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Enhancing the Practical Usability of Dynamic Traffic Assignment

by

Christopher Matthew Pool Jr., M.S.E.

The University of Texas at Austin, 2012

Supervisor: Stephen Boyles

A general framework is presented for replacing static traffic assignment with
dynamic traffic assignment within the standard four step transportation planning
model. Issues including model consistency and the implementation of a proper
feedback loop are explored. The new model is compared with the standard four step
model in order to highlight the benefits of using dynamic traffic assignment rather
than static. The model is then extended to include a term for the difference between
experienced and free-flow travel times, which can be used as a proxy for travel time
reliability and highlights the benefits of time-dependent DTA. Additionally, a study
on improving the quality of convergence for dynamic traffic assignment is
conducted in order to help facilitate the usefulness of this modeling approach in
practice. A variety of equilibration techniques are tested, and analysis is performed

to contrast these techniques with the method of successive averages.
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CHAPTER 1: INTRODUCTION

1.1 BACKGROUND

Effectively constructing a planning tool for forecasting future demand levels
is essential to transportation science. If planners are able to model future
transportation conditions with a high level of accuracy, they gain access to
information allowing implementation of corrective or advantageous system changes
in the present. However, defining measures that constitute a good level of accuracy
is not trivial, as there are a very large number of plausible future scenarios.
Therefore, considerable effort must be given to the particular model intricacies that
define how different transportation elements are included.

Traditionally the sequential four step transportation model has been used to
accomplish the task of forecasting. The first step, trip generation, uses demographic
and survey data to determine how many trips are being attracted and produced in
each traffic analysis zone (TAZ). Trip distribution, the second model step, uses the
attractions and productions from the trip generation step and distributes them
among the TAZs in the planning area. Mode choice, the third step, converts the
person trips from the trip distribution step into vehicle (or other mode) trips.

Finally, traffic assignment distributes the vehicular origin-destination matrix from



the previous step onto the transportation network using the principle of user
equilibrium (UE).

The traffic assignment step is typically carried out through the use of a static
traffic assignment (STA) model, where link performance functions represent the
average or steady state travel-time on a link as a function of the volume of traffic on
that link. However, there are a number of limitations induced by properties of link
performance functions, the most significant of which is that there is no restriction to
ensure that volume on a given roadway is less than the available capacity.

Dynamic traffic assignment (DTA), a fundamentally different method than
STA, typically uses simulation-based network modeling to describe traffic
movement in discrete time intervals. DTA models have three essential components:
a traffic simulator, a path generator and an assignment module. The traffic simulator
is used to propagate flow throughout a transportation network and find travel
times. The path generator is used to find the time-dependent shortest path per
origin-destination. Finally, the assighment module moves flow from other paths to
the shortest path per origin-destination. The main benefit of such an approach is
that it allows engineers and planners to access the patterns of traffic at specific
points in time, which can lead to a greater understanding of the cause of a
bottleneck or congestion within a regional transportation network. However, the
use of DTA by practitioners has been relatively limited up to this point in time,

though many wish to begin using DTA in the future. Noted concerns include the high



computational load and long model run periods associated with DTA, as well as the
amount of time and resources required to implement a new modeling scheme.

In this thesis, the primary goal is to successfully integrate DTA with the
traditional four step planning model. Furthermore, the new model should benefit
from the small time scale resolution provided by DTA. Finally, the new model will
propose a measure of travel time reliability, using the information gained from
dynamic traffic assignment. Also, a study of equilibration techniques for DTA is
conducted so that the computational load and convergence gap may be as low as
possible. It is hoped that this study, combined with ever-increasing computational

power, will ingratiate DTA in the minds of practitioners.

1.2 MOTIVATION

The benefits of dynamic traffic assignment - modeling traffic flows at a fine
time scale across a large spatial area - and the availability of efficient software
programs have made DTA a valuable tool for transportation planning agencies.
According to a recent survey conducted by the Federal Highway Administration,
42% of respondents, mainly consisting of government agencies and consulting
firms, want to incorporate DTA into their planning analyses as soon as possible
(Chiu, 2010). Seventy percent of respondents plan to implement DTA within the
next two years, and 90% want to incorporate DTA in three to four years at the latest.
Sixty-five percent of the respondents planned to eventually replace their existing

static traffic assignment model with DTA. Another accurate and theoretically
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consistent solution could be to integrate DTA with an activity-based travel demand
model. However, for many agencies this is too costly to implement; the traditional
four step model has been used since the early 1960s. Therefore, combining the four
step model with DTA is a cost-effective approach (and may be the only approach) to
add detailed temporal dynamics to existing planning processes. For these reasons,
combined with the numerous issues of consistency posed by altering the
fundamental structure of such a sophisticated model, it is necessary to build a
framework that places DTA within the standard transportation planning processes.
The non-realistic properties of the link performance functions included
within STA indicate the need for a model that more realistically captures traffic
behavior. Most models using link performance functions, allow volume to capacity
ratios to be greater than one, which is physically impossible. Moreover, this issue is
aggregated across an entire network, meaning there are potentially a great number
of links that are assigned traffic volumes that simply are not possible to achieve in
reality. Link performance functions do not distinguish between different lanes on a
roadway, though this issue may be of slightly lesser importance given the scale of
some regional network models. Also, because link performance functions are based
on a single value of link flow, it is implied that inflow is equal to outflow and there is
no accumulation of traffic on the link. This results in an absence of representation of
congestion spillback. However, congestion should be one of the biggest factors

planners wish to examine when performing regional modeling, as it is the source of



substantial losses of both time and money. For this reason it is crucial that this
element of transportation be simulated correctly within modern planning models.
Finally, link performance functions are arbitrary and cannot be traced to
fundamental traffic flow principles.

In addition to the alleviation of the concerns presented by link performance
functions, the inclusion of DTA into the four step model will provide access to time-
dependent travel information, which can then be used to increase the efficacy of the
other steps within the model. For example, one element that may be possible to
extract from dynamic traffic assignment output is some measure of travel time
reliability. From a behavioral standpoint, it is logical to assume that drivers include
a factor for the reliability of a given route within their choice decision. For example,
consider two paths between a given origin and destination. On path 1, drivers can
consistently reach their destination in 13 minutes. On path 2, drivers sometimes
experience travel times of 10 minutes while at other times they may experience
travel times of 20 minutes - each case has 50% probability. It is clear that while
path 2 may provide a shorter commute time, the average between the different path
2 travel times is 15 minutes, a longer travel time than the consistent 13 minutes of
path 1. This example illustrates the importance travel time reliability can play in an
individual’s route choice selection and likewise the importance of incorporating a

representation of this type of situation within modern transportation models.



Finally, given that a large portion of government agencies and consulting
firms wish to incorporate DTA into their planning process within the next five years,
it seems highly relevant to provide an unbiased comparison of many equilibration
techniques within the same dynamic traffic assignment model. Consider the
uncertainty associated with the inclusion of a new DTA component within an
existing model - agencies will be concerned with questions such as “How much it
will cost? How long will the new model take to run? How many combinations of
various options and parameters are there to test and validate?” Finally, they will
want to know “How will the DTA component give results in the least amount of
computation time possible without sacrificing accuracy?” To alleviate some of these
concerns, agencies can simply glance at the convergence study in this work to gain a
quick understanding of how various DTA equilibration techniques compare to one

another in terms of both the convergence rate and the accuracy of convergence.

1.3 PROBLEM STATEMENT

In this work, the first objective is to simply create a functioning four step
transportation model that is able to include dynamic traffic assignment in the final
step. Working toward this goal, it seems that a logical place to start is by a simple
replacement of STA with DTA in step four of the traditional planning model.
However, given that static assignment produces a single travel time output value for
a given demand period while DTA reports travel times at each time interval within

that period, it will be necessary to devise meaningful model updates in order to
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accurately integrate the dynamic assignment. Once the new model has been
successfully implemented, it will be beneficial to analyze results in order to gain a
quantitative understanding of any performance changes between the new and
existing four step model. A comparison of results for both the standard and DTA
four step models will be performed to highlight these disparities.

Following the initial implementation of dynamic assignment within the four
step model, it will be advantageous to highlight model improvements made possible
by the dynamic output provided by DTA and previously unavailable from STA. One
way this may be achieved is through the inclusion of a term representing travel time
reliability within the logit equation found within the third model step, mode split.
Given that DTA produces travel time values for each discrete time step interval
during the simulation period, it follows that a notion of travel time reliability
formulated within this framework should be more descriptive than a similar
measure found by utilizing static traffic assignment output. From a behavioral
perspective, utilizing the difference between experienced travel times and free flow
travel times within a DTA model seems a logical proxy for travel time reliability, as
links or paths with great differences between these values are likely very congested
and thus less reliable than those that produce travel times close to free flow.

Shifting focus toward the study of dynamic traffic assignment convergence,
the first goal of this research effort is to review, compare and contrast existing

methodological approaches used to achieve the equilibration of large scale



simulation-based DTA models. If any possibilities for increasing the rate of
convergence for these models are found, they could be particularly useful for
practitioners who are interested in implementing DTA within their planning
methods. In order to accurately study the effects of various techniques on the
convergence pattern of the network, it is critical that all methods are tested within
the same software platform and with a uniform pattern of path-generation and
equilibration iterations.

