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Abstract

Chronically available alcohol escalates drinking in mice and a single injection of the immune activator lipopolysaccharide
can mimic this effect and result in a persistent increase in alcohol consumption. We hypothesized that chronic alcohol
drinking and lipopolysaccharide injections will produce some similar molecular changes that play a role in regulation of
alcohol intake. We investigated the molecular mechanisms of chronic alcohol consumption or lipopolysaccharide insult by
gene expression profiling in prefrontal cortex and liver of C57BL/6J mice. We identified similar patterns of transcriptional
changes among four groups of animals, three consuming alcohol (vs water) in different consumption tests and one injected
with lipopolysaccharide (vs. vehicle). The three tests of alcohol consumption are the continuous chronic two bottle choice
(Chronic), two bottle choice available every other day (Chronic Intermittent) and limited access to one bottle of ethanol
(Drinking in the Dark). Gene expression changes were more numerous and marked in liver than in prefrontal cortex for the
alcohol treatments and similar in the two tissues for lipopolysaccharide. Many of the changes were unique to each
treatment, but there was significant overlap in prefrontal cortex for Chronic-Chronic Intermittent and for Chronic
Intermittent-lipopolysaccharide and in liver all pairs showed overlap. In silico cell-type analysis indicated that
lipopolysaccharide had strongest effects on brain microglia and liver Kupffer cells. Pathway analysis detected a prefrontal
cortex-based dopamine-related (PPP1R1B, DRD1, DRD2, FOSB, PDNY) network that was highly over-represented in the
Chronic Intermittent group, with several genes from the network being also regulated in the Chronic and
lipopolysaccharide (but not Drinking in the Dark) groups. Liver showed a CYP and GST centered metabolic network
shared in part by all four treatments. We demonstrate common consequences of chronic alcohol consumption and immune
activation in both liver and brain and show distinct genomic consequences of different types of alcohol consumption.
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Introduction

Effects of chronic consumption of alcohol and other drugs of

abuse include tolerance and dependence and these neuroadapta-

tions arise, at least in part, from changes in gene expression [1,2].

Several studies show changes in gene expression in autopsy brain

tissue from human alcoholics [3–5], potentially providing thera-

peutic targets for new treatments for alcoholism. However, drug

development requires testing in animal models and there is only

limited information on brain gene expression changes in rodent

models of chronic alcohol consumption [1]. For the Preferring (P)

line of rats, three studies of ethanol consumption found changes in

gene expression that often varied between brain regions [6–8].

Mice are widely used to study alcohol consumption but analyses of

brain gene expression profiles following chronic alcohol drinking

are remarkably limited for mouse models [1,9,10] and there are no

direct comparisons of genomic changes in different animal models.

One theme that has emerged from studies of gene expression in

human alcoholism is the role of neuroimmune genes [3,11,12] and

differential expression of this category of genes is also seen in mice

with genetic predisposition for high alcohol consumption [13]. In

addition, activation of the innate immune system with LPS and the

availability of chronic ethanol both increase alcohol consumption

[14,15]. This raises the question of which, if any, of the rodent

models of excessive alcohol consumption show changes in gene

expression, neuroimmune genes, in particular, that might be

similar to human alcoholism and similar to the immune activation

produced by LPS. A major consequence of chronic alcohol

consumption is altered liver function, often accompanied by

steatosis and other alcoholic liver injuries. A few studies have

examined changes in liver gene expression produced by admin-

istration of alcohol by chronic intragastric infusion or consumption

of a liquid diet [16,17], but there is a paucity of studies of liver

gene expression profiles in any of the mouse models of voluntary

alcohol consumption.

The present study was designed to provide a direct comparison

of the effects of chronic alcohol consumption from three different

mouse models on brain (prefrontal cortex, PFC) and liver gene
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expression as well as to identify the ethanol treatment whose effects

were most similar to the immune response produced by LPS. PFC

was chosen because it is commonly used in studies of gene

expression in human alcoholics [3] and is a brain region important

for consequences of chronic alcohol consumption [18,19]. We

chose the continuous two bottle choice (Chronic) test because it is

probably the most widely used model of mouse alcohol

consumption [20,21], the every other day or chronic intermittent

(CI) model because it promotes high intake and is gaining

popularity for medication development [22,23] and the limited

access drinking in the dark (DID) test because it produces high

blood ethanol levels and is a model of binge drinking [15].

