
Copyright

by

Cassandra Telenko

2012



The Dissertation Committee for Cassandra Telenko
certifies that this is the approved version of the following dissertation:

Probabilistic Graphical Modeling as a Use Stage Inventory

Method for Environmentally Conscious Design

Committee:

Carolyn Seepersad, Supervisor

Richard Crawford

Erin MacDonald

Eric Taleff

Michael Webber



Probabilistic Graphical Modeling as a Use Stage Inventory

Method for Environmentally Conscious Design

by

Cassandra Telenko, B.E.; M.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

The University of Texas at Austin

December 2012



For my family and friends



Acknowledgments

I want to acknowledge all of the people who have donated to my education,

including my family of Roseann de Freitas, Peter Telenko, and Andrea Telenko. My

mom, especially, has been an invaluable guide and gave me my strength. My sister

has been my best and most understanding friend. Mikko Ponkala and Cathy Farris

have been invaluable friends to me. I am very grateful to all those who have do-

nated to scholarships that I’ve received, and I want to specifically acknowledge the

Livingston Graduate Fellowship and the National Science Foundation Graduate Re-

search Fellowship. Additionally, the Department of Mechanical Engineering at the

University of Texas at Austin has hired a group of faculty who have been both en-

couraging and inspiring to me. I would like to specifically thank Dr. Seepersad for

all of her guidance and support over the last five years. I would also like to thank

Dr. Webber for all of his support over the last five years. I am very grateful to Dr.

Taleff for supporting me in many academic endeavors, suggesting the Aurora vehicle

as an example, and answering questions related to manufacturing. I would like to

thank the rest of my committee, Dr. Crawford and Dr. MacDonald, for their advice,

friendliness, and encouragement as well.

v



Probabilistic Graphical Modeling as a Use Stage Inventory

Method for Environmentally Conscious Design

Cassandra Telenko, Ph.D.

The University of Texas at Austin, 2012

Supervisor: Carolyn Seepersad

Probabilistic graphical models (PGMs) provide the capability of evaluating

uncertainty and variability of product use in addition to correlating the results with

aspects of the usage context. Although energy consumption during use can cause a

majority of a product’s environmental impact, common practice is to neglect opera-

tional variability in life cycle inventories (LCIs). Therefore, the relationship between

a product’s usage context and its environmental performance is rarely considered in

design evaluations. This dissertation demonstrates a method for describing the usage

context as a set of factors and representing the usage context through a PGM. The

application to LCIs is demonstrated through the use of a lightweight vehicle design

example. Although replacing steel vehicle parts with aluminum parts reduces the

weight and can increase fuel economy, the energy invested in production of aluminum

parts is much larger than that of steel parts. The tradeoff between energy invest-

ment and fuel savings is highly dependent upon the vehicle fuel economy and lifetime

mileage. The demonstration PGM is constructed from relating factors such as driver

behavior, alternative driving schedules, and residential density with local conditional

probability distributions derived from publicly available data sources. Unique sce-

narios are then assembled from sets of conditions on these factors to provide insight

vi



for sources of variance. The vehicle example demonstrated that implementation of

realistic usage scenarios via a PGM can provide a much higher fidelity investigation of

energy savings during use and that distinct scenarios can have significantly different

implications for the effectiveness of lightweight vehicle designs. Scenarios with large

families, for example, yield high energy savings, especially if the vehicle is used for

commuting or stop-and-go traffic conditions. Scenarios of small families and efficient

driving schedules yield lower energy savings for lightweight vehicle designs.
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Chapter 1

Introduction

This research focuses on operational variability, and specifically the effect of

variation in usage context on the energy consumption of consumer products. It is

hypothesized that modeling variability in the usage context increases the precision

with which the energy consumption of a product’s use stage can be estimated and

helps designers evaluate the effectiveness of specific product features for reducing

energy consumption. The magnitude of a product’s energy consumption is often

subject to significant variability. For example, the type and efficiency of energy

consumption for a plug-in electric vehicle is influenced by the technologies and mix

of feedstocks (e.g.,coal, wind, natural gas, oil, nuclear, solar) powering the electric

grid, and this mix is determined partially by the grid’s dynamic loads and capacities

(Samaras & Meisterling, 2008). Additionally, the energy consumption related to

feedstock materials and component parts of a vehicle can depend significantly on the

characteristics of the facility in which they are processed or manufactured (Ayres,

1995). Furthermore, the efficiency of a vehicle varies significantly with the context

in which it is used, including not only situational factors (e.g., city versus highway

driving, congestion levels) but also human factors (e.g., driving style) (Ridge, 1998;

Greene et al., 2006).

Specifically, three types of usage context factors are considered: human factors

(who uses the product and their skills or habits), situational factors (where, when,

and for what task the product is being used), and product factors (design features

and specifications that influence how a product is used.)

1



1.1 Environmental Design and Product Use

Environmentally conscious design focuses on reducing the environmental im-

pact of a product throughout its life cycle. The life cycle of a product, depicted

in Figure 1.1, includes all processes from raw material extraction through product

disposal. Energy life cycle inventories (LCIs) are an accepted approach for measur-

ing the total energy inputs of each process. For convenience, life cycle processes are

commonly grouped into four stages: material production, part manufacture, use, and

end-of-life. LCI procedures help designers avoid transferring environmental impacts

from one stage to another by measuring all the inputs, such as energy and materi-

als, and outputs, such as solid waste and emissions, of each stage. Although many

environmental impacts exist at many levels, higher level impacts, such as greenhouse

gases, are evaluated post-LCI. LCIs measure energy and material consumption and

exhaust of individual substances, such as the carbon dioxide and methane emissions

that combine to create greenhouse gases. This dissertation focuses in particular on

the consumption of energy.

Figure 1.1: Flowchart of a Generic Product Life Cycle

Usage characteristics are important for consumer products because energy

consumption during use can be more significant than energy consumption during

2



manufacturing and end-of-life. Automobiles provide one example of a product with

intensive manufacturing processes and a heavy mass of energy expensive components.

Regardless, more than 60% of a vehicle’s lifetime energy consumption occurs during

its use stage (Sullivan & Cobas-Flores, 2001). For simpler household products, the

significance of the use stage may be even higher (Throne-Holst et al., 2007; Peattie,

2010; Oberender et al., 2001; Telenko & Seepersad, 2010). Figure 1.2, from previ-

ous research by the author, depicts the environmental impacts of an electric kettle,

a product that operates at high power but contains only a few lightweight compo-

nents. The energy consumption of the use stage dominates the kettle’s total life cycle

impacts. Parameter used for estimating energy consumption, such as the useful life

of the product and the operating temperatures, in the case of the kettle, are highly

variable and thus make realistic energy values difficult to predict.

A variety of product classes are subject to use variability. Table 1.1 lists three

different products for industrial and residential applications and several aspects of the

usage context that contribute to variable energy use for each product. For example,

the Selective Laser Sintering (SLS) machine is an additive manufacturing machine

for rapid production of commercial parts by sintering successive cross-sections of a

product in a bed of powder. Research has found that energy efficiency is highly

dependent upon utilization of the full build volume of the machine. Partial builds

incur substantially higher energy costs per part, because energy is consumed during

a pre-heating stage that must be completed before each build, regardless of the size

of the build (Telenko & Seepersad, 2012; Baumers et al., 2011; Mognol et al., 2006).

In another example, electric kettles consume energy in proportion to the amount of

water heated and the initial and final temperatures of the water. Thus, substantial

variability in energy consumption can result from regularly heating too much water

or from over-boiling the water.

3



100%

50%

GWP  Global Warming Potential

ETP     Ecotoxicity                       

HTP    Human Toxicity Potential 

AP       Acidiphication Potential       

EP       Eutrophication Potential 

Energy Electrical and Fuel Energy Value                         

POCP  Photochem. Ozone Creation 

Legend  

 
ETP

HTP

GWP

ODP

POCP

AP

EP

Energy

Use

Manufacture

End of Life

Figure 1.2: Environmental Impacts of an Example Kettle from Telenko et al. (Telenko
2010)

Some modern commercial designs are beginning to implement feedback sys-

tems at the product-user interface to reduce the energy consumption of products

during operation. General Motors and OnStar offer an iPhone app, shown in Fig-

ure 1.3, that monitors tire pressure for safety and fuel economy purposes (Diehlman,

2010). Additionally, automotive manufacturers are introducing feedback systems to

correct driving behavior in hybrid vehicles. Ford recently patented their Smartgauge

EcoGuide, shown in Figure 1.4, to display the image of a tree progressively bloom-

ing or wilting in real-time response to driver fuel efficiency (Ford Motor Company,

2011). Both a tool and a game, the feedback provided by this gauge helps drivers

keep their hybrid vehicles in electric mode longer and maximize fuel economy in both
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Product SLS Machine Electric Kettle Vehicle
User(s) Technician Household Member Driver
Human Build Planning Focus on Task Aggressiveness
Factors Powder Waste Culinary Preferences Maintenance

Situational Part Dimensions Desired Temperature Luggage
Factors Part Density Input Temperature City/Hwy
Product Max Dimensions Water Measurement Engine Efficiency
Factors Powder Reusability Notifications Size

Table 1.1: Usage Context Factors that Contribute to Variable Energy Use for Three
Types of Products

driving modes. Ford’s EcoGuide and Toyota’s similar Prius dashboard suggest that

automakers recognize the influential role that consumers play in maximizing vehicle

fuel economy. Nevertheless, examples like these are limited; it can be difficult for

designers to consider the interaction of product features with a usage context and

evaluate sustainability of those features.

Figure 1.3: GM OnStar App for monitoring vehicle maintenance (Diehlman, 2010)

Despite advances, energy saving design changes can be undermined in unex-
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Figure 1.4: The Ford Smartguage EcoGuide increases the efficiency of hybrid power-
trains (Ford Motor Company, 2011)

pected ways by product, human and situational factors. For example, Thollier &

Jansen (2008) report that users often disable stand-by mode for computers and con-

clude that user behavior should be better addressed in energy saving designs. The

rebound effect is a prominent economic example of how energy efficient design may

increase overall energy consumption. As a result of being more fuel efficient than a

competing compact car, a hybrid vehicle may be driven more often and incur the

same fuel costs and consumptions, thereby negating the investment of battery and

hybrid technology. Herring & Roy (2007) review studies of the rebound effect in en-

ergy efficiency and conclude that innovation aimed at reducing consumption during

product use must take consumer lifestyles into account. Throne-Holst et al. (2007)

reach a similar conclusion studying consumer contributions to household energy con-

sumption and waste disposal. In each case, consumer habits and product use are

deciding factors in the efficiency of design solutions. Therefore, assessment of vari-

ability in usage patterns and contexts is essential for evaluating the potential energy

savings of a design change.

Although use variability is beginning to be addressed through commercial de-

sign, it is not well characterized in quantitative, energy LCIs. There is, therefore,

a need to explore techniques for addressing the variability and uncertainty of con-

sumer behavior and how it influences design changes intended to reduce the energy
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footprints of products. Specifically, this dissertation work leverages usage context

based design and probabilistic graphical models to quantify and model variability in

product operation.

1.2 Research Hypothesis

Modeling the usage context of a product using a probabilistic graphi-

cal model (PGM) in conjunction with a life cycle inventory (LCI) can

effectively: (1) facilitate estimation of a product’s variable resource con-

sumption during its use stage and (2) expose usage scenarios that most

influence life cycle resource consumption.

This hypothesis includes two primary goals of this research. The first goal

is to utilize a stochastic model of a product’s usage context to rationally estimate a

product’s energy and resource consumption during use. These environmental metrics

are difficult to predict, but can be rationally estimated through the use of underlying

usage context factors. The second goal is to increase a designers understanding of a

product’s energy consumption by exploring and targeting usage scenarios, or sets of

conditions for one or more factors. This capability allows designers to explore sce-

narios that might inspire new design ideas, define opportunities for creating product

variants or more robust designs, or simpy enhance a designer’s understanding of the

usage scenarios for which their designs are most energy and resource efficient.

1.3 Related Research

Shipworth (2006, 2002) has previously proposed the use of Bayesian networks,

a form of PGM, for predicting household and community energy consumption. PGMs

use graph representation to decompose a complex system, such as the product usage
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context, into a set of composing random variables. These random variables might

include stakeholders, environmental factors and design features. These variables are

then related stochastically using Bayes theorem and sets of conditional and joint prob-

ability distributions. Shipworth’s (2006) model relates a number of nodes describing

functional attributes of homes including social and political factors at an aggregate

level. The model, however, is a nave Bayes model and assumes that all factors are

independent of each other (Olivier, 2008). Unlike Shipworth’s (2006) model, the tool

proposed here is aimed at understanding conditional dependencies in a more detailed

usage context, and it is structured to aid the product designer.

Figure 1.5: Causal Map of a Vehicle’s Life Cycle from Laurenti et al. (2012)

Similar to PGMs, Bayesian networks in particular, Laurenti et al. (2012) have
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proposed the use of causal maps for modeling the entire life cycle. A causal map

requires the identification of variables, and drawing arrows between these variables

to signify causal relationships. These relations are then classified as one of two types,

reinforcing (increase the value of the child variable) or balancing (reducing the value

of the child variable.) Laurenti et al. (2012) showed the ability to include uncommon

variables, similar to the factors in this research, through the use of causal maps. The

variables that are novel for LCIs are shown in bold in Figure 1.5. Although causal

maps are often used to create quantitative models, called system dynamics models,

Laurenti et al. (2012) did not incorporates equations to their maps.

Such an addition would create a system dynamics model that measures the

changes of each variable in a system on a time scale. Although predominantly physi-

cal relationships, these models can include stochastic relationships. In contrast with

PGMs, causal maps are usually used for understanding system behavior over time,

rather than for predicting outcomes and performing statistical analysis on those out-

comes. Furthermore, causal maps imply causality and not independence relationships

as in PGMs. Furthermore, the PGMs proposed in this research are simpler models,

that account for variability, and are limited to the usage context. PGMs provide the

added future capability of learning network structures from data, rather than expert

knowledge, but this capability is outside of the scope of this dissertation.

1.4 Research Scope

LCIs are generally used towards the end of the product development process

as a validation tool (Ulrich & Eppinger, 2011). The primary reason is that LCIs re-

quire detailed design information in order to be carried out. Screening methods and

guidelines have been developed for earlier stages of design when less information may
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be available. These tools allow a designer to prioritize possible environmental design

avenues. Although, screening methods and guidelines are very useful for generating

new design concepts, LCIs can also be useful if made to be more flexible. Design

researchers often cite that ”all of design is redesign” with some quantifying the num-

ber at a more conservative “80% of designs are redesigns” (Jozwiak, 1997). Using

information from previous designs, LCIs can be used to test possible redesigns and

explore the impacts of different usage contexts during future generations of designs.

Such activities are enabled by the methods presented in this dissertation work, and

it is expected that the results can aid in environmentally conscious design for both

validation and redesign purposes.

Although the motivating examples included designs inspired by aspects of a

product’s use, this research does not attempt to create new designs. This research is

isolated to the addition and development of a new tool for the environmentally con-

scious design field. The scope encompasses three main research questions addressing

the goals of the hypothesis:

1. How can the usage context be characterized for environmentally con-

scious design?

2. What new information is made available by considering conditional

dependencies within the usage context?

3. How can this information be organized in a useful way?

It is assumed that the usage context is modeled as part of a redesign process

and that data and knowledge about the usage context are available through previous

design experience. Although it is assumed that exposing usage scenarios will help

designers create better designs, this result is not explicitly part of the hypothesis and
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is outside the scope of the current research. Instead, the current research is limited to

describing the possible range of information and exploring methods to organize that

information in a useful way for designers. Insights include the types of tasks, loads,

and climates that create the best and worst energy consumption.

1.4.1 Q1: How can the usage context be characterized for environmen-
tally conscious design?

Research question 1 addresses the need for a formal recognition of usage con-

text factors in environmentally conscious design and for a method of identifying these

factors. Because LCIs are generally used for validation purposes, most implementa-

tions attempt to separate the usage context from studies of energy consumption by

defining strict scenarios of use. Either products are evaluated in comparison to a

single set of assumptions about its use and the user’s requirements, or products are

evaluated in comparison to a few limited sets of assumptions about their use. These

assumptions, generally called functional units, are usually estimates of average or

modal usage parameters, such as the average lifetime of a product, and reflect the

practitioner’s bias in their selection. These studies miss the opportunity to explore

how usage parameters might vary, in a predictable way, from context to context and

design to design.

The central contribution of this work is a framework for stochastically evaluate

designs in a range of usage contexts. A fundamental requirement for this research is,

therefore, a taxonomy for the usage context as it relates to environmentally conscious

design and a transparent investigation of stochastic relationships between usage con-

text factors. The latter half of this requirement is addressed under research question

2 in the following subsection. Developing a taxonomy is the primary task to answer

research question 1. The subtasks are as follows:
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Task 1: Develop a Taxonomy for the Usage Context with Respect to Environmentally
Conscious Design
Subtask 1 : Review existing usage context taxonomies
Subtask 2 : Identify and define a usage context taxonomy for environmentally

conscious design
Subtask 3 : Create a method and set of guiding questions to identify factors

relevant to the taxonomy
Subtask 4 : Apply the taxonomy to the dissertation example

First, the area of Usage Context Based Design (UCBD) has defined the types

of factors relevant to customer preference. These factors will be reviewed, modified,

and categorized into three types of factors: human, situational, and product factors,

as described previously. Within these categories, a set of guiding questions will also be

developed to aid in creating a large set of candidate factors for the PGMs. Then this

process will be applied to demonstration example problem and data will be collected.

The demonstration is a LCI-based material selection problem for lightweight-

ing automobiles. In an effort to improve fuel economy, automobile designers some-

times employ lightweight materials at the expense of increased energy for material

production. This tradeoff between product operation and material production is of-

ten measured using an LCI of energy use. Vehicle LCIs usually indicate that fuel

savings during operation validate the decision to replace heavy steel with lightweight

aluminum that consumes five times more energy during production. These energy

LCIs, however, rarely consider the variability of vehicle operation, such as driving

schedules and lifetime mileage. There is, therefore, a need for an appropriate method

for evaluating variance in product operation, further understanding of the influence

of product operation upon LCI results, and design solutions that minimize and are

robust to consumer behavior.
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1.4.2 Q2: What new information is made available by considering condi-
tional dependencies within the usage context?

Research question 2 validates the application of PGMs by comparing it with

traditional methods. It is a requirement that this method provide new informa-

tion that is not typically obtained from an LCI. Three advantages are anticipated.

Firstly, PGMs are a visual tool. They use graph structures that allow designers and

researchers to quickly gauge the factors that are directly and indirectly influencing

energy consumption and other environmental impacts. These graphs can also be eas-

ily saved and updated. PGMs also include information about the effects of individual

factors and how those factors can be combined, to predict statistical distributions of

performance values. This model differs from existing methods by not only provid-

ing statistical distributions of performance for difference functional units and usage

scenarios, but also providing statistical distributions over a broad variety of scenarios.

The motivating examples showed how unplanned, but predictable behavior

can undermine the intent of a design, as when disabling a computer’s stand-by mode.

A stochastic evaluation of how often these actions may occur, and what causes these

actions could help design. Stochastic and dependent relationships are not often con-

sidered when assigning and testing functional units. Any consideration of uncertainty

is usually limited to manufacturing or end of life processes. Furthermore, evidence

supporting choices and statistics used for modeling in LCIs is usually missing (Ayres,

1995; Lloyd & Ries, 2007).

The primary task related to research question 2 is a comparison of results using

existing methods and a PGM for the vehicle example. The subtasks are as follows:

13



Task 2: Implement PGM for Usage Context Modeling and Compare PGM Results
with those from a Conventional LCI
Subtask 1 : Establish a procedure for implementing PGM for usage context

modeling, including evaluating conditional dependencies and creat-
ing graph structure

Subtask 2 : Apply PGM to the vehicle example
Subtask 3 : Evaluate the quality and quantity of new information obtained from

the PGM relative to a conventional LCI

The relative value of the PGM will be established by comparing its predictions

with LCI-based models available in the background literature for the same example

problem.

1.4.3 Q3: How can this information be organized in a useful way?

Although graphical models provide a useful qualitative picture for designers,

the shear quantity of information can be difficult to process and search manually. A

useful property of a PGM is the ability to set conditions for one or more factors,

perhaps in the form of usage scenarios, and conduct what-if queries of environmental

impact based upon those assumptions. These scenarios can then be used to strategize

about markets and product subsystems or features. IDEO describes scenario building

as creating human stories about a user’s product experiences in a physical, social and

cultural environment. These scenarios are useful to help inspire concept generation,

explore variable issues, and evaluate prototypes (Suri & Marsh, 2000) The overall aim

is to create a variety of user stories and profiles and to understand the comparative

environmental impact of a product as a function of those scenarios.

The primary task under research question 3 is to create motivating scenar-

ios that provide novel insights about significant types of consumers, situations, or

markets. The subtasks are as follows:
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Task 3: Investigate the effects of different scenarios on PGM results
Subtask 1 : Create scenarios from multiple factors
Subtask 2 : Analyze what-if queries
Subtask 3 : Compare results with previous analyses

The scenarios will be created manually by assigning conditions to combinations

of background factors in the model. Background factors are generally considered root

causes for effects on variables of interest. These background variables will become

evident through construction of the graph, as background factors are not influenced

by any other factors.

1.5 Organization

Design examples from this chapter motivate the hypothesis that PGMs can

be used to consider variable usage contexts in energy LCIs. The literature review in

Chapter 2 highlights the role of the functional unit and the current lack of a flexible

functional unit for considering usage variability. Although the usage context is not

well described in energy LCIs, customer preference studies reviewed in Chapter 2

have begun to model the effects of usage contexts. The use of PGMs to model energy

performance has yet to be demonstrated and developed as a general approach.

Although descriptions of the usage context are easily understood, identifying

a comprehensive set of relevant factors to model is not a trivial task. In Chapter 3,

a checklist and usage context taxonomy are developed and discussed. Reducing the

space of potential factors to a manageable and descriptive set is the primary focus and

demonstrated through the use of an electric kettle example. The specific approach

to creating PGMs is presented in Chapter 4. Continuing use of the electric kettle

example, energy LCIs for multiple usage scenarios are estimated using a PGM.

In Chapter 5, the vehicle lightweighting example is introduced. First, an LCI
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for life cycle stages other than use is established and common assumptions and results

from the literature are reviewed. Second, the taxonomy and procedure for identifying

factors is applied to the vehicle and statistics are presented for characterizing the

resulting graph.

In Chapter 6, the results of the lightweight vehicle PGM are compared with

more traditional point estimates and Monte Carlo analysis. Four scenarios are devel-

oped to exhibit the unique benefits of using a PGM. Chapter 7 concludes the results

with a summary of the contributions, recommendations, and possible future research

avenues.
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Chapter 2

The Usage Context in Environmentally Conscious

Design

For many products, the majority of energy consumption occurs during use.

Consequently, environmentally conscious designs often focus on reducing consumption

during use at the expense of other stages in the life cycle. For example, hybrid vehicles

reduce fuel consumption by including environmentally expensive battery technology.

Although uncertainty of manufacturing impacts and variability of end of life impacts

are common research topics, variable usage contexts are not well explored, and current

life cycle inventories (LCIs) provide little usage information that designers can exploit.

Therefore, the goal of this research is to provide a tool for designers to consider

the effects of different usage contexts just as easily as they might consider different

manufacturing methods or materials.

In this chapter, common practices and challenges with respect to LCI methods

are introduced, including definitions of the functional unit. Because the functional

unit generally describes how a product will be used, it constrains the ability of design-

ers to model and consider different usage contexts. Next, the potential contributions

of usage context based design (UCBD) are presented including tools and methods

relevant to environmentally conscious design. Finally, the potential value of proba-

bilistic graphical models (PGMs) will be summarized in the context of UCBD and

environmental decision making.
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2.1 Measures of Environmental Impact

The International Organization for Standardization (ISO) provides the ac-

cepted framework for LCIs (International Organization for Standardization, 2006).

This framework provides guidelines for conducting and documenting each of two

phases in an LCI. During the goal and scope phase, the purpose and system bound-

aries of the LCI are defined. The goal is articulated to guide decisions throughout

the analysis. The boundary and scope is selected to include a manageable breadth

of processes and underlying data addressing the goals of the study. Additionally, the

functional unit is selected to serve as the unit of reference by which two or more

alternatives are compared and to which inputs and outputs of processes are related.

During the inventory phase, the inputs and outputs are calculated for each process

within the study scope. These values are estimated from process models and experi-

mental or reported data. Although data gaps and uncertainties are recognized issues

in LCI, variable usage contexts are rarely considered.

Criticisms of LCIs are numerous, and the robustness of decisions and product

comparisons based on LCIs is often questioned. Uncertain, missing, and erroneous

data are major concerns that are increased by the potential bias of scopes and system

boundaries. Ayres (1995) has published a thorough critique of data reporting in

LCIs. Drawing from numerous examples from LCIs, he shows inconsistencies and

errors in material balances. The lack of transparency and the frequency of such errors

can discredit LCI results that are otherwise helpful. Finnveden (2000) argues that

LCIs are indeed useful, despite errors in data and the subjectivity of the scope. He

states that, “[LCI’s] can increase the environmentally related knowledge of the studied

systems, identify critical parts (or “key issues”), and separate important parts from

less important parts,”(Finnveden, 2000). Despite inaccuracies, LCIs are necessary for
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understanding tradeoffs, and accounting for variability in usage contexts contributes

to this central purpose.

