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1H. Niewodniczański Institute of Nuclear Physics, Polish Academy of
Sciences, ul. Eliasza-Radzikowskiego 152, PL 31342 Kraków, Poland

pawel.blasiak@ifj.edu.pl, andrzej.horzela@ifj.edu.pl
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Abstract

We describe an algebra G of diagrams that faithfully gives a diagram-
matic representation of the structures of both the Heisenberg–Weyl alge-
bra H – the associative algebra of the creation and annihilation operators
of quantum mechanics – and U(LH), the enveloping algebra of the Heisen-
berg Lie algebra LH. We show explicitly how G may be endowed with
the structure of a Hopf algebra, which is also mirrored in the structure
of U(LH). While both H and U(LH) are images of G, the algebra G has
a richer structure and therefore embodies a finer combinatorial realiza-
tion of the creation–annihilation system, of which it provides a concrete
model.
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1 Introduction

One’s comprehension of abstract mathematical concepts often goes via con-
crete models. In many cases, convenient representations are obtained by
using combinatorial objects. Their advantage comes from simplicity based
on intuitive notions of enumeration, composition and decomposition, which
allow for insightful interpretations, neat pictorial arguments and construc-
tions [1–3]. This makes the combinatorial perspective particularly attractive
for quantum physics, due to the latter’s active pursuit of a better under-
standing of fundamental phenomena. An example of such an attitude is
given by Feynman diagrams, which provide a graphical representation of
quantum processes; these diagrams became a tool of choice in quantum
field theory [4–6]. Recently, we have witnessed major progress in this area
which has led to a rigorous combinatorial treatment of the renormalization
procedure [7,8] – this breakthrough came with the recognition of Hopf alge-
bra structure in the perturbative expansions [9–12]. There are many other
examples in which combinatorial concepts play a crucial role, ranging from
attempts to understand peculiar features of quantum formalism to a novel
approach to calculus, e.g., see [13–18] for just a few recent developments
in theses directions. In the present paper, we consider some common alge-
braic structures of Quantum Theory and will show that the combinatorial
approach has much to offer in this domain as well.

The current formalism and structure of Quantum Theory is based on
the theory of operators acting on a Hilbert space. According to a few
basic postulates, the physical concepts of a system, i.e., the observables
and transformations, find their representation as operators which account
for experimental results. An important role in this abstract description is
played by the notions of addition, multiplication and tensor product which
are responsible for peculiarly quantum properties such as interference, non-
compatibility of measurements as well as entanglement in composite systems
[19–21]. From the algebraic point of view, one appropriate structure captur-
ing these features is a bi-algebra or, more specifically, a Hopf algebra. These
structures comprise a vector space with two operations, multiplication and
co-multiplication, describing how operators compose and decompose. In the
following, we shall be concerned with a combinatorial model that provides
an intuitive picture of this type of abstract structure.

However, the bare formalism is, by itself, not enough to provide a descrip-
tion of real quantum phenomena. One must also associate operators with
physical quantities. This will, in turn, involve the association of some
algebraic structure with physical concepts related to the system. In prac-
tice, the most common correspondence rules are based on an associative
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algebra, the Heisenberg–Weyl algebra H. This mainly arises by analogy with
classical mechanics whose Poissonian structure is reflected in the quantum-
mechanical commutator of position and momentum observables [x, p] = i�
[22]. In the first instance, this commutator gives rise to a Lie algebra
LH [23, 24], which naturally extends to a Hopf algebra structures in the
enveloping algebra U(LH) [25, 26]. An important equivalent commutator
is that of the creation–annihilation operators [a, a†] = 1, employed in the
occupation number representation in quantum mechanics and the second
quantization formalism of quantum field theory. Accordingly, we take the
Heisenberg–Weyl algebra H as our starting point.

In this paper, we develop a combinatorial approach to the Heisenberg–
Weyl algebra and present a comprehensive model of this algebra in terms
of diagrams. In some respects this approach draws on Feynman’s idea of
representing physical processes as diagrams used as a bookkeeping tool in
the perturbation expansions of quantum field theory. We discuss natu-
ral notions of diagram composition and decomposition, which provide a
straightforward interpretation of the abstract operations of multiplication
and co-multiplication. The resulting combinatorial algebra G may be seen
as a lifting of the Heisenberg–Weyl algebra H to a richer structure of dia-
grams, capturing all the properties of the latter. Moreover, it will be shown
to have a natural bi-algebra and Hopf algebra structure providing a con-
crete model for the enveloping algebra U(LH) as well. Schematically, these
relationships can be pictured as follows:

G
ϕ

������
��

��
��

��
�

ϕ̄

�� ���
��

��
��

��
�

Combinatorial
Algebra

U(LH) π �� �� H Algebra

LH
� �

κ

����������� �
ι

�����������

Lie Algebra

where all the arrows are algebra morphisms and ϕ is a Hopf algebra mor-
phism. While the lower part of the diagram is standard, the upper part
and the construction of the combinatorial algebra G illustrate a genuine
combinatorial underpinning of these abstract algebraic structures.

The paper is organized as follows. In Section 2, we start by briefly
recalling the algebraic structure of the Heisenberg–Weyl algebra H and
the enveloping algebra U(LH). In Section 3, we define the Heisenberg–
Weyl diagrams and introduce the notion of composition, which leads to the
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combinatorial algebra G. Section 4 deals with the concept of decomposition,
endowing the diagrams with a Hopf algebra structure. The relation between
the combinatorial structures in G and the algebraic structures in H and
U(LH) are explained as they appear in the construction. For ease of reading
most proofs have been moved to the appendices.

2 Heisenberg–Weyl algebra

The objective of this paper is to develop a combinatorial model of the
Heisenberg–Weyl algebra. In order to fully appreciate the versatility of our
construction, we start by briefly recalling some common algebraic structures
and clarifying their relation to the Heisenberg–Weyl algebra.

2.1 Algebraic setting

An associative algebra with unit is one of the most basic structures used in
the theoretical description of physical phenomena. It consists of a vector
space A over a field K, which is equipped with a bilinear multiplication
law A×A � (x, y) −→ x y ∈ A which is associative and possesses a unit
element I.1 Important notions in this framework are a basis of an algebra,
by which is meant a basis for its underlying vector space structure, and the
associated structure constants. For each basis {xi} the latter are defined as
the coefficients γk

ij ∈ K in the expansion of the product xi xj =
∑

k γk
ij xk.

We note that the structure constants uniquely determine the multiplication
law in the algebra.2 For example, when the underlying vector space is
finite dimensional of dimension N , that is each vector-space element has a
unique expansion in terms of N basis elements, then there is only a finite
number, at most N3, of nonvanishing γk

ij ’s. A canonical example of the (non-
commutative) associative algebra with unit is a matrix algebra, or more
generally an algebra of linear operators acting in a vector space.

A description of composite systems is obtained through the construc-
tion of a tensor product. Of particular importance for physical applications
is how the transformations distribute among the components. A canonical
example is the algebra of angular momentum and its representation on com-
posite systems. In general, this issue is properly captured by the notion of
a bi-algebra which consists of an associative algebra with unit A which is

1A full list of axioms may be found in any standard text on algebra, such as [27,28].
2The structure constants must of course satisfy the constraints provided by the asso-

ciative law.
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additionally equipped with a co-product and a co-unit. The co-product is
defined as a co-associative linear mapping Δ : A −→ A⊗A prescribing the
action from the algebra to a tensor product, while the co-unit ε : A −→ K

gives a linear map to the underlying field K. Furthermore, the bi-algebra
axioms require Δ and ε to be algebra morphisms, i.e., to preserve multiplica-
tion in the algebra, which asserts the correct transfer of the algebraic struc-
ture of A into the tensor product A⊗A. Additionally, a proper description
of the action of an algebra on a dual space requires the existence of an anti-
morphism S : A −→ A called the antipode, thus introducing a Hopf algebra
structure in A. For a complete set of bi-algebra and Hopf algebra axioms
see [26,29,30].