Inflammatory processes and activation of innate immunity is

established as a critical component of alcoholic liver disease

[24,25] and is also emerging as an important determinant of

alcohol effects on brain and on alcohol consumption [14,26,27].

Thus, it was of interest to compare immune activation following

injection of lipopolysaccharide (LPS), which increases alcohol

consumption, to the alcohol treatments. Microarrays were used to

profile gene expression in two tissues (PFC and liver) from each of

the four groups (three alcohol treatments, one LPS treatment),

followed by data analysis to determine changes in gene expression

produced by each treatment, the overlap of changes between

treatments, pathway analysis of the gene networks and cellular

enrichment of the differentially expressed genes. These data show

distinct changes in gene expression in PFC and liver as well as

among the treatments, but also show overlap between several of

the treatments (notably, CI and LPS) and provide signaling

networks that may mediate some of the consequences of chronic

alcohol exposure. Comparison of gene expression changes among

these four treatments and with published data on other animal

models and human alcoholics provides convergent validity for the

role of several signaling pathways in excessive alcohol consump-

tion.

Materials and Methods

Ethics Statement
All procedures were approved by the University of Texas at

Austin Institutional Animal Care and Use Committee (mouse

protocol number AUP-2010–00028) and adhered to NIH Guide-

lines. The University of Texas at Austin animal facility is

accredited by the Association for Assessment and Accreditation

of Laboratory Animal Care.

Animals for Ethanol Studies
Studies were conducted in adult drug-naı̈ve C57BL/6J (B6)

female mice from a colony maintained at the University of Texas.

C57BL/6J (B6) female mice were utilized, as they are known to

voluntarily consume more ethanol than males[28–30]. Original

breeding pairs were purchased from Jackson Laboratories (Bar

Harbor, ME) and mated at 8 weeks of age. Mice were initially

group-housed in standard polycarbonate shoebox cages (four-five

per cage), then moved to individual cages and allowed to acclimate

for 1 week prior to treatment. DID animals were given an

additional two-week acclimation period to adjust to the reverse

light cycle (see below). Food (Prolab RMH 1800 5LL2 chow,

TestDiet, Richmond, IN) and water were provided ad libitum,

except as noted below. The colony rooms and testing rooms were

maintained at an ambient temperature of 2161uC, humidity (40–

60%), and centrally controlled ventilation (12–15 cycles/h with

100% exhaust). All treatment and control groups consisted of 10

animals, except the treated CI group, which contained 11 animals.

A 20% (v/v) ethanol solution was used for all studies. Ethanol and

water bottles were weighed daily and animals were weighed every

four days.

Chronic Ethanol
The Chronic ethanol treatment group included 10 each treated

and control mice maintained on a 12:12 light/dark light cycle

(lights on at 07:00 AM). Mice were approximately 3 months old at

the beginning of experiments. Water and ethanol were continu-

ously available for a 30-day period and bottle positions were

changed daily to control for position preference. Control animals

received only water.

Chronic Intermittent
The CI treatment utilized 11 treated and 10 control animals

and employed similar conditions to those used for the Chronic

study, except that ethanol was only available every other day. On

days that ethanol was available, bottle positions were alternated to

control for position preference. Mice were approximately 3

months old at the beginning of experiments. The total duration

of the CI experiment was determined by the total amount of

ethanol consumed, which was matched with the total amount of

ethanol consumed in the Chronic paradigm. In the Chronic

drinking paradigm, the average total ethanol intake for all mice

was 406 g/kg. Thus, the CI study was concluded when the

average total ethanol intake for all mice reached a similar level:

409 g/kg after 29 days of drinking. Since these animals only had

access to ethanol every other day, the total length of the study,

including drinking and non-drinking days, was 57 days. CI

animals were maintained on a 12:12 light/dark light cycle (lights

on at 07:00 AM). Control animals received only water. Data from

all animals was used for ethanol consumption analyses. For array

analysis, one treated animal was omitted (chosen at random) from

microarray experiments in order to maintain continuity of sample

sizes across treatment paradigms.