Although reducing the energy consumption of product use is an important

design strategy, LCI results generally scale linearly with some unit of performance,

and that unit of performance contains inherent assumptions about operating con-

ditions. The difficulty with this practice can be described through the example of

additive manufacturing. Additive manufacturing machines build parts directly from

CAD models by successively layering and joining material. In contrast, traditional

manufacturing methods are subtractive; they remove material from a block to form

a part. Manufacturing processes are usually compared, for energy LCIs, in units

of specific energy per mass produced. The specific energy used by these processes

is dependent upon usage factors: build arrangement, part geometries, and material

recycling practices (Telenko & Seepersad, 2010; Mognol et al., 2006; Baumers et al.,

2011). Mognol et al. (2006) found that the amount of energy consumed by a pro-

cess similar to SLS is not a linear function of the mass of product produced. The

size and orientation of parts is a significant factor because it influences the height of

the build and the amount of time spent heating the powder bed and layering pow-

der. Baumers et al. (2011) compared the specific energy consumption of a number of

rapid manufacturing machines and found that capacity utilization, the density that

can be achieved by a build, can change the specific energy consumption by as much as

90%. Finally, Telenko & Seepersad (2012) compared SLS with injection molding for

two different products and found that the energy tradeoff between processes depends

strongly on the size and shape of the fabricated products. For a small, 1g product,

injection molding and SLS consume equivalent amounts of energy per product when

1.5 to 3.2 kg of products are fabricated, whereas a larger 36g product reaches an

equivalence at about 54 to 108kg of fabricated product. The variability is attributed
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partially to the energy embedded in the injection mold itself. Enabling inclusion of

these non-linear use effects is important for helping engineers explore and compare

energy saving design opportunities and better understand how the usage context can

impact the energy savings of a product.

2.2 Flexible Functional Units

Variability makes functional units problematic, and the the ISO’s definition

of a functional unit is necessarily open ended. Functional units are simply references

that allow comparisons of products and establish a basis for calculating or scaling

LCIs. In practice, the functional unit relates to some measure of how a product is

used. For example, a vehicle might be driven in single-kilometer increments according

to a specified drive cycle. The criticism is that LCI results do not scale linearly with

many functional units, as in the previous example of additive manufacturing. The

primary reason is that these units do not account for the variability in how a product

is used. For example, energy does not scale by mass for all additive manufacturing

systems and a vehicle’s fuel consumption is not constant for every kilometer of travel.

In their evaluation of the challenges associated with LCIs, Reap et al. (2008a,b)

conclude that the ambiguity of functional units is a fundamental and severe problem.

They suggest that future research ascertain classes and archetypes for guiding the

creation of functional units. In regards to the usage context, Reap et al. (2008a,b)

suggest “identifying, decomposing, specifying, and/or prioritizing [sub-functions]”of

products in order to represent the reality that products are used for multiple tasks.

Alternatively, Finnveden (2000) proposes that functional units for non-linear com-

parisons should be as accurate as possible and that products with different functions

should have broader functional units. In his example, the functional unit should be

20



a need, such as “the cooling of food”, rather than specified aspects of use, such as a

refrigerator that cools to 15C below room temperature. To accommodate a broader

set of operating parameters, functional units must become more flexible.

A few researchers have proposed qualitative methods for developing functional

units that consider multiple functions of a product or similar products. Lagerstedt

et al. (2003) introduced the concept of functional profiles as preliminary to functional

units. Arguing that functional units do not allow for innovations of a product’s

function, they define a function profile as a list of all of the functional requirements

of a product, such as product lifetime and technical flexibility that relate to the

consumer. The functional profile is expected to aid designers in evaluating the relative

importance of functions before an LCI is carried out. Although Lagerstedt et al.

(2003) showed that functional profiles help put the designer in the context of the

user, they did not explore the potential for quantifying environmental performance

within the context of the user or create flexible functional units.

While functional profiles present qualitative functional requirements, Collado-

Ruiz & Ostad-Ahmad-Ghorabi (2010) propose that practitioners reference lists of

functional unit parameters for a family of products. Their concept is called a func-

tional unit icon (fuon) and aids in the association of products by a general primary

function. Each fuon includes a name and description of the primary function, for

example a box isolates physical elements from the surrounding environment. The

fuon also includes a list of engineering parameters, such as volume, that are common

to all products within a family that fulfills the primary descriptor. Finally, the fuon

lists engineering parameters or constraints that are common to sub-classes of prod-

ucts within a family. For example, refrigerators and coolers are primarily containers

for thermal management. The fuon is a useful tool for dissecting the primary func-
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tion into a set of potentially scalable functional units while acknowledging functional

differences between products. Despite the emphasis on fundamentals of use and the

acknowledgement of diffrences, this method still results in a rigid functional unit.

Following from the concepts of fuon, Esterman et al. (2012) extend the ap-

plication of functional analysis to attempt decoupling of consumer behavior from

functional units. They note, as discussed in this literature review, that the inclu-

sion of consumer behavior in functional units limits comparability of LCIs. Esterman

et al. (2012) propose functionally decomposing a product, such as a printer, into sub-

functions that can be combined or scaled by use scenarios. They use scenarios to

describe sets of conditions within a product’s usage context. Both fuons and func-

tional decomposition can aid in LCI modeling and creating a more realistic picture

of how a product is used, but neither concept has been demonstrated to incorporate

variable usage contexts in LCI.

Most LCI studies focus on unrealistic, one-to-one comparisons of products,

instead of exploring methods for creating flexible functional units that explore realistic

scenarios. More specifically, Cooper (2003) used the example of aircraft material

selection to publish a comparison of common methods for defining the functional

unit. In opposition to linear models, Cooper (2003) suggests the use of parametric

models for modeling multiple product features. Nevertheless, in her work, the full

extent of a parametric model is not realized. The significance and uncertainty of user

behavior and product lifetimes are acknowledged, but not operationalized.

In contrast, some studies artificially devalue the importance of functional units

and product use in favor of rigid comparisons. For example, Matheys et al. (2007)

tested discrepancies between three different functional units for comparing identical

electric vehicles using different battery types. They concluded that uncertain func-
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tional units are less important than other sources of uncertainty because the resulting

changes to total driving impacts were relatively small (5-10%), and battery preference

did not change (Van den Bossche et al., 2006; Matheys et al., 2007). The analysis,

however, disregarded variability of a number of important factors. For example, life-

time driving range was not examined, reducing the environmental impacts of use

intensity on product life (Cooper, 2003). Furthermore, only one driving cycle was

considered despite being a fundamental and highly variably consideration for battery

use. Other usage context effects that should be considered, like thermal cycling were

left out. Matheys et al. (2007) did acknowledge that, when using functional units de-

fined by other researchers, the results and preferences changed significantly. Instead of

comparing a few functional units, a goal of this dissertation is to present a method for

allowing inclusion of transparent stochastic parametric studies of a product’s usage.

2.3 Temporal and Usage Scenarios in LCIs

The definition of a scenario varies among some LCI studies. For the purposes

of this research, a scenario is a set of usage conditions that defines how a product will

be used. In some studies, best and worst case scenarios are used to create conservative

and optimistic LCI estimates. For example, a comparison of cell phones may estimate

annual and biannual phone replacement. A second definition of scenario regards

the future developments of technology and society. These temporal scenarios model

the effects of policy decisions, and are less concerned with the design of products.

Nevertheless, research in modeling temporal scenarios provides some useful insights.

The SETAC-Europe working group published definitions of scenarios for LCIs

(Pesonen et al., 2000). They define scenarios as the frame of conditions or systems to

be modeled that reflect some snapshot in time. This definition reflects questions of
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policy decision makers, for whom time scales and future developments are important

considerations. Scenarios are classified into two groups: what-if scenarios that reflect

a search for best and worst cases in a linear, short term perspective and cornerstone

scenarios that provide information about the overall development space. The distinc-

tion is subtle, in that cornerstone scenarios are exploratory, by being farther removed

from current situations. Spielmann et al. (2004) present a method for determining

cornerstone scenarios by first evaluating the relative sensitivity of results to different

variables. Although not expressly discussed, the temporally inspired scenarios of these

papers are analogous to scenarios of different usage contexts within this dissertation.

Fukushima & Hirao (2002) define the creation of four types of cornerstone sce-

narios. These four types are technological, environmental, process, and valuational.

Technology and process scenarios change the performance and flow rates of processes,

respectively. Environmental scenarios describe changes in the environment, and valu-

ational scenarios describes changes in values of stakeholders. They encode models of

these aspects into their own life cycle modeling language(LCML) consisting of tables

and graph representation to allow for sharing and visual adjustments of scenarios.

The graph representation uses shapes and arrows to represent flows and sub-models.

Their method is similar to that proposed in this dissertation work in that it uses graph

representation and allows for the implementation of select scenarios. This dissertation

work, however, extends the notion of LCML by including stochastic relationships and

removing the temporal aspect to focus on the variability among usage contexts at a

snapshot in time.
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2.4 From Scenarios to Usage Context Based Design

Just as policy-oriented scenarios have been helpful for decision making in the

environmental design of systems, inclusion of usage contexts can aid in the envi-

ronmental design of products. IDEO defines scenarios as human stories that relate

product experiences in a physical, social and cultural context. These scenarios are

useful to help inspire concept generation, explore variable issues, and evaluate proto-

types (Suri & Marsh, 2000). In particular, usage context based design (UCBD) is an

emerging area of product design that has not been explicitly applied to environmen-

tally conscious design and LCI. UCBD research includes the development of tools for

describing unfamiliar usage contexts and informing product specifications.

In marketing research, descriptions of the usage context are used to discover

a consumer’s product preferences and decision variables. Belk (1974, 1975) uses a

stimulus - organism - response paradigm to categorize both the situation and ob-

jects (stimuli) influencing a consumer (organism) and his or her purchasing behavior

(response). He provides questionnaire results that suggest situational factors influ-

ence consumer choices. For example, the type of food a consumer chooses to buy

for dinner can be influenced by the presence of guests or how tiring the work week

was. Information about the types of users that are affected by situations and the

types of situations that change choice behavior are useful for not only creating and

segmenting product offerings, but also for shaping the suggestions of advertisements.

la Fuente & Guillen (2005) further study the influence of product design on a prod-

uct’s suitability for different usage contexts. They compare the features of a number

of cleaning products with a number of cleaning surfaces and ask consumers to select

between combinations of product features and branding. The results indicate that

choice is also influenced by functionality. Both Belk (1974, 1975) and la Fuente &
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Guillen (2005) aim to help managers identify market gaps, identify opportunities for

new product development and predict market share.

Research in engineering design has begun to integrate both the industrial and

marketing design perspectives. The frontier design context method is one such area

of UCBD described by Green (2005). He defines context as “the circumstances and

settings in which an object occurs, and which influence its value.” Frontier contexts

are further defined cultures, countries, and consumers foreign to the designer’s ex-

periences. Green (2005) also outlines a contextual needs assessment method that

considers the usage context (how and where), consumer context (who), and market

contexts (alternative tools and products.) The first two categories are most closely

related to environmentally conscious design. How encompasses questions about the

specific task and frequency. Where encompasses questions about the local weather

and infrastructure. Who describes aspects of the consumer, such as skills and edu-

cation. A set of question prompts are proposed to help designers recognize context

factors that influence customer needs, and define the design problem. These ques-

tions guide subsequent customer interviews and information gathering to create more

appropriate design solutions. Although the definition of usage context put forth by

Green (2005) is helpful, it is too general to predict energy consumption.

The work of He et al. (2010, 2011, 2012) and Yannou et al. (2009, 2010) es-

tablishes a taxonomy of usage context for choice modeling that includes performance

predictions. In contrast with Belk (1975) and la Fuente & Guillen (2005), He et al.

(2010) seek to predict consumer choice behavior by physical models of product per-

formance. Rather than measuring suitability through surveys alone, they model en-

gineering specifications that influence consumer needs. For example, the vibrational

forces experienced by a user differ with cutting medium. Additionally, the authors
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utilize multinomial logit models to vary the importance of needs by situation, as

suggested by marketing research. For example, the comfort of a jigsaw had reduced

import in outdoor situations than in indoor situations.

As part of the series of papers summarized above, Yannou et al. (2009, 2010)

incorporate a causal diagram to relate context variables and product variables. They

measure performance by the degree of satisfaction of constraints. A physics based

model is used estimate metrics, such as vibrational forces, that influence customer

satisfaction. The researchers then introduce a constraint satisfaction problem which

iteratively computes intervals for the constraint variables that are satisfied by the

design. These intervals are then compared with each usage scenario or customer to

evaluate fit. Although this method is useful for predicting customer preference, it

does not include the stochastic predictions desired for evaluating tradeoffs in LCI.

A few researchers have focused on solutions for reducing energy consumption,

but have not fully explored the usage context of a product at the level of an LCI. For

example, van Nes & Cramer (2003, 2006) researched user-centered design techniques

for increasing useful life at the level of the user-product interface. They cite four

general motives that affect a consumer’s decision to replace a product and focus on

making upgradable, modular products. They suggest that designers be conscious of

how products might be expected to change to encourage optimal replacement times.

As another design solution, Srivastava & Shu (2011) propose the principle of dis-

cretization as a means of reducing resource use by consumers. This principle states

that providing discrete increments of a resources will reduce consumption compared

to continuous flows, regardless of the resources availability. Oberender et al. (2001)

tested the use of feedback systems for reducing erroneous consumer behavior, and

found limited success. These results provide evidence regarding the success of indi-
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vidual design avenues, but not the usage context as a whole.

2.5 The Potential of Bayesian Networks

This research combines the concepts of a more flexible functional unit and

causal mapping of the usage context in order to predict energy consumption. The de-

veloped method uses a PGM, relying predominantly on a Bayesian network, or Bayes

net. PGMs combine graph theory with probability theory, statistics and computer

science. In Bayes nets, the graphs use directional dependencies between factors, or

nodes, to describe the joint distribution of factors within a problem. The direction-

ality of arcs connecting nodes indicates the direction of influence for predicting one

node’s state given some known set of states for the other nodes.

In design, Bayes nets have been applied to problems of predicting customer

preference and needs without UCBD principles. Wang & Tseng (2008) use Bayes nets

to customize products to a customer’s specifications. They can then identify which

query or specification node has the most influence (information gain) and ask the

customer to specify that node. Given enough specifications, the program can generate

a set of likely node values that will create a set of product specs (a whole product)

for the user (Wang & Tseng, 2008). Takai et al. (2010) use Bayesian decision trees to

forecast customer needs. In their example, they include forecasted and actual gasoline

fuel prices to predict the importance of fuel economy to buyers. The conditional

probabilities are influenced along this chain. This latter examples shows how general

knowledge, or forecasts, can be used to predict future customer need distributions.

Finally, Matthews (2010) implemented Bayesian networks as models for conceptual

design. Similarly to the LCA model of Seo et al. (2005) the network connects design

variables from a database of prior designs and calculates the probability of success

28



for different variables and combinations of variables.

Bayes nets were first proposed for predicting energy consumption by Shipworth

(2006). In his initial paper, Shipworth (2002) cites quantification of uncertainty and

variability as essential for meeting targets of the Kyoto protocol. Current models,

he argues, are deterministic and provide little decision information. He extends this

argument in a later paper to assert that Bayes nets will extend ordinary technical

and economic models to include social aspects (Shipworth, 2006). Thereby, the goal

of using Bayes nets is to include correlations between technical variables and social

factors for predicting household and community energy consumption as part of the

UK Carbon Reduction in Building (CaRB) project. His research group published

plans for collecting and modeling data (Lomas et al., 2006), and posted a partial

manual on the web (Olivier, 2008), but they have yet to produce findings from their

work. The manual describes a fully naive Bayes net model that uses a data set

including data for occupancy, heating, cooling, bathing, and building features, but

results are not available because buildings are very large systems and the researchers

are still collecting data Shipworth et al. (2010). The contribution of Shipworth (2006)

and Lomas et al. (2006) is, therefore, the idea of using Bayesian Networks to predict

the energy use of buildings at household and regional levels, but not a demonstration

of this capability or a general approach to a variety of problems.

A few researchers have applied PGMs to environmental decision making and

life cycle analysis (LCA) (Varis, 1997; Seo et al., 2005; Zhu & Deshmukh, 2003). Seo

et al. (2005) use an artificial neural network as a metamodel for LCA. The model was

trained using information from LCA results of 40 products and embodiment specifi-

cations such as material types and masses. The model was able to predict impacts of

additional product designs, but the similarities between the test and training designs
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were not thoroughly discussed. Although, such a meta model may be useful for LCA

screening of products, it does not assess usage variability and was less accurate for

heaters and other high energy use products.

Bayes nets have been applied to areas of environmental decision making, specif-

ically environmental resource management (Aguilera et al., 2011; Varis, 1997). Varis

(1997) and Varis & Kuikka (1999) reviewed models, including their own, that incorpo-

rate the influence of different stakeholders on fisheries and other natural resources for

policy decisions relating to resource maintenance. Varis (1997) and Varis & Kuikka

(1999) find Bayes nets to be a promising tool, but Aguilera et al. (2011) asserts that

opportunities to model with missing data and combine continuous and discrete vari-

ables are not well explored in these studies. Furthermore, Aguilera et al. (2011) found

that few of these models were validated, despite inclusion of expert knowledge. Later

publications by Castelletti & Soncini-Sessa (2007) continue this work in modeling

water resources and conclude that Bayes Nets are not as useful for modeling dynamic

systems with wide range of structured variables. Instead, they propose integrating

dynamic models with Bayesian networks in these cases. The model in this disser-

tation incorporates deterministic elements, but the scope of a single product-user

relationship is much narrower than that of an entire natural resource or ecosystem.

2.6 Chapter Summary

The existing literature presents a variety of approaches and goals for addressing

the usage context. In LCIs, the usage context is simply used for static comparison

of products, assuming that environmental impacts, such as energy consumption, are

scalable and that use variability has little effect on life cycle decision making. This

latter assumption was shown to be incorrect in Chapter 1, and the prior assumption
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was discussed in depth here. In UCBD, the usage context has been used as a major

factor in consumer purchasing behavior, and offers many analogies to understanding

the influence of usage context on energy consumption. A major contribution of prior

research to this dissertation is the established taxonomies. Both the LCI and UCBD

research provide insight into alternative methods for classifying and defining usage

context factors that can build a more flexible functional unit.

Additional work in choice prediction and environmental decision making has

introduced probabilistic graphical modeling as an interesting technique for modeling

human, situational, and product factors. The existing work, however, has not been

applied to LCIs and product design . Most PGMs have been used to model either

product design variables or large ecological systems. Additionally, little validation

for PGMs exists in prior research. Shipworth (2006) proposed the use of PGMs

for predicting the energy consumption of buildings but has yet to demonstrate this

capability. Chapter 3 will describe the proposed method for incorporating techniques

from the existing literature to identify factors that describe the usage context and

influence energy consumption.
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Chapter 3

A Taxonomy for Environmentally Conscious

Design

The first task of this research is to develop a taxonomy and set of tools for

defining the usage context with respect to an environmentally conscious design prob-

lem, specifically reducing energy consumption during use. Descriptions of the usage

context and specific usage scenarios are easily understood and often provide useful

information for designers. Nevertheless, characterizing the usage context as a concise

but comprehensive set of factors is not a trivial task. This chapter presents a taxon-

omy and method for characterizing the usage context as sets of factors. Three sets

of relevant factors are defined including: human factors, H, related to who is using

the product; product factors, P, related to how the product is used; and situational

factors, S, describing where and for what the product is used. These factors will be

elements in a set of vertices, V = [H,P,S]. A scenario is distinguished from a usage

context in that a scenario specifies the values of some subset, [vhuman, vproduct, vsituation],

of the usage context. The general usage context is represented by the vertices in a

graph, G = (V,E), connected by a set of edges, E, that define the relationships be-

tween the vertices. These relationships are directional and no factor can be traced

back to itself. The resulting graph is, therefore, known as a directed acyclic graph

(DAG). Checklists, activity diagrams, and interaction matrices are introduced as tools

for specifying relevant factors and relationships among them. The resulting graph of

the usage context can then be introduced into a PGM, described in Chapter 4.

32



3.1 Establishing a Usage Context Taxonomy for Environ-
mentally Conscious Design

Three classifications of factors are utilized in this work. The first type is the

human factor and encompasses user characteristics that change the consumption or

wastefulness of the product. The second type is the situational factor and encompasses

environmental and task characteristics that set operating parameters for the product

and constrain user behavior. The third type is the product factor and encompasses

parameters of the product that are influenced by the user or environment, and features

of the product that influence user behavior or regulate environmental effects. Specific

definitions were created by consulting the environmentally conscious design literature.

Table 3.1: Relevant considerations and guidelines from design literature

ENVIRONMENTALLY CONSCIOUS DESIGN CONSIDERATIONS

consumables: discrete/continuous, reusable, disposable

controls: defaults, automatic, human, intuitive

durability: structural, failure modes, upgrades, damage sources,
hazardous substances

energy: efficiency, sources, ideal conditions

human: proper use, probable use, fail safes

materials: inputs, outputs, recycling

maintenance: aesthetic, functional, modularity, servicing, cleaning

conditions: intended, probable, possible, ideal

Existing sources describe over 60 unique principles and guidelines for environ-

mentally conscious design that span all life cycle stages Telenko et al. (2008). Telenko

& Seepersad (2010) also include an environmental requirements lists for describing

environmentally conscious design objectives. Table 3.1 summarizes a number of envi-

ronmentally conscious design considerations informed by designers’ experiences and
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research (Telenko et al., 2008; Ulrich & Eppinger, 2011; Srivastava & Shu, 2011).

These considerations include the flow rates and permanence of materials being used

by the product, and the sources of losses or inefficiencies in operation. Other consid-

erations include ease and frequency of maintenance as well as aesthetic life and aids

for the user. Detailed definitions for each category of factors are as follows:

Product factors describe variable operating parameters and any product fea-

tures that influence the user or adjust the response of the product to changes in the

environment. Important characteristics are parameters of the fundamental physical

equations governing operation, and any control or feedback features that instruct the

user. User or environmental controlled settings, failure modes, failure frequencies,

rates of obsolescence, and aesthetic lifetimes are also important.

Situational factors describe aspects of the task and environment that change

the behavior of the product or the user. Task characteristics include the states of

inputs and outputs of the product and properties of the task including durations and

distances of operation, mass or energy loads, and flow rates of consumables. Envi-

ronmental characteristics describe the state of the environment in which a product

is used or stored, such as the surrounding temperature or humidity or population

density. Important environmental characteristics also constrain or influence user be-

havior through social rules, interactions with other humans, availability of materials,

reduced physical comfort, and increased mental loads.

Human factors aspects of the user that influence task specification, environ-

ment selection, and operating procedures. Important human characteristics include

the number of users, frequency of use, more or less efficient behavioral tendencies,

unique procedures or user types, accuracy of the user, and task preferences.
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3.1.1 Departure from Existing Research

The primary difference between these definitions and previous work is the

focus on environmental performance instead of consumer preferences or customer

needs. Table 3.2 summarizes the comparison of five approaches to describing the us-

age context of a product and includes this dissertation in the right most column. The

definitions of this work focus on product operation, while alternative definitions focus

on the user’s perspective. The result is that taxonomies related to customer prefer-

ence predominantly define human factors as preferences for products and features.

Additional factors are only described in relation to the user and decision variables.

Table 3.2: Methods for Defining Usage Contexts

Green Belk He et al. Kurakawa Galvao Telenko
Define Factors X X X X X X

Consider Customer Preference X X
Consider Customer Needs X X X

Consider Energy Consumption X
Provide Specification Tools X X X

Quantify Performance X X X

More specifically, consumer preference studies predict choice behavior by mod-

eling changes in selection criteria and priorities given different consumer types and

different purchasing situations. For example, He et al. (2012) showed that comfort

was less of a priority for consumers purchasing a jigsaw that would be used out-

doors rather than indoors. Customer needs studies uncover new design avenues to

increase customer satisfaction. For example, Galvao & Sato (2005) compare procedu-

ral steps and product features to explore options for making a blender more intuitive

and physically easy to use. In contrast, energy consumption is estimated for a sin-

gle product given a range of users and situations. As an example of the difference

35



between customer preference and energy consumption, programmable thermostats

control thermal comfort without constant user intervention, but increase overall en-

ergy consumption in hotter areas because users do not turn off their air conditioning

systems while at work (Peffer et al., 2011). In this example, customer preference and

energy savings are in conflict and should be resolved.

Belk (1975) identifies the person, product and object as the three factors de-

termining desirability of a product. But, because his research is concerned with

marketing a certain product to a certain user, he only focuses on providing a taxon-

omy for situational characteristics. He defines the following five categories: physical

surroundings, temporal perspective, task definitions, social surroundings, and an-

tecedent states. The latter two categories, social surroundings and antecedent states,

relate to psychological aspects of a situation, including interpersonal relationships and

moods. The prior categories include more physical and measurable factors. Physi-

cal surroundings include location, weather, and other environmental characteristics.

Temporal perspectives includes dynamic considerations such as seasons or frequencies

of actions. Task definitions include intents or requirements. These latter categories

support the definitions introduced in this section, but are much broader to encom-

pass a number of different choice criteria. They also exclude interactions between the

product and situation, a central subject of this research.

Kurakawa (2004) and Kurakawa & Tanaka (2004) describe actors, actions, and

situations as relevant parts of scenarios used for mentally evaluating design concepts

during brainstorming. Actors/agents encompass the subject of an event as an ob-

ject, abstract thing, or person. Actions/events are movements or behaviors of the

actor/agent, and the situation is the surroundings and states of events. The defini-

tions supplied are more akin to parts of a sentence, as they are use for formulating
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motivating scenarios as stories. For example, the scenario for a Walkman is a person

(actor) listening to music (event) anywhere and at anytime (situation) (Kurakawa &

Tanaka, 2004). This scenario is used to help designers generate concepts and propose

product solutions. Because scenarios are being used for qualitative evaluation, one

need not specify all parts of the usage context “if the general idea can be understood,”

(Kurakawa & Tanaka, 2004). This caveat does not apply to LCI models which require

multiple assumptions or evaluations of multiple scenarios.

An additional difference between this and previous work is the focus on mod-

eling a product’s performance. Belk (1974, 1975) uses descriptions of scenarios to

survey consumers about the desirability of a product given different situations, but

are not concerned with more objective measures of product performance. Kurakawa

& Tanaka (2004) uses descriptions of scenarios to brainstorm design ideas, and Galvao

& Sato (2004) use task flows and functional diagrams to understand human-product

interactions, but neither quantify performance at the product level. Green (2005) uses

descriptions of different usage contexts to understand constraints on a product and

quantify design targets, but don’t do an extensive analysis of trade-offs and conflicts.

