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Several real world tasks involve data that is uncertain and relational in na-

ture. Traditional approaches like first-order logic and probabilistic models either

deal with structured data or uncertainty, but not both. To address these limitations,

statistical relational learning (SRL), a new area in machine learning integrating both

first-order logic and probabilistic graphical models, has emerged in the recent past.

The advantage of SRL models is that they can handle both uncertainty and struc-

tured/relational data. As a result, they are widely used in domains like social net-

work analysis, biological data analysis, and natural language processing. Bayesian

Logic Programs (BLPs), which integrate both first-order logic and Bayesian net-

works are a powerful SRL formalism developed in the recent past. In this disser-

tation, we develop approaches using BLPs to solve two real world tasks – plan

recognition and machine reading.

Plan recognition is the task of predicting an agent’s top-level plans based on

its observed actions. It is an abductive reasoning task that involves inferring cause

ix



from effect. In the first part of the dissertation, we develop an approach to abductive

plan recognition using BLPs. Since BLPs employ logical deduction to construct

the networks, they cannot be used effectively for abductive plan recognition as is.

Therefore, we extend BLPs to use logical abduction to construct Bayesian networks

and call the resulting model Bayesian Abductive Logic Programs (BALPs).

In the second part of the dissertation, we apply BLPs to the task of machine

reading, which involves automatic extraction of knowledge from natural language

text. Most information extraction (IE) systems identify facts that are explicitly

stated in text. However, much of the information conveyed in text must be inferred

from what is explicitly stated since easily inferable facts are rarely mentioned. Hu-

man readers naturally use common sense knowledge and “read between the lines”

to infer such implicit information from the explicitly stated facts. Since IE systems

do not have access to common sense knowledge, they cannot perform deeper rea-

soning to infer implicitly stated facts. Here, we first develop an approach using

BLPs to infer implicitly stated facts from natural language text. It involves learning

uncertain common sense knowledge in the form of probabilistic first-order rules by

mining a large corpus of automatically extracted facts using an existing rule learner.

These rules are then used to derive additional facts from extracted information us-

ing BLP inference. We then develop an online rule learner that handles the concise,

incomplete nature of natural-language text and learns first-order rules from noisy

IE extractions. Finally, we develop a novel approach to calculate the weights of the

rules using a curated lexical ontology like WordNet.

Both tasks described above involve inference and learning from partially

x



observed or incomplete data. In plan recognition, the underlying cause or the top-

level plan that resulted in the observed actions is not known or observed. Further,

only a subset of the executed actions can be observed by the plan recognition sys-

tem resulting in partially observed data. Similarly, in machine reading, since some

information is implicitly stated, they are rarely observed in the data. In this disser-

tation, we demonstrate the efficacy of BLPs for inference and learning from incom-

plete data. Experimental comparison on various benchmark data sets on both tasks

demonstrate the superior performance of BLPs over state-of-the-art methods.
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Chapter 1

Introduction

Several real world tasks involve data that is uncertain and relational in na-

ture. Traditional approaches like first-order logic and probabilistic models either

deal with structured data or uncertainty, but not both. To address these limitations,

statistical relational learning (SRL) (Getoor & Taskar, 2007), a new area in ma-

chine learning integrating both first-order logic and probabilistic graphical models

has emerged in the recent past. The advantage of SRL models is that they can

handle both uncertainty and structured/relational data.

Let us consider the example of predicting the task that a user is performing

on a computer based on the actions performed by the user. The user could be per-

forming the task of copying a file or moving a file from one directory to another,

and he could be working on several different files at the same time. The files and

directories represent different entities and the tasks the user is performing represent

different relations between those entities. Now, the prediction task involves infer-

ring not only the correct relation, but also the entities that participate in the relation.

Purely statistical learning techniques like Bayesian networks or Markov networks

cannot be used for such problems as these models are essentially propositional in

nature. Even though purely first-order logic based approaches handle structured

1



data, they cannot handle uncertainty. But there is always uncertainty in real data

- uncertainty in the relations between different entities, uncertainty in the types of

entities, etc. By combining strengths of both first-order logic and statistical models,

SRL formalisms lend themselves to solving such real world tasks effectively.

Because of their advantages, SRL formalisms are widely used for social net-

work analysis (e.g. (Richardson & Domingos, 2006)), biological data analysis (e.g.

(Perlich & Merugu, 2005; Huynh & Mooney, 2008)), information extraction (e.g.

(Bunescu & Mooney, 2007)), and other domains that involve structured/relational

data. As a result, the last few years have seen a development of several SRL for-

malisms like Probabilistic Relational Models (PRMs) (Friedman, Getoor, Koller,

& Pfeffer, 1999), Stochastic Logic Programs (SLPs) (Muggleton, 2000), Bayesian

Logic Programs (BLPs) (Kersting & De Raedt, 2001, 2007), Markov Logic Net-

works (MLNs) (Richardson & Domingos, 2006) etc. BLPs, which integrate first-

order logic and Bayesian networks are a simple, yet powerful formalism for solving

problems with structured data. One advantage of BLPs over other SRL formalisms

like MLNs is with regard to the grounding process used to construct Bayesian net-

works. Unlike MLNs, BLPs do not include all possible groundings of a rule in the

ground network. Instead, they include only those groundings of the rules that are

used to deduce or prove the query. As a result, the ground networks constructed

by BLPs are much smaller than those constructed by models like MLNs, enabling

BLPs to scale to large domains. Further, due to the directed nature of BLPs, it

is possible to use any type of logical inference to construct the networks. As we

will see in Chapter 3 in this dissertation, even though BLPs use logical deduction

2



by default to construct ground networks, it is also possible to employ logical ab-

duction to construct ground Bayesian networks. As a result, they can be used to

solve tasks involving abductive as well as deductive reasoning efficiently. Finally,

since Bayesian networks are a mature technology, a lot of existing machinery de-

veloped for Bayesian networks like algorithms for probabilistic inference can be

used for BLPs as well. Because of these reasons, we have chosen to use BLPs in

our research.

In this dissertation, we develop approaches using BLPs to solve two real

world tasks – plan recognition and machine reading. Plan recognition involves in-

ferring an intelligent agent’s top-level plans based on its observed actions. It has

practical applications in several domains including monitoring activities of daily

living for elderly care, intelligent surveillance systems, and intelligent personal as-

sistants or user interfaces. Machine reading involves automatic extraction of infor-

mation from natural language text. Like plan recognition, machine reading is also

widely used in practical applications such as deep question answering. For these

reasons, we have focused on developing approaches using BLPs on these two tasks.

In the first part of the dissertation, we develop an approach to abductive

plan recognition using BLPs. Plan recognition is an abductive reasoning task that

involves inferring cause from effect (Charniak & McDermott, 1985). The example

of a prediction task described above is an instance of plan recognition in intelligent

user interfaces. Since BLPs employ logical deduction to construct the networks,

they cannot be used effectively for abductive plan recognition as is. Therefore, we

extend BLPs to use logical abduction to construct Bayesian networks and call the

3



resulting model Bayesian Abductive Logic Programs (BALPs).

In the second part of the dissertation, we develop approaches to machine

reading using BLPs. Most information extraction (IE) systems (Cowie & Lehnert,

1996; Sarawagi, 2008) identify facts that are explicitly stated in text. However,

much of the information conveyed in text must be inferred from what is explicitly

stated since easily inferable facts are rarely mentioned. Human readers naturally

use common sense knowledge and “read between the lines” to infer such implicit

information from the explicitly stated facts. Since IE systems do not have access to

common sense knowledge, they cannot perform deeper reasoning to infer implicit

facts. Consider the text “Barack Obama is the president of the United States of

America.” Given the query “Barack Obama is a citizen of what country?”, standard

IE systems cannot identify the answer since citizenship is not explicitly stated in

the text. However, a human reader possesses the common sense knowledge that the

president of a country is almost always a citizen of that country, and easily infers

the correct answer.

To this end, we first develop an approach using BLPs to infer implicit facts

from natural language text. It involves learning uncertain common sense knowledge

in the form of probabilistic first-order rules by mining a large corpus of automat-

ically extracted facts using an existing rule learner. These rules are then used to

derive additional facts from explicitly stated information using BLP inference. We

then develop an online rule learner that handles the concise, incomplete nature of

natural-language text and learns first-order rules from noisy IE extractions. Finally,

we develop a novel approach to calculate the weights of the rules using a curated
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lexical ontology like WordNet (Fellbaum, 1998).

Both tasks described above involve inference and learning from partially

observed or incomplete data. In plan recognition, the underlying cause or the top-

level plan that resulted in the observed actions is not known or observed. Further,

only a subset of the executed actions can be observed by the plan recognition sys-

tem resulting in partially observed data. Similarly, in machine reading, since some

information is implicit, they are rarely observed in the data. In this dissertation, we

demonstrate the efficacy of BLPs for inference and learning from incomplete data.

Experimental comparison on various benchmark data sets on both tasks demon-

strate the superior performance of BLPs over state-of-the-art methods.

1.1 Dissertation Contributions

The first contribution involves extending BLPs for abductive plan recog-

nition. BLPs use Selective Linear Definite clause (SLD) resolution to generate

proof trees, which are then used to construct a ground Bayesian network for a given

query. However, deduction is unable to construct proofs for abductive problems

such as plan recognition because deductive inference involves predicting effects

from causes, while the plan recognition task involves inferring causes (top-level

plans) from effects (observations). Therefore, we extend BLPs to use logical ab-

duction to construct proofs. In logical abduction, missing facts are assumed when

necessary to complete proof trees, and we use the resulting abductive proof trees

to construct Bayesian networks. We call the resulting model Bayesian Abductive

Logic Programs (BALPs) (Raghavan & Mooney, 2011). We learn the parameters
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for the BALP framework automatically from data using the Expectation Maximiza-

tion algorithm adapted for BLPs by Kersting and De Raedt (2008). Experimental

evaluation on three benchmark data sets demonstrate that BALPs outperform the

existing state-of-art methods like MLNs for plan recognition.

The second contribution involves developing an approach that uses BLPs to

infer implicit facts from natural language text for machine reading. Our approach

involves learning common sense knowledge in the form of probabilistic first-order

rules by mining a substantial database of facts that an IE system has already auto-

matically extracted from a large corpus of text and subsequently using those rules

to deduce additional information from the extracted facts using the BLP frame-

work. Due to the concise and incomplete nature of natural language text, facts that

are easily inferred from explicitly stated facts are rarely mentioned in the text. As

a result, the main challenge in this task involves learning first-order rules from a

few instances of inferable facts seen in the training data. For the same reason, the

facts extracted by an IE system are always quite noisy and incomplete, as a result

of which a purely logical approach to learning and inference is unlikely to be ef-

fective. Hence, we learn probabilistic first-order rules using LIME (McCreath &

Sharma, 1998), an existing rule learner that is capable of handling noisy training

data and then use the resulting BLP to make effective probabilistic inferences when

interpreting new documents (Raghavan, Mooney, & Ku, 2012). Experimental eval-

uation of our system on a realistic test corpus from DARPA’s Machine Reading

project demonstrates improved performance compared to a purely logical approach

based on Inductive Logic Programming (ILP) (Lavrac̆ & Dz̆eroski, 1994), and an
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alternative SRL approach based on MLNs.

The final contribution in this dissertation involves developing a novel online

rule learner that is capable of learning first-order rules from noisy and incomplete

natural language extractions, which are then used to infer implicit facts from natural

language text for machine reading. Most existing inference-rule learners (Quinlan,

1990; McCreath & Sharma, 1998; Srinivasan, 2001; Kersting & De Raedt, 2008)

assume that the training data is largely accurate, and hence are not adept at learning

useful rules from noisy and incomplete IE output. Also, most of them do not scale

to large corpora. Due to these limitations, we have developed an efficient online

rule learner that handles the concise, incomplete nature of natural-language text

by learning rules in which the body of the rule typically consists of relations that

are frequently explicitly stated, while the head is a relation that is more typically

inferred. We use the frequency of occurrence of extracted relations as a heuristic for

distinguishing those that are typically explicitly stated from the ones that are usually

inferred. In order to allow scaling to large corpora, we develop an efficient online

rule learner. Experimental evaluation on the machine reading task demonstrates

superior performance of our rule learner when compared to LIME, an existing rule

learner used in our previous approach.

As an additional contribution, we also develop a novel approach to scoring

first-order rules learned from IE extractions for the purpose of inferring implicit

facts from natural language text for machine reading. Probabilistic inference us-

ing the BLP framework requires learning parameters (conditional probability table

(CPT) entries) for the learned rules. Since those relations that are easily inferred
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from explicitly stated facts are seldom seen in the training data, learning useful

parameters using conventional parameter learning approaches like EM for BLPs

(Kersting & De Raedt, 2008) have resulted in limited success (Raghavan et al.,

2012). Consequently, we develop an alternate approach to specifying parameters

for the learned first-order rules using lexical information from a curated ontology

like WordNet (Fellbaum, 1998). The basic idea behind our approach is that more

accurate rules typically have predicates that are closely related to each other in

terms of the meanings of the English words used to name them. Since WordNet is a

rich resource for lexical information, we use it for scoring rules based on word sim-

ilarity. Experimental evaluation on the machine reading task demonstrates superior

performance of the our approach over both manual weights and weights learned

using EM.

1.2 Dissertation Outline

The remainder of the dissertation is organized as follows:

• Chapter 2 reviews terminology and notation used in this dissertation. It

also reviews background on logical abduction, inductive logic programming,

Bayesian networks, and BLPs.

• Chapter 3 describes our approach to abductive plan recognition using BLPs.

Experimental evaluation of our BLP based approach on three benchmark

datasets from plan recognition demonstrates its efficacy and superior perfor-

mance over existing state-of-the-art approaches including MLNs.
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• Chapter 4 describes our approach to inferring implicit facts from natural lan-

guage text using BLPs. Experimental evaluation of our resulting system on

a realistic test corpus from DARPA’s Machine Reading project demonstrates

improved performance compared to a purely logical approach based on ILP,

and an alternative SRL approach based on MLNs.

• Chapter 5 describes our online rule learner for learning first-order rules from

noisy and incomplete natural language extractions. We also describe our ap-

proach to scoring the learned rules using WordNet. Experimental evaluation

on the test corpus from DARPA’s Machine Reading project demonstrates the

efficacy of the proposed methods.

• Chapter 6 discusses future work and chapter 7 concludes the dissertation.

We note that the material presented in Chapter 3 has appeared in our previous pub-

lication Raghavan and Mooney (2011) and the material presented in Chapter 4 has

appeared in the publication Raghavan et al. (2012).
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Chapter 2

Background

2.1 First-order logic

First-order logic is a formal language for representing relational domains

involving several objects, their properties, and their relationships with other objects

(Russell & Norvig, 2003). A term in first-order logic is a symbol that represents an

object or an entity in the domain and every object in the domain has an associated

type. There are three types of terms – constants, variables, and functions. A con-

stant is a term that represents an individual object or an entity, while a variable is a

term that acts as a template or a placeholder for a set of entities of the same type. A

function symbol, represented by f/n is a term that represents a function over a set

of terms; f is the name of the function symbol, and n is the arity, or the number of

arguments/terms it takes. All constants are represented using strings that start with

a lower–case letter (e.g mary, bob, alice), while all variables are represented using

strings that start with an upper–case (e.g X1, Y1, Z1). A predicate, denoted by p/n

represents a relation between entities in the domain; p is the name of the predicate,

and n is its arity, the number of arguments/terms the predicate takes.

A literal is a predicate applied to terms. A positive literal is called an atom,

and a negative literal is a negated atom. A literal that contains only constants is
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called a ground literal. A ground atom whose truth value is known is called a fact.

A clause is an expression of the form

b1 ∧ b2 ∧ .... ∧ bn→ h1 ∨ h2 ∨ ...... hn

where ‘∧’ represents a conjunction, ‘∨’ represents a disjunction, and ‘→’ stands

for an implication. b1 ∧ b2 ∧ .... ∧ bn is called the body or antecedent of the clause,

while h1 ∨ h2 ∨ ...... hn is called the head or consequent of the clause. The above

clause can also be written in the disjunctive normal form (DNF) as a disjunction of

literals as follows:

¬b1 ∨ ¬b2 ∨ .... ∨ ¬bn ∨ h1 ∨ h2 ∨ ...... hn

A Horn clause is a clause in DNF that contains at most one positive literal and a

definite clause is one that contains exactly one positive literal. If bi and h are atoms,

then a definite clause has the form

b1 ∧ b2 ∧ .... ∧ bn→ h

Given a logical formula, the variables in the formula are either universally

quantified or existentially quantified. A variable is said to be universally quantified

if it is true for all objects in the domain. On the other hand, a variable is said to

be existentially quantified if it is true for some object in the domain. The symbol
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‘∀’ is used for universal quantification, while the symbol ‘∃’ is used for existential

quantification.

A substitution θ = {V1/t1, V2/t2, ...Vn/tn} is an assignment of terms ti to

corresponding variables Vi. Given a formula (term, atom, clause) f and a substitu-

tion θ, then the instantiation fθ represents the formula obtained by replacing each

variable Vi in the formula by its corresponding term ti in θ. Unification is the pro-

cess that takes two atomic sentences p and q and returns a substitution θ such that

pθ = qθ, if both of them match, otherwise it returns failure.

Given a logic program, i.e. a set of first-order clauses, the Herbrand uni-

verse is defined as the set of all ground terms that can be constructed from the

constants and function symbols that are present in the program. For a function free

logic program, the Herbrand universe reduces to the set of constants that occur in

the clauses. The Herbrand base is the set of ground atoms over the Herbrand uni-

verse. The Herbrand interpretation is the set of ground atoms from the Herbrand

base that are true. A Herbrand interpretation I is a model for a clause c if and only

if for all substitutions θ such that body(c)θ ⊂ I → head(c)θ ∈ I . I is a model for a

set of clauses B if it is a model for every clause in B.

Automated inference in first-order logic involves using techniques like for-

ward chaining and backward chaining. Given a knowledge base (KB) consisting of

a set of formulae in first-order logic and a set of facts, forward chaining adds new

facts to the knowledge base. For every implication p→ q in the KB, if p is satisfied,

i.e. if p is true, then q is added to the KB, if it is not already present. On the other

hand, given a KB and a query literal, backward chaining searches for those impli-
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cations which can derive the query literal. For a query literal q, if an implication

p → q is present, and if p is true, then backward chaining concludes that q is true,

otherwise it will try to prove p. If p cannot be proved, then it fails to conclude q.

SLD resolution is a backward chaining procedure for definite clauses.

2.2 Logical Abduction

Abduction, also called abductive reasoning, is defined as the process of find-

ing the best explanation for a set of observations (Peirce, 1958). It is widely used

in tasks such as plan/activity recognition and diagnosis that require inferring cause

from effect (Ng & Mooney, 1992). Most previous approaches to abduction have

been based on first-order logic and determine a small set of assumptions sufficient to

deduce the observations (Pople, 1973; Levesque, 1989; Kakas, Kowalski, & Toni,

1993). In the logical framework, abduction is usually defined as follows (Pople,

1973):

• Given: Background knowledge B and observations O, both represented as

sets of formulae in first-order logic, where B is typically restricted to a set of

definite clauses and O is restricted to a conjunction of ground literals.

• Find: A hypothesis H , also a set of logical formulae, such that B ∪H 6|= ⊥

and B ∪H |= O.

Here |= means logical entailment and ⊥ means false, i.e. find a set of assumptions

that is consistent with the background theory and explains the observations. There
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are generally many hypotheses H that explain a particular set of observations O.

The best hypothesis is typically selected based on the size (simplicity) of H , fol-

lowing Occam’s Razor.

2.3 Inductive Logic Programming

Inductive logic programming (ILP) has been defined as the intersection of

machine learning and logic programming (Muggleton, 1992). Given background

knowledgeB and a set of positive and negative examples for a target relation/predicate,

ILP involves finding a hypothesis H , usually a definite logic program such that H

along with B covers most of the positive examples, but none of the negative ex-

amples. However, to account for the presence of noise in the data, most systems

allow a few negative examples to be covered. The background knowledge B can

either be a definite logic program or a set of ground literals that represent entities

and relations in the domain. De Raedt and Kersting (2004) discuss the following

settings for ILP systems :

• Learning from entailment:

In this setting, the induced hypothesis H , along with the background knowl-

edge B entails all positive examples, but does not entail any of the negative

examples. FOIL (Quinlan & Cameron-Jones, 1993), ALEPH (Srinivasan,

2001), PROGOL (Muggleton, 1995), and LIME (McCreath & Sharma, 1998)

are some of the ILP systems that are learn from entailment.