Drinking in the Dark
The DID protocol was also employed as it achieves pharma-

cologically significant levels of ethanol [31]. For this treatment,

animals (approximately 2 months old at the beginning of

experiments) were maintained on a 12:12 reverse light/dark cycle

(lights on at 07:00 PM.) Starting 3 hr after lights off, water bottles

were replaced with bottles containing a 20% ethanol solution. The

ethanol bottles remained in place for either 2 (first 3 days) or 4 hr

(day 4) and then were replaced with water bottles. Except for this

short period of time of ethanol drinking, mice had unlimited access

to water. This procedure was repeated for 36 consecutive days.

Control animals received only water.

Lipopolysaccharide Treatment
Lipopolysaccharide (LPS) studies were also conducted in adult

(2 months of age at the beginning of experiments) drug-naı̈ve

C57BL/6J (B6) female mice housed under the same conditions as

those used in the ethanol studies. LPS is an endotoxin known to

produce a strong immune response in mice that is characterized by

a number of symptoms including decreased water consumption

and weight loss which return to control levels after a few days

[14,32]. Moreover, ethanol consumption is increased in both male

and female mice after 1 or 2 LPS injections [14]. LPS (strain

O111:B4, Sigma Chemical Co., St. Louis, MO) dissolved in saline

was injected at a dose of 1 mg/kg i.p. in volume 0.1 ml/10 g of

body weight. A second LPS injection was made one week after the

first injection and mice were euthanized one week after the second

injection. This is based on our previous studies using two injections
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of LPS separated by one week with drinking tests beginning one

week after the last injection [14]. Treatment and control groups

contained 10 animals each. Control animals received saline

injections in lieu of LPS.

Tissue Harvest and RNA Isolation
Tissues were harvested between noon and 2 PM, 20–24 hours

after the last exposure to ethanol or 1 week after the second LPS

injection. (DID animals, which were housed on a reverse light

cycle, were euthanized during the dark period whereas all other

animals were euthanized during the light cycle.) To expedite the

procedure and minimize RNA degradation, different individuals

performed brain and liver dissections concomitantly. Animals were

euthanized by cervical dislocation and brains were removed and

placed in a petri dish on ice. After removal of olfactory bulbs, PFC

was dissected by cutting the foremost 2 mm of the cortex on each

side, at an approximate 50-degree angle from the midline of the

brain. Liver samples, approximately 100 mg each, were removed

from the lower lobes of the liver. All samples were immediately

frozen in liquid nitrogen and stored at 280uC until use.

Total RNA was isolated according to manufacturer’s instruc-

tions using the mirVanaTM miRNA Isolation kit (Ambion, Austin,

TX). Total RNAs were DNase treated (Turbo DNA-freeTM,

Ambion, Austin, TX), quantified on a NanoDrop 1000 spectro-

photometer (Thermo Fisher Scientific Inc., Rockford, IL), assessed

for quality on an Agilent 2100 Bioanalyzer (Agilent Technologies,

Santa Clara, CA) and amplified/biotin-labeled using the Illumi-

naH TotalPrepTM RNA Amplification kit (Ambion, Austin, TX).

Aliquots of labeled cRNA were sent to the Yale Center for

Genome Analysis (West Haven, CT) where they were hybridized

to IlluminaH MouseRef-8 v2 Expression BeadChips (Illumina,

Inc., San Diego, CA) according to manufacturer protocols. As

each beadchip contains 8 independent arrays, samples were

hybridized to beadchips in a group counter-balanced format to

minimize batch effects. Each array was hybridized with material

obtained from a single animal. Each expression array contains

approximately 25,600 transcripts representing over 19,100 unique

genes. Transcript abundance was measured by fluorescent in-

tensity after scanning. Microarray data have been submitted to the

NCBI Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.

nih.gov/geo/) under accession no GSE42789.

Although historically it has been standard practice to verify

a subset of array-generated gene expression changes using qRT-

PCR, we did not include such confirmation in the present study.