He et al. (2012) use physical models of a product to quantify product performance

for unique consumer types and estimate the percentage of users who will be satisfied

(Yannou et al., 2010). Although He et al. (2012) and Green (2005) consider more

objective design targets for products, these analyses are still focused on customer

needs for comfort and task completion. Additionally, these studies do not attempt to

estimate the likelihood of different usage senarios.

Green (2005) defines the usage context through qualitative studies of products.

He defines three types of factors that can be used to understand a customer’s per-

spective. These categories are customer characteristics, primary usage environment,
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and usage applications. Each of these categories are used to describe desirable prod-

uct attributes. Customer characteristics include physical abilities and skills. Usage

environments are similar to physical surroundings described by Belk (1975). Usage

applications include task characteristics, functions, frequencies and durations. These

contexts are used to understand constraints on the design and a user’s basic require-

ments. Because frontier design does not presume a design goal, the definitions and

tools that Green (2005) provides are very broad. The LCI focus of this work narrows

these definitions to a more manageable set of characteristics.

The work of He et al. (2012) includes product performance as part of the larger

set of customer preferences. They provide examples of a jigsaw and a hybrid elec-

tric vehicle. They define the usage context as “all aspects describing the context of

product use that vary under different use conditions and affect product performance

and/or consumer preferences for the product attributes,” (He et al., 2010, 2012).

Consequently, the researchers separate their usage context vectors for each subset

into performance related attributes and preference related attributes. They define

situational factors similarly to Belk (1975), and define product factors as design vari-

ables or characteristics of the product specified by the designers and characteristics

of competing products that consumers compare while shopping.

He et al. (2012) also provide definitions for human factors in usage context

modeling. They define customer profile attributes as those attributes of a consumer

that are constant for the time frame being modeled, such as age, gender or income.

They also define customer-desired product attributes as part of their set of human

factors. This set includes performance, ergonomic or aesthetic criteria that are unique

to a user. These definitions are useful for predicting resource consumption. For ex-

ample, water consumption associated with dishwashers should include user tolerance
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for the cleanliness of dishes to estimate how often dishes get rewashed or pre-washed.

Nevertheless, user preferences or tolerances are not a central theme of this work pro-

viding a narrower focus. As an example of this fundamental difference, customer

feedback was used in lieu of performance modeling for the hybrid vehicle example

(He et al., 2012).

Although all of these studies provide some form of taxonomy for describing

usage contexts, only Green (2005) and Galvao & Sato (2004, 2005) provide tools for

identifying and specifying these factors. Galvao & Sato (2005, 2004) introduce pro-

cedures as a major component of the usage context and focus on tools like function

structures, that show flows of materials, energy and signal in products, and task flow

or activity diagrams, that show the procedures that users undertake. They model the

usage context using three types of information: structure-function information, pro-

cedural information, and context-of-use information. Structure-function information

describes the product design and operation. Procedural information describes the

activities that user engage in with the product, and context-of-use information de-

scribes all other relevant information to understand the causes and effects relevant to

predicting product performance. Their focus is on affordance design, specifically how

product functions, such as buttons, better support user activities, such as choosing

settings. Their blender study identifies which blender functions are engaged in the

most user-interactions. This information can be used to increase the ease of use. In

contrast, this dissertation seeks to understand not the most frequent interactions, but

the most and least efficient interactions and their causes. It is desired to understand

the range of product performance beyond redesign of the product-user interface.

Green (2005) suggested the most complete approach to scoping and describing

the usage context including a wide variety of design tools. The central tool in their
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research is a template for creating customer interview questions. These questions

are very useful for describing broadly scoped contexts before the design space is

narrowed to the most significant customer needs. After the design space has been

narrowed, as in energy saving design, such a template is too general to provide direct

insights for LCI. For example, a set of guiding questions was initially developed for

this work, and tested using the examples of a cell phone, a printer, a vehicle, and an

electric kettle. The application led to much broader results than needed, shown in

Appendix A. The next section presents an alternative set of tools, more appropriate

for modeling the energy consumption of products. These tools include a checklist,

activity diagrams, and physical equations. The purpose is to focus on performance,

and reduce additional complications of customer preferences. Additionally, the use

of physical equations details aspects that pertain to energy consumption, specifically

consumption of materials and energy. An electric kettle study is used to illustrate

the method.

3.2 Tools for Specifying Factors and Edges

Checklists, physical equations, and diagrams of usage activities were found to

be the most useful tools for identifying factors that are pertinent to energy consump-

tion. These tools are presented as part of a series of steps shown in Figure 3.1. The

first step narrows the problem by scoping three terms of the LCI. These terms are

then expounded upon using a checklist that reminds the practitioner of the range of

influences on LCI parameters. Next, fundamental process equations are produced and

analyzed. The parameters of these equations are separated into design, noise, and

output variables to guide further exploration of uncontrolled parameters. Activity di-

agrams are then used to create flowcharts of the procedures at the level of the entire

usage stage and at the individual task level. The activities within these flowcharts
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are then used to prompt specification of additional relevant factors. Finally, the set

of factors after this step are included in an initial description of V, and entered into

an interaction matrix that determines the directional set of edges, E, that are used

to create the final DAG.

State Design Goal and LCI Metric

Identify Fundamental Factors

Formulate Physical Equa-
tions and Classify Parameters

Draw Activity Diagrams: Global and Task

Identify Factors for each ActivityR
ef

er
en

ce
C

h
ec

k
li
st

Create an Interaction Matrix

Draw Directed Acyclic Graph

Figure 3.1: Steps for Identifying Usage Context Factors

In the rest of this section and in the next chapter, the electric kettle example

from Telenko & Seepersad (2010) is revisited to test the use of PGMs for identifying

factors, creating life cycle inventory data and recognizing design opportunities. This

example was introduced briefly in Chapter 1 and Figure 1.2. Previous research by the

authors indicated that minimizing the duration of kettle operation can significantly

reduce energy use and overall environmental impact, and three alternative concepts

were introduced (Telenko & Seepersad, 2010). Overall, the lifetime energy consump-

tion, and the potential benefits of resource-saving features were found to be strongly

related to the user’s preferred final water temperature. Thus, the goal of the electric
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kettle example is to estimate the distribution of final water temperatures during use.

3.2.1 Stating the Design Goal and LCI Metric

The first step is to specify the environmental impact, such as energy consump-

tion, to be improved and the high level parameters of the LCI used to estimate it.

Stating the LCI problem involves three general terms shown in Equation 3.1. These

terms are used to quantify the chosen environmental impact metric for the total use

stage, IuseTotal. A normalizing unit of use, the functional unit U , is determined for

which the performance metric is estimated individually as I. This unit of use oc-

curs with some estimated frequency, f , during the useful life, t, of the product in

question. As described in Chapters 1 and 2, each of these terms includes underlying

assumptions that influence the values of I and IuseTotal.

IuseTotal =

(
I

U

)
ft (3.1)

In the kettle examples, these terms quantify the energy used to heat water

over the kettle’s lifetime. Energy consumed per use,
(
I
U

)
, is measured by specifying

the change in temperature of a certain amount of water. For example, two cups of

water from 25◦C to 100◦C. The frequency may be 8 times a week, and the average

expected lifetime may be four years. For simplicity, the frequency and lifetime terms

are assumed to be constant in the model of Chapter 4, but are discussed in this

chapter.

The importance of estimating these variables is evident from uncertainty in

the previous study shown in Figure 3.2. Each design concept is assigned an intended

average final water temperature, and consequently energy consumption, and a range

of possible energy consumptions, indicated by bars and dictated by differing final
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water temperatures. These values include manufacturing and end-of-life energy con-

sumption. Although the original concept is designed to cease heating at 100◦C, the

consumer has the option of interrupting the heating process and reducing energy

consumption. The same possibility exists for the kettle concept that incorporates a

lower default setting of 95◦C with no additional manufacturing investment. While

both designs have an intended energy consumption, actual energy consumption can

be lower. The final two concepts are intended to encourage minimal energy consump-

tion by heating the water to 76◦C; however, it is possible that the user could ignore

the variable temperature setting and continually heat the water to the maximum set-

ting, 100◦C. The selected temperature determines the viability of each new feature.

If the user continually selects the maximum temperature, 100◦C, for example, there

are no energy savings during use to offset the energy consumption associated with

the additional components in the concepts with variable temperature settings.

Figure 3.2: Possible Energy Impacts of Alternative Electric Kettle Designs

The outcomes of this step are a basic description of what the LCI should mea-

sure, and what variables are present in the functional unit. The ranges of values for

these terms are the result of multiple usage context factors and differ between scenar-

ios. Each additional step of Figure 3.1 will identify factors that provide background

43



information useful in estimating values for Equation 3.1.

3.2.2 Identifying Fundamental Factors

The next step prompts practitioners to describe essential factors relevant to

evaluating the LCI problem. A central reference for this step and the following three

steps is the checklist developed from the literature and shown in Table 3.3. To begin

brainstorming, practitioners should address each of the fundamental categories in the

left column, with User, Task, and Functionality being the most universal. Location

and Maintenance are also important considerations, but not as significant across

commercial products. Aesthetics are easy to forget, but have significant contributions

to prolonging the life of many products. The column on the right provides examples

of considerations for the fundamental categories.
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Table 3.3: Checklist for Factors

HUMAN FACTORS

User: number of users, task preferences, efficient habits, inef-
ficient habits, use frequency, high/low demand, level of
wear, replacement schedules, maintenance schedules

SITUATION FACTORS

Task: types, reusable materials, consumable, durations, en-
ergy and mass loads, material inputs, masses, dimen-
sions, quantities, physical properties

Location: altitude, population density, public/private/commercial
setting, physical or social restrictions, storage protec-
tion, environmental erosion, temperatures, humidity,
precipitation, wind, solar insolation

PRODUCT FACTORS

Maintenance : cleanliness, repair frequency, upgradeability, expected
life, failure modes, expected declines in performance,
normal and abnormal wear

Aesthetic: vulnerability to changes style, expected aesthetic life,
cosmetic wear, upgradeability

Functionality: physical equations and scientific principles, efficiency
metrics, ideal operating conditions, design variables, ob-
solescence, default and user settings, user guiding fea-
tures, automatic functions, capacity for energy and ma-
terial loads

A list of fundamental factors for the electric kettle is shown in Table 3.4. The

primary insights from this list are descriptions of different user habits and different

tasks. For example, some users heat water and collect the water immediately. Others

are delayed in collecting the heated water and may have to reheat the water. Many

users overfill their kettle and heat two or more times the required amount of water.

Different tasks present different requirements for water mass and temperature. For
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example, pre-heating water for boiling pasta requires more water and boiling tem-

peratures, but gives the user less room to overfill the kettle. Additionally, green teas

are best brewed in water near 80◦C while black teas are best brewed in water near

100◦C. Further considerations revealed in this list include the influence of climate on

task selection and the governing physical equations.

Table 3.4: Fundamental Factors for an Electric Kettle

HUMAN FACTORS

User: number of residents, preferred serving size, tendency
to overfill, tendency reheat, frequency of use, preferred
uses, task selection criteria (e.g. weather, disposition)

SITUATION FACTORS

Task: hot teas, cooler teas, iced teas, coffees, other food, hot
water for cleaning, required final temperatures, average
serving size,

Location: climate, seasons

PRODUCT FACTORS

Maintenance : none

Aesthetic: none

Functionality: energy balance, electricity to heat conversion, temper-
ature measurement, indicates completion (e.g. click or
boiling sound), measuring gradients

Using the checklist in Table 3.3 to create the set of fundamental factors scopes

the problem by targeting users and differentiating between tasks. The causes for

different tasks, and the repercussions of different task requirements can follow from

this foundation. The checklist also prompts brainstorming of fundamental process

equations that govern the product’s operation. At the end of this step, the practitioner

should have identified the most influential aspects, instead of becoming overwhelmed
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by a review of all possible aspects of the usage context.

3.2.3 Formulating Physical Equations and Classifying Parameters

The third step is to address the fundamental process equations and classify

these variables using a P-diagram. The P-diagram is used to sort the equation pa-

rameters into design variables, noise factors, and output variables, as shown in Figure

3.3. The design variables are controlled by the manufacturer and are nearly constant

throughout a product’s life. The noise factors are parameters controlled by or clas-

sified as human and situational factors. These factors are outside of the designer’s

control, but typically within the user’s influence. The output variables describe the

state of outputs with regard to task requirements and are affected by both noise

and design inputs. This third step is useful for predicting which factors are of di-

rect physical importance, but outside of the designer’s control and require additional

consideration or modeling.

Main
Function

Noise Factors

Design Variables

Output Variables

Figure 3.3: P-Diagram Template

Recall from the fundamental factors, that the kettle is governed by an energy

balance, shown in Equation 3.2 and the schematic of Figure 3.4. In this equation,

the kettle’s efficiency, ε is calculated as the ratio of power in, Pelectric, to the sum of

power lost during conversion, which is the first term in the denominator, Pelectricεr,
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and the heat flux to the surroundings, which is the second term in the denominator.

Pelectric is the power drawn from the outlet. εr is the efficiency of the resistive heating

element. k is the thermal resistance of the kettle walls, with A
L

representing the heat

transfer area of the wall, A, and wall thickness, L. This heat transfer is assumed to

be primarily conductive heat transfer, driven by the difference in water temperature

and room air temperature, (Tair − Twater).

ε =
Pelectric

Pelectricεr + kA
L

(Tair − Twater)
(3.2)

Figure 3.4: Schematic of an Electric Kettle

The kettle efficiency during use is then included in the updated LCI term

shown in Equation 3.3. The metric of lifetime energy use, E, is calculated as the

product of the frequency of use, f, the lifetime of the product, L, the efficiency of

the kettle, ε, and the energy storage term in which m is the mass of the water, Cp is
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the thermal capacity of water, Tf is the final water temperature, and Ti is the initial

water temperature.

E = LfεmCp(Tf − Ti) (3.3)

Boil Water

Water Mass (kg)
Initial Water Temperature (◦C)
Room Temperature (◦C)

Power (W)
Geometry (m)

Shut Off Temp. (◦C)
Insulation (k)

Resistive Efficiency (η)

Overall Efficiency (Eout/Ein)
76◦C ≥ Final Temperature ≤ 100◦C

Figure 3.5: P-Diagram for a Kettle

Figure 3.5 depicts the p-diagram used to identify usage context variables re-

lated to Equations 3.3 and 3.2. The p-diagram categorizes each parameter as a

design, noise, or output variable. Control variables are usually independent of the

usage context, but the user can sometimes circumvent intended operation in a context-

dependent way. For example, shut-off temperature for an electric kettle is not neces-

sarily pre-defined. Although the kettle comes equipped with a default shut-off sensor,

the user may end the heating process prematurely depending on their desired out-

put. In this and other ways, control variables may become noise variables and require

further exploration.

The outcome of this step is an objective set of parameters that need to be

quantified for a performance model. Some of these parameters are controlled by the
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design, as illustrated by the P-Diagram, while others are vulnerable to the usage

context. These noise factors can then be used as the focus for subsequent studies of

usage procedures.

3.2.4 Drawing Activity Diagrams and Identifying Factors for Each Ac-
tivity

The final brainstorming steps employ activity diagrams to understand typical

procedures for product use. Activity diagrams are flow charts describing each activity

in which a user engages while operating or interacting with a product. Two levels of

diagrams are suggested for LCI studies, as shown in Figures 3.6 and 3.7.

Purchase
Transport
Unpack

Store

Use ReplaceMaintain

Figure 3.6: Global Level Activity Diagram Template

Task
Selection

Prepare:
Product,
Inputs

Control
Product

Evaluate:
Product,
Situation

Prepare
for Storage

Figure 3.7: Task Level Activity Diagram Template
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First, there is the global diagram, shown in Figure 3.6. This diagram is gen-

erally independent of a given task. It involves the higher level aspects of a product’s

useful life including storage, maintenance, and replacement activities. These aspects

relate to the last two terms of Equation 3.1. The second level of diagramming is

the task level activity diagram, shown in Figure 3.7 which describes aspects of the

functional unit of use. Each task can have identical or different activity diagrams,

depending upon the task and its complexity, but tasks usually share similar proce-

dures for a given design. The templates in Figures 3.6 and 3.7 show the general, but

not necessarily universal types of activities and ordering that should be considered.

After drawing the activity diagrams, the factors that are important to each

activity are listed with the help of the checklist. For maintenance, this requires listing

the product factors that are maintained and the situational factors or product factors

prompting maintenance. Similar considerations are made for each activity. Again,

building from the activity diagram focuses the factor identification task to directly

relevant factors.

Purchase
kettle

Set on
counter

Heat
Water

ReplaceClean

Figure 3.8: Global Level Electric Kettle Activities

Figure 3.8 depicts the global activity diagram for the electric kettle. Electric

kettles require very little to no maintenance. The rate at which minerals from the
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water are deposited is barely noticeable to a consumer, but the kettle may be cleaned.

It is assumed that additional energy from cleaning is negligible. Replacement of the

electric kettle is likely to be a function of how often the product is used. The wires

could be damaged from stress during everyday handling, and the electronics could

fail from age and frequency of loading. Storage is usually indoors and does not affect

the useful life. It is most likely that the product will be replaced for aesthetic reasons

or to obtain kettles with additional features. These factors are described as: (1)

expected functional life, and (2) expected aesthetic life.

Determine
need for

hot water

Measure
water in

kettle

Fill from
water
source

Set temp
& flip
switch

Check
water
temp

Pour out
selected
amount

Figure 3.9: Heat Water Sub-Activity Diagram for an Electric Kettle

Figure 3.9 depicts the activity diagram for the process of heating water. The

first activity is to determine the need for hot water. This includes factors influencing
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choice, such as time of day or outdoor temperature. Time of day is strongly related

to the tasks of brewing coffee or pre-heating water for boiling pasta. Outdoor tem-

perature influences the selection of warmer drinks like hot chocolate or cooler drinks

like iced teas. Where the water comes from can also be important. If the water comes

from the tap, the initial water temperature may be a cold winter temperature or a

hot summer temperature. If the water has been left sitting in the kettle, it is room

temperature. Each task has different water volume and temperature requirements

that might be controlled by the user. The user’s habits and knowledge are impor-

tant in understanding tendencies to overfill the kettle or use unnecessarily high water

temperatures. Relevant factors also include the user’s measuring method and accu-

racy. The user is then able to set the desired water temperature, which has a level of

accuracy, and turn the kettle on. The user can then check the water temperature to

stop the kettle early if they are impatient, or let the water cool if that is preferable.

A binary factor to describe these two user types might be classified as an active or

passive user. The water is then poured out, and some water may be left in the kettle.

After listing factors engaged in each task level and global level activity, the

practitioner will have a broad and relevant set of factors to use as vertices in their

PGM. These factors can then be used to iteratively construct a set of edges and DAG

structure in the final step.

3.2.5 Creating an Interaction Matrix and Directed Graph

At the end of brainstorming, a considerable number of factors are available

and should be organized into a Directed Acyclic Graph (DAG). Table 3.5 depicts

an abridged interaction matrix for the electric kettle. Each factor is entered into a

column and row. The columns represent parent vertices or factors that influence other

factors directly. The rows represent child vertices or factors that are influenced by
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other factors. The cells are filled to match parent factors directly with child factors.

Factors without any parents are background variables that might be considered root

causes and provide primary distinctions between different usage scenarios. The matrix

is useful for coding and relating variables without the additional cognitive load of

drawing a full DAG. Additionally, the matrix may require iterative revisions before

informing the sketch of a DAG.

Table 3.5: Factor Relationship Matrix for Electric Kettle
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Month

Climate
Residents

Mass of water
Type of drink

Required temp
Type of drink

Final temp
Frequency of use

Intial water temp
Energy

In Table 3.5, it is easy to identify climate and the number of residents as im-

portant usage context factors. Initial water temperature is influenced by the climate,

as the faucet temperature is a function of outdoor temperature. The final tempera-

ture that the user selects is some approximation of the required temperature dictated

by the type of drink. The type of drink is selected based upon the climate which is
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determined by the region and time of year. The mass of water is influenced by the

number of residents and the type of drink. The frequency of use is influenced by the

number of residents and the climate. Total energy consumption during the useful life

is added to the bottom row to represent the metric of interest. It is a deterministic

function, from Equations 3.3 and 3.2, that will be included in the model to evaluate

the LCI. Energy is not listed as a column and cannot be a parent node, because it

would introduce a directed cycle into the DAG, and the model does not allow for

dynamic feedback loops. Finally, the interaction matrix can be illustrated in graph

form shown in Figure 3.10 where it may be more easily checked for accuracy.

Figure 3.10: PGM of an Electric Kettle

The outcome of this final step is the initial graph structure. This structure

can then be evaluated qualitatively or quantitatively, and the PGM model can be

specified. The next chapter introduces some methods for checking the accuracy of

reasoning in the graph structure, assigning probability distributions and creating LCI
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estimates. The kettle example is continued in Chapter 4 to illustrate the phases of

data collection, statistical inference, and model analysis.

3.2.6 Chapter Summary

This chapter described the contributions of the first task of this dissertation.

A taxonomy and set of tools were introduced for creating a graph, G, of the us-

age context. Existing taxonomies and definitions from the literature were consulted

and reviewed in defining the taxonomy for this dissertation. A unique taxonomy

of human, H, product, P, and situation, S, factors were defined. The new set of

definitions reflects the departure of this work from previous work, in that most ex-

isting taxonomies focus on the user or the consumer and are not focused on energy

consumption or efficiency. Consequently, a new approach to identifying factors was

developed.

Brainstorming of factors to specify the set of vertices, V, and edges, E, of

G was found to be a difficult and broadly scoped problem when following examples

in the existing literature. The steps outlined in Figure 3.1 provide a framework for

developing a comprehensive set of factors that are specialized for environmentally

conscious designs and LCIs. An advantage of the framework is the re-purposing of

common design tools. The resulting approach combines analysis of physical equations

with analysis of user activities. A specialized checklist was also developed using

the usage context based design literature and the environmentally conscious design

literature.

The result of using these tasks and tools is an initial DAG that can be used

for probabilistic graphical modeling. The process and expected results are illustrated

through the use of an electric kettle example. This example is continued while demon-

strating the next task of this dissertation. Chapter 4 describes the PGM procedure for
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estimating usage context effects and analyzing unique scenarios. The contributions

of this chapter and Chapter 4 will then be applied to a lightweight vehicle example

problem in Chapters 5 and 6.
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Chapter 4

The Probabilistic Graphical Modeling Method

Without a quantitative understanding of the usage context, LCIs are not very

useful for evaluating the effect of design changes on energy consumed during product

use. In estimating the amount of energy consumed during the use stage of a product,

it is necessary to make assumptions about the operating conditions and frequencies

as well as the product’s service life. The previous chapter demonstrated that these

operating conditions can be related to more predictable aspects of the usage context.

For example, the designer of an air conditioning system can predict its energy con-

sumption more reliably given knowledge of the local climate. The central task of this

chapter is to demonstrate that probabilistic graphical models can operationalize such

knowledge in order to stochastically estimate LCIs and quantify the uncertainties

associated with an LCI.

In the previous chapter, the usage context is represented as a directed acyclic

graph. Each factor of the usage context is a node in the graph, and each edge of

the graph indicates a directional dependency between nodes. This representation is

developed using causal reasoning, and belongs to the family of PGMs called Bayesian

Networks (Pearl, 1988). Each set of parent and child nodes is characterized using a

locally specified probability distribution. The result is a factorized joint distribution

for the entire set of usage context factors. More complex distributions can then

be estimated for the whole usage context or some subset of factors that constitutes

a unique scenario. The term PGMs is maintained in this work because not all of

the relationships are modeled using conditional probability distributions. Therefore,
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the models are not strictly Bayesian but the terms may be used interchangeably

throughout this chapter.

The PGM method is introduced in this chapter, beginning with the probability

and graph theory behind PGMs in Section 4.1 and the ability to predict distributions

for an LCI in Section 4.3. The review of probability theory includes the chain rule

for conditional probability and Bayes’ Rule. Together, these theorems enable the

factorization of high-dimensional distributions and estimation or exact calculation of

distributions of interest. Additionally, frequentist and Bayesian inference methods

are discussed for specifying the parameters of local probability distributions. Gibbs

sampling for approximating the total distribution is also explained (Casella & George,

1992). Finally, the complete process is introduced for specifying a graph structure

and analyzing it. The process is then demonstrated by continuing the example of the

electric kettle from Chapter 3.

4.1 Probabilistic Graphical Modeling Theory

The goal of constructing a PGM is to represent a joint distribution, P (X), over

some set of random variables, X = {X1, X2, X3, ..., Xn}. These random variables are

structured in a graph, G = (V,E), with vertices, V = X, and a set of edges, E. For

the graph shown in Figure 4.1, the joint distribution, P (A,B,C,D), is represented

using vertices, V = {A,B,C,D}, and the set of edges, E = [(A,B) , (B,C) , (B,D)]

A

B

C

D

Figure 4.1: Graph of Random Variables A, B, C, D
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The chosen graph is a directed acyclic graph (DAG) with the edges represent-

ing directional dependencies. For example, the structure in Figure 4.1 shows that C

is dependent upon B and conditionally independent of D and A. Therefore, observing

a value for C always increases our knowledge of the value for B, but only increases

our knowledge of A and D if B is unknown. The fact that edges within this graph

are directed, as indicated by the arrows, allows one to describe the dependencies as

conditional probability distributions and build the structure using causal reasoning.

4.1.1 Relevant Graph Theory

Causal reasoning can be applied to graph building in one of three ways: the

graph can be learned directly from data through automation; the graph can be con-

structed from expert knowledge; or the graph can be constructed semi-automatically.

For LCIs, automated and semi-automated learning is not currently viable, as data for

all factors cannot be measured concurrently to represent sampling from a joint distri-

bution. Instead the graphs must be constructed from expert knowledge. This process

was discussed in Chapter 3, but additional techniques for building and assessing these

graphs warrant further discussion.

