,T ) |v(t)| ≤ c.
This estimate and inequality (8) imply that supt∈[0,T )

∫ t
0 ||v(s)||2ds ≤ c.

2.2. Large-time behavior of solutions.
Let us derive some estimates from (7). Denote

g(t) := |v|2, G(t) := ||v||2, b(t) := |f |.

Differentiate (7) with respect to t and get

g′(t) + 2νG(t) = 2(f, v) ≤ 2b(t)g1/2(t). (8)

As was mentioned below formula (3), the derivative v′ exists in the sense
that for all η ∈W one has (v′, η) ∈ L1([0, T )) if v ∈ V . Let us assume that

lim
t→∞

b(t) = 0, lim
t→∞

b′(t)

b(t)
= 0. (9)

If D is a finite domain then

||v||2 ≥ cD|v|2, v ∈ H̊1(D), cD = const > 0. (10)

Thus, G ≥ cDg, and inequality (8) implies

g′ + 2γg ≤ 2b(t)g1/2, γ := νcD > 0, t ≥ 0. (11)

Lemma 2.1. Assume that g ≥ 0 and inequality (11) holds. Then

g1/2(t) ≤ e−γtg1/2(0) +
1

2

∫ t

0
e−γ(t−s)b(s)ds, (12)
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and

g(t) ≤ 2e−2γtg(0) +
1

2

(∫ t

0
e−γ(t−s)b(s)ds

)2

. (13)

Assume that b(t) > 0 and conditions (9) hold. Then

lim
t→∞

∫ t
0 e
−γ(t−s)b(s)ds

b(t)
=

1

γ
, γ > 0. (14)

Proof of Lemma 2.1. Let h(t) = g(t)e2γt. Then h(0) = g(0). Equation
(11) implies h′ ≤ 2b(t)eγth1/2. So,

h1/2(t) ≤ h1/2(0) +

∫ t

0
b(s)eγsds,

and (12) follows. Inequality (13) follows from (12) since (a+b)2 ≤ 2(a2+b2).
Relation (14) follows from the L’Hospital rule and conditions (9).

Lemma 2.1 is proved. �
Remark 1. If b(t) = 0 for t > t0, then (13) yields

g(t) ≤ 2e−2γtg(0) +
e−2γt

2

(
eγt0 − 1

γ

)2

= O(e−2γt).

If b(t) = O(e−kt) and k < γ, then g(t) ≤ O(e−2kt). If k > γ, then g(t) ≤
O(e−2γt). From (9) and (11)–(14) one gets g′(t) ≤ O(e−γt + b(t)). If b(t) =
O(e−γt), then

g′(t) ≤ O(e−γt). (15)

Estimates in Lemma 2.1 and Remark 1 prove the part of Theorem 1.2.
that deals with large-time behavior of the solution to (3). The last statement
of Lemma 2.1 allows one to prove decay estimates when the decay of the
data f , as t → ∞ is much slower than an exponential. Remember that
b(t) = |f(t)| is defined by the data. Conditions (9) and the last statement
of Lemma 2.1 allow one to estimate the rate of decay of the integral in
formula (12). Conditions (9) hold, for example, if c1t

−a1 ≤ b(t) ≤ ct−a and
|b′(t)| ≤ ct−a−1, where 0 < a1 ≤ a, so the decay of the data is much slower
than an exponential. This case is not covered by the results in [7].

�
2.3. Proof of the uniqueness of the solution to (3) in the space

W1.
Suppose that v, w ∈W solve (3). Let u = v−w. Subtract (3) with w in

place of v from (3) and get

(u′, η) + ν((u, η)) + ((u · ∇)v, η) + ((w · ∇)u, η) = 0, ∀η ∈W. (16)
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Take η = u and use the relation ((w · ∇)u, u) = 0 which holds for u,w ∈W .
Denote h := |u|2, H := ||u||2. Then relation (16) and Hölder’s inequality
yield

h′(t) + 2νH(t) ≤ ||v(t)||||u||2L4(D) ≤ c||u||
2
L4(D), (17)

where the assumption ||v(t)|| ≤ c was used. From (17) one gets

h(t) + 2ν

∫ t

0
H(s)ds ≤ c

∫ t

0
||u||2L4(D)ds. (18)

Using inequality (5) one gets

||u||2L4(D) ≤ c|u|
1/2||u||3/2 ≤ νH + c(ν)h, (19)

where the Young’s inequality was used.
Since H ≥ 0, inequalities (17) and (19) yield h′ ≤ ch, and h(0) = 0 by

the assumption. Therefore

h(t) ≤ c
∫ t

0
h(s)ds, h(0) = 0. (20)

This implies that h = 0 ∀t ≥ 0. The assumption (4) was crucial for the
proof. Theorem 1.1 is proved. �

Remark 2. A slight variation of the above argument shows that the
additional assumption (4) can be replaced by the assumption∫ t

0
||v(s)||4ds ≤ c. (21)

Recall that c > 0 is independent of t.

3. Global existence of the weak solution

In this Section the existence part of Theorem 1.2 is proved. The expo-
nential decay of the solution follows from the estimates proved in lemma
2.1 provided that b(t) = |f | decays exponentially fast. If the weak solution
exists globally and is unique, then a smooth solution, if it exists globally,
has to be equal to the weak solution due to the uniqueness of the solution.
Therefore, the weak solution has to be smooth if a smooth solution exists.