We have used Illumina platforms (including the one used in this

study) extensively and ‘‘validated’’ them with independent qRT-

PCR experiments in the past. The level of correspondence

between the microarray and RT-PCR results exceeds 80%

[11,33,34].

Statistics and Informatics
Ethanol consumption data are presented as mean 6 S.E.M.

Microarray data were analyzed using the R statistical environment

[35] and Microsoft Excel (2011). Only genes with a detection p

value #0.05 and present on .80% of arrays were utilized in the

analysis of each tissue dataset. Variance stabilization transforma-

tion [36] and quantile normalization [37] were used to pre-process

the data in Lumi [38]. Expression value outliers were removed

using Grubbs’ test with a critical value of 2.21 or 2.29, depending

on the number of analyzed arrays. One sample (a Chronic PFC

control) clustered separately in the Lumi outlier detection tree and

had more than 5% outlier genes and was thus removed from the

analysis. Limma [39] was used to fit a linear model for each gene

and detect differentially expressed genes using an empirical Bayes

method. Fold changes in gene expression are given as change in

treated relative to control. Significant overlap of differentially

expressed genes among pairs of studies was assessed with

a Bonferroni-corrected Chi-square goodness of fit test. The

Pearson product-moment correlation was used to evaluate

correlation of ethanol consumption with individual gene expres-

sion values.

Each study was assessed for the presence of either brain or liver

cell type-specific genes, depending on the tissue being evaluated.

Cell type-specific datasets were downloaded from the Journal of

Neuroscience website: [40] (neuron, astrocyte, oligodendrocyte),

the Nature Neuroscience website: [41] (microglia) or the World

Journal of Gastroenterology website: [42] (hepatocyte, hepatic

stem cell and Kupffer cell). The criterion for brain cell type

specificity was a four-fold enrichment [11]. A ten-fold enrichment

was the primary criterion used for liver cell type specificity. (See

[42] for detailed information.) Gene symbols from our data and

the cell-type specific data sets were converted to the currently

accepted gene symbol using the Database for Annotation,

Visualization and Integrated Discovery (DAVID v6.7 [43,44]).

Converted gene symbols were compared to identify cell-type

specific genes present in our data sets. Mean t values were

calculated for the cell-type specific genes identified in each study/

tissue and a z test was used to determine whether each of these

values was equivalent to zero. A Bonferroni correction was applied

to p values to correct for multiple comparisons within a tissue.

Ingenuity Pathways Analysis (IngenuityH Systems, www.

ingenuity.com) was used to assess microarray data for over-

representation of known gene networks and biological functions.

All detected genes in a data set were used as the reference set;

cutoffs for fold change and the associated p value were 1.2 and

0.05, respectively. Default settings were used for all other

parameters. For network analysis, network eligible molecules (data

set molecules that interact with the Ingenuity Knowledge Base)

were used as ‘‘seeds’’ to generate networks whose molecules’

interconnectedness is maximized relative to their connectedness

with all molecules in the knowledge base. Network scores were

calculated by taking the negative log10 of the p value computed

with Fisher’s exact test. Functional analysis identified the biological

functions and/or diseases that were most significant to each data

set. A right-tailed Fisher’s exact test was used to calculate the p-

value determining the probability that each biological function

and/or disease assigned to that data set is due to chance alone.

Results

Ethanol Exposure
Daily ethanol consumption by mice in both the Chronic and CI

treatment groups increased steadily during the first two weeks,

then remained fairly stable for the remainder of the study

(Figure 1A). During the last 10 days of ethanol exposure, mice in

the CI group consumed more ethanol than those in the Chronic

group (CI, n = 11, mean = 16 g/kg/day; Chronic, n = 10,

mean = 13 g/kg/day; student’s t test, p = 0.047). Mice in the

DID paradigm consumed greater quantities of ethanol during the

4 hour exposures than the 2 hour exposures but did not reach the

total consumption levels attained in the other ethanol treatment

paradigms. These results are consistent with previous publications

[31,45]. In all three models, mice increased their consumption of

ethanol over time as indicated by a significant difference between

the first and last four sessions (Figure 1B). (Percent increase and

paired t test, Chronic, 24% increase, p = 0.05; CI, 59% increase,

p = 6.4E–04; DID, 46% increase, p = 1.4E–04).