In this context, it is instructive to discuss the difference between Lie alge-
bras and associative algebras which is often misunderstood. A Lie algebra is
a vector space L over a field K with a bilinear law L × L � (x, y) −→ [x, y] ∈
L, called the Lie bracket, which is antisymmetric [x, y] = −[y, x] and satis-
fies the Jacobi identity: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0. Lie algebras are
not associative in general3 and lack an identity element. A standard rem-
edy for these deficiencies consists of passing to the enveloping algebra U(L),
which has the more familiar structure of an associative algebra with unit
and, at the same time, captures all the relevant properties of L. An impor-
tant step in its realization is the Poincaré–Birkhoff–Witt theorem which
provides an explicit description of U(L) in terms of ordered monomials in
the basis elements of L, see [25]. As such, the enveloping algebras can be
seen as giving faithful models of Lie algebras in terms of a structure with
an associative law.

Below, we illustrate these abstract algebraic constructions within the con-
text of the Heisenberg–Weyl algebra. These abstract algebraic concepts gain
by use of a concrete example.

2.2 Heisenberg–Weyl algebra revisited

In this paper, we consider the Heisenberg–Weyl algebra, denoted byH, which
is an associative algebra with unit, generated by two elements a and a†
subject to the relation

a a† = a†a + I. (2.1)

3However, all the Heisenberg Lie algebras h2n+1 are also (trivially) associative in the
sense that for all x, y, z ∈ h2n+1, x � (y � z) = (x � y) � z (= 0), where � is the composition
(bracket) in the Lie algebra.
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This means that the algebra consists of elements A ∈ H which are linear
combinations of finite products of the generators, i.e.,

A =
∑

rk,...,r1
sk,...,s1

Ark,...,r1
sk,...,s1

a† rk ask · · · a† r2 as2 a† r1 as1 , (2.2)

where the sum ranges over a finite set of multi-indices rk, . . . , r1 ∈ N and
sk, . . . , s1 ∈ N (with the convention a0 = a† 0 = I). Throughout the paper
we stick to the notation used in the occupation number representation in
which a and a† are interpreted as annihilation and creation operators. We
note, however, that one should not attach too much weight to this choice as
we consider algebraic properties only, so particular realizations are irrelevant
and the crux of the study is the sole relation of equation (2.1). For example,
one could equally well use X as multiplication by z, and derivative operator
D = ∂z acting in the space of complex polynomials, or analytic functions,
which also satisfy the relation [D, X] = I.

Observe that the representation given by equation (2.2) is ambiguous in so
far as the rewrite rule of equation (2.1) allows different representations of the
same element of the algebra, e.g., aa† or equally a†a + I. The remedy for this
situation lies in fixing a preferred order of the generators. Conventionally,
this is done by choosing the normally ordered form in which all annihilators
stand to the right of creators. As a result, each element of the algebra H
can be uniquely written in normally ordered form as

A =
∑

k,l

αkl a† k al. (2.3)

In this way, we find that the normally ordered monomials constitute a nat-
ural basis for the Heisenberg–Weyl algebra, i.e.,

Basis of H : {a† kal}k,l∈N,

indexed by pairs of integers k, l = 0, 1, 2, . . ., and equation (2.3) is the expan-
sion of the element A in this basis. One should note that the normally
ordered representation of the elements of the algebra suggests itself not only
as the simplest one but is also of practical use and importance in appli-
cations in quantum optics [31–33] and quantum field theory [5, 34]. In the
sequel, we choose to work in this particular basis. For the complete algebraic
description of H we still need the structure constants of the algebra. They
can be readily read off from the formula for the expansion of the product of
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basis elements

a† paq a† kal =
min{q,k}∑

i=0

(
q

i

)(
k

i

)

i! a† p+k−iaq+l−i. (2.4)

We note that working in a fixed basis is in general a nontrivial task. In our
case, the problem reduces to rearranging a and a† to normally ordered form
which may often be achieved by combinatorial methods [35,36].

2.3 Enveloping algebra U(LH)

We recall that the Heisenberg Lie algebra, denoted by LH,4 is a three-
dimensional vector space with basis {a†, a, e} and Lie bracket defined by
[a, a†] = e, [a†, e] = [a, e] = 0. Passing to the enveloping algebra involves
imposing the linear order a† � a � e and constructing the enveloping algebra
U(LH) with basis given by the family

Basis of U(LH) : {a† kal em}k,l,m∈N,

which is indexed by triples of integers k, l, m = 0, 1, 2, .... Hence, elements
B ∈ U(LH) are of the form

B =
∑

k,l,m

βklm a† kal em. (2.5)

According to the Poincaré–Birkhoff–Witt theorem, the associative multi-
plication law in the enveloping algebra U(LH) is defined by concatenation,
subject to the rewrite rules

a a† = a†a + e,

e a† = a†e,
e a = a e.

(2.6)

One checks that the formula for multiplication of basis elements in U(LH)
is a slight generalization of equation (2.4) and is

a† paq er a† kal em =
min{q,k}∑

i=0

(
q

i

)(
k

i

)

i! a† p+k−i aq+l−i er+m+i. (2.7)

4This Lie algebra, the Heisenberg Lie algebra, which is written here as LH, is often
called h3 in the literature, with h2n+1 being the extension to n creation operators.
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Note that the algebra U(LH) differs from H by the additional central
element e which should not be confused with the unity I of the enveloping
algebra.5 This distinction plays an important role in some applications as
explained below. In situations when this difference is insubstantial one may
set e→ I recovering the Heisenberg–Weyl algebra H, i.e., we have the sur-
jective morphism π : U(LH) −→ H given by

π(a† iaj ek) = a† iaj . (2.8)

This completes the algebraic picture which can be subsumed in the following
diagram:

U(LH) π �� �� H

LH
� �

κ

����������� �
ι

����������

We emphasize that the inclusions ι : LH −→ U(LH) and κ = π ◦ ι : LH −→
H are Lie algebra morphisms, while the surjection π : U(LH) −→ H is a
morphism of associative algebras with unit. Note that different structures
are carried over by these morphisms.

Finally, we observe that the enveloping algebra U(LH) may be equipped
with a Hopf algebra structure. This may be constructed in a standard way by
defining the co-product6 Δ : U(LH) −→ U(LH)⊗ U(LH) on the generators
x = a†, a, e setting Δ(x) = x⊗ I + I ⊗ x, which further extends to

Δ(a† paq er) =
∑

i,j,k

(
p

i

)(
q

j

)(
r

k

)

a† iaj ek ⊗ a† p−iaq−j er−k. (2.9)

Similarly, the antipode S : U(LH) −→ U(LH) is given on generators by
S(x) = −x, and hence from the anti-morphism property yields

S(a† paq er) = (−1)p+q+r er aq a† p. (2.10)

Finally, the co-unit ε : U(LH) −→ K is defined in the following way:

ε
(
a† paq er

)
=

{
1, if p, q, r = 0,

0, otherwise.
(2.11)

A word of warning here: the Heisenberg–Weyl algebraH can not be endowed
with a bi-algebra structure contrary to what is sometimes tacitly assumed.

5As usual, we write a0 = a†0
= e0 = I.

6Note that this definition gives a co-commutative Hopf algebra. One may also define
a nonco-commutative co-product [37].
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This is because properties of the co-unit contradict the relation of equa-
tion (2.1), i.e., it follows that ε(I) = ε(a a† − a†a) = ε(a) ε(a†)− ε(a†) ε(a) =
0 while one should have ε(I) = 1. This brings out the importance of the
additional central element e 	= I which saves the day for U(LH).

3 Algebra of diagrams and composition

In this section, we define the combinatorial class of Heisenberg–Weyl dia-
grams which is the central object of our study. We equip this class with
an intuitive notion of composition, permitting the construction of an alge-
bra structure and thus providing a combinatorial model of the algebras H
and U(LH). See [38] for a comprehensive combinatorial background of this
construction.

3.1 Combinatorial concepts

We start by recalling a few basic notions from graph theory [39] needed for
a precise definition of the Heisenberg–Weyl diagrams, and then provide an
intuitive graphical representation of this structure.