Table 4.1: Typical Variables and Relationships from Kjaerulff & Madsen (2007)

As shown in Table 7, Kjaerulff & Madsen (2007) define four types of variables

4.1 that compose PGMs. Problem variables are the unobserved variables a practi-
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tioner wishes to predict or understand. For example, one might wish to know the

probability of a disease. Background variables are variables that can be directly ob-

served, and are causes for other variables related to the problem. For example, family

medical history is useful for estimating the probability of developing some diseases.

Symptom variables are observable and affected by the problem variables. For exam-

ple, observable symptoms of a disease, such as sneezing, would be symptom variables.

Mediating variables are not usually of interest or easily observable, but they are nec-

essary to obtain the correct independence relationships between other variables. For

example, the disease may cause a change in internal chemistry that, in turn, may

cause a symptom.

Building from this understanding of the types of variables, one can qualita-

tively and quantitatively assess the structure of a graph. Neil et al. (2000) identified

four common problems in constructing graphs. First, the direction of edges must

be chosen. Second, nodes must be representable by a Bayesian network. Third, the

number of nodes should be minimized, but remain adequate for describing the con-

ditional dependencies. Fourth, competing models and fragments of models might

be reconciled. Neil et al. (2000) propose five unique idioms that can be applied to

qualitatively evaluate fragments, or small clusters of nodes, in a Bayesian network.

A flowchart for applying the idioms is shown in Figure 4.2.

The first idiom is the Definitional/Synthesis idiom describing the synthesis

of multiple nodes into a single node. This idiom is of particular interest because it

describes deterministic relationships which are often necessary in product performance

models. For example, the number of pages being printed has a deterministic effect

on printing time which influences the operator’s decision to use duplex settings. This

idiom can also be used to reduce the number of parents on a node and, consequently,
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Figure 4.2: Idiom Selection Flowchart from Neil et al. (2000)

the complexity of the local probability distribution. By introducing an intermediate

synthesis node, a subset of parents can be divorced from the child node.

The second idiom is the Product-process idiom or Cause consequence idiom

and describes the direct causal relationship between two nodes. These nodes can also

be considered as having inputs as parents and outputs as children.

The third idiom is the Measurement idiom. Some nodes represent measured

values. These measured values have at least two parents: the accuracy of measure-
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ment, and the true value.

The fourth idiom is the Induction idiom. This idiom describes the process

of statistical inference. Specifically, it describes the network fragment connecting a

population parameter, such as a mean, and some set of observed instances. Each

new observation increases knowledge of the parent population parameter that cannot

be directly observes. The population parameter must be the parent node in this

situation.

The fifth idiom is the Reconciliation idiom. This idiom introduces a node that

compares and reconciles two competing model fragments. For example, the quality

of a manufacturing system might be predicted through a model, or the quality may

be inferred from observed physical outputs. These two model fragments might not

agree, and require a reconciliation node to reconcile the two or indicate if the resulting

hypotheses for quality are in conflict.

These idioms can be applied qualitatively as thought experiments and quan-

titatively once data has been collected. Qualitative assessment of the DAG structure

is fundamental to data sampling because the structure prescribes the required local

distributions. These probability distributions and quantitative aspects of PGMs are

introduced in the next section.

4.1.2 Conditional Probability Theory

As mentioned, the goal of a constructing a PGM is to represent a joint distri-

bution of random variables, P (Y, X). Generally, Y constitutes observable variables

and X represents some unique variable of interest . To represent this joint distribu-

tion directly, one would need to specify the probability of X for every combination of

possible values Y. This section introduces the three fundamentals of probability the-
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ory that enable PGMs to factor the joint distribution into smaller, more manageable

and measurable distributions.

Conditional probability is defined as the probability of one or more random

variables, given values for one or more different random variables. Shown in Equation

4.1, the joint probability P (Y, X) can be factored into the conditional probability,

P (Y|X) or P (X|Y), and marginal probability, P (X) or P (Y), using the chain rule.

These factors are the local conditional probabilities, and the factorization is dictated

by the graph’s edges.

P (Y, X) = P (Y|X)P (X) = P (X|Y)P (Y) (4.1)

Bayes’ Rule in Equation 4.2 is the foundation for performing inference in a

Bayesian network because it allows one to solve for inverse conditional probabilities.

For example, it facilitates estimating the probability of a cause given observance of

the effect. In Bayesian inference, the P (X) term is called the prior probability of

the cause X. It describes our belief in different values of X without observance of

the effect Y . The P (Y|X) term is called the likelihood. It describes the probability

that the effect Y will occur given the cause X occurs. P (X|Y) is called the posterior

probability. It reflects the updated belief that the cause X has occurred given that

Y is observed.

P (X|Y) =
P (Y|X)P (X)

P (Y)
=

P (Y|X)P (X)∫
P (Y|X)P (X)dX

(4.2)

Instead of specifying P (y directly in Bayesian network representation, it is

often calcualted by integrating the product of the conditional probability, P (Y|X),

and the prior probability, P (X), over values of X as shown in the denominator of

Equation 4.2.
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Applying the chain rule and Bayes’ rule to a network, such as the network of

Figure 4.1 allows researchers to perform a number of interesting queries. Before those

queries can be performed, each local distribution must be defined, as described in the

following section.

4.1.3 Parameter Estimation

There are a number of approaches to parameter estimation in PGMs. An

extensive treatment of these approaches can be found in Koller & Friedman (2009).

Method selection is dictated by both practitioner preference and the availability of

data. If substantial data are available, the parameters of the conditional distributions

can be estimated using traditional frequentist methods. If very few data are available,

Bayesian methods of inference can be applied to estimate the parameters. Bayesian

methods can also be used to reconcile two distinct data sets that are not identically

sampled. Both frequentist and Bayesian methods are utilized in this dissertation.

Most PGMs use frequentist statistical inference and rely solely on available

data for characterizing distributions. Maximum likelihood estimation is the predom-

inant method for approximating the true parameter of a distribution, such as the

mean, from a sample of data. These parameters, called maximum likelihood esti-

mates, maximize the likelihood of the observed data They are calculated by solving

for zero gradients of the log-likelihood. For discrete data, this operation yields that

the probability of a value is proportional to its frequency in the data set. The max-

imum likelihood estimate for a conditional probability,P (x|y), is shown in Equation

4.3 for variable X with parent variable Y . The probability, θx|y, for a value x given a

value y is the count of paired instances of those values, M [x, y], over the all instances

of x, M [y].
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θx|y =
M [x, y]

M [y]
(4.3)

Just as the graph factors the joint probability distribution, the global decompo-

sition property of likelihoods allows the maximum likelihood estimate to be calculated

for each local conditional probability independently of the other conditional proba-

bility functions. Each local conditional probability may be discrete or continuous.

PGMs often use discrete probability tables, but linear Gaussian distributions, shown

in Equation 4.4 for a variable X with values for its n parents y = [y1, y2, ...yn] are

also common. These parameters, (β0, .., βn, σ
2) are solved for individually to provide

the highest likelihood of the observed data for X .

P (X|y) = N
(
β0 + β1y1 + β2y2 + ...+ βnyn, σ

2
)

(4.4)

The usefulness of the maximum likelihood estimator is dependent on the size

and quality of the data available. For this reason, Bayesian statistical inference

combines estimates of the likelihood of observed data, D, with prior beliefs about

the parameter of interest, θ. These prior beliefs take the form of a prior probability

distribution, P (θ), over the range of possible θ. Bayesian statistical inferences uses a

modified form of Bayes’ Rule, shown in Equation 4.5, that calculates a new posterior

probability distribution,P (θ|D), for θ using the prior probability for θ, the likelihood

of the data given θ, P (D|θ), and the marginal likelihood of the data for all possible

θ.

P (θ|D) =
P (D, θ)

P (D)
=

P (D|θ)P (θ)∫
P (D|θ)P (θ)dθ

(4.5)
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The selection of a prior distribution for the parameters is constrained by the

form of the likelihood distribution. In order to obtain a posterior probability density

function of the same form as the prior probability density function, the prior must

be a conjugate of the likelihood. More information on choosing priors and managing

their influence on the resulting posteriors (i.e. weight relative to the data) can be

found in Gelman (2003).

4.1.4 Inference via Sampling

Once the local probability distributions are estimated, the network can be

used for inference. This task requires integration over multiple high-dimensional

conditional probability distributions, and can become intractable. Sampling methods,

most notably Markov Chain Monte Carlo (MCMC) methods, have enabled the use of

PGMs for Bayesian inference by approximating the desired conditional and marginal

distributions. This section introduces the Gibbs sampling algorithm, which is used

frequently in Bayesian inference.

Gibbs sampling seeks to approximate a distribution, P (X), by sampling from

each unobserved variable in the network. Starting from an initial sample, either

specified or generated randomly, the Gibbs sampler uses its current state to sample

a new value for each variable given the current state of all of the other variables.

For example, in Figure 4.3 sampling may be intiated at state S = a1, b1, c1, then B

will be resampled and updated using A = a1 and C = c1 and so forth. The random

walk that guides successive sampling is defined as a Markov process. In an MCMC

sampling algorithm, such as Gibbs sampling, the probability of a future state, S, is

only dependent upon the current state.

Equation 4.2 satisfies this property and is the basis for forming Gibb’s sampling

chains. The resulting posterior probabilities used for each sample are shown generally
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A

B

C

Figure 4.3: Graph of Random Variables A, B, C

in Equation 4.6 where ch are the child variables, and pa are the parent variables. This

posterior probability is simply a normalization of the product of the local probability

distributions for the variable being sampled, X. Although this posterior is not the

true posterior, as it relies on samples generated from the prior, it is much closer than

some alternative sampling methods (Koller & Friedman, 2009). The posteriors will

eventually converge to approximate the true distribution as the number of samples

increases.

P (X|S) =
P (X|pa)P (ch|X))∑
P (X|pa)P (ch|X)

(4.6)

It is important to note that the time to convergence using the Gibbs algorithm

cannot be predicted. Because the initial state guides subsequent sampling, the sam-

ples should be monitored to assess convergence and the required number of “burn in”

samples (Gelman, 2003; Koller & Friedman, 2009). Time traces of samples usually

exhibit asymptotic behavior as the distributions being sampled become mixed and

near convergence. Monte carlo errors that report the variance between sample means

should be less than 5% of the sample variance for convergence (Thomas et al., 2012).

Nevertheless, the procedure may never converge or may converge to different results if

the distribution has separate modes with strong probability. Consequently, multiple

chains are usually sampled at once with different starting samples to ensure that all

of the chains converge similarly.
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4.2 Method Overview

Using the fundamentals reviewed in Section 4.1, this section presents the pro-

cess for creating a PGM and for estimating use stage consumption for an LCI. The

initial step is to create the graph structure by identifying and relating factors de-

scribing the relevant usage context. Next, data are collected for the local probability

distributions, and statistical inferences are made using either frequentist or Bayesian

methods that include prior qualitative information and collected quantitative data.

Finally, inferences can be made about outcome variables given different scenarios.

These values are incorporated into LCIs of the competing design concepts and sensi-

tivity studies.

Recall that researchers begin by specifying the metrics and deterministic, en-

gineering equations relevant to the life cycle analysis. Usually, the use stage of an LCI

is defined by prescribing the product’s operating performance and duration as related

to some benchmark scenario. For example, a kettle’s use is defined as a product of

the amount of energy used for a specific operation at some frequency throughout its

useful life. These LCI parameters should then be described by theoretical engineer-

ing equations, if possible. For example, the kettle’s energy consumption is related

to water mass and ambient temperatures using energy balances. These equations

revealed further important use variables through the application of a P-diagram and

checklist. Activity diagrams are also helpful for understanding the procedures and

order of influence during product operation. Finally, interaction matrices help create

the initial set of edges for a PGM.

The graph structure is revised and data collection begins with dedicated in-

terviews, experiments, and literature studies. Previous studies in engineering, policy,

marketing, and psychology may describe consumer activity and reasoning in the con-
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Figure 4.4: Flowchart of PGM Method
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text of interest and should be consulted to improve understanding of the relevant

factors and support selection of the graph structure. At the conclusion of these stud-

ies, the researcher will have a list of the influential usage factors and a corresponding

set of edges, supported by qualitative and quantitative data.

Once the initial structure is created, probability distributions can be assigned

to each node. Likelihood and prior distributions can be created by consulting litera-

ture values and expert judgment. If necessary, additional experiments can be designed

to update the prior beliefs about parameters using Bayesian statistics as described

in the previous section. During data collection, the structure may need to be revised

given new insights. After the nodes are populated by data, the PGM can be inte-

grated into the LCI and design process. The analysis is unique to every LCI. The

next section demonstrates this process for the electric kettle.

4.3 Kettle Example

A previous study of electric kettles suggested four possible redesigns to take ad-

vantage of lower water temperature requirements (Telenko & Seepersad, 2010). The

first new design concept required no additional manufacturing requirements. This

concept simply employed an alternative bimetallic switch to turn off the heater at

95◦C instead of 100◦C. The second new design concept employed a variable temper-

ature setting with two alternative embodiments with increasing energy consumption

during manufacturing. The first embodiment specifies a dial for selecting the setting.

The second embodiment adds an LCD screen with the dial. This section revisits the

LCI study from this previous work by revising values for the energy use according to

results of a PGM.

A summary of the environmental impacts of a Proctor Silex kettle was shown
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in Figure 1.1 to illustrate the use, manufacturing, and end-of-life contributions. As

part of the LCA, the usage parameters of the electric kettle had to be estimated as

part of the functional unit. In the initial study, the kettle was assumed to boil, raising

the temperature from 25◦C to 100◦C, two and a half mugs of water, eight times a

week for a lifetime of four years. Each of these parameters were assumed to be fixed,

and relationships between them were not considered. The PGM facilitates concur-

rent variation of all variables that define the functional unit, along with additional

variables that influence the variables in the functional unit. In most LCIs, only a

range of possible values can be identified and correlations between these values are

often ignored.

Creating distributions for a PGM involves two steps: (1) specifying the like-

lihood and prior distribution, and then (2) updating the prior using data. Figure

4.5 depicts the kettle network reduced to a simple chain with additional nodes to

help illustrate the implementation of Bayesian statistical inference. Each node for

which data is collected (climate, required temperature and final temperature) has an

additional parent node to represent the associated conditional parameter.

Figure 4.5: Reduced PGM of an Electric Kettle

Table 4.2 details each node, the assigned likelihood distribution and its asso-

ciated mean and variance. The month node is a uniform distribution across values

representing each month of the year. The climate is a continuous variable in degrees

Celcius. The type of drink is a classifier which classifies the type as a hot drink if the
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Table 4.2: Likelihood Distributions for the Kettle Graph

Table 4.3: Prior Distributions for the Kettle Graph

outdoor air temperature is below 21◦C and as a cooler drink otherwise. The required

temperature corresponds to the specifications of a type of drink. Finally, if the re-

quired temperature is above 92◦C, a distribution of higher final temperatures is used.

Otherwise, the need is classified as cool, and a distribution of lower temperatures is

used.

Table 4.3 describes the prior distributions for the means. The most probable

parameter is chosen according to Equation 4.7. Climate values are estimated from

online weather sites to provide a mean and range in accordance with historic high and

low temperatures. The other values are best guess estimates informed by the prior

research (Telenko & Seepersad, 2010). Data from online weather sites and a survey

of 34 respondents from 4 regions of the United States were used to condition prior

beliefs about the mean for each likelihood distribution.

µi|j = argmaxθ
(
P (θi|j|Di|j)

)
(4.7)

The survey included a number of multiple choice questions aimed at refin-

73



ing the structure. Each respondent reported their regional location described as the

South, West, Midwest, Northeast or Southeast United States. Each respondent also

submitted information regarding his or her types of water needs according to season.

Table 4.4 shows a sample question and the aggregate number of responses for each

selection. All of the qualitative data is quantified using a single point estimate for

temperature needs. For example, a respondent who indicated a preference for cof-

fee in the winter would be assigned a required temperature of 95◦C. A respondent

who indicated a preference for iced tea in the summer would be assigned a required

temperature of 80◦C.

Table 4.4: Sample Kettle Survey Question

Because each response was structured to clarify the state of parent and child

nodes in the chain, the quantified estimates for these responses were used to con-

dition the successive child nodes. For instance, Equation 4.8 details Bayes The-

orem for updating the prior belief about the mean outdoor temperature during

winter,P (θClimate|Month), given an observed data point for that variable, y. To simplify

the calculation, only the kernels of the distributions were used. Equation 4.7 can still

be applied without normalizing the joint distribution, as in Bayes rule (Equation 4.5).

P
(
θClimate|Month|y

)
∝ P (y|θClimate|Month)P (θClimate|Month) (4.8)

Figure 4.6 shows a sample of the resulting prior and posterior distributions
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for the parameters of each node in the chain. Generally, these describe the distri-

butions from which samples might be drawn for winter months. Although the data

is estimated, a few observations can be made. Most of the respondents were from

Texas, and the climate mean shifts towards a warmer temperature. The means of

other temperatures did not vary as much, because the range of viable temperatures

is much smaller. For example, most hot beverages should be heated to between 90◦C

and 100◦C.
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Figure 4.6: Prior and Posterior Distribution for Electric Kettle Factors

After defining the conditional distributions, inferences were made about the

marginal distribution for the final temperature. For this example, a simple forward

sampling sequence generates histograms for each usage context variable. Starting with

a random month sampled from a uniform distribution, each subsequent distribution
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is prescribed and further samples are drawn, as shown in Figure 4.7. Ten thousand

simulations generated ten thousand values for each node along the chain.

Figure 4.7: Example of Sampling for Kettle Network

Histograms of these results are shown in Figure 4.8. Although the required

temperature is distributed approximately normally with a mean of approximately

95◦C, the final temperature is determined by the user and can be very different than

the required temperature. Recall that if the required temperature is above 92◦C,

the user is less likely to stop the heating process prematurely. Otherwise, the user

is more conscientious of lower temperatures. Thus a bifurcation is present in final

temperatures caused by the hot and cool temperature needs. Although a wide range

of probable temperature values exist, the mean temperature value is still towards the

upper end of the range, approximately 95◦C.

Figure 4.8: Histograms of Samples for the Electric Kettle PGM
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Figure 4.9: Histogram of Marginal Energy Use

Using the PGM tool, it is possible to quantitatively investigate the impact of

usage variability on the lifetime energy consumption of the concepts with variable

temperature settings. Recall that the first two concepts employ default temperature

settings of 100◦C and 95◦C, and the final concept employs a variable temperature

setting to take advantage of the range of temperature needs. Shown in Figure 4.9,

the resulting histogram indicates that a wide range of energy consumption is possible,

but that higher values are more probable. The lower temperature needs that inspired

the variable setting design are improbable. This result is likely due to the frequency

of water being used for high-temperature needs, such as coffee and cooking, by survey

respondents.

Table 4.3 shows the results for lifetime energy consumption during use and

the total energy LCI of each product concept. The PGM only models the final

temperatures for the variable setting concept. Therefore, a final temperature of 95◦C

or 100◦C is used for the respective bimetallic concepts without variable temperature
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Table 4.5: Energy Comparison of Design Alternatives

settings. Comparing the mean expected lifetime energy use for the variable setting

concept shows a net increase in energy consumption relative to other embodiments.

From this information, it seems that a lower default setting is preferable to a variable

setting for the general population of users, but a different conclusion is reached if the

product is designed for specific usage contexts, such as specific climates.

Figure 4.10: Histograms of Conditional Energy Use for Cool and Warm Climates
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By testing two climate conditions, two additional histograms, shown in Figure

4.10, were created. The warmer and cooler climate conditional distributions represent

two alternative usage-contexts for which a product could be designed. In colder

climates, shown as the upper histogram, users are more likely to boil water for cooking

and hot teas and coffees. In the warmer climates, shown as the lower histogram, users

are more likely to boil water for iced teas. The mean energy use for warmer climates is

5% lower than that for the cooler climates and 3% lower than the general estimate for

all possible climates in Figure 4.9. The predicted energy consumption for a variable

setting device in warmer climates is also 3% lower than the estimate for the kettle

with a lower default setting. Consequently, a variable temperature setting may be

more suited for warmer regions with a larger variety of temperature needs, while a

product with a lower default setting might be employed for cooler regions.

4.4 Chapter Summary

PGMs are promising tools for representing and quantitatively modeling the

usage-context of a product and allowing for a more flexible functional unit. In this

chapter, a PGM was used to compare the lifetime energy consumption of three com-

peting kettle concepts. With the results, the designer could select the option with

the least environmental impact, measured in terms of expected lifetime energy con-

sumption. The kettle example presented in this paper shows the utility of a PGM for

both LCI and environmentally conscious design. For LCI, the PGM aids in estimat-

ing values for use parameters. By creating a context for these variables, researchers

can more easily and transparently perform uncertainty studies. This results in an

improvement on current practice in which variability is not considered in a rigorous

way. Current practice lacks similar depth or transparency that may aid in design.
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In addition to making inferences about the stochastic nature of environmental

performance variables, PGMs can help designers gain further insight into reducing

variability. In the example, a variable temperature setting did not reduce net energy

consumption over the product’s life cycle for the general population of users. Nev-

ertheless, isolating the effect of the variable temperature setting in different climates

revealed that net energy consumptions can be reduced if designed for markets in

warmer climates.

The current example study focused on a simplistic network centered on one

variable of the functional unit. It did not include a comprehensive study of the usage

context. The next chapter will introduce the central example of this dissertation, a

lightweight vehicle design problem.
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Chapter 5

The Lightweight Vehicle Example

The central example for this work, a lightweight vehicle LCI, represents a body

of research with which the results of the PGM method can be compared. Two auto-

mobiles that achieved weight savings through the use of aluminum trunks–the 2006

Oldsmobile Aurora and the 2004 Chevy Malibu Maxx–are used to create engineering

specifications for the study. The designers of both vehicles employed lightweight ma-

terials to reduce weight at the expense of increased energy for material production.

Although these designs were not intended to improve fuel economy, designs that use

lightweight aluminum to save energy are often validated in LCIs because operation

accounts for 66-91% of a vehicle’s lifetime energy use, while material production and

part manufacture constitute less than 30% (Sullivan & Cobas-Flores, 2001).

Contrary to typical assumptions and representations, operational variability

could prove critical to determining tradeoffs for vehicle design in different usage con-

texts. Greene et al. (2006) determined confidence intervals on the order of 20-30% for

consumer reported vehicle fuel efficiencies. Ridge (1998) sought to report relations

between weight reduction and fuel reduction for vehicle classes by coalescing data

from industry and research partners, but the data were imprecise due to variations

in drive cycles and testing methods. Instead of assessing the implications of such

variability, researchers, such as Ridge, assume a constant lifetime fuel economy and

driving scenario.

In this chapter, the method for identifying factors from Chapter 3 is applied to

generate a PGM for an LCI of lightweight vehicle. The primary usage context factors,
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underlying data, and local probability distributions are introduced and explained.

Section 5.1 reviews the existing body of LCI research and documents the energy

LCI values for the manufacturing and end-of-life stages of the aluminum and steel

vehicle designs. Eleven alternative approaches for estimating fuel consumption and

uncertainty are compared. Section 5.2 details the selection of factors for modeling

the usage context, and Section 5.3 details the data and parameter analysis required

for specifying local probability distributions within the model.

5.1 Existing Life Cycle Inventories

Table 5.1 summarizes 11 research publications comparing LCIs of steel vehicle

parts with lightweight aluminum alternatives. All of these studies estimate a net

energy savings during vehicle use from lightweighting. The results, however, differ

from study to study for a few reasons. First, as will be discussed in Section 5.2.1,

not all of the studies agree on the specific energy consumption of material production

and manufacturing. Second, the improvement in fuel economy is proportional to

the weight savings and the base fuel economy, both of which differ from study to

study. Third, each study assumes a different lifetime mileage. These disparities

highlight the importance of specifying similar lightweight designs for comparison and

the importance of functional units.

As the mass savings due to lightweighting increase, the payback time, in kilo-

meters, decreases. Although fuel efficiency increases exponentially with weight reduc-

tion (Hakamada et al., 2007; Song et al., 2009), the energy investment in aluminum

during material production and manufacture is assumed to increase linearly with in-

creased mass of aluminum. The fuel efficiency gains are usually estimated at 6% per

10% weight reduction, achieved by additional downsizing of other sub-assemblies and
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Table 5.1: Literature Lightweight Vehicle LCI Results

Authors

Overall
Savings

(kg)

Base
FE

(km/L)

Change
in FE

(km/L)

Mfg
Cost
(GJ)

Break
Even

Mileage
(1000 km)

Assumed
Mileage

(1000 km)

Use
Savings

(GJ)

Allen et al. (2007) 60 10 0.3 17.6 173 193 19
Das (2000) 203 11.7 0.8 20 99 291 56
Das (2005) 5 8.62 0.02 1.9 280 281 2
Field et al. (2002) - - - - 116 18/year -
Song et al. (2009) 482 - - - - 190 204
Hakamada et al. (2007) 82 12.7 1.2 12 51 100 23
Kim et al. (2008) 132 14 1.7 - 88 193/291 52/78
Kim et al. (2008) 210 14 2.9 - 142 193/291 82/124
Kim et al. (2008) 249 14 3.6 - 169 193/291 98/147
Mayyas et al. (2012) 563 10 8 18 99 291 486
Kim et al. (2011) 69 14 0.5 - 54 291 25
Kim et al. (2011) 266 14 1.9 - 106 291 86
Davies (2003) 98 - - 34 - - 8
Davies (2003) 112 - - 30 - - 26
Stodolsky et al. (1995b) 271 10.7 1.3 0 - - 108

optimization of the powertrain (Montalbo et al., 2008; Ridge, 1998). In contrast, the

energy investment of aluminum maintains a rate of about 170 MJ
kg

.

The functional unit introduces two sources of disparity by assuming lifetime

mileage and average fuel economy. As the base fuel economy of a steel vehicle in-

creases, the potential for energy savings is reduced. For example, a vehicle with a 6%

fuel economy improvement over 10 km
L

will save 567 L over 100,000 km. A vehicle

with a 6% fuel economy improvement over 12 km
L

will save 472 L. For more efficient

steel vehicles, the aluminum vehicle will require a longer lifetime mileage to payback

the energy investment. Therefore, justification for lightweighting requires reliable

estimates of both fuel economy and lifetime mileage.