The global existence of the weak solution was proved, for example, in [5]-
[7]. We give a slightly different proof. Let D ⊂ R3 be a bounded domain.
Denote by {φj}∞j=1 the eigenvectors of the Stokes operator −P∆ in H =

L2(D), where P is the Helmholtz-Leray projector (see [1], [5], [6] or [7]).
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These eigenvectors are orthonormal in H, and form a basis of V . They solve
the problem:

−P∆φj = λjφj , φj ∈ V ; 0 < λ1 ≤ λ2 . . . , lim
j→∞

λj =∞; ((φj , φi)) = λjδij ,

where δij is the Kronecker symbol. Let us look for a solution to (3) of the
form vm =

∑m
j=1 cjm(t)φj(x), where cjm(t) are unknown functions. If vm is

substituted in equation (3) with η = φj , then one gets:

c′jm(t) + νλjcjm(t) + ((vm · ∇)vm, φj) = (f, φj) := fj(t), cjm(0) = (v0, φj).
(22)

Multiplying this equation by cjm, summing up over j from j = 1 to j = m,
taking into account that

((vm · ∇)vm, vm) = 0,
m∑
j=1

λjc
2
jm = ((vm, vm)) := Gm,

and denoting

gm := gm(t) :=
m∑
j=1

c2jm(t),

one gets
g′m + 2νλ1gm ≤ g′m + 2νGm ≤ 2|Pmf |g0.5m , (23)

where the inequality λ1gm ≤ Gm was used, λ1 depends on D, and

Pmf :=
m∑
j=1

fjφj , lim
m→∞

|Pmf − f | = 0.

Inequality (23) and Lemma 2.1 imply that

gm(t) ≤ ce−2γt, (24)

where γ := νλ1, the constant c > 0 does not depend on m, and it is assumed
that |f(t)| ≤ O(e−2γt). The system (22) of ordinary differential equations
with the quadratic nonlinearity

((vm · ∇)vm, φj) =
m∑

p,q=1

cp(t)cq(t)((φp · ∇)φq, φj)

has a local solution by the standard result. Estimate (24) shows that the
local solution is bounded uniformly with respect to t, and, consequently,

7



the functions cjm(t), 1 ≤ j ≤ m, exist globally, that is, for all t ≥ 0.
Furthermore, there exists a subsequence, as m → ∞, denoted cjm again,
that converges weakly in L2([0, T )) to a sequence {cj}∞j=1, cj = cj(t). From
the estimate (24) one concludes that

g(t) :=
∞∑
j=1

c2j (t) ≤ ce−2γt. (25)

Therefore, cj(t) = O(e−γt) as t → ∞. Moreover,
∫ t
0 Gm(s)ds is bounded

uniformly with respect to m and t ≥ 0. To prove this one uses an inequality
similar to (7):

gm + 2ν

∫ t

0
Gm(s)ds ≤ gm(0) + 2

∫ t

0
b(s)g1/2m (s)ds,

and an estimate of g
1/2
m similar to (12). It follows from (25) that

∑∞
j=1 c

2
j (t) ∈

L∞([0, T )). If the subsequence cjm converges weakly to cj , then vm con-
verges weakly to a function v in W . Let us check that the limiting function
v =

∑∞
j=1 cj(t)φj solves (3). Integrating equation (3) with respect to t one

obtains

(v, η) + ν

∫ t

0
((v, η))ds+

∫ t

0
((v · ∇)v, η)ds = (v0, η) +

∫ t

0
(f, η)ds, ∀η ∈ V.

(26)
Let us compare (26) with the relation

(vm, η) + ν

∫ t

0
((vm, η))ds+

∫ t

0
((vm · ∇)vm, η)ds = (v0m, η) +

∫ t

0
(Pmf, η)ds.

(27)
Passing to the limit m→∞ in (27) yields (26). The passage is straightfor-
ward in all the terms, except for the term

∫ t
0 ((vm ·∇)vm, η)ds. This term can

be rewritten as −
∫ t
0 (vmvm,∇η)ds. The embedding operator from V to H is

compact. Therefore the weak convergence of vm in L2([0, T );V ) implies the
convergence of the term −

∫ t
0 (vmvm,∇η)ds to the integral −

∫ t
0 (vv,∇η)ds =∫ t

0 ((v · ∇)v, η)ds. Thus, one can pass to the limit in (27) and get (26). If
equation (26) holds, then one can differentiate (26) with respect to t and
obtain relation (3) for all η ∈ V . The set of the products ηhj(t), where
η ∈ V and the set {hj(t)} forms a basis of L2([0, T )), is dense in the set W
in the norm of L2([0, T );V ). Therefore, if relation (3) holds for all η ∈ V it
holds also for all η ∈W . Consequently, the limiting function v satisfies (3).
The existence part of Theorem 1.2 is proved. �

8



4. Unbounded domain

Assume in this section that D = R3. Then inequality (10) does not hold.
We want to outline the proof of the uniqueness result similar to Theorem
1.1 for unbounded domain R3. Using inequality (6) one gets an analog of
inequality (18)

||u||2L4(R3) ≤ νH(t) + ch(t). (28)

This inequality and an inequality similar to (17) yield an analog of inequality
(20), and the uniqueness theorem follows as in the case of a bounded domain
D. This yields

Theorem 4.1. If D = R3 then problem (3) has at most one solution in W1.

Acknowledgment. The author thanks Dr. N. Pennington for a dis-
cussion.
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