Briefly, from a set-theoretical point of view, a directed graph is a collection
of edges E and vertices V with the structure determined by two mappings
h, t : E −→ V prescribing how the head and tail of an edge are attached
to vertices. Here we address a slightly more general setting consisting of
partially defined graphs whose edges may have one of the ends free (but not
both), i.e., we consider finite graphs with partially defined mappings h and
t such that dom(h) ∪ dom(t) = E, where dom stands for domain. Addition-
ally, we exclude the possibility of isolated vertices, i.e., each vertex in a graph
is attached to some edge codom(h) ∪ codom(t) = V , where codom denotes
codomain. We call a cycle in a graph any sequence of edges e1, e2, . . . , en

such that h(ek) = t(ek+1) for k < n and h(en) = t(e1). A convenient concept
in graph theory concerns the notion of equivalence. Two graphs given by
h1, t1 : E1 −→ V1 and h2, t2 : E2 −→ V2 are said to be equivalent if one can
be isomorphically transformed into the other, i.e., both have the same num-
ber of vertices and edges and there exist two isomorphisms αE : E1 −→ E2

and αV : V1 −→ V2 faithfully transferring the structure of the graphs in the
following sense:

E1
h ��
t

��

αE

��

V1

αV

��
E2

h ��
t

�� V2
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The advantage of equivalence classes so defined is that we can liberate our-
selves from specific set-theoretical realizations and think of a graph only
in terms of relations between vertices and edges which can be conveniently
described in a graphical way – this is the attitude we adopt in the sequel.

In this context, we propose the following formal definition:

Definition 3.1 (Heisenberg–Weyl diagrams). A Heisenberg–Weyl diagram
Γ is a class of partially defined directed graphs without cycles. It consists
of three sorts of lines: the inner ones Γ

0 having both head and tail attached
to vertices, the incoming lines Γ

− with free tails, and the outgoing lines Γ
+

with free heads.

A typical modus operandi when working with classes is to invoke rep-
resentatives. Following this practice, by default we make all statements
concerning Heisenberg–Weyl diagrams with reference to its representatives,
assuming that they are class invariants, which assumption can be routinely
checked in each case.

The formal Definition 3.1 gives an intuitive picture in graphical form –
see the illustration figure 1. A diagram can be represented as a set of
vertices • connected by lines each carrying an arrow indicating the direction
from the tail to the head. Lines having one of the ends not attached to a
vertex will be marked with � or �� at the free head or tail, respectively. We
will conventionally draw all incoming lines at the bottom and the outgoing
lines at the top with all arrows heading upwards; this is always possible
since the diagrams do not have cycles. This pictures the Heisenberg–Weyl
diagram as a sort of process or transformation with vertices playing the role
of intermediate steps.

Figure 1: An example of a Heisenberg–Weyl diagram with three distin-
guished characteristic sorts of lines: the inner ones |Γ 0| = 4, the incoming
lines |Γ−| = 4 and outgoing lines |Γ+| = 3.
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An important characteristic of a diagram Γ is the total number of its lines
denoted by |Γ |. In the next sections, we further refine counting of the lines
to the inner, the incoming and the outgoing lines, denoting the result by
|Γ 0|, |Γ−| and |Γ+|, respectively. Clearly, one has |Γ | = |Γ 0|+ |Γ−|+ |Γ+|.

3.2 Diagram composition

A crucial concept of this paper concerns composition of Heisenberg–Weyl
diagrams. This has a straightforward graphical representation as the attach-
ing of free lines one to another, and is based on the notation of a matching;
see [40] for an undemanding account and [6] for some early indications.

A matching m of two sets A and B is a choice of pairs (ai, bi) ∈ A×B all
having different components, i.e., if ai = aj or bi = bj then i = j. Intuitively,
it is a collection of pairs (ai, bi) obtained by taking away ai from A and bi

from B and repeating the process several times with sets A and B gradually
reducing in size. We denote the collection of all possible matchings by
A����B, and its restriction to matchings comprising i pairs only by A����i B.
It is straightforward to check by exact enumeration the formula |A����i B| =
(|A|

i

)(|B|
i

)
i!, which is valid for any i if the convention

(
n
k

)
= 0 for n < k is

applied.

The concept of diagram composition suggests itself, as:

Definition 3.2 (Diagram composition). Consider two Heisenberg–Weyl dia-
grams Γ2 and Γ1 and a matching m ∈ Γ

−
2 ����Γ

+

1 between the free lines going
out from the first one Γ

+

1 and the free lines going into the second one Γ
−
2 .

The composite diagram, denoted by Γ2
m
� Γ1, is constructed by joining the

lines coupled by the matching m.

This descriptive definition can be formalized by referring to representa-
tives in the following way. Given two disjoint graphs Γ1 and Γ2, i.e., such
that VΓ2 ∩ VΓ1 = Ø and EΓ2 ∩ EΓ1 = Ø, we construct the composite graph
Γ2

m
� Γ1 consisting of vertices V

Γ2 �m Γ1
= VΓ2 ∪ VΓ1 and edges E

Γ2 �m Γ1
= EΓ2 ∪

EΓ1 ∪m− (pr2(m) ∪ pr1(m)), where pr is the projection on the first or sec-
ond component in EΓ2 × EΓ1 . Then, the head and tail functions unam-
biguously extend to the set EΓ2 ∪ EΓ1 − (pr2(m) ∪ pr1(m)) and for e = (eΓ2 ,
eΓ1) ∈ m we define h

Γ2 �m Γ1
(e) = hΓ2(eΓ2) and t

Γ2 �m Γ1
(e) = tΓ1(eΓ1). Clearly,

choice of the disjoint graphs in classes is always possible and the resulting
directed graph does not contain cycles. It then remains to check that the
composition of diagrams so defined, making use of representatives, is class
invariant.
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Figure 2: Composition of two diagrams Γ2
m
� Γ1 according to the matching

m ∈ Γ
−
2 ����Γ

+

1 consisting of three connections.

Definition 3.2 can be straightforwardly seen as if diagrams were put over
one another with some of the lines going out from the lower one plugged
into some of the lines going into the upper one in accordance with a given
matching m ∈ Γ

−
2 ����Γ

+

1 , for illustration see figure 2. Observe that in gen-
eral two graphs can be composed in many ways, i.e., as many as there are
possible matchings (elements in Γ

−
2 ����Γ

+

1 ). In Section 3.3, we exploit all
these possible compositions to endow the diagrams with the structure of
an algebra. Note also that the above construction depends on the order
in which diagrams are composed and in general the reverse order yields
different results.

We conclude by two simple remarks concerning the composition of two
diagrams Γ2 and Γ1 constructed by joining exactly i lines. Firstly, we observe
that possible compositions can be enumerated explicitly by the formula

|Γ−
2 ����i Γ

+

1 | =
(|Γ−

2 |
i

)(|Γ+

1 |
i

)

i!. (3.1)

Secondly, the number of incoming, outgoing and inner lines in the composed
diagram does not depend on the choice of a matching m ∈ Γ

−
2 ����i Γ

+

1 and
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reads, respectively,

|(Γ2
m
� Γ1)

+| = |Γ+

2 |+ |Γ+

1 | − i,

|(Γ2
m
� Γ1)

−| = |Γ−
2 |+ |Γ−

1 | − i,

|(Γ2
m
� Γ1)

0| = |Γ 0

2 |+ |Γ 0

1 |+ i. (3.2)

3.3 Algebra of Heisenberg–Weyl diagrams

We show here that the Heisenberg–Weyl diagrams come equipped with a
natural algebraic structure based on diagram composition. It will appear to
be a combinatorial refinement of the familiar algebras H and U(LH).