• Learning from interpretations:
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In this setting, examples represent Herbrand interpretations and the induced

hypothesis H is said to cover an example if and only if the example is a

Herbrand model of B ∪ H , where B is the background knowledge base.

CLAUDIEN (De Raedt & Dehaspe, 1997) is an ILP system that learns from

interpretations. Learning from interpretations is easier than learning from en-

tailment as the examples in the former are complete, i.e. all literals that are

true are known. Further, this setting is suitable for learning in domains where

only positive examples are available.

• Learning from proofs:

In this setting, examples are ground proof-trees and the induced hypothesis

H is said to cover an example, if and only if the example is a proof of B ∪H ,

where B is the background knowledge base. Model Inference System (MIS)

(Shapiro, 1983) is a system that learns from proofs.

2.3.1 LIME

In this dissertation, we use LIME to learn first-order rules in Chapter 4.

LIME is an ILP system that learns complete candidate hypotheses (a set of clauses)

instead of candidate clauses. Instead of using a greedy set covering approach that is

used in systems like FOIL, LIME uses a Bayesian heuristic to search the space of

possible hypotheses. Unlike systems like FOIL that handle noise by allowing some

negative examples to be covered, LIME uses a generative model that incorporates

an explicit parameter to handle noise. As a result of a more sophisticated model,

LIME has a superior ability to handle noise when compared to other ILP systems
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like FOIL and PROGOL. Further, LIME has the added ability to learn from only

positive, only negative, and both positive and negative examples. Due to these

advantages, we chose to use LIME to learn first-order rules in this dissertation.

2.4 Bayesian Networks

A Bayesian network is a directed acyclic graph that represents the joint

probability distribution of a set of random variables in a compact manner (Koller &

Friedman, 2009). Each node in the network represents a random variable and the

directed edges between nodes represent the conditional dependencies between the

random variables. If there is a directed edge from node a to node b, then the ran-

dom variable represented by node b is conditionally dependent on that represented

by node a. Absence of edges between nodes indicate conditional independence

between the random variables. In a discrete Bayesian network, each node takes a

discrete set of values. Associated with each node is a conditional probability table

(CPT), which gives the probability of the node taking a certain value for different

combination of values that the parent nodes take. The joint probability distribution

for a Bayesian network is given by the following formula:

P(X) =
∏

i P (Xi|Pa(Xi)),

where X = X1, X2, ..., Xn represents the set of random variables in the network

and Pa(Xi) represents the parents of Xi. For the rest of this dissertation, we will

discuss only discrete Bayesian networks.
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2.4.1 Probabilistic Inference in Bayesian Networks

Inference in Bayesian networks generally involves computing the posterior

probability of a query given the evidence. Koller and Friedman (2009) describe

several algorithms to perform both exact and approximate inference in discrete

Bayesian networks. The junction tree algorithm is one of the most commonly

used exact inference methods for Bayesian networks. All exact inference meth-

ods including the junction tree algorithm have a computational complexity that is

exponential in size of the maximal clique in the network. As a result, for networks

that are densely connected, exact inference is usually intractable. When exact in-

ference is intractable, approximate inference techniques are used for probabilistic

inference.

For approximate inference, several sampling algorithms like forward sam-

pling, likelihood weighting, Gibbs sampling etc. can be used. These algorithms

generate a large number of random samples for the given Bayesian network, and

then use these samples to compute posterior probabilities. However, if the under-

lying Bayesian network contains several deterministic constraints, i.e. 0 values in

the CPTs, then these sampling algorithms fail to generate sufficient samples, thus

leading to a poor approximation of the posterior probability. In such cases, Sample-

Search (Gogate & Dechter, 2007), an approximate sampling algorithm specifically

designed for graphical models with multiple deterministic constraints can be used.

The other type of inference in Bayesian networks involves computing the

most probable explanation (MPE) (Pearl, 1988), which determines the joint as-

signment of values to unobserved nodes in the network that results in maximum
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posterior probability given the evidence. It is possible to compute multiple alter-

native explanations using the k-MPE algorithm (Nilsson, 1998). There are several

Bayesian network packages like Netica1 and ELVIRA (Elvira-Consortium, 2002)

that provide implementation for some of these algorithms. We use Netica for ex-

act inference (joint and marginal), ELVIRA for MPE and k-MPE inference, and

SampleSearch for approximate inference.

2.4.2 Learning Bayesian Networks

Learning Bayesian networks automatically from data involves learning the

structure, i.e. the conditional dependencies between the random variables, and

learning the parameters, i.e. the entries in the CPTs. Given a Bayesian network

with a fixed structure, it is possible to learn the parameters automatically from

data. When the data is fully observable, frequency counting is used to estimate

the maximum likelihood (ML) parameters (Koller & Friedman, 2009). For par-

tially observed data, Lauritzen (1995) has proposed an algorithm based on Expec-

tation Maximization (EM), which maximizes the likelihood of the data. Russell

et al. (1995) have proposed a gradient-ascent based parameter learning algorithm

that also optimizes the likelihood of the data. On the other hand, Greiner and Zhou

(2002) have developed a method for discriminatively learning the parameters by op-

timizing the conditional likelihood. Several methods have been proposed to learn

the structure of Bayesian networks automatically from data (Koller & Friedman,

2009). Some methods use dynamic programming and its extensions to learn the

1http://www.norsys.com/
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structure (Koivisto & Sood, 2004; Silander & Myllymäki, 2006). Other methods

learn the structure approximately by searching through the space of possible net-

work structures (Heckerman & Chickering, 1995) or searching through the space

of possible network orderings (Teyssier & Koller, 2005).

2.4.3 Noisy-Or and Noisy-And models

The noisy-or and noisy-and models (Pearl, 1988) are used to encode the

CPTs for Boolean nodes compactly using fewer parameters. In a discrete Bayesian

network, the number of entries in the CPTs for any node is exponential in the num-

ber of parents. However, the noisy-or and noisy-and models require parameters that

are linear in the number of parents for encoding the CPT. As a result, these models

help reduce the number of parameters that have to be estimated from data.

The noisy-or model is used when there are several different causes ci for an

event e and each cause independently triggers the event with a certain probability

pi. Let leak be the probability that the event e occurs due to an unknown cause.

Then the probability of occurrence of e using the noisy-or is given as below:

P (e) = 1− [(1− leak)]
∏

i(1− pi)
ci

The noisy-and model is used where there are several events ci that have to

occur simultaneously for the event e to occur and each event ci fails to trigger e

independently with a probability pi. Let inh be the probability that e does not occur

even when all events ci have occurred. inh accounts for unknown events due to
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which e has failed to trigger. Then the probability of occurrence of e using the

noisy-and model is as below:

P (e) = (1− inh)
∏

i(1− pi)
(1−ci)

2.5 Bayesian Logic Programs

Bayesian logic programs (BLPs) (Kersting & De Raedt, 2001, 2007) can be

considered as templates for constructing directed graphical models (Bayesian net-

works). Given a knowledge base as a special kind of logic program, standard logical

inference (SLD resolution) is used to automatically construct a Bayesian network

for a given problem. More specifically, given a set of facts and a query, all possi-

ble definite-clause proofs of the query are constructed and used to build a Bayesian

network for answering the query. Standard probabilistic inference techniques de-

scribed in Section 2.4.1 are then used to compute the most probable answer.

More formally, a BLP consists of a set of Bayesian clauses, definite clauses

of the form a|a1, a2, a3, .....an, where n ≥ 0 and a, a1, a2, a3,......,an are Bayesian

predicates (defined below). a is called the head of the clause (head(c)) and (a1, a2,

a3,....,an) is the body (body(c)). When n = 0, a Bayesian clause is a fact. Each

Bayesian clause c is assumed to be universally quantified and range restricted, i.e.

variables{head} ⊆ variables{body}. If the head has variables that are not present

in the body, then these variables cannot always be bound to constants during de-

ductive inference. Each Bayesian clause has an associated conditional probability

distribution cpd(c) = P(head(c)|body(c)), also referred to as conditional probability
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table (CPT) in this dissertation.

A Bayesian predicate is a predicate with a finite domain, and each ground

atom for a Bayesian predicate represents a random variable. Associated with each

Bayesian predicate is a combining rule such as noisy-or or noisy-and that maps a

finite set of cpds into a single cpd (cf. Section 2.4.3). Let a be a Bayesian predicate

defined by two Bayesian clauses, a|a1, a2, a3, .....an and a|b1, b2, b3, .....bn, where

cpd1 and cpd2 are their cpd’s. Let θ be a substitution that satisfies both clauses.

Then, in the constructed Bayesian network, directed edges are added from the nodes

for each aiθ and biθ to the node for aθ. The combining rule for a is used to con-

struct a single cpd for aθ from cpd1 and cpd2. Note that if there is no θ that satisfies

multiple clauses, then no combining rule is used to combine the evidence coming

from the two clauses. The probability of a joint assignment of truth values to the

final set of ground propositions is then defined in the standard way for a Bayesian

network:

P(X) =
∏

i P (Xi|Pa(Xi)),

where X = X1, X2, ..., Xn represents the set of random variables in the network

and Pa(Xi) represents the parents of Xi. Once a ground network is constructed,

standard probabilistic inference methods can be used to answer various types of

queries as described in Section 2.4.1. In this dissertation, we use the deterministic

logical-and combining rule to combine evidence from the conjuncts in the body of

the clause. To combine evidence coming from different rules that have the same
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head, we use the noisy-or model, whose parameters are learned using the methods

described in Section 2.5.1. We use the noisy-or model since it is the standard ap-

proach for encoding a cpd to support “explaining away”. Explaining away refers

to the phenomenon that evidence for one explanation decreases confidence in alter-

native competing explanations (Pearl, 1988). We use exact probabilistic inference

(marginal and joint) as implemented in Netica2 a commercial Bayes-net software

package when possible. When exact inference is not tractable, we use Sample-

Search (Gogate & Dechter, 2007), an approximate sampling algorithm specifically

designed for graphical models with multiple deterministic constraints. In our mod-

els, the deterministic constraints, i.e. the 0 values in the cpds arise due to the use of

the logical-and model to combine the evidence coming from the literals in the body

of the clauses.

2.5.1 Learning Bayesian Logic Programs

Learning a BLP from data involves learning the structure, the set of first-

order definite clauses and the parameters – the cpd entries and the parameters for

the combining rules. Given a BLP with a fixed structure, the parameters of the BLP

can be learned automatically from data using the methods proposed by Kersting

and De Raedt (2008). In their first method, Kersting and De Raedt have adapted the

Expectation Maximization (EM) algorithm developed for propositional Bayesian

networks by Lauritzen (1995), and in their second method, they have adapted the

gradient-ascent based algorithm developed by Russell et al. (1995) for Bayesian

2http://www.norsys.com/
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networks. Note that both the algorithms proposed by Kersting and De Raedt for

learning the parameters of a BLP optimize the likelihood of the data. Kersting and

De Raedt have also proposed an algorithm to learn the structure of the BLP based

on the model of learning from interpretations (Kersting & De Raedt, 2008). In their

method, each example in the training data represents the least Herbrand model of

the target BLP. The algorithm performs a hill climbing search through the space of

possible structures by optimizing the likelihood of the data. They use CLAUDIEN

(De Raedt & Dehaspe, 1997) to get the initial set of structures for the search.

Parameter learning in BLPs using EM

In this dissertation, we learn parameters for the BLP framework using the EM al-

gorithm, adapted for BLPs by Kersting and De Raedt (2008). The EM algorithm

is designed to learn the cpd entries and parameters for the combining rules from

incomplete data. Typically, if the values for all variables are seen during training,

the maximum likelihood estimation of the parameters reduces to frequency count-

ing. In the presence of incomplete data, i.e. if values for some random variable are

not seen during training, the EM algorithm is used. Similar to the EM algorithm for

propositional Bayesian networks, EM for BLPs learns the parameters by optimizing

the likelihood of the observed data.

Given the structure of the BLP (first-order definite clauses) and a set of

training instances, where each instance is a set of literals observed in the data, the

EM algorithm for BLPs works as described below. For each training instance, the

BLP inference performs SLD resolution given the observed literals and constructs

a ground Bayesian network. Next, in the expectation step, also called the E step,
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expected counts are computed for all parameters in the model. The E step is similar

to that for propositional Bayesian networks where the expected counts represent

a distribution of possible completions over the incomplete data. In the case of

BLPs, since a first-order rule could be grounded in several different ways, each

grounding is treated as an independent example or instance of the first-order clause

while estimating expected counts. In the next step, called the maximization step

or the M step, the algorithm computes maximum likelihood estimates using the

expected counts. Note that in the fully observed data case, the maximum likelihood

estimates are computed using the actual counts instead of expected counts.

EM starts by initializing all parameters to random values or user defined val-

ues. It converges to a local optimum when the estimated values for the parameters

remain constant across successive iterations. Since the EM is a greedy hill climb-

ing algorithm, it often gets stuck in a local optimum. Random restart is a popularly

used approach to get out of local optima. Kersting and De Raedt (2008) adapt the

EM algorithm to estimate parameters for combining rules by using only decom-

posable rules to combine evidence from multiple rules, since such rules allow for

the parameters to be estimated independently of other parameters. A rule is said to

be decomposable if every node in the ground network is derived using exactly one

clause (Kersting & De Raedt, 2008).
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Chapter 3

Plan Recognition using Bayesian Logic Programs

3.1 Introduction

In this chapter, we describe our approach to abductive plan recognition us-

ing Bayesian Logic Programs (BLPs). Plan recognition is the task of predicting an

agent’s top-level plans based on its observed actions. It is an abductive reasoning

task that involves inferring cause from effect (Charniak & McDermott, 1985). It

is used in several applications including monitoring activities of daily living for el-

derly care, story understanding, strategic planning, intelligent user interfaces, and

intelligent personal assistants. In this chapter, we apply plan recognition to story

understanding, strategic planning, and intelligent user interfaces. In story under-

standing, the character’s motives or plans have to be recognized based on its actions

in order to answer questions about the story. In strategic planning systems where

there are several agents performing several actions, it becomes necessary for each

agent to recognize plans of other agents so that they can work cooperatively. In

an intelligent user interface, plan recognition is used to predict the task the user is

performing so that the system could give valuable tips to the user to perform the

task more efficiently.

Traditionally, plan-recognition approaches have been based on first-order

25



logic in which a knowledge-base of plans and actions is developed for the do-

main and then default reasoning (Kautz & Allen, 1986) or logical abduction (Ng

& Mooney, 1992) is used to predict the best plan based on the observed actions.

However, these approaches are unable to handle uncertainty in the observations or

background knowledge and are incapable of estimating the likelihood of different

plans. An alternative approach to plan recognition is to use probabilistic methods

such as Abstract Hidden Markov Models (Bui, 2003), probabilistic context-free

grammars (Pynadath & Wellman, 2000), Bayesian networks (Charniak & Gold-

man, 1989, 1991; Huber, Durfee, & Wellman, 1994; Horvitz & Paek, 1999), or

statistical n-gram models (Blaylock & Allen, 2005b). While these approaches han-

dle uncertainty, they cannot handle structured representations as they are essentially

propositional in nature. As a result, it is also difficult to incorporate planning do-

main knowledge in these approaches.

As mentioned earlier, the last few years have seen a development of several

SRL formalisms such as MLNs and BLPs. Of these formalisms, MLNs have been

applied to abductive plan recognition by Kate and Mooney (2009). Since MLNs

employ deduction for logical inference, they adapt MLNs for abduction by adding

reverse implications for every rule in the knowledge base. However, the addition

of these rules increases the size and complexity of the MLN, resulting in a com-

putationally expensive model. We refer to this MLN model by Kate and Mooney

as MLN-PC, where PC stands for “pairwise constraints”. In order to overcome the

limitations of MLN-PC, Singla and Mooney (2011) have developed two new ap-

proaches to plan recognition using MLNs. In the first approach which we refer to
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as MLN-HC (here HC stands for “hidden cause”), they extend MLN-PC by adding

a hidden cause for each rule antecedent, which reduces the complexity of ground

networks to some extent. However, the MLN-HC model still results in complex

networks, which prevents it from scaling to large domains. In the second approach

which we refer to as MLN-HCAM (here HCAM stands for “hidden cause abductive

model construction”), they enhance the MLN-HC model by incorporating a novel

model construction procedure based on logical abduction that results in much sim-

pler and smaller networks, thereby making this approach scale to large domains.

MLN-HCAM model uses the logical abduction procedure used in our BLP based

approach to construct ground networks in MLNs. Based on the success of our BLP

based approach, Singla and Mooney (2011) explored the possibility of using log-

ical abduction to further constrain the size of the ground networks created by the

MLN-HC model. MLN-HCAM outperforms both MLN-HC and MLN-PC.

In this chapter, we describe our approach to abductive plan recognition us-

ing BLPs. Pearl (1988) argued that causal relationships and abductive reasoning

from effect to cause are best captured using directed graphical models (Bayesian

networks). Since plan recognition is abductive in nature, we believe that a di-

rected probabilistic logic like BLPs will be better suited for plan recognition than an

undirected probabilistic logic like MLNs. Further, since BLPs include only those

groundings of the rules that are used to prove the query in the ground network, we

hypothesize that BLPs can overcome some of the limitations of MLN-PC (Kate &

Mooney, 2009) and MLN-HC (Singla & Mooney, 2011) with respect to scaling to

large domains.
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As described earlier, BLPs use SLD resolution to generate proof trees, which

are then used to construct a ground Bayesian network for a given query. Since SLD

resolution is a deductive inference, it is unable to construct proofs for abductive

problems such as plan recognition because deductive inference involves predicting

effects from causes, while the plan recognition task involves inferring causes (top-

level plans) from effects (observations). Therefore, we extend BLPs to use logical

abduction to construct proofs. In logical abduction, missing facts are assumed when

necessary to complete proof trees, and we use the resulting abductive proof trees

to construct Bayesian networks. We call the resulting model Bayesian Abductive

Logic Programs (BALPs). Like all SRL formalisms, BALPs combine the strengths

of both first-order logic and probabilistic graphical models, thereby overcoming the

limitations of traditional plan recognition approaches mentioned above.

The rest of this chapter is organized as follows. We first describe the abduc-

tive inference procedure used in BALPs in Section 3.2. In Section 3.3, we describe

how probabilistic parameters are specified and how probabilistic inference is per-

formed. We discuss how parameters can be automatically learned from data in

Section 3.4. In Section 3.5, we describe our experimental evaluation of BALPs on

three plan recognition data sets from three different application domains – story un-

derstanding, strategic planning, and intelligent user interfaces. In Section 3.6, we

describe related work and summarize in Section 3.7.
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3.2 Abductive Inference in BALPs

Let O1, O2, ...., On be the set of observations. We derive a set of most-

specific abductive proof trees for these observations using the method originally

proposed by Stickel (1988). The abductive proofs for each observation literal are

computed by backchaining on each Oi until every literal in the proof is proven or

assumed. A literal is said to be proven if it unifies with some fact or the head

of some rule in the knowledge base, otherwise it is said to be assumed. Since

multiple plans/actions could generate the same observation, an observation literal

could unify with the head of multiple rules in the knowledge base. For such a literal,

we compute alternative abductive proofs. The resulting abductive proof trees are

then used to build the structure of the Bayesian network using the standard approach

for BLPs.

The basic algorithm to construct abductive proofs is given in Algorithm 1.

The algorithm takes as input a knowledge base (KB) in the form of definite clauses

and a set of observations as ground facts. It outputs a set of abductive proof trees

by performing logical abduction on the observations. These proof trees are then

used to construct the Bayesian network. For each observation Oi, AbductionBALP

searches for rules whose consequents (heads) unify with Oi. For each such rule, it

computes the substitution from the unification process and substitutes variables in

the body of the rule with bindings from the substitution. The literals in the body

now become new subgoals in the inference process. If these new subgoals cannot

be proved, i.e. if they cannot unify with existing facts or with the consequent of

any rule in the KB, then they are assumed. In order to minimize the number of
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Algorithm 1 AbductionBALP
Inputs: Background knowledge KB and observations O1, O2, O3, ...., On both

represented as sets of formulae in first-order logic, where KB is typically re-
stricted to a set of definite clauses and each Oi is a ground literal.

