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The observability analysis of an opportunistic navigation (OpNav) environment whose
states may be partially known is considered. An OpNav environment can be thought of as a
radio frequency signal landscape within which a receiver locates itself in space and time by
extracting information from ambient signals of opportunity (SOPs). Available SOPs may
have a fully-known, partially-known, or unknown characterization. In the present work, the
receiver is assumed to draw only pseudorange-type measurements from the SOP signals.
Separate observations are fused to produce an estimate of the receiver’s position, velocity,
and time (PVT). Since not all SOP states in the OpNav environment may be known a
priori, the receiver must estimate the unknown SOP states of interest simultaneously with
its own PVT. The observability analysis presented here first evaluates various linear and
nonlinear observability tools and identifies those that can be appropriately applied to Op-
Nav observability. Subsequently, the appropriate tools are invoked to establish the minimal
conditions under which the environment is observable. It is shown that a planar OpNav
environment consisting of a receiver and n SOPs is observable if either the receiver’s initial
state is known or the receiver’s initial position is known along with the initial state of one
SOP. Simulation results are shown to agree with the theoretical observability conditions.

I. Introduction

Opportunistic navigation (OpNav) aims to extract positioning and timing information from ambient
radio-frequency “signals of opportunity” (SOPs). OpNav radio receivers continuously search for opportune
signals from which to draw navigation and timing information, employing on-the-fly signal characterization
as necessary. Signals from discovered SOPs are downmixed and sampled coherently, yielding a tight coupling
between signal streams that permits carrier-phase-level fusion of observables from the various streams within
a single or distributed state estimator.1, 2

In its most general form, OpNav treats all ambient radio signals as potential SOPs, from conventional
global navigation satellite system (GNSS) signals to communications signals never intended for use as a tim-
ing or positioning source. Each signal’s relative timing and frequency offsets, transmit location, and frequency
stability, are estimated on-the-fly as necessary, with prior information about these quantities exploited when
available. At this level of generality, the OpNav estimation problem is similar to the so-called simultaneous
localization and mapping (SLAM) problem in robotics.3, 4 Both imagine an actor which, starting with in-
complete knowledge of its location and surroundings, simultaneously builds a map of its environment and
locates itself within that map.

In traditional SLAM, the map that gets constructed as the actor (typically a robot) moves through
the environment is composed of landmarks—walls, corners, posts, etc.—with associated positions. OpNav
extends this concept to radio signals, with SOPs playing the role of landmarks. In contrast to a SLAM
environmental map, the OpNav “signal landscape” is dynamic and more complex. For the simple case of
pseudorange-only OpNav, where observables consist solely of signal time-of-arrival measurements, one must
estimate, besides the three-dimensional position xs and velocity ẋs of each SOP transmitter’s antenna phase
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center, each SOP’s time offset δts from a reference time base, rate of change of time offset δ̇ts, and a small
set of parameters that characterize the SOP’s reference oscillator stability. Even more SOP parameters are
required for an OpNav framework in which both pseudorange and carrier phase measurements are ingested
into the estimator.1 Of course, in addition to the SOP parameters, the OpNav receiver’s own position xr,
velocity ẋr, time offset δtr, and time offset rate δ̇tr must be estimated.

The Global Positioning System (GPS) control segment routinely solves an instance of the OpNav problem:
the location and timing offsets of a dozen or more GPS ground stations are simultaneously estimated with
the orbital and clock parameters of the GPS satellites.5 Compared to the general OpNav problem, the GPS
control segment’s problem enjoys the constraints imposed by accurate prior estimates of site locations and
satellite orbits. Moreover, estimation of clock states is aided by the presence of highly-stable atomic clocks
in the satellites and at each ground station. In contrast, an OpNav receiver entering a new signal landscape
may have less prior information to exploit and typically cannot assume atomic frequency references, either for
itself or for the SOPs. The GPS control segment example also highlights the essentially collaborative nature
of OpNav. Like the GPS ground stations, multiple OpNav receivers can share information to construct and
continuously-refine a global signal landscape.

The large size of the OpNav estimation problem, which may involve hundreds of estimator states, nat-
urally raises the question of state observability. As far as the authors are aware, no formal observability
analysis has been done for opportunistic navigation as defined here. The primary goal of this paper is to theo-
retically determine the minimum conditions under which the pseudorange-only OpNav problem is observable.

A study of OpNav observability benefits from the OpNav-SLAM analogy. Although the question of ob-
servability was not addressed for more than a decade after SLAM was introduced, the recent SLAM literature
has come around to considering fundamental properties of the SLAM problem, including observability.6–14

The effects of partial observability in planar SLAM with range and bearing measurements were first analyzed
via linearization by Andrade-Cetto and Sanfeliu.6, 7 These papers came to the counterintuitive conclusion
that the two-dimensional planar wold-centric (absolute reference frame) SLAM problem is fully observable
when the location of a single landmark is known a priori. With a fully nonlinear observability analysis, Lee
et al. subsequently disproved this result and showed that at least two anchor landmarks with known posi-
tions are required for local weak observability.9 Later analysis of the SLAM problem’s Fisher information
matrix confirmed the result of the nonlinear analysis.10 However, an apparent discrepancy between linear
and nonlinear SLAM observability analyses re-emerged in the work of Perera and Nettleton,11 where it was
shown that a linear analysis based on piecewise constant system (PWCS) theory15 again predicted global
planar-SLAM observability in the case of a single known anchor landmark, whereas a nonlinear analysis in
the same paper indicated that two known anchor landmarks were required for local observability. The linear
PWCS result appears flawed given that an observability test based on linearization should never predict
observability in a case where a fully nonlinear test indicates lack of weak local observability. Given the con-
fusion in the SLAM literature regarding the proper tools for observability analysis in SLAM-like problems,
another goal of the current paper is to determine what observability tests are trustworthy in the context of
opportunistic navigation.