An algebra requires two operations, addition and multiplication, which
we construct in the following way. We define G as a vector space over K

generated by the basis set consisting of all Heisenberg–Weyl diagrams, i.e.,

G =
{∑

i
αi Γi : αi ∈ K, Γi – Heisenberg–Weyl diagram

}
. (3.3)

Addition and multiplication by scalars in G has the usual form
∑

i
αi Γi +

∑

i
βi Γi =

∑

i
(αi + βi) Γi, (3.4)

and

β
∑

i
αi Γi =

∑

i
β αi Γi. (3.5)

The nontrivial part in the definition of the algebra G concerns multiplication,
which by bilinearity

∑

i
αi Γi ∗

∑

j
βj Γj =

∑

i,j
αiβj Γi ∗ Γj , (3.6)

reduces to determining it on the basis set of the Heisenberg–Weyl diagrams.
Recalling the notions of Section 3.2, we define the product of two diagrams
Γ2 and Γ1 as the sum of all possible compositions, i.e.,

Γ2 ∗ Γ1 =
∑

m∈Γ
−
2 ����Γ

+
1

Γ2
m
� Γ1. (3.7)

Clearly, the sum is well defined as there is only a finite number of com-
positions (elements in Γ

−
2 ����Γ

+

1 ). Note that although all coefficients in
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equation (3.7) are equal to one, some terms in the sum may appear several
times giving rise to nontrivial structure constants. The multiplication thus
defined is noncommutative and possesses a unit element which is the empty
graph Ø (no vertices, no lines). Moreover, the following theorem holds (for
the proof of associativity see Appendix A):

Theorem 3.1 (Algebra of diagrams). Heisenberg–Weyl diagrams form a
(noncommutative) associative algebra with unit (G, +, ∗, Ø).

Our objective, now, is to clarify the relation of the algebra of Heisenberg–
Weyl diagrams G to the physically relevant algebras U(LH) and H. We shall
construct forgetful mappings which give a simple combinatorial prescription
of how to obtain the two latter structures from G.

We define a linear mapping ϕ : G −→ U(LH) on the basis elements by

ϕ(Γ ) = a† |Γ
+| a|Γ

−| e|Γ
0|. (3.8)

This prescription can be intuitively understood by looking at the diagrams as
if they were carrying auxiliary labels a†, a and e attached to all the outgoing,
incoming and inner lines, respectively. Then the mapping of equation (3.8)
just neglects the structure of the graph and only pays attention to the num-
ber of lines, i.e., counting them according to the labels. Clearly, ϕ is onto
and it can be proved to be a genuine algebra morphism, i.e., it preserves
addition and multiplication in G (for the proof see Appendix B).

Similarly, we define the morphism ϕ̄ : G −→ H as

ϕ̄(Γ ) = a†|Γ
+| a|Γ

−|, (3.9)

which differs from ϕ by ignoring all inner lines in the diagrams. It can be
expressed as ϕ̄ = π ◦ ϕ and hence satisfies all the properties of an algebra
morphism.

We recapitulate the above discussion in the following theorem:

Theorem 3.2 (Forgetful mapping). The mappings ϕ : G −→ U(LH) and
ϕ̄ : G −→ H defined in equations (3.8) and (3.9) are surjective algebra mor-
phisms, and the following diagram commutes

G
ϕ

������
��

��
��

�
ϕ̄

		 		�
��

��
��

�

U(LH) π �� �� H
(3.10)
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Therefore, the algebra of Heisenberg–Weyl diagrams G is a lifting of the
algebras U(LH) and H, and the latter two can be recovered by applying
appropriate forgetful mappings ϕ and ϕ̄. As such, the algebra G can be seen
as a fine graining of the abstract algebras U(LH) and H. Thus, these latter
algebras gain a concrete combinatorial interpretation in terms of the richer
structure of diagrams.

4 Diagram decomposition and Hopf algebra

We have seen in Section 3 how the notion of composition allows for a combi-
natorial definition of diagram multiplication, opening the door to the realm
of algebra. Here, we consider the opposite concept of diagram decomposi-
tion which induces a combinatorial co-product in the algebra, thus endowing
Heisenberg–Weyl diagrams with a bi-algebra structure [38]. Furthermore,
we will show that G forms a Hopf algebra as well.

4.1 Basic concepts: combinatorial decomposition

Suppose we are given a class of objects which allow for decomposition, i.e.,
split into ordered pairs of pieces from the same class. Without loss of gen-
erality one may think of the class of Heisenberg–Weyl diagrams and some,
for the moment unspecified, procedure assigning to a given diagram Γ its
possible decompositions (Γ ′′, Γ ′). In general, there might be various ways
of splitting an object according to a given rule and, moreover, some of them
may yield the same result. We denote the collection of all possibilities by
〈Γ 〉 = {(Γ ′′, Γ ′)} and for brevity write

Γ � (Γ ′′, Γ ′) ∈ 〈Γ 〉. (4.1)

Note that strictly 〈Γ 〉 is a multiset, i.e., it is like a set but with arbitrary
repetitions of elements allowed. Hence, in order not to overlook any of the
decompositions, some of which may be the same, we should use a more
appropriate notation employing the notion of a disjoint union, denoted by⊎

, and write
〈Γ 〉 =

⊎

decompositions
Γ�(Γ ′′,Γ ′)

{(Γ ′′, Γ ′)}. (4.2)

The concept of decomposition is quite general at this point and its further
development obviously depends on the choice of the rule. One usually sup-
plements this construction with additional constraints. Below we discuss
some natural conditions one might expect from a decomposition rule.
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(0) Finiteness. It is reasonable to assume that an object decomposes in a
finite number of ways, i.e., for each Γ the multiset 〈Γ 〉 is finite.

(1) Triple decomposition. Decomposition into pairs naturally extends to
splitting an object into three pieces Γ � (Γ3, Γ2, Γ1). An obvious way
to carry out the multiple splitting is by applying the same proce-
dure repeatedly, i.e., decomposing one of the components obtained
in the preceding step. However, following this prescription one usually
expects that the result does not depend on the choice of the component
it is applied to. In other words, we require that we end up with the
same collection of triple decompositions when splitting Γ � (Γ ′′, Γ1)
and then splitting the left component Γ ′′ � (Γ3, Γ2), i.e.,

Γ � (Γ ′′, Γ1) � (Γ3, Γ2, Γ1), (4.3)

as in the case when starting with Γ � (Γ3, Γ
′) and then splitting the

right component Γ ′ � (Γ2, Γ1), i.e.,

Γ � (Γ3, Γ
′) � (Γ3, Γ2, Γ1). (4.4)

This condition can be seen as the co-associativity property for decom-
position, and in explicit form boils down to the following equality:

⊎

(Γ ′′,Γ1)∈〈Γ 〉
(Γ3,Γ2)∈〈Γ ′′〉

{(Γ3, Γ2, Γ1)} =
⊎

(Γ3,Γ ′)∈〈Γ 〉
(Γ2,Γ1)∈〈Γ ′〉

{(Γ3, Γ2, Γ1)}. (4.5)

The above procedure straightforwardly extends to splitting into mul-
tiple pieces Γ � (Γn, . . . , Γ1). Clearly, the condition of equation (4.5)
entails the analogous property for multiple decompositions.