Alcohol Consumption and Gene Expression
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Gene Expression Changes
For all groups, more genes were expressed in PFC than in liver,

but liver showed both a larger number and percentage of

significantly regulated (Differentially Expressed, DE) transcripts

(Table 1). Total ethanol consumption paralleled gene regulation in

that treatments (Chronic and CI) evoking greater ethanol

consumption also yielded a larger number of regulated transcripts

than the lower consumption test (DID), especially in the liver

(Figure 1C). This likely reflects the increased metabolic load

imposed on the liver with increasing amounts of ethanol. The LPS

injections strongly perturbed the PFC transcriptome and LPS-

treated animals exhibited almost twice as many DE genes as the

Chronic and CI treatments (Table 1). In liver, the LPS and

ethanol treatments generated comparable numbers of DE genes.

Overlap of regulated transcripts in pairs of studies for each

tissue type was evaluated by comparing probe IDs of DE genes

from each pair of studies (Figure 2). In PFC, there was significant

overlap between Chronic and CI and between CI and LPS, but no

overlap for the other pairs of treatments. In liver, all pairwise

comparisons showed an overlap of DE genes that was significantly

greater than expected by chance for all study comparisons

(Figure 2). Moreover, the majority of shared DE genes tend to

be regulated in the same direction in both studies (Figure 2). LPS

and CI treatments displayed the most similarly regulated

transcripts in PFC (78 transcripts) and in liver (213 transcripts).

Figure 1. Ethanol consumption and gene expression changes in liver and prefrontal cortex. (A) Average daily ethanol intake for three
ethanol treatments. The Chronic treatment (open circles) is continuous two bottle choice drinking, CI is chronic intermittent two bottle choice with
access to alcohol every other day and DID is a limited daily access (2 hr or 4 hr) to alcohol. Only data for days of ethanol consumption are shown. (B)
Change in ethanol intake between the first and last 4 days of each treatment (mean 6 SEM). Asterisks identify a significant change in ethanol intake
(paired t test, p#0.05). (C) Total ethanol consumed (average of all animals) and the number of genes differentially expressed (DE, p,0.05) in PFC and
liver in each treatment (open bars are prefrontal cortex, filled bars are liver). Values are mean 6 SEM, for n= 10 (Chronic and DID), n = 11 (CI). For
some values, error bars are smaller than the symbols.
doi:10.1371/journal.pone.0059870.g001
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Correlation of Gene Expression and Alcohol
Consumption

Using data from individual mice, total ethanol consumption was

correlated with PFC gene expression (p,0.05) for 753 and 702

transcripts in Chronic and CI treated animals, respectively (Table

S1). Likewise, liver from Chronic animals contained a large

number (942) of transcripts whose expression levels were

significantly correlated with total ethanol consumption (Table

S2). Other treatments gave smaller numbers of correlated

transcripts, and about 400 transcripts were significantly correlated

with total ethanol consumption in either liver or PFC from DID-

treated animals and liver from CI treated animals (Tables S1 and

S2).

Cell-type Analysis of Expression
We next used cell-type specific databases to ask which

treatments might disproportionately affect genes enriched in

different types of cells. The clearest finding is that LPS treatment

increased expression of genes enriched in PFC microglia and liver

Kupffer cells (Figure 3). The alcohol treatments produced modest

changes in cell-type specific expression in PFC (Figure 3A). It

should be noted that these analyses are based on all genes with

cell-type enrichment whereas the data in Figure 2 are derived from

all differentially expressed genes, thus the overlaps seen in Figure 2

(e.g., CI and LPS) are not prominent in the cell-type analysis.