Besides revealing the feasibility of state estimation, an observability analysis is also useful for designing
more consistent estimators. For instance, Huang et al. exploit observability analysis to improve the consis-
tency of Extended Kalman Filter (EKF)-based SLAM.13, 14 Moreover, observability an analysis can guide
maneuvers necessary to maintain accurate statistical estimates of the receiver and map.16

This paper makes two contributions. First, it compares the results of three different observability tests
applied to two simple OpNav configurations to determine the appropriate tools for OpNav observability
analysis. Second, it applies these tools to identify minimum conditions for pseudorange-only OpNav observ-
ability. For the sake of simplicity and physical intuition, similar to the SLAM observability studies, only
the planar case will be considered in this paper. Extension of the planar analysis to three dimensions is
anticipated to be straightforward.

The remainder of this paper is organized as follows. Section II reviews the various notions and tools
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necessary to analyze the observability of nonlinear systems, linear time-varying (LTV) systems, and linear
PWCSs. Section III describes the OpNav environment model considered in this paper. Section IV analyzes
various OpNav scenarios and establishes whether each scenario is observable. This leads to a set of minimum
conditions necessary for complete OpNav observability. Section V presents simulation results on a number
of scenarios, which confirm the conclusions of Section IV. Concluding remarks are given in Section VI.

II. Theoretical Background

Conceptually, observability of a dynamic system boils down to the question of solvability of the state from
a linear or a nonlinear set of observations, where the state evolves according to a set of linear or nonlinear
differential equations. In particular, observability is concerned with determining whether the state of the
system can be consistently estimated from a set of observations over a finite period of time. For nonlinear
systems, it is more appropriate to analyze the observability through nonlinear observability tools rather
than linearizing the nonlinear system and applying linear observability tools. This is due to two reasons: (i)
nonlinear observability tools capture the nonlinearities of the dynamics and observations, and (ii) while the
control inputs are never considered in the linear observability analysis, they are taken into account in the
nonlinear observability analysis. It is instructive to define the various notions of observability and associated
observability tests that will be invoked in the observability analysis of OpNav.

A. Observability of Nonlinear Systems

For the sake of clarity, various notions of nonlinear observability are defined in this subsection.17

Definition 1 Consider the continuous-time (CT) nonlinear dynamic system

ΣNL :

{

ẋ(t) = f [x(t),u(t)] , x(t0) = x0

y(t) = h [x(t)] ,
(1)

with solution x(t) = g (t,x0,u), where x ∈ R
n is the system state vector, u ∈ R

r is the control input
vector, y ∈ R

m is the observation vector, and x0 is an arbitrary initial condition. Two states x1 and x2 are
said to be indistinguishable if h[g (t,x1,u)] = h[g (t,x2,u)], for all t ≥ 0 and all u. The set of all points
indistinguishable from a particular state x is denoted as I(x).

Definition 2 The system ΣNL is said to be observable at x0 if I(x0) = {x0}. The system ΣNL is said to be
observable if I(x0) = {x0}, for all x0 ∈ R

n.

Definition 3 Let N be a subset (neighborhood) in the state-space R
n and x1,x2 ∈ N. Two states x1 and

x2 are said to be N-indistinguishable if every control u, whose trajectories from x1 and x2 both lie in N,
fails to distinguish between x1 and x2. The set of all N-indistinguishable states from a particular state x is
denoted as IN(x).

Definition 4 The system ΣNL is said to be weakly observable at x0 if there exists a neighborhood N such
that I(x0)

⋂

N = {x0}.

Definition 5 The system ΣNL is said to be locally observable at x0 if IN(x0) = {x0} for every open neigh-
borhood N of x0.

Definition 6 The system ΣNL is said to be locally weakly observable at x0 if there exists an open neighbor-
hood N of x0 such that for every open neighborhood M of x0 with M ⊂ N, IM(x0) = {x0}.

Intuitively, ΣNL is locally weakly observable if x can be instantaneously distinguished from its neighbors.
The various notions of observability are related to each other according to the following relationships

locally observable ⇒ observable

⇓ ⇓

locallyweakly observable ⇒ weakly observable.
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B. Observability of Linear Systems

For linear time-invariant (LTI) systems, the four notions of nonlinear observability are equivalent. Observ-
ability of LTV systems is typically defined as follows.18

Definition 7 Consider the discrete-time (DT) linear LTV dynamic system

ΣL :

{

x(tk+1) = F(tk)x(tk) +B(tk)u(tk), x(tk0
) = x0, k ∈ [tk0

, tkf
],

y(tk) = H(tk)x(tk),
(2)

where F ∈ R
n×n, B ∈ R

n×r, and H ∈ R
m×n. The LTV system ΣL is said to be observable in a time interval

[tk0
, tkf

], if the initial state x0 is uniquely determined by the zero-input response y(tk) for tk ∈ [tk0
, tkf−1

]. If
this property holds regardless of the initial time tk0

or the initial state x0, the system is said to be completely
observable.