(2) Void object. Often, in a class there exists a sort of a void (or empty - we
use both terms synonymously) element Ø, such that objects decompose
in a trivial way. It should have the property that any object Γ 	= Ø
splits into a pair containing either Ø or Γ in two ways only

Γ � (Ø, Γ ) and Γ � (Γ, Ø), (4.6)

and Ø � (Ø, Ø). Clearly, if Ø exists, it is unique.
(3) Symmetry. For some rules the order between components in decompo-

sitions is immaterial, i.e., the rule allows for an exchange (Γ ′, Γ ′′)←→
(Γ ′′, Γ ′). In this case the following symmetry condition holds:

(Γ ′, Γ ′′) ∈ 〈Γ 〉 ⇐⇒ (Γ ′′, Γ ′) ∈ 〈Γ 〉, (4.7)

and the multiplicities of (Γ ′, Γ ′′) and (Γ ′′, Γ ′) in 〈Γ 〉 are the same.
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(4) Composition–decomposition compatibility. Suppose that in addition to
decomposition we also have a well-defined notion of composition of
objects in the class. We denote the multiset comprising all possible
compositions of Γ2 with Γ1 by Γ2 � Γ1, e.g., for the Heisenberg–Weyl
diagrams we have

Γ2 � Γ1 =
⊎

m∈Γ
−
2 ����Γ

+
1

Γ2
m
� Γ1. (4.8)

Now, given a pair of objects Γ2 and Γ1, we may think of two consistent
decomposition schemes which involve composition. We can either start
by composing them together Γ2 � Γ1 and then splitting all resulting
objects into pieces, or first decompose each of them separately into
〈Γ2〉 and 〈Γ1〉 and then compose elements of both sets in a componen-
twise manner. One may require that the outcomes are the same no
matter which way the procedure goes. Hence, a formal description of
compatibility comes down to the equality

⊎

Γ∈Γ2�Γ1

〈Γ 〉 =
⊎

(Γ ′′
2 ,Γ ′

2)∈〈Γ2〉
(Γ ′′

1 ,Γ ′
1)∈〈Γ1〉

(Γ ′′
2 � Γ ′′

1 )× (Γ ′
2 � Γ ′

1). (4.9)

We remark that this property indicates that the void object Ø of con-
dition (2) is the same as the neutral element for composition.

(5) Finiteness of multiple decompositions. Recall the process of multi-
ple decompositions Γ � (Γn, . . . , Γ1) constructed in condition (1) and
observe that one may extend the number of components to any n ∈ N.
However, if one considers only nontrivial decompositions which do not
contain void components Ø it is often the case that the process termi-
nates after a finite number of steps. In other words, for each Γ there
exists N ∈ N such that

{Γ � (Γn, . . . , Γ1) : Γn, . . . , Γ1 	= Ø} = ∅ (4.10)

for n > N . In practice, objects usually carry various characteristics
counted by natural numbers, e.g., the number of elements they are
built from. Then, if the decomposition rule decreases such a character-
istic in each of the components in a nontrivial splitting, it inevitably
exhausts and then the condition of equation (4.10) is automatically
fulfilled.

Having discussed the above quite general conditions expected from a rea-
sonable decomposition rule we are now in a position to return to the realm
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of algebra. We have already seen in Section 3.3 how the notion of compo-
sition induces a multiplication which endows the class of Heisenberg–Weyl
diagrams with the structure of an algebra, see Theorem 3.1. Following this
route we now employ the concept of decomposition to introduce the struc-
ture of a Hopf algebra in G. A central role in the construction will be played
by the three mappings given below.

Let us consider a linear mapping Δ : G −→ G ⊗ G defined on the basis
elements as a sum of possible splittings, i.e.,

Δ(Γ ) =
∑

(Γ ′,Γ ′′)∈〈Γ 〉
Γ ′ ⊗ Γ ′′. (4.11)

Note, that although all coefficients in equation (4.11) are equal to one, some
terms in the sum may appear several times. This is because elements in
the multiset 〈Γ 〉 may repeat and the numbers counting their multiplicities
are sometimes called section coefficients [41]. Observe that the sum is well
defined as long the number of decompositions is finite, i.e., condition (0) is
satisfied.

We also make use of a linear mapping ε : G −→ K which extracts the
coefficient of the void element Ø. It is defined on the basis elements by

ε(Γ ) =

{
1, if Γ = Ø,

0, otherwise.
(4.12)

Finally, we need a linear mapping S : G −→ G defined by the formula

S(Γ ) =
∑

Γ�(Γn,··· ,Γ1)
Γn,...,Γ1 �=∅

(−1)n Γn ∗ . . . ∗ Γ1, (4.13)

for Γ 	= Ø and S(Ø) = Ø. Note that it is an alternating sum over products
of nontrivial multiple decompositions of an object. Clearly, if the condition
(5) holds the sum is finite and S is well defined.

The mappings Δ, ε and S, built upon a reasonable decomposition proce-
dure, provide G with a rich algebraic structure as summarized in the follow-
ing lemma (for the proofs see Appendix C):

Lemma 4.1 (Decomposition and Hopf algebra).

(i) If the conditions (0), (1) and (2) are satisfied, the mappings Δ and ε
defined in equations (4.11) and (4.12) are the co-product and co-unit in
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the algebra G. The co-algebra (G, Δ, ε) thus defined is co-commutative,
provided condition (3) is fulfilled.

(ii) In addition, if condition (4) holds we have a genuine bi-algebra struc-
ture (G, +, ∗, Ø, Δ, ε).

(iii) Finally, under condition (5) we establish a Hopf algebra structure
(G, +, ∗, Ø, Δ, ε, S) with the antipode S defined in equation (4.13).

We remark that the above discussion is applicable to a wide range of
combinatorial classes and decomposition rules which we have thus far left
unspecified. Below, we apply these concepts to the class of Heisenberg–Weyl
diagrams.

4.2 Hopf algebra of Heisenberg–Weyl diagrams

In this section, we provide an explicit decomposition rule for the Heisenberg–
Weyl diagrams satisfying all the conditions discussed in Section 4.1. In this
way, we complete the whole picture by introducing a Hopf algebra structure
on G.

We start by observing that for a given Heisenberg–Weyl graph Γ , each
subset of its edges L ⊂ EΓ induces a subgraph Γ |L which is defined by
restriction of the head and tail functions to the subset L. Likewise, the
remaining part of the edges R = EΓ − L gives rise to a subgraph Γ |R.
Clearly, the results are again Heisenberg–Weyl graphs. Thus, by consid-
ering ordered partitions of the set of edges into two subsets L + R = EΓ ,
i.e., L ∪R = EΓ and L ∩R = ∅, we end up with pairs of disjoint graphs
(Γ |L, Γ |R). This suggests the following definition:

Definition 4.1 (Diagram decomposition). A decomposition of a
Heisenberg–Weyl diagram Γ is any splitting (ΓL, ΓR) induced by an ordered
partition of its lines L + R = EΓ . Hence, the multiset 〈Γ 〉 comprising all
possible decompositions can be indexed by the set of ordered double partitions
{(L, R) : L + R = EΓ }, and we have

〈Γ 〉 =
⊎

L+R=EΓ

{(Γ |L, Γ |R)}. (4.14)

The graphical picture is clear: the decomposition of a diagram Γ � (Γ |L,
Γ |R) is defined by the choice of lines L ⊂ EΓ , which taken out make up
the first component of the pair while the remainder induced by R = EΓ − L
constitutes the second one. (See the illustration in figure 3.)
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Figure 3: An example of diagram decomposition Γ � (Γ |L, Γ |R). The
choice of edges L ⊂ EΓ inducing the diagram Γ |L is depicted on the left
diagram as dashed lines.

We observe that the enumeration of all decompositions of a diagram Γ is
straightforward since the multiset 〈Γ 〉 can be indexed by subsets of EΓ .
Because |EΓ | = |Γ |, explicit counting gives |〈Γ 〉| = ∑

i

(|Γ |
i

)
= 2|Γ |. This

simple observation can be generalized to calculate the number of decom-
positions (Γ |L, Γ |R) ∈ 〈Γ 〉 in which the first component has i outgoing, j

incoming and k inner lines, i.e., |Γ |+L| = i, |Γ |−L| = j, |Γ |0L| = k. Accordingly,
the enumeration reduces to the choice of i, j and k lines out of the sets Γ

+,
Γ

− and Γ
0 respectively, which gives

∣
∣
∣
∣
∣
∣

⎧
⎨

⎩
(Γ |L, Γ |R) ∈ 〈Γ 〉 :

|Γ |+L |=i

|Γ |−L |=j

|Γ |0L|=k

⎫
⎬

⎭

∣
∣
∣
∣
∣
∣
=

(|Γ+|
i

)(|Γ−|
j

)(|Γ 0|
k

)

. (4.15)

Of course, the second component Γ |R is always determined by the first
one Γ |L and hence the number of its outgoing, incoming and inner lines is
given by

|Γ |+R| = |Γ+| − i,

|Γ |−R| = |Γ−| − j,

|Γ |0R| = |Γ 0| − k.