Within this framework, the first method implemented will consist of a

number of variations on a traditional approach: the Method of Successive Averages
(MSA) which moves 4 = % vehicles from the current path onto the shortest path,

where i represents the number of the current iteration. Several deviations, including
more quickly or slowly decreasing A as well as repeating certain values of A, have
been suggested in the literature. Perhaps implementing many of these variants
within the same simulation framework will provide meaningful results. The second
set of convergence techniques implemented in this study can be characterized as
gradient-based techniques. Gradient projection methods, common in nonlinear
optimization literature, have been successfully implemented for the solution of
static traffic assignment problems, so it seems a logical progression to apply these
same techniques to dynamic traffic assignment. It is hoped that the results of this

effort may bring about the development of efficient implementations that can



improve the ability of SBDTA models to handle larger networks in a more time-

efficient manner.

1.4 CONTRIBUTIONS

This work is believed to be the first attempt to fully integrate dynamic traffic
assignment into the four step model planning tool. While previous studies have
documented potential ideas for achieving this integration, as of yet none have
achieved a working model that usesactual dynamic traffic assignment output.
Furthermore, by completing the integration of DTA into the four step model, this
work can serve as an excellent source of reference for those who wish to achieve
such integration in the future. There are clearly a number of challenges that must be
overcome in order to achieve a successful integration, and rather than starting from
scratch, others may be able to use this work as a guide for troubleshooting their
own integration set up.

There are additional benefits from this first implementation of an integration
of DTA and the four step model; this is the first time that the value DTA brings to the
current four step planning model can be analytically expressed. By utilizing the
time-dependent travel times produced by DTA to incorporate travel time reliability
into the mode split logit equation, a time-dependent expression can be obtained that
is not possible when using STA in step 4 of the model. It is a goal of this research to

be able to clearly display this advantage through an analysis of variations of the



specific implementation of the measure of travel time reliability, which will be
included in the second chapter.

The current study on improving the convergence of dynamic traffic
assignment is the first of its kind, in that it expressly compares a wide variety of
equilibration techniques side by side within a single DTA simulation software. While
previous studies have compared a single technique with traditional MSA or given
theoretical justification on how the method is expected to perform when
implemented, no work could be found that quantitatively compared a large number
of methods with MSA in a single set of experiments. The primary contribution of this
research is to present results from an exploration of methods that may improve the
rate or quality of convergence of large scale dynamic traffic assignment networks.
This should serve as a valuable resource for any practitioner or researcher who
wishes to achieve an optimal convergence approach without having to perform

costly and time-intensive convergence studies of their own.

1.5 ORGANIZATION

Chapter 2 presents the full study encompassing the integration of dynamic
traffic assignment within the four step model framework. This includes a review of
the literature associated with the topic as well as a statement on the fundamental
challenges of consistency posed by this endeavor in integration. A base four step
DTA model is created and implemented, and results are analytically compared to the

standard static four step model. Furthermore, the chapter contains an important

10



expansion of the base model: a method to incorporate a variable representing travel
time reliability in the mode split step by utilizing travel time output from DTA.
Chapter 3 is comprised of a study of several DTA equilibrium methodologies, which
are analyzed and compared so that DTA convergence may be improved in practice.
Finally, Chapter 4 summarizes the contributions and findings of this work and

discusses possible extensions of the research.
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Chapter 2: Integrating Dynamic Traffic Assignment and the Four

Step Transportation Planning Model

2.1 INTRODUCTION

This chapter will present a modification of the four step planning model to
include dynamic traffic assignment (DTA) within the network assignment, or final
step of the model. In this section, the traditional model is described in detail,
followed by a discussion of the major differences of static traffic assignment (STA)
and DTA. Finally, this section will outline the model-specific details necessary to

complete a successful integration of DTA within the original planning model.

2.1.1 Four Step Model Description

The traditional four step transportation planning model, shown in Figure 2.1,
consists of four sequential processes: trip generation, trip distribution, mode choice,

and network assignment. Each is described in further detail below.

Trip Generation:

The first step in the standard four step model, trip generation, is used to

forecast travel demand for each traffic analysis zone (TAZ) within a given study
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area. A single TAZ has a defined spatial area comprised of any number of residential

and/or nonresidential localities. Typically residences are associated with trip

Feedback Loop

-

1. Trip Generation
Input: TAZ characteristics
Output: Zonal Productions and Attractions

-------- 4

2. Trip Distribution
Input: Zonal Productions and Attractions
Output: Person Trip Table

!

3. Mode Choice
Input: Person Trip Table
Output: Vehicle and Alternative Mode Trip Tables

|

4. Traffic Assignment
Input: Vehicle Trip Table
Output: Skim of OD Travel Times

Figure 2.1 Diagram of Traditional Four Step Transportation Planning Model

productions while non-residences serve as trip attractors. Trip productions are

modeled using household survey data containing demographic variables including

income, vehicle ownership, household size and others. Linear regression is

commonly used to relate these independent variables with produced trips. Trip

13



attractions can be modeled using the same technique or by utilizing a standard set
of Institute of Transportation Engineers Trip Generation handbook procedures, in
which features such as the type of development, square footage, number of gas

pumps, number of dwellings and other measurable qualities are considered.

Trip Distribution:

In the trip distribution step traveler’s origin and destination TAZs are
matched via a trip table. The trip table is a n x n matrix, where n is the total number
of TAZs. Typically rows are used to represent origin locations while columns
correspond to destination locations. There are several techniques available for
creating this matrix, though typically some variety of the gravity model is used. The
basic gravity model is shown below.

Vij = A;0;D;f (cij) [2.1]

Vijis the amount of trips originating in zone i/ and ending in zone j. 4;is a
proportionality constant. O; is the amount of trips originating in zone i, and Dj is the
amount of trips ending in zone j. The ¢;; term represents the cost experienced by the
user while traveling from zone i to zone j, and f(¢;;) maps ¢;; to a scaling value used

in trip distribution. The shortest path travel times from the traffic assignment step

are typically fed back into the model to estimate f(cj).
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Mode Choice:

Mode choice serves the task of converting person trips from the trip
distribution step into vehicle (and other mode-specific) trips. This typically requires
the use of a utility function, which describes how satisfied an individual is with each
available mode choice. This function normally includes statistics such as the in-
vehicle and out-of-vehicle travel times (IVTT and OVTT), cost and reliability of the
mode. Usually a multinomial logit or nested logit model is then estimated from the
utility function at the household level with survey data. The logit results are then

aggregated to the zonal level to determine the mode split for each O-D pair.

Network Assignment:

The final step of the model takes the trip distribution and, factoring the mode
choice, determines the user equilibrium of travel times. User equilibrium refers to a
situation where every used path per origin-destination pair OD has the same travel
time, and no unused path has a shorter travel time. This is accomplished by linking
origins and destinations through a network consisting of links and nodes. A flow
model is used to determine travel times based on vehicle trajectories. This flow
model is typically static, although a dynamic model could conceivably be used as
well. A given assignment algorithm is selected to move vehicles between different

paths until the network is close to equilibrium. The equilibrium yields travel times

15



per OD and mode that can then be used as inputs back into the trip distribution and

mode choice steps of the model.

2.1.2 Static vs. Dynamic Traffic Assignment Flow Models

A static flow model calculates travel time based on the time-independent flow
on a given network link. Typically the travel times are computed through the use of
a Bureau of Public Roads (BPR) function. The standard form of this equation is as

follows for each link:

t=t (1 ta (E)B> [2.2]

where tr is the free-flow travel time, a and S are calibration constants, v is flow and

c is capacity. Since travel time on a link is a function of that link’s flow alone, no

congestion is propagated across links and static user equilibrium does not properly

account for realistic congestion spillback. Also, E is allowed to exceed a value of 1 to

maintain algorithmic simplicity, even though this phenomenon is not possible in
reality. Nevertheless, the static flow model is commonly used because of its well-
behaved travel time functions, which lead to good convergence properties.

Dynamic traffic flow models were developed to avoid the issues stated
previously by propagating flow over time with consideration to congestion
spillback. This results in non-differentiable, non-monotone travel time functions,
which makes the calculation of user equilibrium considerably more difficult.

Traditional planning purposes have used static flow models for the reduced

16



computation time and because of the reduced impact of flow propagation unrealism
due to the other potential sources of error. However, Chiu (2010) found that a large
percentage of planners are considering incorporating DTA in the near future. This
works aims to demonstrate the feasibility of creating an integrated planning model.

The replacement of STA with DTA in the four step model presents a number
of challenges. Most notable is the issue that the planning model was based upon
time-invariant travel times from STA, and the output of DTA is a set of time-
dependent travel times. Furthermore, STA contains time-invariant demand that
must be expanded for use in DTA and then collapsed back to a single value for
feedback within the four step model. There are multiple ways of handling these
challenges, and it is unclear which is optimal.