C. Nonlinear Observability Test

For nonlinear systems, establishing global system properties, such as observability, is typically difficult to
achieve. Hence, local properties are typically sought. A simple algebraic test exists for establishing local
weak observability of a specific form of the nonlinear system ΣNL in (1), known as the control affine form,19

given by

ΣNL,a :

{

ẋ(t) = f0 [x(t)] +
∑r

i=1 f i [x(t)] ui, x(t0) = x0

y(t) = h [x(t)] .
(3)

This test is based on the concept of Lie derivatives, which are defined next.

Definition 8 The first-order Lie derivative of a scalar function h with respect to a vector-valued function
f is defined as

L
1
fh(x) ,

n
∑

i=1

∂h(x)

∂xi

fi(x) (4)

= ∇xh(x).f(x) (5)

The zeroth-order Lie derivative of any function is the function itself, i.e. L
0
fh(x) = h(x). The second-order

Lie derivative can be computed recursively as

L
2
fh(x) = Lf

[

L
1
fh(x)

]

(6)

=
[

∇xL
1
fh(x)

]

.f(x). (7)

Higher-order Lie derivatives can be computed similarly.

Definition 9 Given the nonlinear system in control affine form ΣNL,a. Define the matrix G as the matrix
of zero-order through (n− 1)-order of Lie derivatives

G ,















































L
0
fh1(x)

...

L
0
fhm(x)

L
1
fh1(x)

...

L
1
fhm(x)

...

L
n−1
f h1(x)

...

L
n−1
f hm(x)















































. (8)
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The so-called nonlinear observability matrix is defined as the gradient matrix of G,17 specifically

ONL , ∇xG =



















































∂L0

fh1(x)

∂x1

· · ·
∂L0

fh1(x)

∂xn

...
. . .

...
∂L0

fhm(x)

∂x1

· · ·
∂L0

fhm(x)

∂xn

∂L1

fh1(x)

∂x1

· · ·
∂L1

fh1(x)

∂xn

...
. . .

...
∂L1

fhm(x)

∂x1

· · ·
∂L1

fhm(x)

∂xn

...
. . .

...
∂L

n−1

f
h1(x)

∂x1

· · ·
∂L

n−1

f
h1(x)

∂xn

...
. . .

...
∂L

n−1

f
hm(x)

∂x1

· · ·
∂L

n−1

f
hm(x)

∂xn



















































. (9)

The significance of the nonlinear observability matrix is that it can be employed to furnish necessary and
sufficient conditions for local weak observability.17 In particular, if ONL is full-rank, then the system ΣNL,a

is said to satisfy the observability rank condition.

Theorem 1 If the nonlinear system in control affine form ΣNL,a satisfies the observability rank condition,
then the system is locally weakly observable.

Theorem 2 If a system ΣNL,a is locally weakly observable, then the observability rank condition is satisfied
generically.

The term “generically” means that the observability matrix is full-rank everywhere, except possibly
within a subset of the domain of x.20 Therefore, if the ONL is not of sufficient rank for all values of x, the
system is not locally weakly observable.21

D. Linear Observability Tests

Observability of LTV systems ΣL is typically established through studying the rank of either the so-called
observability Grammian or the observability matrix. The following theorem states a necessary and sufficient
condition for observability of LTV systems through the l-step observability matrix.18

Theorem 3 The LTV system ΣL is l-step observable if and only if the l-step observability matrix, defined
as

OL(tk, tk+l) ,













H(tk)

H(tk+1)Φ(tk+1, tk)
...

H(tk+l−1)Φ(tk+l−1, tk)













(10)

is full-rank, i.e. rank [OL(tk, tk+l)] = n. The matrix Φ is the DT transition matrix, defined as

Φ(tk, tj) ,

{

A(tk−1)A(tk−2) · · ·A(tj), tk ≥ tj+1;

I, tk = tj.

Another test to to establish observability of the LTV system ΣL can be derived if the LTV system is
piecewise constant. Observability of PWCSs has been analyzed for CT and DT systems.15 Observability of
DT PWCSs is considered next.

Definition 10 An LTV system

ΣL,pwcs :

{

x(tk+1) = Fj(tk)x(tk) +Bj(tk)u(tk), x(t0) = x0, j = 1, . . . , r

y(tk) = Hj(tk)x(tk),
(11)

is said to be piecewise constant if for every time segment j, the matrices Fj, Bj, and Hj are constant, i.e.
Fj(tk) = Fj, Bj(tk) = Bj, and Hj(tk) = Hj. These matrices may vary from one segment to another.
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Definition 11 The instantaneous observability matrix of the PWCS ΣL,pwcs in segment j is defined as

Oj =

















Hj

HjFj

HjF
2
j

...

HjF
n−1
j

















(12)

Definition 12 The total observability matrix (TOM) of the PWCS ΣL,pwcs up to segment r is defined as

OTOM(r) =

















O1

O2F
n−1
1

O3F
n−1
2 Fn−1

1
...

OrF
n−1
r−1F

n−1
r−2 · · ·F

n−1
1

















. (13)

Theorem 4 The DT PWCS system ΣL,pwcs is observable if and only if the TOM is full-rank, i.e. rank [OTOM(r)] =
n.

III. Model Description

This section describes the dynamics and observation model of the OpNav environment. While the
observability analysis tools discussed in Section II apply to any receiver dynamics model, a reasonably
simple planar receiver dynamics model is assumed, which does not obscure our physical intuition about the
OpNav environment. More complicated receiver dynamics models will be investigated in future work.

