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Abstract 

 

Nonlinear Mediation in Clustered Data:  A Nonlinear Multilevel 

Mediation Model 

 

Lester Leland Lockhart III, Ph.D. 

The University of Texas at Austin, 2012 

 

Supervisor:  S. Natasha Beretvas 

 

Mediational analysis quantifies proposed causal mechanisms through which 

treatments act on outcomes. In the presence of clustered data, conventional multiple 

regression mediational methods break down, requiring the use of hierarchical linear 

modeling techniques. As an additional consideration, nonlinear relationships in multilevel 

mediation models require unique specifications that are ignored if modeled linearly. 

Improper specification of nonlinear relationships can lead to a consistently overestimated 

mediated effect. This has direct implications for inferences regarding intervention 

causality and efficacy. The current investigation examined a specific nonlinear multilevel 

mediation model parameterization to account for nonlinear relationships in clustered data. 

A simulation study was conducted to compare linear and nonlinear model specifications 

in the presence of truly nonlinear data. MacKinnon et al.’s (2007a) empirical-M based 

PRODCLIN method for estimating the confidence interval surrounding the instantaneous 

indirect effect was used to compare confidence interval coverage rates surrounding both 



 v 

the linear and nonlinear models’ estimates. Overall, the nonlinear model’s estimates were 

less biased, more efficient, and produced higher coverage rates than the linear model 

specification. For conditions containing a true value of zero for the instantaneous indirect 

effect, bias, efficiency, and coverage rate values were similar for the linear and nonlinear 

estimators. For conditions with a non-zero value for the instantaneous indirect effect, 

both the linear and nonlinear models were substantially biased. However, the nonlinear 

model was always less biased and always produced higher coverage rates than the linear 

model. The nonlinear model was more efficient than the linear model for all but two 

design conditions.  
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Chapter 1:  Introduction 

Mediational analysis quantifies proposed causal mechanisms through which 

treatments act on outcomes. In its most general conceptualization, mediation exists when 

the effect of a causal agent, T, on an outcome, Y, acts through at least one intervening 

variable, M (Hayes & Preacher, 2010). The validity of the causal implications resulting 

from a mediational analysis is largely dependent on the nature of the experimental design, 

as causality itself is an epistemological issue requiring the fulfillment of certain 

experimental conditions (Bauer, Preacher, & Gil, 2006). More specifically, causality can 

only be inferred when the variables involved covary with each other, when spurious 

results have been eliminated, and when hypothesized causes chronologically precede 

their presumed effects (Frazier, Tix, & Barron, 2004). Additionally, secondary 

manipulation of the mediating variable, M, along with experimental manipulation of the 

primary treatment variable, T, greatly strengthens the ensuing causal inferences (Spencer, 

Zanna, & Fong, 2005). With these issues in mind, mediational methods provide 

researchers the necessary statistical tools to investigate mediated mechanisms. This holds 

direct implications for modifying and improving treatment processes, as mediated effects 

shed light on the underlying causal mechanisms by which treatments are effective (Judd 

& Kenny, 1981). As such, this form of analysis is especially relevant to the social and 

behavioral sciences as investigators frequently seek causal explanations for treatment 

efficacy (Baron & Kenny, 1986). 
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In a typical mediation analysis, a treatment, T, is hypothesized to affect an 

outcome, Y, both directly and indirectly through some mediator, M.  The portion of the 

treatment effect that acts through the mediator is labeled the mediated or indirect effect.  

To estimate this, Y is first regressed on T using conventional Ordinary Least Squares 

(OLS) methods to estimate the total effect of the treatment on the outcome.  The 

regression coefficient for T is labeled the c parameter in mediation analysis.  Next, M is 

regressed on T to estimate the effect of the treatment on the mediator itself.  The effect of 

the treatment on the mediator is denoted the a parameter.  Y is then regressed on both M 

and T to estimate the effect of the mediator on the outcome while controlling for the 

effect of the treatment.  In this final regression, the coefficient for M is labeled the b 

parameter, and the coefficient for T (i.e, the direct effect of T) is labeled the c’ parameter.  

The mediated effect is then calculated in one of two ways.  The direct effect of the 

treatment on the outcome accounting for the mediator (c’) may be subtracted from the 

total effect of the treatment on the outcome (c) to estimate the indirect effect of the 

treatment on the outcome.  Alternatively, the a parameter may simply be multiplied by 

the b parameter to estimate the indirect effect.  In conventional OLS mediation analysis 

with non-nested data structures, the difference [ )'( cc   ] and product of coefficients (ab) 

methods are equivalent (MacKinnon, 2008). 

In mediation analysis, nested data structures require the use of multilevel 

modeling to partition variance at the appropriate levels accurately.  The level at which the 

treatment, mediator, and outcome reside determines the specification of the multilevel 

models used in the ensuing mediation analysis.  Though a variety of nesting structures 
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and model specifications exist in the literature, the current investigation will focus on 

two-level data structures whereby the treatment, mediator, and outcome all reside at 

level-1 and all level-1 participants (e.g., students) are nested within some hierarchical 

unit (e.g., schools).  In the mediation literature, this is referred to as a 111  , or 

lower-level, mediation model.  In this scenario, hierarchical linear modeling is used to 

estimate the a, b, c, and c’ parameters.  Here, the ab and )'( cc   estimates of the indirect 

effect are no longer equivalent, though previous research suggests that this discrepancy is 

typically minimal, especially with larger sample sizes (Krull & MacKinnon, 2001).  In 

most mediation analyses, the ab estimate of the indirect effect is preferred to the )'( cc   

estimate (Krull & MacKinnon, 1999). 

Conventional multilevel mediation assumes linear relationships between the 

treatment, mediator, and outcome variables.  In the context of mediation analysis, 

nonlinear relationships require unique model specifications.  These may arise due to the 

presence of dichotomous outcomes or to the hypothesized relationships between the 

treatment, mediator, and outcome variables. Such nonlinear relationships often arise in 

the context of evaluating the functional form associated with hypothesized behavioral 

constructs (Hayes & Preacher, 2010). For example, the relationship between class size 

and subsequent student achievement has received considerable attention in recent 

educational research. Previous studies indicate that smaller class sizes may provide 

positive benefits for subsequent student achievement (Finn & Achilles 1990; 

Konstantopoulos 2008; Krueger 1999; Shin & Raudenbush, 2011). Given the variation in 

class size effects across schools (Konstantopoulos, 2011), multilevel methods are ideally 
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suited for handling such analyses. Mechanisms by which classroom interventions 

succeed, then, may provide differential effects based on the number of students contained 

in each class. In this scenario, class size may act as a treatment, functioning through some 

mediating variable to affect subsequent student achievement (as measured by scores on 

standardized exams or as binary indicators associated with matriculation to the 

subsequent grade level). Classroom size (as measured by the number of students enrolled 

in a particular class), however, may not be linearly related to a hypothesized mediator. 

More specifically, classroom sizes in excess of a specific number may not be linearly 

related to a mediator but may instead exhibit a ceiling effect beyond which all classroom 

sizes similarly affect the mediator. Large, lecture style college classes may provide one 

example of the ceiling effect of classroom size on mediated achievement effects. At the 

opposite end of the spectrum, small classroom sizes below some minimum threshold may 

exhibit similar floor effects on hypothesized mediators. Seminar and discussion based 

classes may exemplify this phenomenon.   

As a starting point for extending nonlinear mediation for use in clustered data, the 

current investigation will examine a nonlinear treatment-mediator relationship in the 

presence of a linear mediator-outcome relationship. In the simplest, generic scenario, this 

relationship may arise because of the relationship between a dosage-like treatment 

variable and a mediator containing floor and ceiling effects. This nonlinear nature of this 

relationship is not captured when modeled using the conventional multilevel mediation 

paradigm. The current investigation provides an initial examination of one specific 

nonlinear model for estimating indirect effects in the presence of clustered data.  As a 
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first attempt at examining this specific nonlinear parameterization, the current 

investigation will extend the current mediation literature by combining a specific 

multilevel mediation analysis design with a specific nonlinear functional form for the 

treatment-mediator relationship. 
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Chapter 2:  Literature Review 

The current study adds to the mediation literature by proposing an alternative 

parameterization to traditional mediation models, combining multilevel mediation 

analysis with a specific nonlinear T-M model specification. First, conventional linear 

mediation models are presented. Next, these traditional single-level models are extended 

to address hierarchically nested data via mixed linear models. A thorough examination of 

indirect effect calculation and hypothesis testing ensues, as this computation lies at the 

heart of all mediational analyses. This is followed by a discussion of nonlinear multilevel 

extensions for non-normally distributed data. At this point, problems with measures of 

mediation are discussed, followed by presentation of a nonlinear multilevel mediation 

model (NMMM) designed to address these concerns. A simulation study is then proposed 

to examine the accuracy of two specific indirect effect calculations as applied to the 

NMMM of interest. 

TRADITIONAL MEDIATION 

Standard mediational analyses quantify the causal relationships between an 

independent variable (or treatment, T), an outcome variable (or criterion, Y), and a 

mediating variable (or mechanism, M). In conventional mediation, the treatment variable 

typically consists of an indicator variable coded one for those in the treatment condition 

and zero for those in the control group. Alternatively, the treatment variable may consist 

of a continuous variable corresponding to a treatment dosage such as the amount in 

milligrams of a particular drug. Mediating variables are often operationalized as 
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constructs or measures hypothesized to describe how or why certain effects occur (Baron 

& Kenny, 1986; Bruner, 1957). Conceptually, mediation exists when a significant portion 

of the treatment effect operates through a mediating variable. Using path notation (Klein, 

2005), Figure 1 depicts the total effect of T on outcome Y. However, part of this effect 

may function through an intermediate variable, M. The effect of T on Y is then broken 

down into its constituent paths as presented in Figure 2. Here, a represents the effect of T 

on M, b represents the effect of M on Y, and c represents the effect of T on Y that is 

independent of M. T is hypothesized to affect Y both directly (path c’) and indirectly 

through M (paths a and b). The portion of this effect that goes through M is coined the 

indirect effect, whose calculation lies at the heart of mediational analysis.  

Figure 1.  Path Model Depicting Total effect, c, of Treatment T on Outcome Y. 

 

Figure 2.  Single-level Linear Mediation Model of Treatment T’s effect on Outcome Y 

through Mediator M. 
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In the simplest single mediator model, paths a, b, c, and c in Figures 1 and 2 can 

be computed as unstandardized ordinary least squares (OLS) regression coefficient 

estimates obtained from the estimation of three regression models (MacKinnon, 2008). 

First, the total effect of a treatment variable (T) on an outcome variable (Y) is defined as 

the c parameter (Figure 1) by using the following linear equation: 

 
iTYiTYi ecTY ).(0).(   , (1) 

where iY  represents the outcome score for subject i, 
0).( TY  represents the intercept for 

the prediction of Y, iT  represents the value of the treatment variable for subject i, c 

represents the total effect of the treatment on the outcome, and ie represents the error term 

for subject i. This model corresponds to the path diagram in Figure 1, representing an 

estimate of the total effect of T on Y without accounting for possible covariates or 

mediators.  

 To obtain an estimate of path a in Figure 2, M is defined as a function of T 

according to the following model: 

 iTMiTMi eaTM ).(0).(   , (2) 

where iM represents the score on the mediator for subject i, 
0).( TM represents the 

intercept for the prediction of M, Ti  represents the treatment variable for subject i as in 

Equation 1, and iTMe ).(  
represents the error term for subject i. A third regression equation 

is used to provide estimates of b and c. Here, Y is defined as a function of both M and T: 

 iMTYiiMTYi eTcbMY ).(0).( '   . (3) 
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In this equation, 
0).( MTY  represents the OLS intercept estimate for the prediction of Y 

from M and T, b represents the effect of the mediator on the outcome controlling for the 

effect of the treatment, c represents the direct effect of the treatment on the outcome 

controlling for the mediator, and iMTYe ).(   represents the error term for subject i.  

Once the path values are estimated, two primary methods exist for quantifying the 

indirect effect of T on Y through M (see, for example, MacKinnon, 2008). First, the 

indirect effect can be calculated according to the mathematical definition of the 

instantaneous indirect effect,   (Stolzenberg, 1980): 

 

























M

Y

T

M
 . (4) 

As exposited by Hayes and Preacher (2010), the first partial derivative of a function with 

respect to a variable identifies the instantaneous rate of change of the former function 

(here, M) with respect to the second variable (here, T). In the context of multiple 

regression, this instantaneous rate of change is frequently interpreted as the effect of an 

independent variable on a criterion. Extending this to mediational analysis, the effect of T 

on M can be conceptualized as the rate of change of M with respect to T, 



M

T









. 

Applying this to Equation 2, 

 a
T

M













.  (5)
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Similarly, the effect of M on Y can be conceptualized as the rate of change of Y with 

respect to M (controlling for T) [i.e., 



Y

M









]. Applying this to Equation 3, 

 b
M

Y













.

  

(6) 

Assuming linear relationships between T and M and between M and Y, a one-point 

increase in T results in an a-point increase in M. In turn, a one-point increase in M results 

in a b-point increase in Y, holding T constant. Within this framework, the mathematical 

formulation of   (Equation 4) defines the indirect effect for linear single mediator 

models as the product of the a and b parameter estimates as follows: 

 ab
M

Y

T

M

























 . (7) 

More intuitively, path tracing rules (see, for example, Kline, 2005) applied to Figure 2 

provide the same results.  

Alternatively, the indirect effect may be defined as the difference between the 

total effect of T on Y and the direct effect of T on Y accounting for M. Mathematically, 

this conceptualization of the indirect effect is calculated as )'( cc  , where c and c stem 

from Equations 1 and 3, respectively. In standard single mediator model analyses, the ab 

and )'( cc   methods are equivalent under OLS regression (MacKinnon, 2008).  

Use of OLS regression for estimating the various paths depicted in Figures 1 and 

2 (see Equations 1 through 3) works well for single-level datasets with no clustering of 

level-1 units within higher-level units. However, treatments, mediators, and outcomes are 
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frequently nested within various hierarchical units as a result of both group-level 

interventions and the natural clustering often inherent in organizational settings. 

Mediational analyses involving these types of data require proper parameterization via 

hierarchical linear modeling techniques to correctly partition variance at the appropriate 

levels. The following section describes this use of multilevel modeling to investigate 

mediation with clustered data.  

MULTILEVEL MEDIATION 

Clustered data presents problems for conventional mediational analysis as 

described in the previous section. More specifically, the dependence of observations 

within a particular cluster results in no partitioning of the constituent variance 

components if the clustering is ignored. In standard single-level multiple regression, 

correlated errors, as induced by the nesting of individuals within a level-2 unit, lead 

directly to underestimated standard errors, overestimated test statistics, and inflated type I 

error rates (Raudenbush & Bryk, 2002; Barcikowski, 1981; Moulton, 1986; Scariano & 

Davenport, 1987; Scott & Holt, 1982; Walsh, 1947). Failure to properly model all levels 

of nesting further complicates the inferences based on hypothesis tests (Moerbeek, 2004). 

The severity of the clustering effect can be assessed with the intraclass correlation (ICC), 

interpreted as the correlation between individuals belonging to the same level-2 unit: 

  
wB

WB

MSkMS

MSMS
ICC

)1( 


 , (8) 

where 
BMS  and WMS  represent the mean squared error between and within clusters, 

respectively, and k represents the number of subjects in each cluster (MacKinnon, 2008). 



 12 

The ICC ranges from 



1

k 1 
 to 1, with positive values indicating a violation of the 

independence assumption required in standard multiple regression analyses. The ICC is 

chi-square distributed, and as such can be tested for significance according to the 

following F-statistic (MacKinnon, 2008): 

  













ICC

ICCk
F kgg

1

)1(1
)1(,1 , (9) 

where g is the number of level-2 clusters and k is the number of subjects in each cluster. 

In reality, although the ICC may not be statistically significant for all clustered data 

structures, small values can still distort significance tests (Kreft, 1996; Muthén & Satorra, 

1995). As such, non-zero ICC values require proper modeling via hierarchical linear 

modeling methods. 

Proper mediation model parameterization of clustered observations depends 

largely on the level at which the treatment, mediator, and outcome variables are 

measured. For example, in the context of group-based treatments, cluster randomized 

trials assign clusters of individuals to treatment conditions but assess outcomes at the 

level of the participant. The YMT LLL  notation (where Lk represents the level at 

which variable k is measured) is commonly used to distinguish the different possible 

mediation model designs. For example, in a cluster randomized trial, if the hypothesized 

mediator is measured at the individual level, this design is referred to as an “upper-level” 

or “ 112  ” mediation design (Kenny, Kashy, & Bolger, 1998). Alternatively, the 

mediator in a cluster randomized trial may be measured at the cluster level resulting in a 



 13 

“ 122  ” mediation design. These designs, when parameterized to account for 

clustering at level-2, produce fixed indirect effect estimates with the same statistical 

properties as those resulting from single-level designs.  

For example, a typical 112   cluster randomized trial may randomly assign 

level-2 units (e.g., treatment sites) to different treatments with outcomes and mediators 

measured at the level of the individual subjects within each site. In this instance, 

estimates of a, b, c, and c’ should be obtained using multilevel modeling. Using  HLM 

notation modified from that of Raudenbush & Bryk (2002), the c parameter for the total 

effect of the treatment on the outcome is estimated by the following model for the 

outcome at level-1 for subject i in site j: 

 ijTYjTYij rY ).(0).(   , (10) 

and at level-2: 

 jTYjTYjTY ucT 0).(00).(0).(   , (11) 

where ijY represents the outcome for subject i in site j, 00).( TY  represents the overall 

intercept across all sites, c represents the total effect of the treatment on the outcome, jT  

represents the level of treatment received in site j, and ijTYr ).(  and jTYu 0).(  
represent level-1 

and level-2 random effects, respectively. Here, clustering is accounted for by modeling 

jTY 0).(  as randomly varying across level-2 units, indicated by the inclusion of the level-2 

residual, jTYu 0).( . This model assumes that the level-1 residuals, ijTYr ).( , are independently 

and normally distributed with a mean of zero and a constant variance. Additionally, the 



 14 

level-2 residuals, jTYu 0).( , are assumed independently and normally distributed with a 

mean of zero and a constant variance in addition to being independent of the level-1 

residuals. To estimate the a parameter, the mediator model for subject i in site j at level-1 

is specified as: 

 ijTMjTMij rM ).(0).(   , (12) 

and at level-2: 

 jTMjTMjTM uaT 0).(00).(0).(   ,
 

(13)  

where ijM represents the score on the mediator for subject i in site j, 00).( TM  represents 

the overall intercept across all sites, a represents the effect of the treatment on the 

mediator, jT represents the treatment condition administered to cluster j, and ijTMr ).(  and 

jTMu 0).(  represent level-1 and -2 residuals, respectively. Again, level-1 residuals are 

assumed independently and normally distributed with a mean of zero and a constant 

variance. Level-2 residuals are assumed independently and normally distributed with a 

mean of zero and a constant variance in addition to being independent of the level-1 

residuals. Similarly, b and c' estimates are obtained from a multilevel model for the 

outcome variable with the following equation at level-1: 

 ijMTYijjMTYij rbMY ).(0).(   , (14) 

and at level-2: 

 jMTYjMTYjMTY uTc 0).(00).(0).( '   , (15)  
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where ijY  represents the outcome score for subject i in site j, b and c' correspond to the 

paths depicted in Figure 2, 00).( MTY  represents the overall intercept across all sites, and 

ijMTYr ).(  and jMTYu 0).(  represent level-1 and -2 residuals, respectively. Statistical 

assumptions for the level-1 and level-2 residuals are identical to those mentioned above 

for Equations 10 through 13. Although this specification produces a fixed b parameter, an 

alternative specification may allow this parameter to vary across level-2 units. The 

estimate of a obtained in Equation 13 is multiplied by the estimate of b in Equation 14 to 

obtain the indirect effect, which can then be tested for statistical significance 

(MacKinnon, 2008). Alternatively, the c’ parameter obtained in Equation 15 can be 

subtracted from the c parameter obtained in Equation 11 to yield a )'( cc   estimate of 

the indirect effect. Although the ab and )'( cc   methods for calculating the indirect 

effect are not mathematically equivalent in multilevel mediation models, the difference in 

the indirect effect calculated by the ab method and the )'( cc   method is typically 

negligible (MacKinnon, 2008). 

As an alternative to the 112   design, treatment sites (i.e., level-2 units) may 

be randomly assigned to treatment conditions, with a mediator measured at the site level 

and the outcome measured at the individual level. This results in a 122   design, 

requiring estimation of a single-level and multilevel model to provide the relevant 

parameter estimates. First, the total effect, c, of the treatment on the outcome is specified 

as in the 112   design (Equations 10 and 11). Next, because the mediator and the 

treatment variables are measured at the same level (level-2), OLS regression is used to 
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estimate the effect of the treatment on the mediator (a). This is modeled as in Equation 2. 