Sensitivity of payback time in years is sometimes estimated for published LCIs,

but not well explored. For example, Allen et al. (2007) investigate the effects of

increased annual mileage and fuel economy on vehicle payback time in years. They
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show that the benefits of lightweight designs increase as vehicles last longer, but do

not discuss realistic values. In addition to negating any relationships between fuel

economy and lifetime mileage, the results are rather simplistic and do not increase

understanding of realistic usage scenarios.

Kim et al. (2008, 2011) considers two types of independent uncertainties in

their analysis: vehicle mileage and recycling. As in Allen et al. (2007), crediting

aluminum with off-setting future energy consumption of material processing improves

payback time in kilometers. Although Kim et al. (2008, 2011) considers high and low

lifetime mileage estimates, these estimates only provide ranges of possible energy

savings; neither lifetime mileage is considered more or less likely.

Das (2000) compares single vehicle LCIs with fleet level LCIs developed in

Field et al. (2002). Field et al. (2002) argue that policy level decisions should consider

temporal energy savings as the steel fleet is replaced by a lighter aluminum fleet and

scrap metal stockpiles. A steady state single product comparison cannot be used to

estimate payback time in years for an entire fleet. Das (2000) shows that payback

time increases at the fleet level, and checks the sensitivity of a fleet level analysis to

manufacturing, material production, and fuel economy estimates. He shows that a

1% fuel economy change and 25% material production energy change have similar

effects on pay back time. Because energy during use is so large, small uncertainties

in fuel savings can be just as influential as larger uncertainties in investment cost. In

a later paper, Das (2005) studies a smaller weight reduction, an aluminum vehicle

liftgate, and finds that material production uncertainty becomes more important as

fuel savings decreases. Again, neither Das (2000) nor Field et al. (2002) consider joint

uncertainty effects within vehicle mileage and fuel economy. These results motivate

the decision to consider smaller weight reductions in this dissertation.
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Mayyas et al. (2012) consider the largest weight savings, just above the value

reported by Song et al. (2009). Song et al. (2009) estimate weight savings from using

aluminum in a small moving truck, but Mayyas et al. (2012) consider weight savings

from the body in white of a sedan in addition to secondary weight savings. The body

in white savings of about 135 kg allow for an over 400 kg additional weight savings in

downsizing and very significant fuel economy improvement. Such secondary weight

savings are not unique to Mayyas et al. (2012), but usually range on the order of 50%

additional weight savings. Mayyas et al. (2012) draw mass reduction values from

existing vehicle concepts without regard for the types of secondary design changes

and their manufacturing effects.

Mayyas et al. (2012) consider uncertainty for each life cycle stage indepen-

dently as ranges of ±10%. They report that fuel economy has nearly double the

effect of lifetime mileage and five times the effect of material production or recycling.

They do not consider the joint effects of variable factors or the possible usage contexts

that may incur such effects.

The existing publications of lightweight vehicle LCIs do not extensively con-

sider the role of realistic functional units in their analysis. These studies do not ask

or answer the questions of which types of vehicle or driving situations are most suited

to mass reductions. It can be deduced from the findings that vehicles that achieve

low service mileage and high fuel efficiency might be less suitable for lightweight de-

signs. This dissertation seeks to identify scenarios that result in low mileage and

high fuel efficiency or vice versa. The PGM will model the interactions between fuel

economy and service mileage, as well as the underlying factors that lead to these

performance values. Additionally, this research does not consider secondary weight

savings, making it more conservative than some of the existing studies.
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5.2 Overview of Vehicle LCI

The example problem of this dissertation considers three vehicles designed

by General Motors. These vehicles are the 2001 Oldsmobile Aurora V8, the 2001

Oldsmobile Aurora V6, and the 2004 Chevrolet Malibu Maxx. The Auroras are

both heavier than competing luxury sedans from other manufacturers, but manage

to weigh 165 lbs and 285 lbs less than the previous model year (U.S. Department

of Energy, 2012). The aluminum parts on the Aurora vehicles were stamped, but

the development of quick plastic forming (QPF) allowed production of the aluminum

deck lid on the 2004 Malibu Maxx (Peter, 2004). These weight savings are shown, in

addition to other vehicle specifications in Table 5.2.

Table 5.2: Lightweight Vehicle Design Specs

Aurora V8 Aurora V6) Malibu Maxx

First Gear Ratio 2.96 2.92 2.96
Second Gear Ratio 1.63 1.57 1.62
Third Gear Ratio 1 1 1
Fourth Gear Ratio 0.68 0.71 0.68
Final Drive Ratio 3.71 3.29 3.29
Tire Radius 50 cm 48 cm 48 cm
Curb Weight 1725 kg 1645 kg 1569 kg
Steel Lid Weight 18 kg - 18 kg
Al Lid Weight 11 kg - 9 kg
Deck lid Weight Savings 7 kg - 9 kg
Steel Hood Weight 15 kg 15 kg 15 kg
Al Hood Weight 9 kg 9 kg 9 kg
Hood Weight Savings 6 kg 6 kg 6 kg
Total Weight Savings 13 kg 6 kg 15 kg

The total weight savings and aluminum weight savings in the Aurora examples

are not proportional, and are both examples of designs without predictable secondary

weight savings. Other design features can be added to increase the weight. Conse-
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quently, this study is limited to the aluminum hoods and trunks without including

secondary weight savings. The trunk lid savings values were published in press ar-

ticles (Vasilash, 2001; Peter, 2004). The hood weights and savings were best guess

estimates assuming weight reductions proportional to the trunk. All other vehicle

characteristics are taken from the General Motors (2001, 2004) website. The addi-

tional characteristics in the table are necessary for creating drive cycle simulations in

Section 5.4.2.

The LCI is scoped as a gate to gate analysis shown in Figures 5.2 and 5.1 for

aluminum and steel, respectively. The LCI considers energy consumption of material

production, part manufacturing, use, and melting the parts at end-of-life. No credits

are given for offsetting future material production via recycling because these credits

should be applied to future products using the materials. Storage costs for scrap

stock and transportation of raw stock are outside of the scope. Additionally, the

production of fuel is not considered. In almost all studies, aluminum is five or more

times as energy intensive to produce as steel. Part manufacturing comparisons are in-

consistent, with either material costing more. Finally, end-of-life energy consumption

is estimated without assuming the part is recycled or crediting the aluminum gate to

gate LCI. The uncertainty of these estimates is discussed briefly in the next section.

Values from Davies (2003) that are taken from steel industry reports were used to

create a more critical perspective of aluminums. Additionally, Davies (2003) cited

specific processes for his analysis. For example, the manufacturing energy assumes

the process of stamping. Energy consumption of QPF, used for the Malibu Maxx,

could be much higher, but the process is proprietary and data are not obtainable.

Compared with aggregate literature values, values from Davies (2003) are conserva-

tive and favor steel as the eleven sources cited in Table 5.1 report higher specific

energy consumption for steel, but similar energy consumption values for aluminum.
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Figure 5.1: Flows Considered in the Gate to Gate LCI of a Steel Vehicle Part
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Figure 5.2: Flows Considered in the Gate to Gate LCI of an Aluminum Vehicle Part

Table 5.3 shows the energy LCI for all stages of Figures 5.2 and 5.1 for each ve-

hicle. It lists the total energy consumption for each steel and aluminum design in MJ.

The difference between these values is considered the total additional energy invest-

ment for aluminum. This energy investment is 3.4 GJ for the Aurora V8 which saves

13 kg, 1.5 GJ for the Aurora V6 which saves 6kg, and 2.9 GJ for the Malibu Maxx

which saves 15kg. These weight reductions are 0.8%, 0.4%, and 1%, respectively.

Table 5.3: Estimating Energy Investment in Aluminum Parts

Aurora V8 Aurora V6 Malibu Maxx

Steel Aluminum Steel Aluminum Steel Aluminum
Material Production (MJ) 1414 4857 643 2186 1414 4371
Manufacturing (MJ) 396 360 180 162 396 324
End of Life (MJ) 119 146 54 66 119 131
Total (MJ) 1929 5363 877 2413 1929 4827
Al. Investment (GJ) 3.4 1.5 2.9

5.2.1 Uncertainty of LCI Stages

Although this study is focused on representing variability and uncertainty

associated with product use, it is helpful to understand variability and uncertainty
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within other stages of the life cycle, as well. Table 5.4 lists average inventory values

reported from seven sources, as well as the standard deviation of these values (Davies,

2003; Das, 2000, 2005; Song et al., 2009; Stodolsky et al., 1995a; Tan & Khoo, 2005;

Hakamada et al., 2007). There are large disparities in the reported data, and this

disagreement in literature values was also observed by Sullivan & Cobas-Flores (2001)

in a previous review of full vehicle life cycle assessments. Two explanations exist

supporting the possibilities of poor data reporting and high inherent variability of

material production processes.

Table 5.4: Material Production and Manufacturing Energy LCIs

Aluminum Steel
Virgin

Material
Production Manufacture

Recycled
Material

Production

Virgin
Material

Production Manufacture

Recycled
Material

Production
Average (MJ

kg
) 172.9 13.7 15.6 37.5 18.4 12.5

Std Dev ( % ) 38 80 77 40 89 57

Song et al. (2009) note specifically that, although such variance is unacceptable

in many engineering applications, it is an inherent reality of material processing.

Examples are given by Song et al. (2009) of three glass fiber production plants.

Each plant – PPG, OwensCorning, and Vetrotex – produce the same product, but

with very different energy consumptions, 12.58, 25.3 and 32.0 MJ/kg respectively.

The discrepancy in reported energy consumption is due to differences in plant sizes,

efficiencies, and operations.

Nevertheless, poor reporting techniques are also possible causes of uncertainty.

Ayres (1995) discusses the widespread lack of diligence in maintaining mass and en-

ergy balances in LCI reporting and modeling. Farla & Blok (2001) studied the quality

of energy data for the iron and steel industry to find that quality in reporting is consis-

tent within countries but not internationally. The data reported come from European,
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U.S., Australian and Japanese sources, but the global manufacturing infrastructure

includes other countries such as China. Because of inherent variance and lack of dis-

closure, it is impossible to determine the causes of variance without extensive personal

correspondence with the authors of each individual study and their data sources.

Another difficulty in determining the comparability and cause for variance in

the reported values arose when determining process scrap rates. It seems necessary

that the values reported for raw material extraction are per kilogram of raw material

yield and the values reported for part production are per kilogram of the final part.

Only one source reported yield values for the conversion of ores to raw materials (95%

yield) and raw materials to parts (60-65% yield for sheet metal) (Hakamada et al.,

2007). When accounting for yield, it is important to note that yield differs by plant,

manufacturing process and geometry. For example, cast parts will have less material

waste than sheet parts. Davies reports scrap rates of 15-40% for manufacturing

processes (Davies, 2003). Most papers do not clearly specify these assumptions and

characteristics of their data.

5.3 Refining the Problem and Identifying Factors

In the previous sections, the vehicle example was described along with the LCI

for all stages except use. The review of existing LCI literature showed the importance

of estimating realistic functional units and ranges for use stage energy consumption.

The general calculation for inventorying energy during use is shown in Equation 5.1,

where EU is the total energy consumed during use. FET is the fuel economy and dlife

is the total distance traveled over the vehicle’s lifetime.

EU =
dlife
FET

34.8
MJ

L
(5.1)
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In this equation, fuel efficiency is usually assumed, which ignores variability

in vehicle speeds, accelerations, and loads. Additionally, lifetime mileage is assumed,

but this value differs between vehicles and owners.

The efficiency of a vehicle can be described using physical equations. Most

simply it is the ratio of power out, the power required to transport the vehicle and

load, and power in, measured as the energy content of fuel consumed per second.

The overall efficiency is a product of the engine, transmission, drive train, and other

efficiencies. Beginning at the engine, Equation 5.2 shows the calculation of brake

specific fuel consumption (BSFC) or rate of fuel intake, ṁf , normalized by power

output, calculated as the product of the indicated power, Pi, at that engine speed

and the engine mechanical efficiency, ηm. Most of the variables in Equation 5.2 are

characteristics of the product design, but the fuel rate is influenced by atmospheric

pressure and inlet temperatures. Both of these factors are situational.

BSFC =
ṁf

ηmPi
(5.2)

The rest of the mechanical efficiencies can be assumed as 70-95% from the

engine to the drive shaft (Crolla & Mashhadi, 2012). The rest of the losses are from

the rolling resistance, drag, and other increased loads. The net power required for

motion and overcoming external forces can be calculated as the sum of inertial power,

Pinertia, power to overcome drag, Pdrag, power to overcome rolling resistance, Prolling,

and power to overcome road gradients, Pgrade. These quantities are estimated in the

following equations where m is the mass of the vehicle, g is the acceleration due to

gravity, v is the velocity of the vehicle, and θ is the angle of the road gradient in

Equation 5.3.
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Pgrade = mgv sin(θ) (5.3)

ρ is the density of air, CD is the coefficient of drag and A is the frontal area

of the vehicle in Equation 5.4.

Pdrag = 0.5ρCDAv
3 (5.4)

t is time and 1.03m is the effective inertial mass accounting for inertia of the

wheels in Equation 5.5.

Pinertia = 0.5(1.03)m
δv2

δt
(5.5)

CR is the rolling coefficient in Equation 5.6.

Prolling = CRmgv (5.6)

From Equations 5.3 through 5.6, it can be deduced that ambient pressure,

wind conditions, road gradients, road roughness, vehicle cargo, passenger weight, and

driving schedules for velocities and accelerations are all important factors to consider.

The driver is a deciding factor for the most influential variables, velocity and accel-

eration. Figure 5.3 shows a diagram from Crolla & Mashhadi (2012) illustrating the

vehicle driver relationship. Figure 5.4 shows the P-Diagram of factors gathered using

the previous equations for driving power losses. Engine specifications, such as BSFC,

are combined for space reasons. All loads are combined, but can be separated. Ve-

locity and acceleration dynamics are included in the drive cycle specification. Rolling

coefficient is a noise factor because the tires may be changed, and temperature and

road conditions further affect this coefficient.
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Figure 5.3: The Driver and Vehicle Interactions from Crolla & Mashhadi (2012)
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Fuel Consumption (L)
Fuel Economy (km/L)

Figure 5.4: P-Diagram for a Vehicle

Activity diagrams introduce additional factors affecting a vehicle’s useful life.

Figure 5.5 shows the global level activity diagram. First, the vehicle is purchased

and then parked. If the vehicle is parked in a garage, it experiences fewer environ-

mental effects. For example, the parts may not rust as quickly in wetter climates

and the finish, paints, and metal body are better protected. Mechanical inspection

and maintenance also keep the vehicle running longer and more efficiently. Checking

tire pressure reduces rolling losses and changing oil and filters maintains engine effi-

ciency. Some sources also cite dirt on vehicles as a source of increased drag (Discovery

Channel, 2009). The global activity diagram summarizes the activities that influence
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vehicle lifetime and fuel efficiency.

Purchase
Vehicle

Park
Drive

Vehicle

Sell/Scrap
Vehicle

Clean
Vehicle

Check
air/fluids

Mechanic
Inspection

Figure 5.5: Global Level Automobile Activities

Figure 5.6 shows the task level activity diagram for driving a vehicle. Loading

and unloading the vehicle are important, as some drivers store belongings in their

trunks and backseats, and other vehicles often have multiple passengers weighing

over 100lbs each. Also, the timing of starting the engine can be important. In

colder climates, the engine may be started early to warm the interior. Additionally,

accessories for heating and cooling, music, and electronics are increasingly prevalent

in vehicles with satellite and other services. The diagram also shows the cycling

between acceleration, cruising and braking phases. These are influenced by both the

driver and surroundings. Traffic and street designs are major constraints, and can be

related to residential areas or trip types.

The equations and diagrams expose many situational, human, and product

variables. Situational factors include air temperature and pressure, residential density,

traffic, drive cycles, trip lengths, and vehicle loads. Human factors include speeding
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Unlock
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Start
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Brake

Stop
Engine

Unload
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Figure 5.6: Task Level Activity Diagram for an Automobile

or acceleration tendencies, passenger weights, and vehicle maintenance frequencies.

Product variables include engine efficiency, tire pressure, rolling and drag coefficients.

A select subset of factors for which data are readily available are shown in

Table 5.5. Background variables are apparent as the fuel reduction ratio, defined

in Section 5.4, and the population density, part age, cargo load, passenger weight,

speeding and acceleration tendencies, family size, and commuting. Because this LCI

is for a single part, part age was selected to allow for the possibility of replacement of

the aluminum parts. These factors are used to create the graph and local probability

distributions discussed in the next section.
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Table 5.5: Factor Relationship Matrix for the Lightweight Vehicle Example
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5.4 Building the Model: Factors and Data Collection

The graph used for modeling the vehicle usage context and predicting the

difference in energy consumption between the steel and aluminum vehicles is shown

in Figure 5.7. The central components of the graph are the energy consumption,

the fuel economy, and the lifetime mileage. This energy is calculated according to

Equation 5.7, where Esaved is the energy saved during the use stage, dlife is the lifetime

mileage in km, and FET (base) and FET (lightweight) are the fuel economies of the

steel and aluminum vehicles respectively.
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Figure 5.7: Graph of the Vehicle Usage Context

Esaved = (
dlife

FET (base)
− dlife
FET (lightweight)

)34.7
MJ

L
(5.7)

The values for FET are calculated from Equation 5.8. It consists of the parent

variables, Rhwy representing the fraction of highway driving which is influence by the

residential density, and RFRR representing the fuel reduction ratio for estimating the

effect of reduced design weight on fuel economy. The mass values for weight savings,

mreduced, and curb weight, mcurb, are taken from Table 5.2 with mreduced = 0 for the

base vehicle.
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FET = (RhwyFEhwy + (1−Rhwy)FEcity)(1 +RFRR
mreduced

mcurb

) (5.8)

The rest of this section will discuss the data, probability distributions, and

simulations used to estimate the rest of the variables in the graph. The sections

are organized to follow a counter clockwise path around the graph in Figure 5.7

Section 5.4.1 will explain the selection of the fuel reduction ratio, RFRR, and its

marginal probability distribution. Section 5.4.2 will introduce the simulation used for

estimating highway, FEhwy, and city, FEcity, fuel economies and the effects of mass,

velocity and speeding on fuel economy. Section 5.4.3 will discuss aggressive driving

as a combination of acceleration, La, and speeding, Lv, tendencies. Section 5.4.4 will

discuss the background factors describing household characteristics. Section 5.4.5 will

discuss the lifetime mileage characteristics.

5.4.1 Fuel Reduction Ratio

The fuel reduction ratio (FRR) determines the proportionality between fuel

savings and mass savings. A common, but rarely cited, rule of thumb is to assume

power train efficiency gains of 6% for every 10% of weight reduction (Montalbo et al.,

2008; Ridge, 1998). Alternatively, some sources suggest using a linear fuel reduction

value (FRV). This value would be in the units of liters per 100km reduced per 100kg

weight saved (L/(100km100kg)).

Ridge (1998), Koffler & Rohde-Brandenburger (2009) and Montalbo et al.

(2008) have evaluated the fuel reduction values most commonly used and reported.

Ridge (1998), on behalf of the European Council of Automotive Research and Devel-

opment, collected measurements and tests from a number of private sources aiming

to determine an FRV for small, medium, and heavy vehicles. Although the median
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values reported by Ridge (1998) are 0.14 L
100km100kg

for vehicles without adjustments

to the power train and 0.38 L
100km100kg

for vehicles with power train adjustments, the

committee suggested the use of 0.6 L
100km100kg

citing agreement with the 6% fuel reduc-

tion ratio for a vehicle of 1000kg and 10 L
100km

. Nevertheless, this argument obfuscates

the distinction between an FRV and an FRR. The FRV values suggested by Ridge

(1998) would apply equally to 1000kg and 1300kg (a more common value) regardless

of their initial fuel economy and weight. In contrast, the 6% rule determines very dif-

ferent FRVs. Assuming 10 L
100km

initial fuel economy, the FRV for the 1000kg vehicle

remains 0.6 L
100km100kg

, but the FRV for the 1300kg vehicle becomes 0.46 L
100km100kg

.

Koffler & Rohde-Brandenburger (2009) argue that a constant FRV reflects

the proportional relationship between power and weight. The power required for

inertia and rolling resistance is the same for identical weights under the same driving

cycle. Therefore, one can numerically derive a fuel reduction value by calculating

the work required to move 100kg of mass through an established drive cycle if the

engine efficiency is known. Koffler & Rohde-Brandenburger (2009) provide further

evidence that “the differential efficiency of engines with the same working process is,

in contrast to their overall efficiency, very similar.” They calculate that the efficiency

of a gasoline engine is approximately 0.073 L/MJ or 42% and the gasoline consumed

for 100kg of mass is 0.15 L
100km100kg

. This estimate is similar to the median value of

data reported by Ridge (1998), 0.14 L
100km100kg

, for vehicles with unadjusted power

trains. Therefore, a constant FRV may be more suitable for vehicles without power

train redesign.

Montalbo et al. (2008) simulated tuned and un-tuned SUV power trains to

test a range of FRRs. Shown in Figure 5.8, the tuned scenario reflects power train

redesign to maximize fuel economy “without sacrificing performance”. The un-tuned
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Figure 5.8: Montalbo et al. (2008) compared fuel reduction ratios and simulations for
modified and un-modified different power trains

data points reflect a vehicle of reduced weight, but with no additional improvements.

The results of Montalbo et al. (2008) suggest that weight reduction for an un-tuned

engine, follows an FRR or FRV that is much less than 5%. In contrast, the tuned

engine is between 5% and 10%.

This comparison of literature suggests than an FRV of 0.15 L/100kg is appro-

priate for weight changes without power train adjustments. The 6% rule seems to

be more appropriate for power train improvements to maximize fuel economy. All

methods were compared with a Future Automotive Systems Technology Simulator

(FASTSim) from the National Renewable Energy Laboratory. The simulation was

run for a 1388 kg Toyota Camry over a range of weights, shown in Table 5.6. The

results are compared with the median and suggested values of FRV reported by Ridge

(1998). An FRV of 0.14 corresponds to an un-tuned engine and agrees with Koffler

& Rohde-Brandenburger (2009), 0.38 corresponds to tuned engines, and 0.6 is the

suggested value. The results indicate that all methods are fairly similar for small

weight changes. As weight savings become larger, simulations become more impor-

tant. Overall, it seems that the 6 % rule is the closest approximation of the FASTSim
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values.

Table 5.6: Comparison of FRVs and 6% FRR with FASTSim Simulation in km
L

*
Weight

(% Base)
Weight

(kg) FASTSim
6%

Rule
0.14
FRV

0.38
FRV 0.6 FRV AVG StdDev

StdDev
(%)

108% 1499 9.30 9.29 9.59 9.33 9.09 9.32 0.18 2%
100% 1388 9.76 9.76 9.76 9.76 9.76 9.76 - -
92% 1277 10.26 10.22 9.92 10.18 10.42 10.20 0.18 2%
84% 1166 10.81 10.69 10.09 10.60 11.09 10.66 0.37 3%
76% 1055 11.43 11.16 10.25 11.02 11.75 11.12 0.56 5%
68% 944 11.93 11.63 10.42 11.44 12.42 11.57 0.74 6%
60% 833 12.68 12.10 10.59 11.86 13.09 12.06 0.96 8%

*9.76 km/L = 10.27 L/100km = 22.91 MPG

In accordance with the above findings, an FRR was used for the PGM. The

FRR was treated as a uniformly distributed random variable because the actual FRR

is a result of design effort and not determined by the mass reduction. The upper and

lower bounds are calculated as 4%/10% = 0.4 and 7%/10% = 0.7 to encompass the

variations in FRR found in the literature. Most commonly used values are 5%, 6%,

and 6.5%. The FRR is incorporated into Equation 5.8.

RFRR = U(0.4, 0.7) (5.9)

5.4.2 Drive Cycles

A vehicle driving simulation was written in MatLab to explore the effects of

different drive cycles on fuel economy. Standard driving schedules are specified by the

EPA and used by automobile manufacturers to estimate advertised fuel economy. The

two central driving schedules are the Highway Fuel Economy Test (HWFET) Driving

Schedule, shown in Figure 5.9, and the Federal Test Procedure (FTP), shown in

Figure 5.10.

The FTP represents urban driving and is derived from measurements during
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Figure 5.9: The HFET Driving Schedule from the United States Environmental Pro-
tection Agency (2012)

Table 5.7: Speed and Acceleration Comparisons for EPA Driving Schedules (United
States Environmental Protection Agency, 2006)

Test Average Speed Max Speed Max Acceleration
FTP 9 m

s
(21mph) 33 m

s
(58mph) 1.47 m

s2

HFET 21.5 m
s

(48mph) 27 m
s

(60mph) 1.47 m
s2

US06 21.5 m
s

(48mph) 36 m
s

(80mph) 3.8 m
s2

a commute in Los Angeles in the 1970s (United States Environmental Protection

Agency, 2006). The HFET is designed to represent rural driving. Both drive cycles

were found to overestimate vehicle mileage, and the EPA revised their standards

in 2006 to include five different driving cycles. These include the US06 for high

speed, aggressive driving, the SC03 for air conditioning, and the Cold FTP for cold

temperature driving. The latter two do not represent factors in this study, and are

not considered further. The average speed, max speed, and max acceleration for the

HFET, FTP, and US06 cycles are show in Table 5.7.

Instead of requiring that all five tests be completed, the EPA specifies two

equations for a composite calculation using only the HFET and FTP test results.

The following Equations 5.10 and 5.11 show the composite calculation for the city
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Figure 5.10: The FTP Driving Schedule from the United States Environmental Pro-
tection Agency (2012)

and highway fuel economy estimates given measured values for the FTP fuel economy,

FEFTP , and the HFET fuel economy, FEHFET .