A. Dynamics Model

The receiver’s dynamics will be assumed to evolve according to the continuous white noise acceleration model,
which is also known as the velocity random walk model. An object moving according to such dynamics in a
generic coordinate ξ, has the dynamics

ξ̈(t) = w̃ξ(t),

where w̃ξ(t) is a zero-mean white noise process with power spectral density q̃ξ, i.e.

E [w̃ξ(t)] = 0, E [w̃ξ(t)w̃ξ(τ)] = q̃ξ δ(t− τ).

The receiver’s clock errors will be modeled according to the two-state model, comprised of the clock bias δtr
and clock drift δ̇tr. The receiver’s clock error states evolve according to

d

dt

[

δtr(t)

δ̇tr(t)

]

=

[

0 1

0 0

][

δtr(t)

δ̇tr(t)

]

+

[

w̃δtr (t)

w̃δ̇tr
(t)

]

,

where w̃δtr and w̃δ̇tr
are zero-mean, mutually independent white noise processes with power spectra Sδtr

and Sδ̇tr
, respectively. The power spectra Sδtr and Sδ̇tr

are related to the power-law coefficients, {hα}
2
α=−2,

which characterize the power spectral density of the fractional frequency deviation of an oscillator from nom-
inal frequency.22 It is common to approximate such relationships by considering only the frequency random
walk coefficient h−2 and the white frequency coefficient h0, which lead to Sδtr ≈

h0

2 and Sδ̇tr
≈ 2π2h−2.

23, 24

The receiver’s state vector will be defined by augmenting the receiver’s planar position and velocity states
with its clock error states to yield the state-space realization

ẋr(t) = Arxr(t) +Drw̃r(t), (14)

6 of 16

American Institute of Aeronautics and Astronautics



where

xr =











rr

ṙr

δtr

δ̇tr











, w̃r =











w̃x

w̃y

w̃δtr

w̃δ̇tr











, Ar =





















0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0





















, Dr =





















0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1





















,

where rr , [xr, yr]
T
. The receiver’s dynamics in (14) is discretized at a sampling period T , tk+1 − tk to

yield the DT-equivalent system

xr (tk+1) = Frxr(tk) +wr(tk), k = 0, 1, 2, . . . , (15)

where wr is a DT zero-mean white noise vector with covariance Qr, and

Fr =





















1 0 T 0 0 0

0 1 0 T 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 T

0 0 0 0 0 1





















, Qr =





















q̃x
T 3

3 0 q̃x
T 2

2 0 0 0

0 q̃y
T 3

3 0 q̃y
T 2

2 0 0

q̃x
T 2

2 0 q̃xT 0 0 0

0 q̃y
T 2

2 0 q̃yT 0 0

0 0 0 0 SδtrT + Sδ̇tr
T 3

3 Sδ̇tr
T 2

2

0 0 0 0 Sδ̇tr
T 2

2 Sδ̇tr
T





















.

The SOP will be assumed to be spatially stationary and its state will consist of its planar position and
clock error states. As in the receiver’s case, each SOP’s clock error states will be modeled according to the
two-state model comprised of the SOP’s clock bias, δts, and drift, δ̇ts. Hence, the SOP’s dynamics can be
described by the LTI state-space model

ẋs(t) = Asxs(t) +Dsw̃s(t), (16)

where

xs =







rs

δts

δ̇ts






, w̃s =

[

w̃δts

w̃δ̇ts

]

, As =











0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0











, Ds =











0 0

0 0

1 0

0 1











,

where rs , [xs, ys]
T
. Discretizing the SOP’s dynamics (16) at a sampling interval T yields the DT-equivalent

model
xs (tk+1) = Fsxs(tk) +ws(tk), (17)

where ws is a DT zero-mean white noise vector with covariance Qs, and

Fs =











1 0 0 0

0 1 0 0

0 0 1 T

0 0 0 1











, Qs =











0 0 0 0

0 0 0 0

0 0 SδtsT + Sδ̇ts
T 3

3 Sδ̇ts
T 2

2

0 0 Sδ̇ts
T 2

2 Sδ̇ts
T











.

Defining the augmented state as x , [xr,xs]
T
and the augmented process noise vector as w , [wr,ws]

T

yields the system dynamics
x (tk+1) = Fx (tk) +w(tk), (18)

where F = diag [Fr,Fs] and the covariance of w is Q = diag [Qr,Qs]. While the model defined in (18)
considered only one SOP, the model can be readily extended to multiple SOPs by augmenting their corre-
sponding states and dynamics.
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B. Observation Model

To properly model the pseudorange observations, we must consider three different time systems to keep track
of time. The first is true time, t, which is also commonly referred to as GPS system time. The second time
system is that of the receiver’s clock, tr. The third time system is that of the SOP’s clock, ts. The three
time systems are related to each other according to

t = tr − δtr(t) (19)

t = ts − δts(t), (20)

where δtr(t) and δts(t) measure the amount by which the receiver and SOP clocks are different from true
time, respectively.