Finally, since the outcome, Y, is nested within level-2 units, a multilevel model is used to 

model this clustering in estimating the b and c parameters.  At level-1, the model for the 

outcome for subject i in level-2 unit j is: 

 ijMTYjMTYij rY ).(0).(   , (16) 

and at level-2: 

 jMTYjjMTYjMTY uTcbM 0).(00).(0).( '    (17) 

where 00).( MTY  represents the overall intercept, and all other parameters are defined as 

above. As before, this model assumes that the level-1 residuals are independently and 

normally distributed with a mean of zero and a constant variance. Additionally, the level-

2 residuals are assumed independently and normally distributed with a mean of zero and 

a constant variance in addition to being independent of the level-1 residuals. As with 

112   designs, ab or )'( cc   estimates of the indirect effect can be calculated from 

their respective parameter estimates. These multilevel specifications of 112   and 

122   cluster randomized designs are not exhaustive of all cluster randomized data 

structures or model specifications. See Pituch and Stapleton (2008) and Pituch, Stapleton, 

and Kang (2006) for other exemplar multilevel model specifications.  

In contrast to designs where sites or clusters are randomly assigned to treatment 

conditions, an intervention may be randomly assigned to individuals that are clustered 

within higher-level units. In these “ 111  ” or “lower-level” mediation designs 

(Kenny, Korchmaros, & Bolger, 2003), all variables included in the mediation analysis 
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are measured at the lowest level (level-1). These designs may contain either fixed or 

random indirect effect estimates that may require unique considerations. Given the 

clustering of individuals within relevant contexts (e.g., students within classrooms, 

patients within hospitals, etc.) multilevel modeling must be used to handle the resulting 

dependence of observations.  

In lower-level mediation models, the total effect c is estimated with the following 

model at level-1: 

 ijTYijjjTYij rTcY ).(0).(   , (18) 

and at level-2: 

 









jTYj

jTYTYjTY

ucc

u

1).(

0).(00).(0).( 
, (19) 

where ijY  represents the outcome for subject i in cluster j, 00).( TY  represents the overall 

intercept, ijT  represents the value on the treatment variable for subject i in cluster unit j, 



c j  represents the total effect of the treatment on the outcome for cluster j, ijTYr ).(  

represents the level-1 residual, and jTYu 0).(  and jTYu 1).(  represent random effects 

corresponding to jTY 0).(  and 



c j , respectively. This model assumes that the level-1 

residuals are independently and normally distributed with a mean of zero and a constant 

variance. The level-2 residuals are assumed independently and normally distributed with 

a mean of zero and a constant variance in addition to being independent of the level-1 

residuals. In this instance with multiple level-2 residuals, however, the level-2 residuals 
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are allowed to covary with each other. The a, b, and c parameters can be obtained by 

estimating the following multilevel model for the mediator, M, at level-1: 

 ijTMijjjTMij rTaM ).(0).(   , (20) 

and at level-2: 
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MMjTM

uaa

u

1).(

00).( 
, (21)  

and for the outcome, Y, at level-1: 

 ijMTYijijjjMTYij rTcMbY ).(0).( '   , (22) 

and at level-2: 

 


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

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
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jMTYj

jMTYj
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, (23) 

where a, b, and c’ represent the corresponding parameters used in the indirect effect 

calculation. The statistical assumptions for the residuals are identical to those for the 

residuals in Equations 18 and 19. The intercept terms jTM 0).(  and jMTY 0).(  have similar 

random effects specifications at level-2, indicating that the intercept for each level-2 unit 

varies from the overall mean intercept. In Equations 21 and 23, the effects of the a, b, and 

c’ parameters are modeled as varying across level-2 units, as indicated by the presence of 

the 
jTMu 1).(
 term in Equation 21 and the 

jMTYu 2).(
 and 

jMTYu 3).(
 terms in Equation 23. In 

this scenario, with random a and b parameters, however, the expected value of the ab 
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product is no longer the product of the individual fixed effects parameters. Instead, the 

expected value for the indirect effect is as follows (Goodman, 1960): 

  abjj abbaE )( , (24) 

where 



a j and 



b j  represent random variables, and 



ab represents the covariance between 

them. This covariance term must be included for unbiased estimation of the indirect 

effect. However, if either the a or the b parameter is modeled as fixed, (i.e., if jTMu 1).(  
or 

jMTYu 2).(  
are removed from the model in Equations 21 and 23), the indirect effect is now 

fixed with an expected value equal to the ab product as before (Kenny et al., 2003).  

Bauer et al. (2006) outlined a method for dataset configuration and linear model 

parameterization that provides estimates of a, b, and 



ab when calculating the indirect 

effect in a 111   design. To do so, Bauer et al. combine the models for both the 

mediator (Equations 20 and 21) and the outcome (Equations 22 and 23) into a single 

equation by including a dummy coded variable for each portion of the model pertaining 

to each outcome. Combining these two models’ equations to allow estimation of a single 

model requires stacking the dataset so that each subject’s data is contained in two 

observations or rows. One observation contains variables relevant to the mediator model 

(Equations 20 and 21), and the other observation contains variables necessary for the 

outcome model (Equations 22 and 23). Each observation also contains two dummy-coded 

indicators, 



SY  and 



SM , coded such that 



SY  equals one if the associated observation 

contains data for the outcome model and zero otherwise, and 
MS  equals one if that 

observation contains data for the mediator model and zero otherwise.  



 20 

For 1YS  , a new outcome variable, Z, contains Y values, and for 1MS , 

MZ  . This results in the following model at level-1: 

 ZijijjijjjMTYYijjjTMMij rTcMbSTaSZ  )()( 0).(0).(  ,
 

(25) 

and at level-2: 
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, (26) 

producing the following combined equation: 

ZijijjMTYijjMTYYjYYijjTMMjMMij rTucMubuSTuauSZ  ])()()[(])()[( 3).(2).(01).(0  .(27) 

This specification simultaneously provides all parameters for both the mediator and 

outcome model specifications, including covariance estimates for all model parameters. 

The random effects in Equation 26 are assumed normally distributed with means equal to 

the average population effects, and a covariance structure that, at its most parameterized, 

can assume that each random effect covaries with every other random effect.  Borrowing 

notation from Bauer et al. (2006), the following covariance structure can be assumed: 































































































2

'',',',',

2

,,,

2

,,

2

,

2

0

0

0).(

0).(

0).(0).(

0).(0).(

0).(0).(0).(

0).(

0).(

,

'

~

'
jjjjjMTYjjjjTM

jjjMTYjjjjTM

jMTYjMTYjYjjTM

jjjTM

jTM

ccbccac

bbbab

a

aa

Y

M

j

j

jMTY

j

jTM

c

b

a

N

c

b

a





























. (28) 



 21 

All level-2 random effects are assumed independent of the level-1 residuals. The 

covariance between the a and b estimates,



ab, can then be obtained from estimating this 

model. Alternatively, the )'( cc   method of calculating the indirect effect avoids the 

need to estimate the covariance between the a and b parameters.  This is because the total 

effect, c, in a 111   mediation model is defined according to the following equation 

(Kenny et al., 2003): 

 ababcc  '  . (29) 

Subtracting c’ from both sides of the equation provides the following formula for )'( cc   

in 111   mediation: 

   ababcc  '  . (30) 

Hence, in the 111   scenario, the )'( cc   method for calculating the indirect effect 

provides an easier solution to the problem of estimating the indirect effect because it 

eliminates the need to estimate the covariances between any parameters. Again, although 

the ab and )'( cc   methods for calculating the indirect effect are not mathematically 

equivalent in multilevel mediation models, the difference is typically negligible 

(MacKinnon, 2008).  

 Multilevel model specifications for the aforementioned multilevel mediation 

designs are not without limitations. Most notably, Preacher, Zyphur, and Zhang (2010) 

noted that the conflation of within- and between- groups variance, as is often encountered 

in multilevel modeling contexts, must be addressed prior to any mention of inferences 

regarding the nature of the indirect effect. Commonly, this conflation of variances is 
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addressed by using group-mean centered predictors at level-2 (see Raudenbush & Bryk, 

2002, for a complete discussion), and by reporting results at both the between-and within-

groups levels (Zhang, Zyphur, and Preacher, 2009). However, even this solution may 

result in biased indirect effect estimates in circumstances with few level-1 units and a low 

ICC (Neuhaus & McCulloch, 2006). To address the conflated variance problem in this 

circumstance, a multilevel structural equation modeling (MSEM) framework may be 

preferable in certain situations as it allows for the explicit estimation of the level-2 error 

responsible for the conflated variance.  

 Previous research on the utility of MSEM in the context of mediation analysis 

with clustered data has focused primarily on mediation analyses with linear relationships 

between the constituent paths (Preacher et al., 2010). Truly nonlinear multilevel 

relationships may return spurious results if modeled using conventional linear methods 

(Bauer & Cai, 2009). Although additional research has examined the ability of SEM to 

parameterize nonlinear relationships (Hayes & Preacher, 2010), this work was restricted 

to single-level models. The current investigation extends the conventional mediation 

framework by combining both nested data structures with a specific nonlinear T-M 

relationship. As a first attempt at estimating this specific model, the MSEM framework 

will be eschewed in favor of an HLM framework as HLM analyses are still considered 

more accessible to the applied researcher (as evidenced by their preferred use over that of 

MSEM). MSEM approaches also require balanced data, a requirement that is often 

unfulfilled in many clinical studies (Mehta & Neale, 2005) Additionally, the use of an 

HLM design will allow future researchers to extend the model of interest to easily include 



 23 

an optional third level or cross-classified data structures, extensions that, while possible, 

are still limited in the MSEM framework (Preacher, 2011). 

 Once the a, b, c, and c’ parameters have been calculated as described above, the 

statistical significance of the indirect effect may be tested. The following section outlines 

commonly used methods of assessing the statistical significance of indirect effects, 

identifying the strengths and weaknesses of each test.  

TESTS OF THE STATISTICAL SIGNIFICANCE OF THE INDIRECT EFFECT  

Once the indirect effect is calculated, various procedures exist to assess its 

statistical significance. Of these, the causal steps approach outlined by Baron and Kenny 

(1986) is by far the most commonly used procedure (Preacher & Hayes, 2008). The 

causal steps procedure requires that parameters c, a, and b be sequentially statistically 

significant in order to infer mediation. Partial or complete mediation is then based on the 

significance of the c parameter. This approach, although computationally simple, lacks 

statistical power and lowers the observed Type I error rate (MacKinnon, 2008; Pituch, 

Whittaker, & Stapleton, 2005). Additionally, some researchers (Collins, Graham, & 

Flaherty, 1998; Judd & Kenny, 1981; MacKinnon, Krull, & Lockwood, 2000; Shrout & 

Bolger, 2002) have suggested that a significant c parameter is not necessary for mediation 

to occur, calling into question the viability of the causal steps method. 

To address this, the joint significance approach (MacKinnon, Lockwood, 

Hoffman, West, & Sheets, 2002) has been suggested. This approach requires that both the 

a and b parameters be statistically significant in order to infer mediation. This procedure 

does not require statistical significance of the estimate of the c parameter. This approach 
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has been found to improve power when compared to the causal steps approach when used 

with single-level designs (MacKinnon et al., 2002), although use of this approach is often 

criticized for failing to provide a confidence interval for the indirect effect (e.g., Pituch et 

al., 2006). Additionally, simulation studies have found that this approach provides lower 

power in multilevel designs than other statistical tests of the indirect effect (Pituch et al., 

2005; Pituch et al., 2006). 

In an effort to provide confidence limits for the indirect effect, Sobel (1982, 1986) 

used Gaussian confidence limits through the calculation of a z-score based on the ab 

product and its standard error. However, the assumption of normality associated with use 

of a standard normal critical statistic is violated because the sampling distribution of 

estimates of the ab product is skewed, kurtotic, or both depending on the true value of the 

ab parameter (Springer & Thompson, 1966; Craig, 1936; Lomnicki, 1967). As such, z-

score-based critical values and associated confidence intervals as used with Sobel’s test 

are inappropriate. This is evidenced by simulation study results showing an asymmetry in 

the proportion of replications in which the true value falls to the left versus the right of 

the Sobel-calculated confidence interval estimates (Stone & Sobel, 1990; MacKinnon, 

Lockwood, & Williams, 2004).  

To address these issues, bootstrap resampling methods (Shrout & Bolger, 2002) 

have been used to derive the empirical sampling distribution of the ab product estimate. 

Confidence intervals can be constructed using the resulting empirical distribution, with 

intervals excluding zero interpreted as evidence for mediation. Although several versions 

of bootstrapping exist, the bias-corrected parametric percentile bootstrap has been shown 
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to be the most accurate of the available methods for both single-level and multilevel 

designs (MacKinnon et al., 2004; Pituch et al., 2006). In multilevel designs, researchers 

are given two options when bootstrapping confidence intervals for the indirect effect: 

bootstrapping of residuals or bootstrapping of cases. In general, bootstrapping of 

residuals is preferred to bootstrapping of cases for two reasons (Pituch et al., 2006). First, 

multilevel models assume that values for the explanatory variables are fixed across 

samples; resampling cases with replacement would clearly change the distribution of the 

explanatory variables, violating this assumption. Second, resampling cases at any one 

level of a multilevel design may fail to reproduce the dependency present in the data or 

may produce inefficient parameter estimates. Pituch et al. (2006) outline the steps 

required to produce appropriate bias-corrected parametric percentile bootstrap estimates 

of the indirect effect. To summarize their steps for a 111   design: 

1. Sample residuals for as many level-1 and level-2 units (as correspond with the 

original sample) from a normal distribution with a mean of zero and variance 

equal to the estimated variance associated with that level. 

2. Substitute the residuals and the original sample’s observed values on the 

treatment variable into the equation for the mediator (Equations 20 and 21) to 

produce each case’s value on the mediator variable.  

3. Substitute values of the mediator obtained in Step 2 along with the resampled 

level-1 and two residuals and treatment variable values into the equations for the 

outcome, Y (Equations 22 and 23).  
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4. Rerun the original mediation analysis (Equations 20 through 23) on the 

bootstrapped data to obtain estimates of the a, b, and c’ parameters for each 

bootstrapped sample. 

5. Repeat steps 1 through 4 for each of the number, nb, of bootstrapped samples 

required (typically 1,000). 

6. Compute the ab product for each of the nb replications. The values at the 2.5
th

 and 

97.5
th

 percentile in this distribution serve as the lower and upper limits of a non-

bias-corrected 95% confidence interval. 

7. Calculate the z-score ( 0z ) in the standard normal distribution that corresponds to 

the percentile of the original ab estimate in the sample of 1,000 bootstrap 

estimates.   

8. Calculate 96.12 0 z
 

and identify the percentiles in the standard normal 

distribution associated with the resulting upper and lower limits’ values. The bias-

corrected upper limit of the 95% confidence interval is the bootstrap estimate of 

ab that corresponds to the percentile equivalent of 96.12 0 z . Similarly, the bias-

corrected lower confidence interval limit is the bootstrap estimate of ab that 

corresponds to the percentile equivalent of 96.12 0 z . 

This method, while both accurate and powerful, is computationally intensive and 

complicated to use for most applied researchers. 

As an alternative, the empirical M-test (MacKinnon, Fritz, Williams, & 

Lockwood, 2007a; Aroian, 1944) provides asymmetric confidence intervals for the ab 
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estimates by providing standardized critical values based on an approximation to the ab 

product’s sampling distribution. This procedure performs similarly to bootstrap 

resampling methods, providing comparable statistical performance for single-level 

designs (MacKinnon et al., 2004), multilevel designs (Pituch et al., 2005; Pituch et al., 

2006), and for non-normally distributed data (Pituch & Stapleton, 2008). To facilitate 

utilization of the empirical-M test, MacKinnon et al. (2007a) created the PRODCLIN 

program to compute asymmetric confidence intervals based on this approximation to the 

ab sampling distribution given a sample’s estimates of a and b and their respective 

standard error values. Although bootstrap resampling methods provide slightly better 

statistical power, PRODCLIN’s ease of use and overall accuracy render it preferable to 

all but bootstrap resampling procedures for linear models (Pituch et al., 2006). 

The )'( cc   estimate of the indirect effect may also be tested for statistical 

significance by dividing this estimate by one of many analytically derived standard errors 

(see MacKinnon et al., 2002, for specific standard error formulations) and comparing the 

resulting value to a t- or z-distribution. As previously mentioned, the )'( cc   method is 

identical to the ab method under OLS regression but is slightly different from the ab 

estimate in multilevel analyses because of the discrepancy in the weighting matrices used 

to estimate the relevant fixed effects (Krull & MacKinnon, 2001). Although this 

difference is typically negligible, the ab estimator of the indirect effect is more efficient 

than the )'( cc   estimator in multilevel analyses. Additionally, the ab estimator provides 

information regarding specific indirect effects in multiple mediator models (Krull & 
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Mackinnon, 1999), whereas the )'( cc   estimator provides only an estimate of the total 

mediated effect (Krull & MacKinnon, 1999). Furthermore, all but bootstrap resampling 

methods for significance testing of the indirect effect estimate assume linear relationships 

between T, M, and Y. However, this assumption may be invalid. For example, the 

relationship between the exogenous variable, T, and the mediator, M, could be nonlinear. 

The mediator could be a discrete, dichotomous variable containing only values of zero or 

one, requiring a nonlinear specification to model the relationship between T and M. The 

particular function of interest in the current study refers to scenarios in which the 

relationship between T and M follows an ogive pattern (such as the functions depicted in 

Figure 3). This logistic ogive pattern can also occur when the interval-scaled mediator is 

a measure of a construct on which the scores exhibit a ceiling and/or floor effect. 

Although the current investigation is specifically focused on modeling a nonlinear 

relationship between T and M, mediational analysis for nonlinear relationships is 

historically rooted in the development of path analytic methods for dichotomous 

outcomes (see Winship & Mare, 1983). As such, the following section outlines the issues 

associated with nonlinear mediation for dichotomous outcomes, as these are special cases 

of a more generalized nonlinear trajectory. This is followed by a discussion of a 

generalized approach to nonlinear mediation for mediating variables that are not 

necessarily dichotomous but with scores that exhibit floor and ceiling effects.
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Figure 3:  Nonlinear Parameters and their effects on the logistic change trajectory. 
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NONLINEAR MEDIATION FOR DICHOTOMOUS OUTCOMES 

Dichotomous outcomes require special consideration in the context of statistical 

modeling. In many investigations, the outcome of interest, Y, consists of a dichotomous 

variable used to indicate the presence or absence of a specific condition. For example, in 

mediational analyses in the field of medicine, Y may represent a binary variable 

indicating the presence or absence of a specific disease in a patient after undergoing some 

intervention, T. In this situation, conventional linear analyses of the indirect effect are no 

longer appropriate for three primary reasons (MacKinnon, 2008). First, linear analyses 

produce predicted values outside of the range of possible values (of zero to one). For 

example, using standard multiple regression to predict a binary outcome can result in 

predicted values less than zero or greater than one for certain observed combinations of 

the independent variables. Second, the standard errors of the regression coefficients are 

inaccurate, complicating the interpretation of the ensuing inferential statistics. Finally, the 

residuals for models containing binary outcomes are not normally distributed, directly 

violating the assumption of normally distributed errors associated with linear regression 

model estimation techniques. Given these issues, standard linear models (and their 

multilevel extensions) are inappropriate in cases where the criterion of interest is binary.  