(4.16)

Having explicitly defined the notion of diagram decomposition, one may
check that it satisfies conditions (1)–(5) of Section 4.1; for the proofs see
Appendix D. In this context, equation (4.11) defining the co-product in the
algebra G takes the form

Δ(Γ ) =
∑

L+R=EΓ

Γ |L ⊗ Γ |R, (4.17)
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and the antipode of equation (4.13) may be rewritten as

S(Γ ) =
∑

An+...+A1=EΓ
An,...,A1 �=∅

(−1)n Γ |An ∗ · · · ∗ Γ |A1 . (4.18)

for Γ 	= Ø and S(Ø) = Ø. Therefore, referring to Lemma 4.1, we supplement
Theorem 3.1 by the following result:

Theorem 4.1 (Hopf algebra of diagrams). The algebra of Heisenberg–Weyl
diagrams G has a Hopf algebra structure (G, +, ∗, Ø, Δ, ε, S) with
(co-commutative) co-product, co-unit and antipode as defined in equations
(4.17), (4.12) and (4.18), respectively.

The algebra of Heisenberg–Weyl diagrams G was shown to be directly
related to the algebra U(LH) through the forgetful mapping ϕ which pre-
serves algebraic operations as explained in Theorem 3.2. Here, however,
in the context of Theorem 4.1 the algebra G is additionally equipped with
a co-product, co-unit and antipode. Since U(LH) is also a Hopf algebra,
it is natural to ask whether this extra structure is preserved by the mor-
phism ϕ of equation (3.8). It turns out that indeed it is also preserved,
and one can augment Theorem 3.2 in the following way (for the proof see
Appendix B):

Theorem 4.2 (Hopf algebra morphism ϕ). The forgetful mapping ϕ : G −→
U(LH) defined in equation (3.8) is a Hopf algebra morphism.

In this way, we have extended the results of Section 3 to encompass the
Hopf algebra structure of the enveloping algebra U(LH). This completes
the picture of the algebra of Heisenberg–Weyl diagrams G as a combinato-
rial model which captures all the relevant properties of the algebras H and
U(LH).

5 Conclusions

The development of concrete models in physics often provides a means of
understanding abstract algebraic constructs in a more natural way. This
appears to be particularly valuable in the realm of Quantum Theory, where



1230 P. BLASIAK ET AL.

the abstract formalism is far from intuitive. In this respect, the combina-
torial perspective seems to provide a promising approach, and as such has
become a blueprint for much contemporary research. For example, recent
work in perturbative Quantum Field Theory (pQFT) has shown the value
of analyzing the algebraic structure of a diagrammatic approach, in the
case of pQFT, that of the Feynman diagrams [7]. The present work differs
from that discussing pQFT in several respects. Standard nonrelativistic
second-quantized Quantum Theory, in which context the present study is
firmly based, does not suffer from the singularities which plague pQFT. As
a consequence, well-understood procedures will, at least in principle, suffice
to analyze models based on nonrelativistic Quantum Theory. Nevertheless,
the value both of a diagrammatic approach – even in the nonrelativistic case
– as well as an analysis of the underlying algebraic structure – can only lead
to a deeper understanding of the theory. In this note, we described perhaps
the most basic structure of Quantum Theory, that involving a single mode
second-quantized theory.7 In spite of this simple model, the underlying
algebraic structure proves to be surprisingly rich.8

The standard commutation relation between a single creation and anni-
hilation operator of second-quantized quantum mechanics, a a† − a†a = I,
generates in a natural way the Heisenberg–Weyl associative algebra H, as
well as the Heisenberg Lie algebra LH and its enveloping algebra U(LH). We
discussed these algebras, showing, inter alia, that U(LH) can be endowed
with a Hopf algebra structure, unlike H. However, the main content of the
current work was the introduction of a combinatorial algebra G of graphs,
arising from a diagrammatic representation of the creation–annihilation
operator system. This algebra was shown to carry a natural Hopf struc-
ture. Further, it was proved that both H and U(LH) were homomorphic
images of G, in the latter case a true Hopf algebra homomorphism.

Apart from giving a concrete and visual representation of the a and a†
actions, the algebra G remarkably exhibits a finer structure than either of
the algebras H or U(LH). This “fine graining” of the effective actions of the
creation–annihilation operators implies a richer structure for these actions,
possibly leading to a deeper insight into this basic quantum mechanical
system. Moreover, we should point out that the diagrammatic model of
the Heisenberg–Weyl algebra presented here is particularly suited to the
methods of modern combinatorial analysis [1–3]; this aspect is extensively
discussed in the paper [42].

7One does not expect that the extension to several commuting modes would introduce
additional complication.

8Of course, this is not identical to the Connes–Kreimer algebra arising in pQFT.
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Appendix A Associativity of multiplication in G

We prove associativity of the multiplication defined in equation (3.7). From
bilinearity, we need only check it for the basis elements, i.e.,

Γ3 ∗ (Γ2 ∗ Γ1) = (Γ3 ∗ Γ2) ∗ Γ1. (A.1)

Written explicitly, the left- and right-hand sides of this equation take the
form

Γ3 ∗ (Γ2 ∗ Γ1) =
∑

m′

∑

m21

Γ3
m′
� (Γ2

m21� Γ1), (A.2)

where m′ ∈ Γ
−
3 ����(Γ2

m21� Γ1)
+ and m21 ∈ Γ

−
2 ����Γ

+

1 , while

(Γ3 ∗ Γ2) ∗ Γ1 =
∑

m32

∑

m′′
(Γ3

m32� Γ2)
m′′
� Γ1, (A.3)

where m32 ∈ Γ
−
3 ����Γ

+

2 and m′′ ∈ (Γ3
m32� Γ2)

−����Γ
+

1 .

Consider the double sums in the above equations, indexed by (m′, m21),
and (m32, m

′′), respectively, and observe that there exists a one-to-one cor-
respondence between their elements. We construct it by a fine graining of
the matchings, see figure A.1, and define the following two mappings. The
first one is

(m′, m21) −→ (m32, m
′′), (A.4)

where m32 = m′ ∩ (Γ−
3 × Γ

+

2 ) and m′′ = m21 ∪ (m′ ∩ (Γ−
3 × Γ

+

1 )), and simi-
larly the second one

(m32, m
′′) −→ (m′, m21), (A.5)

with m′ = m32 ∪ (m′′ ∩ (Γ−
3 × Γ

+

1 )) and m21 = m′′ ∩ (Γ−
2 × Γ

+

1 ). Clearly,
the mappings are inverses of each other, which ensures a one-to-one cor-
respondence between elements of the double sums in equations (A.2) and
(A.3). Moreover, the summands that are mapped onto each other are equal,

i.e., the corresponding diagrams Γ3
m′
� (Γ2

m21� Γ1) and (Γ3
m32� Γ2)

m′′
� Γ1 are
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Figure A.1: Fine graining of the matchings m′ ∈ Γ
−
3 ����(Γ2

m21� Γ1)
+ and

m′′ ∈ (Γ3
m32� Γ2)

−����Γ
+

1 used in the proof of associativity of multiplication.

exactly the same. This completes the proof by showing equality of the right-
hand sides of equations (A.2) and (A.3).

Appendix B Forgetful morphism ϕ

In Theorems 3.2 and 4.2, we stated that the linear mapping ϕ : G −→ U(LH)
defined in equation (3.8) was a Hopf algebra morphism. We now prove this
statement.