The pseudorange observation made by the receiver on a particular SOP is made in the receiver time and
is modeled according to

ρ(tr) = ‖rr [tr − δtr(tr)]−rs [tr − δtr(tr)− δtTOF]‖2+ c . {δtr(tr)− δts [tr − δtr(tr)− δtTOF]}+ṽρ(tr), (21)

where c is the speed of light, δtTOF is the time-of-flight of the signal from the SOP to the receiver, and
ṽρ is the error in the pseudorange measurement due to unmodeled effects, modeling errors, and measure-
ment errors, which is modeled as a zero-mean white Gaussian noise process with power spectral density
r̃.25 The first term in (21) is the true range between the receiver’s position and the SOP’s position at
time-of-transmission of the signal, while the second term arises due to the non-ideal nature of the receiver
and SOP clocks. The observation model in the form of (21) is not appropriate for our observability analysis
as it suffers from two shortcomings: (i) it is in a time system that is different than the one considered in
deriving the system dynamics, and (ii) the observation model is a nonlinear function of the delayed system
states. The first shortcoming can be dealt with by converting the observation model to true time. The
second problem is commonly referred to as the output delay problem, in which the observations (outputs)
are a delayed-version, deterministic or otherwise, of the system state. A common approach to deal with
this problem entails discretizaion and state-augmentation.26 For simplicity, and in order not to introduce
additional states in our model, proper approximations will be invoked to deal with the second shortcoming.

Converting the pseudorange model in (21) to true time, assuming the receiver’s position to be approx-
imately stationary within a time interval of δtr(t), and invoking the fact that the SOP’s position rs is
stationary yields

ρ(t)≈‖rr(t)− rs(t)‖2 + c . {δtr(t)− δts [t− δtr(t)− δtTOF]}+ ṽρ(t). (22)

Next, it is argued that δts [t− δtr(t)− δtTOF] ≈ δts (t). The validity of this argument depends on the relative
magnitudes of δtTOF and how “wildly” the SOP and receiver clocks wander. For ground-based SOPs that
are as far as 1 km away, the time-of-flight is of the order of δtTOF ∼ 3.33µs. It is reasonable to assume the
SOP clock bias δts to have an approximately constant value around such δtTOF. Therefore, the pseudorange
observation model can now be expressed as a nonlinear function of the state, namely

z(t) = ρ(t) , h [x(t)] + ṽρ(t) ≈ ‖rr(t)− rs(t)‖2 + c . {δtr(t)− δts(t)}+ ṽρ(t). (23)

Discretizing the observation equation at a sampling interval T yields the DT-equivalent observation model

z(tk) = y(tk) + vρ(tk) = ‖rr(tk)− rs(tk)‖2 + c . {δtr(tk)− δts(tk)} + vρ(tk), (24)

where vρ is a DT zero-mean, white Gaussian process with covariance r = r̃/T .

IV. Observability Analysis with Pseudorange Observations

This section first evaluates the three observability tests discussed in Section II by considering a simplified
model, which we know how to analyze by physical intuition. Even though we may deduce a priori the ob-
servability conditions for this model, applying the nonlinear and linear observability tools will assess which
tools are appropriate for analyzing various more complex OpNav scenarios.
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A. Simple Scenario

Consider the case of an environment with one unknown receiver and one fully-known anchor SOP, i.e. an
SOP with known initial state. Moreover, assume that the receiver and SOP clocks are perfect. In this
case, the state vector will consist of the receiver’s position and velocity and the SOP’s position, namely
x = [xr, yr, ẋr , ẏr, xs,a, ys,a]

T
. The observation in this case are the true range between the receiver and

the SOP. Hence, the observation model is given by y(t) = [xs,a(t), ys,a(t), ‖rr(t)− rs(t)‖]
T, where the two

fictitious observations xs,a and ys,a were augmented to the observation vector to indicate knowledge of the
position of the anchor SOP.

First, the nonlinear observability analysis is considered. Performing such analysis results in a nonlinear
observability matrix ONL whose rank is 5. Since ONL is rank-deficient, then by Theorem 2 we conclude
that this system is unobservable. Even though the notion of “unobservable subspace” cannot be strictly
defined for this system, by examining the physical interpretation of the basis of O⊥

NL, i.e. the basis of the
unobservable subspace, we will gain useful information. It turns out that a basis for the subspace O

⊥

NL is
given by

O
⊥

NL = span
[

−yr+ys,a

ẋr

xr−xs,a

ẋr
− ẏr

ẋr
1 0 0

]T

= span [n1] .

The fact that the last two elements in the vector n1 are zeros imply that the states xs,a and ys,a are or-
thogonal to the unobservable subspace; hence, they are observable. This is of course case as such states are
assumed to be known by construction.

Before employing the linear observability analysis tools, it is noted that while the dynamics are linear, the
observations are nonlinear. Therefore, the model will be expressed in its linearized error form (also known as
the indirect form), where the state vector ∆x in this formulation contains the error states, which are defined
as the difference between the true states and the nominal states, and the observation vector ∆z is defined
as the difference between the true observations and the nominal observations. The linearized error form of
the system defined in (18) and (24) is given by

∆x (tk+1) = F∆x (tk)

∆y(tk) = H(tk)∆x (tk) ,
(25)

where H is the Jacobian matrix, evaluated at the nominal states.

Next, the LTV observability analysis through the l-step observability matrix OL(tk, tk+l) is considered.
Performing such analysis on the LTV in (25) yields a 1-step observability matrix OL(0, 1) whose rank is 3, a
2-step observability matrix OL(0, 2) whose rank is 4, and a 3-step observability matrix OL(0, 3) whose rank
is 5. Adding more time-steps does not improve the observability any further, and the l-step observability
matrix will be always be rank-deficient by 1, suggesting that the system is unobservable. In fact, the resulting
null-space of OL(0, l), for all l ≥ 3, is given by

N [OL(0, l)] = span
[

ys,a−yr

ẋr

−xs,a+xr

ẋr
− ẏr

ẋr
1 0 0

]T

.