Logistic regression addresses problems associated when estimating models with 

binary outcomes and is the method most commonly used to analyze dichotomous 

dependent variables (Hosmer & Lemeshow, 2000). This class of procedures provides 

upper and lower asymptotes of zero and one, respectively, which correspond to the 

maximum and minimum values of the observed dichotomous outcomes. These models 



 30 

estimate the log-odds of success on the outcome variable according to the following 

specification: 
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where pi is the probability of success on the outcome variable for case i, 
ip1  is the 

probability of failure for case i, 
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of n predictor variables, and 
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 to 
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n  are the parameter estimates associated with their 

respective independent variables. Solving for the probability of success (e.g., Howell, 

2002): 
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Previous research on nonlinear mediation analysis has focused primarily on 

scenarios with a dichotomous distal outcome variable, Y (Mackinnon, 2008). In these 

analyses, path a in Figure 2 can be estimated via conventional linear methods when it is 

assumed that the relationship between T and M is linear. However, paths b, c, and c’ 

require the use of logistic techniques when Y is dichotomous. In this situation, binary 

outcomes are commonly modeled as having continuous underlying counterparts whose 

latent values are deterministically or stochastically related to the observed dichotomous 

outcome (Winship & Mare, 1983). Although several latent variable conceptualizations 

exist to model the relationship between the unobserved latent variable, Y*, and the 

observed dichotomous outcome, Y, the threshold model as outlined by Winship and Mare 
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is commonly used to specify this relationship in meditational analysis (e.g., MacKinnon, 

D. P., Lockwood, C. M., Brown, C. H., Wang, W., & Hoffman, J. M., 2007b; 

MacKinnon, 2008). This model specifies that the observed dichotomous outcome, Y, and 

the unobserved latent continuous variable, Y*, are related as follows: 
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where Y* is assumed to have a mean of zero and a variance of one, and L is the threshold 

across which Y changes from zero to one. This implies that Y and Y* are directly related 

through a nonlinear transformation such that all values of Y* greater than or equal to L 

have been transformed to 1, and all values of Y* below L have been transformed to zero 

(Winship & Mare, 1983). In turn, Y* may be related to a set of observed continuous 

predictors, nXX ,....,1 . This relationship may be modeled linearly as: 

 *...110

*

Ynn XXY    (34) 

Here, 0  through n  are parameters to be estimated, and *Y is an error term that is 

assumed to be uncorrelated with all nX .  If *Y
  is assumed to follow an extreme value 

distribution (i.e., is considered a value in excess of a predetermined threshold; Johnson & 

Kotz, 1970) then Equations 33 and 34 above define a logit, or logistic regression, model 

as presented in Equations 31 and 32 (McFadden, 1974; Winship & Mare, 1983). Given 

this framework, logistic regression methods are equivalent to structural equation models 

whereby a dichotomous variable serves as an indicator of an unobserved latent variable 

(i.e., the natural log of the odds of subject i possessing a score of one on the outcome 
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variable). Alternatively, if *Y
  is assumed normally distributed, then Equations 33 and 34 

define a probit, or probit regression, model (Winship & Mare, 1983; Hanushek & 

Jackson, 1977). The choice of the *Y
  distribution is somewhat arbitrary, as the logit and 

probit models are essentially interchangeable given the similarity between the logistic 

and cumulative normal distribution functions (Winship & Mare, 1983; Hanushek & 

Jackson, 1977). The current investigation will focus on the logistic regression 

conceptualization, with the understanding that probit regression provides an alternative 

and nearly equivalent mode of analysis. 

The model specified within the threshold framework described by Equations 33 

and 34 is underidentified because the scale of the unobserved latent variable Y* is not 

directly observed (Winship & Mare, 1983). To address this, a scaling assumption is 

required regarding either the variance of Y* or of *Y
 .  Commonly, the standard logistic 

regression error, 



 2

3
 , is substituted for *Y

  to identify the model. Winship and Mare 

provide a discussion of this issue. With the threshold model for a dichotomous outcome 

thus defined, both linear and logistic regression models are used to estimate the a, b, c, 

and c’ parameters in a meditational analysis. First, the total effect is estimated from the 

logistic regression of the outcome, Y, on the treatment, T: 
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where ip is the probability of subject i containing a 1 on the outcome variable, 
0).( * TY

  

represents the intercept for the logistic equation, and all other variables are defined as 

before.  Next, the a parameter is estimated linearly as in Equation 2. Finally, the b and c’ 

parameters are estimated from the logistic regression of Y on T and M: 

 iiMTY
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i TcbM
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p
'

1
ln

0).( * 









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where 
0).( * MTY

  is the intercept for the logistic regression, and all other parameters are 

defined as before. As mentioned above, the residual error in Equations 35 and 36 is fixed 

at 



 2

3
 . 

Once the scale of the residual variance in logistic regression is fixed at



 2

3
 , the 

scale for the latent continuous outcome variable Y* can vary across models (MacKinnon 

& Dwyer, 1993; Jasti, Dudley, & Goldwater, 2008). Put differently, the variance of the 

dependent variable in logistic regression is fixed at 



 2

3
 regardless of the number of 

variables included as predictors. Consequently, because the model for the outcome 

(Equation 36) includes more predictors than the model for the total effect (Equation 35), 

estimates for the b, c, and c’ parameters depend heavily on the other variables in the 

model, and the )'( cc   method of calculating the indirect effect is no longer equivalent 

or nearly equivalent to the ab method (MacKinnon & Dwyer, 1993). Under these 

conditions, simulation studies suggest that the ab estimate of the indirect effect is less 
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biased and more robust to assumption violations than is the )'( cc   estimate 

(MacKinnon, 2008; MacKinnon & Dwyer, 1993).  

Additionally, MacKinnon and Dwyer (1993) suggest standardizing estimates of 

the b parameter and its standard error. In logistic regression, this is accomplished by 

dividing each parameter in the logistic model by the standard error for the logistic 

regression model (i.e., the square root of the residual error variance for the logistic 

regression model). As described by Winship and Mare (1983) and MacKinnon et. al. 

(2007b), the residual error variance, *Y
 , for a logistic regression mediation model is 

calculated as follows: 

 
3

'2'
2

2222
*


  TMMTY

bcbc , (37) 

where c’ and b represent the parameter estimates from the logistic regression, 



T
2
 

represents the variance of the treatment variable, 



 M

2
 represents the variance of the 

mediator, 
2

TM  represents the covariance between the treatment and the mediator, and 



 2

3  
is the fixed residual variance from the logistic regression. Once standardized, model 

coefficients now represent the effect of a unit change in a respective independent variable 

in standard deviations of the latent variable Y* (Winship & Mare, 1983). For example, 

the estimate of the b parameter standardized by dividing by Equation 37 provides an 

estimate of the change (in standard deviation units) on the continuous latent variable Y* 

that results from of a one unit change in the mediator, M, controlling for the treatment 

variable.  
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Once b and its standard error are appropriately standardized, three methods exist 

for quantifying the indirect effect.  First, the product of a with standardized b may be 

used as an estimate of the mediated effect (MacKinnon & Dwyer, 1993), and the standard 

error of a and the standardized standard error of b can be used to test the statistical 

significance of the ab product. This is directly analogous to the use of the ab product as 

an estimate of the indirect effect assuming a linear relationship between all variables. 

However, when the outcome, Y, is dichotomous, the ab method of estimating the indirect 

effect systematically overestimates the true mediated effect (Li, Schneider, and Bennett, 

2007). This is because the true value of the indirect effect in a logistic regression analysis 

is defined by the instantaneous indirect effect in Equation 4. As such, the second method 

for quantifying the indirect effect utilizes the mathematical definition of the instantaneous 

indirect effect (Equation 4). In this instance, where logistic regression is used to analyze a 

binary outcome Y and the relationship between M and T is modeled linearly as in 

Equation 2, Winship & Mare (1983) and Li et. al. (2007) derive the true indirect effect as 

the instantaneous indirect effect,  .  First, the partial derivative of M is taken with 

respect to T: 

 a
T

M





. (38)  

Next, the partial derivative of Y is taken with respect to M: 
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Finally, Equations 38 and 39 are multiplied to obtain the instantaneous indirect effect: 
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Here, the true indirect effect varies as a function of both M and T. This provides a form of 

moderated mediation, whereby the true indirect effect depends on both the value of the 

mediator and the dosage of treatment received. Hayes and Preacher (2010) recommend 

examining the true indirect effect at the mean of T as well as at one standard deviation 

above and below the mean of T to investigate the instantaneous indirect effect at low, 

average, and high values of treatment dosage, although any conditional values of interest 

will suffice. Confidence intervals for the instantaneous indirect effect at each value of the 

treatment dosage can be estimated via the bias-corrected parametric percentile bootstrap 

resampling method described above. Additionally, although meditational analyses often 

include dummy coded treatment indicators, Equation 40 assumes that the treatment is 

measured continuously. As such, the current investigation is concerned only with 

continuous, dosage-like treatment variables, acknowledging that additional derivations 

are necessary for use with binary treatment indicators. See Li et al. (2007) for a 

discussion. 

From the formulation of the instantaneous indirect effect in Equation 40, it is 

evident that the instantaneous indirect effect for continuous T is simply the product of the 

a and b coefficients adjusted by a factor that depends on the value of the mediator and the 

dosage of treatment received.  Because this adjustment factor will always be less than 

one, the ab estimate of the indirect effect will always overstate the magnitude of the 

mediated effect (Li et al., 2007). The third method for calculating the indirect effect 
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utilizes the )'( cc   approach outlined above.  However, in cases where the outcome, Y, is 

dichotomous, this method is generally more biased than the already biased ab method 

(MacKinnon et al., 2007b).  

Mediating relationships involving binary mediators also require the use of 

nonlinear models to appropriately handle estimation of indirect effects (Li et al., 2007; 

Winship & Mare, 1983; Jasti et al., 2008). This form of analysis is particularly useful 

when the mediator indicates the presence or absence of a specific mediating condition. As 

in the case with dichotomous outcomes, an observed dichotomous mediator, M, is 

specified as a threshold model whereby M is modeled as an observed indicator of an 

unobserved latent variable, M*. M and M* are then related through a nonlinear 

transformation defined by: 
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where M* is assumed to have a mean of zero and a variance of one, and L is the threshold 

across which M changes from zero to one. This model specification directly parallels the 

threshold model specification for dichotomous Y (see Equation 33). As before, M* may 

be related to a set of observed continuous predictors, nXX ,....,1 . This relationship may be 

modeled linearly as: 

 *...110

*

Mnn XXM    (42) 

Here, 0  through n  are parameters to be estimated, and *M
  is an error term that is 

assumed to be uncorrelated with all nX . If *M
  is assumed to follow an extreme value 
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distribution (Johnson & Kotz, 1970) then Equations 41 and 42 define a logit, or logistic 

regression, model (McFadden, 1974; Winship & Mare, 1983), although probit models 

provide viable alternatives. As previously mentioned, the current investigation will focus 

on the logistic regression conceptualization. 

In mediation analysis with a binary mediator, only the a parameter is estimated 

using logistic regression: 

 iTM
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i aT
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where ip is the probability of subject i having a score of one on the mediator, and all 

other variables are defined as above. The c parameter is modeled linearly and estimated 

according to Equation 1. Similarly the b and c’ prime parameters are modeled according 

to Equation 3. These estimates are then used in calculating the indirect effect as 

previously defined. 

As in the case of dichotomous Y, the variance for the mediator model must be 

fixed in order for the model to be identified.  Again, the residual variance is 

conventionally fixed at 



 2

3
. Now, with a binary mediator instead of a binary outcome, 

the a path and its standard error must be standardized by dividing both by the standard 

error for the logistic regression model with dichotomous outcome M (Jasti et al., 2008): 
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Equation 44 contains fewer terms than the standard error for dichotomous Y in Equation 

37 because the logistic regression model of the mediator (Equation 43) contains only one 

predictor: the treatment, T.  In contrast, the model for a dichotomous Y contains two 

predictors: the treatment, T, and the mediator, M. This explains the simplicity of the 

equation for the standard error of a dichotomous mediator (Equation 44) compared to the 

standard error for a dichotomous outcome (Equation 37).  

Assuming a linear relationship between M and Y and between T and Y, the b and 

c paths can be estimated using the traditional linear model, and the product of b and 

standardized a provide a measure of the indirect effect. However, as is the case with 

binary Y, the ab product is an overestimate of the true mediated effect (Li et al., 2007). 

Additionally, in the presence of a binary M, the )'( cc   method is sensitive to the skew 

of the distribution of the treatment dosage, and as such should be used cautiously (Li et 

al., 2007).  The true indirect effect is again defined as the instantaneous indirect effect 

described in Equation 4.  With logistic regression used to analyze the relationship 

between a binary mediator and the treatment variable, and all other relationships modeled 

linearly, Winship & Mare (1983) and Li et. al. derive the true indirect effect as the 

instantaneous indirect effect,  . First, the derivative of M is taken with respect to T: 
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Next, the derivative of Y is taken with respect to M: 

 b
M

Y
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
. (46) 
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Finally, Equations 45 and 46 are multiplied to obtain the instantaneous indirect effect: 
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Here, the true indirect effect varies as a function of T. This, again, provides a form of 

moderated mediation, whereby the true indirect effect depends on the level of treatment 

received. Equation 47 assumes that the treatment is measured continuously. As before, 

the instantaneous indirect effect for continuous T is simply the product of the a and b 

coefficients adjusted by a factor that depends on the dosage of treatment received.  Since 

this adjustment factor will always be less than one, the ab estimate of the indirect effect 

will always overestimate the magnitude of the mediated effect (Li et al., 2007). As is the 

case for binary Y, the instantaneous indirect effect may be evaluated at the mean of T and 

at one standard deviation above and below the mean of T to investigate the value of the 

instantaneous indirect effect at low, average, and high values of the treatment dosage 

(Hayes & Preacher, 2010). Additionally, as previously mentioned, the bias-corrected 

parametric percentile bootstrap resampling method may be used to provide confidence 

intervals around the instantaneous indirect effect at each dosage of the treatment.  

In summary, binary outcomes in mediational analyses require special 

considerations in estimating and in testing the statistical significance of the indirect 

effect. When properly formulated, this indirect effect depends on the dosage of treatment 

received, providing a form of moderated mediation. As an additional consideration, many 

constructs in the social and behavioral sciences contain properties similar to binary 

outcomes, particularly with regard to survey scores used as measures of underlying 
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mediators. These surveys frequently contain minimum and maximum possible scores 

(termed floor and ceiling effects, respectively) resulting in data with nonlinear 

relationships mimicking the pattern observed with binary outcomes. These constructs 

also require special treatment to properly model their lower and upper asymptotes and the 

resulting nonlinear relationships found between the score on the mediator and other 

variables included in the model. The following section addresses these concerns 

associated with measures of mediation frequently used in the social and behavioral 

sciences.  

NONLINEAR MEDIATION FOR CONTINUOUS MEDIATORS WITH FLOOR AND CEILING 

EFFECTS 

Hypothesized models in the social and behavioral sciences often posit nonlinear 

relationships amongst variables. For example, as cited in Singer and Willett (2003), 

Robertson (1909) theorized that the rate at which learning occurs is proportional to the 

amount of learning that has previously occurred times the amount of learning that will 

occur in the future. Mathematically, this can be expressed as a differential equation of the 

form: 

 )( YkY
dt

dY
  , (48) 

where 
dt

dY
 is the rate of learning, Y is the amount learned by time t,   is an upper limit 

to the amount that can be learned, and k is a proportionality constant. This first-order 

differential equation has a solution of the form: 
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which relates learning and time through an exponential (nonlinear) function for subject i. 

These functions are similar to the logistic function used in the analysis of dichotomous 

outcomes (see Equation 32). However, the function in Equation 49 differs from the 

logistic function in two important ways.  First, Equation 49 allows for an upper 

asymptote value other than one, indicated by the i
 
in the numerator. Second, the 

i0   

coefficient allows for specification of a model whereby the function crosses the Y-axis at 

a non-zero value. Despite these differences between the logistic function and the function 

described in Equation 49, both stem from the same family of nonlinear distributions. 

Nonlinear multilevel model specifications are not limited to the logistic trajectory 

exposited above. Polynomial specifications (such as quadratic and cubic 

parameterizations) and myriad other exponential relationships provide viable alternatives 

to the nonlinear model described in Equation 49 (see Bauer & Cai, 2009, Cudeck & 

Harring, 2007, Hayes & Preacher, 2010, Preacher, Zyphur, & Zhang, 2010,  and Singer & 

Willett, 2003, for other exemplar nonlinear model specifications). In the context of 

measures with floor and ceiling effects, polynomial models are of limited utility: 

polynomial functions do not “flatten-out” asymptotically but, rather, continue infinitely in 

both the positive and negative directions. Using polynomial models on measures with 

floor and ceiling effects is akin to using linear regression on data with dichotomous 

outcomes; although this is computationally feasible, linear regression estimates with 

binary outcomes provide predicted values outside the range of possible outcomes. 



 43 

Additionally, the parameters associated with polynomial functions are often difficult to 

interpret (Cudeck & du Toit, 2002). These considerations, combined with previous 

research regarding the use of Equation 49 with clustered data, suggest that this model 

specification may provide a viable option in the context of multilevel mediation 

modeling.  As such, the current study will focus on the nonlinear specification in 

Equation 49. 

Nonlinear relationships abound in the social and behavioral sciences (for 

examples, see Debreu, 1959; Yerkes & Dodson, 1908; Kahneman & Tversky, 1979; 

Knobloch, 2007). Thus, it is conceivable that mediation analyses might involve a 

nonlinear relationship between T and M stemming from use of a mediation measure, for 

example, that contains floor and ceiling effects. This is often the case when measures of 

psychological constructs are used as a mediating variable. For example, scores on 

criterion-referenced tests commonly include both floor and ceiling effects that should be 

accounted for when modeling the mediating effect. If the effect of T on M is modeled 

linearly, the resulting a parameter (Figure 2) can reflect the effect of the treatment (T) on 

unobtainable mediator values. This is analogous to modeling a binary outcome variable 

using a linear model specification. To address this, a nonlinear function with lower and 

upper asymptotes should be applied to the treatment’s effect on the mediator. This 

requires a generalization of the nonlinear model used to analyze dichotomous mediating 

variables. 

Mediators with floor and ceiling effects require a link function that contains lower 

and upper asymptotes corresponding to the mediating variables’ minimum and maximum 
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values. A generalized logistic trajectory can be used to model the effect of T on the 

mediator, M, as follows: 

 i
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where 
iM  represents the value on the mediator for subject i, 

1 and 
2  respectively 

represent lower and upper mediator asymptotes, 0  is a pseudo-intercept parameter that 

influences the point at which the function crosses the ordinate axis, 
1  is a pseudo-slope 

parameter that is related to the rate of change of the nonlinear function between its 

asymptotes, and ir  represents the residual for subject i. In contrast to instances involving 

dichotomous mediators, mediating variables containing upper and lower asymptotes are 

both continuous and observed. As such, the residual, ir , is included in the model 

specification and its variance is directly estimable from the observed data. This precludes 

the need to utilize the threshold latent variable model discussed above. Figure 4 provides 

a path analysis diagram of the proposed nonlinear relationship between the treatment and 

the mediator.  
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Figure 4:  A mediation model in which the relationship between the treatment and the 

mediator is modeled nonlinearly. 

 

 

 

Borrowing an exposition from Singer and Willett (2003), Figure 3 depicts graphs 

of Equation 50 for various values of 



0
 and 



1
 with 

1 and 
2  set at zero and 100, 

respectively. Although the 



0
 and 



1
 parameters do not have the same interpretations as 

in the linear model (see Equations 1 through 3), M-axis intercept values are clearly 

related to 



0
, and the rate at which the function reaches its upper asymptote is clearly 

related to



1. Thus, in keeping with the terminology introduced in Singer and Willett, 



0
 

and 



1
 will be referred to as the pseudo-intercept and pseudo-slope parameters, 

respectively. As can be seen in the graphs in Figure 3, the larger the value of 1, the 

steeper the acceleration of the curve. The larger the value of 0, the larger the value of the 
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M-axis intercept. This function simplifies to the standard logistic regression equation for 

binary outcomes given 01  , 12  , and 10  . 

In practice, the 
1  parameter must be greater than or equal to zero with a small 

population variance. In cases where this value is less than zero, the portion of the 

nonlinear trajectory between the asymptotes requires negative values for the treatment 

variable. While this is mathematically possible, negative treatment values for continuous 

variables seem highly unlikely in practice. In the case where this parameter equals zero, 

Equation 50 simplifies to a constant, resulting in a horizontal line that fails to capture the 

dynamic relationship between the treatment and the mediator. Additionally, small 

changes in this parameter will result in noticeably different trajectories. As evidenced in 

Figure 3, a 0.2 change in the value of the 
1  parameter results in markedly different 

trajectories across the selected values of 0 . This suggests that large variances 

(particularly in the context of simulation studies), may pose problems for model 

convergence. 

The parameterization of the nonlinear model in Equation 50 is designed for use 

with single-level datasets. However, this parameterization is easily extended to multilevel 

mediation analyses. For example, in 111   mediation, the treatment’s effect on the 

mediator may vary across level-2 units. At level-1, this could be parameterized as 

follows: 
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and at level-2: 
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resulting in the following combined equation: 

 



Mij 1 
( 1)

1 (00  u0 j ) exp[(10  u1 j )Tij ]
 rij . (53) 

Here, 00  and 10 , respectively, represent the multilevel extensions of the parameters 

defined in Equation 50, and 
ju0  

and 
ju1
 represent their respective random effects. In this 

design, the model for the outcome could be modeled linearly as in Equations 22 and 23 

since a nonlinear T-M relationship does not preclude the possibility of a linear M-Y 

relationship. Although the distribution of the mediator will necessarily be truncated at the 

lower- and upper- asymptotes (
1  and 

2 , respectively), the relationship between the 

mediator and the outcome may still be linear in nature. While other, nonlinear M-Y 

relationships may be specified, the current study will examine a linear relationship as a 

initial attempt at estimating the model of interest. The level-1 and -two residuals for 

Equations 22, 23, and 53 are assumed to be distributed in the same manner as those 

described for the 111   mediation models in Equations 20 through 23. 