The chapter is divided into multiple sections to maintain a clear organization.
The first section is a discussion of research contributing to the present day
transportation planning model, followed by a section which similarly describes
work that has fostered the creation of modern dynamic traffic assignment. The
fourth literature review section describes methods of incorporating travel time
reliability within various transportation models, and the chapter concludes with a
mention of the state of the art of DTA and four step model integration in order to

place the contributions of this thesis within context.
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2.2 LITERATURE REVIEW

2.2.1 Introduction
While this research is the first to derive results from the implementation of

an integrated four step and DTA model, previous work exists that highlights the
particular theoretical concerns presented in this integration. Also, there is a
considerable body of literature on the traditional four step model as well as dynamic
traffic assignment, which are relevant to the contributions made in this work.
Therefore, this chapter aims to describe the existing research that is applicable to

the problem of integration.

2.2.2 The Four Step Transportation Planning Model

Beginning in the early 1960s, individual states within the U.S. were
compelled to adopt an individual transportation master plan in order to meet
changing government regulations. To address this need, models were developed so
that accurate and meaningful long-term planning could be performed. Eventually
the standard modeling procedure came to be known as the four step transportation
planning model. McNally (2000) provides an extensive discussion of how each step
of the model developed over time to better serve ever-growing transportation
needs. Also described is how growing computing power and data collection efforts
have shaped the state-of-the-art of transportation planning.

Guo et al. (2010) investigate what kinds of feedback solutions should be used

to obtain uniquely converged model output in an efficient manner. Two major
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methods of model feedback from the final network assignment step to the trip
distribution step are tested: the constant weights method, which includes
conventionally applied direct feedback as a special case, as well as the method of
successive averages. Empirical results suggest that the application of direct
feedback within the constant weights method converges most efficiently.

Maerivoet and Moor (2008) place the four step model alongside other
planning models, such as activity-based planning models and even various traffic
flow models, in order to see how the various data requirements and model outputs
compare to one another. The study places particular emphasis on the fact that
relatively little work has been explored pertaining to using these techniques side-
by-side, as most practitioners instead choose to adopt a particular framework and
work solely with the models they have included. Lin et al. (2008) encourage the
notion of more advanced models, suggesting that four step modeling does not take
advantage of modern computation power and is less precise when compared to
activity-based modeling. The work proposes theory on how activity-based modeling
could be used alongside DTA to create a more realistic transportation planning

model.

2.2.3 Traffic Assignment

There has been a substantial amount of research conducted in the area of

traffic assignment, including many model formulations and extensions for both
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static and dynamic assignment. In this section, the focus will be only on the research
that has directly influenced this work.

A standard network model represents a transportation system with the
purpose of being able to predict route choice and macroscopic traffic flow as well as
to evaluate various planning alternatives or policies. This is typically achieved
through the use of links, which represent roadway segments, and nodes, which are
used as intersection points so that vehicles may move from one link to another.
Traffic networks are essential for the completion of traffic assignment, and in this
study the focus is on utilizing dynamic traffic assignment (DTA) within a framework
that has commonly used static traffic assignment (STA). Chiu (2010) advocates the
need for increased use of DTA via a survey of transportation practitioners, which
indicates that an overwhelming percentage of city and regional planners and
transportation consultants wish to incorporate DTA into their practice within the
next five years.

The DTA model used in this paper is the Visual Interactive System for
Transport Algorithms (VISTA) (Ziliaskopoulos and Waller, 2000) based on the cell
transmission model (CTM) introduced by Daganzo (1994, 1995). CTM divides links
into a series of cells based on link length and free flow speed, such that a vehicle can
traverse at most one cell during each simulation time interval. Limitations on
in/out flow and cell capacity restrict vehicle movement and increase travel time in

traffic congestion. Vehicles are discretized and individual vehicle path and arrival
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times are reported. The default method of determining the traffic assignment
alternates between sequences of path generation, which finds new shortest paths
and moves a proportion of vehicles onto it, and dynamic user equilibrium iterations,
which modify vehicle routing on the set of existing paths (see Figure 2.2). For the
purpose of finding shortest paths, link travel times are averaged per assignment
interval (typically 15 minutes). Individual vehicle travel times vary due to the

specific experienced network conditions.

2.2.4 Travel Time Reliability

A number of studies have been conducted to assess how the reliability of
travel time affects the decisions made by a traveler, such as which route to take or
which mode to choose. Sweet and Chen (2011) explicitly explore the question of
whether or not regional travel time reliability has a significant impact on mode
choice selection. Results suggest that reliability of travel time is particularly
important for home-based work trips, and a one standard deviation change in travel
time reliability is associated with approximately a 23% reduction in the chance that
a traveler will choose to drive a car. It is also worth noting that this impact is likely
dependent on the type of area being modeled. Perhaps drivers in metropolitan areas
are likely to have a higher sensitivity to travel time reliability than those in more
rural locations.

Dong and Mahmassani (2009) propose a method for the online prediction of

travel time reliability based on real-world measurements through the use of a

21



discrete time Markov chain that predicts the probability of flow breakdown or
recovery along a given traffic facility. Guo et al. (2011) suggest a multistate model in
order to accurately model and report travel time. This model hopes to advance
travel time modeling by providing improved model fitting as compared with single-
mode models, as well as by providing a connection between travel time
distributions and the underlying travel time state.

Finally Martchouk (2009) presents a full study of the inclusion of travel time
variability in modeling and suggests a number of ways in which this can be
achieved. One method suggests using the difference of experienced and free-flow
travel times as a proxy to represent congestion and therefore travel time reliability.
Also included is an experiment evaluating the importance of the reliability of travel
time for different periods throughout the day (AM and PM peak and off-peak
periods) and a discussion of how this reliability should be incorporated within a
logit equation for mode choice. This work was particularly beneficial in that it
provided a strong framework that suggested how travel time reliability could be

properly included in the integrated DTA and four step model.

2.2.5 State of the Art: Integration of Dynamic Traffic Assignment and the Four

Step Transportation Model

While the previous sections describe some of the research pertaining to
traffic assignment, planning models and travel time reliability, there currently are

very few studies that have approached the problem of integrating these ideas within
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a common framework. Tung et al. (2010) describe one possible approach for
integrating DTA with the four step model by a simple replacement of static with
dynamic assignment within the final model step. Also included are statements on
potential consistency concerns, such as how to derive a single meaningful travel
time value from the dynamic assignment output to use for feedback to trip
distribution or mode choice. However, the study lacks results and has no analysis of
the described integration.

Melson et al. (2012) likewise describe in theory how DTA could replace STA
within the four step model. Also included in the study are potential extensions to the
model, such as the implementation of time-of-day measures and the incorporation
of a representative term for travel time reliability, that further highlight the benefits
DTA provides over STA. Finally, the work includes a study of key links that
represent fundamental differences between static and dynamic traffic assignment.
Lin et al. (2008) describe the problem of integrating DTA with an activity-based
planning model rather than the four step planning model. However, the discussion
of potential convergence criteria is very relevant to this study. The two suggested
measures for convergence include trip table and travel time convergence, and
deciding which is more useful depends on the particular application.

This thesis attempts to advance the state of the art by providing a completed
integration of DTA and the four step model along with an analysis of the results.

Also included is an analysis of how travel time reliability may be incorporated
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within this framework. While there are a number of uncertainties that will require
further study, this work can serve as the framework for the development of a new

and fundamentally different transportation planning approach.

2.3 METHODOLOGY

SHORTEST PATH IDENTIFICATION PATH ASSIGNMENT
(6 sec. intervals) (5-15 min. interval)

Cycle 1: Path

CTM
Simulation
(6 sec.
interval)

Cycle 2: DUE

Path Update ’-—} DUE

Figure 2.2: VISTA Convergence Algorithm Structure

The particular dynamic traffic assignment software that was used to replace
static traffic assignment in the final step of the four step model for this study was
VISTA - Visual Interactive System for Transport Algorithms (Ziliaskopoulos and
Waller, 2000). This simulation-based model utilizes the Cell Transmission Model
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(CTM) (Daganzo, 1994 and 1995) for representing vehicular movement, which is a
discrete extension of the DTA concept presented by Lighthill and Whitman (1955)
and Richards (1956). The essential component of CTM is the division of network
links into discrete sections called cells and time into distinct intervals such that a
vehicle can traverse exactly one cell in one time interval at free flow conditions.
Instead of tracking continuous flows, VISTA further discretizes demand into
individual vehicles and tracks paths and arrival times per vehicle. While this is a
further discretization of the original CTMV, it is perhaps more realistic in modeling
path and link flows.

In order to achieve a converged traffic assignment, VISTA uses a simplicial
decomposition approach. Outer cycles of path generation add the shortest path per
origin-destination time interval (ODT) to the path set, and move a proportion of
vehicles onto it. Inner cycles of equilibration shift vehicles among the existing paths

(see Figure 2.2). It should be noted that vehicles were loaded within VISTA utilizing

a partial demand loading technique. In this manner, (%) * 100 percent of the total

demand is loaded onto the network over n iterations rather than loading all of the
vehicles at once. This avoids gridlock and generally improves early iteration
network performance. For more information on partial demand loading and a
numerical validation of the technique, please see Chapter 3 of this thesis.