It is worth noting that this null-space is identical to the subspace O
⊥

NL.

Third, the LTV observability analysis based on PWCS theory is considered. Performing such analysis
on the LTV in (25) yields a TOM for the first time segment OTOM(1) whose rank is 4. The null-space for
such matrix is given by

N [OTOM(1)] = span

[

0 0 − yr−ys,a+T ẏr

xr−xs,a+T ẋr
1 0 0

− yr−ys,a+T ẏr

xr−xs,a+T ẋr
1 0 0 0 0

]T

.

Adding a second time segment results in a full-rank OTOM(2); hence, according to Theorem 4, the sys-
tem is observable. Not only this conclusion contradicts the nonlinear observability analysis and the LTV
observability analysis, but it also defies physical intuition. For the simple case under consideration, from
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physical intuition, we know that the OpNav environment is observable with at least two known SOP anchors.
Performing the nonlinear observability and the LTV observability tests with 2 known anchor SOPs indeed
result in full-rank ONL and OL(tk, tk+l), respectively. Therefore, given the knowledge about the two anchor
SOPs, the receiver’s state maybe determined. Such determination will, however, be ambiguous, since there
exists 2 indistinguishable initial conditions that result in the same observations.

As a concrete example, consider the scenario depicted in Figure 1. Here, SOP1 and SOP2 are of known
positions and the receiver is moving along the dashed line with constant velocity. In this case, a receiver
that starts from the initial state (xr(0), yr(0)) and one that starts from the inital state (xr(0),−yr(0)) will
produce identical range measurements. Hence, these initial conditions are indistinguishable given the range
measurement made by the receiver on both SOPs. In fact, it can be demonstrated that as long an estimator
(e.g. EKF) is initialized with an initial estimate that lies in the same half-plane (y > 0 or y < 0) as the true
initial condition, the estimate will converge to the true state trajectory, while if the initial estimate is set to
be in the opposite half-plane, it will converge to the opposite (incorrect) trajectory.

×

×

(xr(0), yr(0))

(xr(0),−yr(0))

SOP1 SOP2

x

y

Figure 1. Simple scenario to demonstrate the observability condition with 2 known anchor SOPs

In particular, consider an environment with xr(0) = [250, 250,−1, 0]
T
, xs,a1

(0) = [0, 0]
T
, xs,a2

(0) =

[500, 0]
T
, q̃x = q̃x = 0.01, r̃ = 1, and T = 1. Figure 2 shows the estimation error x̃ , x − x̂ along

with the 2P(tk|tk) estimation error covariance bounds achieved after 50 Monte Carlo (MC) simulation
runs when the observations where filtered through an EKF with an initial state estimate x̂(0| − 1) =

[220, 220,−5, 5, 0, 0, 500, 0]T. It is obvious that the estimates indeed converge to the true states and that
the estimation errors remain bounded. In contrast, the same simulation was conducted while initializing the
initial state estimate at x̂(0| − 1) = [220,−220,−5, 5, 0, 0, 500, 0]

T
. Figure 3 shows the resulting estimation

error x̃ along with the 2P(tk|tk) estimation error covariance bounds achieved after 50 MC simulation runs.
It can be noted that while the estimation error converges and remains bounded, it converges to an incorrect
trajectory- the one which would have started from a receiver initial condition at xr(0) = [250,−250,−1, 0]

T
.

Of course, adding a third known SOP resolves this ambiguity. So why are the nonlinear and linear
observability analyses revealing that we need only 2 known anchor SOPs? The answer to this question stems
from the fact that the nonlinear observability analysis only guarantees weak local observability, namely
the existence of a neighborhood within which the initial conditions are distinguishable. For the scenario
depicted in Figure 1, such neighborhood turns out to be a half-plane around the initial condition. On the
other hand, the fact that we are linearizing the nonlinear observations first implies that our LTV results
are valid only locally, i.e. in the neighborhood where the linearizations are valid. Another important
conclusion from this analysis is that the observability analysis through the PWCS theory, as applied, is
not appropriate for analyzing the OpNav environment. The confusion arising from the conclusions achieved
by this theory, demonstrated in this simple example, are similar to the ones encountered in the SLAM
observability analysis.6–11 The reason behind the encountered discrepancies is that we cannot simply take
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the time segment j to coincide with the discretization instant tk, since each time segment should contain
n measurement samples, while the Jacobian matrices F and H are held constant within such segment.
Therefore, in the forthcoming analyses we will only employ the nonlinear observability test and the linear
observability test through the l-step observability matrix. The reason that both analyses are carried out
is that while linear observability is sufficient to establish nonlinear weak local observability, the converse is
not necessarily true, i.e. linear observability could conclude that a system is not observable, while nonlinear
observability analysis could reveal the contrary.

Figure 2. Estimation error trajectories and 2P(tk |tk) bounds achieved for the simple scenario environment

with initial state estimate x̂(0| − 1) = [220, 220,−5, 5, 0, 0, 500, 0]T

Figure 3. Estimation error trajectories and 2P(tk |tk) bounds achieved for the simple scenario environment

with initial state estimate x̂(0| − 1) = [220,−220,−5, 5, 0, 0, 500, 0]T
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B. Opportunistic Navigation Observability Analysis

In this subsection, various scenarios will be considered with respect to what is known in the OpNav envi-
ronment. Such scenarios are outlined in Table 1. In Table 1, fully-known means that all the initial states
are known. Specifically, a fully-known receiver is one with known xr(0), whereas a fully-known SOP is
one with known xs(0). On the other hand, partially-known means that only the initial position is known.
Specifically, a partially-known receiver is one with known rr(0), whereas a partially-known SOP is one with
known rs(0). The objective of this analysis is twofold: (i) determine whether the system is observable, and
(ii) if the system is not completely observable, determine the unobservable directions in the state-space. For
all the scenarios considered in Table 1, the conclusions achieved through the nonlinear observability analysis
coincided with those achieved through the LTV observability analysis.