City MPG =
1

0.003259 + 1.1805
FEFTP

(5.10)

Highway MPG =
1

0.001376 + 1.3466
FEHFET

(5.11)

These calculations are good estimates for average driving, but every car owner

will achieve slightly different mileage given their own driving habits, the local traffic,

and local highway speeds. The EPA (2006) estimates a combined fuel economy by

assuming that 57% of driving is highway driving. This estimate may vary depending

on the residential density of the vehicle, and is discussed in Section 5.4.5. Drivers

habits are described and explored in Section 5.4.3 as tendencies to speed or accelerate.

The remaining influence on driving cycles is traffic. A vehicle used for commuting

during peak hours of traffic is likely to achieve lower fuel economy than a vehicle

which is not used for commuting.
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A factor is included in the PGM for expressing the indicating whether a vehicle

is used for commuting to work frequently. This factor is a boolean variable where

Commute = T or Commute = F. The discrete probability for each value is 70%

and 30% respectively. These values are estimated from a Bureau of Transportation

Statistics (2010) report. According to the U.S. Census (2010), 76% of 136 million

workers drive alone to work.

It is assumed that a commuter engages in more stop-and-go driving. The

U.S. Environmental Protection Agency (EPA) (2012) website has multiple driving

schedules posted, including the Urban Dynanometer Driving Schedule (UDDS) from

which the FTP is composed, the LA92 driving schedule which simulates higher speed,

more aggressive city driving, and the New York City Cycle which simulates low speed,

stop-and-go traffic conditions. Fuel economy is not usually measured or published for

these driving cycles, so a simulation was written in MatLab to estimate alternative

commuting and non-commuting fuel economies. This simulation is also used later to

estimate the effects of additional loads (Section 5.4.6) and aggressive driving (Section

5.4.3) on fuel economy.

The simulation uses vehicle information about gearing, curb weights, drag,

and frontal area from Table 5.2 and EPA velocity time series to calculate the required

power and engine efficiency during a drive cycle. Given the driving schedule’s unique

time series, the simulation iterates each time interval, calculating average velocity, v,

and acceleration, a. These estimates are then used to estimate power requirements

from Equations 5.4, 5.5, and 5.6 from Section 5.3. These power requirements are

summed in Equation 5.12 accounting for the mechanical efficiency of the drive train,

ηm = 0.85 (Crolla & Mashhadi, 2012).
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Pout =
Pinertia + Pdrag + Prolling

ηm
(5.12)

The engine efficiency over each time interval is then estimated according to

Equation 5.13. This equation is borrowed from Ross (1997). It calculates the fuel

requirements, Pfuel, as the embodied energy of fuel and its flow rate. This is calculated

by estimating mechanical losses in the engine as a function of the friction mean

effective pressure in the pistons, fmep0 = 160kPa for the Aurora V8 and fmep0 =

140kPa for the Aurora V6 and Malibu Maxx, as well as the displacement in Liters,

V , which is 3.5L for the Aurora V6 and Malibu Maxx and 4L for the Aurora V8, and

the engine speed, N .

Pfuel =
fmep0+NV

2000
+ 0.94Pout

ηt
(5.13)

The engine speed is calculated from the vehicle velocity and current gear ratio,

Rgear, according to Equation 5.14. The wheel slip is estimated at Rslip = 1.1 times

the revolutions, and the wheel radius,rw, is given in Table 5.2.

N =
v

rw2π
RslipRgear (5.14)

The results from using this simulation are shown in Table 5.8. The results are

compared with the EPA estimates using Equations 5.10 and 5.11, and are shown in

bold. The simulated fuel economies are similar to the EPA estimates within 10%.

An NYCC Mix cycle was created to approximate a level of city commuting. A full

NYCC estimate was undesirable, as it cannot represent average driving. Instead, the

NYCC Mix is a compromise, combining 50% NYCC and 50% UDDS.
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Table 5.8: Simulated Fuel Economy Values
Simulated MPG

Aurora V6 Aurora V8 Malibu Maxx
UDDS 21.8 20.5 23.6
LA92 23.4 22.1 25.3
FTP 22.8 21.5 24.8

HFET 33.6 31.9 36.0
NYCC 13.5 12.6 14.8

NYCC Mix 17.7 16.6 19.2
US6 25.9 24.8 26.9

City MPG 18.2 17.2 19.6
Hwy MPG 24.1 23.0 25.8

EPA MPG
Aurora V6 Aurora V8 Malibu Maxx

City MPG 17 15 19
Hwy MPG 25 23 28

Table 5.9: Conditional Probability Table for Highway Drive Cycle Given Commute

Commute = T Commute = F
LA92 0.4 0.1

EPA HWY 0.5 0.5
HFET 0.1 0.4

Three different drive cycles were selected the City Drive Cycle and three for

the Highway Drive Cycle, both of which are factors in the PGM. These cycles are

LA92, EPA Hwy, and HFET for the Highway Drive Cycle, represented as µhwy, and

NYCC Mix, EPA City, and FTP for the City Drive Cycle, represented as µcity. Drive

cycles are selected using the conditional probability tables in Tables 5.9 and 5.10.

The parameters are best guess estimates, designed to provide higher fuel economies

for non-commuters, and lower fuel economies for commuters.

These categories are used to generate City Fuel Economy, FEcity, and Highway
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Table 5.10: Conditional Probability Table for City Drive Cycle Given Commute

Commute = T Commute = F
NYCC Mix 0.4 0.1

EPA City 0.5 0.5
FTP 0.1 0.4

Fuel Economy, FEhwy, from the normal probability distributions of Equations 5.15

and 5.16. The linear approximation for the mean includes a coefficient,βcity or βhwy,

to represent the effect of aggressive driving behavior and a correction for additional

loads, such as passengers or cargo, wcity or whwy. Specification of these terms are

discussed in Sections 5.4.3 and 5.4.6. The standard deviation is taken from Greene

et al. (2006) who reported standard deviations of about 1.2 km
L

, σhwy = σcity = 1.2km
L

.

FEcity = N(βcityµcity − wcity, σcity) (5.15)

FEhwy = N(βhwyµhwy − whwy, σhwy) (5.16)

5.4.3 Driver Aggressiveness

The previous section introduced a method for estimating fuel economy of a

vehicle given driving schedules. Cycles with very high or very low speeds and high

acceleration, such as the NYCC or US06, exhibited lower fuel economy than their

city or highway counterparts. Nevertheless, these results do not distinguish between

the effects of speed and acceleration. Some drivers are more prone to higher or lower

speeds, and others prefer to accelerate more quickly to the speed limits. This section

will discuss the decision to separate aggressive driving into speed and acceleration

variables and how these variables were combined into the coefficients, βcity and βhwy
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introduced in Equations 5.15 and 5.16 of the previous subsection.

To assess the affects of aggressive driving on fuel economy, each time step of a

drive cycle was augmented by adjusting the velocity or the time step. Adjusting the

time step increase or decreases the acceleration values but maintaining the velocity.

Increasing the velocity would also increase the magnitude of acceleration or the dura-

tion of acceleration. In order to isolate velocity effects from acceleration effects, only

the velocity was increased at each time step. For the PGM, it was desired to estimate

factors βcity and βhwy that are functions of the level of acceleration, La or speeding,

Lv. The calculations are shown in Equations 5.17 and 5.18, where the ratios kvel and

kacc represent a fractional change in fuel economy per 10% in speed or acceleration,

respectively.

βhwy = (1 + (Lv − 2)kvel + (La − 2)kacc) (5.17)

βcity = (1 + (Lv − 2)kvel + (La − 2)kacc) (5.18)

In order to separate the effects of velocity and acceleration, the simulation

described in Section 5.4.2 was adjusted and run for all three vehicles. Given a velocity

level,Lv, of 1, 2, or 3, the simulation adjusted the velocity of each one second time

step by -10%, 0%, or 10%. Given an acceleration level,La, of 1, 2, or 3, the simulation

adjusted the acceleration of each time step by -10%, 0%, or 10%. The effects of

acceleration and speeding levels were found to be approximately linear, but different

for each driving cycle. The results of these simulations are shown in Table 5.11. The

resulting value for US06 was used with the EPA HWY drive cycle category, and the

resulting value for FTP was used for both the FTP and EPA City. The remaining

values for kvel and kacc were used with their respective cycles.
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Table 5.11: Aggressiveness Coefficients by Drive Cycle ( % km/L per 10%)

US06 HFET LA92 FTP NYCC Mix
kvel -.032 -.04 .045 .051 .06
kacc -.017 -.007 -.011 -.009 -.002

Table 5.12: Conditional Probability for Aggressiveness Characteristics

90% 100% 110%
P (V el) 0.2 0.4 0.4
P (Acc) 0.2 0.4 0.4

The results in Table 5.11 follow the general findings of an extensive study

of models and real driving data done by Berry (2010). From Berry (2010), it was

expected that acceleration would have some positive effects for low speed drive cycles

below 35 kph, but negative impacts for all other drive cycles. It was expected that

velocity would have positive effect for low speed cycles, and increasingly negative

effects at mid- and high speed drive cycles from 35-75kph and above 75kph. Berry

(2010) also estimated the effects of reduced acceleration and reduced speed on highway

driving, and found both to be on the order of 2-3%, similar to the results reported

here.

For the model, the Acceleration and Speeding level factors were assigned pa-

rameters shown in Table 5.12. These represent a lack of data for driver aggressiveness.

Berry (2010) analyzed the results of 100 real world driving samples from the city of

Boston, and found that most drivers experienced acceleration and speeding levels

similar to the LA92 cycle, which is a highly aggressive cycle. For this reason, it was

assumed that more drivers exhibit level 2 and 3 (100%,110%) accelerations and speeds

than level 1 (90%).
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5.4.4 Household Characteristics

Two household characteristics, family size and residential density, were chosen

as factors for the graph. It was assumed that family size directly correlates to the

average number of passengers and therefore load on a vehicle. Residential density

was expected to influence the fraction of highway driving in addition to the annual

mileage of the vehicle. It was assumed that vehicles in high density areas do not drive

as far or last as long, reducing the annual mileage over the vehicle’s lifetime. This

section will introduce the parameters used to represent the proportion of vehicles in

urban, suburban and rural areas, and the parameters used to determine the vehicle

owner’s family size.

In order to determine the number of vehicles in urban, suburban and rural

areas, it was necessary to consult statistics from the U.S. Census Bureau (2010)

and the U.S. Department of Transportation (Office of Highway Policy Information,

2010b). According to the United States Census Bureau (2010), about 70% of the

population lived in urban areas with over 50,000 residents in 2010. Urban areas with

2,500 to 50,000 residents constituted about 10% of the population, and rural areas

with less than 2,500 people accounted for the remaining 20% of the population.

It was decided to estimate the number of vehicles registered per capita is esti-

mated by weighting the population and estimates of per capita vehicle registrations

for urban, suburban, and rural regions. The number of vehicles per capita is not

consistent across urban and suburban areas. The US Department of Transportation

Office of Highway Policy Information (2010a) reports that is an average of 0.42 reg-

istered vehicles per capita in the US. From the U.S. Census (2010) data, the state

with the highest urban population is Washington D.C. with 100% of the population

living in an urban area. According to the Department of Transportation, D.C. has a
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per capita vehicle registration of 0.36 (Office of Highway Policy Information, 2010a).

Vermont and West Virginia have the lowest urban populations at 38% and 40% of the

population, respectively. Per capita vehicle registrations for these states are 0.47 and

0.38, respectively. Because the third lowest urban population of 46% in Maine had a

per capita registration rate of 0.39, a value of 0.40 was assumed for rural areas. In

the middle, 70% of the population of Minnesota lives in urban areas, and Minnesota

has a 0.46 per capita vehicle registration rate. The population weighted sums of these

per capita registration rates yields a U.S. per capita vehicle registration rate of 0.38,

very close to the official estimate of 0.42. The results suggest that 66% of vehicles

are urban vehicles, 13% are suburban, and 21% are rural. These values are used for

the discrete probability of each residential category in Table 5.13.

Table 5.13: Probability of Residential Density

Rural Suburban Urban
P (D) 0.21 0.13 0.66

According to the U.S. Census (2012), the average number of residents in a

US household is 2.59. Because the number of household residents determines the

probability of vehicle passengers, family size is constrained to a maximum of four

members. The parameters determining the probability of each family size are shown

in Table 5.14. The expected value of this distribution is 2.3.

Table 5.14: Probability of Family Size

1 2 3 4
P (nHH) 0.3 0.3 0.2 0.2

The next sections discuss the conditional probability distributions for highway

fraction, passenger loads, and lifetime mileage. Highway fraction is influenced by the
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residential density while passenger loads are influenced by the family size. Lifetime

mileage is influenced by both household characteristics, as urban drivers may drive

fewer miles and households with more members drive more frequently.

5.4.5 Highway Fraction

The EPA estimates a combined fuel economy by assuming that 57% of driving

is highway driving (United States Environmental Protection Agency, 2006). Previ-

ously, this estimate was 55%. For this model, it was assumed that the percentage of

highway driving is influenced by the residential density. Areas with a lower proportion

of highways would have a lower proportion of highway driving. Due to lack of per

vehicle data, the Highway Fraction, Rhwy, is characterized by a uniform distribution

given in Equation 5.19. The parameters a and b are determined by the residential

density variable.

Rhwy = U(a, b) (5.19)

The parameters for determining the highway fraction given the residential den-

sity are shown in Table 5.16. These parameters are calculated from the U.S. Depart-

ment of Energy published data on vehicle miles traveled on roadways by functional

system. Separated into urban and rural roadways, the functional systems distinguish

between travel on interstates, freeways, arterials, collectors, and local roads. This

data sheet estimates that 60% of vehicle miles traveled are on roads with highway

speeds, such as interstates, freeways, and arterials. 40% are on collectors and local

roads. Table 5.15 shows the summary statistics for fraction of highway travel on

rural and urban roads for all 50 states. The maximum and mean values are shown to

be good estimates of parameters for a uniform distribution. The average of highway
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Table 5.15: Fraction of Highway Miles Traveled on Urban and Rural Road Systems

Rural Urban
Max 0.8 0.7
Min 0.45 0.42

Mean 0.64 0.56
E[Rhwy] 0.63 0.56

Table 5.16: Uniform Distribution Parameters for Highway Fraction

Rural Suburban Urban
a 0.45 0.42 0.42
b 0.8 0.8 0.7

fractions calculated from the data is very close to the expected value of Equation 5.19

given the minimum and maximum values.

The parameters for Rhwy are shown in Table 5.16. The parameters for subur-

ban areas were not supported directly by data, and so they encompass both urban

and rural ranges.

5.4.6 Passenger and Cargo Loads

Both the number of passengers and mass of cargo vary from vehicle to vehicle.

For example, a set of golf clubs in a trunk can add almost 10kg to a vehicle’s load.

Bjelkengren (2008) states that vehicles are designed for their maximum load, which

is the sum of the vehicle’s curb weight, mcurb, the maximum mass of cargo, mcargomax,

and the product of the maximum rated number of passengers, npmax, and the average

passenger mass, mp = 68kg.

Max Load = mcurb +mpnpmax +mcargo (5.20)
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The cargo mass estimation given by Bjelkengren (2008) is in Equation 5.21.

The cargo mass is calculated by multiplying the available cargo volume in liters,

Vcargo, by an average density of 0.155 kg
L

. This equation suggests a nominal cargo

mass of 4.2 kg.

mcargomax = 0.155Vcargo + 4.2 (5.21)

Data for actual vehicle loads are not available. The range of possible loads

was estimated from the nominal cargo load of 4.2 kg to the maximum cargo load

from Equation 5.21. For the Malibu Maxx, mcargomax = 104kg. Both Aurora models

share a max cargo load of 70kg. It did not seem reasonable to estimate a uniform

distribution over this range. Therefore, a shorter range was used from 4.2kg to 20kg.

20kg was chosen to represent a range of sports equipment, baggage, and groceries.

Therefore, mcargo is assigned the uniform distribution shown in Equation 5.22.

mcargo = U(4.2, 20) (5.22)

The mass of the passengers is estimated by independently determining the

number of passengers and their average mass. The factors are independent to avoid

increasing complexity by estimating the ratio of children to adults and the sexes of

the passengers. The number of passengers are estimated from the family size, , nHH ,

according to the uniform distribution in Equation 5.23. The lower bound is chosen

as less than one for the case of nHH = 1.

np = U(0.95, nHH) (5.23)

114



The average passenger weight is derived from the U.S. Department of Health

and Human Resources (McDowell et al., 2008). The average weight of an adult US

citizen over 20 years old is 74.7 kg with a standard error of 0.5 kg. The average

weight of a 10 year old girl is 42 kg, heavier than the average boy weight of 40 kg,

with a standard deviation of 1.06 kg. A normal distribution is used to approximate

the range of adult and child weights, with the mean passenger weight estimated as

60 kg with a standard deviation of 10 kg. The mass of passengers, mp, is given as

the product of the number of passengers, np, and their normally distributed average

weight,N(60kg, 10kg), in Equation 5.24.

mp = npN(60kg, 10kg) (5.24)

The sum of the cargo mass, mcargo and passenger mass, mp, are then multiplied

by an FRV, kw, in the units of km/L
kg

, as shown in Equation 5.25. The FRV, kw, is

a function of the drive cycle, and is responsible for calculating unique fuel economy

adjustment values for wcity or whwy.

wcityORwhwy = kw(mcargo +mp) (5.25)

Values for kw are averaged for all vehicles using the drive cycle simulations

introduced in Section 5.4.2. The results for individual vehicles can be found in Ap-

pendix B, Figure B.1. The resulting averages are shown in Table 5.17 and used for

calculations in the model.

5.4.7 Lifetime Mileage

A number of data sources were used to estimate lifetime mileage. The calcula-

tion for lifetime mileage is shown in Equation 5.26 where dlife is the lifetime mileage,
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Table 5.17: Weight Coefficients by Drive Cycle ( km/L per 10% mass)

US06 HFET LA92 FTP NYCC Mix
kw 0.0016 0.002 0.0015 0.001 0.001

da is the annual mileage, and tlife is the aluminum parts’ or vehicle’s age. The

annual mileage and part lifetime are estimated separately. da is conditioned on the

residential density and family size, and tlife has no parent factors.

dlife = datlife (5.26)

The lifetime of a vehicle is estimated using data from the Transportation and

Energy Data Book. They estimate vehicle survival rates over vehicle ages from 4 to

30 years using a model developed by Oak Ridge National Laboratory. The estimated

median lifetime of vehicles from 1990 is 16.9 years. About 55% of model year 1990

vehicles survive 16 years or longer, while only 30% of 1980 vehicles are estimated to

have survived 16 years. This predicted age is much longer than the years cited in LCIs

reviewed in Section 5.1. Most LCIs assume a lifetime of 10-14 years. The simulation

results show 80% survival rates at 11 years and 30% survival rates for 21 years. The

general trend is that vehicles are living longer, so these higher estimates were chosen

for the PGM. The vehicle lifetime is estimated from a normal distribution with mean

of 16 years and standard deviation of 5 years, shown in Equation 5.27.

tlife = N(16years, 5years) (5.27)

The annual mileage is estimated from a conditional probability distribution

given the residential density and family size. The Transportation Energy Data book
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Table 5.18: Mean Annual Mileage by Residential Density (km)

Rural Suburban Urban
µa 18000 + 1200nHH 16000 + 800nHH 15000 + 800nHH

(Davis et al., 2010) reports shares of annual vehicle mileage by age. The average

annual kilometers traveled ranges from 8,000 km to 24,000 km. The mean value is

18,000 km, and the standard deviation is about 3,000 km. Additional values are

collected from the National Household Transportation Survey (Oak Ridge National

Laboratory, 2009b) that indicate the annual mileage for different residential densities

and household sizes, nHH . A linear approximation of each average value is shown in

Table 5.18. These results were used to approximate each conditional mean, µa, for

the annual mileage, da, estimated from the normal probability distribution shown in

Equation 5.28.

da = N(µa, 3000km) (5.28)

5.5 Chapter Summary

In this chapter, the lightweight vehicle LCI was introduced as a demonstration

problem for the PGM method. Existing LCI studies of lightweighting were reviewed,

and none of the existing studies include considerations of different usage context or

consider joint effects of uncertainty on LCI parameters. The LCI values for aluminum

lightweighting of hoods and trunk lids were calculated for the 2001 Oldsmobile Aurora

V6 and V8, and the 2004 Chevrolet Malibu Maxx.

Applying the method from Chapter 3, a number of usage context factors were

identified and used to create a graph for the vehicle’s use stage model. The cen-
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tral component is calculating the difference in energy consumption of the steel and

aluminum vehicles. Each factor in the graph was addressed, and probability distri-

butions or physical equations were derived for each local probability distribution. A

MatLab simulation was created to study the effects of acceleration, speeding, and

weight on different driving cycles. Resulting values for parameters were in agreement

with national data or the existing literature.

Chapter 6 will describe the results of inference using the graph and data de-

veloped in this chapter. It will consider different scenarios described as conditions on

background variables of the graph, such as residential density, family size, and aggres-

siveness. Each scenario presents greater understanding of how human and situation

factors affect LCIs. Uncertainty of parameters will also be addressed, and the model

results will be compared with values obtained using more common methods.
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Chapter 6

Model and Results

This Chapter provides a comparison of use stage energy estimates for a lightweight

vehicle LCI using existing methods and a PGM. Point estimates and Monte Carlo

analysis are analyzed for insights in Section 6.1. These methods are found to estimate

the range of possible energy savings, but not provide any additional understanding

of the usage context. The results of the PGM are introduced in Section 6.2. Analy-

sis of individual background variables provides additional insight about the types of

scenarios that increase the benefits of lightweighting, and the types of scenarios that

decrease the benefits of lightweighting. Fictional scenarios, postulated without the

use of PGMs, are introduced and analyzed as well. These fictional scenarios emulate

realistic types of consumers, and show that although some situations display very

good normalized energy consumption values, the same scenarios may yield very poor

estimates of total use stage energy savings.

6.1 Advantages of Considering Joint Variability

When estimating energy during a product’s use, most LCI studies limit the

number of variables considered. For LCIs of light weight vehicle designs, Esaved, the

total energy savings during use, is calculated using Equation 6.1. The fuel economy

increase is estimated from the original vehicle’s fuel economy in km
L

, FEbase, and a

proportional improvement in fuel economy,RFRR, given the fraction of mass saved,

mreduced

mcurb
. This fuel economy is then assumed to occur over some lifetime mileage, dlife,

in kilometers. Sensitivity is then considered on each assumption, independently. Most
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studies do not test assumptions on the FRR, RFRR, but a few test assumptions on

the fuel economy and the lifetime mileage.

Esaved =

(
dlife
FEbase

− dlife
FEbase(1 +RFRR

mreduced

mcurb
)

)
34.7

MJ

L
(6.1)

The following subsections will present the results of sensitivity analyses on

Equation 6.1. Each example references the 2004 Malibu Maxx which has a fuel econ-

omy of 9.35 km
L

(22 MPG) and a curb weight of 1569 kg after a 15 kg weight savings.

The expected energy saved during its lifetime must exceed the 2.9 GJ investment in

lightweighting in order to validate the use of lightweighting. Each sensitivity analysis

reflects current practice in the literature and motivates questions that the PGM will

be used to answer in Section 6.2. These questions include: How confident can a de-

signer be in the results of a single point use stage LCI? How would confidence increase

with sensitivity analysis? How would confidence increase when using a PGM?

6.1.1 Independent Sensitivity Analyses

Table 6.1 summarizes the assumptions and results of more than ten sensitivity

calculations. Intervals for fuel savings are estimated by testing ranges on each term

of Equation 6.1. The first row summarizes the founding set of assumptions, and

each row below summarizes results for a new set of assumptions, with either one or

more variables changed. The intervals of ±10% and ±1% are replicates of sensitivity

analysis in the literature (Das, 2000; Mayyas et al., 2012). It is important to note

that all variables are changed independently, any connection between driving distance

and fuel economy, for example, is not tested. Although the final two rows of Table

6.1 show combinations of variables, these variables are still considered independently.

There is no physical or statistical relationship between the values being tested. The
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results suggest that actual fuel savings can vary by as much as 45% of the initial

estimate. Furthermore, it is difficult to make decisive arguments favoring any single

set of assumptions.

Table 6.1: Sensitivity Analysis on LCI Terms

Fuel Payback Assumed Assumed
Savings Mileage Assumed FRR Fuel Economy Mileage

(GJ) (1000 km) ( %fuel economy
%weight savings

) (km/L) (1000 km)

Average Values 4.7 136 6 9.35 193
-10% Fuel Economy 5.2 123 - 8.4 -

+10% Fuel Economy 4.2 150 - 10.3 -
+1% Fuel Economy 4.7 135 - 9.3 -
-1% Fuel Economy 4.6 138 - 9.4 -

Lowest FRR 3.1 205 4 - -
Highest FRR 6.2 102 8 - -

-10% Lifetime Mileage 4.2 137 - - 173
+10% Lifetime Mileage 5.1 137 - - 212

Worst Joint Case 2.5 225 4 10.3 173
Best Joint Case 7.6 92 8 8.4 212

- indicates average value used

The final two rows of Table 6.1 detail the best and worst case estimates when

individual variables are changed together. The results show a 5 GJ interval of possible

energy savings. When any single variable is adjusted, the energy savings during use

justify the energy investment of 2.9 GJ for aluminum lightweighting, but in the worst

joint case, the energy savings are less than the investment. This lack of justification

can be even worse when considering uncertainty in the magnitude of the lightweighting

investment, as highlighted in Table 6.2. The top row summarizes best and worst case

estimates for the energy investment in material production, part manufacture and

part recycling for aluminum lightweighting. Each value reflects a ±25% sensitivity

analysis from the literature (Das, 2000; Mayyas et al., 2012). The next two rows

summarize the best and worst values from Table 6.1, and the final row show the

range of net energy consumption for all life cycle stages.