In order to properly implement DTA within the four step framework, some

measure of aggregation is necessary to convert time-dependent travel times into a
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single travel time per OD for input into the trip distribution and mode choice steps.
While a number of techniques may be suitable, this study proposes a simple average
value of travel time taken across all departure time intervals with no weighting. In
this way travel time may be used as a feedback measure into the standard four step
trip distribution. Differing from STA, these travel times are the result of more
accurate congestion propagation provided by the CTM. Once the average travel
times are returned as input to the earlier model stages, feedback occurs in much the
same way as traditional four step modeling. Multiple iterations of the four step
process are conducted until the changes occurring in the trip distribution and mode
choice steps fall beneath a desired cutoff value.

To gain an understanding of how the new four step model performs over
multiple iterations, it was necessary to develop some criteria to measure
convergence. In accordance with the Capitol Area Metropolitan Planning
Organization’s Travel Demand Model, the first measure of convergence included in
this work is the root mean square error for travel times, which is computed for each

OD as follows:

_ (RO ooy 23]

T N

where N is the number of ODs and ), is the travel time for OD at iteration i. The

same equation was applied to the demand as follows:

2 (dl+1_dl )2
R, = ob\%op ~“op [2.4]

N
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where d}, is the demand for OD at iteration i. Also included in the four step
convergence evaluation is the cost gap from DTA after a fixed number of traffic
assignment problem (TAP) convergence iterations, which reflects how close a given
trip distribution is to an equilibrium solution. The cost gap is defined as follows:

Gop = Xt ZkEKBD(rlg — Pop)XVy [2.5]
where G§j is the total ODT gap, K/ is the set of all paths for OD, r{{ is the cost of
path k at time t, p5p is the shortest path cost for ODT and V/ is the number of
vehicles departing in assignment interval t and assigned to path k.

One of the challenges when integrating DTA into the four step model
concerns how the transit mode is represented within dynamic traffic assignment.
DTA software vary greatly in the methods by which transit systems are
incorporated within the traffic assignment. VISTA includes an option for public
transportation, such as buses, which allows the mode split model step to reduce the
number of passenger vehicles as more travelers choose public transit. However, it is
worth noting that the inclusion of other modes is possible depending on the DTA

software involved.

2.4 STATIC VS. DYNAMIC MODEL COMPARISON

To evaluate the differences between static and dynamic assignment steps
within the four step model, both were compared by evaluating a number of different

metrics. Travel time root-mean squared error (RMSE) is defined as:
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where pgf, is the shortest path travel time for ODt for iteration i of the four step
model. This method shows the average change in shortest path travel time from the
converged traffic assignment solution in step four. Within each four step iteration,
the equilibrium convergence algorithm was run with constant stopping conditions.
It is expected that RMSE;; — 0 as [ — oo because the change in trip distribution
and mode choice should decrease as the four step model reaches a stable solution.
The shortest path time was used, because for a well-converged solution all used
path travel times should be close to the shortest path time.

Demand RMSE is defined similarly as follows:

ti+1
Vop

N

L\ 2
ti
_VOD)

JZOD(
RMSEy, = [2.7]

where V} is the demand for OD at time t for iteration i of the four step model. This
directly measures the change in the trip distribution step between each model
iteration, and similarly RMSE, — 0 as i — oo. Both RMSE;; and RMSE, were
evaluated because the metrics might show different rates of stabilization.

Finally, G5, was evaluated after a fixed number of assignment iterations as
well to analyze how finding equilibrium could be affected by the stability of trip

distribution and mode choice.
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RMSE, has a generally decreasing trend when using a DTA flow model,
which indicates movement towards a stable trip distribution and mode choice.
However, the result is significantly different than that found with a STA flow model,
indicating that the feedback from DTA is causing substantial changes in the demand
table used as input for step four. RMSE;, for the static flow model decreases very
quickly and approaches 0 within 4 iterations of the four step model, while the same
measure for the dynamic flow model takes a minimum value near 1. However,
considering the convergence properties of both static and dynamic traffic
assignment, the increase in error from the dynamic model is to be expected.
Nevertheless, the downward trend present in Figure 2.3b is encouraging, as it

indicates the integrated four step-DTA planning model is performing as expected.
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Figure 2.4a: RMSE;, vs i when using the STA flow model within the network
assignment step
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Figure 2.4b: RMSE,; vs i when using the DTA flow model within the network
assignment step

RMSE;; in the model utilizing DTA had substantial differences in the trend
per iteration that did not reflect RMSE,,. At iteration 12, there is a steep decline
which then stabilizes around RMSE,;;, = 5. However, there is an increase in RMSE;
at iteration 19. The lack of stability present in the RMSE,; for DTA can likely be
explained by the fact that travel time for an OD is going to be affected by changes in
the demand for other ODs. However, the RMSE, is a measure of demand change per
OD, which is less dependent on demand changes in other ODs. Therefore, RMSE),

appears more stable.
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2.5 INCORPORATION OF TRAVEL TIME RELIABILITY

De Palma (2005) found that travel choices are affected as much by variance
in travel time as by the average travel time itself. Therefore, the variability in travel
time for vehicles on the same path was incorporated into the logit model. The
variability in this case represents the variation in travel time due to time-dependent
congestion under fixed demand. Since VISTA tracks individual vehicles, each vehicle
can experience different travel times on the same path even with similar departure
times. However, since the traditional four step model is time-invariant in nature,
travel time variance was measured per OD. A weight of 6.058 was given as
suggested by Martchouk (2009). To avoid the effect of outliers, an inner range of
the set of experienced travel times was selected. Values of the inner 70%, 80%, and
90% of experienced travel times were tested. For example, the inner 70% travel
time range refers to the difference between the 85t percentile travel time and the

15t percentile travel time.
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Figure 2.5b: Travel Time RMSE vs. Iteration for Multiple Travel Time Ranges

33




The addition of reliability significantly affected the decreasing trend seen in
the RMSE}, in Figure 2.1b. From Figure 2.5b, none of the different ranges of travel
time used as input to the logit model demonstrated a decreasing trend. The RMSE,,
in Figure 2.5b generally showed the same pattern. The 90% travel time range
decreases significantly at several iterations, but does not appear asymptotic overall.
This indicates that trip distribution and mode choice are influenced by the variance
in travel time, and are likely too heavily impacted.

The 90% travel time range showed significantly higher error than the 70%
and 80% ranges, which were more similar. This suggests that a higher variance
combined with a large weight will increase the change in demand and therefore
travel times between iterations of the four step model and thus slow convergence of
trip distribution and mode choice. As will be discussed further below, calibrating

the weight and variance range should improve this convergence.
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Figure2.5c: Transit Demand vs. Iteration for Multiple Travel Time Ranges where

between the different travel time ranges for the reliability input. A travel time range
of 70% produced far less transit demand than the 80% and 90% ranges, which both
had very similar transit demand. The most extreme 20% of travel times are not
equal as discussed above, but they may be high enough that most travelers are
choosing transit if given the opportunity. However, when the travel time range was
reduced to 70%, the transit demand significantly decreased, indicating that the
range of travel times was much lower for this cutoff value. It is possible that these
trends may vary by network. In terms of usefulness to practitioners, this means that

the selection of travel time range must affect the weight given to the variance in

Viransic 1S the total demand moved to transit.

The most noticeable feature of Figure 2.5c is the difference in transit demand

35



travel time. Real-world data should be collected to correctly choose the correct
travel time range and reliability weighting for different types of networks (i.e. urban
or rural).

It should be noted that the minimal variance in transit demand for a single
reliability level can likely be explained by the small number of bus routes encoded
within the model. Adding more bus routes will give more travelers the option of

mode choice, and thus increase the total transit demand and variation.
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Figure 2.5d: Total Auto Vehicles vs. Iteration for Multiple Travel Time Ranges where
Vautois the automobile demand after mode choice.

The total number of automobiles on the network, shown in Figure 2.5d,
appears sinusoidal with little indication of convergence. This is explained by too

much weight being placed on the variance in travel time for trip distribution and
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mode choice. Low demand ODs have smaller variance, so travelers are first shifted
to those. Then those ODs have increased variance due to the additional trips, and as
a result vehicles are shifted off. The number of vehicles moved is high because of the
large weight placed on the variance in travel time. The decreasing amplitude in the
70% travel time range reliability provides evidence for this hypothesis. As
mentioned earlier, the variance in the 70% travel time range is significantly lower.
Again, using data to choose correct variability weighting will yield more accurate

results.

2.6 CONCLUSION

The results of this work shows that integrating DTA into the four step model
framework is a viable solution and will most likely lead more accurate predictions of
trip distribution and mode choice due to the more realistic propagation of traffic
congestion in DTA. Reliability, which contains parameters that should be tested and
calibrated further, could potentially produce increased accuracy of predictions. One
potential drawback of this integration is that DTA requires significantly more
computation time to approach an equilibrium solution than STA. However, advances
in DTA algorithms and heuristics will reduce this difference. This topic is explored in
detail in Chapter 3 of this work.