Output: Abductive proofs for all Oi.
1: Let Q be a queue of unproven atoms, initialized with Oi

2: while Q not empty do
3: Ai← Remove atom from Q
4: for each rule Ri in KB do
5: consequent← Head literal of Ri

6: if Ai unifies with consequent then
7: Si← unify Ai and consequent and return substitution
8: Replace variables in the body of Ri with bindings in Si. Each literal in

the body of Ri is a new subgoal.
9: for each literali in body of Ri do

10: if literali unifies with head of some rule Rj in KB then
11: add literali to Q
12: else if literali unifies with an existing fact then
13: Unify and consider the literal to be proved
14: else
15: if literali unifies with an existing assumption then
16: Unify and update the assumption
17: else
18: Assume literali by replacing any unbound variables that are ex-

istentially quantified in literali with new Skolem constants.
19: end if
20: end if
21: end for
22: end if
23: end for
24: end while
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assumptions, the assumed literals are first matched with existing assumptions. If

no such assumption exists, then any unbound variables in the literal that are exis-

tentially quantified are replaced by Skolem constants. We note that there are no

assumptions or facts to match at the start. We also note that since the observation

literals are ground literals, they are never matched to any assumptions of facts in

the knowledge base.

In SLD resolution, which is used in BLPs, if any subgoal literal cannot

be proven, the proof fails. However, in BALPs, we assume such literals and al-

low proofs to proceed till completion. Note that there could be multiple existing

assumptions that could unify with subgoals in Step 15. However, if we used all

ground assumptions that could unify with a literal, then the size of the ground net-

work would grow exponentially, making probabilistic inference intractable. In or-

der to limit the size of the ground network, we unify subgoals with assumptions in

a greedy manner. We found that this approach worked well for the plan-recognition

domains we explored. For other tasks, domain-specific heuristics could potentially

be used to reduce the size of the network.

We now illustrate the abductive inference process with a simple example

from the Story-Understanding benchmark data set described in Section 3.5.1. Con-

sider the partial knowledge base and set of observations given in Figure 3.1a and

Figure 3.1b respectively. There are two top-level plans, shopping and robbing, in

the knowledge base. Note that the action literal inst(G, going) could be observed

as part of both shopping and robbing. For each observation literal in Figure 3.1b,

we recursively backchain to generate abductive proof trees. When we backchain
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(a)
# Shopping
1. inst(G,going) | inst(B,shopping), go-step(B,G).
2. inst(SP,shopping-place) | inst(S,shopping), store(S,SP).
# Robbing
3. inst(P,going) | inst(R,robbing), go-step(R,P).

(b)
inst(go1,going)
inst(store1,shopping-place)

(c)
inst(go1,going) | inst(a1,shopping), go-step(a1,go1).
inst(go1,going) | inst(a1,robbing), go-step(a1,go1).
inst(store1,shopping-place) | inst(a1,shopping), store(a1,store1).

Figure 3.1: (a) A partial knowledge base from the Story Understanding data set. (b)
The logical representation of the observations. (c) The set of ground rules obtained
from logical abduction.

on the literal inst(go1,going) using Rule 1, we obtain the subgoals inst(B,shopping)

and go-step(B,go1). These subgoals become assumptions since no observations

or heads of clauses unify with them. Since B is an existentially quantified vari-

able, we replace it with a Skolem constant a1 to obtain the ground assumptions

inst(a1,shopping) and go-step(a1,go1). We then backchain on literal inst(go1,going)

using Rule 3 to get subgoals inst(R,robbing) and go-step(R,go1). We cannot unify

inst(R, robbing) with any observation or existing assumptions; however, we can

unify go-step(R,go1) with an existing assumption go-step(a1,go1), thereby binding

R to a1. In order to minimize the number of assumptions, we first try to match lit-

erals with unbound variables to existing assumptions, rather than instantiating them

with new Skolem constants. Finally, we backchain on the literal inst(store1,shopping-
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Figure 3.2: Bayesian network constructed for example in Figure 3.1. The nodes
with thick borders represent observed actions, the nodes with dotted borders repre-
sent intermediate nodes used to combine the conjuncts in the body of a clause, and
the nodes with thin borders represent plan literals.

place) using Rule 2 to get subgoals inst(S,shopping), store(S,store1). Here again,

we match inst(S, shopping) to an existing assumption inst(a1,shopping), thereby

binding S to a1.

Figure 3.1c gives the final set of ground rules generated by abductive infer-

ence. After generating all abductive proofs for all observation literals, we construct

a Bayesian network. Figure 3.2 shows the Bayesian network constructed for the

example in Figure 3.1. Note that since there are no observations/facts that unify

with the subgoals (inst(B,shopping), go-step(B,G), inst(R,robbing), go-step(R,P),

and store(S,SP) ) generated during backchaining on observations, SLD resolution

will fail to generate proofs. This is typical in plan recognition, and as a result, we

cannot use BLPs for such tasks.
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The only difference between BALPs and BLPs lies in the logical infer-

ence procedure used to construct proofs. Once the abductive proofs are generated,

BALPs use the same procedure as BLPs to construct the Bayesian network. We

further show in Section 3.4 and Section 3.5.3 that techniques developed for BLPs

for learning parameters can also be used for BALPs.

3.3 Probabilistic Parameters and Inference

We now discuss how parameters are specified in BALPs. We use noisy/logical-

and and noisy-or models to specify the cpds in the ground Bayesian network as

these models compactly encode the cpd with fewer parameters, i.e. just one pa-

rameter for each parent node. Depending on the domain, we use either a strict

logical-and or a softer noisy-and model to specify the cpd for combining evidence

from the conjuncts in the body of a clause. We use a noisy-or model to specify the

cpd for combining the disjunctive contributions from different ground clauses with

the same head. Figure 3.2 shows the noisy-and and noisy-or nodes in the Bayesian

network constructed for the example in Figure 3.1.

Given the constructed Bayesian network and a set of observations, we deter-

mine the best explanation using standard methods for computing the Most Probable

Explanation (MPE) (see Chapter 2), which determines the joint assignment of val-

ues to the unobserved nodes in the network that has the maximum posterior proba-

bility given the observations. To compute multiple alternative explanations, we use

the k-MPE algorithm (Nilsson, 1998) as implemented in Elvira (Elvira-Consortium,

2002). For other types of exact probabilistic inference (marginal and joint) we use
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Netica,1 a commercial Bayes-net software package.

When the complexity of the ground network makes exact inference in-

tractable (as in the Monroe dataset described in Sect. 3.5), we have to resort to

approximate inference. Due to the (noisy/logical) and and or nodes in the network,

there are a number of deterministic constraints, i.e. 0 values in the cpds. As a result,

generic importance sampling algorithms like likelihood weighting failed to gener-

ate sufficient samples. Hence, we used SampleSearch (Gogate & Dechter, 2007),

an approximate sampling algorithm specifically designed for graphical models with

multiple deterministic constraints.

3.4 Parameter Learning

Learning can be used to automatically set the noisy-or and noisy-and pa-

rameters in the model. We learn these parameters using the EM algorithm adapted

for BLPs by Kersting and De Raedt (2008) (see Chapter 2). In supervised training

data for plan recognition, one typically has evidence for the observed actions and

the top-level plans. However, we usually do not have evidence for network nodes

corresponding to subgoals, noisy-ors, and noisy/logical-ands. As a result, there are

a number of variables in the ground networks which are always hidden, and hence

EM is appropriate for learning the requisite parameters from the partially observed

training data. We simplify the problem by learning only the noisy-or parameters and

using a deterministic logical-and model to combine evidence from the conjuncts in

1http://www.norsys.com/
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the body of a clause. We use uniform priors for top-level plans unless otherwise

mentioned.

3.5 Experimental Evaluation

In this section, we evaluate BALPs on three plan-recognition datasets. Un-

fortunately, there are very few benchmark datasets or rigorous experimental eval-

uations of plan recognition. First, we describe experiments to demonstrate that

BALPs are more effective for plan recognition than previous approaches. Then,

we describe additional experiments to demonstrate that the EM algorithm can learn

parameters of the BALP model effectively.

3.5.1 Datasets

3.5.1.1 Monroe / Reformulated Monroe

We used the Monroe dataset, an artificially-generated plan-recognition dataset

in the emergency response domain by Blaylock and Allen (2005a). This domain in-

cludes top level plans such as setting up a temporary shelter, clearing a road wreck,

and providing medical attention to victims. The task is to infer a single top level

plan from a set of observed actions automatically generated by a planner. The

planner used to construct plans is SHOP2 (Nau, Ilghami, Kuter, Murdock, Wu, &

Yaman, 2003) and the domain knowledge is represented as a hierarchical transition

network (HTN). We constructed a logical knowledge base consisting of 153 clauses

to represent the domain knowledge encoded in the HTN. We used 1,000 artificially

generated examples in our experiments. Each example instantiates one of 10 top-
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Top-level plan template Description
set-up-shelter(Loc) Set up an emergency shelter at location Loc
fix-water-main(From,To) Fix a power line running from From to To
clear-road-hazard(From,To) Clear a road hazard from From to To
plow-road (From,To) Plow road from From to To
fix-power-line(Loc) Fix power line at location Loc
provide-medical-attention(Person) Provide medical attention to person Person

Table 3.1: Templates for a subset of top-level plans from the Monroe data set

Observed action template
navegate-snowplow(Driver, Plow, From)
engage-plow(Driver, Plow)
navegate-vehicle(Person, Veh, Loc)
climb-in(Person, Veh)
climb-out(Person, Veh)
treat(Emt, Person)

Table 3.2: Templates for a subset of observed actions from the Monroe data set

level plans and contains an average of 10.19 literals describing a sample execution

of this plan. The total number of action predicates in this data set is 30. The tem-

plates for a subset of top-level plans and observed actions are given in Table 3.1

and Table 3.2 respectively. This data set is an example of plan recognition being

applied to strategic planning. The knowledge base constructed for Monroe can be

found in Appendix A.

Due to computational complexity, we were unable to compare the perfor-

mance of BALPs with Kate and Mooney’s MLN-PC (2009) approach on this do-

main. Their approach resulted in an MLN with rules containing multiple exis-

tentially quantified variables which produced an exponential number of possible
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groundings, eventually leading to memory overflow. In order to compare BALPs

with MLN-PC, we slightly modified the Monroe domain to eliminate this prob-

lem without significantly changing the underlying task. The resulting dataset also

had 1,000 examples, with an average of 9.7 observations per example. We refer

to this dataset as “Reformulated-Monroe.” The knowledge base constructed for

Reformulated-Monroe can be found in Appendix A.

3.5.1.2 Linux

The Linux dataset is another plan-recognition dataset created by Blaylock

and Allen (2004). Human users were asked to perform various tasks in Linux and

their commands were recorded. The task is to predict the correct top level plan

from the sequence of executed commands. For example, one of the tasks involves

finding all files with a given extension. The dataset consists of 19 top level plans

and 457 examples, with an average of 6.1 command literals per example. The total

number of action predicates in this domain is 43. The templates for a subset of top-

level plans and observed actions are given in Table 3.3 and Table 3.4 respectively.

We constructed the background knowledge base consisting of 50 clauses for the

Linux dataset based on our knowledge of the commands. The knowledge base

constructed for Linux can be found in Appendix A. This data set is an example of

plan recognition being applied to intelligent user interfaces.
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Top-level plan template Description
find-file-by-attr-name-ext(Ext) Find a file that has the extension Ext
know-filespace-usage-file(File) Find how much space the file File uses
determine-machine-connected-alive(Mac-name) Find if the machine Mac-name is up
create-file(File,Dir) Create a file File in the directory Dir
remove-files-by-attr-name-ext(Ext) Remove all files with the extension Ext

Table 3.3: Templates for a subset of top-level plans from the Linux data set

Observed action template
mv(Dest-prepath, Dir, Source-prepath, Name)
cp(Dest-prepath, Dir, Source-prepath, Name)
find(Prename, Name, Size, Prepath, Path)
cd(Prepath, Path)
ls(Path, Name)
ping(Machine-name, Machine-path)
vi(Prepath, Filename)
mkdir(Dir, Parent-dir-name)

Table 3.4: Templates for a subset of observed actions from the Linux data set
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3.5.1.3 Story Understanding

We also used a dataset2 that was previously used to evaluate abductive story

understanding systems (Ng & Mooney, 1992; Charniak & Goldman, 1991). In this

task, characters’ higher-level plans must be inferred from their actions described

in a narrative text. A logical representation of the literal meaning of the text is

given for each example. A sample story is: “Bill went to the liquor-store. He

pointed a gun at the owner.” There are 12 top-level plans in this dataset including

shopping, robbing, restaurant dining, traveling in a vehicle (bus, taxi or plane),

partying and jogging. Some narratives involve more than a single plan. This small

dataset consists of 25 development examples and 25 test examples each containing

an average of 12.6 literals. We used the background knowledge that was initially

constructed for the ACCEL system (Ng & Mooney, 1992). This data set is an

example of plan recognition being applied to story understanding. Figure 3.1a and

Figure 3.1b in Section 3.2 give a sample knowledge base and a set of observations

from the Story Understanding data set.

Apart from the fact that each data set comes from a different application

domain, all data sets described above test certain specific aspects of the plan recog-

nition system. Since the Monroe domain is very large with several subgoals and

entities, it tests the ability of the plan recognition system to scale to large domains.

On the other hand, the Linux data set does not have a large domain. However, since

the data is from human users, it is noisy. There are several sources of noise includ-

2http://www.cs.utexas.edu/˜ml/accel.html
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ing the case in which the human users have reported that they have successfully

executed the top-level plan even though they have not (Blaylock & Allen, 2005b).

As a result, this data set tests the robustness of the plan recognition system. The

plan recognition task on Monroe and Linux domains involve prediction of a single

top-level plan based on the observed actions. However, on the Story Understanding

domain, most examples have multiple top-level plans as the answer. This data set

tests the ability of a plan recognition system to identify all possible top-level plans

based on the observed actions.

3.5.2 Comparison with Other Approaches

We now present comparisons to previous approaches to plan recognition

across different benchmark datasets.

3.5.2.1 Monroe and Linux

We first compared BALPs with MLN-HCAM (Singla & Mooney, 2011)

and Blaylock and Allen’s (2005b) plan-recognition system on both the Monroe and

Linux datasets. Blaylock and Allen’s approach learns statistical n-gram models to

separately predict plan schemas (i.e. predicates) and their arguments. We were

unable to run MLN-PC and MLN-HC on these domains due to scaling issues.

We learn the noisy-or parameters for BALPs using the EM algorithm de-

scribed in Sect. 3.4 for both Linux and Monroe domains. We initially set all noisy-

or parameters to 0.9 and this gave reasonable performance in both domains. We

ran EM with several different starting points including random weights and manual
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weights (0.9). We found that running EM starting with manual weights generally

performed the best for both domains, and hence we used the weights learned from

this model for comparison.

For Linux, we performed 10-fold cross validation for evaluation and we ran

EM till convergence on the training set for each fold. For Monroe, where more data

is available, we used 300 examples for training, 200 examples for validation, and

the remaining 500 examples for testing. We ran EM iterations on the training set

until the accuracy on the validation set stopped improving. We then used the final

learned set of weights to perform plan-recognition on the test set.

For both Monroe and Linux, the plan-recognition task involves inferring a

single top level plan that best explains the observations. Hence, we computed the

marginal probabilities for all ground instantiations of the plan predicates in the net-

work and picked the single plan instantiation with the highest marginal probability.

Due to differences in Blaylock and Allen’s experimental methodology and

ours, we are only able to compare performance directly using the convergence score

(Blaylock & Allen, 2005b). The convergence score is the fraction of examples for

which the correct plan predicate is inferred (ignoring the arguments) when given all

of the observations.

Table 3.5 shows the results. BALPs outperform both MLN-HCAM and

Blaylock and Allen’s system on the convergence score in both domains3. The con-

vergence scores for MLN-HCAM and Blaylock and Allen’s system on Monroe are

3Since convergence scores for individual examples were not available for Blaylock and Allen’s
system, we could not perform the test for statistical significance.
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BALPs MLN-HCAM Blaylock and Allen
Convergence-Monroe 98.4% 97.0% 94.2%
Convergence-Linux 46.6% 38.9% 36.1%

Table 3.5: Results for BALPs, MLN-HCAM, and the system by Blaylock and Allen
on Monroe and Linux.

already quite high, leaving little room for improvement. However, BALPs were still

able to improve over MLN-HCAM by 1.44% and Blaylock and Allen’s system by

4.45%. On the other hand, the baseline convergence scores for Linux were fairly

low, and BALPs were able to improve over MLN-HCAM by 19.67% and Blaylock

and Allen’s system by a remarkable 29.1%. Despite this improvement, the overall

convergence score for Linux is not that high. Noise in the data is one reason for

the modest score. Another issue with this data set is the presence of very similar

plans, like find-file-by-ext and find-file-by-name. The commands executed by users

in these two plans are nearly identical, making it difficult for a plan recognition

system to distinguish them (Blaylock & Allen, 2004).

Partial Observability Results

The convergence score has the following limitations as a metric for evaluating the

performance of plan recognition:

1. It only accounts for predicting the correct plan predicate, ignoring the ar-

guments. In most domains, it is important for a plan-recognition system to

predict arguments accurately as well. For example, in the Linux domain, if

the user is trying to move “test1.txt” to “test-dir”, it is not sufficient to predict
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the move command; it is also important to predict the file (test.txt) and the

destination directory (test-dir).

2. It only evaluates plan prediction after the system has observed all of the ex-

ecuted actions. However, in most cases, we would like to be able to predict

plans after observing as few actions as possible.

In order to evaluate the ability of BALPs to infer plan arguments and to pre-

dict plans after observing only a partial execution, we conducted an additional set of

experiments. Specifically, we performed plan recognition after observing the first

25%, 50%, 75%, and 100% of the executed actions. To measure performance, we

compared the complete inferred plan (with arguments) to the gold-standard to com-

pute an overall accuracy score. When computing accuracy, partial credit was given

for predicting the correct plan predicate with only a subset of its correct arguments.

A point was rewarded for inferring the correct plan predicate, then, given the correct

predicate, an additional point was rewarded for each correct argument. For exam-

ple, if the correct plan was plan1(a1, a2) and the inferred plan was plan1(a1, a3),

the accuracy was 66.67%.

We compare BALPs with MLN-HCAM to measure their ability to perform

plan recognition on partially observable data. Blaylock and Allen did not perform

these experiments, and hence we do not compare BALPs performance to that of

their system on partially observable data. Table 3.6 and Table 3.7 show the results

for partial observability on Monroe and Linux respectively. On Monroe, BALPs

perform slightly better than MLN-HCAM on higher levels of observability, whereas
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25% 50% 75% 100%
BALPs 07.33 20.26 44.63 79.16

MLN-HCAM 15.93 19.93 43.93 76.30

Table 3.6: Accuracy on Monroe at varying levels of observability

25% 50% 75% 100%
BALPs 19.83 25.45 34.06 36.32

MLN-HCAM 16.30 16.48 24.36 28.84

Table 3.7: Accuracy on Linux at varying levels of observability

MLN-HCAM tends to outperform BALP on lower levels of observability. However,

on Linux BALPs outperform MLN-HCAM at all levels of partial observability.

3.5.2.2 Reformulated-Monroe

We also compared the performance of BALPs with Kate and Mooney’s

(2009) MLN-PC approach on the Reformulated-Monroe dataset4. For MLN-PC,

we were unable to learn clause weights effectively on this dataset since it was in-

tractable to run Alchemy’s5 existing weight-learners due to the sizes of the MLN

and data. Hence, we manually set the weights using the heuristics described by

Kate and Mooney (2009). To ensure a fair comparison, we use manual weights for

BALPs instead of using learned weights; we uniformly set all noisy-or parameters

to .9 and used logical-and to combine the evidence from the conjuncts as this model

gave reasonable performance on other domains as well.

4We were unable to compare to MLN-HC and MLN-HCAM (Singla & Mooney, 2011) as the
results were not available on this data set.

5http://alchemy.cs.washington.edu/
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25% 50% 75% 100% Convergence Score
BALPs 9.83 32.67 66.80 97.40 99.90

MLN-PC 4.10* 19.26* 40.51* 79.20* 79.66*

Table 3.8: Comparative Results for Reformulated-Monroe. “*” indicates that the
differences in the performance are statistically significant.

We used both the convergence score and accuracy to compare the perfor-

mance of the two approaches. Similar to Monroe and Linux, the observation set for

this domain includes all actions executed to achieve the top level plan. In order to

evaluate performance for partially observed plans, we performed plan recognition

after observing the first 25%, 50%, 75%, and 100% of the executed actions.