We start by showing that ϕ preserves multiplication in G. From linearity
it is enough to check for the basis elements that ϕ(Γ2 ∗ Γ1) = ϕ(Γ2) ϕ(Γ1),
which is verified in the following sequence of equalities:

ϕ(Γ2 ∗ Γ1)
(3.7)
=

∑

m∈Γ
−
2 ����Γ

+
1

ϕ(Γ2
m
� Γ1) =

∑

i

∑

m∈Γ2����i Γ1

ϕ(Γ2
m
� Γ1)

(3.2)
=

∑

i

∑

m∈Γ
−
2 ����i Γ

+
1

(a†) |Γ
+
2 |+|Γ+

1 |−i a |Γ−
2 |+|Γ−

1 |−ie |Γ 0
2 |+|Γ 0

1 |+i (B.1)
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=
∑

i

(a†) |Γ
+
2 |+|Γ+

1 |−i a |Γ−
2 |+|Γ−

1 |−i e |Γ 0
2 |+|Γ 0

1 |+i

×
∑

m∈Γ
−
2 ����i Γ

+
1

1 (B.2)

(3.1)
=

∑

i

(|Γ−
2 |
i

)(|Γ+

1 |
i

)

i! (a†) |Γ
+
2 |+|Γ+

1 |−i

a |Γ−
2 |+|Γ−

1 |−i e |Γ 0
2 |+|Γ 0

1 |+i

(2.7)
=

(
(a†) |Γ

+
2 | a |Γ−

2 | e |Γ 0
2 |

) (
(a†) |Γ

+
1 | a |Γ−

1 | e |Γ 0
1 |

)

= ϕ(Γ2) ϕ(Γ1).

In the above derivation the main trick in equation (B.1) consists of splitting
the set of diagram matchings into disjoint subsets according to the number
of connected lines, i.e., Γ

−
2 ����Γ

+

1 =
⋃

i Γ
−
2 ����i Γ

+

1 . Then, observing that the
summands in equation (B.2) do not depend on m ∈ Γ

−
2 ����i Γ

+

1 , we may exe-
cute explicitly one of the sums counting elements in Γ

−
2 ����i Γ

+

1 with the help
of equation (3.1).

We also need to show that the co-product, co-unit and antipode are pre-
served by ϕ. This means that when proceeding via the mapping ϕ from G
to U(LH) one can use the co-product, co-unit and antipode in either of the
algebras and obtain the same result i.e.,

(ϕ⊗ ϕ) ◦Δ = Δ ◦ ϕ, (B.3)

ε = ε ◦ ϕ, (B.4)

ϕ ◦ S = S ◦ ϕ, (B.5)

where Δ, ε and S on the left-hand sides act in G while on the right-hand
sides in U(LH). The proof of equation (B.3) rests upon the counting formula
in equation (4.15) and the observation of equation (4.16), which justify the
following equalities:

(ϕ⊗ ϕ) ◦Δ (Γ ) =
∑

L+R=EΓ

ϕ(Γ |L)⊗ ϕ(Γ |R) =
∑

L⊂EΓ

ϕ(Γ |L)⊗ ϕ(Γ |EΓ−L)

(4.15),(4.16)
=

∑

i,j,k

(|Γ+|
i

)(|Γ−|
j

)(|Γ 0|
k

)

a† i aj ek

⊗ a† |Γ
+|−i a|Γ

−|−j e|Γ
0|−k

(2.9)
= Δ ◦ ϕ (Γ ).
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Equation (B.4) is readily verified by comparing equations (4.12) and (2.11).
Equation (B.5) is similarly checked, as the structure of equation (4.13) faith-
fully transfers via morphism into the analogous general formula for the
antipode in the graded Hopf algebras (see [26, 30]), the latter of course
reproducing equation (2.10) in the case of Lie algebras.

Appendix C From decomposition to Hopf algebra

In order to prove Lemma 4.1, we should check in part (i) co-associativity of
the co-product Δ and properties of the co-unit ε, in part (ii) show that the
mappings Δ and ε preserve multiplication in G, and for part (iii) verify the
defining properties of the antipode S.

(i) Co-algebra

The co-product Δ : G −→ G ⊗ G is co-associative if the following equality
holds:

(Δ⊗ Id) ◦Δ = (Id⊗Δ) ◦Δ. (C.1)

Since Δ defined in equation (4.11) is linear it is enough to check (C.1) for
the basis elements Γ . Accordingly, the left-hand side takes the form

(Δ⊗ Id) ◦Δ (Γ ) = (Id⊗Δ)
∑

(Γ1,Γ ′′)∈〈Γ 〉
Γ1 ⊗ Γ ′′ =

∑

(Γ1,Γ ′′)∈〈Γ 〉
(Γ2,Γ3)∈〈Γ ′′〉

Γ1 ⊗ Γ2 ⊗ Γ3,

(C.2)
whereas the right-hand side is

(Id⊗Δ) ◦Δ (Γ ) = (Δ⊗ Id)
∑

(Γ ′,Γ3)∈〈Γ 〉
Γ ′ ⊗ Γ3 =

∑

(Γ ′,Γ3)∈〈Γ 〉
(Γ1,Γ2)∈〈Γ ′〉

Γ1 ⊗ Γ2 ⊗ Γ3.

(C.3)
If condition (1) of Section 4.1 holds, the property equation (4.5) asserts
equality of the right-hand sides of equations (C.2) and (C.3) and the co-
product defined in equation (4.11) is co-associative.

By definition, the co-unit ε : G −→ K should satisfy the equalities

(ε⊗ Id) ◦Δ = Id = (Id⊗ ε) ◦Δ, (C.4)
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where the identification K⊗ G = G ⊗K = G is implied. We check the first
one for the basis elements Γ by direct calculation

(ε⊗ Id) ◦Δ (Γ ) = (ε⊗ Id)
∑

(Γ1,Γ2)∈〈Γ 〉
Γ1 ⊗ Γ2

=
∑

(Γ1,Γ2)∈〈Γ 〉
ε(Γ1)⊗ Γ2 (C.5)

= 1⊗ Γ = Γ = Id (Γ ).

Note that we have applied condition (2) of Section 4.1 by taking all terms in
the sum equation (C.5) equal to zero except the unique decomposition (Ø, Γ )
picked up by ε as defined in equation (4.12). The identification 1⊗ Γ = Γ
completes the proof of the first equality in equation (C.4); verification of the
second one is analogous.

Co-commutativity of the co-product Δ under the condition (3) is straight-
forward since from equation (4.7) we have

Δ(Γ ) =
∑

(Γ ′,Γ ′′)∈〈Γ 〉
Γ ′ ⊗ Γ ′′ =

∑

(Γ ′,Γ ′′)∈〈Γ 〉
Γ ′′ ⊗ Γ ′.

(ii) Bi-algebra

The structure of a bi-algebra results whenever the co-product Δ : G ⊗ G −→
G and co-unit ε : G −→ K of the co-algebra are compatible with multiplica-
tion in G. Thus, we need to verify for basis elements Γ1 and Γ2 that

Δ (Γ2 ∗ Γ1) = Δ (Γ2) ∗Δ (Γ1), (C.6)

with componentwise multiplication in the tensor product G ⊗ G on the right-
hand side, and

ε (Γ2 ∗ Γ1) = ε (Γ2) ε (Γ1), (C.7)

with terms on the right-hand side multiplied in K.

We check equation (C.6) directly by expanding both sides using the defi-
nitions of equations (3.7), (4.8) and (4.11). Accordingly, the left-hand side
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takes the form

Δ (Γ2 ∗ Γ1) =
∑

Γ∈Γ2�Γ1

Δ (Γ ) =
∑

Γ∈Γ2�Γ1

∑

(Γ ′′,Γ ′)∈〈Γ 〉
Γ ′′ ⊗ Γ ′, (C.8)

while the right-hand side is

Δ (Γ2) ∗Δ (Γ1) =
∑

(Γ ′′
2 ,Γ ′

2)∈〈Γ2〉
(Γ ′′

1 ,Γ ′
1)∈〈Γ1〉

(Γ ′′
2 ⊗ Γ ′

2) ∗ (Γ ′′
1 ⊗ Γ ′

1)︸ ︷︷ ︸
(Γ ′′

2 ∗Γ ′′
1 )⊗(Γ ′

2∗Γ ′
1)

=
∑

(Γ ′′
2 ,Γ ′

2)∈〈Γ2〉
(Γ ′′

1 ,Γ ′
1)∈〈Γ1〉

∑

Γ ′′∈Γ ′′
2 �Γ ′′

1

Γ ′∈Γ ′
2�Γ ′

1

Γ ′′ ⊗ Γ ′. (C.9)

A closer look at condition (4) and equation (4.9) shows a one-to-one cor-
respondence between terms in the sums on the right-hand sides of equa-
tions (C.8) and (C.9), verifying the validity of equation (C.6).