Alternatively, Equation 50 could be extended for use with 112  mediation 

analyses according to the following specification at level-1: 
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and at level-2: 
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resulting in the following combined model: 
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Here, 00  is the pseudo-intercept, 11  is the pseudo-slope, and 
ju0
 and 

ju1
 respectively 

represent intercept and slope random effects. Level-1 and -two residuals are distributed as 

those described for 112   mediation analyses in Equations 12 and 13. Though the 

asymptotes 
1  and 

2  may vary across level-2 units, Equations 53 and 56 treat them as 

fixed effects. To obtain paths b and c in Figure 2, the model for the outcome could be 

modeled linearly as in Equations 14 and 15.  

This specification may be further extended to include 122   mediation 

designs. Here, the treatment and the mediator are measured at level-2, while the outcome 

is measured at the level of the individual subject (level-1). Since the treatment and the 

mediator are both measured at the highest level in the data hierarchy, there is no 

clustering to model for the effect of the treatment on the mediator. Hence, the model for 

the mediator is: 

 
ij

j

j r
T

M 





)](exp[1

)(

10

12
1




  (57) 

where 0  
and 1  represent the pseudo-intercept and the pseudo-slope, respectively, and 

all other parameters are defined as above. The model for the outcome, Y, must address the 

nesting of individuals within level-2 units by utilizing multilevel modeling techniques, 
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and could be modeled linearly as in Equations 16 and 17. Again, level-1 and -two 

residuals are distributed as those described for 122   mediation in Equations 16 and 

17. 

This series of multilevel logistic models can be used for calculating the indirect 

effect in one of three ways. First, the ab product may be used as an estimate of the 

indirect effect and tested for statistical significance. However, this conceptualization 

assumes that the treatment’s effect on the mediator is constant across all dosages of the 

treatment. Furthermore, this conceptualization does not correspond to the mathematical 

definition of the instantaneous indirect effect (Equation 4). As such, as with binary 

mediators and outcomes, the ab estimate of the indirect effect tends to overestimate the 

true magnitude of the mediated effect (Li et al., 2007). More generally, the instantaneous 

indirect effect may be overestimated or underestimated depending on the nonlinear 

function specified and the location along the nonlinear trajectory where the indirect effect 

is estimated. Second, the )'( cc  estimate of the indirect effect may be utilized, although 

this estimate is sensitive to the distribution of the treatment dosage. As such, the )'( cc  

estimate should be used cautiously, if at all (Li et al., 2007). Finally, combining the 

mathematical definition of the instantaneous indirect effect (Equation 4) with the 

generalized equation for an asymptotic M (Equation 50) yields a third method of 

estimating the indirect effect. In this case, the instantaneous indirect effect provides an 

estimate of the indirect effect that depends on the dosage of the treatment variable. This 

conceptualization allows for a non-constant relationship between T and M corresponding 

to the nonlinear trajectory specified in Equation 50. Because the value of the 
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instantaneous indirect effect depends on the level of the treatment, the instantaneous 

indirect effect is a form of moderated mediation. As such, it is recommended that the 

instantaneous indirect effect be calculated at the sample mean of T as well as at plus and 

minus one standard deviation from the mean of T to investigate the instantaneous indirect 

effect at low, moderate, and high dosages of the treatment variable (Hayes & Preacher, 

2010). As previously mentioned, the current analysis focuses solely on models containing 

continuous treatment variables, with the understanding that formulations for binary 

treatment indicators must be derived separately (Li et al., 2007). Although the use of the 

instantaneous indirect effect applies to 111  , 112  , and 122   mediation 

models, the current study and the following derivation for the instantaneous indirect 

effect focus only on 111   designs. 

In a 111   nonlinear multilevel mediation model, as defined in Equations 53, 

22, and 23, the instantaneous indirect effect would be: 
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Here, only fixed effects’ terms are considered in the derivation of the instantaneous 

indirect effect. Using this conceptualization, Equation 58 shows that the indirect effect 

varies as a function of the value on the treatment variable, T. With nonlinear mediation as 

parameterized in Equation 53, the treatment eventually reaches a point of diminishing 

returns as the function representing the treatment’s effect on the mediator approaches its 

upper asymptote. This point, defined, here, as the level of treatment dosage optimization, 

corresponds to the point of inflection on the logistic trajectory specified in Equation 53. 
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The point of treatment dosage optimization holds important implications for optimizing 

the treatment effect through the mediator when the direct effect of the treatment on the 

outcome (c’) is close to zero. In these cases, the treatment’s effect on the outcome is 

largely a result of the treatment’s indirect effect on the outcome through the mediator. 

The point of treatment dosage optimization thus identifies a level of treatment beyond 

which the treatment’s effect on the mediator (and, consequently, its effect on the 

outcome) is subject to diminishing returns. Optimization of treatment dosage can be 

defined mathematically as the value of T, at which the rate of change of   is zero, 

representing the point of inflection on the logistic trajectory. Mathematically, setting the 

derivative of   with respect to T equal to zero identifies the point of inflection on the 

logistic trajectory. First, the derivative of   is derived as follows: 

 
    
























2

1000

1010

3

1000

101000
121000

)](exp[1

)(exp[

)](exp[1

)]2(exp[2
])([

T

T

T

T
b

dT

d











. (59) 

Next, setting 
dT

d
 equal to zero and solving for T provides the point of treatment dosage 

optimization, OT : 
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Equation 60 quantifies the point of inflection such that the effect of the level of T on M is 

at a maximum at this point and starts decreasing for higher values on T. Although other 

considerations, such as the time elapsed between the measurement of T, M, and Y, may 

influence this value, Equation 60 provides a means of quantifying the point at which 
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treatment efficacy may begin to level off. See the Appendix for derivations of Equations 

58 and 59. 

PRODCLIN may be used to establish confidence intervals around the 

instantaneous indirect effect in Equation 58. To do so, both the value of the first term in 

Equation 58 as calculated at a specific treatment value and its standard error must be 

supplied to PRODCLIN. To estimate the standard error of a function, Rao (1973) and 

Sobel (1982; 1986) present the multivariate delta method for deriving the asymptotic 

variance of a function of more than one random variable. This method requires pre- and 

post-multiplying the covariance matrix of the function’s parameters by a vector of first 

partial derivatives of the function with respect to its constituent random variables. This 

results in a heteroscedastic standard error that depends on a particular treatment dosage. 

The Appendix provides this derivation, using a first-order Taylor series expansion, for the 

first term of the instantaneous indirect effect in Equation 58. Using the estimated 

coefficients, the covariance matrix between them, and a pre-determined treatment value 

of interest, the value of the first term in Equation 58 and its standard error can then be 

supplied to PRODCLIN, along with the estimated value of b and its standard error. 

PRODCLIN then provides an asymmetric confidence interval around the instantaneous 

indirect effect at the specified treatment value. 

STATEMENT OF PURPOSE 

Mediation analyses in the context of clustered data have typically involved 

assumption of linear relationships between the constituent mediation model variables. In 

the presence of mediators containing floor- and/or ceiling-effects, linear models fail to 
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capture the underlying nature of the data. In such cases, specification of a nonlinear 

model for the relationship between a treatment and a proposed mediator contains three 

primary advantages over conventional linear methods. First, mediating constructs often 

contain absolute maximum and minimum values that are ignored in linear 

parameterizations. Use of the nonlinear specification suggested here alleviates this 

concern. Second, utilization of the instantaneous indirect effect as defined by Stolzenberg 

(1980; Equation 4) allows the assessment of the indirect effect as a function of the dosage 

of the treatment variable. Indirect effects that vary across the spectrum of treatment 

dosages allow investigators to specify the treatment’s relationship with the mediator at all 

dosages of the treatment. This form of analysis is unavailable via linear mediation 

methods as the instantaneous indirect effect is assumed constant across all levels of the 

treatment. As such, nonlinear methods (when appropriate) provide additional information 

through their interpretation as moderated mediating relationships. Furthermore, this form 

of moderated mediation avoids issues with ab and )'( cc   estimates of the indirect effect 

commonly encountered when specifying nonlinear relationships. Finally, in instances of 

partial or complete mediation, nonlinear specification allows for investigation of an 

optimal amount of treatment dosage. This is particularly relevant to behavioral 

interventions designed to be administered in organizational settings. This ensures that 

organizations maximize the effectiveness of their interventions, thus conserving the 

organization’s resources while ensuring that the intervention’s participants are not subject 

to unnecessary and unbeneficial amounts of the intervention. 
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Although the nonlinear multilevel mediation model described in Equations 53 and 

56 provides a mathematical model for a treatment-mediator relationship when the 

mediator has an upper- and lower-asymptote, the statistical properties and performance of 

the proposed model are yet to be empirically investigated. To examine use and estimation 

of the proposed nonlinear multilevel mediation model, a simulation study is proposed to 

assess the estimation of the instantaneous indirect effect in the presence of a truly 

nonlinear treatment-mediator relationship. The proposed simulation investigates only the 

111   design described in Equation 53, focusing on conditions common to the 

behavioral and social sciences as measures of mediating constructs with upper- and 

lower-asymptotes are commonly encountered in these contexts.  The purpose of this 

study is to compare both linear and nonlinear specifications for the instantaneous indirect 

effect in the presence of a truly nonlinear treatment mediator relationship and to  examine 

the utility of the empirical-M based PRODCLIN method for establishing confidence 

intervals around the instantaneous indirect effect. Manipulated conditions will include the 

nonlinear pseudo-slope parameter, the b mediation path, level-1 and level-2 sample sizes, 

and the intraclass correlation coefficient value. 
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Chapter 3:  Methods 

GENERATING MODELS 

To examine the estimation of the proposed nonlinear multilevel mediation model, 

a simulation study was conducted for the 111   multisite experimental design in 

which participants are randomly assigned to a treatment dosage and are nested within 

data collection sites. The SAS programming environment (version 9.2) was used to create 

simulated datasets fitting two generating models: one for the mediator, M, and one for the 

outcome, Y. First, the following generating model was used for the mediator at level-1: 
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and at level-2:  
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Here, 1 and 2 were explicitly fixed at zero and 100, respectively, thereby defining a 

mediator that takes on values between zero and 100 along with a nonlinear relationship 

with the treatment dosage variable, T. Values for the treatment variable were randomly 

selected from a uniform distribution with a minimum of zero and a maximum of 50. The 

value of the pseudo-intercept parameter (



 00) was fixed at 150 (to match the pattern 

depicted in the relevant 00 = 150 graph in Figure 3). Values for the pseudo-slope 

parameter ( 10 ) were specified as either 0.14 or 0.39 for use in calculating the indirect 

effect. These values represent a subset of the generating values used in Li et al.’s (2007) 
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examination of the mediating effect with binary mediators. The level-1 random effects 

(



rij ) were sampled from a random normal distribution with a mean of zero and standard 

deviation equal to 10, approximating the results from Singer and Willett’s (2003) applied 

example regarding the logistic change trajectory.  To facilitate convergence, the pseudo-

intercept parameter (



 00) was fixed across level-2 units. Additionally, the lack of a 

residual for this term is meant to simulate the scenario in which participants in a 

particular intervention must pass a set of global diagnostic or screening criteria, thereby 

reducing their initial variability, i.e., the variability in the pseudo-slope parameter across 

level-2 units. The ju1  
random effect was sampled from a normal distribution with a mean 

of zero and a standard deviation of 0.2. The level-1 residual was not allowed to covary 

with the level-2 residual.  

The outcome variable (Y) was generated according to the following linear 

multilevel model at level-1: 

 ijijjijjjMTYij rTMY  210).(  , (63) 

and at level-2: 
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where 
ijM comes from Equations 61 and 62. Here, 10 and 20  represent the b and c’ 

parameters, respectively. Estimation of this random-intercept model with fixed treatment 

and mediating effects (Equations 63 and 64) was used to facilitate comparisons with 
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similarly parameterized models from previous research regarding multisite mediation 

models (Pituch et al., 2005; Krull & MacKinnon, 1999, 2001; MacKinnon, Warsi, & 

Dwyer, 1995).  

The b parameter for use in calculating the indirect effect (



10 in Equation 64) was 

specified to be zero or 0.39, representing differing degrees for the relationship between 

the mediator and outcome variable. The intercept parameter in Equation 64 (



 00) was 

specified to be equal to zero, and the direct effect of the treatment on the outcome 

accounting for the mediator (c’; 



 20 in Equation 64) was held constant at 0.20. These 

parameter values stem directly from previous research on nonlinear treatment-mediator 

relationships (e.g., Li et al., 2007). The level-1 random effect (
ijr ) was sampled from a 

normal distribution with a mean of zero and a standard deviation of one. The level-2 

random effect (



u0 j ) was sampled from a random normal distribution with a mean of zero 

and standard deviation calculated in accordance with the ICC associated with the current 

study condition. The level-1 random effect was not allowed to covary with the level-2 

random effect. 

Next, the number of sites and the number of participants within sites were varied 

in a manner similar to those used in Pituch et al. (2005). More specifically, data for 10 

and 30 sites were generated and completely crossed with the number of participants in 

each site being either 15 or 30 for a total of four combinations of sample size conditions. 

These values are consistent with values observed in applied multisite investigations (e.g., 

Plewis & Hurry, 1998; Pituch & Miller, 1999).  
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Finally, values for the residual ICCs were set to either .10 or .20 in the equation 

for the outcome. The covariance between level-2 residuals was set to zero. These values 

were chosen to be representative of observed values in educational research. 

ESTIMATING MODELS 

Once generated, two sets of multilevel models were estimated to assess parameter 

bias for the estimated mediation model parameters and the instantaneous indirect effect at 

the mean treatment dosage as well as one standard deviation above and below the mean. 

These analyses were designed to compare nonlinear and linear model specifications in the 

presence of a truly nonlinear relationship and to investigate the bias of the resulting 

parameter and instantaneous indirect effect estimates. The first set of multilevel models 

specified a nonlinear treatment-mediator relationship and were identical to the model 

used to generate values on M as a function of T (see Equations 61 and 62). The model for 

the outcome was identical to the generating equations for the outcome (Equations 63 and 

64). The proposed simulation used SAS PROC NLMIXED to estimate the nonlinear 

relationship for the mediator, and SAS PROC MIXED was used to estimate the linear 

model for the outcome. The second set of models specified a linear treatment-mediator 

relationship according to the following multilevel parameterization at level-1: 

 ijTMijjTMjTMij rTM ).(1).(0).(    , (65) 

And at level-2: 
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The model for the outcome was identical for the generating model in Equations 63 and 

64. SAS PROC MIXED was used to estimate both linear models.  

ANALYSIS 

Considering all combinations of conditions, this study entailed a 2x2x2x2x2 fully 

factorial design, resulting in 32 unique conditions. 1,000 replication datasets were 

generated for each condition. The instantaneous indirect effect for each replication was 

calculated using Equation 58 at the mean of T and at one standard deviation above and 

below the mean of T. Confidence intervals for the instantaneous indirect effect were 

calculated using the PRODCLIN program outlined by MacKinnon et al. (2007a) for 

average treatment dosages as well as at treatment dosages one standard deviation above 

and below the average. Coverage rates for the proportion of replications containing the 

true value of the instantaneous indirect effect for each condition were reported, as were 

the proportion of times the true instantaneous indirect effect lay to the left or to the right 

of the 95% PRODCLIN confidence intervals.  

The relative parameter bias was assessed for the pseudo-slope parameter ( 10  in 

Equation 62) and for the instantaneous indirect effect (Equation 58) at the mean value of 

T and at one standard deviation above and below the mean value of T. For conditions 

containing a true value of zero for the instantaneous indirect effect, absolute bias was 

reported in place of relative bias. These bias estimates were used to assess estimation of 

the nonlinear model for the mediator. The relative parameter bias for the b parameter 

( 10 in Equation 64) was compared to previous bias estimates (i.e, Pituch et al., 2006) to 
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ensure proper model estimation. Relative parameter bias was estimated according to the 

following equation: 
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where i̂  equals the represents the average parameter value across all replications for one 

study condition (Hoogland & Boomsma, 1998). Hoogland and Boomsma’s recommended 

cutoff for substantial parameter bias ( 05.0)ˆ( B ) was used to assess the severity of the 

observed bias.  Absolute bias was calculated according to the following equation: 

   iAbsoluteB ˆ)ˆ(  . (67) 

The efficiency of the proposed indirect effect estimator was reported as the root mean 

squared error (RMSE) according to the following equation: 

 
 2ˆ)(   iRMSE . (68) 

This value was compared across the linear and nonlinear estimators to compare the 

efficiency of the proposed estimator across model specifications. 
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Chapter 4:  Results 

Results presented below summarize non-convergence rates, parameter bias, root 

mean squared error, and PRODCLIN confidence interval coverage rates for both the 

linear and nonlinear estimators across study conditions. Results are compared across 

estimator type (linear or nonlinear), focusing on differences in the observed ranges for the 

measure of interest across estimator type. Ranges are also reported across generating 

study conditions to examine the effects of the manipulated parameters on the reported 

outcomes.  

NON-CONVERGENCE RATES 

Table 1 presents non-convergence rates for the three models estimated (linear 

outcome, linear mediator, and nonlinear mediator) during each replication. These values 

are not mutually exclusive, as all three models were estimated before the determination 

was made to delete the replication due to at least one non-convergent model. Subsequent 

replications were run for each condition to ensure that each condition contained a total of 

1,000 replications, which met convergence criteria for all three estimated models. 

Overall, linear model estimation for both the mediator and the outcome converged more 

frequently than did the nonlinear model for the mediator.  Non-convergence rates for the 

linear outcome and linear mediator models ranged from zero to 7.9% and from zero to 

0.9%, respectively. In general, study conditions with only 10 level-2 units proved more 

problematic for linear model estimation than did study conditions with 30 level-2 units. 

Non-convergence rates for the outcome model for conditions containing 10 level-2 units 
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ranged from zero to 7.9%, while outcome model non-convergence rates for conditions 

containing 30 level-2 units ranged from zero to 0.3%. Non-convergence rates for the 

linear mediator model were only problematic for conditions containing a pseudo-slope 

parameter of 0.39 and 10 level-2 units, with a range of zero to 0.9%. No other conditions 

encountered convergence issues for the linear mediator model, as convergence rates for 

all other conditions equaled 100%.   

Conditions with an ICC equal to 0.10 were more problematic for the outcome 

model than were conditions with an ICC equal to 0.20, with non-convergence rates 

ranging from zero to 7.9% and zero to 2.2%, respectively. The magnitude of the b 

parameter had little effect on both linear outcome and linear mediator model 

convergence. Non-convergence rates for conditions with a generating value of zero for 

the b parameter ranged from zero to 7.3%. Non-convergence rates for the linear outcome 

model for conditions with a generating value of 0.39 for the b parameter ranged from 

zero to 7.9%. Non-convergence rates for the outcome model were highest for conditions 

with low numbers of level-1 (n=15) and level-2 (N=10) units combined with low ICC 

values (ICC=0.10), with rates ranging from 6.0% to 7.9%. 

Non-convergence rates for the nonlinear mediator model were consistently higher 

than non-convergence rates for either linear model. As displayed in Table 1, nonlinear 

model non-convergence rates ranged from 9.7% to 44.3%. Conditions with 10 level-2 

units converged more frequently than conditions with 30 level-2 units, with non-

convergence rates ranging from 11.7% to 26.4% and 9.7% to 44.3%, respectively, with 

12 of the 16 30 level-2 unit conditions exceeding the maximum non-convergence rate 
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observed across all 10 level-2 unit conditions. Non-convergence rate discrepancies are 

less apparent across level-1 sample sizes, with ranges of 9.7% to 44.3% across conditions 

with 15 level-1 units and 11.7% to 40.7% across conditions with 30 level-1 units. ICC 

values had little effect on non-convergence rates; non-convergence rates for conditions 

with an ICC equal to 0.1 range from 9.7% to 44.3%, while non-convergence rates for 

conditions with an ICC of 0.2 range from 12.4% to 44.2%.  

Non-convergence rates across b parameter value conditions were similar, with 

rates ranging from 11.7% to 44.3% for conditions with a zero generating value for the b 

parameter, and from 9.7% to 42.8% for conditions with a 0.39 generating value for the b 

parameter. Non-convergence rates across pseudo-slope generating conditions were 

noticeably different, ranging from 9.7% to 32.4% across conditions with a generating 

pseudo-slope value of 0.14, and from 20.4% to 44.3% across conditions with a generating 

pseudo-slope value of 0.39. Eight of the 16 conditions containing a pseudo-slope 

parameter equal to 0.39 had non-convergence rates exceeding the maximum observed 

value across conditions with a generating pseudo-slope value of 0.14. Conditions with a 

pseudo-intercept value of 0.39 and a level-2 sample size of 30 were particularly 

problematic, as all non-convergence rates for these study conditions exceeded 39%. 