Table 1. OpNav observability analysis scenarios considered

Case Receiver SOP

1 Unknown Unknown

2 Unknown Partially-known

3 Unknown Fully-known

4 Fully-known Unknown

5 Partially-known Unknown

6 Partially-known Partially-known

7 Partially-known Fully-known

Case 1. The LTV observability analysis concluded that this scenario is unobservable. The rank of the
l-step observability matrix keeps increasing as we add more time-steps till we reach l = 5, at which case
rank [OL(0, l)] = 5 and the rank never improves any further. The resulting null-space of OL(0, l) turns out
to be

N [OL(0, l)] = span















0 0 0 0 0 1 0 0 0 1

0 0 0 0 1 0 0 0 1 0

0 1 0 0 0 0 0 1 0 0

1 0 0 0 0 0 1 0 0 0
−yr+ys

ẋr

xr−xs

ẋr
− ẏr

ẋr
1 0 0 0 0 0 0















T

= span
[

n1 n2 n3 n4 n5

]

.

The structure of N [OL(0, l)] reveals the following conclusions. First, we note that there does not exist a row

of zeros throughout the different null-space basis vectors {ni}
5
i=1. Hence, none of the states is orthogonal to

the unobservable subspace and all the states lie within the unobservable subspace. Therefore, none of the
states is completely observable (directly). Second, shifting the receiver and SOP positions by α units in the
x-direction and β units in the y-direction, where α, β ∈ R, will be unobservable, since this shift, denoted
as γ = αn3 + βn4 lies in the null-space of OL(0, l). The nonlinear observability analysis reveals the same
conclusions in that ONL is rank-deficient by 5. Moreover, the basis for O

⊥

NL turns out to be identical to
those of N [OL(0, l)]. These results re-affirm our physical intuition that such environment is unobservable.
It is worth noting that performing the observability analysis based on the PWCS theory reveals that this
system is unobservable, but the receiver’s velocity states, ẋr and ẏr, are observable. This contradicts with
our physical intuition and with the results achieved through the nonlinear and LTV observability analyses.

Case 2. The LTV observability analysis concludes that this scenario is unobservable. The rank of the
l-step observability matrix keeps increasing as we add more time-steps till we reach l = 5, at which case
rank [OL(0, l)] = 7 and the rank never improves any further. The resulting null-space of OL(0, l) turns out
to be

N [OL(0, l)] = span







0 0 0 0 0 1 0 0 0 1

0 0 0 0 1 0 0 0 1 0
−yr+ys

ẋr

xr−xs

ẋr
− ẏr

ẋr
1 0 0 0 0 0 0







T

= span
[

n1 n2 n3

]

.
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Once again, none of the states is directly observable, except for xs and ys, which are observable by construc-
tion. The nonlinear observability analysis reveals the same conclusions in that ONL is rank-deficient by 3.
Moreover, the basis for O⊥

NL turns out to be identical to those of N [OL(0, l)].

Case 3. The LTV observability analysis concludes that this scenario is unobservable. The rank of the
l-step observability matrix keeps increasing as we add more time-steps till we reach l = 4, at which case
rank [OL(0, l)] = 9 and the rank never improves any further. The resulting null-space of OL(0, l) turns out
to be

N [OL(0, l)] = span
[

−yr+ys

ẋr

xr−xs

ẋr

ẏr

ẋr
1 0 0 0 0 0 0

]T

= span
[

n1

]

.

The structure of N [OL(0, l)] reveals that the receiver clock bias δtr and clock drift δ̇tr are indeed observable
as they are orthogonal to the unobservable subspace, whose dimension is 1, and is spanned by the vector
n1. The nonlinear observability analysis reveals the same conclusions in that ONL is rank-deficient by 1.
Moreover, the basis for O⊥

NL turns out to be identical to that of N [OL(0, l)].

Case 4. The LTV observability analysis concludes that this scenario is observable. The l-step observ-
ability matrix becomes full-rank in l = 4 steps, rendering the system completely observable. Nonlinear
observability analysis concludes that this scenario is indeed locally weakly observable.

Case 5. The LTV observability analysis concludes that this scenario is unobservable. The rank of the
l-step observability matrix keeps increasing as we add more time-steps till we reach l = 4, at which case
rank [OL(0, l)] = 8 and the rank never improves any further. The resulting null-space of OL(0, l) turns out
to be

N [OL(0, l)] = span

[

0 0 0 0 0 1 0 0 0 1

0 0 0 0 1 0 0 0 1 0

]T

= span
[

n1 n2

]

.

The structure of the null-space of OL(0, l) reveals that receiver’s velocity states ẋr and ẏr as well as SOP’s
position states (xs, ys) are observable, since the elements in their corresponding rows in the basis vectors of
the null-space are zeros. Moreover, we note that the system is unobservable with respect to a translation in
the δt-δ̇t space of the receiver and SOP. The nonlinear observability analysis reveals the same conclusions in
thatONL is rank-deficient by 2. Moreover, the basis forO⊥

NL turns out to be identical to those ofN [OL(0, l)].