Verification of equation (C.7) rests upon the simple observation that com-
position of diagrams Γ2 ∗ Γ1 yields the void diagram only if both of them
are void. Then, both sides are equal to 1 if Γ1 = Γ2 = Ø and 0 otherwise,
which confirms equation (C.7).

(iii) Hopf algebra

A Hopf algebra structure consists of a bi-algebra (G, +, ∗, Ø, Δ, ε) equipped
with an antipode S : G −→ G which is an endomorphism satisfying the prop-
erty

μ ◦ (Id⊗ S) ◦Δ = Ξ = μ ◦ (S ⊗ Id) ◦Δ, (C.10)
where μ : G ⊗ G −→ G is the multiplication μ(Γ2 ⊗ Γ1) = Γ2 ∗ Γ1, and Id :
G −→ G is the identity map on G. We have introduced the auxiliary linear
mapping Ξ : G −→ G merely to simplify the proof. This mapping is defined
by Ξ = η ◦ ε, where the unit map η : K −→ G satisfies η(α) = αØ. Ξ is thus
the projection on the subspace spanned by Ø, i.e.,

Ξ(Γ ) =

{
Γ, if Γ = α Ø, α ∈ K,

0, otherwise.
(C.11)

We now prove that S given in equation (4.13) satisfies the condition of
equation (C.10). We start by considering an auxiliary linear mapping Φ :
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End(G) −→ End(G) defined by

Φ(f) = μ ◦ (Id⊗ f) ◦Δ, f ∈ End(G). (C.12)

Observe that under the assumption that Φ is invertible the first equality in
equation (C.10) can be rephrased into the condition

S = Φ−1(Ξ). (C.13)

Now, our objective is to show that Φ is invertible and calculate its inverse
explicitly. By extracting the identity we get Φ = Id + Φ+ and observe that
such defined Φ+ can be written in the form

Φ+(f) = μ ◦ (Ξ̄⊗ f) ◦Δ, f ∈ End(G), (C.14)

where Ξ̄ = Id− Ξ is the complement of Ξ projecting on the subspace
spanned by Γ 	= Ø, i.e.,

Ξ̄(Γ ) =

{
0, if Γ = α Ø, α ∈ K,

Γ, otherwise.
(C.15)

We claim that the mapping Φ is invertible with inverse given by9

Φ−1 =
∞∑

n=0

(−Φ+)n. (C.16)

In order to check that the above sum is well defined, we analyze the sum
term by term. It is not difficult to calculate powers of Φ+ explicitly

(Φ+)n(f)(Γ ) =
∑

Γ�(Γn,...,Γ1,Γ0)
Γn,...,Γ1 �=Ø

Γn ∗ . . . ∗ Γ1 ∗ f(Γ0). (C.17)

We note that in the above formula products of multiple decompositions
arise from repeated use of the property of equation (C.6); the exclusion
of empty components in the decompositions (except the single one on the
right-hand side) comes from the definition of Ξ̄ in equation (C.15). The
latter constraint together with condition (5) asserts that the number of
nonvanishing terms in equation (C.16) is always finite proving that Φ−1

9For a linear mapping L = Id + L+ : V −→ V its inverse can be constructed as L−1 =∑∞
n=0(−L+)n provided the sum is well defined. Indeed, one readily checks that L ◦

L−1 = (Id + L+) ◦ ∑∞
n=0(−L+)n =

∑∞
n=0(−L+)n +

∑∞
n=0(−L+)n+1 = Id, and similarly

L−1 ◦ L = Id.
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Figure D.1: Triple decomposition of a Heisenberg–Weyl diagram used in the
proof of condition (1).

is well defined. Finally, using equations (C.16) and (C.17) one explicitly
calculates S from equation (C.13), obtaining the formula of equation (4.13).

In conclusion, by construction the linear mapping S of equation (4.13)
satisfies the first equality in equation (C.10); the second equality can be
checked analogously. Therefore, we have proved S to be an antipode thus
making G into a Hopf algebra. We remark that, by a general theory of
Hopf algebras [26, 29], the property of equation (C.10) implies that S is
an anti-morphism and that it is unique. Moreover, if G is commutative or
co-commutative S is an involution, i.e., S ◦ S = Id.

Appendix D Properties of diagram decomposition

We verify that the decomposition of Definition 4.1 satisfies conditions
(0) – (5) of Section 4.1.

Condition (0) follows directly from the construction, as we consider finite
diagrams only.

The proof of condition (1) consists of providing a one-to-one correspon-
dence between schemes (4.3) and (4.4) decomposing a diagram Γ into triples.
Accordingly, one easily checks (see illustration figure D.1) that each triple
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(Γ |L , Γ |M , Γ |R) obtained by

Γ � (Γ |L , Γ |R̄) � (Γ |L , Γ |M , Γ |R), (D.1)

where Γ |R̄ � (Γ |M , Γ |R), also turns up as the decomposition

Γ � (Γ |L̄ , Γ |R) � (Γ |L , Γ |M , Γ |R), (D.2)

where Γ |L̄ � (Γ |L , Γ |M ), for the choice L̄ = L + M . Conversely, triples
obtained by the scheme (D.2) coincide with the results of (D.1) for the
choice R̄ = M + R. Therefore, the multisets of triple decompositions are
equal and equation (4.5) holds.

Condition (2) is straightforward since the void graph Ø is given by the
empty set of lines, and hence the decompositions Γ � (Γ, Ø) and Γ �
(Ø, Γ ) are uniquely defined by the partitions EΓ + Ø = EΓ and Ø + EΓ =
EΓ , respectively.

The symmetry condition (3) results from swapping subsets L↔ R in the
partition L + R = EΓ which readily yields equation (4.7).

In order to check property (4), we need to construct a one-to-one cor-
respondence between elements of both sides of equation (4.9). First, we
observe that elements of the left hand side are decompositions of Γ2

m
� Γ1

for all m ∈ Γ2����Γ1, i.e.,

(Γ2
m
� Γ1|L , Γ2

m
� Γ1|R), (D.3)

where L + R = E
Γ2 �m Γ1

. On the other hand, the right-hand side consists
of component-wise compositions of pairs (Γ2|L2

, Γ2|R2
) ∈ 〈Γ2〉 and (Γ1|L1

,
Γ1|R1

) ∈ 〈Γ1〉 for L2 + R2 = EΓ2 and L1 + R1 = EΓ1 , which written explic-
itly are of the form

(Γ2|L2

mL� Γ1|L1
, Γ2|R2

mR� Γ1|R1
) (D.4)

with mL ∈ Γ2|L2
���� Γ1|L1

and mR ∈ Γ2|R2
���� Γ1|R1

. We construct two map-
pings between elements of type (D.3) and (D.4) by the following assignments,
see figure D.2 for a schematic illustration. The first one is defined as

(m, L, R) −→ (L1, R1, L2, R2, mL, mR),
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Figure D.2: Decompositions of a composite diagram Γ = Γ2
m
� Γ1 for some

m ∈ Γ2����Γ1 used in the proof of condition (4).

where Li = EΓi ∩ L, Ri = EΓi ∩R for i = 1, 2 and mL = m ∩ L, mR = m ∩R.
The second one is given by:

(L1, R1, L2, R2, mL, mR) −→ (m, L, R),

with m = mL ∪mR and L = L2 ∪ L1, R = R2 ∪R2. One checks that these
mappings are inverses of each other and, moreover, the corresponding pairs
of diagrams (D.3) and (D.4) are the same. This verifies that the multisets on
the left- and right-hand sides of equation (4.9) are equal and that condition
(4) is satisfied.

Condition (5) is straightforward from the construction since the edges of
a diagram Γ can be nontrivially partitioned into at most |Γ | subsets (each
consisting of one edge only).
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