Although most of the estimated range for net energy savings is positive, there
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Table 6.2: Comparison of LCI Sensitivities

Average Best Worst
Redesign Investment 2.9 GJ 2.2 GJa 3.6 GJb

Single Variable Uncertainty 4.7 GJ 6.2 GJ 3.1 GJ
Multiple Variable Uncertainty 4.7 GJ 7.6 GJ 2.5 GJ

Net Savings 1.2 GJ 5.4 GJ -1.1 GJ
a 25% decrease
b 25% increase

is the possibility of a negative net energy savings. Without further information, it

is not possible to quantify the probability of realizing negative net energy savings,

because the results are derived from simple interval calculations. While variations in

lifetime mileage and fuel economy have similarly large effects on net energy savings,

the probabilities of these variables are not known. Probability distributions should

be present in life cycle analyses and LCIs, but are not usually considered or directly

supported (Lloyd & Ries, 2007).

To emulate studies that employ probability estimates, a Monte Carlo analysis

was used to create a final estimate of net energy savings during the Malibu Maxx’s use

stage. In this analysis, lifetime mileage was assumed to follow a normal distribution,

N(µ = 220, σ = 100), with a mean of 220,000 km and standard deviation of 100,000

km. Fuel Economy for the base vehicle, pre-aluminum, was assumed to follow a

normal distribution, N(µ = 9.3, σ = 1), with a mean of 9.3 km
L

and standard deviation

of 1 km
L

. The FRR was assigned a uniform distribution, U(0.4, 0.8), between 4% per

10% weight savings and 8% per 10% weight savings.

These probability distributions were input into the OpenBUGS software (Thomas

et al., 2012), and a Monte Carlo analysis with 10,000 samples was used to estimate

the use stage energy consumption of the base and light weight vehicles and the energy
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savings of the lightweight vehicle during use. The code is shown in Appendix C, along

with a discretized version created in a spreadsheet. The results indicated that the

average lightweight vehicle consumes 830 GJ during use with a standard deviation

of 392 GJ and MC Error of 3.5 GJ. Recall that the MC error is an estimate of the

error associated with predicting a mean using a Monte Carlo sampling method. The

heavier, base vehicle has a mean energy consumption of 835 GJ with a standard devi-

ation of 392 GJ and MC Error of 4.2. Estimates of energy savings yielded a mean of

4.97 GJ and standard deviation of 2.6 GJ and MC Error of 0.5. Because the energy

investment is between 2.2 and 3.6 GJ, it lies within a standard deviation of expected

energy savings. While most vehicles will yield a net energy savings over their lifetime,

many vehicles will not.

From these results, it is difficult to determine which vehicles, markets, or

consumers are more likely to pay back or fail to pay back the initial energy savings.

Furthermore, these analyses assume complete independence between variables and

ignore underlying causal relationships. Factors such as residential density and family

size, for example, influence both fuel economy and lifetime mileage; rural driving

may include more high efficiency, highway driving, and rural driving may require

more miles of travel over a vehicle’s life. Additionally, a larger family will usually

require more travel and heavier payloads on the vehicle. The next section describes

how the PGM can be used to estimate the effects of individual background variables

and combinations of variables to create more informative estimates of energy savings.

6.2 Results of the Full Model

Table 6.3 summarizes the resulting energy distributions for the Malibu Maxx

under different usage scenarios. The underlying PGM is constructed using OpenBUGs
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software (Thomas et al., 2012), the code for which is shown in Appendix C.

The marginal scenario represents the entire usage context, as modeled, and

is equivalent to existing techniques; it tests the range of values for all factors in the

model, and yields similar results. The Monte Carlo analysis of the previous section

yielded a mean energy consumption of 4.97 GJ and standard deviation of 2.6 GJ, and

the marginal energy distribution of the PGM yielded a similar mean value of 4.94 GJ

and standard deviation of 2.13 GJ. The PGM yields lower results because it includes

slightly higher fuel economies for the base vehicle than the EPA estimates, about

10.53 km
L

instead of 9.3 km
L

. Recall from Chapter 5 that higher base fuel economies

reduce the effects of weight reductions. Consumer reported fuel economies support

the PGM results, and range from 8 km
L

to 14.9 km
L

with an average of 11.6 km
L

(U.S.

Department of Energy, 2012).

Although fuel economy is the primary factor reducing the energy savings es-

timate, it is balanced by an increase in lifetime mileage. The energy saved per km

traveled is much lower in the PGM, but the average lifetime mileage of a vehicle is

much longer. While the Monte Carlo analysis assumed an average lifetime mileage

of 220,000 km, the PGM yields an average lifetime mileage of about 270,000 km,

influenced by the factors presented in Chapter 5.

Because lifetime mileage is one of the least controllable factors and one of the

most influential factors, distance normalized energy values are also evaluated and

reported in Table 6.3. From these values, one can calculate the minimum lifetime

mileage required to payback the energy investment of aluminum parts. These values

range from 160,000-180,000 km, well below the expected value.

In Table 6.3, background factors, defined as factors without parents, are used

to define scenarios. Scenarios can be represented by specific values of individual
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Table 6.3: Effects of Different Vehicle Use Scenarios Estimated Using the PGM
Malibu Maxx Energy Saved During Use Energy Saved per km

Scenarios Mean (GJ) Std Dev(GJ) Mean (kJ) Std Dev(kJ) Payback (1000km)
Marginal 4.94 2.13 17.4091 3.5615 167

Velocity Scenarios
110% 4.90 2.11 17.2486 3.3846 168
100% 4.95 2.15 17.4460 3.5685 166
90% 5.02 2.22 17.6765 3.8343 164

Acceleration Scenarios
110% 4.99 2.16 17.5691 3.5886 165
100% 4.93 2.13 17.3761 3.5393 167
90% 4.88 2.11 17.1876 3.4923 169

Commute Scenarios
TRUE 5.09 2.19 17.8921 3.5350 162
FALSE 4.64 2.01 16.2980 3.3827 178

Family Size Scenarios
1 4.60 1.98 17.3201 3.5200 167
2 4.86 2.08 17.3863 3.5386 167
3 5.13 2.18 17.4533 3.5579 166
4 5.40 2.29 17.5210 3.5781 166

Residential Scenarios
Rural 5.70 2.37 17.1956 3.5331 169

Suburban 4.92 2.09 17.2783 3.5551 168
Urban 4.72 2.02 17.5358 3.5598 165

Cargo Scenarios
0 kg 4.95 2.14 17.4068 3.5478 167
10 kg 4.95 2.15 17.4290 3.5541 166
20 kg 4.96 2.15 17.4512 3.5603 166

Multi-Factor Scenarios
1 4.24 1.83 15.7930 3.4365 184
2 4.74 1.98 17.8743 3.3863 162
3 4.89 2.06 15.9600 3.4872 182
4 5.98 2.41 16.4076 3.3375 177

background factors or multiple background factors. When the PGM is exercised for

different scenarios, the results indicate that while a single factor has minimal effects

on energy savings, scenarios can have significant effects when they define multiple

factors to describe a specific type of consumer.

6.2.1 Effects of Individual Background Factors

As shown in Figure 5.7, the background factors present in the model are veloc-

ity, acceleration, commute, cargo load, family size, and residential density. Velocity

and acceleration are categorical factors evaluated at three levels, the lowest level in-
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dicates that the driver has a tendency to use speeds or accelerations 10% below the

specified drive cycle, which defines the middle level, and the high level indicates an

increase of 10%. Commute indicates that the driver uses the vehicle to commute

to work, and may encounter more traffic situations. Cargo load is a measure of the

average mass of cargo in a vehicle. Family size indicates the number of members in a

vehicle’s household. Residential density indicates higher or lower population densities

and the proximity of driving destinations through the categories of rural, suburban

or urban areas.

Figures 6.1 and 6.2 show the energy distributions yielded by each category of

velocity, acceleration, and cargo load. The marginal distribution is shown in black.

None of the scenarios exhibit significant changes from the unspecified, marginal case.

These results suggest that velocity and acceleration effects are dominated by the

variety of drive cycles, and that a driver can store heavy cargo in a vehicle before

seeing substantial reductions in fuel economy.

The variance in drive cycles could be one cause for the lack of significant effects.

The effects of velocity and acceleration have been shown to be highly dependent upon

the drive cycle Berry (2010). Increasing velocity, for example, increases fuel efficiency

for speeds lower than 72 kph, but reduces fuel efficiency at speeds above 88 kph.

Reducing acceleration increases efficiency at all speeds, but is most helpful for slow

and moderate speeds below 72 kph.

Additionally, in the case of velocity, it is important to note that the normalized

energy savings do not indicate that a factor has no effect on fuel efficiency of a vehicle,

but that the effects do not change relative to the heavier and lighter vehicle design.

Velocity predominantly increases the forces of drag that a vehicle must overcome,

and any other effects are relatively insignificant. At lower speeds, higher velocities
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Figure 6.1: Velocity, Acceleration, and Cargo Scenarios Exhibit Insignificant Effects
on Distance Normalized Energy Savings for the 2004 Malibu Maxx
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Figure 6.2: Velocity, Acceleration, and Cargo Scenarios Exhibit Insignificant Effects
on Lifetime Energy Savings for the 2004 Malibu Maxx
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Figure 6.3: Commute Scenarios Exhibit Significant Effects on Distance Normalized
Energy Savings for the 2004 Malibu Maxx

increases vehicle efficiency, but only by about 5%. This effect is much less than that

caused by different drive cycles.

It likely that the effects of acceleration are too small. Acceleration in particular

has been tested by Larsson & Ericsson (2009) through the design of an acceleration

adviser. This technology was used to increase the resistance of an acceleration pedal

on a mail delivery truck. This resistance causes the driver to use reduced accelera-

tions; a result that should increase fuel economy. Despite the neighborhood driving

schedules and observed reductions in acceleration, the overall fuel economy was not

significantly decreased.

In contrast to the effects of velocity and acceleration, the commute factor has

a more significant effect on the drive cycle and energy savings. A vehicle that is

used for commuting, and is more likely to experience stop-and-go traffic, can have

an increased energy savings of about 10% from lightweighting over a non-commuter
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Figure 6.4: Commute Scenarios Exhibit Significant Effects on Total Energy Saved
During Use for the 2004 Malibu Maxx

vehicle. Shown in Figures 6.3 and 6.4, this result applies equally to energy per km

and total use energy because it is directly related to fuel economy. Both results for

non-commuters have a P-value less than 0.05, while the commuter scenario has a

P-value of 0.06 for the use stage energy savings and 0.03 for energy saved per km. It

is the only variable with a significant effect on energy saved per km.

Residential density has a significant effect on total use energy savings, but little

effect on energy saved per km of travel. The urban and rural scenarios yield P-values

less than 0.05 for the use stage energy savings. The significant effect on total use

energy shown in Figure 6.6 is due to the increased distance between destinations and,

consequently, increased annual mileage of rural vehicles compared to urban vehicles.

The only effect that residential density has on fuel economy is the fraction of highway

travel. This fraction was only slightly higher for rural and suburban areas, so little

effect can be seen in Figure 6.5.
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Figure 6.5: Residential Density Scenarios Exhibit Insignificant Effects on Distance
Normalized Energy Savings for the 2004 Malibu Maxx

Figure 6.6: Residential Density Scenarios Exhibit Significant Effects on Total Energy
Saved During Use for the 2004 Malibu Maxx
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Figure 6.7: Family Size Scenarios Exhibit Insignificant Effects on Distance Normalized
Energy Savings for the 2004 Malibu Maxx

Family size had similar effects as residential density. Despite the potential to

increase loads by hundreds of kilograms, increased passenger loads had little effect on

energy savings per km, shown in Figure 6.7. In contrast, family size had a substantial

effect on total energy savings, shown in Figure 6.8. The single and four person

households yield P-values less than 0.05 for the use stage energy savings. Because

larger families average higher annual mileages, their vehicles tend to have higher

lifetime mileages and, therefore, longer distances for accumulating savings.

Only one of the background factors, commute, had significant effects on dis-

tance normalized energy savings. Accordingly, any designs aimed at reducing acceler-

ations, optimizing speeds, or reducing loads may lead to distance normalized energy

savings for either the base vehicle or the lightweight vehicle, but those distance nor-

malized energy savings are not likely to be higher for the lightweight designs.
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Figure 6.8: Family Size Scenarios Exhibit Significant Effects on Total Energy Saved
During Use for the 2004 Malibu Maxx

6.2.2 Effects of Individual Scenarios

Multiple factors can be combined into scenarios, and those scenarios can have

significant effects on energy savings. This section presents four fictional scenarios

inspired by four types of vehicle-consumer combinations:

1. Older Driver - single person household, suburban area, low speeds, low accelera-

tions, no commute

2. Urban Couple - two person household, urban, high speeds, high accelerations,

commute

3. Suburban Family - four person household, suburban, low speed, low acceleration,

no commute

4. Rural Family - four person household, rural, high speed, high acceleration, no

commute
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Energy estimates for these scenarios can be seen in Table 6.4 and Figures 6.9

and 6.10. Compared with varying individual factors, varying combinations of multiple

factors yielded more interesting and meaningful results. Of all of the scenarios, the

suburban and rural families yield the highest use stage energy savings while th urban

couple yields the highest energy savings per km. These results suggest that vehicles

with large families tend to perform better, as they have higher annual mileages and

lower base fuel economies from heavier loads.

Table 6.4: Effects of Vehicle Use Scenarios, Estimated Using the PGM
Malibu Maxx Energy Saved During Use Energy Saved per km

Scenarios Mean (GJ) Std Dev(GJ) Mean (MJ) Std Dev(MJ) Payback (1000km)
Marginal 4.39 2.07 0.0174 0.0036 167

Multi-Factor Scenarios
1 4.24 1.83 15.7930 3.4365 184
2 4.74 1.98 17.8743 3.3863 162
3 4.89 2.06 15.9600 3.4872 182
4 5.98 2.41 16.4076 3.3375 177

With regards to energy saved per km, commuting vehicles perform the best,

followed by high occupancy vehicles. The urban couple and rural family scenarios

share no traits other than high speeds, and high accelerations, but both scenarios

share low base fuel economies for additional reasons. The urban couple inspired

scenario has a reduced fuel economy due to high traffic situations from commuting,

while the rural family inspired scenario has low fuel economies due to the large family

size. These normalized energy results suggest that commuting vehicles and vehicles

with large numbers of passengers in addition to slightly more aggressive driving are

promising candidates for lightweight vehicle design.

With regards to total use energy savings, high mileage scenarios continue to

perform the best. The urban couple scenario yields the third lowest total energy

savings despite having the highest energy savings per km. Because the urban couple
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Figure 6.9: Four Usage Scenarios Exhibit Unique Effects on Distance Normalized
Energy Savings for the 2004 Malibu Maxx
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Figure 6.10: Four Usage Scenarios Exhibit Unique Effects on Total Energy Saved
During Use for the 2004 Malibu Maxx
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is assumed to travel fewer miles every year, this scenario accumulates lower energy

savings. In contrast, the rural and suburban family scearios share the important

aspect of having high annual mileages due to large families and travel outside of

urban areas. Although the suburban family scenario has a lower energy savings per

km, possibly from a lack of commuting traffic, the high lifetime mileage makes it

a good choice for light weight design. These total energy results suggest that high

mileage vehicles do not have to achieve high fuel economy improvements, and are

good candidates for lightweight redesign.

With regards to total LCI energy savings, all scenarios have expected energy

savings greater than the 2.9 GJ investment. The rural family is the only scenario

with a standard deviation that does not overlap with the 2.9 GJ investment. The

payback mileage is highest for the old driver scenario and lowest for the urban couple

scenario. The prior involves the least active driver. The driver lives alone, travels

below the speed limit and does not use the vehicle for commuting.

Table 6.5: Effects of Aggressive Driving and Commuting Estimated Using the PGM
Malibu Maxx Energy Saved During Use Energy Saved per km

Scenarios Mean (GJ) Std Dev(GJ) Mean (MJ) Std Dev(MJ) Payback (1000km)
Marginal 4.39 2.07 0.0174 0.0036 167

Multi-Factor Scenarios
Non-Aggressive,
Non-Commute

4.56 2.01 16.04 0.34 181

Non-Aggressive,
Commute

5.13 2.24 18.06 0.38 161

Aggressive, Non-
Commute

4.69 2.03 16.49 0.33 176

Aggressive,
Commute

5.06 2.16 17.77 0.34 163

The combined effects of aggressive driving and commuting were sampled to

help understand different scenarios. The results, shown in Table 6.5, suggest that

lightweighting provides more energy savings for non-aggressive commuting, with com-

muting having the dominant affect. The net energy savings from commuting vehicles
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are higher than average unless combined with a low expected lifetime mileage.

The effect of commuting on lifetime mileage was not considered in this PGM.

Oak Ridge National Laboratory (2009a) reports that 30-40% of miles traveled are

commuting, and that the average commute is 19km. Traveling 38km 250 days a

years creates about 9,500km of travel, suggesting that commuting may be a signif-

icant factor increasing annual vehicle mileage. Nevertheless, data were not found

for comparing the annual mileage for commuter and non-commuter vehicles, and the

relationship is excluded from this model.

6.3 Chapter Summary

This chapter compared the use of PGMs for uncertainty analysis with common

types of sensitivity analysis used in published LCIs. While the expected values are

similar for all methods, a PGM allows for greater understanding. Existing techniques

for assessing uncertainty of use stage assumptions include point estimates and Monte

Carlo analysis. Point estimates provide intervals without knowledge of the relative

likelihood of values within this interval, making decisions difficult when intervals

overlap. Monte Carlo estimates provide distributions for energy use, but do not

provide any understanding of background information that may improve the results.

Both techniques assume that variables are independent, and both techniques fail to

consider the inherent variability of product use in an intuitive way.

Although the marginal PGM results are similar to the Monte Carlo results, the

vehicle example demonstrated that implementation of realistic usage scenarios via a

PGM can provide a much higher fidelity investigation of energy savings during use and

that distinct scenarios can have significantly different implications for the effectiveness

of lightweight vehicle designs. Scenarios with large families, for example, yield high
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energy savings, especially if the vehicle is used for commuting or stop-and-go traffic

conditions. Scenarios of small families and efficient driving yield lower energy savings

for lightweight vehicle designs.

All scenarios had expected values greater than the worst case energy invest-

ment value of 3.6 GJ. Most expected use stage energy savings include a standard

deviation that overlaps with the estimated 2.9 GJ of energy investment. Regardless,

P-values for every distribution are less than 0.02, rejecting the null hypothesis that

the net energy savings are random. The widest confidence interval was 0.062 GJ, and

existed for the rural scenarios. All other confidence intervals are between 0.04 GJ

and 0.06 GJ. These insights would not have been obtained without creating a PGM.

Although it was possible to foresee the general trends from background research, cre-

ating the graph structure and evaluating different scenarios facilitated quantification

of those trends and confirmation or refutation of preconceived assumptions. For ex-

ample, the effect of aggressiveness is lower than one might expect, while location and

traffic conditions are the most influential factors in energy savings.

Future work could involve investigating lifetime mileage more closely, and

specifically the factors that contribute to increased lifetime mileage. Most LCIs sim-

ply estimate a payback time in km and avoid assumptions of lifetime mileage. Here,

gross assumptions about lifetime mileage are found to provide useful insights to guide

future design efforts and to motivate a more complex PGM.
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Chapter 7

Closure

The benefits of environmentally conscious designs vary with usage context,

and PGMs enable practitioners to consider this variability when conducting LCIs.

Because of the large number of complex scenarios, some researchers attempt to isolate

environmental metrics from variable usage factors. Through the lightweight vehicle

example, this research revealed that using a PGM to consider usage variability can

help identify high and low impact scenarios. For the vehicle example, it was shown

that metrics which try to isolate usage variability, such as energy saved per km of

travel, are not dominant indicators of total energy savings during a vehicle’s use.

Instead, scenarios that increase the lifetime mileage of a vehicle, such as more rural

contexts, can be more beneficial, without high changes in fuel economy. Designers

should focus their lightweight design efforts on vehicles with long expected lifetimes,

in addition to vehicles operating at low fuel efficiencies. In contrast with PGMs, most

vehicle LCIs do not consider the cause or likelihoods of high or low mileage during

a vehicle’s use stage. The PGM, therefore, provides a unique framework and set of

data for decision making that is rarely discussed in the LCI literature (Lloyd & Ries,

2007).

7.1 Contributions

This dissertation presents one of the first works to create a detailed model

of energy consumption during use specifically for the purposes of an LCI. Although

designers often create detailed physical models of their designs, stochastic models
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representing different usage scenarios are not common in design and are generally

avoided in LCIs. The primary departure from existing research is the decomposition

of a usage context into a set of human, product, and situational factors that can

be used to create large numbers of unique scenarios. For example, the five discrete

background variables considered in the vehicle lightweighting example can be used to

specify over 216 unique scenarios.

The first contribution of this dissertation, presented in Chapter 3, is a checklist

and method for employing existing design tools for a new purpose: identifying factors

that are relevant to LCI metrics and describe a product’s usage context. The checklist

includes six fundamental factors: Users, Tasks, Locations, Maintenance, Aesthetics,

and Functionality. Possible individual factors are also suggested for each category,

and include items such as expected aesthetic lifetime and inefficient habits. Physical

equations describing the product’s operation and activity diagrams are essential tools

for understanding both the product’s operation and the user’s procedural tendencies.

Activity diagrams can also provide evidence for the directional influence of factors.

For example, situational effects, such as temperature or time of day, may influence a

user’s decision to make tea or coffee. The result of using these tools is a comprehensive,

but still LCI-focused set of factors, organized in an interaction matrix.

This initial contribution applies to both the LCI and design research fields.

Some existing works in the LCI literature describe system level characteristics of a

product’s functions in order to identify trade-offs between energy saving design goals,

such as improved fuel economy, and customer needs, such as fast vehicle accelera-

tion. Additionally, other studies present methods for identifying essential functional

characteristics at the subsystem level, such as volume of storage or temperature re-

quirements in a refrigerator, for identifying scalable units for finding products with
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comparable functionality. Although usage context based design is not new, these

publications are focused on modeling the user’s perceptions and needs, instead of

thoroughly considering the product’s variable energy performance across different

usage contexts.

The second contribution is the application of PGMs to model use stage energy

consumption in an LCI. Graphical modeling theory, discussed in Chapter 4, allows

practitioners to represent understandings of how one factor influences and is influ-

enced by one or more other factors in a visual and analyzable format. For example,

one might usually rely on marginal probability information: that the average user

does not turn off his programmable thermostat while away. But, one may be more

confident in conditional probability information: that the average user in very hot

climates is more conscientious of energy savings and is more likely to turn off his home

thermostat while away. Each node of the graphical model can then be characterized

using data from isolated conditions for a variety of factors. In the vehicle model,

the graph structure enabled the use of conditional statistics to populate a network of

over 20 factors. Additionally, different data sources were used for each local cluster of

factors within the graph. Then Gibbs sampling, a Markov Chain Monte Carlo sam-

pling method, was used to estimate the total use stage energy saved by a lightweight

vehicle across all values of all factors in the model. The results, in Chapter 6, were

similar to prior estimates from single variable data sets, indicating that PGMs can

be used to reasonably infer estimates when single variable data sets are not available,

as in the electric kettle example of Chapter 4.

The third contribution of this dissertation is evidence that different usage

scenarios, defined using multiple background factors of a usage context, can greatly

increase or greatly reduce the net life cycle energy savings of a product. Chapter 4
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defined a background factor as any factor that has no parents in the graph, and can

be considered a root cause of the effects of interest. Chapter 6 compared sampling

results for values of six background factors: commute, residential density, family size,

speeding, acceleration, and cargo load. Residential scenarios, family size, and com-

mute were found to have the greatest effects on total energy savings during use. Four

usage scenarios were created to determine the effects of different background vari-

ables in combination. Large family, rural usage scenarios yielded the greatest total

energy savings during use, due to the high lifetime mileage associated with the sce-

nario, while scenarios specifying commuting yielded the greatest distance normalized

energy savings during use.

The final contribution of this dissertation is the lightweight vehicle example

problem. The contents are based on an extensive review of publicly available data

and existing research. Though many aspects of a vehicles use have been studied, such

as speed and acceleration profiles or user demographics, the combination of these

factors is unique to this model. The model is also novel with regards to the LCI. To

the Author’s knowledge, no existing product LCI goes beyond physical equations to

include both situational and human factors at the depth provided by this dissertation.

7.2 Recommendations

PGMs can operationalize knowledge of a product’s usage context and provide

reasonable estimates for LCIs. The primary advantage is that practitioners need not

average out assumptions that are outside of the designer’s control. For example,

some lightweight vehicle LCI studies only consider lifetime mileage until payback

when evaluating their redesigns. The likelihood of achieving that payback is not

quantified. In contrast, the PGM provides the capability of estimating the likelihood
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of each outcome and investigating multiple scenarios to understand which customers

or markets benefit the most from a design change.

It is recommended that LCI practitioners and environmentally conscious de-

signers begin characterizing the usage context as a set of factors for study. The

checklist and method for identifying factors presented in Chapter 3 of this disser-

tation should be consulted when forming LCI assumptions. This process reveals

interesting sources of variability that should be leveraged in decision making and

strategizing. If one use for LCI is to prioritize between use stage improvements and

manufacturing stage improvements, then it would also be useful to prioritize different

users or markets within that usage context.

PGMs were found to be a useful tool for analyzing usage context variability

across all scenarios and for well-defined individual scenarios. It is the intent of the

author to inspire further research in this area. Probabilistic models and graphical

models are not the only method that might be applied to this problem, and it was

not feasible to concurrently develop and compare potential alternative methods. The

graphical structure of the PGM, however, helped visualize the usage context space

and segment local clusters of factors into parent and child factors so that conditional

probability information could be employed. PGMs, therefore, are a promising avenue

for further advancement of LCI studies.

7.3 Future Work

A number of areas for future work exist, particularly in formalizing methods

for incorporating data into the PGM. Chapter 4 discussed alternative methods for

specifying local probability parameters, including Bayesian inference and traditional

Frequentist techniques. Bayesian inference was used to estimate the conditional prob-
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ability parameters for annual mileage given family size and residential density. The

prior was the marginal average, and the National Household Transportation survey

results and standard deviations were used to calculate the likelihood term. The re-

sulting posterior distributions were nearly identical to Frequentist inference, mainly

because of the large sample size and small differences in means ( ≈ 10%) between

marginal and conditional distributions for annual mileage. It would be of interest to

model usage context for which few data and conflicting data sets exists. These data

situations would better reflect the difficulties in a majority of LCIs.