Table 3.8 shows the results. BALPs consistently outperform the MLN ap-

proach on this data set and the differences in their performance are statistically

significant as determined by the Wilcoxon Sign Rank (WSR) test (Rosner, 2005).

Significance was concluded at the 0.05 level. The convergence score for BALPs

improved over that for MLN-PC by a significant 25.41%.

3.5.2.3 Story Understanding

On Story Understanding, we compared the performance of BALPs to MLN-

HC (Singla & Mooney, 2011), MLN-HCAM (Singla & Mooney, 2011), MLN-PC

(Kate & Mooney, 2009) and ACCEL (Ng & Mooney, 1992), a purely logic-based

system that uses a metric to guide its search for selecting the best explanation. AC-

CEL can use two different metrics: simplicity, which selects the explanation with

the fewest assumptions and coherence, which selects the explanation that maxi-
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mally connects the input observations. This second metric is specifically geared

towards text interpretation by measuring explanatory coherence (Ng & Mooney,

1990). Currently, this bias has not been incorporated in either the BALP or any of

the MLN approaches.

For BALPs, we were unable to learn useful parameters from just 25 devel-

opment examples. As a result, we set parameters manually trying to maximize per-

formance on the development set. As before, a uniform value of 0.9 for all noisy-or

parameters seemed to work well for this domain. Unlike other domains, using the

logical-and model to combine the evidence from conjuncts in the body of the clause

did not yield good results on Story Understanding. However, we found that using

the noisy-and model improved the results by a fair margin; so we set the noisy-and

parameters to a uniform value of 0.9. However, to disambiguate between conflict-

ing plans, we set different priors for high level plans to maximize performance on

the development data.

The explanations generated by different MLN approaches include additional

facts implied by the minimal explanation. To compare fairly different systems, we

constructed high level plans from the predicted and answer ground literals using

the rules shown in Figure 3.3. We describe the construction of high level plans

using the plan plan-shopping(smarket-shopping,Person1,Thing1,Place1) as an ex-

ample. An instance of this plan is constructed with smarket-shopping as the first

argument when an instance of inst(S,smarket-shopping) is inferred or is present in

the answer set. For the remaining arguments in the high level plan, appropriate con-

stants are used when the respective literals are inferred or are present in the answer
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set, otherwise NULL is used. Since multiple plans are possible in this domain, we

compared the inferred plans with the ground truth to compute precision, recall, and

F-measure, the harmonic mean of precision and recall. As before, partial credit was

given for predicting the correct plan predicate with some incorrect arguments. The

observed literals in this data are already incomplete and do not include all of the

actions needed to execute a plan, so they were used as is.

Table 3.9 shows the results. As before, an “*” indicates that the difference

in the performances of a given method and that of BALPs is statistically significant

as determined by the Wilcoxon Sign Rank (WSR) test (Rosner, 2005) using a sig-

nificance level of 0.05. BALPs performed better than ACCEL-Simplicity (ACCEL-

Sim) and the different MLN based approaches. With respect to F-measure, BALPS

improved over MLN-HCAM by 8.52%, MLN-HC by 7.87%, MLN-PC by 15.57%,

and ACCEL-Simplicity by a significant 33.65%. However, ACCEL-Coherence

(ACCEL-Coh) still performed the best. Since the coherence metric incorporates

extra criteria specific to story understanding, this bias would need to be included in

the probabilistic models to make them more competitive. However, the coherence

metric is specific to narrative interpretation and not applicable to plan recognition

in general.

Overall, we found that BALPs outperformed most existing approaches on

the benchmark data sets, thus demonstrating that BALPs are effective for plan

recognition.
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plan-shopping(smarket-shopping,Person1,Thing1,Place1)|
inst(S,smarket-shopping),shopper(S,Person1),thing-shopped-for(S,Thing1),
store(S,Place1).

plan-shopping(liqst-shopping,Person1,Thing1,Place1)|
inst(S,liqst-shopping),shopper(S,Person1),thing-shopped-for(S,Thing1),
store(S,Place1).

plan-shopping(shopping,Person1,Thing1,Place1)|
inst(S,shopping),shopper(S,Person1),thing-shopped-for(S,Thing1),
store(S,Place1).

plan-robbing(robbing,Person1,Place1,Victim1,Weapon1,Thing1)|
inst(R,robbing),robber(R,Person1),place-rob(R,Place1),
victim-rob(R,Victim1),weapon-rob(R,Weapon1),thing-robbed(R,Thing1).

plan-air-travel(going-by-plane,Person1,Luggage1,Place1,Tkt1,Plane1)|
inst(P,going-by-plane),goer(P,Person1),plane-luggage(P,Luggage1),
source-go(P,Place1),plane-ticket(P,Tkt1),vehicle(P,Plane1).

plan-bus-travel(going-by-bus,Person1,Bus1,Source1,Dest1,Driver1,Tkn1)|
inst(B,going-by-bus),goer(B,Person1),vehicle(B,Bus1),
source-go(B,Source1),dest-go(B,Dest1),bus-driver(B,Driver1),token(B,Tkn1).

plan-rest-dining(rest-dining,Person1,Rest1,Thing1,Drink1,Instrument1)|
inst(D,rest-dining),diner(D,Person1),restaurant(D,Rest1),
rest-thing-ordered(D,Thing1),rest-thing-drunk(D,Drink1),
rest-drink-straw(D,Instrument1).

plan-drinking(drinking,Person1,Drink1,Instrument1)|
inst(D,drinking),drinker(D,Person1),patient-drink(D,Drink1),
instr-drink(D,Instrument1).

plan-taxi-travel(going-by-taxi,Person1,Taxi1,Source1,Dest1,Td1)|
inst(B,going-by-taxi),goer(B,Person1),vehicle(B,Taxi1),source-go(B,Source1),
dest-go(B,Dest1),taxi-driver(B,Td1).

plan-paying(paying,Person1,Thing1)|
inst(P,paying),payer(P,Person1),thing-paid(P,Thing1).

plan-jogging(jogging,Person1,Drink1,Instrument1)|
inst(J,jogging),jogger(J,Person1),jog-thing-drunk(J,Drink1),
jog-drink-straw(J,Instrument1).

plan-partying(partying,Person1,Drink1,Instrument1)|
inst(P,partying),agent-party(P,Person1),party-thing-drunk(P,Drink1),
party-drink-straw(P,Instrument1).

Figure 3.3: Rules used to construct high level plans for Story Understanding
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BALP MLN-HCAM MLN-HC MLN-PC ACCEL-Sim ACCEL-Coh

Precision (%) 72.07 69.13 67.08 67.31 66.45 89.39*
Recall (%) 85.57 75.32* 78.94* 68.10* 52.32* 89.39
F-measure (%) 78.24 72.10 72.53 67.70* 58.54* 89.39*

Table 3.9: Comparative Results for Story Understanding. “*” indicates that the
differences wrt BALPs are statistically significant.

3.5.3 Parameter Learning Experiments

We now describe additional experiments that we performed to understand

the EM algorithm for learning the parameters for BALPs. These experiments are

designed to demonstrate that the EM algorithm is effective for learning the param-

eters for BALPs on different plan recognition domains.

3.5.3.1 Learning Methodology

We used EM as described in Sect. 3.4 to learn noisy-or parameters for the

Linux and Monroe domains6. We initially set all noisy-or parameters to 0.9. This

gives reasonable performance in both domains, so we compare BALPs with learned

noisy-or parameters to this default model which we call “Manual-Weights” (MW).

For training, we ran EM with two sets of starting parameters – manual weights

(0.9) and random parameters. We call the former “MW-Start” and the latter “Rand-

Start”. We used the same training and test splits as described above for Linux and

Monroe domains. To measure performance, we computed convergence score and

accuracy score for various levels of observability as described above.

6We were unable to learn useful parameters for Story Understanding since the mere 25 develop-
ment examples were insufficient for training.
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25% 50% 75% 100% Convergence Score
MW 18.34 21.84 28.22 30.41 39.82

MW-Start 19.83* 25.45* 34.06* 36.32* 46.60*
Rand-Start 14.55* 20.53 29.10 31.40 41.57

Table 3.10: Results for parameter learning on Linux. “*” indicates that the differ-
ences wrt MW model are statistically significant.

3.5.3.2 Learning Results

Table 3.10 shows the results for different models on Linux. An “*” indi-

cates that the difference in the performance scores for MW and the given model is

statistically significant as determined by the Wilcoxon Sign Rank (WSR) test using

a significance level of 0.05. MW-Start consistently outperforms MW, demonstrat-

ing that parameter learning improves the performance of default BALP parameters

on the Linux domain. Rand-Start does marginally better than MW for all but 50%

and 25% levels of partial observability. However, it does not perform as well as

MW-Start, showing that learning from scratch is somewhat better than using de-

fault parameters but not as effective as starting learning from reasonable default

values.

Table 3.11 shows the results for different models on Monroe. The perfor-

mance of MW is already so high that there is little room for improvement, at least

with respect to the convergence score. As a result, the MW-Start model could not

improve substantially over the MW model. The manual parameters seem to be at

a (local) optimum, preventing EM from making further improvements on this data.

Rand-Start is performing about as well, sometimes better and sometimes worse than
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25% 50% 75% 100% Convergence Score
MW 7.20 20.67 46.06 79.16 98.4

MW-Start 7.33 20.26 44.63* 79.16 98.4
Rand-Start 10.46* 19.7* 44.73* 79.86* 98.4

Table 3.11: Results for parameter learning on Monroe. “*” indicates that the differ-
ences wrt MW model are statistically significant.

MW, demonstrating that starting from random values the system can learn weights

that are about as effective as manual weights for this domain. One reason for the

high performance of the MW model on Monroe is the lack of ambiguity in the ob-

servations, i.e. there are few observed actions that are part of more than one possible

plan. Overall, EM was able to automatically learn effective parameters for BALPs.

3.5.4 Comparison of BALPs to other SRL models

BLPs, BALPs, and MLNs are all languages for flexibly and compactly rep-

resenting large, complex probabilistic graphical models. An alternative approach

to SRL is to add a stochastic element to the deductive process of a logic program.

ProbLog (Kimmig, Santos Costa, Rocha, Demoen, & De Raedt, 2008), is the most

recent and well-developed of these approaches. ProbLog can be seen as extending

and subsuming several previous models, such as Poole’s Horn Abduction (PHA)

(Poole, 1993) and PRISM (Sato, 1995). Finally, there is publicly-available imple-

mentation of ProbLog 7 that exploits the latest inference techniques based on binary

decision diagrams (BDDs) to provide scalability and efficiency. Therefore, we at-

7http://dtai.cs.kuleuven.be/problog/
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tempted to compare the performance of BALPs to ProbLog as well.

It was relatively straightforward to develop a ProbLog program for plan-

recognition by appropriately formulating the planning KB used for BALPs. How-

ever, our preliminary explorations with ProbLog revealed a serious limitation that

prevented us from actually performing an experimental comparison on our plan

recognition datasets. In a number of the planning axioms in our KBs, existen-

tially quantified variables occur in the body of a clause which do not occur in the

head. Representing these clauses in ProbLog requires binding such variables to all

possible type-consistent constants in the domain. However, this results in the Pro-

Log inference engine attempting to construct an intractable number of explanations

(i.e. proofs) due to the combinatorial number of possible combinations of these

introduced constants. Therefore, it was intractable to run ProbLog on our datasets,

preventing an empirical comparison. BALPs use a greedy abductive-proof con-

struction method described in Section 3.2 to prevent this combinatorial explosion.

Therefore, we believe ProbLog would need a new approximate inference algorithm

for this situation in order to be practically useful for plan recognition.

Abductive Stochastic Logic Programs (ASLPs) (Chen, Muggleton, & San-

tos, 2008) are another SRL model that uses stochastic deduction and supports logi-

cal abduction and, therefore, could potentially be applied to plan recognition. How-

ever, we are unaware of a publicly-available implementation of ASLPs that could

be easily used for experimental comparisons.

53



3.5.5 Discussion

We now discuss various aspects of BALPs that have led to its superior per-

formance over existing methods. As mentioned earlier, MLN-PC (Kate & Mooney,

2009) and MLN-HC (Singla & Mooney, 2011) approaches cannot be applied to

large domains like Monroe since the addition of reverse implications results in

a computationally expensive model. As opposed to the explosive grounding of

rules in MLN-PC and MLN-HC, BALPs use logical abduction in which only those

groundings of the rules that are used to prove the query are included in the ground

network. This results in networks that are much smaller in size, thus enabling

BALPs to scale to large domains. Like BALPs, MLN-HCAM (Singla & Mooney,

2011) also uses logical abduction to reduce the size of the ground networks. In-

stead of constructing ground Markov networks directly from the abductive proofs

like in BALPs, MLN-HCAM supplies these proofs to the normal grounding process

in MLNs in order to construct the ground networks. The abductive proofs from log-

ical abduction help to limit the explosive grounding process in MLN-HCAM to a

certain extent, but not completely. As a result, BALPs outperform MLN-HCAM as

well. Further, the use of logical abduction allows BALPs to use an existing knowl-

edge base that was created for planning without any modification.

When Blaylock and Allen (2005b) perform instantiated plan recognition, it

is done in a pipeline of two separate steps. The first step predicts the plan schema

and the second step predicts the arguments given the schema. Unlike their approach,

BALPs are able to jointly predict both the plan and its arguments simultaneously.

We believe that BALP’s ability to perform joint prediction of plans and their argu-
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ments is at least partly responsible for its superior performance. In both BALP and

MLN systems for plan recognition, the domain knowledge is encoded in the knowl-

edge base, while the system by Blaylock and Allen has no access to the domain

knowledge. We believe that the ability of BALPs to incorporate domain knowledge

is also responsible for its superior performance.

Blaylock and Allen’s system (2005b) uses 4500 examples to learn reason-

able parameters on the Monroe domain. MLN-PC and MLN-HC approaches do not

even scale on the Monroe domain. On the other hand, BALPs use only 300 exam-

ples for learning parameters on the Monroe domain, proving that the EM algorithm

can effectively learn parameters when given reasonable number of examples. Fur-

ther, the use of planning knowledge provides additional supervision to the learning

algorithm, which results in more efficient learning as well. Except for the Story

Understanding data set, the EM algorithm used in BALPs could learn parameters

automatically from data. The inability of the EM algorithm to learn parameters on

this data set could be attributed to the lack of sufficient examples more than any-

thing. As per Kate and Mooney (2009), even the MLN-PC approach could not learn

reasonable weights on the Story Understanding data set due to lack of sufficient ex-

amples. Note that it is possible to learn parameters for Reformulated-Monroe using

EM, but we did not deliberately learn these parameters to ensure fair comparison

with MLNs. Overall, the success of the EM algorithm for learning parameters of

BALPs on the original Monroe and Linux domains demonstrates that our approach

allows for automatic learning of parameters from data. As a result, our approach

does not require any manual setting or tuning of parameters.
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Overall, we find that our approach to plan recognition using BALPs is very

effective. Our results demonstrate that BALPs outperform most existing approaches

on all benchmark data sets. As mentioned earlier, each data set in our evaluation

tests a specific aspect of the system. BALP’s superior performance on all bench-

mark data sets demonstrates that BALPs are a robust system for plan recognition.

3.6 Related Work

Some of the early work in plan recognition was done by Kautz and Allen

(1986, 1987). They use deductive inference to predict plans using observed actions,

an action taxonomy, and a set of commonsense rules or constraints. Lesh and Et-

zioni’s approach (1995) to goal recognition constructs a graph of goals, actions,

and their schemas and prunes the network until the plans present in the network are

consistent with the observed goals. The approach by Hong (2001) also constructs

a “goal graph” and analyses the graph to identify goals consistent with observed

actions. None of these approaches can disambiguate between competing goals and

plans using probabilistic reasoning.

There are several approaches to plan recognition using Bayesian networks

(Charniak & Goldman, 1989, 1991; Huber et al., 1994). Based on the observed

actions and a knowledge base constructed for planning, these approaches auto-

matically construct Bayesian networks using different heuristics. Their work is

similar to BALPs, but special purpose procedures are used to construct the neces-

sary ground networks rather than using a general-purpose probabilistic predicate

logic like MLNs or BLPs. Horvitz and Paek (1999) develop an approach that uses
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Bayesian networks to recognize goals in an automated conversation system; how-

ever their approach does not handle relational data.

Pynadath and Wellman (2000) extend probabilistic context-free grammars

to plan recognition; Kaminka et al. (2002) developed an approach to multiagent

plan recognition using dynamic Bayesian networks to perform monitoring in dis-

tributed systems; Bui et al. (2002, 2003) use Abstract Hidden Markov Models

for hierarchical goal recognition; Saria and Mahadevan (2004) extend work by

Bui to multiagent plan recognition systems; Albrecht et al. (1998) develop an

approach based on dynamic Bayesian networks to predict plans in an adventure

game; however, none of these approaches can handle relational data. We have al-

ready discussed the other systems for plan recognition (Ng & Mooney, 1992; Kate

& Mooney, 2009; Blaylock & Allen, 2005b) in Section 3.5.2.

Poole (1993) has developed a framework for Horn clause abduction using

Bayesian networks. Chen et al. (2008) extend Stochastic Logic Programs (Muggle-

ton, 2003) to incorporate abduction. Sato (1995) has also developed a probabilistic

logic called PRISM that performs abduction. However, none of these approaches

have been applied to plan recognition.

3.7 Summary

We introduced a new approach to plan recognition using Bayesian Logic

Programs (BLPs) in this chapter. We extended BLPs for plan abductive plan recog-

nition by employing logical abduction to construct the Bayesian networks as op-

posed to the standard logical deduction used in BLPs. We call the resulting model
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Bayesian Abductive Logic Programs (BALPs). We also demonstrated that the pa-

rameters of the BALP model can be learned automatically using the EM algorithm.

Empirical evaluations on three benchmark data sets from different application do-

mains demonstrated that BALPs generally outperform the state-of-the-art for plan

recognition. We believe that the superior performance achieved by BALPs is due

to the combination of logical abduction, joint probabilistic inference, and incorpo-

ration of domain knowledge. Overall, we found that BALPs were very effective for

plan recognition.
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Chapter 4

Machine Reading using Bayesian Logic Programs

4.1 Introduction

In the previous chapter, we demonstrated the efficacy of BLPs on plan

recognition, which is an abductive reasoning task. In this chapter, we develop an ap-

proach to machine reading using BLPs and demonstrate its efficacy on a deductive

reasoning task.

The task of machine reading involves automatic extraction of knowledge or

information from natural language text. The internet has grown exponentially in the

last few years, resulting in the accumulation of large amounts of on-line text. One

way to search for information on a particular topic on the web is by using a search

engine like Google1 that returns relevant documents to the user. However, the user

still has to read through all the documents to get the specific information he/she is

looking for. Instead, it would be convenient to have a machine reading system that

accepts a query/question from the user and returns the specific answer that the user

is looking for. Such a system could be useful for several types of professionals such

as doctors who could use it to stay on top of the latest developments in medicine.

People who work for security agencies could use it to keep track of various terror-

1www.google.com
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istic events that happen around the world. Due to these reasons, the last few years

have attracted a lot of interest in machine reading.

Much of the information conveyed in natural language text must be inferred

from what is explicitly stated since easily inferable facts are rarely mentioned. This

was first discussed in detail by Grice (1975), who postulated the maxims of quan-

tity, quality, manner, and relation that characterize natural-language communica-

tion. The maxim of quantity refers to the concise nature of natural language that

leaves much implicit information unstated. Human readers typically “read between

the lines” and infer information that is implicit from explicitly stated facts using

common sense knowledge.

Automated information extraction (IE) systems (Cowie & Lehnert, 1996;

Sarawagi, 2008), which are a type of machine reading system are trained to ex-

tract information that is explicitly stated in the text. Further, these systems do not

have access to common sense knowledge, and hence are not capable of performing

deeper inference. As a result, they are limited in their ability to extract implicit

facts. However, answering many queries can require inferring such implicit stated

facts. Consider the text “Barack Obama is the president of the United States of

America.” Given the query “Barack Obama is a citizen of what country?”, standard

IE systems cannot identify the answer since citizenship is not explicitly stated in

the text. However, a human reader possesses the common sense knowledge that the

president of a country is almost always a citizen of that country, and easily infers

the correct answer.