This study indicates that complete integration of DTA into the four step
model still has many unresolved questions. As previously discussed, the calibration

of the weight on reliability requires work. Also, all results expressed in this work are
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potentially affected by network characteristics, so it would be useful to conduct
similar experiments on a variety of networks. Time-dependent DTA information
was compressed into a single average travel time that was fed back into earlier
model steps. However, a different statistic, such as median travel time, might better
model traveler decisions. Furthermore, the time-dependent travel time output from
DTA was not fully utilized because the traditional four step model performs trip
distribution and mode choice independent of departure time. Separation of trips
into assignment intervals, as is done in VISTA for the trips, will more realistically
model how travelers account for changes in traffic during different periods (such as
rush hour). In fact, these time-dependent travel times could be extended over an

entire day for predictive modeling of trip distribution and mode choice.
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Chapter 3: Improving the Convergence of Simulation-Based

Dynamic Traffic Assignment

3.1 INTRODUCTION

Dynamic traffic assignment models have become a widely accepted tool to
support a variety of transportation network planning and operation decisions. The
ability of these models to produce stable and meaningful solutions is crucial for
practical applications, particularly for those involving the comparison of modeling
results across multiple scenarios. Although the literature presents a fairly unified
approach to define the conditions that characterize equilibrium in the context of
simulation-based DTA (SBDTA) (e.g. Lo et al., 2000; Lu et al,, 2009; Chiu et al., 2009),

practical implementations differ in the methodology used to attain these.

The first goal of this research effort is reviewing and contrasting existing
methodological approaches for the equilibration of large-scale SBDTA models.
Increased convergence in SBDTA models may improve viability for practitioners. In
order to study the convergence pattern of different methodologies under
comparable conditions, this work implements several of the surveyed techniques
and some novel variations within a common SBDTA platform.

There are two main processes which are repeated multiple times during the

solution of a SBDTA framework: the simulation of traffic conditions for a given
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assignment of vehicles to paths, and the search for new shortest paths based on the
simulated traffic conditions. Both may involve significant computational effort,
depending on the characteristics of specific SBDTA implementations. This paper is
focused on providing a better understanding of the characteristics of the
convergence process of different algorithms. The results of the numerical
experiments, conducted on real networks with up to 200 000 trips, are described in
terms of the number of simulations runs and time-dependent shortest path
computations required to achieve an equilibrium solution. The analysis includes a
discussion of the properties of the solutions obtained through different
methodologies intended to reveal the cause for the observed convergence rate.
These properties may play a role in the selection of an acceptable convergence level
for practical applications. The computational efficiency of the analyzed techniques is
not explicitly described, as it will highly depend on implementation-stage decisions
that involve other components of a SBDTA model. Instead, this paper is focused on
providing a better understanding of the characteristics of the convergence process
of different algorithms. The results of this effort may motivate the development of
efficient implementations that can improve the ability of SBDTA models to handle

larger networks more efficiently.
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3.2 LITERATURE REVIEW

3.2.1 Introduction

The typical solution framework for SBDTA models, described in Section 2.1,
seeks to attain equilibrium conditions as defined in the literature (e.g. Chiu et al,,
2011). To this end, early implementations of DTA models mostly relied on the
method of successive averages (MSA) as described in Sheffi (1985), which has been
shown to converge to the equilibrium solution in static traffic assignment problems
with well-behaved link-cost functions (Powell et al., 1982). The framework used for
the static case may be easily extended to the solution of simulation-based DTA
problems, although convergence is not guaranteed in the dynamic case due to the
complex nature of link costs when traffic dynamics are accounted for. Furthermore,
the typically slow convergence rate of MSA (Sheffi, 1985) is particularly detrimental
in large-scale DTA applications, where the computation cost per iteration can be
very high. The limitations of MSA approaches have spurred research aimed at both,
heuristically improving the efficiency of MSA for DTA, and developing more
advanced solution algorithms. Both types of methodological approaches are

described in the following sections.

3.2.2 Simulation-Based DTA Models: Solution Framework

SBDTA models are typically chosen for practical applications over their
analytical counterparts, which are typically suitable only for the study of very small

networks. Moreover, SBDTA models are appealing because they can realistically
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capture the impact of a variety of traffic control devices, network operation
strategies, and time-dependent changes in traffic conditions. Typical SBDTA
frameworks include three main components: a traffic simulator, a path generator,
and an assignment module, searching for equilibrium conditions using an iterative
approach. A traffic simulator is used to evaluate the network performance based on
a specific assignment of vehicles to paths. The path generator uses simulation
results to find the time-dependent least-cost path under prevalent conditions per
origin-destination pair and assignment interval combination. The assignment
module adjusts the allocation of vehicles to paths with the goal of attain dynamic
equilibrium conditions.

Convergence criteria are assessed and the assignment of vehicles to paths is
adjusted based on some pre-defined logic. The process is repeated until an
acceptable solution is found. In order to evaluate convergence most SBDTA
applications define a “gap” which measures the proximity of a given solution to the
equilibrium conditions. SBDTA models differ mostly in the type and refinement of
the selected traffic simulator, and on the rationale behind the assignment
adjustments, which are the focus of this paper. Various techniques are proposed in

the literature and presented in the following sections.

3.2.3 MSA-Based Techniques

In the context of DTA, MSA algorithms involve finding the time dependent

shortest paths under prevalent conditions and shifting a pre-determined fraction of
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vehicles to such routes. The fraction of vehicles to be re-assigned, called the step
. : . 1 .
size, decreases as the algorithm progresses, and is equal to - (where n is the

iteration number) for all ODTs. Sbayti et al. (2007) and Chiu et al. (2009) notice that
the use of a global step-size is a source of inefficiencies, as some ODT pairs may be
closer to convergence than others at any point in the process. Further, later
assignment intervals are typically further away from convergence (Mahut et al,
2007). Based on these observations several heuristic approaches have been
proposed, aimed at making more efficient selection of the vehicles to be re-assigned.

Sbayti et al. (2007) propose two techniques based on MSA which differ in the
criterion used to select the re-assigned vehicles for each ODT. The first method,
aimed at reducing memory requirements, makes a random selection. The second
approach implements a criterion-based selection that gives priority to the vehicles
experiencing the highest travel time within each ODT. When implemented on a real
network both methodologies were observed to converge, with the criterion-based
technique producing the lowest gap.

Mahut et al. (2007) suggest using a larger time step for later assignment
intervals by offsetting the MSA step size by a fixed quantity for increasing time
intervals. The technique is observed to clearly accelerate the convergence of MSA in
a network with 580 links and 47,000 trips between 62 OD pairs.

In combination with some of the previous techniques, Florian et al. (2008)

also incorporate a partial demand loading scheme that progressively adds vehicles
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to the system over a pre-specified number of iterations. This method avoids the high

congestion resulting from an initial assignment to one path from ODT.

3.2.4 Gradient Based Techniques

Gradient projection and reduction methods, common in non-linear
optimization literature, have been successfully implemented for the solution of
static traffic assignment problems (Bertsekas et al, 1983) and analytical DTA
models (Szeto et al, 2006). Simulation-based DTA models do not meet the
conditions under which gradient-based methods can be directly applied; the use of
simulation typically prevents the formulation of these models as an optimization
problem with a differentiable objective function. However, Lu et al. (2009) propose
a re-formulation of DTA via a gap function that provides a sound theoretical basis
for the development of gradient-based heuristics. These methods typically involve
an iterative process similar to that followed by MSA techniques, but use a step size
selected based on endogenous data, such as simulated path costs, in an attempt to
approximate the missing gradients. Lu et al. (2009) define a per-path step size that
is proportional to the difference between the path cost and the corresponding ODT
shortest path cost. Their method, embedded within a column generation framework
(Section 2.4), is observed to outperform MSA in several experiments conducted on
small and medium size networks.

Using the same step-size definition, Tong and Wong (2010) compare the

convergence of the gradient-based procedure to that of MSA on a small network
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under different demand scenarios. Their results do not show significant differences
among methodologies, although the gradient-based approach is observed to lead to
a slightly lower gap in less congested scenarios. Chiu and Bustillos (2009) and
Mahut et al. (2007) propose step sizes calculated based on individual path costs, but
aggregated at the ODT level. Both research efforts report faster and smoother
convergence patterns for gradient-based heuristics than for MSA and MSA-based
heuristic methods.

Jayakrishnan et al. (1994) proposed a gradient-projection method which
improves the performance of static traffic assignment by choosing the path flows of
the optimal descent direction. New path flows are a function of path costs as well as
the derivative of the link delays of certain links. Although the derivative of link cost
is not well defined for a SBDTA model, the remainder of the formulation inspired

one of the gradient-based heuristics.

3.2.5 Column Generation Techniques

The generation of the set of paths to which vehicles may be assigned is the
focus of the third type of heuristic approaches considered in this paper. MSA
methodologies start from an empty set and (potentially) augment it every iteration.
The optimization literature suggests that a more efficient path set can be created if
column-generation principles are applied (Patriksson, 1992). The latter is appealing
as a means to improve convergence and reduce memory-requirements. The column

generation approach involves two nested cycles: an outer loop that augments the
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path set at every iteration, and an inner cycle during which trips are distributed
among the available routes seeking to equalize travel costs. Lu et al. (2009) present
results in which the column generation approach outperforms other algorithms,

particularly when combined with a gradient-based equilibration in the inner loop.