Ingenuity Pathway Analysis (IPA)
IPA identified the CI treatment as containing the most

statistically significant networks and biological functions in PFC

(Table S3). Neurological disease and genetic disorders were the top

identified biological functions and were also represented among

the functions of the top five networks, thus we chose to investigate

these annotation groups further. Since IPA functional groups do

not represent a known biological network per se, we used the top

biological function results to derive our own network. Briefly, the

two genetic disorder-related annotation groups containing the

largest numbers of molecules (‘‘genetic disorder’’ and ‘‘Hunting-

ton’s disease’’) were combined and their molecules connected by

knowledge base relationships to form a preliminary network. This

network was ‘‘grown’’ once, adding a limited number of related

molecules with high specific connectivity to the network. The

resulting PFC network contains a variety of genes involved with

dopaminergic signaling, as well as genes related to immune

function (Figure 4A). Notably, when data from each of the other

studies are overlaid on this CI dopaminergic network, similarities

between LPS and CI treatments are revealed. These similarly

regulated genes are identified in the tables to the left in Figure 3.

The top network identified in CI liver (Figure 4B) was associated

with drug metabolism, glutathione depletion and behavior (Table

S3). In contrast to the PFC network detailed above, this network

showed many similarities among liver from all four treatments,

suggesting a more generic response in liver than PFC.

Table 1. Total number of transcripts detected and differentially expressed in liver and PFC.

Study Tissue Total # Detected Transcripts # DE* transcripts (p,0.05) % DE* transcripts (p,0.05)

Chronic PFC 12125 531 4.4%

Chronic Liver 10068 1219 12.1%

CI PFC 11269 587 5.2%

CI Liver 9561 1001 10.5%

DID PFC 11473 445 3.9%

DID Liver 8924 463 5.2%

LPS PFC 11508 1103 9.6%

LPS Liver 9550 1107 11.6%

*DE= differentially expressed.
doi:10.1371/journal.pone.0059870.t001

Figure 2. Overlap of differentially expressed genes in pairs of
studies for each tissue. (Panel A, PFC; Panel B, liver). Filled bars show
the number of genes expected to be differentially expressed in both
compared studies. Open bars show the observed number of shared,
differentially expressed genes, with a horizontal line indicating the
observed number of genes regulated in the same direction. Observed
values are significantly greater than expected by chance (Bonferroni-
corrected Chi square goodness-of-fit) at p,0.05 (*) and p,0.0001 (**).
doi:10.1371/journal.pone.0059870.g002
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Discussion

One of the most surprising findings from this work is the distinct

effects of the three alcohol treatments on the PFC transcriptome.

Despite consuming the same total amount of alcohol, the Chronic

and CI groups showed many differences in gene expression. The

CI test was originally derived from studies in rats that showed

a marked escalation of alcohol consumption with every other day

access [23] and CI, but not Chronic, drinking is inhibited by

chlorzoxazone [22] indicating differences in the neurobiological

mechanisms underlying these two drinking tests. In mice, we found

the largest increase in alcohol consumption for the CI group and

smaller increases for Chronic and DID drinking during the

exposure period (approximately 30 days), which is generally

consistent with recent publications [15,45]. Perhaps because of the

greater escalation of consumption in the CI group, the

neuroadaptive consequences of every other day access appear to

be distinct from continuous access. For example, our cell type

analysis indicated changes in expression of genes enriched in

oligodendrocytes by CI, but not by Chronic. Most rodent models

of excessive or escalating alcohol consumption incorporate in-

termittent access, as reviewed by Becker (2013). The mechanisms

are not well defined, but may involve physical dependence and

a withdrawal syndrome during deprivation as suggested by studies

showing increased alcohol withdrawal and consumption after

repeated alcohol exposure and withdrawal [46–48]. We also

included the DID test as a model of binge drinking which produces

higher blood ethanol levels than Chronic or CI, but for only a short

period of time each day [15]. This resulted in the fewest changes in

gene expression of all the treatments, particularly in liver where

the number of gene changes produced by DID were less than half

the number produced by the other treatments, likely reflecting the

much lower total intake of ethanol in the limited access DID test.

Another notable result from this study is that the LPS treatment

produced twice as many changes in gene expression in the PFC as

the CI or Chronic alcohol treatments and a similar number of

changes in liver as alcohol consumption, even though LPS was

given a week before the end of the experiment. This LPS

treatment produces a persistent increase in alcohol consumption

and a decrease in the firing of midbrain dopamine neurons [14],

which may be consequences of some of the observed changes in

gene expression. Cell type analysis showed that LPS altered

expression of genes enriched in two macrophage derived cell types:

microglia and Kupffer. Also remarkable is the overlap of

differentially expressed genes from alcohol treatments and LPS.