Summary of non-convergence patterns 

In summary, convergence was less problematic for both linear models than for the 

nonlinear model. Linear model convergence was particularly affected by level-2 sample 

size and ICC values, with high level-2 sample size conditions and high ICC value 

conditions converging more frequently. Nonlinear model convergence was most affected 
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by the number of level-2 units and the generating value of the pseudo-slope parameter. 

Unlike convergence rate patterns for the linear models, the nonlinear model converged 

more frequently for low level-2 sample size conditions. The nonlinear model converged 

more frequently for conditions with a generating value of 0.14 for the pseudo-slope 

parameter than for conditions with a generating value of 0.39. 
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Table 1.  Non-convergence rates for estimated models. 

Condition Non-convergence Rate 

b γ10 Clusters Subjects ICC 
Outcome 
Model Linear Mediator Model Nonlinear Mediator Model 

0 0.14 10 15 0.10 0.060 0.000 0.206 

    
0.20 0.009 0.000 0.176 

   
30 0.10 0.011 0.000 0.117 

    
0.20 0.005 0.000 0.197 

  
30 15 0.10 0.000 0.000 0.311 

    
0.20 0.000 0.000 0.272 

   
30 0.10 0.000 0.000 0.324 

    
0.20 0.000 0.000 0.124 

 
0.39 10 15 0.10 0.073 0.009 0.264 

    
0.20 0.022 0.005 0.223 

   
30 0.10 0.009 0.000 0.214 

    
0.20 0.002 0.001 0.214 

  
30 15 0.10 0.003 0.000 0.443 

    
0.20 0.000 0.000 0.442 

   
30 0.10 0.000 0.000 0.404 

    
0.20 0.000 0.000 0.387 

0.39 0.14 10 15 0.10 0.079 0.000 0.184 

    
0.20 0.010 0.000 0.208 

   
30 0.10 0.011 0.000 0.198 

    
0.20 0.002 0.000 0.209 

  
30 15 0.10 0.001 0.000 0.097 

    
0.20 0.000 0.000 0.124 

   
30 0.10 0.000 0.000 0.136 

    
0.20 0.000 0.000 0.307 

 
0.39 10 15 0.10 0.078 0.003 0.227 

    
0.20 0.012 0.002 0.220 

   
30 0.10 0.009 0.000 0.204 

    
0.20 0.000 0.001 0.230 

  
30 15 0.10 0.001 0.000 0.416 

    
0.20 0.000 0.000 0.428 

   
30 0.10 0.000 0.000 0.407 

        0.20 0.000 0.000 0.398 
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PARAMETER AND RELATIVE PARAMETER BIAS 

Table 2 presents relative parameter bias results for the estimation of the pseudo-

slope parameter. Overall, relative parameter bias for the pseudo-slope parameter ranged 

from -1.3% to 6.8%, and was within the recommended 5% cutoff for all but two 

conditions. Generating values for the b parameter and for the ICC values had no effect on 

pseudo-slope bias, as these values were not used to generate the nonlinear mediator 

model. Level-2 sample size had a slight impact on pseudo-slope bias, with relative 

parameter bias value ranging from -1.3% to 6.8% for low level-2 unit conditions, and 

from -0.5% to 2.0% for high level-2 unit conditions. Level-1 sample size had no 

noticeable effect on relative parameter bias, ranging from -0.5% to 6.8% for low level-1 

sample size conditions, and from -1.3% to 4.1% for high level-1 sample size conditions.  

The generating value of the pseudo-slope produced noticeable discrepancies in 

relative parameter bias values, ranging from -0.5% to 6.8% for conditions with a 

generating value of 0.14, and from -1.3% to 1.2% for conditions with a generating value 

of 0.39. Conditions with low level-1 and 2 sample sizes and a generating pseudo-slope 

value of 0.14 consistently produced the most biased estimates for the pseudo-slope 

parameter, ranging from 2.5% to 6.8% and exceeding the absolute value of the relative 

parameter bias for all remaining conditions. Within low level-2 sample size and low 

pseudo-slope conditions, low level-1 sample size conditions performed worse than did 

high level-1 sample size conditions, ranging from 4.5% to 6.8% versus from 2.5% to 

4.1%, respectively. Two of the four conditions  with low pseudo-slope, low level-2, and 
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low level-1 generating values returned relative parameter bias values in excess of the 

recommended 0.05 cutoff, with values of 6.8% and 5.2%. 
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Table 2.  Relative parameter bias for the pseudo-slope parameter. 

Conditions   

b γ10 Clusters Subjects ICC Bias 

0 0.14 10 15 0.10 0.068 

    
0.20 0.045 

   
30 0.10 0.032 

    
0.20 0.042 

   
15 0.10 0.015 

    
0.20 0.020 

   
30 0.10 0.001 

    
0.20 0.020 

 
0.39 10 15 0.10 0.012 

    
0.20 0.012 

   
30 0.10 0.004 

    
0.20 0.008 

  
30 15 0.10 0.001 

    
0.20 0.006 

   
30 0.10 0.004 

    
0.20 0.006 

0.39 0.14 10 15 0.10 0.047 

    
0.20 0.052 

   
30 0.10 0.025 

    
0.20 0.029 

  
30 15 0.10 -0.006 

    
0.20 0.008 

   
30 0.10 0.012 

    
0.20 -0.004 

 
0.39 10 15 0.10 0.005 

    
0.20 0.005 

   
30 0.10 -0.013 

    
0.20 -0.001 

  
30 15 0.10 0.005 

    
0.20 0.006 

   
30 0.10 0.005 

        0.20 0.005 

*Note: Bold values indicate relative parameter bias in excess of the recommended 0.05 

cutoff. 
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Tables 3 and 4 present bias results for both linear and nonlinear estimates of the 

instantaneous indirect effect at the mean value of the treatment and at values one standard 

deviation above and below the mean treatment value.  For conditions with b values of 

zero (and, therefore, true instantaneous indirect effect values of zero), Table 3 presents 

parameter bias calculations in place of relative parameter bias. Relative parameter bias is 

reported for all other conditions in Table 4. Given the mathematical definition of the 

instantaneous indirect effect, the linear estimator provides only one estimate for this 

value. As such, this value was compared to true values of the instantaneous indirect effect 

at low, mean, and high treatment values across study conditions. The nonlinear model 

provides an instantaneous indirect effect that is dependent on the value of the treatment, 

and therefore provides a unique value for parameter bias evaluation at each of three 

chosen treatment levels.  

Across all conditions, estimation of the b parameter was unbiased, suggesting 

proper linear outcome model estimation across all generating conditions. For conditions 

with a generating value of zero for the b parameter, all parameter bias values were equal 

to zero to two decimal places. Given this, subsequent results will only be presented and 

compared for conditions containing a generating value of 0.39 for the b parameter (i.e., 

results from Table 3). 

Relative parameter bias for conditions with b equal to 0.39 

Although few conditions returned relative parameter bias values within Hoogland 

and Boomsma’s (1998) recommended 0.05 cutoff, the nonlinear estimator outperformed 

the linear estimator for all conditions evaluated at low treatment values. For low 
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treatment values, relative parameter bias ranged from -7.0% to 68.0% for the nonlinear 

estimator and from -76.0% to 252% for the linear estimator, suggesting that the linear 

estimator does a poor job of recovering the true parameter in presence of a truly nonlinear 

relationship.  

Across cluster conditions for the nonlinear estimator, relative parameter bias 

estimates ranged from -7.0% to 68% for conditions with 10 level-2 units, and from -1.0% 

to 21.0% for conditions with 30 level-2 units. For the linear estimator at low treatment 

values, relative parameter bias estimates ranged from -76.0% to 252.0% for conditions 

containing 10 level-2 units, and from -76.0% to 247.0% for conditions containing 30 

level-2 units. The number of level-1 units had little effect on relative parameter bias 

within models. For the nonlinear model, bias estimates ranged from -6.0% to 68.0% for 

conditions with 15 level-1 units, and from -7.0% to 60.0% for conditions with 30 level-1 

units. Bias estimates were systematically worse for the linear estimator, ranging from        

-76.0% to 252.0% for conditions with 15 level-1 units and from -76.0% to 249% for 

conditions with 30 level-1 units.  

ICC values also had little effect on the observed relative parameter bias, ranging 

from -7.0% to 68.0% for the nonlinear estimator in conditions with an ICC equal to 0.10 

and from -6.0% to 68.0% for the nonlinear estimator in conditions with an ICC equal to 

0.20. For the linear estimator, the relative parameter bias was identical across ICC 

conditions, ranging from -76.0% to 252.0%. Generating values for the pseudo-slope 

parameter had the most noticeable effect on relative parameter bias across model type.  

For the nonlinear estimator, relative parameter bias values ranged from 18.0% to 68% for 
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pseudo-slope values of 0.14, and from -7.0% to 1.0% for pseudo-slope values of 0.39. 

The relative parameter bias of the linear estimator ranged from 244.0% to 252.0% for 

pseudo-slope values of 0.14, and was equal to -76.0% for all conditions with a pseudo-

slope value of 0.39.  

Table 3.  Parameter bias of the instantaneous indirect effect for conditions with a value of 

zero for the b parameter.  

Conditions Low Treatment Mean Treatment High Treatment 

b γ10 Clusters Subjects ICC Nonlinear Linear Nonlinear Linear Nonlinear Linear 

0 0.14 10 15 0.10 -0.0001 -0.0002 -0.0004 -0.0002 -0.0003 -0.0002 

    
0.20 0.0001 0.0001 0.0001 0.0001 0.0000 0.0001 

   
30 0.10 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 

    
0.20 0.0000 -0.0001 -0.0001 -0.0001 0.0000 -0.0001 

  
30 15 0.10 0.0000 0.0000 -0.0001 0.0000 0.0000 0.0000 

    
0.20 0.0001 0.0001 0.0003 0.0001 0.0001 0.0001 

   
30 0.10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

    
0.20 0.0000 0.0000 -0.0001 0.0000 -0.0001 0.0000 

 
0.39 10 15 0.10 0.0002 0.0001 0.0001 0.0001 0.0000 0.0001 

    
0.20 -0.0007 -0.0002 -0.0001 -0.0002 0.0000 -0.0002 

   
30 0.10 0.0000 -0.0001 -0.0001 -0.0001 0.0000 -0.0001 

    
0.20 -0.0011 -0.0002 0.0000 -0.0002 0.0000 -0.0002 

  
30 15 0.10 -0.0005 -0.0001 0.0000 -0.0001 0.0000 -0.0001 

    
0.20 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 

   
30 0.10 -0.0004 -0.0001 -0.0001 -0.0001 0.0000 -0.0001 

        0.20 -0.0002 -0.0001 0.0000 -0.0001 0.0000 -0.0001 

Note:  “Nonlinear” refers to instantaneous indirect effect estimates using the nonlinear 

model specification.  “Linear” refers to instantaneous indirect effect estimates using the 

linear model. 

 

 

The relative parameter bias of the instantaneous indirect effect estimates at mean 

treatment values exceeded the 0.05 recommended cutoff for both the linear and nonlinear 

estimators across all conditions. Overall, relative parameter bias of the nonlinear model 
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ranged from 10.0% to 132.0%, and from -36.0% to 477.0% for the linear model. As at 

low treatment values, sample size at level-2 mitigated relative parameter bias for the 

nonlinear estimator, ranging from 15.0% to 132.0% for conditions with 10 level-2 units, 

and from 10.0% to 36.0% for conditions with 30 level-2 units. The linear estimator was 

not as noticeably affected by sample size at level-2; bias estimates range from -35.0% to 

477.0% for the low sample size condition, and from -36.0% to 472.0% for the high 

sample size condition. Differences were negligible within model type across level-1 

sample size conditions. For the nonlinear model and level-1 sample size of 15, relative 

parameter bias ranged from 10.0% to 122.0%.  In conditions with a level-1 sample size of 

30, relative parameter bias for the nonlinear model ranged from 12.0% to 132.0%. For the 

linear model, relative parameter bias associated with conditions containing 15 level-1 

units ranged from -36.0% to 477.0%, and from -36.0% to 473.0% for conditions 

containing 30 level-1 units.  

ICC values had little effect on relative parameter bias for either model type. For 

the nonlinear model, relative parameter bias for conditions with an ICC equal to 0.10 

ranged from 10.0% to 132.0%. For conditions with an ICC value of 0.20, relative 

parameter bias ranged from 12.0% to 130.0% for the nonlinear estimator. The minimum 

relative parameter bias for the linear estimator was equal to -36.0% for both ICC 

conditions, with maximum values of 477.0% and 472.0% for ICC values of 0.10 and 

0.20, respectively. Generating values for the pseudo-slope parameter had a noticeable 

effect on relative parameter bias for both the nonlinear and linear models. For the 
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nonlinear model, relative parameter bias ranged from 10.0% to 18.0% for conditions with 

a pseudo-slope equal to 0.14.  

Table 4.  Relative parameter bias of the instantaneous indirect effect for conditions with a 

value of 0.39  for the b parameter. 

Conditions Low Treatment Mean Treatment High Treatment 

b γ10 Clusters Subjects ICC Nonlinear Linear Nonlinear Linear Nonlinear Linear 

0.39 0.14 10 15 0.10 0.68 2.52 0.17 -0.34 -0.48 -0.58 

    
0.20 0.68 2.52 0.17 -0.34 -0.47 -0.59 

   
30 0.10 0.58 2.49 0.15 -0.35 -0.49 -0.59 

    
0.20 0.60 2.47 0.18 -0.35 -0.49 -0.59 

  
30 15 0.10 0.18 2.44 0.10 -0.36 -0.31 -0.59 

    
0.20 0.21 2.45 0.14 -0.36 -0.32 -0.59 

   
30 0.10 0.21 2.47 0.15 -0.35 -0.30 -0.59 

    
0.20 0.18 2.44 0.12 -0.36 -0.31 -0.60 

 
0.39 10 15 0.10 -0.06 -0.76 1.22 4.77 12.44 1577.10 

    
0.20 -0.06 -0.76 1.16 4.72 17.50 1563.49 

   
30 0.10 -0.07 -0.76 1.32 4.73 13.91 1566.16 

    
0.20 -0.05 -0.76 1.30 4.67 18.72 1549.48 

  
30 15 0.10 -0.01 -0.76 0.36 4.71 1.62 1562.21 

    
0.20 0.00 -0.76 0.34 4.70 1.47 1559.16 

   
30 0.10 0.01 -0.76 0.31 4.72 1.52 1562.96 

        0.20 0.00 -0.76 0.33 4.72 1.61 1562.91 

Note:  “Nonlinear” refers to instantaneous indirect effect estimates using the nonlinear 

model specification. “Linear” refers to instantaneous indirect effect estimates using the 

linear model. Bolded values indicate relative parameter bias in excess of the 

recommended 0.05 cutoff. 

 

 

When the pseudo-slope value was equal to 0.39, the relative parameter bias of the 

nonlinear estimator ranged from 31.0% to 132.0%. For the linear model, relative 

parameter bias for conditions with a pseudo-slope of 0.14 ranged from -36.0% to -34.0%, 

and from 467.0% to 477.0% for conditions with the pseudo-slope equal to 0.39. This 
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pattern of relative parameter bias pertaining to the pseudo-slope values for the nonlinear 

model was the opposite of what was observed for low treatment values. 

  For high treatment values, relative parameter bias for the nonlinear model was 

less extreme than the relative parameter bias for the linear model estimates across all 

study conditions.  However, no conditions met the recommended 0.05 cutoff as indicative 

of acceptable parameter bias. Overall, the relative parameter bias of the nonlinear model 

ranged from -32.0% to 1,872.0%, and from -60.0% to 157,710.0% for the linear model. 

As seen with low and mean treatment values, level-2 sample size noticeably affected the 

relative parameter bias for the nonlinear model. For conditions containing 10 level-2 

units, relative parameter bias for the nonlinear model ranged from -49.0% to 1,872.0%.  

When the generating parameters included 30 level-2 units, the relative parameter bias of 

the nonlinear model shrank, with a range of -32.0% to 162.0%. The number of level-2 

units had little impact on the relative parameter bias of the linear model, with a range of -

59.0% to 157,710.0% for conditions with 10 level-2 units, and -60.0% to 156,296.0% for 

conditions with 30 level-2 units.  

Unlike level-2 sample size, the number of level-1 units had little effect on relative 

parameter bias within model type. For the nonlinear model, conditions with 15 level-1 

units returned relative parameter bias values ranging from –48.0% to 1,750.0%, while 

conditions with 30 level-1 units had relative parameter bias values ranging from -49.0% 

to 18.72%. For the linear model, relative parameter bias ranged from -59.0% to 

157,710.0% for conditions with 15 level-1 units, and from -60.0% to 156,616.0% for 

conditions with 30 level-1 units.  
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ICC values also proved to have little effect on relative parameter bias within 

model type. The relative parameter bias for nonlinear estimator ranged from -49.0% to 

1,391.0% and -49.0% to 1,872.0% for low and high ICC values, respectively. Relative 

parameter bias for the linear estimator ranged from -59.0% to 157,710.0% for conditions 

with an ICC equal to 0.10, and from -60.0% to 156,349.0% for conditions with an ICC 

value equal to 0.20. Generating values for the pseudo-slope parameter had a noticeable 

effect on within model relative parameter bias. For the nonlinear model, relative 

parameter bias ranged from -49.0% to -30.0% for conditions with a pseudo-slope value of 

0.14, and from 147.0% to 1,872.0% for conditions with a pseudo-slope value of 0.39. For 

the linear model, relative parameter bias values ranged from -60.0% to -58.0% for a 

generating pseudo-slope value of 0.14, and from 154,948.0% to 157,710.0% for 

conditions with a pseudo-slope value of 0.39. The pattern of relative parameter bias 

values for the nonlinear model across pseudo-slope conditions mirrored what was 

observed for low treatment values. 

Summary of bias patterns 

In summary, conditions with a b parameter of zero produced parameter bias 

values equal to zero (to two decimal places) for both the linear and nonlinear estimator 

across all generating values. For conditions with a non-zero b parameter, the nonlinear 

estimator outperformed the linear estimator across all study conditions. The nonlinear 

estimator was most affected by pseudo-slope values and sample size at level-2, although 

only low treatment conditions with a pseudo-slope value of 0.39 and a b parameter value 

of 0.39 returned relative parameter bias values within or near Hoogland and Boomsma’s 
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(1998) recommended threshold. For mean and high treatment values, the relative 

parameter bias for the nonlinear model was lowest for conditions containing a pseudo-

slope generating value of 0.14. For low treatment values, the relative parameter bias was 

lowest for conditions containing a pseudo-slope generating value of 0.39. Across the 

three examined treatment values, conditions with 30 level-2 units returned less biased 

results within a specific treatment value than did conditions containing 10 level-2 units.  

Combined with the results from Table 1, this suggests that, although the nonlinear model 

was more difficult to estimate with a larger number of level-2 units, it was less biased in 

the presence of more level-2 units when a solution was computationally feasible. The 

linear estimator was substantially biased across all conditions, never falling below the 

Hoogland and Boomsma’s 0.05 cutoff. 

ROOT MEAN SQUARED ERROR (RMSE) 

Table 5 shows RMSE values for the instantaneous indirect effect at low, mean, 

and high treatment values for both the linear and nonlinear model specifications. Patterns 

of RMSE ranges differed noticeably across the b equals zero and b equals 0.39 

conditions. To facilitate comparisons with the preceding exposition on bias patterns, 

RMSE results will be presented separately for the two b conditions. All values will be 

reported to two decimal places.  

RMSE values for conditions with b equal to zero 

For conditions with a b parameter of zero, the linear estimator proved to be as 

efficient as or more efficient than the nonlinear estimator when controlling for other 
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study conditions. These differences, however, were negligible across all comparisons, 

with a maximum absolute difference of 0.03 between efficiency measures for the linear 

and nonlinear estimators. For all b equals zero conditions, RMSE values for the linear 

estimator ranged from zero to 0.01, and from zero to 0.03 for the nonlinear estimator. 

Examining the efficiency of the estimator at low treatment values, level-2 sample size 

had minimal effect on the efficiency of each estimator. For the nonlinear estimator, 

RMSE values ranged from zero to 0.03 and from zero to 0.02 for low and high level-2 

unit conditions, respectively. For the linear estimator, RMSE values ranged from zero to 

0.01 for the 10 level-2 unit condition, and were equal to 0.00 for the linear model across 

all 30 level-2 unit conditions. These RMSE ranges across low and high level-2 unit 

conditions were identical to those observed across low and high level-1 unit conditions. 