3.2.6 Summary

The research efforts reviewed in this section propose interesting
methodologies and report satisfactory results. However, aside from a few
exceptions (Mahut et al,, 2007; Tong and Wang., 2010), the performance of each
methodology is compared only to that of MSA. The experiments presented in this
chapter assess the relative performance of the surveyed techniques in terms of
convergence rate and stability of the results. Additionally, Section 3.4 also proposes

and tests some novel variations of the existing methodologies.

3.3 METHODOLOGY

This section describes the algorithms to be implemented in Section 3.4,
including methods proposed in the literature and original variations. All the
methodologies are presented using the same notation (Table 3.1) to facilitate the
understanding of their similarities. The selection of the techniques to be tested
followed two criteria: the success of the methods in previous studies, and the

compatibility of the approaches with the platform used in this study.
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Table 3.1: Notation

Symbol Description

a (i)
d

(D)

cp ()

8y, (1)

fot,d (l)
fr @

9o (@)
Goa(D)

140)

Step size at iteration i for MSA-based heuristics

Destination index

At iteration i, cost experienced by vehicle v departing from origin
o to destination d at assignment interval t

Cost experienced by vehicles on path p departing in time interval
t atiteration i

Number of partial demand loading iterations

Vehicle-path incidence, equal to 1 if vehicle v is assigned to path
k at iteration i (zero otherwise)

Modified step size per ODT at iteration i

Modified step size per path at iteration i for path k in interval ¢
User defined cutoff factor for the OD gap sort methodology

Gap for vehicle v at iteration i

Total ODT gap at iteration i

Gap per iteration expressed as a percentage of total travel time
Iteration index

Path index

Demand from origin o to destination d at assignment interval ¢

Total number of trips to be assigned
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Table 3.1, cont.

0
Psa (D)
pg,d (1)
Ro.a ()

S@)

Sg,d )

Ve @

Origin index

Set of paths for an ODT at iteration

Shortest path cost for an ODT combination at iteration i
Average vehicle gap per ODT at iteration i

Total number of vehicles swapped to the corresponding ODT
shortest path at iteration i

Number of vehicles swapped to the shortest path for each ODT
Assignment interval index

Vehicle index

Number of vehicles departing in assignment interval t and

assigned to path k

3.3.1 MSA-Based Heuristics

The methodologies in this category are aimed at improving the performance
of the Method of Successive Averages (MSA) when applied to the solution of
simulation-based DTA (SBDTA) problems. While they all implement a pre-fixed

sequence of decreasing step sizes, they differ on the selection of specific vehicles

shifted to the new ODT shortest path.
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3.3.1.1 Partial Demand Loading

The partial demand loading scheme, described in Florian, Mahut, and
Tremblay (2008) is an initialization procedure that involves the incremental
assignment of the demand over a fixed number of iterations (D). In the first D
iterations the algorithms proposed in this work assign a fraction (1/D) of the total
ODT demand to the corresponding shortest path p} ,(i), which is recomputed at
each iteration. By spreading out the demand among a larger number of paths in the
initial stages, this heuristic approach is designed to prevents an artificial

oversaturation of the network during early iterations.

3.3.1.2 ODT Gap Sorting (ODT Sort)

This technique is a simple heuristic adjustment aimed at addressing the
inefficiencies derived from applying the same step size to all ODT combinations,
regardless of how far from or close to equilibrium they may be. ODTs are sorted
based on their total gap (Equation 3.1), and assignment adjustments are applied

only to the first T ODTs, where T is such that };G; (i) = F,1 <j <T.

Gla(®) = Xe Zrext , (rE@ — pla (D) XV [3.1]
In this statement j is the index of the sorted ODTs, and F is a user defined

cutoff factor. The number of vehicles to be re-assigned is given by equation 3.2. This

technique is embedded in the VISTA SBDTA platform (Ziliaskopoulos & Waller,

2000).
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Se.a(D) = a(D)xn} 4 [3.2]

3.3.1.3 ODT-Based Vehicle-Path-Cost Sorting (Path Sort)

In this approach, which is also described in Sbayti et al. (2007), the same
fraction of vehicles is re-assigned to the new shortest path for every ODT (a} 4(i) =
a(i)Vpp¢). A total of s 4 (i) vehicles are selected by sorting all paths k € Kot'd based
on the cost gap of vehicles on the path 7{(i), and choosing vehicles such that
0y 1 (i) = 1 until the desired quota is met. The prioritization of vehicles in higher-

cost paths is expected to lead to a faster convergence rate than traditional MSA

approaches.

3.3.1.4 Vehicle-Cost Sorting (Vehicle Sort)

This approach sorts vehicles based on their experienced cost c2'** (i)

without grouping by ODT. This is hoped to improve convergence by moving the

vehicles that contribute most to the gap first.

3.3.1.5 ODT-Based Vehicle-Cost Sorting (ODT Vehicle Sort)

This approach is a variation of the previous method, in which the first sg_d (i)
(Equation 3.1) are selected for each ODT combination from a list of vehicles sorted
by c2**(i). Notice that in general c2%*(i) # 15 (i) for &, , (i) = 1, and this approach
is more likely to select fewer vehicles from a larger set of paths when compared to

the previous one.
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3.3.2 Gradient-Based Heuristics

Following the principles proposed by Lu et al. (2009) and Chiu and Bustillos
(2009), the proposed algorithm seeks to circumvent some of the inefficiencies of the
traditional MSA approach by utilizing an endogenous step-size, computed based on
the level of convergence at each ODT, as given by the average ODT vehicle gap

(Equation 3.3) or the total ODT gap (equation 3.1)

Srext (TE@=pb a@)evf
R{ () = —2— [3.3]

No.d

Based on either of the formerly defined gap measures, two ODT step scaling
factors may be computed, which originate two possible heuristics: lambda average

gap (equation 3.4) and lambda total gap (equation 3.5).

t iy — _ Roa®

foa() = Toae RE 4O [3.4]
t .

fla()) = o [3.5]

Scaling factors are used to define the local step size a’ 4(i) = min[f} ()X
a(i), a(i)]. Following the step size selection, st ,(i) = a 4(i))xn} ; vehicles are re-
assigned to the new shortest path for each ODT, chosen from a sorted list as
described in Section 3.1.5.

Mahut et al. (2007) suggested that later assignment intervals cannot be truly
converged until previous assignment intervals are stabilized. They propose

implementing a cascading pattern of step sizes by time interval, with higher values
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at later time intervals, such as the one presented in Table 3.2. Lambda is initially
constant with respect to time period up to a pre-specified time interval, then at
some N begins to gradually shift into a cascade pattern. The shift finalizes into a
pattern described by the reset parameter n, which is the iteration difference in the
lambda value between period T and T + 1. In practice, the optimal parameters are
unknown, and effectiveness is likely to vary with respect to the combination of

cascade parameters and network.

Table 3.2: Time-Varying Cascade of Lambda Values (reset parameter n = 2 in this
example)

Assignment interval

1
20l 1] 1] 111
0

211 1] 1]1]1

22 (1|1 1 1 1

Iteration

Two further heuristics relying on the difference in costs between the shortest
paths and others. Inspired by Lu et al. (2009), Lambda Relative Path Cost applies a

path-specific step size f, (i) (equation 3.6)

. : . CH(D)=Po,a(D)
£ (i) = min <1.5><a(1),%> [3.6]
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where c,, is the cost of a path and p* is the shortest path. This method is similar to a
STA gradient-projection method by Jayakrishnan et al. (1994) without the
incorporation of the second derivatives (the derivative of link travel times). Further
work using an approximation of the second derivatives may be beneficial, but was
left out here because the second derivatives are not well defined for SBDTA.
Lambda Relative Gap Sum aggregates path-based gap per ODT in order to compute

the adjustment factor f; ;(i) (equation 3.7).

c,s(i)—pf,,da))

fla® = min (15X@ (D), Dpen o Lo [3.7]

Due to the variation in vehicle travel times even on the same path in DTA, this could

be more effective.

3.3.3 Column Generation Approach

The column-generation framework described in some of the reviewed works
(e.g. Luetal,, 2009) was implemented in this work in combination with the path sort
technique. The approach involves two nested loops, an outer loop that augments the
path set K/ ;(i), and an inner loop, which applies an MSA-based heuristic to find the
equilibrium solution within the augmented path set. The model parameters include
the number of paths added per iteration of the outer loop and the level of
convergence required from the path-swapping algorithm used in the inner cycle.

The aim of this technique is to generate a more efficient path set, which should
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ideally lead not only to a faster convergence, but also to more stable and better

equilibrated solutions.

3.4 NUMERICAL EXPERIMENTS

The numerical experiments presented in this work were conducted using the
traffic simulator and data structures embedded in the VISTA SBDTA platform
(Ziliaskopoulos & Waller, 2000), which implements Daganzo’s cell-transmission-
model (Daganzo, 1994, 1995) for traffic simulation. The adopted mesoscopic
simulation framework captures traffic dynamics, such as queue formation and
dissipation, and has been extended to account for traffic signals and other
characteristics of urban intersections.