In this chapter, we consider the problem of inferring implicit facts from nat-
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ural language text. The standard approach to inferring implicit information involves

using common sense knowledge in the form of logical rules to deduce additional

information from the extracted facts. Since manually developing such a knowledge

base is difficult and arduous, an effective alternative is to learn automatically such

rules by mining a substantial database of facts that an IE system has already auto-

matically extracted from a large corpus of text (Nahm & Mooney, 2000). Due to

the concise and incomplete nature of natural language text, facts that are easily in-

ferred from explicitly stated facts are rarely mentioned in the text. Hence, the facts

extracted by an IE system are always quite noisy and incomplete. As a result, the

main challenge in this task involves learning first-order rules from a few instances

of inferable facts seen in the training data.

Some of the existing approaches modify Inductive Logic Programming (ILP)

(Lavrac̆ & Dz̆eroski, 1994) based rule learners to learn probabilistic first-order rules

and subsequently perform purely logical deduction to infer new facts (Carlson, Bet-

teridge, Kisiel, Settles, Jr., & Mitchell, 2010; Doppa, NasrEsfahani, Sorower, Di-

etterich, Fern, & Tadepalli, 2010). These approaches do not use a well-founded

probabilistic graphical model to compute coherent probabilities for inferred facts.

Alternate approaches involve using the MLN framework (Schoenmackers, Etzioni,

Weld, & Davis, 2010; Sorower, Dietterich, Doppa, Walker, Tadepalli, & Fern, 2011)

for both learning first-order rules and probabilistic inference of additional facts.

While MLNs can handle noisy and incomplete IE extractions, they seldom scale to

large datasets since the “brute force” grounding process in MLNs include all possi-

ble type-consistent groundings of the rules in the corresponding Markov net, which
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could result in an intractably large graphical model for larger datasets.

In order to alleviate limitations with the existing approaches, we propose

a novel approach that uses BLPs to infer implicit facts. Our approach uses LIME

(McCreath & Sharma, 1998), an ILP rule learner that is capable of handling noise

to learn first-order rules and then use the BLP framework to infer additional facts.

Unlike purely logical deduction, BLPs employ a well-founded probabilistic graph-

ical model such as Bayesian networks that compute coherent probabilities for new

facts. Unlike MLNs, BLPs employ focused grounding by including only those liter-

als that are used to prove the query, thereby making them scalable to large corpora

of natural language text. Hence, we hypothesize that BLPs are better suited for the

task of inferring implicit facts from natural language text.

The main contribution of this chapter is the effective application of BLPs

for inferring implicit information from natural language text. We demonstrate that

it is possible to learn the structure and the parameters of BLPs automatically using

only noisy and incomplete extractions from natural language text, which we then

use to infer additional facts from text.

We have implemented this approach by using an off-the-shelf IE system and

developing novel adaptations of existing learning methods to construct efficiently

fast and effective BLPs for reading between the lines. We present an experimental

evaluation of our resulting system on a realistic test corpus from DARPA’s Machine

Reading project, and demonstrate improved performance compared to a purely log-

ical approach based on ILP, and an alternative SRL approach based on MLNs.
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The rest of this chapter is organized as follows. Section 4.2 describes our

BLP-based approach to learning to infer implicit facts. Section 4.3 describes our

experimental methodology and discusses the results of our evaluation. Section 4.5

discusses related work and highlights key differences between our approach and

existing work.

4.2 Learning BLPs to Infer Implicit Facts

We describe our approach to inferring implicit facts from natural language

text using BLPs. Figure 4.1 shows the overall architecture of our system. Given

a set of training documents in natural language text, the first step involves extract-

ing explicitly mentioned facts using an IE system. We use IBM’s SIRE (Florian,

Hassan, Ittycheriah, Jing, Kambhatla, Luo, Nicolov, & Roukos, 2004) to extract IE

extractions from natural language text. Next, we learn common sense knowledge

in the form of first-order logical rules using an ILP based rule learner called LIME

(McCreath & Sharma, 1998) as described in Section 4.2.1. Given the learned first

order rules, we specify parameters using the techniques described in Section 4.2.2.

Finally, when IE extractions from a new document are given, the learned first-order

rules along with the respective parameters are used to deduce additional facts using

the BLP inference engine as described in Section 4.2.3. Note that the learned first-

order rules together with their parameters completely specify the BLP for inferring

implicit facts.
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Figure 4.1: System architecture for inferring implicit facts using BLPs

4.2.1 Learning Rules from Extracted Data

We now discuss our approach to learning common sense knowledge in the

form of first-order definite clauses from text. We first extract facts that are explicitly

stated in the text using SIRE (Florian et al., 2004), an IE system developed by IBM.

We then learn first-order rules from these extracted facts using LIME (McCreath

& Sharma, 1998), an ILP system designed for noisy training data. As described

in Chapter 2, LIME is capable of learning from only positive and both positive and

negative examples. Further, LIME does not require the same number of positive and

negative examples for learning first-order rules. Typically, in the machine reading

task, we have access to only positive instances. Negative instances are artificially

generated (see below) using the closed world assumption. Further, the ratio of

positive to negative instances is typically skewed. For these reasons, we used LIME

to learn first-order rules for this task.
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We first identify a set of target relations we want to infer. Typically, an

ILP system takes a set of positive and negative instances for a target relation, along

with a background knowledge base (in our case, other facts extracted from the same

document) from which the positive instances are potentially inferable. In our task,

we only have direct access to positive instances of target relations, i.e. the relevant

facts extracted from the text. So we artificially generate negative instances using

the closed world assumption, which states that any instance of a relation that is

not extracted can be considered a negative instance. We note that the closed world

assumption does not necessarily hold for this task since several implicit facts could

be labeled as negative instances. However, it typically generates a useful (if noisy)

set of negative instances. For each relation, we generate all possible type-consistent

instances using all constants in the domain. All instances that are not extracted

facts (i.e. positive instances) are labeled as negative. The total number of such

closed world negatives can be intractably large, so we randomly sample a fixed-

sized subset. The ratio of 1:20 for positive to negative instances worked well in our

approach.

Since LIME can learn rules using only positive instances, or using both pos-

itive and negative instances, we learn rules using both settings. LIME learns fewer

rules that are very general when given only positive instances, while it learns more

specific rules when given both positive and negative instances. As a result, we in-

clude all unique rules learned from both settings in the final set, since the goal of

this step is to learn a large set of potentially useful rules whose relative strengths

will be determined in the next step of parameter learning. Other approaches could
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also be used to learn candidate rules. We initially tried using the popular ALEPH

ILP system (Srinivasan, 2001), but it did not produce useful rules, probably due to

the high level of noise in our training data.

4.2.2 Learning BLP Parameters

As described in Chapter 2, we use a deterministic logical-and model to en-

code the CPT entries associated with Bayesian clauses, and use noisy-or to combine

evidence coming from multiple ground rules that have the same head (Pearl, 1988).

The noisy-or model requires just a single parameter for each rule, which can be

learned from training data.

We learn the noisy-or parameters using the EM algorithm adapted for BLPs

by Kersting and De Raedt (2008) (see Chapter 2). In our task, the supervised train-

ing data consists of facts that are extracted from the natural language text. However,

we usually do not have evidence for inferred facts as well as noisy-or nodes. As a

result, there are a number of variables in the ground networks which are always

hidden, and hence EM is appropriate for learning the requisite parameters from the

partially observed training data.

4.2.3 Inference of Additional Facts using BLPs

Inference in the BLP framework involves backward chaining (Russell &

Norvig, 2003) from a specified query (SLD resolution) to obtain all possible de-

ductive proofs for the query. In the context of the current task, each target relation

becomes a query on which we backchain. We then construct a ground Bayesian
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network using the resulting deductive proofs for all target relations and learned

parameters using the standard approach described in Chapter 2. Finally, we per-

form standard probabilistic inference to estimate the marginal probability of each

inferred fact. Since exact inference was intractable, we use Sample Search (Gogate

& Dechter, 2007) to perform probabilistic inference.

4.2.4 Illustrative example

We now illustrate our approach to infer implicit facts with a concrete ex-

ample. Figure 4.2a shows an example test document and Figure 4.2b shows the

corresponding extractions, extracted using an IE system. Figure 4.2c shows com-

mon sense knowledge learned in the form of first-order rules. Given the extrac-

tions and the first-order rules learned, BLP inference engine performs deductive

reasoning and constructs the ground Bayesian network shown in Figure 4.2d. The

ground Bayesian network shows that the BLP inference engine has inferred hasCi-

tizenship(barack obama, usa) using two different rules. After learning the noisy-or

parameters, probabilistic inference is performed to estimate the marginal probabil-

ity of hasCitizenship(barack obama, usa). In Figure 4.2d, nodes with thick borders

represent evidence nodes, nodes with dotted borders represent intermediate logical-

and and noisy-or nodes, and nodes with thin borders represent inferences for which

marginal probabilities are estimated.
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(a) Example test document
“Barack Obama is the president of USA.”

(b) IE extractions
nationState(usa)
person(barack obama)
isLedBy(usa,barack obama)
employs(usa,barack obama)

(c) First order rules constructed
isLedBy(X,Y) ∧ person(Y) ∧ nationState(X)→ hasCitizenship(Y,X)
employs(X,Y) ∧ person(Y) ∧ nationState(X)→ hasCitizenship(Y,X)

(d) Ground Bayesian network constructed from BLP inference

nationState 
(usa) 
	  

isLedBy 
(usa,  

barack 
obama) 

	  

 
Logical-And 

employs 
(usa, 

barack 
obama) 

	  

dummy1	   dummy2	  

hasCitizenship 
(barack obama, usa) 

	  

 
Logical-And 

 
Noisy-Or 

person 
(barack 
obama) 

	  

Figure 4.2: Example describing the inference of new facts using BLPs.
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4.3 Experimental Evaluation
4.3.1 Data

For evaluation, we used DARPA’s machine-reading intelligence-community

(IC) data set, which consists of news articles on terrorist events around the world.

There are 10, 000 documents each containing an average of 89.5 facts extracted by

SIRE (Florian et al., 2004). SIRE assigns each extracted fact a confidence score and

we used only those with a score of 0.5 or higher for learning and inference. An

average of 86.8 extractions per document meet this threshold.

DARPA also provides an ontology describing the entities and relations in the

IC domain. It consists of 57 entity types and 79 relations. The entity types include

Agent, PhysicalThing, Event, TimeLocation, Gender, and Group, each with several

subtypes. The type hierarchy is a DAG rather than a tree, and several types have

multiple super-classes. For instance, a GeopoliticalEntity can be a HumanAgent as

well as a Location. This can cause some problems for systems that rely on a strict

typing system, such as MLNs (as implemented in Alchemy) which rely on types

to limit the space of ground literals that are considered. Some sample relations are

attendedSchool, approximateNumberOfMembers, mediatingAgent, employs, has-

Member, hasMemberHumanAgent, and hasBirthPlace.

4.3.2 Methodology

We evaluated our approach using 10-fold cross validation. We learned first-

order rules for the 13 target relations shown in Table 4.3 from the facts extracted

from the training documents (Section 4.2.1). These relations were selected since
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governmentOrganization(A) ∧ employs(A,B)→ hasMember(A,B)
If a government organization A employs person B, then B is a member of A

eventLocation(A,B) ∧ bombing(A)→ thingPhysicallyDamaged(A,B)
If a bombing event A took place in location B, then B is physically damaged

isLedBy(A,B)→ hasMemberPerson(A,B)
If a group A is led by person B, then B is a member of A

nationState(B) ∧ eventLocationGPE(A,B)→ eventLocation(A,B)
If an event A occurs in a geopolitical entity B, then the event location for that event is B

mediatingAgent(A,B) ∧ humanAgentKillingAPerson(A)→ killingHumanAgent(A,B)
If A is an event in which a human agent is killing a person and the mediating agent of A is an agent B, then B is

the human agent that is killing in event A

Table 4.1: A sample set of rules learned using LIME

they have an appreciable amount of data. Since LIME does not scale well to large

data sets, we could train it on at most about 2, 500 documents. Consequently, we

split the 9, 000 training documents into four disjoint subsets and learned first-order

rules from each subset. The final knowledge base included all unique rules learned

from any subset. LIME learned several rules that had only entity types in their

bodies. Such rules make many incorrect inferences; hence we eliminated them. We

also eliminated rules violating type constraints. We learned an average of 48 rules

per fold. Table 4.1 shows some sample learned rules.

We then learned parameters as described in Section 4.2.2. We initially set

all noisy-or parameters to 0.9 based on the intuition that if exactly one rule for a

consequent was satisfied, it could be inferred with a probability of 0.9.

For each test document, we performed BLP inference as described in Sec-

tion 4.2.3. We ranked all inferences by their marginal probability, and evaluated

the results by either choosing the top n inferences or accepting inferences whose
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marginal probability was equal to or exceeded a specified threshold. We evaluated

two BLPs with different parameter settings: BLP-Learned-Weights used noisy-or

parameters learned using EM, BLP-Manual-Weights used fixed noisy-or weights of

0.9.

4.3.3 Annotation of ground truth for evaluation

The IC data set lacks ground truth information, i.e. information about all

facts that can be inferred from a given document. As a result, automatic evaluation

of inferred facts is not possible. It is possible to manually evaluate inferred facts

to estimate precision, which measures the fraction of inferred facts that are correct.

However, this methodology does not allow for estimation of recall, which measures

the fraction of all facts that can be inferred from the document correctly. For auto-

matic evaluation of precision and recall, we explored the possibility of annotating a

subset of documents with all possible facts that can be inferred from the respective

documents.

We first randomly sampled two documents from the test set in each fold.

For each target relation, we generated all possible type-consistent instances using

all constants extracted by the extractor from the document. We then manually eval-

uated each instance based on the natural language text in the document and retained

those instances that were found to be true as ground truth. Typically, the list of all

possible relation instances generated per document ranged between 5000 – 9000.

For some larger documents with several constants, it was close to 20, 000. The

ground truth after discarding incorrect instances typically reduced to a set of 100
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– 200 facts for each document. We took approximately 6-7 hours to annotate one

document and we initially tried to annotate 20 documents in total.

We ran into several issues during manual annotation, which prevented us

from creating an accurately annotated data set for automatic evaluation. We found

that there were several relation instances that were explicitly stated in the docu-

ment, but were not extracted by the extractor. We could have excluded these in-

stances in the ground truth set since our task involved evaluating facts that could

be inferred from the document. However, we realized that these relations that were

not extracted by the extractor could be inferred based on the other facts that were

extracted. As a result, it was difficult to distinguish between facts that could be

strictly inferred from those that were explicitly stated. Hence, we included all in-

stances that were found to be true for a given document. This process could have

possibly included those facts that were strictly explicitly stated in the document, but

could not be inferred based on the remaining facts. Further, we observed that even

though some inferences could be made based on the explicitly stated facts, the same

inferences could not be made based on the extracted facts since the extractor had

not extracted some of the explicitly stated facts. Here again, we could not have in-

cluded those inferences that were not supported by the extracted facts in the ground

truth. However, this would have resulted in different ground truth for different sets

of extracted facts. Finally, the extractor had made several mistakes during the ex-

traction process. For instance, it extracted “car”, which was used as a vehicle in

the document, as an instance of “weapon”. It was not clear how to incorporate the

extractor’s mistakes into our annotation. When evaluating instances that involved
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“car”, we treated “car” as an instance of vehicle and not that of weapon.

Relations such as attendedSchool and hasBirthPlace had very few instances

in the ground truth. On the other hand, many instances of relations such as employs

and hasMember were present in the ground truth. This suggests that relations such

as attendedSchool and hasBirthPlace are not easily inferable in nature. Unless they

are explicitly mentioned in the document, it is highly unlikely that such relations

will be inferred based on other facts unlike instances of relations such as employs

and hasMember. For the examples annotated with ground truth, the overall recall

was extremely poor, in the range between 1-5%. The low recall score was partially

due to the difficulties described above with respect to annotation of ground truth.

Another possibility for the low recall could arise from the lack of a more expres-

sive ontology that is capable of capturing a wide variety of relations. For instance,

there is a very subtle difference between the relations thingPhysicallyDamaged and

thingPhysicallyDestroyed. An instance of thingPhysicallyDestroyed could also be

an instance of thingPhysicallyDamaged. Relations describing family relationships

such as hasFather, hasSon, hasSpouse, etc. cannot be inferred due to a lack of suffi-

cient information in the IC ontology. Due to these issues, it was difficult to measure

the correct recall of our system. As a result, we decided not to pursue this approach

to evaluation. Instead, we manually evaluated inferences to calculate precision as

described below. Since the number of inferences made for each document ranged

roughly from 20-100, we could scale our manual evaluation for the calculation of

precision to a larger set of documents.
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4.3.4 Evaluation Metrics

As described above, the lack of ground truth annotation for inferred facts

prevents an automated evaluation, so we resorted to a manual evaluation. We ran-

domly sampled 40 documents (4 from each test fold), judged the accuracy of the

inferences for those documents, and computed precision, the fraction of inferences

that were deemed correct. For probabilistic methods such as BLPs and MLNs that

provide certainties for their inferences, we also computed precision at top n, which

measures the precision of the n inferences with the highest marginal probability

across the 40 test documents. Our evaluation is similar to that used in previous

related work (Carlson et al., 2010; Schoenmackers et al., 2010).

SIRE frequently makes incorrect extractions, and therefore inferences made

from these extractions are also inaccurate. To account for the mistakes made by the

extractor, we report two different precision scores. The “unadjusted” (UA) score,

does not correct for errors made by the extractor. The “adjusted” (AD) score does

not count mistakes due to extraction errors. That is, if an inference is incorrect

because it was based on incorrect extracted facts, we remove it from the set of

inferences and calculate precision for the remaining inferences.

4.3.5 Baselines

Since none of the existing approaches have been evaluated on the IC data,

we cannot directly compare our performance to theirs. Therefore, we compared to

the following methods:

74



• Logical Deduction: This method forward chains on the extracted facts using

the first-order rules learned by LIME to infer additional facts. This approach

is unable to provide any confidence or probability for its conclusions.

• Markov Logic Networks (MLNs): We use the rules learned by LIME to define

the structure of an MLN. In the first setting, which we call MLN-Learned-

Weights, we learn the MLN’s parameters using the generative weight learning

algorithm (Domingos & Lowd, 2009), which we modified to process train-

ing examples in an online manner. In online generative learning, gradients

are calculated and weights are estimated after processing each example and

the learned weights are used as the starting weights for the next example.

The pseudo-likelihood of one round is obtained by multiplying the pseudo-

likelihood of all examples. In our approach, the initial weights of clauses are

set to 10. Convergence to optimal weights was reached after 131 iterations,

on average. In the second setting, which we call MLN-Manual-Weights, we

assign a weight of 10 to all rules since it worked the best in our experiments.

We used maximum likelihood prior for all predicates.

MLN-Manual-Weights is similar to BLP-Manual-Weights in that all rules are

given the same weight. We then use the learned rules and parameters to infer

probabilistically additional facts using the MC-SAT algorithm implemented

in Alchemy,2 an open-source MLN package.

2http://alchemy.cs.washington.edu/
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UA AD
Precision 29.73 (443/1490) 35.24 (443/1257)

Table 4.2: Precision for logical deduction. “UA” and “AD” refer to the unadjusted
and adjusted scores respectively

4.4 Results and Discussion
4.4.1 Comparison to Baselines

Table 4.2 gives the unadjusted (UA) and adjusted (AD) precision for logi-

cal deduction. Out of 1, 490 inferences for the 40 evaluation documents, 443 were

judged correct, giving an unadjusted precision of 29.7%. Out of these 1, 490 infer-

ences, 233 were determined to be incorrect due to extraction errors, improving the

adjusted precision to a modest 35.2%.

MLNs made about 127, 000 inferences for the 40 evaluation documents.

Since it is not feasible to evaluate manually all the inferences made by the MLN,

we calculated precision using only the top 1, 000 inferences. Since BLP uses logical

deduction to construct the ground Bayesian networks, the total number of inferences

made by the BLP approach is same as that made by purely logical deduction (see

Table 4.2). Figure 4.3 shows both unadjusted and adjusted precision at top-n for

various values of n for different BLP and MLN models. For both BLPs and MLNs,

simple manual weights result in superior performance than the learned weights. De-

spite the fairly large size of the overall training sets (9, 000 documents), the amount

of data for each target relation is apparently still not sufficient to learn particularly

accurate weights for both BLPs and MLNs. However, for BLPs, learned weights do

show a substantial improvement initially (i.e. top 25–50 inferences), with an aver-
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Figure 4.3: Unadjusted and adjusted precision at top-n for different BLP and MLN
models for various values of n
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age of 1 inference per document at 91% adjusted precision as opposed to an average

of 5 inferences per document at 85% adjusted precision for BLP-Manual-Weights.