ICC values had no effect within model type on estimator efficiency. For the nonlinear 

model at low treatment values, the RMSE ranged from zero to 0.03 for both ICC value 

conditions. Similarly, for the linear model at low treatment values, the RMSE ranges 

from zero to 0.01 across generating ICC value conditions. Pseudo-slope generating 

values resulted in minor RMSE discrepancies across pseudo-slope generating values. For 

conditions with a pseudo-slope value of 0.14, both the linear and nonlinear estimators 

RMSE values were equal to zero across all other study conditions for low treatment 

values. For conditions with pseudo-slope values of 0.39, the RMSE of the nonlinear 

estimator ranged from 0.01 to 0.03, and from zero to 0.01 for the linear estimator.  

For mean treatment values, the RMSE estimates ranged from zero to 0.01 across 

conditions for both the linear and nonlinear estimator. Level-2 sample size had no effect 
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on RMSE ranges for the nonlinear estimator at mean treatment values, ranging from zero 

to 0.01 for both low and high level-2 sample size conditions. For the linear estimator, 

RMSE values ranged from zero to 0.01 in the 10 level-2 unit conditions and are equal to 

zero across the 30 level-2 unit conditions. RMSE ranges across level-1 conditions were 

identical to those described for level-2 conditions. ICC values had no effect on RMSE 

ranges for both the linear and nonlinear estimator, ranging from zero to 0.01 for both 

estimators across both ICC conditions. Across low and high generating values for the 

pseudo-slope parameter at mean treatment values, the RMSE of the nonlinear estimator 

ranged from zero to 0.01 for conditions with a generating value of 0.14, and was equal to 

zero for conditions with a generating value of 0.39. This pattern was reversed for the 

linear estimator at mean treatment values, with an RMSE of zero for conditions with a 

pseudo-slope generating value of 0.14 and an RMSE range of zero to 0.01 for conditions 

with a pseudo-slope generating value of 0.39. 

At high treatment values for conditions with a generating b parameter value of 

zero, the RMSE of both the linear and the nonlinear estimators ranged for zero to 0.01. 

Within level-2 sample size conditions, RMSE ranges were identical for both estimators, 

ranging from zero to 0.01 in the low level-2 sample size condition and were equal zero in 

all high level-2 sample size conditions. Considering level-1 sample size conditions at 

high treatment values, RMSE ranges for both estimators were identical for the low level-

1 sample size condition, ranging from zero to 0.01. For the high level-1 sample size 

condition, the RMSE ranged from zero to 0.01 for the nonlinear estimator and was equal 

to zero across other study conditions for the linear estimator. Generating ICC values had 
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no effect on the range of RMSE values across estimator type at high treatment values, 

ranging from zero to 0.01 for both the linear and nonlinear model across both ICC 

conditions. Examining pseudo-slope generating parameters at high treatment values, 

RMSE values for conditions with a pseudo-slope parameter equal to 0.14 for the 

nonlinear estimator ranged from zero to 0.01 for the nonlinear estimator, and were equal 

to zero for the linear estimator. For conditions with a generating pseudo-slope parameter 

of 0.39, RMSE values for the nonlinear estimator were equal to zero across all other 

study conditions, and range from zero to 0.01 for the linear estimator. 

RMSE values for conditions with b equal to 0.39 

RMSE patterns for conditions with a non-zero instantaneous indirect effect were 

more complicated than for conditions with a zero instantaneous indirect effect. In general, 

the nonlinear estimator proved to be more efficient than the linear estimator, with overall 

ranges of 0.12 to 1.18 and 0.31 to 2.40, respectively. However, the linear estimator did 

outperform the nonlinear estimator for certain combinations of study conditions at 

specific treatment values. These conditions will be emphasized as the results are 

presented below. 

At low treatment values, the nonlinear estimator was more efficient than the linear 

estimator across all study conditions with a generating value of 0.39 for the b parameter. 

RMSE values for the nonlinear estimator ranged from 0.12 to 1.18, and from 0.38 to 2.40 

for the linear estimator for low treatment values. Considering the number of generating 

level-2 units, RMSE values for the nonlinear estimator ranged from 0.28 to 1.18 for 

conditions containing 10 level-2 units, and from 0.12 to 0.80 for conditions containing 30 
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level-2 units.  This suggests that an increase in level-2 units results in better efficiency for 

the nonlinear estimator at low treatment values. In contrast, the number of level-2 units 

had little effect on the efficiency of the linear estimator at low treatment values, with 

RSME values ranging from 0.40 to 2.40 for conditions with 10 level-2 units, and from 

0.38 to 2.39 for conditions with 30 level-2 units.  
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Table 5.  RMSE values for all conditions. 

Condition Low Treatment Mean Treatment High Treatment 

b γ10 Clusters Subjects ICC Nonlinear Linear Nonlinear Linear Nonlinear Linear 

0 0.14 10 15 0.10 0.00 0.00 0.01 0.00 0.01 0.00 

    
0.20 0.00 0.00 0.01 0.00 0.01 0.00 

   
30 0.10 0.00 0.00 0.01 0.00 0.00 0.00 

    
0.20 0.00 0.00 0.01 0.00 0.01 0.00 

  
30 15 0.10 0.00 0.00 0.00 0.00 0.00 0.00 

    
0.20 0.00 0.00 0.01 0.00 0.00 0.00 

   
30 0.10 0.00 0.00 0.00 0.00 0.00 0.00 

    
0.20 0.00 0.00 0.00 0.00 0.00 0.00 

 
0.39 10 15 0.10 0.03 0.01 0.00 0.01 0.00 0.01 

    
0.20 0.03 0.01 0.00 0.01 0.00 0.01 

   
30 0.10 0.02 0.00 0.00 0.00 0.00 0.00 

    
0.20 0.02 0.00 0.00 0.00 0.00 0.00 

  
30 15 0.10 0.01 0.00 0.00 0.00 0.00 0.00 

    
0.20 0.02 0.00 0.00 0.00 0.00 0.00 

   
30 0.10 0.01 0.00 0.00 0.00 0.00 0.00 

    
0.20 0.01 0.00 0.00 0.00 0.00 0.00 

0.39 0.14 10 15 0.10 0.31 0.40 0.71 0.31 0.76 0.76 

    
0.20 0.32 0.40 0.70 0.31 0.75 0.76 

   
30 0.10 0.28 0.40 0.71 0.31 0.77 0.76 

    
0.20 0.28 0.40 0.72 0.31 0.77 0.77 

  
30 15 0.10 0.13 0.38 0.59 0.30 0.54 0.77 

    
0.20 0.13 0.38 0.60 0.30 0.54 0.76 

   
30 0.10 0.12 0.38 0.59 0.30 0.52 0.76 

    
0.20 0.12 0.38 0.59 0.30 0.54 0.77 

 
0.39 10 15 0.10 1.15 2.39 0.43 0.63 0.03 0.76 

    
0.20 1.15 2.39 0.41 0.62 0.05 0.75 

   
30 0.10 1.15 2.39 0.43 0.62 0.03 0.75 

    
0.20 1.18 2.40 0.44 0.62 0.05 0.75 

  
30 15 0.10 0.80 2.39 0.17 0.62 0.00 0.75 

    
0.20 0.80 2.39 0.16 0.62 0.00 0.75 

   
30 0.10 0.76 2.39 0.17 0.62 0.00 0.75 

        0.20 0.76 2.39 0.17 0.62 0.00 0.75 

Note:  “Nonlinear” refers to instantaneous indirect effect estimates using the nonlinear 

model specification. “Linear” refers to instantaneous indirect effect estimates using the 

linear model. 
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The number of level-1 units had little effect on the efficiency of either estimator at 

low treatment values. RMSE values for the nonlinear estimator ranged from 0.13 to 1.15 

for conditions containing 15 level-1 units and from 0.12 to 1.18 for conditions containing 

30 level-1 units. For the linear estimator, RMSE values ranged from 0.38 to 2.39 for low 

level-1 unit conditions and from 0.38 to 2.40 for high level-1 unit conditions. ICC values 

also had little effect on the efficiency of either estimator.  RMSE values for the nonlinear 

estimator ranged from 0.12 to 1.15 and from 0.12 to 1.18 for low and high ICC values, 

respectively. For the linear estimator at low treatment values, RMSE values ranged from 

0.38 to 2.39 for low ICC conditions and from 0.38 to 2.40 for high ICC conditions. 

Pseudo-slope generating values noticeably affected RMSE ranges for both the linear and 

nonlinear estimators at low treatment values. For the nonlinear estimator, RMSE values 

ranged from 0.12 to 0.32 for low pseudo-slope values and from 0.76 to 1.18 for high 

pseudo-slope values. RMSE values for the linear estimator at low treatment values 

ranged from 0.38 to 0.40 for conditions with a pseudo-slope value of 0.14, and from 2.39 

to 2.40 for conditions with a pseudo-slope value of 0.39. 

For mean treatment values in conditions with a b parameter equal to 0.39, the 

linear estimator was more efficient than the nonlinear estimator for approximately half of 

the remaining study conditions. Overall, RMSE values for the nonlinear estimator ranged 

from 0.16 to 0.72, and from 0.30 to 0.63 for the linear estimator. Level-2 sample size 

affected RMSE ranges more noticeably for the nonlinear estimator than for the linear 

estimator.  RMSE values for the nonlinear estimator at mean treatment values ranged 

from 0.41 to 0.72 for low level-2 sample size conditions, and from 0.16 to 0.60 for high 



 83 

sample size conditions. RMSE ranges for the linear estimator were similar across level-2 

unit conditions, ranging from 0.31 to 0.63 for low level-2 unit conditions and from 0.30 

to 0.62 for high level-2 unit conditions.  

Level-1 sample size had little effect on the efficiency of either estimator at mean 

treatment values. For the nonlinear estimator, RMSE values ranged from 0.16 to 0.71 for 

low level-1 unit conditions and from 0.17 to 0.72 for high level-1 unit conditions. The 

efficiency of the linear estimator at mean treatment values ranged from 0.30 to 0.63 and 

from 0.30 to 0.62 for low and high level-1 unit conditions. RMSE ranges across ICC 

conditions within model type were nearly equivalent at mean treatment values. For the 

nonlinear estimator, RMSE values ranged from 0.17 to 0.71 for low ICC conditions and 

from 0.16 to 0.72 for high ICC conditions. RMSE values for the linear estimator ranged 

from 0.30 to 0.63 for low ICC values and from 0.30 to 0.62 for high ICC values. Pseudo-

slope values had the most noticeable effect on efficiency across model type at mean 

treatment values. For conditions with pseudo-slope values of 0.14 and b values of 0.39, 

the linear estimator was more efficient than the nonlinear estimator across all other study 

conditions. Here, the RMSE values of the nonlinear estimator ranged from 0.59 to 0.72, 

while the RMSE values of the linear estimator ranged from 0.30 to 0.31.  This pattern 

reversed for conditions with pseudo-slope values of 0.39, as the nonlinear estimator was 

more efficient than the linear estimator across all other study conditions with this 

generating pseudo-slope value and with true b parameters equal to 0.39. For these 

conditions, the RMSE values of the pseudo-slope parameter ranged from 0.16 to 0.44 for 

the nonlinear estimator, and from 0.62 to 0.63 for the linear estimator. 
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For high treatment values in conditions with a b generating value of 0.39, the 

nonlinear estimator was more efficient than the linear estimator for all but one condition 

and was only negligibly less efficient in the condition in question. Overall, RMSE values 

for the nonlinear estimator ranged from zero to 0.77, and from 0.75 to 0.77 for the linear 

estimator. RMSE values for the nonlinear estimator at high treatment values across 

Level-2 sample size varied slightly, ranging from 0.03 to 0.77 for low level-2 size 

conditions and from zero to 0.54 for high level-2 unit conditions. For the linear estimator, 

RMSE values at high treatment values ranged from 0.75 to 0.77 for both low and high 

level-2 unit conditions. Considering the effect of level-1 sample size, for the nonlinear 

model at high treatment values, RMSE values ranged from zero to 0.76 and from zero to 

0.77 for low and high level-1 unit conditions, respectively.  For the linear estimator at 

high treatment values, RMSE values ranged from 0.75 to 0.77 for both low and high 

level-1 unit conditions. Examining generating ICC values, RMSE ranges at high 

treatment values for the nonlinear model went from zero to 0.77 for both low and high 

ICC conditions. RMSE values for the linear estimator ranged from 0.75 to 0.77 for both 

low and ICC conditions. For high treatment values, RMSE ranges for the nonlinear 

estimator were more affected by the pseudo-slope parameter than were RMSE ranges for 

the linear estimator. For the nonlinear estimator, RMSE values ranged from 0.52 to 0.77 

for the conditions containing a pseudo-slope parameter of 0.14, and from zero to 0.05 for 

conditions containing a pseudo slope parameter of 0.39. For the linear estimator, RMSE 

values ranged from 0.76 to 0.77 for low pseudo-slope conditions and from 0.75 to 0.76 

for high pseudo-slope conditions.  
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Across all conditions with a generating value of 0.39 for the b parameter for high 

treatment values, two specific conditions provided equivalent or nearly equivalent RMSE 

values across model type. With a pseudo-slope of 0.14, level-2 sample size of 10, level-1 

sample size of 30, and an ICC of 0.10, the linear estimator was negligibly more efficient 

than the nonlinear estimator, with RMSE of 0.76 compared to the nonlinear estimators 

RMSE of 0.77. With a pseudo-slope of 0.14, level-2 sample size of 10, level-1 sample 

size of 30, and an ICC of 0.20, the linear and nonlinear estimators were equally efficient, 

both producing an RMSE of 0.77.  

Summary of RMSE patterns 

In summary, RMSE values differed only negligibly for the linear and nonlinear 

estimators for conditions with a generating value of zero for the b parameter. For 

conditions with a generating value of 0.39 for the b parameter, the nonlinear estimator 

was more efficient for conditions with high values for the number of level-2 units across 

treatment values. The number of level-2 generating units had no effect on the efficiency 

of the linear estimator. For low treatment values, both the linear and nonlinear estimators 

were most efficient for conditions with a pseudo-slope generating value of 0.14. For 

mean treatment values, the linear estimator was most efficient for conditions with a 

pseudo-slope generating values of 0.14, while the nonlinear estimator was most efficient 

for conditions with a pseudo-slope generating value of 0.39. At high treatment values, 

conditions with a generating pseudo-slope value of 0.39 produced lower RMSE values 

than did conditions with a generating value of 0.14 for the pseudo-slope parameter. The 

value of the pseudo-slope parameter had no effect on the efficiency of the linear 
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estimator. The linear estimator was slightly more efficient than the linear estimator at 

high treatment values for the condition with a pseudo-slope value of 0.14, a level-2 

sample size of 10, and level-1 sample size of 30, an ICC of 0.10, and a b parameter of 

0.39. For the condition with a pseudo-slope value of 0.14, a level-2 sample size of 10, a 

level-1 sample size of 30, an ICC of 0.20, and a b parameter of 0.39, the linear and 

nonlinear estimators were equally efficient at high treatment values. The nonlinear 

estimator was as efficient as or more efficient than the linear estimator for all other 

conditions across treatment values. 

PRODCLIN COVERAGE RATES 

  

Tables 6, 7, and 8 present PRODCLIN coverage rates for both the linear and 

nonlinear estimator at low, medium, and high treatment values, respectively. As observed 

with both parameter bias and RMSE values, PRODCLIN coverage rates differed 

markedly depending on whether the generating value of the b parameter was equal to 

zero or to 0.39, respectively corresponding to zero and non-zero values for the 

instantaneous indirect effect at the three predetermined treatment values. Consequently, 

PRODCLIN results will be presented separately for generating values of the b parameter.  

Conditions with b equal to zero 

Tables 6, 7, and 8 present PRODCLIN confidence interval estimates for both the 

linear and nonlinear estimators at low, mean, and high treatment values, respectively. For 

conditions with a generating value of zero for the b parameter, PRODCLIN coverage 

rates for the linear estimator ranged from 93% to 96% at all three treatment values. For 

the nonlinear estimator, coverage rates were equal to 100% for low, mean, and high 
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treatment values. There was a lack of variability in PRODCLIN coverage rates for both 

the linear and nonlinear estimators for conditions with a generating value of zero for the b 

parameter. 

Conditions with b equal to 0.39 

For conditions having b equal to 0.39 at low treatment values, the nonlinear 

estimator provided superior coverage to that of the linear estimator for low treatment 

values.  As shown in Table 6, coverage rates for the linear estimator reached a maximum 

of 1% for exactly one condition (pseudo-slope of 0.14, 10 level-2 units, 15 level-1 units, 

and an ICC of 0.10); all other conditions produced coverage rates of 0% for the linear 

estimator. For conditions where the linear confidence interval did not include the true 

instantaneous indirect effect at low treatment values, the true value of the instantaneous 

indirect effect lay either to the left or to right for all replications within that condition. In 

contrast, coverage rates for the nonlinear estimator range from 32% to 87% across 

conditions for low treatment values.  

For the nonlinear estimator at low treatment values, true instantaneous indirect 

effect values that were not contained in the PRODCLIN confidence interval always fell 

to the right of estimated confidence interval, doing so between 13% and 68% of the time. 

Coverage rate ranges for low level-2 sample size conditions were smaller than for high 

level-2 sample size conditions for the nonlinear estimator, ranging from 56% to 87% for 

low level-2 sample size conditions, and from 32% to 77% for high sample size 

conditions. For low level-2 unit conditions, the true value of the instantaneous indirect 
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effect fell to the right of the PRODCLIN confidence interval between 13% and 44% of 

the time, and between 23% and 68% of the time for high level-2 unit conditions. 

 Level-1 sample size had little effect on nonlinear coverage rates, ranging from 

32% to 87% for low level-1 sample size conditions, and from 32% to 85% for high level-

1 sample size conditions. For replications in which the true value of the instantaneous 

indirect effect was not covered by the nonlinear estimator, true values fell to the left of 

the coverage rate between 13% and 68% of the time for low level-1 sample size 

conditions, and between 15% and 68% of the time for high level-1 sample size 

conditions.  

ICC values had a similarly negligible effect on nonlinear coverage rates at low 

treatment values, ranging from 32% to 85% for low ICC conditions, and from 32% to 

87% for high ICC conditions. For replications in which the true value of the 

instantaneous indirect effect was not covered by the nonlinear PRODCLIN confidence 

interval, the true value fell to the left of the confidence interval between 15% and 68% of 

the time for low ICC conditions, and between 13% and 68% of the time for high ICC 

conditions.  

Pseudo-slope values had the most noticeable effect on both the linear and 

nonlinear estimators.  For conditions with a generating pseudo-slope value of 0.14 at low 

treatment values, the linear estimator fell to the left of PRODCLIN coverage rate between 

99% and 100% of the time (falling within the coverage rate exactly 1% of the time for the 

afore mentioned specific study condition).  In contrast, the nonlinear estimator fell with 

the PRODCLIN coverage rate between 32% and 59% of the time for pseudo-slope 



 89 

generating conditions of 0.14, with the true value of the instantaneous indirect effect 

never falling to the left of the nonlinear PRODCLIN confidence interval. For conditions 

with a generating pseudo-slope value of 0.39 at low treatment values, true values of the 

instantaneous indirect effect always fell to the right of the linear PRODCLIN coverage 

rates. For the nonlinear estimator at low treatment values, PRODCLIN coverage rates 

range from 72% to 87%, with true values never falling to the left of the estimated 

confidence interval. 
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Table 6.  Coverage rates for confidence intervals around low treatment values.  