The various assignment techniques compared in this effort were
programmed outside of the SBDTA platform and designed to access individual
modules as needed. As a result, the computational efficiency of the studied methods
is not optimized. The latter does not affect the conclusions of this study, which are
based on comparing the convergence patterns of assignment methodologies.

The following sections describe the networks considered for the numerical
experiments and provide a detailed description of the analyzed scenarios and

corresponding assumptions.
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3.4.1 Test Networks

The networks used in this study (Table 3.3) include downtown Austin, with
90 thousand trips, and the Williamson County network, with more than 200,000
trips during the peak period. Figure 3.1 presents the Austin regional planning
network and highlights the selected sub-networks. The Downtown network,
although geographically smaller, incorporates a much larger number of local streets
and signalized intersections. Most of it also exhibits a grid structure, resulting in
paths that share many links, while the Williamson County network represents a
suburban configuration. Individual models were built and ran separately for each
analyzed sub area. In all experiments the modeled demand spans the 2-hour peak
period, and is profiled across using 10-minute intervals. The simulation is allowed

to run for a longer period in order to allow all vehicles to complete their trips.

Table 3.3: Test Networks

Network Links Signals 0D pairs Trips
Downtown 1590 168 3,518 89,078
Austin

Williamson 2,184 69 45,586 201,588
County
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Figure 3.1:Austin Sub-Networks

3.4.2 Experimental Design

Table 3.4 provides a list of the experiments conducted in this work. All
methods were tested on both, the Downtown and Williamson County networks, to
ascertain convergence behavior on varying network structure. All implemented
algorithms include the partial demand loading scheme described in Section 3.2.2.
The MSA-based heuristics are set to generate a maximum of 35 paths per ODT (5
during the partial demand loading phase and 30 during the first iterations), after

which they behave as path-swapping methodologies. The proximity between
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relative and true gap (Section 3.5) in all analyzed cases suggests that the selected
threshold is sufficient.

Upon examining initial results, the best performing technique for the first 30
iterations was selected to be implemented with the column generation framework.
The number of inner loop iterations for this methodology was set to a maximum of
10, pending on an early switch back to the outer loop if the gap reduction from a
given iteration to the next falls below a user-defined parameter. A final set of
experiments was run to test the stability of the results obtained using different

methodologies.

Table 3.4: Experimental Design

Methodology Parameters

Partial Demand Loading D € {5,10}

ODT sort F € {20,50,75}

Path sort 35 paths max.

Vehicle sort 35 paths max.

ODT vehicle sort 35 paths max.

ODT-gap-based step-size scaling 35 paths max.

Column Generation Used 3.1.3 for assignment, 10
iter. max.
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3.5 EXPERIMENTAL RESULTS

A set of preliminary experiments was conducted to assess the advantages of
implementing a partial demand loading initialization along with other
methodologies. In this table (and in the remainder of this section) the reported gap
value y(i) (Equation 3.8) is expressed as a percentage of the total system travel
time.

The results of the preliminary tests, presented in Table 3.5, suggest that the
partial demand loading heuristic has very favorable impacts on the overall
algorithmic performance. The number of iterations in which the system was overly
congested was reduced by more than 50%, while satisfactory convergence levels

were attained after as little as 20 iterations in some cases.

SoaZeLext (ED=pba®)xVi

SoaLeLyent (TD)xV

y(@) = [3.8]

Table 3.5: Partial Demand Loading Results

Scenario
Network  Performance _ D=1 (nf) D=5 D=10
Measure initialization)
[terations with
Downtown overflow 9 3 3
Austin y(20) 8.774 4.395 3.078
y(50) - 1.912 1.724
[terations with
Williamson overflow 13 5 3
County y(20) 11.939 9.118 8.568
y(50) - 4.907 4.492
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Table 3.6 presents convergence metrics for the remaining methodologies
tested in this study. The results show that for most methodologies, acceptable gap
levels were attained in both networks after 50 iterations (pre-defined stopping
criteria). Exception is given to the ODT sort methods, which consistently performed
worse than MSA. Figure 3.3 displays the convergence level as a function of the
iteration number for several methodologies on the Williamson County network,
suggesting that the selected number of iterations is enough to achieve a stable gap.
In this figure most of the methodologies exhibit very similar performance. The ODT
vehicle sort approach presents a slightly smoother behavior than others, while the
ODT path sort approach is less smooth than most. The column generation
implementation did not perform as well as expected, which may be related to the
relative low gap reduction attained within the inner loop.

In general, none of the techniques was observed to significantly outperform
MSA, which is in agreement with the findings of Tong and Wong (2010). However,
further analyses of the stability and overall quality of the results obtained through
different methodologies indicate that the altered vehicle reassignment has a
significant impact, which might result in an improvement in convergence
performance after further research. The following sections describe the results for

each methodology in further detail.
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Table 3.6: Convergence Metrics for Tested Heuristics (gap as a percentage of total
travel time)

Downtown Austin

Williamson County

y(10) y(20) y(50) y(10)  y(20)  y(50)
MSA 11.579 4.459 2.053  16.197 8700  4.366
ODT sort F=20 25.494 26.017 25991 39.928 38652 37.994
ODT sort F=50 17.603 17.287 16900 29.845 27.159 25.189
ODT sort F=75 8.525 7.909 6.819 21.417 15.406 11.910
Path sort 14.006 2.712 1.129  15.055 10.457  5.029
Vehicle sort 10.549 8.390 8.043 34411 34493 33.863
ODT vehicle sort 7.325 2.438 1.692  15.547 8555  3.892
Lambda Average |7 165 2933 1808 16739 10534 5312
Gap
Lambda Total 10.818 2.759 1.858  17.826 9.117  4.349
Gap
Lambda Relative 27.603 7.474 1.644 21935 21.280 10.143
Path Cost
Lambda Relative 8.578 2.657 1.995 12376 7.711  4.438
Gap Sum
Lambda Time 10778 3913 1817 10472 10555 4.998
Varying
Column 3.961 3.026 1.839  19.483  7.502  7.332
Generation
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3.5.1 MSA-Based Heuristics Results

3.5.1.1 ODT sort

Each of the three ODT sort experiments produced gaps, which were
consistently worse than MSA for both the Downtown and Williamson County
network scenarios. The fact that the gap increased as F decreased suggests that F =
100, or equivalently ODT vehicle sort, should be the best performing cutoff value. It
is worth noting that the gap decreases almost linearly with increasing F, suggesting
that a local minima in gap for F less than 100 is unlikely. This technique may be
useful to refine the results of a nearly converged network, but not to be applied

throughout the process.

40

.\ =—Downtown
35
30 \ —=—WillCo
25 . \l\
20 \
15 \ \
10 \ \-\

v(50)
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Figure 3.2: Vehicle Cost Gap vs. Cutoff Value in ODT sort
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3.5.1.2 ODT Path Sort

Path sort performed slightly better than MSA in Downtown but slightly
worse in Williamson County. This is most likely related to the network size and
structure. The Downtown network is a small, grid-type network, with a high level of
path overlap. Congestion in the heart of the region is high, and the worst paths
probably over-utilize several links. Moving vehicles from all paths, as MSA does,
may not quickly alleviate that congestion since many paths share the same links.
Path sort, on the other hand, focuses on removing vehicles from high travel time
paths, alleviating artificial bottlenecks faster and promoting a quicker gap reduction.
On Williamson County, the spread out network structure results in paths sharing
fewer links. Therefore, moving vehicles onto the shortest path will have a larger

impact on high congestion links.

Downtown

===0DT Vehicle Sort

====Path Sort

==V ehicle sort

MSA

Number of iterations (i)
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Williamson County

====(0DT vehicle sort

===DPath sort

==Vehicle sort

MSA

Number of iterations (i)

Figure 3.3: Convergence from Vehicle Sort Based Heuristics

3.5.1.3 Vehicle Sort

Vehicle sort performed poorly, most likely due to an undesirable selection of
vehicles to be re-assigned. After around 15 iterations in Downtown and 12
iterations in Williamson County the gap essentially flatlines, and no gap
improvements are made in the remaining iterations. This method is likely ignoring
the better performing vehicles after the number of vehicles moved becomes too low
at later iterations. As a result the gap remains constant, similar to the pattern

experienced in ODT sort.
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3.5.1.4 ODT Vehicle Sort

ODT vehicle sort performed slightly better than MSA in both Downtown and
Williamson County. Moving the worst performing vehicles is expected to provide a
better convergence rate by focusing on the vehicles contributing most to the cost
gap. However, the results were not as substantial in terms of improvement in the
cost gap. Nevertheless, the overall gap does not provide complete information on
the quality of the solution. ODT vehicle sort was successful in creating a more even
convergence across OD pairs. In MSA results, a smaller number of vehicles was
found to be responsible for a large portion of the total gap (see Figure 3.4).
Downtown had a 17.58% reduction in cost gap percentage, and Williamson County
had a 10.86% reduction in gap. The number of vehicles moved by ODT vehicle sort
is surprisingly comparable to MSA despite the emphasis on moving the worst
vehicles per ODT. ODT path sort, as expected, moves more vehicles because it sorts
by the worst path (see Figure 3.5). That might also help explain the better
performance by ODT path sort on Downtown. At later iterations, few vehicles on
Downtown are moved by MSA and ODT vehicle sort. More vehicles are moved on
the larger Williamson County network, in which the methods performed more

similarly.
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Figure 3.4: Percentage of Total Gap from Vehicles with a Cost Gap Greater than
Shortest Path Travel Time
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Figure 3.5: Vehicles Moved by Vehicle Sort Heuristics

3.5.2 Gradient-Based Heuristics Results

3.5.2.1 Lambda Cost Gap

Little difference was observed between MSA and either Lambda Cost Gap

methodology. Lambda average gap produced a relatively smooth rate of
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convergence; however, performance was comparable to MSA. Perhaps this behavior
may be explained by insufficient scaling of the lambda value per ODT. In other
words, the modified lambda was too similar to the base lambda. The lambda total
gap methodology resulted in spikes in the convergence graph for both Downtown
and Williamson County. The temporary increase in gap may be acceptable if
followed by a reduction in gap. Unfortunately this is not the case, and again no
improvement from MSA is noticeable. Perhaps prevention of significant increases in

gap may avoid this issue.