For MLNs, learned weights show a small improvement initially only with respect

to adjusted precision. Between BLPs and MLNs, BLPs perform substantially better

than MLNs at most points in the curve. However, MLN-Manual-Weights improve

marginally over BLP-Learned-Weights at later points (top 600 and above) on the

curve, where the precision is generally very low. Here, the superior performance of

BLPs over MLNs could be possibly due to the focused grounding used in the BLP

framework.

For BLPs, as n increases towards including all of the logically sanctioned

inferences, as expected, the precision converges to the results for logical deduc-

tion. However, as n decreases, both adjusted and unadjusted precision increase

fairly steadily. This demonstrates that probabilistic BLP inference provides a clear

improvement over logical deduction, allowing the system to accurately select the

best inferences that are most likely to be correct. Unlike the two BLP models,

MLN-Manual-Weights has more or less the same performance at most points on the

curve, and it is slightly better than that of purely-logical deduction. MLN-Learned-

Weights is worse than purely-logical deduction at most points on the curve.

4.4.2 Results for Individual Target Relations

Table 4.3 shows both unadjusted and adjusted precision for each relation

for instances inferred using logical deduction, BLP-Manual-Weights, and BLP-

Learned-Weights with a confidence threshold of 0.95. The probabilities estimated
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for inferences by MLNs are not directly comparable to those estimated by BLPs.

As a result, we do not include results for MLNs here. For this evaluation, using a

confidence threshold based cutoff is more appropriate than using top-n inferences

made by the BLP models since the estimated probabilities can be directly compared

across target relations.

For logical deduction, precision is high for a few relations such as em-

ploys, hasMember, and hasMemberHumanAgent, indicating that the rules learned

for these relations are more accurate than the ones learned for the remaining rela-

tions. Unlike relations such as hasMember that are easily inferred from relations

such as employs and isLedBy, certain relations such as hasBirthPlace are not easily

inferable using the information in the ontology. As a result, it might not be possible

to learn accurate rules for such target relations. Other reasons include the lack of

a sufficiently large number of target-relation instances during training and lack of

strictly defined types in the IC ontology.

Both BLP-Manual-Weights and BLP-Learned-Weights also have high pre-

cision for several relations (eventLocation, hasMemberHumanAgent, thingPhysi-

callyDamaged). However, the actual number of inferences can be fairly low. For

instance, 103 instances of hasMemberHumanAgent are inferred by logical deduc-

tion (i.e. 0 confidence threshold), but only 2 of them are inferred by BLP-Learned-

Weights at 0.95 confidence threshold, indicating that the parameters learned for

the corresponding rules are not very high. For several relations such as hasMem-

ber, hasMemberPerson, and employs, no instances were inferred by BLP-Learned-

Weights at 0.95 confidence threshold. On the other hand, BLP-Manual-Weights has
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inferred 26 instances of hasMemberHumanAgent.

Lack of sufficient training instances (extracted facts) is possibly one of the

reasons for learning low weights for rules for target relations such as hasMember

and hasMemberPerson. Another possible reason is that relations such as hasMem-

ber are more likely to be inferred due to which they are seldom stated explicitly

in the text. As a result, they are rarely seen in the training data. Increasing the

number of training instances might solve the problem to some extent. However, the

proportion of instances for such relations that are more likely to be inferred are still

going to be smaller when compared to that for relations that are explicitly stated

in the text. As a result, EM might still end up learning low weights for rules for

target relations that are more likely to be inferred. Providing additional supervision

to EM in the form of ground truth information, i.e. relations that can be inferred

from explicitly stated facts might alleviate this problem and we consider this as a

topic for future work.

4.4.3 Discussion

We now discuss the potential reasons for BLP’s superior performance com-

pared to other approaches. Probabilistic reasoning used in BLPs allows for a prin-

cipled way of determining the most confident inferences, thereby allowing for im-

proved precision over purely logical deduction. The primary difference between

BLPs and MLNs lies in the approaches used to construct the ground network. In

BLPs, only propositions that can be logically deduced from the extracted evidence

are included in the ground network. On the other hand, MLNs include all possible
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Relation UA/AD Logical Deduction BLP-Manual-Weights-.95 BLP-Learned-Weights-.95 No. train inst.

employs UA 65.78 (25/38) 92.85 (13/14) nil (0/0) 18,440
AD 69.44 (25/36) 92.85 (13/14) nil (0/0)

eventLocation UA 15.00 (18/120) 100.00 (1/1) 100 (1/1) 6902
AD 18.75 (18/96) 100.00 (1/1) 100 (1/1)

hasMember UA 87.96 (95/108) 92.20 (71/77) nil (0/0) 1462
AD 95.95 (95/99) 97.26 (71/73) nil (0/0)

hasMemberPerson UA 40.00 (42/105) 93.33 (14/15) nil (0/0) 705
AD 43.75 (42/96) 100 (14/14) nil (0/0)

isLedBy UA 12.30 (8/65) nil (0/0) nil (0/0) 8402
AD 12.30 (8/65) nil (0/0) nil (0/0)

mediatingAgent UA 13.15 (15/114) nil (0/0) nil (0/0) 92,998
AD 19.73 (15/76) nil (0/0) nil (0/0)

thingPhysicallyDamaged UA 21.60 (62/287) 90.32 (28/31) 90.32 (28/31) 24,662
AD 25.72 (62/241) 90.32 (28/31) 90.32 (28/31)

hasMemberHumanAgent UA 86.72 (98/113) 89.65 (26/29) 66.66 (2/3) 3619
AD 95.14 (98/103) 100.00 (26/26) 100.00 (2/2)

killingHumanAgent UA 11.81 (43/364) 25.00 (2/8) 40.00 (2/5) 3341
AD 15.35 (43/280) 33.33 (2/6) 66.67 (2/3)

hasBirthPlace UA 0.00 (0/89) nil (0/0) nil (0/0) 89
AD 0.00 (0/88) nil (0/0) nil (0/0)

thingPhysicallyDestroyed UA nil (0/0) nil (0/0) nil (0/0) 800
AD nil (0/0) nil (0/0) nil (0/0)

hasCitizenship UA 42.52 (37/87) 50.72 (35/69) nil (0/0) 222
AD 48.05 (37/77) 58.33 (35/60) nil (0/0)

attendedSchool UA nil (0/0) nil (0/0) nil (0/0) 2
AD nil (0/0) nil (0/0) nil (0/0)

Table 4.3: Unadjusted (UA) and adjusted (AD) precision for individual relations
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type-consistent groundings of all rules in the network, introducing many ground lit-

erals which cannot be logically deduced from the evidence. This generally results

in several incorrect inferences, thereby yielding poor performance.

Even though learned weights in BLPs do not result in a superior perfor-

mance, learned weights in MLNs are substantially worse. Lack of sufficient train-

ing data is one of the reasons for learning less accurate weights by the MLN weight

learner. However, a more important issue is due to the use of the closed world

assumption during learning, which we believe is adversely impacting the weights

learned. As mentioned earlier, for the task considered in this chapter, if a fact is

not explicitly stated in text, and hence not extracted by the extractor, it does not

necessarily imply that it is not true. Since existing weight learning approaches for

MLNs do not deal with missing data and open world assumption, developing such

approaches is a topic for future work.

Apart from developing novel approaches for weight learning, additional en-

gineering could potentially improve the performance of MLNs on the IC data set.

Due to MLN’s grounding process, several spurious facts like employs(a,a) were in-

ferred. These inferences can be prevented by including additional clauses in the

MLN that impose integrity constraints that prevent such nonsensical propositions.

Further, techniques proposed by Sorower et al. (2011) can be incorporated to ex-

plicitly handle missing information in text. Lack of strict typing on the arguments of

relations in the IC ontology has also resulted in inferior performance of the MLNs.

To overcome this, relations that do not have strictly defined types could be special-

ized. Finally, we could use the deductive proofs constructed by BLPs to constrain
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the ground Markov network, similar to the model-construction approach adopted in

MLN-HCAM by Singla and Mooney (2011) (see Chapter 3).

However, in contrast to MLNs, BLPs that use first-order rules that are learned

by an off-the-shelf ILP system and given simple intuitive hand-coded weights, are

able to provide fairly high-precision inferences that augment the output of an IE

system and allow it to effectively infer implicit facts in natural language text.

4.5 Related Work

Several previous projects (Nahm & Mooney, 2000; Carlson et al., 2010;

Schoenmackers et al., 2010; Doppa et al., 2010; Sorower et al., 2011) have mined

inference rules from data automatically extracted from text by an IE system. Similar

to our approach, these systems use the learned rules to infer additional information

from facts directly extracted from a document. Nahm and Mooney (2000) learn

propositional rules using C4.5 (Quinlan, 1993) from data extracted from computer-

related job-postings, and therefore cannot learn multi-relational rules with quanti-

fied variables. Other systems (Carlson et al., 2010; Schoenmackers et al., 2010;

Doppa et al., 2010; Sorower et al., 2011) learn first-order rules (i.e. Horn clauses

in first-order logic).

Carlson et al. (2010) modify an ILP system similar to FOIL (Quinlan, 1990)

to learn rules with probabilistic conclusions. They use purely logical deduction

(forward-chaining) to infer additional facts. Unlike BLPs, this approach does not

use a well-founded probabilistic graphical model to compute coherent probabilities

for inferred facts. Further, Carlson et al. (2010) used a human judge to manu-
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ally evaluate the quality of the learned rules before using them to infer additional

facts. Our approach, on the other hand, is completely automated and learns fully

parameterized rules in a well-defined probabilistic logic.

Schoenmackers et al. (2010) develop a system called SHERLOCK that uses

statistical relevance to learn first-order rules. Unlike our system and others (Carlson

et al., 2010; Doppa et al., 2010; Sorower et al., 2011) that use a pre-defined ontol-

ogy, they automatically identify a set of entity types and relations using “open IE.”

They use HOLMES (Schoenmackers, Etzioni, & Weld, 2008), an inference engine

based on MLNs to infer additional facts. However, as mentioned earlier, MLNs

include all possible type-consistent groundings of the rules in the corresponding

Markov net, which, for larger datasets, can result in an intractably large graphical

model. To overcome this problem, HOLMES uses a specialized model construction

process to control the grounding process. Unlike MLNs, BLPs naturally employ a

more focused approach to grounding by including only those literals that are used

to deduce the query.

Doppa et al. (2010) use FARMER (Nijssen & Kok, 2003), an existing ILP

system, to learn first-order rules. They propose several approaches to score the

rules, which are used to infer additional facts using purely logical deduction. Sorower

et al. (2011) propose a probabilistic approach to modeling implicit information as

missing facts and use MLNs to infer these missing facts. They learn first-order

rules for the MLN by performing exhaustive search, which might be computation-

ally intensive for large domains. As mentioned earlier, inference using both these

approaches, logical deduction and MLNs, have certain limitations, which BLPs
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help overcome. Unlike our approach, both Doppa et al. (2010) and Sorower et al.

(2011) have evaluated their approaches using a couple of target relations.

DIRT (Lin & Pantel, 2001) and RESOLVER (Yates & Etzioni, 2007) learn

inference rules, also called entailment rules that capture synonymous relations and

entities from text. Berant et al. (2011) propose an approach that uses transitivity

constraints for learning entailment rules for typed predicates. Unlike the systems

described above, these systems do not learn complex first-order rules that capture

common sense knowledge. Further, most of these systems do not use extractions

from an IE system to learn entailment rules, thereby making them less related to

our approach.

4.6 Summary

In this chapter, we have introduced a novel approach using BLPs to learning

to infer implicit information from facts extracted from natural language text. We

have demonstrated that it can learn useful first-order rules from a large database of

noisy and incomplete IE extractions. Our experimental evaluation on the IC data set

demonstrates the advantage of BLPs over logical deduction and an approach based

on MLNs.
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Chapter 5

Online Inference-Rule Learning from Natural
Language Extractions

5.1 Introduction

In the previous chapter, we demonstrated that BLPs are a good formalism

for inferring implicit facts from natural language text. We used LIME, an ILP based

rule learner to learn common sense knowledge in the form of first order rules. Most

existing rule learners (Quinlan, 1990; McCreath & Sharma, 1998; Srinivasan, 2001;

Kersting & De Raedt, 2008; Dinh, Exbrayat, & Vrain, 2011) assume that the train-

ing data is largely accurate. Since much of the information conveyed in text must

be inferred from what is explicitly stated, entities and relations extracted using an

information extraction (IE) system are incomplete and noisy. As a result, most

existing rule learners are not adept at learning useful rules from natural language

extractions. Further, most of them do not scale to large corpora.

The limitations described above for ILP based rule learners are present in

LIME as well. The rules learned by LIME using only positive instances are very

few and very general. Since we do not have access to negative instances for any

given target relation, we artificially generate negative instances using the closed

world assumption (see Chapter 4). However, the closed world assumption does not
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always hold for natural language text since the instances that are not extracted by

the extractor are not necessarily false; they might not have been explicitly stated

in the text. As a result, LIME does not always learn rules that handle the concise,

incomplete nature of natural-language text. Further, similar to existing rule learn-

ers, LIME does not scale to large corpora. As described in the previous chapter

(Chapter 4), we split the training documents into smaller subsets and then learned

first-order rules separately on each subset using LIME.

In this chapter, we develop a novel approach to learning common sense

knowledge in the form of first-order rules from incomplete natural language extrac-

tions for the machine reading task. These rules are then used to infer implicit facts

from natural language text (Carlson et al., 2010; Schoenmackers et al., 2010; Doppa

et al., 2010; Sorower et al., 2011; Raghavan et al., 2012). The proposed rule learner

learns probabilistic first-order definite clauses from incomplete IE extractions in

which the body of the clause typically consists of relations that are frequently ex-

plicitly stated, while the head is a relation that is more typically inferred. We use

the frequency of occurrence of extracted relations as a heuristic for distinguishing

those that are typically explicitly stated from the ones that are usually inferred. In

order to allow scaling to large corpora, we develop an efficient online rule learner.

Unlike existing rule learners that require both positive and negative instances to be

specified, our rule learner learns rules from only positive instances.

For each example in training, we construct a directed graph of relation ex-

tractions and add directed edges between nodes that share one or more constants.

Then we traverse the graph to learn first-order rules. Our approach is closest to the
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work by Dinh et al. (2011) in which they construct an undirected graph of first-

order predicates and add edges between nodes whose predicates share arguments

of the same type. In our approach, the directionality of the edges helps discover

rules for those relations that can be inferred from others that are explicitly stated

in the text. Further, by constructing a graph of ground relation literals instead of

relation predicates, our learner can be used in domains that do not have a strictly

tree-structured ontology. Typically, relations that accept arguments or constants

belonging to multiple types are found in ontologies which have the structure of a

DAG (directed acyclic graph) rather than a tree. Accommodating such an ontology

is critical to handling the machine-reading corpus used in our experiments. The

approach by Dinh et al. is not directly applicable to such domains since it relies on

a unique type for each predicate argument.

After learning first-order rules, additional facts are inferred by performing

deductive reasoning using the learned rules as common sense knowledge. As men-

tioned in the previous chapter, approaches to inference use either purely logical

deduction, which fails to account for the uncertainty inherent in such rules, or a

well founded probabilistic logic such as MLNs or BLPs. As demonstrated in the

previous chapter, BLPs have a superior performance wrt accuracy over both MLNs

and purely logical deduction. Hence, we use BLPs to infer implicit facts from nat-

ural language text in this chapter as well.

Probabilistic inference using the BLP framework requires learning param-

eters (CPT entries) for the first-order rules. Since those relations that are easily

inferred from explicitly stated facts are seldom seen in the training data, learning
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useful parameters using conventional BLP-parameter-learning approaches such as

EM (Kersting & De Raedt, 2008) have resulted in limited success as seen in the

previous chapter. Consequently, we propose an alternate approach to specifying

parameters for the learned first-order rules using lexical information from a curated

ontology such as WordNet (Fellbaum, 1998). The basic idea behind our approach

is that more accurate rules typically have predicates that are closely related to each

other in terms of the meanings of the English words used to name them. Since

WordNet is a rich resource for lexical information, we propose to use it for scoring

rules based on word similarity.

The main contributions of this chapter are as follows:

• A novel online rule learner that efficiently learns accurate rules from noisy

and incomplete natural-language extractions.

• A novel approach to scoring such rules using lexical information from a cu-

rated ontology such as WordNet (Fellbaum, 1998).

The rest of the chapter is organized as follows. In Section 5.2, we describe

our online rule learner and in Section 5.3, we describe our novel approach to scoring

rules. In Section 5.4, we present our experimental methodology and discuss results.

We discuss related work in Section 5.5 and conclude in Section 5.6.

5.2 Online Rule Learner

In this section, we describe our online rule learner for inducing probabilistic

first-order rules from the output of an off-the-shelf IE system. It involves construct-
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Algorithm 2 Online Rule Learner
Inputs: Training examples D, target predicates T , and number of rules to output

per predicate n. Each example Di consists of a set of extractions.
Output: First-order definite clauses R for target predicates T .

1: for each example Di do
2: for each extraction x in Di do
3: Get the predicate Px for x
4: if Px is a relation predicate then
5: Increment count for Px

6: end if
7: end for
8: Construct a directed graph Gi in which relation extractions are nodes.
9: for each pair of relations x and y that share one or more constants do

10: Let Px be the predicate of x and Py be the predicate of y
11: if count of Py < count of Px then
12: Add an edge from x to y
13: end if
14: end for
15: for each relation x in the directed graph do
16: for each outgoing edge (x,y) from x do
17: Let y be the head node of the edge
18: Create a rule Rj x→ y
19: for each constant ck in x do
20: Add the type corresponding to ck to the body of Rj

21: end for
22: Replace all constants in Rj with unique variables to create a first-order

rule FRj

23: if FRj is range restricted then
24: Add FRj to R and update the support for FRj

25: end if
26: end for
27: end for
28: end for
29: Sort rules in the descending order of their support and output top n rules for

each predicate.
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ing a directed graph of relation extractions for each training example and connect-

ing those relations that share one or more constants with a directed edge. In the

directed graph, each node represents a relation literal. A directed edge between two

nodes indicates that the corresponding relations might be related, and hence might

participate in the same rule. The edges are added from relations that are usually

explicitly stated in text to those that can be inferred. Since relations that are im-

plicit typically occur less frequently in the training data, we use the frequency of

occurrence of relation predicates as a heuristic to determine if a particular relation

is best inferred from other relations. While this assumption does not hold for all

relations, it typically produces a useful set of first-order rules. We also note that our

approach learns rules from only positive instances, thereby making it suitable for

learning first-order rules for implicit relations.

The pseudocode for our Online Rule Learner (ORL) is shown in Algo-

rithm 2. It accepts a set of training examples, where each example consists of a

set of facts an IE system has extracted from a single document. The learner pro-

cesses one example at a time in an online manner as follows. First, it updates counts

for the frequency of occurrence for each relational predicate seen in the training ex-

ample. The count for each relational predicate is the number of times it is seen in

the training set. Then, it builds a directed graph whose nodes represent relation ex-

tractions seen in the example. Note that entity types are not added to the graph. The

rule learner then adds directed edges between every pair of nodes whose relations

share one or more constants as arguments. The direction of the edge is determined

as follows – for every pair (x,y) of relations that share constants, if the relation
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predicate of x is seen more frequently than that of y in the training set so far, then

the learner adds a directed edge from x to y since y is more likely to be inferred

from x. Note that the for loop in line 9 loops over both orders of each pair, i.e.

both (x,y) and (y,x) will be considered. We also note that if the count of relation

predicate of x is equal to the count of relation predicate of y, the algorithm does

nothing.

Once the directed graph is fully constructed, the rule learner traverses the

graph to construct rules. For each directed edge (x,y) in the graph, it constructs a

rule in which the body contains x and y is the head. It then adds types corresponding

to the constants in x. If a constant is associated with multiple types, i.e. if the

extractor has extracted multiple types for a constant, then we create a separate rule

for each type extracted for the constant. This is needed in domains that have a

DAG-structured ontology as described earlier. Finally, it replaces all constants in

the rule with unique variables to create a first-order rule. All first-order rules that

are range restricted (all variables in the head appear in the body) are retained and

the remaining rules are discarded.

The training phase ends when the rule learner has processed all examples

in the training set. It then outputs the top n rules per predicate, where n is a value

provided by the user. The rules are sorted in descending order of their support,

which refers to to the number of times both the body (antecedent) and the head

(consequent) in the rule are true in the training set. Alternately, the rule learner

could output only those rules whose support meets a user-specified threshold.