Case 6. The LTV observability analysis concludes that this scenario is unobservable. The rank of the
l-step observability matrix increases in two time-steps to be of rank 8 and never improves beyond that point.
The resulting null-space of OL(0, l) turns out to be

N [OL(0, l)] = span

[

0 0 0 0 0 1 0 0 0 1

0 0 0 0 1 0 0 0 1 0

]T

= span
[

n1 n2

]

.

The structure of the null-space of OL(0, l) reveals that none of the clock error states are observable and that
we cannot observe any translation in the δt-δ̇t space of the receiver and SOP. The nonlinear observability
analysis reveals the same conclusions in that ONL is rank-deficient by 2. Moreover, the basis for O⊥

NL turns
out to be identical to that of N [OL(0, l)].

Case 7. The LTV observability analysis concludes that this scenario is observable. The rank of the
l-step observability matrix increases in two time-steps to be of full-rank, deeming the system completely
observable. Nonlinear observability analysis concludes that this scenario is indeed locally weakly observable.

In summary, we can generalize this analysis into the following important result.

Result 1 An opportunistic navigation environment with one receiver and n SOPs is completely observable
if any of the following conditions is satisfied

• Fully-known receiver’s initial state and and n unknown SOPs

• Partially-known receiver’s initial state and one fully-known SOP’s initial state
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V. Simulations and Results

In this section, simulation results that were achieved for the two observable cases in Table 1 are pre-
sented. For purposes of numerical stability, the clock error states were defined to be cδt and cδ̇t. The
simulation for Case 4 considered an environment with a fully-known receiver with an initial state xr(0) =

[100, 100, 10, −10, 0, 0]T, and 2 unknown SOPs with initial states xs1(0) = [0, 0, 10, 0]T and xs2(0) =

[200, 200, 0, 0]T. The receiver’s clock oscillator was assumed to be a temperature-compensated crystal
oscillator (TCXO) with h0 = 2 × 10−19 and h−2 = 2 × 10−20, while the SOPs’ clocks oscillators were
assumed to be oven-controlled crystal oscillators (OCXOs) with h0 = 8 × 10−20 and h−2 = 4 × 10−23.
The process and observation noise spectral densities were taken to be q̃x = q̃x = 0.01 and r̃ = 1, respec-
tively, and the sampling time was set to T = 1. The initial state estimate of the EKF was taken to be
x̂(0| − 1) = [100, 100, 10, −10, 0, 0, 10, 10, 30, 3, 220, 220, 2, 2]

T
, and the initial covariance of estimation

error was taken to be P(0| − 1) = diag [06×6, 100I4×4, 100I4×4]. Figure 4 shows the resulting estimation
error x̃ along with the 2P(tk|tk) estimation error covariance bounds achieved after 50 MC simulation runs
for SOP1 states. Comparable results were noted for SOP2. It is noted that the estimation error covariance
converge and that the estimation errors remain bounded.

The simulation for Case 7 considered an environment with a partially-known receiver with an initial
state xr(0) = [100, 100, 10, −10, 0, 0]T, a fully known SOP with an initial state xs(0) = [0, 0, 0, 0]T, and

an unknown SOP with an initial state xs2(0) = [200, 200, 0, 0]T. The process and observation noise spectral
densities were taken to be q̃x = q̃x = 0.01 and r̃ = 1, respectively, and the sampling time was set to T = 1.
The receiver’s clock oscillator was assumed to be a TCXO with h0 = 2× 10−19 and h−2 = 2× 10−20, while
the SOPs’ clocks oscillators were assumed to be OCXOs with h0 = 8×10−20 and h−2 = 4×10−23. The initial

state estimate of the EKF was taken to be x̂(0| − 1) = [100, 100, 5, −5, 3, −3, 0, 0, 0, 0, 220, 220, 2, 2]
T
,

and the initial covariance of estimation error was taken to be P(0| − 1) = diag [02×2, 10I4×4,04×4, 100I4×4].
Figure 5 shows the resulting estimation error x̃ along with the 2P(tk|tk) estimation error covariance bounds
achieved after 50 MC simulation runs for the estimated receiver states. It is noted that the estimation error
covariance converge and that the estimation errors remain bounded.

Figure 4. Estimation error trajectories and 2P(tk |tk) bounds achieved for case 4 in Table 1: a fully-known

receiver and unknown SOP
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Figure 5. Estimation error trajectories and 2P(tk |tk) bounds achieved for simulating case 7 in Table 1: a

partially-known receiver and a fully-known SOP

VI. Conclusion

Analysis of observability, convergence, and estimability properties for OpNav are of paramount impor-
tance before deploying OpNav-enabled receivers in the real-world. This paper addressed the first of these
three analysis subject matters. To this end, three candidate observability analysis tools, namely nonlinear
weak local observability, observability of LTV systems, and observability of PWCSs, were considered. These
observability tools were evaluated and it was concluded that observability via PWCS theory is inappropriate
to assess OpNav observability. Subsequently, several OpNav scenarios were considered and their respective
observability were analyzed. It was concluded that in an OpNav environment of one receiver and n SOPs,
the OpNav environment is completely observable if the initial states of a receiver are known or the initial
position of the receiver is known along with the initial state of one SOP. Future work will consider theoreti-
cal analysis of more complex OpNav scenarios along with corresponding simulations. Moreover, the OpNav
environment will be extended to include multiple receivers. Subsequently, observability will be analyzed for
various scenarios of such collaborative OpNav environment.
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