3.5.2.2 Lambda Relative Gap Sum

Early iterations of this methodology produce significant gap reduction in
both network scenarios. Even more encouraging is the fact that gap is consistently
decreasing at almost every iteration. Performance at later iterations, though, is
again comparable to MSA. One potential improvement in this methodology is a
better approximation of the gradient. Simulation-based DTA has no analytical

formulation of the gradient, so any method used is a heuristic approximation.

3.5.2.3 Lambda Relative Path Cost

Lambda Relative Path Cost had distinctly different performance on
Downtown and Williamson County. As seen in Figure 3.6, on Downtown it was
initially slower but resulted in a lower gap than any other method. On Williamson

County, however, it was considerably worse than the other gradient-based
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heuristics. This is likely due to neglecting the second derivatives (see Jayakrishnan
et al,, 1994) which include the derivatives of link costs of links that are not shared
between the old and the new shortest path. On the grid Downtown network, many
links are shared and so the difference is smaller than on Williamson County which is
more spread out. That likely explains the difference in performance on the two
networks, and suggests that a suitable approximation of link cost derivatives could

further improve this method.

Downtown ——Lambda Avg Gap

30 7 ===ambda Total Gap
====Lambda Rel Gap Sum
25 - ===Lambda Rel Path Cost
====Time Varying
20 - ——MSA
=15
10
5 .
0 T T T T T T T T T 1
0 10 20 30 40 50 60 70 80 90 100

Iteration (i)
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Figure 3.6: Gradient-based Heuristics

3.5.2.4 Lambda Time Varying

The time-varying method with reset parameter n = 2, starting at the 10t
iteration, produced little difference on Williamson County, but significant spikes in
the convergence rate were observed on Downtown near the start of the lambda
reset. Itis possible that a different reset parameter may have yielded better results,
but it is not clear why the same was not observed on Williamson County. A possible
explanation is that the increased number of vehicles moved coupled with a greater
path overlap led to more instability.. Considering that Mahut et al. (2007) achieved

good results, this indicates that perhaps a significantly higher reset parameter may
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be needed, or that a small change in the cascade pattern / reset parameter could

create a disproportionate effect in the convergence rate.

3.5.3 Column Generation Results

There are many possibilities in the alternating cycles of least-cost path
search and equilibration. The experiments implemented a 5 path generation / 5
equilibration split for the first 60 iterations, followed by 40 iterations of path
swapping. This is consistent with the total number of path search and equilibration
iterations used in all previous methods. The 5 iterations of equilibration after every
5 iterations of path generation are hoped to improve the quality of future paths
found.

A second set of tests was conducted to further assess the stability of the
results on the Williamson County network. Three of the methodologies were run
until a stable gap was achieved (40 iterations). The peak hour link volumes (at 26
locations) and average travel times (along 28 selected routes) were compared at
two different points during the process (iteration 20 and 40). Figure 3.5 displays the
frequency distribution of the observed oscillation, defined as the percent change
between the measurements taken at iterations 20 and 40. It is interesting to notice
that even though the gap is fairly stable in the selected range, link volumes and
route travel times at some of the locations of interest are still fairly volatile.

Furthermore, the volatility varies across approaches, with MSA exhibiting the
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highest. These stability results provide an additional incentive to further our

understanding of the convergence of SBDTA methodologies.
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Figure 3.7: Stability of Selected Link Volumes
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Figure 3.8: Stability of Travel Times
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3.6 CONCLUSION

This work reviewed, implemented, and compared existing and novel
techniques for finding equilibrium solutions in simulation-based dynamic traffic
assignment problems (SBDTA). The considered methodologies include MSA-based
sorting heuristics, gradient-based heuristics, column generation frameworks and
partial demand loading schemes.

The algorithms studied in this research effort were implemented in a
common SBDTA platform, which uses a cell transmission model (CTM) for traffic
simulation. Numerical experiments were conducted on two networks of varying
sizes. The performed tests clearly suggest that implementing a partial demand
loading scheme favorably impacts convergence, reducing the congestion during
earlier iterations and leading to a faster gap stabilization. None of the remaining
methodologies tested in this work was observed to consistently outperform the
others (or MSA) in terms of the number of required simulation iterations. However,
analyses of the stability of the results obtained through different approaches
suggest that there may be significant differences among methodologies not revealed
by the cost gap. For instance, MSA may be more volatile due to the distribution of
the total gap among fewer vehicles. Further research is needed to explore the
observed trends, which may have significant implications for practical applications.

Even analysis of the cost gap demonstrates spikes in the convergence per

iteration at later iterations. Observation of convergence over time, or a method that
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converges smoothly without spikes yet without sacrificing average convergence
rate, is important for practical applications to quickly find a good solution. One
possible improvement is heuristically preventing gap increase after a certain
stability is achieved. From a research perspective, comparison of methods across
few iterations may not reveal trends in the cost gap. Some methods were observed
to converge quickly initially but reach a similar cost gap as MSA after many
iterations. Nevertheless, selecting a method that converges quickly may reduce the
number of iterations necessary to achieve an acceptable solution. End behavior,
however, may be significant when a highly converged solution is required. Most
methods tend to converge around a similar gap, suggesting that in practice further
improvement may be difficult. Some of the methodologies may be sensitive to the
parameters selected for implementation, and that generating those parameters
endogenously would be of help for practical applications purposes.

The research presented in this paper provides valuable reference for
implementation of new SBDTA methodologies and the development of more
efficient assignment methodologies. Future research will also implement additional
gradient-based approaches with better approximations and the potential to reduce

the number of simulations needed to achieve stable equilibrium solutions.
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Chapter 4: Conclusion

With the hope of aiding both planners and practitioners to feel more
confident with dynamic traffic assignment, this work first investigates the
possibility of integrating DTA with the standard four step transportation planning
model. Also, a study of different DTA convergence techniques was conducted in
order to create a meaningful comparison of a number of different network
assignment algorithms within a single network modeling software. Both studies
have yielded promising results, indicating that the future of DTA within the realm of
engineering practice is very bright.

In Chapter 2, a model for integrating DTA into the four step model by
replacing static traffic assignment in the network assignment step provided positive
results. Each of the convergence measures introduced showed a generally
decreasing trend. Moreover, the computation time for these runs was particularly
low on a smaller city-sized network (~1 hour), suggesting that repeating the
procedure with a larger, regional network model is conceivable. Also, travel time
reliability was incorporated into the model via the addition of a representative term
within the logit model equation present in the third model step, mode choice. While
the results for this process were not ideal, this is explained by an incorrect selection
of model parameters. Ideally these parameters should be estimated from real data,

and this process is one possible extension of this work.

73



There are a number of other studies that could further contribute to the
integration of DTA and the four step model. For instance, this work suggested taking
the average travel time for all DTA departure time interval travel times as a single
output to be feedback into trip distribution and mode choice. However, another
measure, such as the median or a given percentage value of travel time may be more
appropriate. Likewise, perhaps the four step model could be modified to accept a
number of different travel time values, essentially creating a model that captures
travel behavior over different periods of the day. Finally, an important improvement
that could be made to further advance this integration is an enhancement of modal
representation within DTA. Currently many DTA software packages only model
automobile vehicles, and the others likely include only cars and buses. However, it
would be very useful to incorporate a number of other travel modes within DTA to
achieve a more meaningful integration with the four step model.

In Chapter 3, a number of different MSA-based and Gradient-based traffic
assignment techniques were investigated within the same DTA software. Results
were analytically compared with the Method of Successive Averages, and while not
all performed better than MSA, many showed promising results. What was
particularly interesting about this study was the difference in results noted between
the downtown (grid) network and the Williamson County (sparse/rural) network. It
appears that a number of different assignment approaches vary with the type of

network being modeled, which provides an excellent starting point for extensions of
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this research. Other future work could include the inclusion of other assignment
approaches as well as modeling on different network types, including a large-scale
regional network.

It is hoped that this work can serve as a resource for practitioners who are
currently on the fence about DTA. Given modern computing power, many
transportation application should certainly be able to benefit from this more

advanced and accurate form of network modeling.
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