In the basic algorithm, we have considered rules in which the body of the
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rule has a single relation literal. However, we can extend the algorithm in several

ways to search for rules that have several relation literals in them. For instance,

given two rules A → B and C → B, the rule learner can propose a new rule

A ∧ C → B. An alternate approach would be to follow the directed edges for a

given path length and add all relations except that corresponding to the end node in

the path to the rule body and make the relation corresponding to the end node the

head. We found that the basic algorithm worked well for our application domain

and hence we learned rules with a single relation in the rule body. Note that the rule

body has other literals specifying the types of the arguments, and hence the rule

bodies are not limited to have a single literal in them.

In some ways, the rules learned by this approach are similar to the typed

entailment rules considered by Berant et al. (2011). However, as described above,

unlike their approach, our method is not limited to learning rules with a single

relation in the body. Furthermore, approaches that learn typed entailment rules like

Berant et al.’s do not handle DAG ontologies in which relations can take arguments

of multiple types. On the other hand, our method explicitly handles this situation.

Consider the example shown in the Figure 5.1. Figure 5.1a shows a sample

training document and Figure 5.1b shows the corresponding IE output. Given these

extractions and the frequency counts for relation predicates seen so far in train-

ing (Figure 5.1c), our ORL algorithm constructs a directed graph with relations as

nodes (Line 8 in Algorithm 2). It then adds directed edges between nodes that share

one or more constants. In the example, relation extractions isLedBy(usa,barack

obama), hasBirthPlace(barack obama,usa), and hasCitizenship(barack obama,usa)
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(a) Example text in training
“Barack Obama is the 44th and the current President of USA... Obama, citizen of USA
was born on August 4, 1961 in Hawaii, USA.”

(b) IE extractions
nationState(usa)
person(barack obama)
isLedBy(usa,barack obama)
hasBirthPlace(barack obama,usa)
hasCitizenship(barack obama,usa)

(c) Frequency counts for relation predicates
isLedBy – 30, hasBirthPlace – 23, hasCitizenship – 20

(d) Directed graph constructed from extracted relations

isLedBy	  
(USA,	  	  

Barack	  Obama)	  

hasBirthPlace	  
(Barack	  Obama,	  	  

USA)	  

hasCi;zenship	  
(Barack	  Obama,	  	  

USA)	  

(e) Ground rules constructed by ORL
isLedBy(usa,barack obama) ∧ person(barack obama) ∧ nationState(usa)
→ hasBirthPlace(barack obama,usa)
isLedBy(usa,barack obama) ∧ person(barack obama) ∧ nationState(usa)
→ hasCitizenship(barack obama,usa)
hasBirthPlace(barack obama,usa) ∧ person(barack obama) ∧ nationState(usa)
→ hasCitizenship(barack obama,usa)

(f) First order rules constructed by ORL
isLedBy(X,Y) ∧ person(Y) ∧ nationState(X)→ hasBirthPlace(Y,X)
isLedBy(X,Y) ∧ person(Y) ∧ nationState(X)→ hasCitizenship(Y,X)
hasBirthPlace(X,Y) ∧ person(X) ∧ nationState(Y)→ hasCitizenship(X,Y)

Figure 5.1: Sample example describing various stages of the ORL algorithm
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are added as nodes. Note that the entities nationState(usa) and person(barack

obama) are not added to the graph. Since all relation extractions share constants

barack obama and usa, ORL adds directed edges between them. The direction is

determined by the frequency counts of relation predicates isLedBy, hasCitizenship,

and hasBirthPlace as described in Lines 9–14 in Algorithm 2. For instance, since

isLedBy is seen more often than hasBirthPlace in training, hasBirthPlace is more

likely to be inferred from isLedby. Hence, the rule learner adds a directed edge from

isLedBy(usa,barack obama) to hasBirthPlace(barack obama,usa). After construct-

ing the graph, ORL constructs rules as described in Lines 16–21. Finally, it replaces

constants barack obama and usa with variables to construct first-order rules (Lines

22). Since all three rules are range restricted, they are not discarded.

5.3 Scoring rules using WordNet

We now discuss our new approach to determining parameters for the learned

first-order rules. Our approach learns weights between 0 and 1, where a higher

weight represents higher confidence. These weights are used as noisy-or parame-

ters when performing probabilistic inference in the resulting BLP (Kersting & De

Raedt, 2008; Raghavan et al., 2012). Since the predicate names in most ontologies

employ ordinary English words, we hypothesized that more confident rules have

predicates whose words are more semantically related. We use the lexical informa-

tion in WordNet (Fellbaum, 1998) to measure word similarity.

WordNet is a lexical knowledge base covering around 130,000 English words

in which nouns, verbs, adverbs, and adjectives are organized into synonym sets, also
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called synsets. Several measures (Resnik, 1995; Wu & Palmer, 1994; Lin, 1998)

have been proposed to measure word similarity based on the semantic information

in WordNet. Of these measures, the wup measure by Wu and Palmer (1994) com-

putes (scaled) similarity scores between 0 and 1, which are easily used as weights

for our rules. Therefore, we used wup as implemented in WordNet::Similarity (Ped-

ersen, Patwardhan, & Michelizzi, 2004) to measure semantic distances between

words. This measure computes the depth of the least common subsumer (LCS) of

the given words and then scales it by the sum of the depths of the given words.

We compute the wup similarity for every pair of words (wi,wj) in a given

rule, where wi is a word in the body and wj is a word in the head. The words in a

given rule are the predicate names of relations and entity types, which are usually

English words. However, for predicate names such hasCitizenship or hasMember

that are not single English words, we segment the name into English words such as

has, citizenship, and member, and then remove stop words. The final weight for a

rule is the average similarity between all pairs (wi,wj), which basically measures

how closely predicates in the body are related to the predicate in the head. We refer

to this approach as “WUP-AVG”.

Figure 5.2 gives sample rules and the corresponding English words for the

predicate names. The values in parentheses give the weights computed using WUP-

AVG for the corresponding rule using the approach described above. Notice that in

Rule 1, governmentOrganization is segmented into words government and organi-

zation. Similarly, hasMember is segmented into has and member and the stopword

has is removed while computing WUP-AVG. Similarly, other predicates in the rule
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Rule 1
employs(X,Y) ∧ governmentOrganization(X)→ hasMember(X,Y) (.70)
English words for predicate names
(employs, government, organization)→ (member)
Rule 2
employs(X,Y) ∧ person(Y) ∧ nationState(X)→ hasBirthPlace(Y,X) (.67)
English words for predicate names
(employs, person, nation, state)→ (birth, place)

Figure 5.2: Example rules and the corresponding English words for the predicates
in the rule. Rule weights computed using WUP-AVG are shown in the parentheses.

are processed. We see that the weight computed for Rule 1 is higher than that com-

puted for Rule 2, since Rule 1 is more likely to be true than Rule 2. Here, the

absolute weights computed are less important as the relative ordering of the rules

impact the final ranking of the inferences.

We also explored alternate approaches for computing rule weights using the

wup score. Instead of computing the average similarity between all pairs of words

in the body and the rule head, we used the highest similarity score among all word

pairs as the weight. We refer to this as “WUP-MAX”. In an alternate approach,

we used the highest similarity score among all word pairs from relation predicates

only, i.e. we did not take into account words from entity types while computing the

similarity score. We refer to this as “WUP-MAX-REL”.
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5.4 Experimental Evaluation
5.4.1 Data

We evaluated our approaches to rule learning and scoring on DARPA’s

machine-reading intelligence-community (IC) data set. As described in Chapter 4,

the IC dataset consists of news articles on terrorist events around the world. The

data set consists of 10, 000 documents, each containing an average of 93.14 facts

extracted by SIRE (Florian et al., 2004), an IE system developed by IBM1.

As described earlier, the ontology provided by DARPA for the IC domain

consists of 57 entity types and 79 relations. The entity types include Agent, Phys-

icalThing, Event, TimeLocation, Gender, and Group, each with several subtypes.

The type hierarchy is a DAG rather than a tree, and several types have multiple

super-classes. For instance, a GeopoliticalEntity can be a HumanAgent as well as

a Location. Relations in the ontology include eventLocation, thingPhysicallyDam-

aged, attendedSchool, and hasCitizenship.

5.4.2 Evaluation Measure

We used the same methodology that was used in Chapter 4 for evaluation.

We randomly sampled 4 documents from each test set, 40 documents in total. We

manually evaluated the inferences since there is no ground truth available for this

data set. We ranked all inferences in descending order of their marginal proba-

bilities and computed precision for top n inferences. The precision measures the

1In Chapter 4, we reported a different number for the average number of extractions per docu-
ment due to differences in the preprocessing of the dataset.
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employs eventLocation
eventLocationGPE hasMember
hasMemberPerson isLedBy
mediatingAgent thingPhysicallyDamaged
hasMemberHumanAgent killingHumanAgent
hasBirthPlace thingPhysicallyDestroyed
hasCitizenship attendedSchool

Table 5.1: Target relations selected for experimental evaluation

fraction of inferences that were judged correct. As described in the previous chap-

ter, we computed two different precision scores - unadjusted (UA) and adjusted

(AD) precision.

5.4.3 Evaluation of Online Rule Learner

We evaluated our approach by performing 10-fold cross validation. We

learned first-order rules using 14 target relations given in Table 5.1 that had an ap-

preciable amount of data. We describe the systems compared in our experimental

evaluation below:

• ORL - We learn rules using our online rule learner described in Section 5.2.

For each target relation, we specify the number of rules to output to be 10.

We refer to this approach as “ORL”. Table 5.2 gives sample rules learned

by ORL along with rule weights computed using the approach described in

Section 5.3.

• LIME - We used LIME (McCreath & Sharma, 1998), the ILP based rule

learner that was used in Chapter 4 as a baseline for comparison. As described

99



in Chapter 4, we learned rules using only positive instances and using both

positive and negative instances for each target relation. Since the IC data set

consists of only positive instances for target relations, the negative instances

were artificially generated using the closed world assumption. The final struc-

ture included rules learned from both settings. We refer to this baseline as

“LIME”. Note that we cannot compare our results to those reported in Chap-

ter 4 due to the differences in the number of target predicates selected for the

study. Also, in the previous chapter (Chapter 4), we used extractions whose

confidence scores exceeded a certain threshold for learning rules. Here, we

use all extractions to learn first-order rules since the approach used in the

previous chapter resulted in smaller training sets for learning weights using

EM.

• COMBINED - Both ORL and LIME learn some rules that the other doesn’t,

and hence we combined rules from both approaches in this final setting,

which we refer to as “COMBINED”.

We observed that all methods learn inaccurate rules for certain target relations such

as mediatingAgent and attendedSchool since they are less easily inferred compared

to other relations such as hasMember that are more easily inferred. Therefore, we

removed 4 relations – mediatingAgent, attendedSchool, thingPhysicallyDamaged,

and thingPhysicallyDestroyed from the original set and also report results for the

remaining 10 target relations. We refer to the original set of target relations as “Full-

set” and the reduced set as “Subset”. For all three approaches described above, we
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isLedBy(B,A) ∧ person(A) ∧ nationState(B)
→ hasBirthPlace(A,B) (0.62)
If person A leads a nation B, then A is born in B

thingPhysicallyDamaged(A,B) ∧ bombing(A) ∧ nationState(B)
→ eventLocation(A,B) (0.71)
If a nation B is physically damaged in a bombing event A, then the event location of A is B

employs(A,B) ∧ humanOrganization(A) ∧ personGroup(B)
→ hasMemberHumanAgent(A,B) (0.57)
If a human organization A employs B, then B is a member of A

isLedBy(B,A) ∧ nationState(B)
→ hasCitizenship(A,B) (0.48)
If a nation B is led by A, then A is a citizen of B

Table 5.2: A sample set of rules learned by ORL

Full-set Subset
ORL 101.8 85.2
LIME 58.7 50.7

Table 5.3: Average number of rules learned per fold by LIME and ORL

run BLP inference using Full-set and Subset. Table 5.3 gives the average number

of rules learned per fold by both LIME and ORL for both Full-set and Subset.

5.4.3.1 BLP Parameters and Inference

As described in previous chapters (see Chapter 2 and Chapter 4), we used

the deterministic logical-and model to encode the CPT entries for the Bayesian

clauses and the noisy-or model to combine the evidence from multiple rules that

have the same head (Pearl, 1988). As seen in Chapter 4, learning noisy-or param-

eters for the learned rules using the EM algorithm developed for BLPs (Kersting

& De Raedt, 2008) resulted in limited success. As a result, we manually set the
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noisy-or parameters for all rules to 0.9, since these parameters have been shown to

work well on the IC domain (see Chapter 4). To infer implicit facts, we perform

inference in the BLP framework as described in Chapter 4. We used SampleSearch

(Gogate & Dechter, 2007) to compute marginal probabilities for the inferred facts.

5.4.3.2 Results

Figure 5.3 and Figure 5.4 give unadjusted and adjusted precision for infer-

ences made by rules learned using ORL, LIME, and COMBINED models for target

relations from both Full-set and Subset respectively. On the Full-set, LIME outper-

forms ORL at the initial points on the curve, while ORL outperforms LIME by a

significant margin at the later points on the curve. However, on the Subset, ORL

outperforms LIME at all points in the curve. A closer examination of the rules

learned by both approaches revealed that ORL learned rules that were more spe-

cific than LIME. As a result, ORL makes far fewer but more accurate inferences

than LIME. We observed that the curve for ORL stops at top-900 and top-500 for

Full-set and Subset respectively. This is because ORL does not make more than

900 and 500 inferences on Full-set and Subset respectively. On both Full-set and

Subset, COMBINED outperforms both ORL and LIME on both settings, indicating

that there are definite advantages to combining rules from both LIME and ORL. For

the remaining experiments, we run inference using the COMBINED model only. In

general, performance of all models on the Subset is better than that on the Full-set.

On both Full-set and Subset, we find that the precision does not monoton-

ically decrease as n, the number of inferences considered for evaluation increases.
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Figure 5.3: Unadjusted (top) and adjusted (bottom) precision at top-n for ORL,
LIME, and COMBINED for target relations from Full-set
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Figure 5.4: Unadjusted (top) and adjusted (bottom) precision at top-n for ORL,
LIME, and COMBINED for target relations from Subset (bottom)
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We find that several incorrect inferences are ranked higher since they have higher

marginal probabilities due to multiple rules inferring the same instance. On the

other hand, several correct inferences are ranked lower due to lower marginal prob-

abilities, possibly due to lower evidence in the form of a single rule inferring the

instance. Since all rules have the same weight (noisy-or parameter), facts inferred

from multiple rules typically end up with higher marginal probabilities than those

that are inferred from a single rule. We hypothesize that learning noisy-or parame-

ters automatically using sufficient training data might alleviate such problems.

We also notice that even though the COMBINED model includes rules from

both LIME and ORL, the performance of the COMBINED model does not neces-

sarily reflect the combined performance of the underlying model. This is because by

combining rules from two different models, we are defining a new structure for the

BLP. The rules in the COMBINED model interact in a different manner from those

in the underlying models (ORL and LIME). Further, in the COMBINED model,

several target relations might have many more rules defining them than in LIME

and ORL. If several of these rules are responsible for inferring the same fact, then

the marginal probability for this inference might be higher due to higher evidence,

and hence this inference might be ranked higher in the COMBINED model than

in LIME or ORL. If this inference is deemed correct, then the performance of the

COMBINED model might increase, otherwise it might decrease at different top-n.

As a result, we do not expect the performance of COMBINED model to be a linear

combination of that of LIME and ORL.

The noisy-or parameters in the current experiments were set to 0.9. We
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also ran inference on the COMBINED model by setting the noisy-or parameters to

alternate values, 0.5 and 0.75. The performance with alternate weights remained

the same, indicating that the actual value of the noisy-or parameter did not play a

crucial role since the relative order of the ranked inferences remained the same. The

ranked order of the inferences is typically determined by the number of rules that

entail each inference.

In the next experiment, we evaluated all inferences made by LIME, ORL,

and COMBINED without ranking them based on their marginal probabilities. It is

equivalent to performing inference using purely logical deduction using the rules

learned by different models. Table 5.4 gives both adjusted and unadjusted precision

for target relations from Full-set and Subset. We find that the inferences made

by ORL are more accurate than those made by LIME or the COMBINED model.

However, ORL makes fewer inferences than LIME and COMBINED. Here again,

precision on the Subset is higher than that on the Full-set. These results indicate

that the rules learned by ORL are fairly accurate even though they are very specific.

Since the rules are less general, the number of inferences made by ORL are fewer

than those made by other models.

Table 5.5 gives unadjusted precision per relation for instances inferred at

0.95 confidence threshold by different models. We do not report adjusted precision

since it is slightly higher than unadjusted precision. LIME is able to infer relations

such as employs more accurately than ORL, while ORL is able to infer relations

such as hasBirthPlace and hasCitizenship more accurately than LIME. Both LIME

and ORL are able to infer relations such as hasMember, hasMemberPerson, and
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Full-set Subset
UA AD UA AD

LIME 24.14 27.58 33.57 37.60
(594/2460) (594/2153) (414/1233) (414/1101)

ORL 39.41 44.18 58.64 64.00
(361/916) (361/817) (329/561) (329/514)

COMBINED 18.73 20.61 38.17 42.09
(662/3533) (662/3212) (439/1150) (439/1043)

Table 5.4: Precision for logical deduction using rules learned from LIME, ORL,
and COMBINED. “UA” and “AD” refer to the unadjusted and adjusted scores re-
spectively

hasMemberHumanAgent with fairly high precision. On the other hand, relations

such as isLedBy, mediatingAgent, thingPhysicallyDamaged have low precision for

both LIME and ORL. The COMBINED model has superior precision for all those

relations for which either LIME or ORL have a high precision, thereby demonstrat-

ing a definite advantage over LIME and ORL.

In our final set of experiments, for each target relation, we eliminated all

instances of it from the set of extracted facts in the test examples in each fold. We

then ran the BLP inference using the remaining facts to deduce additional facts. We

evaluated if the eliminated instances were inferred by the BLP approach at various

levels of confidence (probability threshold). We measure the fraction of eliminated

instances that were inferred correctly by the different models – LIME, ORL, and

COMBINED. We refer to this measure as “estimated recall”. In Chapter 4, we dis-

cussed the difficulty involved in measuring the actual recall for different models.

While the estimated recall measure does not necessarily capture the true recall of a

model, it definitely helps distinguish different models in their ability to infer elim-
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LIME ORL COMBINED
employs 71.87 (23/32) nil (0/0) 72.72 (24/33)
eventLocation 5.00 (3/60) 27.78 (5/18) 9.64 (22/228)
eventLocationGPE 20.71 (29/140) 41.17 (14/34) 15.56 (47/302)
hasMember 86.84 (33/38) 85.71 (18/21) 85.21 (98/115)
hasMemberPerson 80.00 (8/10) 100 (1/1) 57.44 (27/47)
isLedBy 0.00 (0/39) 0.00 (0/16) 7.60 (7/92)
mediatingAgent 4.16 (1/24) nil (0/0) 3.03 (1/33)
thingPhysicallyDamaged 9.40 (11/117) 8.75 (14/160) 9.18 (26/283)
hasMemberHumanAgent 60.71 (17/28) 86.67 (13/15) 81.92 (68/83)
killingHumanAgent 12.50 (11/88) nil (0/0) 12.94 (11/85)
hasBirthPlace 38.46 (40/104) 75.00 (39/52) 36.43 (47/129)
thingPhysicallyDestroyed nil (0/0) nil (0/0) 0.00 (0/4)
hasCitizenship 39.02 (32/82) 77.19 (44/57) 40.98 (50/122)
attendedSchool nil (0/0) nil (0/0) nil (0/0)

Table 5.5: Unadjusted precision for individual relations

inated instances. Further, these experiments allow for automatic evaluation since

the ground truth is available in the form of instances that are eliminated.

In these experiments, it is possible that certain eliminated instances can

never be inferred by any of the models because the facts necessary to infer the

eliminated instance are not present in the remaining extractions. However, if there

is sufficient redundant information in the extracted facts to infer an eliminated in-

stance, then these experiments help distinguish different models in their ability to

infer these eliminated instances. For example, suppose we randomly eliminated a

sentence from a document. Sometimes, due to redundancy in natural language text,

it is possible to infer the sentence based on the other information present in the text.

However, usually, it is not possible to infer this sentence at all. Similarly, in our

context, some instances of the target relation can never be inferred, so we might
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see low estimated recall scores. It is the difference in the estimated recall scores

calculated for different models that help distinguish their relative performance.