For both PFC and liver, the highest degree of overlap between

treatment groups was for CI and LPS. For the CI gene networks

assembled for both PFC and liver, the overlap of genes was greater

for LPS than for the ethanol treatments (Chronic or DID). This

Figure 3. Mean t values of cell-type specific genes expressed in PFC and liver. Bars show mean t values (+/2 SEM) of cell-type specific
genes identified in each treatment. Asterisks identify cell-type specific t-means that are significantly different (by z test, Bonferroni-corrected, p,0.05)
from the mean t value of all cell-type specific genes [n] detected in the given study. A. PFC (Astrocyte, n = 451–468; Microglia, n = 144–156; Neuron,
n = 695–750; Oligodendrocyte, n = 264–297) B. Liver (Hepatocyte, n = 210–226; HSC, n = 11–15; Kupffer, n = 21–32).
doi:10.1371/journal.pone.0059870.g003
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Figure 4. Gene networks derived from Chronic Intermittent (CI) data. Red and green fill indicate up- and down regulation, respectively in
treated animals relative to controls (fold change$1.2, p,0.05). Gray fill indicates gene was not differentially expressed using these thresholds. White
fill indicates genes not detected in our data, but added to the network due to their connectedness with other genes. Orange arrows point to
members of a gene family. Solid lines indicate direct relationships; hashed lines are indirect relationships. Dark blue outlines identify genes that
regulate cytokines or are regulated by cytokines or LPS. Tables show the fold changes of network genes up regulated (red) and down regulated
(green) in all four data sets at p,0.05. Shapes represent molecule types. Genes are identified with human gene symbols. See Figure S1 for legend of
molecule shapes. A. Neuronal network derived from PFC. B. Top network derived from liver.
doi:10.1371/journal.pone.0059870.g004
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may reflect emerging evidence that ethanol promotes proinflam-

matory signaling in brain and liver by increasing TLR4 activation

and cytokine cascades [12], [24,25,49–51]. LPS acts on TLR4 and

thus has the potential to share activation of TLR4 function with

ethanol, especially in the liver. It is controversial as to whether LPS

can cross the blood brain barrier and whether its effects on brain

function are likely to be secondary to release of cytokines from

liver and other peripheral tissues or a direct effect on brain

microglia and endothelia [52,53]. It is interesting to note that

chronic alcohol abuse can compromise the gut and allow leakage

of LPS into the systemic circulation and this is important for

development of alcoholic liver disease [24]. Although we did not

combine LPS and alcohol exposures, our studies showing overlap

between the transcriptome modifications produced by the separate

treatments supports the proposal that LPS can enhance some of

the biological actions of ethanol, and vice versa [49,50].