An additional opportunity for the future is incorporation of unsorted data

collected from smart grid applications and mobile networking. PGMs can be learned

from fully observed data sets, that is, sets where all of the interesting factors are

measured concurrently. Learning algorithms analyze correlations within the data to

create clusters of nodes and edges between nodes, and have been used successfully in

image processing and medical analysis (Koller & Friedman, 2009). While automated

construction of a PGM of the usage context is an attractive prospect, the collection

of the required data sets is a challenge.

Development of an algorithm for automating discovery of significant usage

scenarios should be a goal for the more immediate research time frame, and may

be even more useful be applied to learned networks in the future. The fictional

scenarios analyzed in this research were designer driven. It would be interesting to

automatically identify scenarios or clusters of background variable values that yield

specific levels of energy savings. This information could provide unexpected design

insights.

Finally, this dissertation focused on the use stage of LCIs because a significant

amount of energy is consumed during this stage for most products. Nevertheless, it
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is hypothesized that the PGM method can be very useful for estimating the effects

of other stages. The amount of materials reclaimed for recycling, for example, is

difficult to predict in addition to the storage time between uses . Energy and material

consumption also varies across manufacturing process as the supplier, country of

origin, and plant design vary.
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Appendix A

Taxonomy Examples

Table A.1: Application of Guiding Questions
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Guiding Questions Cell Phone Kettle Printer

Who is using the product? Owner Individual or Shared Use
Individual or Shared Use (owners or 

customers)

What are the users habits?

Takes the cell phone everywhere, charges 

frequently, texts, makes call, surfs the web, 

accessorizes, take photos

Overfill, Reheat, Frequent use, Task 

preferences, Attentiveness, Temperature 

testing

read on/off screen, paper/digital storage, 

patience

What physical constraints 

affect the user?

Battery life, Speed to accomplish tasks, 

light for photos, tower location

Effort to fill the kettle, relating water 

gauge to task,  Minimum water level, 

Maximum water level

storage space, vision, laziness,

What knowledge constraints 

affect the user?

Familiarity with features, Proper charging, 

Maintaing hardware and software and OS

Relating water gauge to task, Water 

temperature, Task specs,  distractions
knowledge of features, fatigue

What are personal task 

preferences and criteria?

Using GPS, downloading apps, making calls, 

texting, background information, app 

updating, checking and writing emails, 

surfing the web, watching videos, taking 

photos

Water temperature, Number of servings, 

Refill frequency, Task types, Task 

frequency

amount of paper, font size, weight of 

paper, purchasing paper, purchasing ink,

What are the product 

specifications?

Durability of materials, OS speed, storage, 

memory, hardware specs, battery life, 

charging schedule

Maxmum water level, minimum water 

level, temperature accuracy, temperature 

settings, water gauge precision

rate of ink use, printing options, printing 

speed, clogging, amount of paper in tray

What are the product 

features?

data, download apps, calls, texts, software, 

charger, touch screen, sliding screen

Fill mechanism, water gauge, settings, 

feedback mechanisms

duplex printing, ink replacement, color 

printing, 3rd party ink, paper tray

What are the fundamental 

process equations?

fatigue of connectors, software clogging, 

material degradation, material failure

Thermal energy balance of around open 

water system

ink use, fluid clogging, ink deterioration, 

deposits on runners, jamming

What are the process inputs?
touch screen, buttons, forces, water, heat, 

cold, connectors, light
Water, Electricity, Temperature Settings paper, data, ink

What are the process 

outputs?
visual display, vibration, noises Hot water inked paper

What tasks might the user 

select?

Texting, Calling, Apps, Browsing, 

Streaming, Photographing, Navigation, 

Timing

Iced Tea, Hot tea, Hot Chocolate, Pre-boil 

water, Coffee

duplex, single, multiple per sheet, colors, 

paper size, personal printing (air tickets, 

recipes, directions), work printing 

(reports, memos)

What physical environments 

might the user select?

Work, Out, Home, Daytime, Nighttime, 

Rural, Urban, Suburban, Wet, Dry, Hot, 

Cold (anywhere or anytime)

Kitchen, Breakfast bar Home, office, store, school, library

What social environments 

might the user select?
All Home, Office, Hotel

Roommates, Family, Coworkers, Other 

Customers, Employees, Owners

What are the sources of flows 

from the product to the user?
LCD Display, Vibration Mechanism, LEDs, 

Speakers

noise, water dynamics, steam, water gauges, 

water level, water weight 
LCD, software, cost

What are the sources of flows 

from the user to the product? Fingers, Hands, Other Body Parts filling orifice, buttons, handle Hands, Computer, Paper, Ink

How do flows from 

the product influence user 

behavior?

Guide the user, Transfer signals, Suggest 

maintenance, Indicate status

Steam/boiling/clicking signal completion, 

weight/gauge/visual signals fill

Low paper creates constraint, Low ink creates 

constraing, Incurs maintenance, Errors create 

repeats, Cost reduces waste

How do flows from the 

user influence product 

performance?

Increase load, Cause damage
amount of water, temperature selection, 

switches

User selects wrong setting, User puts in paper 

in wrong orientation, User puts in bad ink, 

User creates mess

What mental or physical 

hinderances exist between the 

user and product?

Visibility, Knowledge, Tech Savviness
Kettle weight, kettle height, gauge 

comprehension, gauge visibility, water visibility

knowledge of features, lack of paper, lack of 

ink, maintenance preferences
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What mental or physical aids 

exist  between the user and 

product?

Tech savviness, Instructions
Gauge, kettle height, handle, lid lever, noise, 

clear screen
Default settings

What are the sources of flows 

between different situations 

and the product?

temperature, surfaces, sun light, artificial 

lighting, user noise, cell tower, surrounding 

noise, gravity

cold/hotwater from faucet, ambient 

temperature

Users, Maintenance schedule, Frequency of 

use, task types

How do flows between the 

situation and product 

increase product 

performance?

How do flows between the 

situation and product 

decrease product 

performance?

How do situation factors 

change product factors and 

performance?

What are the sources of flows 

from the physical environment 

to the user?

People, Cars, Upgrades, Social Pressure, 

Trends, Work needs, Availability of technology, 

Cell towers, Availability of power sources, 

Sales, Wealth, Cost, Airplane

Weather, Water sources Cost

What are the sources of flows 

from the social environment to 

the user?

Games with friends, Friends, Photo 

opportunities, Fashion, Comparison, Etiquette, 

regulations

Guests, Cohabitants Colleagues expectations, Rules on usage, 

How do flows from 

the physical environment 

influence task selection?

Light affects LCD brightness, noise affects 

speaker use, proximity to cell phone towers 

affects use frequency, international affects use 

frequency, airplane induces airplane mode, laws 

and regulations for driving

Task temperature counteracts outside 

temperature, Beverage and cooking follows a 

temporal pattern

How do flows from 

the  social environment 

influence each task identified?

games cause more frequent use and updating, 

trends change expectations, photo 

opportunities create use of camera, etiquette 

restrics phone use, regulations affect phone 

use

Additional servings may be made at a single 

time, social interactions may distract
In a rush use defaults, Rules limit task selection

How do task requirements 

influence physical  environmen

t selection?

find quiet for phone call Purchaser selects home/office/hotel

personal printing at home or work or store, 

low important work at work, high importance 

work at store

How do task requirements 

influence  social environment 

selection?

find friends to play games with Purchaser selects home/office/hotel high quality require professional help

What mental or physical 

hinderances exist between the 

user and situation?

Other users may be cause distraction or stress 

and increase erroneous behavior, poor lighting 

makes measuring difficult, noisy environment 

reduces ability to respond to auditory signals

What mental or physical aids 

exist between the user and 

situation?

Other users may hasten process and reduce 

erroneous behavior, good lighting, quiet 

environment
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heat changes material life, heat changes 

efficiency, heat affects the battery, surfaces 

create impact, gravity creates impact, sun light 

and artifical light create or reduce loads on 

digital camera,  proximity to towers changes 

processing time, noise changes processing, 

remote use reduces available functionality

ambient temperature can increase or reduce 

temperature difference, ambient temperature 

can increase or reduce heat loss from the 

kettle, low ambient or faucet temperature can 

increase temperature difference, low ambient 

temperature can increase heat loss, high 

ambient or faucet temperature can reduce 

temperature difference, high ambient 

temperature can reduce heat loss from the 

kettle

Stores may have less errors, Homes have 

more errors, Frequency of changing 

materials in higher in homes and reducing 

ink waste, stores have better 

maintenance, Stores have experts, Work 

has maintenance person, Public places 

have more users, Copy store has more 

color printers, Public places print more, 

User doesn't pay for paper at work, 

Physical environment sets cost to user
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Figure A.1: Rejected Guiding Questions
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Appendix B

Vehicle Data

B.1 Nomenclature of Vehicle Factors

Fuel Use (V) lifetime fuel use in liters (Section 5.4)

Fuel Economy (FE) average fuel economy over the aluminum part’s lifetime in

km/L (Section 5.4.1)

Lifetime Mileage (dlife) km traveled during the aluminum part’s life (Section 5.4.7)

Design Stage Mass Reduction (mreduced) mass saved by aluminum part (Section

5.2)

Fuel Reduction Ratio (FRR) (RFRR) the ratio of %fuel economy Improvement

per 10% weight savings (Section 5.4.1)

Part Lifetime (tlife) lifetime of the aluminum part (less than or equal to the vehicle

lifetime) in years (Section 5.4.7)

Speeding (Lv) level of driver adjustment for drive cycle speeds (Section 5.4.3)
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Acceleration (La) level of driver adjustment for drive cycle accelerations (Section

5.4.)

Commute tendency of the driver to be in high traffic situations (Section 5.4.3)

Cargo Load (mcargo) the mass of non-passenger cargo in a vehicle in kg (Section

5.4.2)

Passengers(np) the average number of passengers (including the driver) (Section

5.4.6)

Passenger Weight(mp) the average weight of passengers in the vehicle in kg (Sec-

tion 5.4.6)

Family Size(nHH) the number of household members (Section 5.4.4)

Residential Density Indicator (D) indicator of urban, suburban, or rural resi-

dence (Section 5.4.4)

Highway Fraction (Rhwu) the fraction of highway driving (Section 5.4.5)
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City Drive Cycle (µcity) the expected fuel economy (km/L) for a driver adhering

to an EPA city drive cycle (Section 5.4.2)

Highway Drive Cycle (µhwy) the expected fuel economy (km/L) for a driver ad-

hering to an EPA highway drive cycle (Section 5.4.2)

City Fuel Economy (FEcity) city drive cycle fuel economy adjusted to driver habits

and vehicle loads (Section 5.4.2)

Highway Fuel Economy (FEhwy) highway drive cycle fuel economy adjusted to

driver habits and vehicle loads (Section 5.4.2)

B.2 Simulation Results

B.2.1 Matlab Code for Vehicle Drive Cycle Simulation
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Figure B.1: Simulation Results for Weight
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Table B.1: Acceleration and Velocity Effects on Malibu Maxx for 6 EPA Drive Cycles

90% Vel 100% Vel 110% Vel 90% Vel 100% Vel 110% Vel

110% Acc 7.69 8.09 8.44 110% Acc 7.39 7.91 8.32

100% Acc 7.77 8.18 8.55 100% Acc 7.46 7.99 8.40

90% Acc 7.86 8.28 8.65 90% Acc 7.52 8.06 8.48

90% Vel 100% Vel 110% Vel 90% Vel 100% Vel 110% Vel

110% Acc 10.02 9.84 9.52 110% Acc 6.97 7.50 7.93

100% Acc 10.20 10.06 9.73 100% Acc 7.03 7.56 8.00

90% Acc 10.36 10.24 9.92 90% Acc 7.08 7.63 8.08

90% Vel 100% Vel 110% Vel 90% Vel 100% Vel 110% Vel

110% Acc 12.03 12.14 12.09 110% Acc 3.36 3.69 4.00

100% Acc 12.09 12.20 12.15 100% Acc 3.39 3.73 4.04

90% Acc 12.13 12.25 12.19 90% Acc 3.41 3.75 4.06

110% Acc

100% Acc

110% Acc

100% Acc

110% Acc

100% Acc

EPA Urban Dynanometer Schedule

EPA Federal Test Procedure (FTP)EPA LA92 "Unified"  Driving Schedule

EPA US06 Supplemental FTP

Malibu Maxx Adjusted Fuel Economies (km/L)

EPA Highway Fuel Economy Test EPA New York City Cycle
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Table B.2: Acceleration and Velocity Effects on Aurora V6 and V8 for 6 EPA Drive
Cycles

110% Vel 90% Vel 100% Vel 110% Vel 90% Vel 100% Vel 110% Vel

110% Acc 5.98 6.34 6.60 110% Acc 5.70 6.13 6.49

100% Acc 6.04 6.42 6.70 100% Acc 5.73 6.18 6.54

90% Acc 6.09 6.48 6.77 90% Acc 5.77 6.22 6.59

110% Vel 90% Vel 100% Vel 110% Vel 90% Vel 100% Vel 110% Vel

110% Acc 8.01 7.96 7.78 110% Acc 5.36 5.79 6.16

100% Acc 8.16 8.13 7.95 100% Acc 5.39 5.83 6.21

90% Acc 8.27 8.25 8.10 90% Acc 5.42 5.86 6.25

110% Vel 90% Vel 100% Vel 110% Vel 90% Vel 100% Vel 110% Vel

110% Acc 9.53 9.75 9.75 110% Acc 2.56 2.81 3.05

100% Acc 9.58 9.80 9.80 100% Acc 2.57 2.83 3.07

90% Acc 9.62 9.84 9.83 90% Acc 2.58 2.85 3.09

90% Vel 100% Vel 110% Vel 90% Vel 100% Vel 110% Vel

110% Acc 5.49 5.81 6.04 110% Acc 5.24 5.65 5.96

100% Acc 5.55 5.88 6.12 100% Acc 5.29 5.71 6.03

90% Acc 5.61 5.96 6.20 90% Acc 5.34 5.76 6.09

90% Vel 100% Vel 110% Vel 90% Vel 100% Vel 110% Vel

110% Acc 7.34 7.22 7.00 110% Acc 4.92 5.33 5.66

100% Acc 7.49 7.35 7.14 100% Acc 4.97 5.38 5.72

90% Acc 7.61 7.48 7.27 90% Acc 5.01 5.43 5.77

90% Vel 100% Vel 110% Vel 90% Vel 100% Vel 110% Vel

110% Acc 8.95 9.16 9.15 110% Acc 2.33 2.56 2.78

100% Acc 9.02 9.22 9.21 100% Acc 2.35 2.59 2.80

90% Acc 9.07 9.27 9.27 90% Acc 2.36 2.60 2.82

EPA Highway Fuel Economy Test EPA New York City Cycle

EPA Highway Fuel Economy Test EPA New York City Cycle

Aurora V8 Adjusted Fuel Economies (km/L)
EPA LA92 "Unified"  Driving Schedule EPA Federal Test Procedure (FTP)

EPA US06 Supplemental FTP EPA Urban Dynanometer Schedule

Aurora V6 Adjusted Fuel Economies (km/L)
EPA LA92 "Unified"  Driving Schedule EPA Federal Test Procedure (FTP)

EPA US06 Supplemental FTP EPA Urban Dynanometer Schedule
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Appendix C

PGM Models

C.1 Discrete Test PGM in Excel with Three Factors of Monte
Carlo Analysis

Figure C.1 shows the joint probabilities of use stage energy consumption esti-

mated using chain rule for the three factors, FRR, Lifetime Mileage, and Fuel Econ-

omy, shown in Table C.1. Because of the FRR, the lightweight vehicle has more

scenarios to calculate, 104 unique points, and 34 unique points for the base vehicle.

The graph depicts the probability density for each scenario. Discrete models could

work well for LCIs as well, but it would still require the use of specialized software,

as calculations across the large number of factors are beyond the capabilities of a

spreadsheet.

Figure C.1: Joint Probabilities of Discrete Usage Scenarios and Corresponding Energy
Values
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Table C.1: Discrete Lifetime Mileage, Probabilities

LIFETIME MILEAGE (km) 140,000 180,000 220,000 260,000 300,000
Probability 10% 20% 40% 20% 10%

FRR ( %fuel economy
%weight savings

) 0.4 0.6 km 0.8 km

Probability 33% 33% 33%

Fuel Economya (km
L

) ≈7.8 ≈8.3 ≈8.8 ≈9.3 ≈9.8 ≈10.3 ≈10.8
Probability 5% 10% 20% 30% 20% 10% 5%

C.2 OPENBugs Models

C.2.1 Monte Carlo Analysis

 -- Printed on 11/27/2012, 3:59:26 PM -- Page 1

model{

FRR ~ dunif(0.4,0.8)

Mileage ~ dnorm(220,mile.tau)

Fuel ~ dnorm(fuel.mu,fuel.tau)

Energy <- (Mileage / Fuel - Mileage / (Fuel * (1 + FRR*0.01))) * 34.8

mile.tau <- 1/(100*100)

fuel.tau <- 1/(1*1)

fuel.mu <- 9.3

}

 -- File date:  -- File time: 

C.2.2 Vehicle PGM
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 -- Printed on 11/27/2012, 3:32:22 PM -- Page 1

model{

###############################

# Constants - Fixed values and explanatory variables

###############################

###############################

# Stochastic or random - model parameters (nodes) and response variables

###############################

FuelReductionRatio ~ dunif(0.4,0.7)

PopDensity ~ dcat(p.PopDensity[1:3])

#Drive Cycles call CPTs P(1:3|CommuteType)

HwyDriveCycle ~ dcat(p.HwyDriveCycle[CommuteType,1:3])

CityDriveCycle ~ dcat(p.CityDriveCycle[CommuteType,1:3])

HwyEconomy ~ dnorm(AdjHwyEconomy.mu,HwyEconomy.tau[HwyDriveCycle])

CityEconomy ~ dnorm(AdjCityEconomy.mu,CityEconomy.tau[CityDriveCycle])

# 1. low 2. med 3.  high

Speeding ~ dcat(p.Speeding[1:3])

Acc ~ dcat(p.Acc[1:3])

CommuteType ~ dcat(p.CommuteType[1:2])

HwyFraction ~ dunif(HwyFraction.a[PopDensity],HwyFraction.b[PopDensity])

PartAge ~ dnorm(PartAge.mu,PartAge.tau)

AnnualMiles ~dnorm(AnnualMiles.theta,AnnualMiles.tau)

CargoLoad ~ dunif(4.2,20)

AvgPassengerWeight ~ dnorm(60,AvgPassengerWeight.tau)

FamilySize ~ dcat(p.FamilySize[1:4]) #additional family members

Passengers ~ dunif(0.95 , Members[FamilySize])

###############################

# Logical - variables specified mathematically

###############################

FuelEconomy.light <- (HwyFraction * HwyEconomy + (1 - HwyFraction) * CityEconomy)* (1

+ FuelReductionRatio * MassReduction/Curbweight)

FuelEconomy.base <- (HwyFraction * HwyEconomy + (1 - HwyFraction) * CityEconomy)

FuelSave <- LifetimeMileage / FuelEconomy.base - LifetimeMileage / FuelEconomy.light

Energy <- FuelSave * 0.0348

EnergyperKM <- (1 / FuelEconomy.base - 1 / FuelEconomy.light)*34.8

# inGJ

PassengerWeight <- AvgPassengerWeight * Passengers

TotalLoad <- CargoLoad + PassengerWeight

PartAge.mu <- 16

PartAge.sd<- 5

PartAge.tau <- 1 /( PartAge.sd*PartAge.sd)

 -- File date:  -- File time: 
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 -- Printed on 11/27/2012, 3:32:22 PM -- Page 2

AvgPassengerWeight.var <-10 * 10

AvgPassengerWeight.tau <- 1/(AvgPassengerWeight.var)

LifetimeMileage <- AnnualMiles * PartAge

AnnualMiles.theta <- (AnnualMiles.mu[PopDensity] + AnnualMiles.K[PopDensity] *

FamilySize)

AnnualMiles.var <- 3000 * 3000

AnnualMiles.tau <- 1/AnnualMiles.var

AdjHwyEconomy.mu <- HwyEconomy.mu[HwyDriveCycle] *(1+(Speeding-2)*VelK.hwy[

HwyDriveCycle]+(Acc-2)*AccK.hwy[HwyDriveCycle]) - WeightK.hwy[HwyDriveCycle] *

TotalLoad

AdjCityEconomy.mu <- CityEconomy.mu[CityDriveCycle] *(1+(Speeding-2)*VelK.city[

CityDriveCycle]+(Acc-2)*AccK.city[CityDriveCycle]) - WeightK.city[CityDriveCycle] *

TotalLoad

}

###############################

#Data

###############################

list(

Members = c(1,2,3,4),

#Rural Suburban Urban

p.PopDensity = c(.21,.13,.66),

HwyFraction.a = c(.45,.42,.42),

HwyFraction.b = c(.8,.8,.7),

#Mean Annual Mileage

AnnualMiles.mu = c(18000, 16000, 15000),

AnnualMiles.K = c(1200, 800, 800),

#Data from Matlab Simulations in km/L

# LA92 (EPA HWY) HFET

HwyEconomy.mu = c(10.75, 11.9, 15.3),

HwyEconomy.tau = c(0.7, 0.7, 0.7),

# NYCC Mix EPACity FTP

CityEconomy.mu = c(8.2, 8.1, 10.5),

CityEconomy.tau = c(0.7, 0.7, 0.7),

# Speeding

p.Speeding = c(0.2,0.4,0.4),

# Acc

p.Acc = c(0.2,0.4,0.4),

# CommuteType

p.CommuteType = c(0.70,0.30),

 -- File date:  -- File time: 
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 -- Printed on 11/27/2012, 3:32:22 PM -- Page 3

# HwyDriveCycle  LA92 (EPA HWY) HFET

# (TrafficType)

# (1)  .4 .5 0.1

# (2)  0.1 0.5 0.4 

p.HwyDriveCycle = structure(.Data =c(.4,.5,.1,

.1,.5,.4), .Dim=c(2,3)), #RowsXColsXTables

# CityDriveCycle  NYCC Mix EPACity FTP

# (TrafficType)

# (1)  .4 .5 0.1

# (2)  0.1 0.5 0 

p.CityDriveCycle = structure(.Data =c(.4,.5,.1,

.1,.5,.4), .Dim=c(2,3)), #RowsXColsXTables

p.FamilySize = c(0.3,0.3,0.2,0.2),

#   NYCC Mix EPACity FTP

WeightK.city = c(0.001,0.001, 0.0001),

#  LA92 (EPA HWY) HFET

WeightK.hwy = c(0.0015, 0.0016,0.002),

#   NYCC Mix EPACity FTP 

VelK.city = c(.06,.051,.051),

#  LA92 (EPA HWY) HFET

VelK.hwy = c(0.045,-.032,-.05),

#  NYCC Mix EPACity FTP

AccK.city = c(-.002,-.009,-.009),

#  LA92 (EPA HWY) HFET 

AccK.hwy = c(-.009,-.017,-.007),

MassReduction = 15,

Curbweight = 1584

)

 -- File date:  -- File time: 
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C.3 Results for the Aurora Models

C.3.1 Aurora V8

Figure C.2: Velocity, Acceleration, and Cargo Scenarios Exhibit Insignificant Effects
on Distance Normalized Energy Savings for the Aurora V8
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Figure C.3: Velocity, Acceleration, and Cargo Scenarios Exhibit Insignificant Effects
on Lifetime Energy Savings for the Aurora V8
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Figure C.4: Commute Scenarios Exhibit Significant Effects on Distance Normalized
Energy Savings for the Aurora V8
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Figure C.5: Commute Scenarios Exhibit Significant Effects on Energy Savings for the
Aurora V8
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Figure C.6: Residential Density Scenarios Exhibit Significant Effects on Distance
Normalized Energy Savings for the Aurora V8
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Figure C.7: Residential Density Scenarios Exhibit Significant Effects on Energy Sav-
ings for the Aurora V8
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Figure C.8: Family Size Scenarios Exhibit Significant Effects on Distance Normalized
Energy Savings for the Aurora V8
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Figure C.9: Family Size Scenarios Exhibit Significant Effects on Energy Savings for
the Aurora V8
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Figure C.10: Four Usage Scenarios Exhibit Unique Effects on Distance Normalized
Energy Savings for the Aurora V8
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Figure C.11: Four Usage Scenarios Exhibit Unique Effects on Energy Savings for the
Aurora V8
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C.3.2 Aurora V6

Figure C.12: Velocity, Acceleration, and Cargo Scenarios Exhibit Insignificant Effects
on Distance Normalized Energy Savings for the Aurora V6
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Figure C.13: Velocity, Acceleration, and Cargo Scenarios Exhibit Insignificant Effects
on Lifetime Energy Savings for the Aurora V6
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Figure C.14: Commute Scenarios Exhibit the Significant Effects on Distance Normal-
ized Energy Savings for the Aurora V6
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Figure C.15: Commute Scenarios Exhibit the Significant Effects on Energy Savings
for the Aurora V6
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Figure C.16: Residential Density Scenarios Exhibit Significant Effects on Distance
Normalized Energy Savings for the Aurora V6
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Figure C.17: Residential Density Scenarios Exhibit Significant Effects on Energy
Savings for the Aurora V6
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Figure C.18: Family Size Scenarios Exhibit Insignificant Effects on Distance Normal-
ized Energy Savings for the Aurora V6
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Figure C.19: Family Size Scenarios Exhibit Significant Effects on Energy Savings for
the Aurora V6
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Figure C.20: Four Usage Scenarios Exhibit Unique Effects on Distance Normalized
Energy Savings for the Aurora V6
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Figure C.21: Four Usage Scenarios Exhibit Unique Effects on Energy Savings for the
Aurora V6
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