Conditions Left Coverage Right 

b γ10 Clusters Subjects ICC Nonlinear Linear Nonlinear Linear Nonlinear Linear 

0 0.14 10 15 0.10 0.00 0.03 1.00 0.93 0.00 0.04 

    
0.20 0.00 0.04 1.00 0.93 0.00 0.04 

   
30 0.10 0.00 0.04 1.00 0.93 0.00 0.03 

    
0.20 0.00 0.03 1.00 0.94 0.00 0.03 

  
30 15 0.10 0.00 0.03 1.00 0.95 0.00 0.02 

    
0.20 0.00 0.02 1.00 0.95 0.00 0.03 

   
30 0.10 0.00 0.02 1.00 0.94 0.00 0.04 

    
0.20 0.00 0.03 1.00 0.94 0.00 0.03 

 
0.39 10 15 0.10 0.00 0.03 1.00 0.95 0.00 0.02 

    
0.20 0.00 0.02 1.00 0.94 0.00 0.04 

   
30 0.10 0.00 0.02 1.00 0.94 0.00 0.04 

    
0.20 0.00 0.03 1.00 0.94 0.00 0.03 

  
30 15 0.10 0.00 0.02 1.00 0.95 0.00 0.03 

    
0.20 0.00 0.02 1.00 0.96 0.00 0.02 

   
30 0.10 0.00 0.03 1.00 0.94 0.00 0.03 

    
0.20 0.00 0.03 1.00 0.95 0.00 0.03 

0.39 0.14 10 15 0.10 0.00 0.99 0.57 0.01 0.43 0.00 

    
0.20 0.00 1.00 0.59 0.00 0.41 0.00 

   
30 0.10 0.00 1.00 0.56 0.00 0.44 0.00 

    
0.20 0.00 1.00 0.58 0.00 0.42 0.00 

  
30 15 0.10 0.00 1.00 0.32 0.00 0.68 0.00 

    
0.20 0.00 1.00 0.35 0.00 0.65 0.00 

   
30 0.10 0.00 1.00 0.36 0.00 0.64 0.00 

    
0.20 0.00 1.00 0.32 0.00 0.68 0.00 

 
0.39 10 15 0.10 0.00 0.00 0.85 0.00 0.15 1.00 

    
0.20 0.00 0.00 0.87 0.00 0.13 1.00 

   
30 0.10 0.00 0.00 0.85 0.00 0.15 1.00 

    
0.20 0.00 0.00 0.84 0.00 0.16 1.00 

  
30 15 0.10 0.00 0.00 0.72 0.00 0.28 1.00 

    
0.20 0.00 0.00 0.74 0.00 0.26 1.00 

   
30 0.10 0.00 0.00 0.74 0.00 0.26 1.00 

        0.20 0.00 0.00 0.77 0.00 0.23 1.00 

Note:  “Nonlinear” refers to instantaneous indirect effect estimates using the nonlinear 

model specification. “Linear” refers to instantaneous indirect effect estimates using the 

linear model. 
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PRODCLIN confidence interval coverage rates for mean treatment values are 

displayed in Table 7. Overall, coverage rates for the nonlinear estimator ranged from 

39% to 83%, and from zero to 11% for the linear estimator. When the true value of the 

instantaneous indirect effect was not contained in the linear PRODCLIN confidence 

interval, the true value lay only to the right or left of the confidence interval within each 

study condition. For the nonlinear estimator, in contrast, the true value of the 

instantaneous indirect effect fell only to the right of the PRODCLIN confidence interval 

across study conditions for replications in which the nonlinear PRODCLIN confidence 

interval does not include the true value of the instantaneous indirect effect.  

At mean treatment values, coverage rate ranges differed across level-2 sample 

size conditions for both the linear and nonlinear estimators. For the linear estimator, 

PRODCLIN coverage rates ranged from 0% to 11% for low level-2 sample size 

conditions, and from 0% to 1% for high level-2 sample size conditions. For the nonlinear 

estimator, coverage rates ranged from 57% to 83% for low level-2 unit conditions, and 

from 39% to 83% for high level-2 unit conditions. PRODCLIN coverage rates were not 

noticeably different across level-1 sample size conditions. For the linear estimator at 

mean treatment values, coverage rates ranged from 0% to 11% for low level-1 unit 

conditions, and from 0% to 6% across high level-1 unit conditions. For the nonlinear 

estimator at mean treatment values, PRODCLIN coverage rates ranged from 43% to 83% 

across low level-1 unit conditions, and from 39% to 83% across high level-1 unit 

conditions.  
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ICC values also negligibly impacted coverage rates for both the linear and 

nonlinear estimators. For the linear estimator at low treatment values, coverage rates 

ranged from 0% to 11% and from 0% to 9% for low and high ICC conditions, 

respectively. For the nonlinear estimator, coverage rates ranged from 39% to 83% across 

low ICC conditions, and from 41% to 83% across high ICC conditions. Pseudo-slope 

generating values provided the most noticeable coverage rate differences for both the 

linear and nonlinear estimators. For the linear estimator at mean treatment values, 

coverage rates ranged from 0% to 11% for conditions with a generating pseudo-slope 

value of 0.14, and were equal to 0% for all conditions with a generating pseudo-slope 

value of 0.39. Coverage rates for the nonlinear estimator at mean treatment values ranged 

from 80% to 83% for low pseudo-slope conditions, and from 39% to 60% for high 

pseudo-slope conditions. 

Coverage rates for high treatment values are displayed in Table 8. As was found 

for estimates at both low and mean treatment values, coverage rates for the nonlinear 

estimator outperformed coverage rates for the linear estimator for all conditions.  For the 

linear estimator, coverage rates were equal to 0% across all study conditions.  Coverage 

rates ranged from 1% to 71% for the nonlinear estimator. Examining the effect of the 

number of level-2 units on nonlinear coverage rates at high treatment values, coverage 

rates ranged from 10% to 71% for low level-2 unit conditions, and from 1% to 67% 

across high level-2 unit conditions.  

The number of level-1 units had little effect on nonlinear coverage rates, ranging 

from 1% to 71% for low level-1 unit conditions, and from 1% to 70% for high level-1 
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unit conditions. ICC values had similarly negligible effect, with nonlinear coverage rates 

ranging from 1% to 70% across low ICC conditions, and from 1% to 71% across high 

ICC conditions. Pseudo-slope generating values had the most noticeable effect on 

nonlinear estimator coverage rates, ranging from 61% to 71% for conditions with a 

pseudo-slope generating value of 0.14, and from 1% to 13% for conditions with a 

pseudo-slope generating value of 0.39. For replications in which the nonlinear 

PRODCLIN coverage rate did not include the true value of the instantaneous indirect 

effect at high treatment values, the true value fell only to the right of the confidence 

interval for conditions with a pseudo-slope generating value of 0.14.  For conditions with 

a pseudo-slope generating value of 0.39, the true value fell to the left of the nonlinear 

PRODCLIN confidence interval between 21% and 33% of the time, and to the right of 

the PRODCLIN confidence interval between 57% and 77% of the time. 

Summary of PRODCLIN coverage rates 

In summary, for conditions with a generating value of 0.39 for the b parameter, 

coverage rates for the nonlinear estimator always exceeded coverage rates for the linear 

estimator. At low treatment values, coverage rates were at most 1% for the linear 

estimator. Coverage rates for the nonlinear estimator for conditions with a 0.39 b 

parameter were larger for conditions with fewer level-2 units across treatment values. 

Conditions with a lower value for the pseudo-slope parameter produced higher coverage 

rates for the nonlinear estimator than did conditions with higher pseudo-slope values for 

mean and high treatment values for conditions with a 0.39 b parameter. For low treatment 
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values, conditions with a higher value for the pseudo-slope parameter produced higher 

coverage rates than did conditions with lower pseudo-slope values. 
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Table 7.  Coverage rates for confidence intervals around mean treatment values. 

Conditions Left Coverage Right 

b γ10 Clusters Subjects ICC Nonlinear Linear Nonlinear Linear Nonlinear Linear 

0 0.14 10 15 0.10 0.00 0.03 1.00 0.93 0.00 0.04 

    
0.20 0.00 0.04 1.00 0.93 0.00 0.04 

   
30 0.10 0.00 0.04 1.00 0.93 0.00 0.03 

    
0.20 0.00 0.03 1.00 0.94 0.00 0.03 

  
30 15 0.10 0.00 0.03 1.00 0.95 0.00 0.02 

    
0.20 0.00 0.02 1.00 0.95 0.00 0.03 

   
30 0.10 0.00 0.02 1.00 0.94 0.00 0.04 

    
0.20 0.00 0.03 1.00 0.94 0.00 0.03 

 
0.39 10 15 0.10 0.00 0.03 1.00 0.95 0.00 0.02 

    
0.20 0.00 0.02 1.00 0.94 0.00 0.04 

   
30 0.10 0.00 0.02 1.00 0.94 0.00 0.04 

    
0.20 0.00 0.03 1.00 0.94 0.00 0.03 

  
30 15 0.10 0.00 0.02 1.00 0.95 0.00 0.03 

    
0.20 0.00 0.02 1.00 0.96 0.00 0.02 

   
30 0.10 0.00 0.03 1.00 0.94 0.00 0.03 

    
0.20 0.00 0.03 1.00 0.95 0.00 0.03 

0.39 0.14 10 15 0.10 0.00 0.00 0.81 0.11 0.19 0.89 

    
0.20 0.00 0.00 0.83 0.09 0.17 0.90 

   
30 0.10 0.00 0.00 0.80 0.06 0.20 0.94 

    
0.20 0.00 0.00 0.80 0.05 0.20 0.95 

  
30 15 0.10 0.00 0.00 0.81 0.00 0.19 1.00 

    
0.20 0.00 0.00 0.80 0.01 0.20 1.00 

   
30 0.10 0.00 0.00 0.83 0.00 0.17 1.00 

    
0.20 0.00 0.00 0.81 0.00 0.19 1.00 

 
0.39 10 15 0.10 0.01 1.00 0.57 0.00 0.43 0.00 

    
0.20 0.00 1.00 0.58 0.00 0.42 0.00 

   
30 0.10 0.00 1.00 0.60 0.00 0.39 0.00 

    
0.20 0.01 1.00 0.57 0.00 0.42 0.00 

  
30 15 0.10 0.00 1.00 0.43 0.00 0.57 0.00 

    
0.20 0.00 1.00 0.43 0.00 0.57 0.00 

   
30 0.10 0.00 1.00 0.39 0.00 0.61 0.00 

        0.20 0.00 1.00 0.41 0.00 0.59 0.00 

Note:  “Nonlinear” refers to instantaneous indirect effect estimates using the nonlinear 

model specification. “Linear” refers to instantaneous indirect effect estimates using the 

linear model. 
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Table 8.  Coverage rates for confidence intervals around high treatment values. 

Conditions Left Coverage Right 

b γ10 Clusters Subjects ICC Nonlinear Linear Nonlinear Linear Nonlinear Linear 

0 0.14 10 15 0.10 0.00 0.03 1.00 0.93 0.00 0.04 

    
0.20 0.00 0.04 1.00 0.93 0.00 0.04 

   
30 0.10 0.00 0.04 1.00 0.93 0.00 0.03 

    
0.20 0.00 0.03 1.00 0.94 0.00 0.03 

  
30 15 0.10 0.00 0.03 1.00 0.95 0.00 0.02 

    
0.20 0.00 0.02 1.00 0.95 0.00 0.03 

   
30 0.10 0.00 0.02 1.00 0.94 0.00 0.04 

    
0.20 0.00 0.03 1.00 0.94 0.00 0.03 

 
0.39 10 15 0.10 0.00 0.03 1.00 0.95 0.00 0.02 

    
0.20 0.00 0.02 1.00 0.94 0.00 0.04 

   
30 0.10 0.00 0.02 1.00 0.94 0.00 0.04 

    
0.20 0.00 0.03 1.00 0.94 0.00 0.03 

  
30 15 0.10 0.00 0.02 1.00 0.95 0.00 0.03 

    
0.20 0.00 0.02 1.00 0.96 0.00 0.02 

   
30 0.10 0.00 0.03 1.00 0.94 0.00 0.03 

    
0.20 0.00 0.03 1.00 0.95 0.00 0.03 

0.39 0.14 10 15 0.10 0.00 0.00 0.70 0.00 0.30 1.00 

    
0.20 0.00 0.00 0.71 0.00 0.29 1.00 

   
30 0.10 0.00 0.00 0.67 0.00 0.33 1.00 

    
0.20 0.00 0.00 0.70 0.00 0.30 1.00 

  
30 15 0.10 0.00 0.00 0.65 0.00 0.35 1.00 

    
0.20 0.00 0.00 0.67 0.00 0.33 1.00 

   
30 0.10 0.00 0.00 0.65 0.00 0.35 1.00 

    
0.20 0.00 0.00 0.61 0.00 0.39 1.00 

 
0.39 10 15 0.10 0.29 1.00 0.10 0.00 0.61 0.00 

    
0.20 0.31 1.00 0.11 0.00 0.59 0.00 

   
30 0.10 0.33 1.00 0.11 0.00 0.57 0.00 

    
0.20 0.30 1.00 0.13 0.00 0.58 0.00 

  
30 15 0.10 0.25 1.00 0.02 0.00 0.73 0.00 

    
0.20 0.25 1.00 0.01 0.00 0.74 0.00 

   
30 0.10 0.21 1.00 0.01 0.00 0.77 0.00 

        0.20 0.23 1.00 0.02 0.00 0.75 0.00 

Note:  “Nonlinear” refers to instantaneous indirect effect estimates using the nonlinear 

model specification. “Linear” refers to instantaneous indirect effect estimates using the 

linear model. 
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Chapter 5:  Discussion 

The relationship between class size and subsequent student achievement may 

provide a novel forum within which a nonlinear treatment-mediator relationship may be 

modeled with the logistic change trajectory. More generally, the logistic change 

trajectory may provide an appropriate means of modeling nonlinear treatment-mediator 

relationships containing ceiling and floor effects. The current study was intended to 

assess estimation of the logistic change trajectory for handling such scenarios. 

The current study encountered noticeable estimation problems for two of the 

investigated models. More specifically, non-convergence rates for the linear outcome 

model reached values as high as 7.9%, and non-convergences rates for the nonlinear 

mediator model reached values as high as 44.3%. High non-convergence rates for the 

linear outcome model stem from conditions with low ICC values, low level-2 sample 

sizes, and low level-1 sample sizes. The magnitude of the ICC and the number of level-2 

units are crucial for proper linear multilevel model estimation; high ICC values and larger 

numbers of level-2 units are known to produce less biased parameter estimates 

(Goldstein, 2003), and larger samples are known to facilitate model convergence (Hox, 

2002). Given this relationship between ICC and level-2 sample size and multilevel model 

estimation, the observed higher non-convergence rates for low ICC and low level-2 

sample size conditions are unsurprising.  

In contrast, the nonlinear mediator model encountered more estimation problems 

for conditions with larger numbers of level-2 units. This contradicts previous research on 
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the importance of level-2 sample size in linear multilevel model estimation. For the 

NLMIXED procedure, larger numbers of random effects (which, in this case, correspond 

to additional level-2 units) increase the computational complexity of the model’s 

estimation (Kiernan, Tao, & Gibbs, 2012), rendering convergence less likely. In the 

current investigation, then, conditions with larger numbers of level-2 units should 

encounter more convergence issues when compared to conditions with lower numbers of 

level-2 units.  Further, additional level-2 random effects create a larger chance that the 

simulation sample contains outliers. PROC NLMIXED is known to perform poorly with 

“sufficiently noisy” data (Wolfinger, 1999). As outliers qualify as statistical noise, any 

conditions that increase the likelihood of their presence will result in increased rates of 

non-convergence. This was observed in the current study for conditions with larger 

numbers of level-2 units. Finally, “badly scaled” problems, or problems containing 

parameters with widely varying scales, introduce computational complexities (SAS, 

2012). In the current study, all generating values for the pseudo-slope parameter and its 

level-2 variance were less than one, while the generating value for the pseudo-intercept 

parameter was equal to 150. All of these parameters were estimated for each replication, 

introducing the scaling issue described above. This, combined with conditions containing 

high level-2 sample sizes, would contribute to increased rates of non-convergence. 

Scaling issues may be avoided by either a) specifying reasonable starting values for the 

pseudo-slope parameter, and therefore not requiring that it be estimated, or b) 

transforming the pseudo-intercept parameter so that its magnitude is closer to that of the 

pseudo-slope and variance parameters. Future research should explore these possibilities. 

http://support.sas.com/resources/papers/proceedings12/332-2012.pdf
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Convergence problems for the linear mediator model were only evident in 

conditions with low level-2 sample sizes and a generating value of 0.39 for the pseudo-

slope parameter. However, non-convergence rates for this set of conditions were at most 

0.9%, and may therefore be considered negligible. ICC values had no effect on linear 

mediator model estimation, as the ICC was not considered in generating values for the 

mediator. Increased non-convergence rates for low level-2 unit conditions mirrors the 

patterns observed in both linear model estimation and previous research on linear 

multilevel models (Hox, 2002). For both the linear and nonlinear estimated models for 

the mediator, non-convergent cases may be explained, in large part, by the large 

generating value selected for the level-1 residuals’ variance. While consistent with the 

values appearing in the applied example supplied by Singer and Willett (2003), a level-1 

variance of 100 may have introduced too much noise into the generated datasets.  As 

PROC NLMIXED is known to encounter convergence issues with noisy data, and 

problems of scale may affect PROC MIXED convergence (Kiernan, Tao, & Gibbs, 

2012), this may explain the observed non-convergence rates for both the linear and the 

nonlinear models.  

The current study used the default settings in SAS PROC NLMIXED when 

estimating the nonlinear model for the mediator. With non-convergence rates as high as 

43%, alternative computational methods may provide more efficient means of estimating 

the proposed nonlinear model. Additionally, poor starting values for the nonlinear model 

for the mediator may have contributed to the observed convergence issues. One possible 

solution may involve estimating the nonlinear model twice (SAS Institute, 2012). In the 

http://support.sas.com/resources/papers/proceedings12/332-2012.pdf
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first estimation, the first-order optimization method is used in place of the default 

optimization. Use of the former estimation procedure might provide better starting values 

that should enhance the resulting convergence rates. Parameters estimates from this 

method could then be used as starting values for the second nonlinear estimation using 

the default settings. This method may boost convergence rates in future research.  

This study replicates previous findings regarding the recovery of the b parameter 

in multilevel mediation settings (i.e., Pituch et al., 2006). More specifically, this 

parameter is consistently estimated with bias less than the five percent cutoff 

recommended by Hoogland and Boomsma (1998) using conventional linear multilevel 

methods. For conditions containing a true value of zero for the instantaneous indirect 

effect, both the linear and nonlinear estimators provide unbiased estimates of the 

instantaneous indirect effect. This is unsurprising given that a) values of zero for the 

instantaneous indirect effect in this study were produced by specifying a value of zero for 

the true value of the b parameter, and b) the b parameter was estimated with minimal bias 

across all study conditions. For low, mean, and high treatment values, then, unbiased 

estimation of the b parameter leads directly to unbiased estimation of the instantaneous 

indirect effect when the true value of the b parameter is equal to zero. 

Estimation of the pseudo-slope parameter returned relative parameter bias values 

within the recommended cutoff for all but two generating conditions. For these two 

conditions, however, relative parameter bias of pseudo-slope parameter only marginally 

exceeded the 0.05 threshold.  For the condition in which b was generated to be zero, the 

pseudo-slope parameter value was low, with the smaller level-2 and level-1 sample sizes, 
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and the lower ICC value, the relative parameter bias for the pseudo-slope was 6.8%. 

Similarly, for the condition in which b was generated to be 0.39, low pseudo-slope, low 

level-2 and level-1 sample sizes, and the higher ICC value, the relative parameter bias for 

the pseudo-slope parameter was equal to 5.2%.  

The nonlinear estimator proved less biased than the linear estimator at all three 

treatment levels for all conditions with a non-zero true value for the instantaneous 

indirect effect. However, only conditions with a pseudo-slope value of 0.39, a b 

parameter value of 0.39, and low treatment values return results within or near Hoogland 

and Boomsma’s (1998) recommended five percent threshold. While the marginal pseudo-

slope bias observed for low level-2, low pseudo-slope value conditions necessarily 

contributed to the observed bias of the instantaneous indirect effect, it in no way accounts 

for the severity of the bias observed across the majority of the conditions containing a 

non-zero true instantaneous indirect effect. One possible explanation lies in estimation 

accuracy of the pseudo-intercept parameter, which was not included as a design condition 

but was estimated in PROC NLMIXED. Table 9 shows that, for 17 of the 32 design 

conditions, estimated values for the pseudo-intercept parameter produced relative 

parameter bias values in excess of 5%. The bias in the estimation of the pseudo-intercept 

parameter was particularly egregious for conditions with low level-1 and low level-2 

sample sizes, ranging from 17% to 22%, and more than doubling the highest parameter 

bias observed for all other conditions. Because this value goes into the calculation of the 

instantaneous indirect effect, the biased nature of the pseudo-intercept parameter, 
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particularly for low level-1 and level-2 sample size conditions, undoubtedly contributed 

to the bias observed for the instantaneous indirect effect. 
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Table 9.  Relative parameter bias of the pseudo-intercept parameter. 