A novel aspect of this work is that our pathway analysis of the

PFC transcriptome highlights a complex of genes related to

dopaminergic neuroplasticity that have been implicated in

addiction to ethanol and other drugs. This network has hub

genes including PPP1R1B (DARPP-32), DRD2, DRD1, FOS and

FOSB (Figure 4A), all of which are supported as key components

of the progressive and persistent changes in synaptic plasticity that

arise from chronic drug exposure [54]. In particular, DARPP-32

regulates the alcohol sensitivity of NMDA receptors [55] and

contributes to genetic differences in alcohol consumption in the

AA/ANA rats [56] as well as having a role in actions of many

drugs of abuse [57]. This network also includes PDYN

(prodynorphin) which is of interest as it regulates alcohol

consumption through dopamine neurotransmission [58] and

PDYN polymorphisms are linked to alcoholism [59,60] as well

as heroin and cocaine addiction in humans [61]. Genetic

manipulation in PDYN or k-opioid receptors also supports the

importance of this network in regulation of alcohol consumption in

mice [62,63]. Two phosphodiesterases, PDE10A and PDE1B, are

part of the network and PDE10A regulates DARP-32 phosphor-

ylation [64]. PDE10A was one of the top PFC genes in a study

[10] of individual differences in alcohol drinking in mice and

expression of PDE10A is increased by stress, which appears to be

important for stress-induced increases in alcohol consumption in

rats [65]. Our PFC network is based on changes in expression of

22 genes produced by CI drinking, and five of the genes (including

DRD1, PDYN and PPP1R1B) are also changed by Chronic

consumption and seven are changed by LPS treatment. For all

differentially expressed genes, there was significant overlap

between CI and Chronic as well as CI and LPS. CI and LPS

share the behavioral feature of increasing alcohol consumption. In

view of the representation of some components of the dopamine

network in the LPS group, it is important to note that a similar

LPS treatment produces a decrease in the firing of brain dopamine

neurons [14].

For liver, a network was constructed that features cytochrome

monooxygenases, glutathione transferases and circadian genes

(PER1, 2) together with a number of transcription factors (Creb,

NFkB, DBP, AP1, NFE2) as hub genes. This network was based

on the CI treatment but many of the genes are also changed by

Chronic, DID and LPS treatments. For all differentially expressed

genes, there was significant overlap among all alcohol treatments

and for LPS with all alcohol groups. This demonstrates that

although some of the changes in the liver transcriptome may be

due to the metabolism of large amounts of ethanol in this tissue,

many of the effects are mimicked by LPS, which suggests that

a component of alcohol action on liver is due to immune

activation. This is consistent with the key role of inflammation in

alcoholic liver disease [24,25].

Several groups have published changes in brain gene expression

related to alcohol and we have compared their data with the

present study in Table S4. The studies included are a comparison

of differences in genetic predisposition to alcohol consumption in

mice [13], individual differences in alcohol consumption in mice

[10], consumption of alcohol in alcohol-preferring rats [6], human

alcoholics [3,11], gene expression changes in three mouse models

of ethanol consumption [66] and gene expression changes in mice

after chronic intermittent ethanol exposure [67]. Table S4 also

contains a comparison of our data with LPS-induced gene

expression changes in mouse astrocytes [68]. Several genes from

our dopamine-centric pathway (Figure 4A) are found in multiple

studies. For example, DRD2, EGR2, KCNA5 and PDE10A were

all found in by Mulligan et al. [13] and, as noted above, PDE10A

was one of the top genes in the Wolstenholme et al [10] study.

FOS, a main hub gene in our pathway analysis, was also changed

in the Bell et al. [6] data and two other genes in our pathway,

PDYN and DRD1, were changed in the Contet et al. [66] study.

B2M was changed by LPS treatment in the present study, was one

of the top genes in Mulligan et al. [13] and was also changed in

the Melendez et al. [67] study of chronic intermittent ethanol

exposure in mice. This gene is related to inflammatory processes

and is changed in astrocytes in response to LPS exposure [68].

Notably, deletion of B2M in mice reduces alcohol consumption

[26]. Of the 137 genes from the present study listed in Table S4,

48 were differentially expressed in the Ponomarev et al. [11] study

of prefrontal cortex of human alcoholics and 25 were changed in

the Liu et al. [3] data.

In summary, comparison of three different models of voluntary

alcohol consumption in mice shows changes in gene expression in

PFC that reveal some similarities, as well as many differences,

among the models. Effects on gene expression in liver are more

similar for the treatments. Gene expression was also studied one

week after injection of LPS and this treatment showed many

changes that were similar to ethanol consumption, particularly the

CI model. Our data suggest DID is the weakest model of chronic

consumption/dependence based on the number of changes in

gene expression in PFC, but it remains a relevant model of binge/

initiation of drinking which involves activation of brain structures

other than PFC. The CI paradigm represents a good model of the

neuroimmune component of chronic alcohol consumption as it is

most similar to LPS and it reflects some aspects of the strong

immune component found in gene expression studies of PFC in

human alcoholism. We also provide the first evidence for

a connection between immune response, ethanol intake and

dopamine signaling in PFC and the CI paradigm provides an

approach for future studies of these interactions. It is important to

note that both LPS treatment and the CI model promote an

escalation of drinking, supporting the emerging concept that

ethanol consumption is regulated by neuroimmune signaling

[14,26,27].
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