Conditions   

b γ10 Clusters Subjects ICC Bias 

0 0.14 10 15 0.10 0.162 

    
0.20 0.154 

   
30 0.10 0.059 

    
0.20 0.066 

  
30 15 0.10 0.033 

    
0.20 0.041 

   
30 0.10 0.019 

    
0.20 0.012 

 
0.39 10 15 0.10 0.170 

    
0.20 0.135 

   
30 0.10 0.074 

    
0.20 0.057 

  
30 15 0.10 0.042 

    
0.20 0.041 

   
30 0.10 0.022 

    
0.20 0.015 

0.39 0.14 10 15 0.10 0.156 

    
0.20 0.223 

   
30 0.10 0.070 

    
0.20 0.068 

  
30 15 0.10 0.045 

    
0.20 0.050 

   
30 0.10 0.014 

    
0.20 0.019 

 
0.39 10 15 0.10 0.147 

    
0.20 0.171 

   
30 0.10 0.058 

    
0.20 0.051 

  
30 15 0.10 0.043 

    
0.20 0.038 

   
30 0.10 0.006 

        0.20 0.023 

Note. Bolded values indicate relative parameter bias in excess of the recommended 0.05 

cutoff. 
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The magnitude of the true instantaneous indirect effect may also be partially 

responsible for observed bias results. Given the generating parameter values used in the 

current investigation, the true instantaneous indirect effect’s value was frequently less 

than one at each treatment value. When conducting the relative parameter bias calculation 

for certain conditions (as described in Equation 66), this necessarily requires using a 

value that, in some cases, is substantially less than one for the denominator of the 

equation. Mathematically, this may result in large relative parameter bias estimates for 

replications in which the parameter bias is quite negligible. Taking an example from the 

current study, for the condition with a generating value of 0.39 for both the b and pseudo-

slope parameters, 10 level-2 units, 30 level-1 units and an ICC of 0.20, the nonlinear 

estimator produces a relative parameter bias value of 1,872% at high treatment values. 

The true value of the instantaneous indirect effect for this condition at high treatment 

values is obtained by substituting the design conditions into Equation 58. Additionally, it 

can be shown the mean value of a uniform distribution is equal to  

 
2

 
, (69) 

where  and  represent the lower and upper support boundaries of the uniform 

distribution, respectively (Ross, 2002). Similarly, the standard deviation of a uniform 

distribution is given by 

  
 

12

2
 

. (70) 
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With a treatment variable drawn from a uniform distribution defined from zero to 50, and 

the design conditions mentioned above, the true value of the instantaneous indirect effect 

for high treatment values is equal to 0.000478. For this set of generating conditions, the 

average value of the instantaneous indirect effect ( i̂ in the relative parameter bias and 

parameter bias equations defined Equations 66 and 67) is equal to 0.00942. This produces 

a parameter bias of 0.00894, but a relative parameter bias of over 1,000%. Table 10 

shows that same is true for many of the conditions exhibiting substantial relative 

parameter bias. It may be, then, that parameter bias rather than relative parameter bias 

might provide a better metric when the true value of the parameter is substantially less 

than one. In addition, consideration of the practical significance of the difference between 

the mean parameter estimate and the true value should inform inferences about how 

substantial bias might be.  
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Table 10. Instantaneous indirect effect values for conditions with a non-zero b parameter. 

Conditions Treatment Value 

b γ10 Clusters Subjects ICC Low Mean High 

0.39 0.14 10 15 0.10 0.15083 0.80884 1.27992 

0.39 0.14 10 15 0.20 0.15083 0.80884 1.27992 

0.39 0.14 10 30 0.10 0.15083 0.80884 1.27992 

0.39 0.14 10 30 0.20 0.15083 0.80884 1.27992 

0.39 0.14 30 15 0.10 0.15083 0.80884 1.27992 

0.39 0.14 30 15 0.20 0.15083 0.80884 1.27992 

0.39 0.14 30 30 0.10 0.15083 0.80884 1.27992 

0.39 0.14 30 30 0.20 0.15083 0.80884 1.27992 

0.39 0.39 10 15 0.10 3.13907 0.13070 0.00048 

0.39 0.39 10 15 0.20 3.13907 0.13070 0.00048 

0.39 0.39 10 30 0.10 3.13907 0.13070 0.00048 

0.39 0.39 10 30 0.20 3.13907 0.13070 0.00048 

0.39 0.39 30 15 0.10 3.13907 0.13070 0.00048 

0.39 0.39 30 15 0.20 3.13907 0.13070 0.00048 

0.39 0.39 30 30 0.10 3.13907 0.13070 0.00048 

0.39 0.39 30 30 0.20 3.13907 0.13070 0.00048 

 

Although PRODCLIN coverage rates for conditions containing true non-zero 

values of the instantaneous indirect effect favored the nonlinear estimator over the linear 

estimator, coverage rates for the nonlinear estimator never exceeded 85%, and were as 

low as 2% for certain combinations of generating parameters and treatment values. 

Again, this may be a result of the small values for the instantaneous indirect effect under 

certain conditions. Examining the example from the discussion on the practical 

significance of relative parameter bias for small true parameter values, the condition with 

a generating value of 0.39 for both the b and pseudo-slope parameters, 10 level-2 units, 
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30 level-1 units and an ICC of 0.20 resulted in a true instantaneous indirect effect of 

0.000478 at high treatment values. Although this value is legitimately positive, estimating 

a confidence interval around such a negligible effect may be beyond the precision of the 

estimation methods examined here. Additionally, confidence intervals surrounding such 

an effect are likely to contain zero within their bounds, leading the applied researcher to 

conclude that no mediated effect is present. Values this small resulted from choosing 

generating values for the model parameters and then substituting those into the equation 

for the instantaneous indirect effect calculation. In future simulation research, it may 

prove more useful to begin with alternative, though realistic, values for the instantaneous 

indirect effect at different treatment values, working backwards to derive suitable 

generating parameters for the nonlinear model, as generating parameter values stemming 

from different values for the instantaneous indirect effect may be less biased and easier to 

estimate. Additionally, the observed bias in the nonlinear estimator of the instantaneous 

indirect effect necessarily decreased the observed confidence interval coverage rates, as 

coverage rates set around a biased parameter are, themselves, biased. Better estimation of 

the pseudo-slope and, especially, the pseudo-intercept parameters (as discussed above), 

may result in improved coverage rates for nonlinear PRODCLIN confidence intervals. 

Future research should explore how reasonable it is to observe larger values for the 

instantaneous indirect effect and assess parameter estimation for nonlinear model 

parameters stemming from practically significant values of the instantaneous indirect 

effect. 
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The multivariate delta method that was to calculate a standard error for the 

nonlinear term for the instantaneous indirect effect utilized the first-order Taylor series 

expansion of the partial derivative matrix for the nonlinear model parameters. Higher 

order approximations have been investigated for potential use in linear mediation analysis 

(e.g., Mackinnon et al, 2002). Although linear multilevel mediation analyses typically 

utilize the first-order approximation (Mackinnon, 2008), higher order expansion may be 

warranted in cases involving a nonlinear treatment-mediator relationship. This is 

especially so for low and high treatment values, as the first-order Taylor series 

approximation only provides accurate standard errors for functions with independent 

variables have a high probability of falling near their mean (Oehlert, 1992; Rice, 1994). 

In the context of mediation analysis, a normally distributed treatment variable would 

satisfy this requirement, as the treatment value would be most likely to reside near its 

generating mean. In contrast, the current investigation generated treatment values from a 

uniform distribution to simulate a dosage-like treatment variable that is both constrained 

to positive values and that adequately represents the entire spectrum of possible treatment 

dosages. This latter consideration was especially important for model convergence given 

the relevant parameter values, as inadequate numbers of observations at the low and high 

end of the treatment spectrum were shown to severely inhibit model convergence in pilot 

testing. The uniform distribution investigated here to generate treatment values, then, 

does not satisfy the condition that treatment values possess a high likelihood of falling 

near their mean, as values from a uniform distribution are equally distributed across its 

range of support. In this instance, a higher-order Taylor series expansion may prove 



 109 

useful when investigating low and high treatment values. Future research should explore 

this possibility. 

Bootstrap resampling methods offer an alternative to the PRODCLIN program for 

providing confidence intervals around the instantaneous indirect effect (Hayes & 

Preacher, 2010). A preliminary investigation used the parametric bias-corrected bootstrap 

resampling method to calculate confidence intervals around the instantaneous indirect 

effect for one of the conditions (namely, the condition involving generating values of 

0.39 for the pseudo-slope parameter, 0.39 for the b parameter, 30 level-2 units, 30 level-1 

units, and a residual ICC of 0.10) using 1,000 bootstrapped samples per replication. 

Although only 25 replications were produced, coverage rates were a perfect 100% for 

low, mean, and high treatment values. However, these improved accuracy over the 

corresponding PRODCLIN results come at a huge computational cost, as this analysis 

only produced 25 pilot replications (each with 1,000 bootstrap replications) over a period 

of 9 days. The added processing time, however, may offset the potential improvement in 

confidence interval coverage rates. Additionally, the width of the bootstrap confidence 

interval was larger on average across the 25 bootstrap replications than the PRODCLIN 

confidence interval for the same set of generating parameters. To the extent that this 

holds up over a larger number of replications, this may explain why the bootstrap 

confidence interval outperforms its PRODCLIN counterpart. Future research should 

extend the research started here and more fully investigate bootstrap coverage rates using 

a larger number of replications, in addition to examining the trade-off between processing 

time and coverage rates. 
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LIMITATIONS 

The current investigation is limited in several important ways. First, generating 

conditions for the pseudo-slope value were limited to values of 0.14 and 0.39. Although 

the current investigation was designed as an initial attempt to examine the estimation and 

utility of the logistic change model in the context of multilevel mediation, the importance 

of the pseudo-slope parameter to both the parameter bias and efficiency of the 

instantaneous indirect effect suggests a need for the examination of additional generating 

pseudo-slope values. Further, the generating values for the pseudo-slope parameter were 

borrowed from the nonlinear mediation literature in the context of dichotomous 

outcomes. While this provided an adequate starting place for an initial investigation, 

values drawn from applied examples may prove more useful in examining the multilevel 

logistic change model. Unfortunately, applied examples of the logistic change trajectory, 

especially in the context of mediation analysis, are quite sparse at this time. Future 

research should explore the application of the logistic change model in the context of 

mediation analysis as a means of exploring plausible generating conditions for 

subsequent Monte Carlo research. 

The current study utilized simulated data based on a model with a fixed pseudo-

intercept parameter. This was done for two reasons. First, to mimic the scenario in which 

participants in a particular intervention must pass a set of global diagnostic or screening 

criteria. Filtering program participants in this manner ensures that participants are mostly 

homogenous when beginning the intervention, suggesting a lack of variability in the 

initial values for the effect of the treatment on a mediator (for a truly mediated construct). 
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If the screening criteria are well-defined and equally enforced across level-2 units, this 

lack of pseudo-intercept variability should be evident across all participating clusters. 

This was modeled in the current study by not allowing the pseudo-intercept parameter to 

randomly vary across level-2 units. Secondly, this particular model specification (without 

a random effect for the pseudo-intercept parameter) was chosen to facilitate model 

convergence, as SAS PROC NLMIXED is optimized for problems with a single random 

effect (Wolfinger, 1999). Substantively, the former consideration may not hold across all 

interventions that utilize a prescreening process. Mathematically, SAS PROC NLMIXED 

is capable of estimating models containing multiple random effects, within the limits of 

the scaling and level-2 sample size considerations mentioned previously. Future research 

should explore scenarios in which both the pseudo-intercept and the pseudo-slope 

parameters are allowed to vary across level-2 units. 

The generating value of the pseudo-intercept parameter was not included as a 

design variable and was, instead, set at a value of 150 for all study conditions. This value 

was presented in Singer and Willett’s (2003) illustration, as were other plausible values 

for the pseudo-intercept parameter. The a posteriori bias analysis for the pseudo-intercept 

parameter (presented above) suggests that estimation issues surrounding this parameter 

contribute to the observed relative parameter bias of the instantaneous indirect effect. 

Given the paucity of applied examples utilizing the logistic change trajectory, additional 

research is needed to understand the range of appropriate generating values for future 

simulation research. As an additional consideration, the scale of this value was noticeably 

different from the scale of the pseudo-slope parameter. Given the previously discussed 
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scaling considerations relevant to models estimated with SAS PROC NLMIXED, this 

may have contributed to the observed convergence issues. Future research should explore 

the possibility of transforming the pseudo-intercept variable in estimating the logistic 

change trajectory. 

The upper and lower asymptotes for the nonlinear mediator model were not 

estimated by SAS PROC NLMIXED and were, instead, explicitly specified as part of the 

estimation process. This is not a requirement of the logistic change trajectory or the 

estimation process, as these values may be estimated by various statistical optimization 

procedures (PROC NLMIXED included). However, given the research on similar model 

specifications, the upper and lower asymptotes may prove difficult to estimate. More 

specifically, the similarity between the three-parameter logistic (3PL) model described in 

the item response theory (IRT) literature and the logistic change trajectory investigated 

here may provide some insight into the estimation of the upper and lower asymptotes. 

Briefly, the 3PL model can be specified as a generalized linear model whereby the 

probability of a correct response to item i for subject j is given according to the following 

equation: 
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Here, ijX represents the response to item i for person j (coded 1 if the item is answered 

correctly, and zero otherwise),  j represents the latent ability of person j, ia represents 

the discrimination parameter for item i, ib represents the model estimated difficulty 
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parameter for item i, and ic represents the pseudo-guessing parameter for item i 

(Birnbaum, 1968). The logit link function is used to specify the relationship between the 

observed response and the model’s parameters, resulting in a model that may be 

estimated as a multilevel logistic regression model with items (level-1) nested within 

subjects (level-2) an ability parameter that varies across level-2 units. The 3PL model 

may be considered a special case of the logistic change trajectory whereby additional 

parameters (specifically j , ia , and ib ) are included within the exponent, the pseudo-

intercept and upper asymptote parameters are set equal to 1, and the lower asymptote, ic , 

is estimated from the data. Given this, research regarding estimation of the lower 

asymptote in the 3PL model may inform potential issues regarding the estimation of the 

both asymptote parameters in the logistic change trajectory. More notably, the pseudo-

guessing parameter is particularly difficult to estimate, requiring larger sample sizes and, 

in many cases, Bayesian estimation methods (de Ayala, 2009). Similar problems are 

likely to be encountered when estimating the logistic change trajectory’s asymptote 

parameters.  Future researchers should be wary of these potential complications and 

explore alternatives for enhancing the asymptotes’ estimation. 

This study included only one non-zero generating value for the b parameter. For 

conditions with a generating value of zero for the b parameter, relative parameter bias 

values for the instantaneous indirect effect estimates were equal to zero (to two decimal 

places) across all other study conditions at low, mean, and high treatment values. In 

contrast, the majority of the conditions with a value of 0.39 for the b parameter exhibited 



 114 

substantial relative parameter bias. The relationship between the magnitude of the b 

parameter and the extent of the relative parameter bias, however, was impossible to 

determine given the current set of design conditions. Additionally, only positive values of 

the b parameter were considered. Future research should explore the relationship between 

both the magnitude and the sign of the b parameter and the resulting relative parameter 

bias. 

 Although the current investigation provides nonlinear specifications for 

111  , 112  , and 122   designs, this simulation study only examined the 

statistical performance of the 111   specification. Future research should focus on 

the 112   and 122   designs that are commonly encountered in cluster 

randomized trials.  In addition, the proposed study only examined multilevel designs 

containing at most two-levels consisting of a nonlinear relationship between the treatment 

and the mediating variables.  Nonlinear parameterizations could easily be extended to 3-

level designs (e.g., Pituch, Murphy, & Tate, 2010) or to designs specifying nonlinearity 

between the mediating and the outcome variables.  Future research should examine these 

possibilities. Nonlinear multilevel mediation may also exist in the context of repeated 

measures or longitudinal data analysis.  In these instances, outcomes scores are measured 

within individuals over time. Singer and Willett (2003) suggest that these kinds of 

designs may lend themselves to nonlinear model specifications. Future research should 

explore these nonlinear longitudinal designs in the context of mediation analysis.   

 The current investigation examined one specific nonlinear treatment-mediator 

relationship. As previously mentioned, nonlinear relationships are not limited to the 
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logistic change trajectory examined here. Polynomial and other exponential relationships 

may provide better model fit in certain circumstances. Additionally, although the 

nonlinear estimator outperformed the linear estimator for the majority of generating 

conditions, this may not be true of other nonlinear specifications. For complex nonlinear 

models with multiple parameters to be estimated, the complexity of the estimation 

process may render linear methods more desirable. Other nonlinear models will perform 

differently than the current nonlinear specification, and the results presented here may not 

generalize.  However, although the current investigation is model-specific, the procedure 

described here does generalize to other mediation analyses that specify a nonlinear 

treatment-mediator relationship. This procedure is summarized as follows: 

1. Specify a model for the treatment-mediator relationship and for outcome as a 

function of both the treatment and the mediator. 

2. Using the mathematical definition of the instantaneous indirect effect, derive the 

indirect effect from the equations for the mediator and the outcome. 

3. Using the delta method, derive the standard error for the nonlinear component of 

the instantaneous indirect effect. If any portion of the mediated relationship is 

specified as linear, parameter standard errors will be provided as part of the 

estimation process. 

4. Estimate all necessary parameters. 

5. Substitute the estimated parameters into the equation for the instantaneous 

indirect effect derived in 2. If the resulting instantaneous indirect effect is a 

function of the treatment variable, use three treatment values in calculating the 
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instantaneous indirect effect: the sample mean treatment value, and values one 

standard deviation above and below the sample mean treatment value. 

6. Supply values for the instantaneous indirect and all relevant standard errors to 

PRODCLIN to estimate a confidence interval at each of the three treatment 

values. Confidence intervals containing zero indicate that the treatment effect is 

not mediated at the current treatment value. 

These steps provide a general outline for incorporating a nonlinear relationship into a 

mediation analysis.  

In this study, the generating model for the treatment-mediator relationship was 

known to be nonlinear in nature. In reality, the relationship underlying a set of 

observations is rarely known a priori. The utility of specifying a nonlinear relationship 

for any portion of a mediation pathway rests upon the assumption that the relationship in 

question is truly nonlinear. Testing the nonlinearity of an observed relationship may 

require a combination of quantitative and qualitative analysis. Quantitatively, comparison 

of model fit indices and standardized residuals across linear and nonlinear model 

specifications may provide applied researchers with some guidance during the model 

selection process. Content experts and theoretical frameworks may provide additional 

information where analytic endeavors provide ambiguous answers. Applied researchers 

should be aware of these considerations prior to implementing the steps described above. 

Finally, although the proposed nonlinear multilevel mediation parameterization 

has roots in latent variable analysis, the current investigation did not utilize structural 

equation modeling methods to investigate the instantaneous indirect effect. Previous 
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research has examined structural equation modeling as a means of providing confidence 

intervals around the mediated effect (Cheung, 2007; Bollen & Stine, 1990), and as a 

means of providing alternate specifications for meditational models (Winship & Mare, 

1983). Further, the conflation of within- and between- group variance, as discussed 

previously, may be best addressed in the context of MSEM. Future research should 

explore the possibility of using MSEM to specify nonlinear mediating relationships. 

Additionally, multiple mediating measures may be employed as observed indicators of an 

unobserved latent mediating variable. This latent mediator may also be nonlinearly 

related to the treatment variable, resulting in a nonlinear mediation model similar to the 

model proposed in the current investigation. This would then necessitate estimation of a 

multilevel structural equation model to properly address the clustering of individuals 

within level-two units. Again, this is only one example of many possible alternative 

parameterizations.  Future research should investigate the performance of nonlinear 

multilevel latent variable models in the context of meditational analysis. 

Overall, the nonlinear estimator outperformed the linear estimator in terms of 

bias, efficiency, and PRODCLIN coverage rates. Generating values for the pseudo-slope 

parameter and the number of level-2 units had the most noticeable effect on convergence, 

bias, efficiency, and PRODCLIN coverage rates, suggesting the need for further 

simulations using additional generating values for these parameters. Moreover, the 

overall superior performance of the nonlinear estimator suggests that linear 

approximations for mediation analyses may not always be viable in the context of truly 

nonlinear relationships. While the parsimony of linearity is appealing for both practical 
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and philosophical reasons, linear methods do not provide an analytical panacea, 

especially in the context of mediation analysis. To the extent that both theory and 

analytical methods support nonlinear specifications, researchers should consider 

alternatives to conventional linear mediation model specifications. 
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4)  Differentiate the numerator sum by term and factor out constants. 
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6)  Factor out constants: 
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7)  The derivative of T is 1. 
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Derivation of 
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5)  Factor out constants: 
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6)  Differentiate each component of the second term’s numerator: 
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8)  Chain rule:  
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9)  Factor out constants: 
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10)  The derivative of T is 1. 

 

    























2

1000

1010

3

1000

101000
121000

)](exp[1

)(exp[

)](exp[1

)]2(exp[2
])([

T

T

T

T
b










 



 124 

 

Derivation of the multivariate delta standard error for 
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1)  Factor out constants. 
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5)  Differentiate the sum by term and factor out constants. 
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6)  Evaluate remaining derivatives. 
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5)  Factor out constants: 
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7)  Differentiate the sum by term and factor out constants: 
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9)  Factor out constants and complete remaining derivatives: 
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