Figure 5.5 shows the estimated recall, averaged over all target relations on

both Full-set and Subset for different marginal probability thresholds. As the confi-

dence level or the marginal probability threshold increases, fewer instances whose

marginal probabilities meet the threshold are inferred; as a result, the estimated

recall goes down. LIME performs better than ORL, while COMBINED performs

better than both LIME and ORL. Here again, the superior performance of COM-

BINED is due to combining rules from both ORL and LIME, which typically results

in the inference of larger number of facts than LIME and ORL. As mentioned ear-

lier, since the rules learned by LIME are less specific than those learned by ORL,

LIME is capable of inferring more facts than ORL, which is possibly the reason

for a higher estimated recall when compared to that for ORL. However, we note

that the relative differences in the scores for different models are quite small. Here

again, the estimated recall for different models on the Subset is marginally higher

than that on the Full-set.

Figure 5.6, Figure 5.7, and Figure 5.8 show estimated recall per target re-

lation at different marginal probability thresholds for a few target relations. For

target relations isLedBy and eventLocation, ORL outperforms LIME while for tar-

get relations killingHumantAgent and thingPhysicallyDamaged, LIME outperforms

ORL. For the remaining target relations, both ORL and LIME performed similarly

with respect to estimated recall and hence we do not show the results for them

here. Here again, COMBINED outperforms ORL and LIME demonstrating defi-
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Figure 5.5: Estimated recall at different levels of confidence on Full-set (top) and
Subset (bottom)
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Figure 5.6: Estimated recall at different levels of confidence for relations isLedBy
(top) and eventLocation (bottom)
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killingHumanAgent
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Figure 5.7: Estimated recall at different levels of confidence for relations killingHu-
manAgent (top) and thingPhysicallyDamaged (bottom)
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Figure 5.8: Estimated recall at different levels of confidence for relation hasBirth-
Place
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ORL LIME
3.8 673.98

Table 5.6: Average training time per fold in minutes

nite advantages to combining rules from both ORL and LIME. For target relation

hasBirthPlace, all models have similar performance. However, this is an exam-

ple of a target relation for which the estimated recall scores are much higher than

those on the remaining target relations. Results for hasBirthPlace indicate that the

eliminated instances of hasBirthPlace are easily inferred, possibly due to the pres-

ence of redundant information in the form of extracted facts in the test documents.

The lower estimated recall scores for other target relations indicate that there might

not be sufficient additional information that is necessary for the inference of the

eliminated instances.

Table 5.6 gives the average time in minutes per fold needed to learn rules

using both ORL and LIME. As discussed is Chapter 4, since LIME does not scale to

large data sets, we ran LIME on smaller subsets of the training data and combined

the results in order to process the full IC data. The runtime for LIME includes the

total time taken to produce the final set of rules. Unlike ORL, LIME learns first-

order rules for each target predicate separately, further increasing its running time.

On the other hand, ORL learns rules for all target predicates in one pass on the

training data. As a result, ORL trains two orders of magnitude faster than LIME.

The timing information empirically demonstrates ORL’s ability to scale effectively

to large data sets.
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Target Relation Time in minutes
eventLocation 24.11
thingPhysicallyDestroyed 9.11
mediatingAgent 330.10
isLedBy 42.54
hasCitizenship 7.76
thingPhysicallyDamaged 114.50
hasMember 10.04
attendedSchool 6.34
hasMemberHumanAgent 12.96
employs 75.22
eventLocationGPE 10.15
hasBirthPlace 7.46
killingHumanAgent 15.28
hasMemberPerson 8.33

Table 5.7: Average training time taken by LIME to learn first-order rules per fold
for individual target relations.

Table 5.7 gives the time taken by LIME to learn first-order rules for individ-

ual relations. These running times include the time taken by LIME to learn rules

using only positive instances and using both positive and negative instances. LIME

takes longer time to learn first-order rules for relations such as mediatingAgent and

thingPhysicallyDamaged due to the large size of the respective training sets. The

training sets for these relations are much larger due to the large number of negative

instances generated using the closed world assumption. For the remaining rela-

tions, LIME takes lesser time due to the smaller training set sizes. The time taken

by LIME to learn rules from positive only instances is not very high. However,

LIME learns fewer rules from positive only instances and these rules are very gen-

eral, and hence less useful for the purposes of inferring additional facts from natural
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language text. On the other hand, ORL learns fairly specific rules in a very short

amount of time and these rules result in fairly accurate inferences.

5.4.4 Scoring rules using WordNet

We learned noisy-or parameters using the different approaches (WUP-AVG,

WUP-MAX, and WUP-MAX-REL) described in Section 5.3 on the COMBINED

model. For the baseline, we set all noisy-or parameters to 0.9 and performed infer-

ence in the BLP framework as described in Section 5.4.3.1, which we refer to as

“Default”. We also explored learning the noisy-or parameters using the EM algo-

rithm as described in Chapter 4. While we were able to learn noisy-or parameters

for target relations from Subset, we were unable to learn the parameters on the

Full-set due to large network sizes and longer running times. Logical inference for

several examples was also not tractable since the Full-set had a large number of

rules. For target relations from the Subset, we also compare the performance of our

rule scoring approach to noisy-or parameters learned using EM, which we refer to

as “EM”.

5.4.4.1 Results

Figure 5.9 and Figure 5.10 give the precision for inferences made by the

COMBINED model using noisy-or parameters computed using different approaches

on both Full-set and Subset respectively. WUP-AVG outperforms Default on both

sets of target relations. WUP-MAX, on the other hand performs poorly when com-

pared to both Default and WUP-AVG on the Full-set, but outperforms Default and
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Figure 5.9: Unadjusted (top) and adjusted (bottom) precision at top-n using differ-
ent weights on Full-set

117



0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Top−n

U
na

dj
us

te
d 

P
re

ci
si

on

 

 

Default
WUP−AVG
WUP−MAX
WUP−MAX−REL
EM

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Top−n

A
dj

us
te

d 
P

re
ci

si
on

 

 

Default
WUP−AVG
WUP−MAX
WUP−MAX−REL
EM

Figure 5.10: Unadjusted (top) and adjusted (bottom) precision at top-n using dif-
ferent weights on Subset

118



is competitive with WUP-AVG on the Subset. On both sets, WUP-MAX-REL is

generally inferior to both Default and WUP-AVG. However, it is somewhat better

than WUP-MAX on Full-set and is inferior to WUP-MAX on the Subset. On the

Subset, most of these approaches are fairly competitive at top-25, however they ex-

hibit dramatic differences in the performance at other points in the curve. Weights

learned from EM are again competitive with weights learned from other approaches

at top-25 on the Subset. However, at later points in the curve, the performance of

EM drops drastically indicating that the weights learned by EM are inferior to those

computed using other approaches. Lack of sufficient data is one of the main rea-

sons for the poor performance of EM. The results seen for EM are very similar to

the results reported in Chapter 4. As seen in the earlier results, performance on the

Subset is better than that on the Full-set.

In general, we find that WUP-AVG is the best approach for computing rule

weights. In the case of WUP-MAX, it is possible that one particular entity type

or a relation predicate in the body of the rule could be very similar to the relation

predicate in the head and that could dominate the final weight. Sometimes, it is even

possible that the relation predicate in the body could be quite different from the one

in the head, but the rule might get a high weight if one of the entity types in the

body is similar to the relation predicate in the head. Consider the two rules shown

in Table 5.8 along with the weights computed using WUP-MAX. The two rules

shown in the example differ only by the entity type for the first argument. However,

the weights computed are quite different demonstrating that the similarity between

entity types and the relation predicate in the head dominate over other similarity
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isLedBy(A,B) ∧ politicalParty(A)→ hasMemberPerson(A,B) (0.91)
isLedBy(A,B) ∧ governmentOrganization(A)→ hasMemberPerson(A,B) (0.86)

Table 5.8: A sample set of rules learned by ORL. Scores in parentheses are WUP-
MAX scores.

scores. Here, the relation predicate in the body of the rule does not seem to play

any role in determining the final weight. For all these reasons, WUP-MAX is not

a very robust score for computing rule weights. The lack of robustness is also

demonstrated by the large variation in its performance on the different set of target

relations. While WUP-MAX-REL only considers the similarity between relation

predicates, it can still be affected by some of the issues described above. WUP-

AVG, on the other hand is more robust since it takes into account both relation

predicates and entity types in the body of the rule while computing the similarity

scores. When selecting an average of 1 inference per document, WUP-AVG gives

an unadjusted precision of 80.6% and 90% on the Full-set and Subset respectively.

Overall, our online rule learning approach learns unique rules that are not

learned by LIME. Unlike LIME, it not only scales to large corpora of natural lan-

guage text, but also handles the concise, incomplete nature of natural-language text

while learning first-order rules. Even though it does not always outperform LIME,

combining rules from both approaches results in a model that gives the best perfor-

mance on the IC data set. Though weight learning using conventional parameter

learning techniques such as EM did not yield reasonable results, our approach to

scoring rules using WordNet similarity scores has shown promise and it is an inter-

esting topic for future research.
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5.5 Related Work

Approaches proposed in the literature for learning first-order rules fall into

three categories. The first category consists of rule learners (Quinlan, 1990; Mc-

Creath & Sharma, 1998; Kersting & De Raedt, 2008; Dinh et al., 2011) that typ-

ically expect the training data to be fairly accurate. Due to this assumption, they

are less suited for learning meaningful rules from noisy and incomplete natural lan-

guage extractions. The second category consists of rule learners (Schoenmackers

et al., 2010; Sorower et al., 2011) that are specifically developed for learning rules

from noisy and incomplete natural language extractions. Both these rule learners

learn first-order rules for MLNs by performing an exhaustive search, which might

be computationally intensive for large domains. Unlike our approach, Sorower et

al. (2011) have evaluated their approach using only a couple of target relations. The

third category consists of approaches (Lin & Pantel, 2001; Yates & Etzioni, 2007;

Berant et al., 2011) that learn entailment rules to capture synonymous relations and

entities from natural language text. Unlike the rules learned from the other learners,

entailment rules have a single literal as the antecedent (body).

A few previous approaches have scored rules using lexical knowledge. Basu

et al. (2001) use WordNet distances to estimate the novelty of rules discovered

by data-mining systems. Feldman and Dagan (1995) and Han and Fu (1995) use

domain-specific concept hierarchies to score and filter redundant rules. Garrette et

al. (2011) use distributional lexical semantics to set weights for rules in an MLN.

Chapter 4 discusses approaches developed for inferring implicit facts from

natural language text in detail. For the sake of completeness, we briefly discuss
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them here as well. Nahm and Mooney (2000) learn propositional rules using C4.5

(Quinlan, 1993) from data extracted from computer-related job-postings. Carlson

et al. (2010) and Doppa et al. (2010) use existing rule learners such as FOIL (Quin-

lan, 1990) and FARMER (Nijssen & Kok, 2003) to learn probabilistic first-order

rules, and subsequently use those rules to infer additional information using purely

logical deduction. Schoenmackers et al. (2010) and Sorower et al. (2011) develop

novel rule learners to learn first-order rules from noisy natural language text and

perform probabilistic inference in the MLN framework to infer implicit facts us-

ing the learned rules. We use LIME (McCreath & Sharma, 1998), an existing rule

learner to learn first-order rules and then use the BLP framework to infer additional

facts. The superior performance of BLPs over purely logical deduction and MLNs

as demonstrated in Chapter 4 has led us to use BLPs for probabilistic inference in

this chapter as well.

5.6 Summary

In this chapter, we have proposed a novel online rule learner for learning

first-order rules from noisy and incomplete IE extractions, extracted using an off-

the-shelf IE system. We have used the learned rules to infer implicit facts in natural

language text using BLP inference. Experimental comparison of our rule learner

with LIME, an existing rule learner demonstrates the efficacy of our approach.

However, the best performance on the IC data set is obtained when rules from both

approaches are combined. Further, we have also proposed a novel approach to spec-

ifying parameters for the learned rules based on lexical similarity between words or
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relations using a curated ontology such as WordNet. Experimental evaluation on the

IC data set demonstrates the superior performance of this new approach over using

default weights set manually to 0.9 and weights learned using the EM algorithm.

The initial promise demonstrated by our new approach to scoring rules reduces the

dependency on conventional parameter learning approaches like EM, which are not

very effective for learning parameters of BLPs on the machine reading task.

123



Chapter 6

Future Work

In this chapter, we discuss several directions in which we can extend our

work described in this dissertation. We first discuss future work items that will

lead to the improvement of BLP and BALP framework. These topics typically

involve algorithmic improvements to fundamental techniques involving inference

and learning. In the next section, we discuss topics specific to the task of plan

recognition and machine reading that could be pursued in future.

6.1 Inference and learning in BLPs/BALPs
6.1.1 Structure learning of abductive knowledge bases for BALPs

In Chapter 3, we develop an approach to abductive plan recognition using

Bayesian Logic Programs. We manually defined the structure of the BLP either

based on planning knowledge or based on our knowledge of the domain. This ap-

proach is not always practical since it requires input from an expert. It would be

desirable to develop a system that could automatically learn the knowledge base or

the structure of the BLP from data. Such an approach would accept a set of obser-

vation literals and the top-level plan and learn a set of definite clauses that capture

the causal structure between high level plans and observations. Existing approaches
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to structure learning in BLPs (Kersting & De Raedt, 2008) typically learn deduc-

tive rules in which the observation literals entail the high level plan. Similarly,

several existing inductive logic programming (ILP) based rule learning approaches

(Quinlan, 1990; McCreath & Sharma, 1998; Srinivasan, 2001) also learn deductive

rules. However, the task of abductive plan recognition requires abductive knowl-

edge bases in which the causal structure between high level plans and observed

actions is captured in the rules, i.e. the rule body should typically consist of a high

level plan, while the head consists of an observed action or a subgoal. Existing

work in learning abductive knowledge bases (Thompson & Mooney, 1994) mainly

focuses on learning abductive propositional rules. A natural extension of our work

on BALPs involves developing a novel approach to learning first-order abductive

knowledge bases for tasks involving abductive reasoning.

6.1.2 Parameter learning from incomplete data for BLPs

6.1.2.1 Parameter learning using approximate inference techniques

In this dissertation, we have developed approaches using BLPs to solve two

different tasks – abductive plan recognition (Chapter 3) and machine reading (Chap-

ter 4 and Chapter 5). Both tasks share a common characteristic in that they involve

learning from incomplete and partially observed data. For both the tasks, we have

used the EM algorithm modified for BLPs (Kersting & De Raedt, 2008) to learn

the parameters. While we were able to learn accurate parameters for the domains

used in the plan recognition task, we were unsuccessful in learning useful param-

eters on the machine reading task, possibly due to the lack of sufficient data. We
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also observed that EM was able to converge to local optima when exact inference

was used to perform probabilistic inference in Bayesian networks. However, when

approximate inference was used to perform probabilistic inference, the EM algo-

rithm did not converge well. On most real domains, exact inference is not tractable.

Extending existing approaches (Kulesza & Pereira, 2008; Wainwright, 2006) and

developing new parameter learning approaches that can estimate parameters accu-

rately when approximate inference is used is another direction for future work.

6.1.2.2 Discriminative learning of parameters

Most existing approaches to parameter learning in BLPs perform generative

learning by optimizing the data log likelihood. However, a number of real world

tasks including plan recognition would require parameters learned discriminatively

by optimizing the conditional likelihood function. Several approaches (Greiner

et al., 2002; Carvalho, Roos, Oliveira, & Myllymäki, 2011) to learning Bayesian

network parameters discriminatively have been proposed. However, most of them

assume that the training data is completely observed. A number of real world tasks

like plan recognition involve incomplete data. Developing approaches that learn

the BLP parameters discriminatively from incomplete or partially observed data is

another topic for future work.

6.1.3 Lifted inference for BLPs and BALPs

Most real world tasks like plan recognition and machine reading involve

large domains consisting of a large number of entities. Such domains result in the
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construction of ground networks with several nodes, which eventually make prob-

abilistic inference intractable. In the recent past, several approaches (Braz, Amir,

& Roth, 2005; Milch, Zettlemoyer, Kersting, Haimes, & Kaelbling, 2008; Singla &

Domingos, 2008; den Broeck, Taghipour, Meert, Davis, & De Raedt, 2011; Gogate

& Domingos, 2011; Ahmadi, Kersting, & Natarajan, 2012) to lifted inference have

been proposed. These lifted inference techniques are capable of performing prob-

abilistic inference without having to construct ground networks. In other words,

they perform probabilistic inference at the level of first-order clauses. However,

most of these techniques have not yet been applied to real tasks. It would be use-

ful to develop lifted inference techniques that can be applied to real tasks like plan

recognition and machine reading for both BLPs and BALPs. Using lifted inference

techniques will eliminate the need to construct ground networks thereby reducing

time to inference. Further, they could also alleviate problems that arise from using

approximate inference while learning the parameters for BLPs and BALPs.

6.2 Evaluation and task specific improvements
6.2.1 Plan Recognition

6.2.1.1 Other applications of BALPs

In Chapter 3, we developed an approach to abductive plan recognition using

BLPs and evaluated the efficacy of our approach on three different domains – story

understanding, strategic planning (Monroe), and intelligent user interfaces (Linux).

Of these, Story Understanding and Linux data sets are real data sets, while Monroe

was artificially generated. Our experimental evaluation demonstrated that it was
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easier to achieve superior performance on the artificial domain than the real ones,

possibly due to the presence of noise in the real data sets. Going forward, we would

like to evaluate our BALP approach on other real world domains. One important

real application of plan recognition lies in the area of monitoring activities of daily

living for elderly care (Park & Kautz, 2008). In this domain, the plan recognition

task involves monitoring the activities performed by an elderly person and detecting

any abnormality in their behavior or activities performed so that an alarm could be

raised at the right time. Typically, the activities performed can be recognized using

an RFID reader that is capable of reading RFID tags that are attached to various

objects in a smart home.

6.2.1.2 Improvements to BALPs for abductive plan recognition

We can extend our BALP approach to abductive plan recognition in sev-

eral ways. In the current approach, we do not account for the order in which the

observations are seen by the plan recognition system. For instance, in the Linux

domain, the scenario in which a copy (cp) command is followed by a remove (rm)

command is different from the one in which a remove (rm) command is followed

by the copy (cp) command. Going forward, we could include temporal constraints

to our current model to be able to account for the order observations. One obvious

approach to incorporating temporal constraints involves using representation such

as event calculus that can handle temporal constraints.

In our current approach, if there are multiple assumptions that can unify with

a sub-goal, we use a greedy heuristic to match a sub-goal with existing assumption
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literals. We perform this greedy matching to reduce the size of the ground network

constructed. While this approach worked for the application domains considered

in this dissertation, it would be interesting to explore domain specific heuristics for

matching assumption literals with sub-goals in the future.

6.2.1.3 Comparison of BALPs to other SRL models

In this dissertation, we have compared the performance of BALPs to that of

MLNs. We explored the possibility of comparing BALPs’ performance to that of

ProbLog (Kimmig et al., 2008), since ProbLog is known to subsume other prob-

abilistic logics such as PRISM (Sato, 1995) and Poole’s Horn Abduction (Poole,

1993). However, due to issues with the current implementation of ProbLog, we

could not perform an experimental comparison of BALPs with ProbLog. It would

be interesting to perform an experimental evaluation of BALPs comparing its per-

formance to that of other probabilistic logics such as PRISM, Poole’s Horn Ab-

duction, and Abductive Stochastic Logic Programs (ASLPs) (Tamaddoni-Nezhad,

Chaleil, Kakas, & Muggleton, 2006). ASLPs have been applied to abductive tasks

in computational biology, but it would be interesting to apply ASLPs to our evalu-

ation domains from the plan recognition task.

6.2.2 Machine Reading

6.2.2.1 Comparison of BLPs to other MLN approaches

In Chapter 4, we compare the performance of BLPs to a basic MLN based

approach on the machine reading task. As mentioned earlier, several improvements

129



could be made to this basic MLN model to make it more competitive with BLPs.

For instance, several spurious facts like employs(a,a) were inferred due to MLN’s

grounding process. These inferences can be prevented by including additional

clauses in the MLN that impose integrity constraints that prevent such nonsensical

propositions. Lack of strict typing on the arguments of relations in the IC ontology

has also resulted in inferior performance of the MLNs. To overcome this, relations

that do not have strictly defined types could be specialized. Lack of constrained

or focused grounding is one of the reasons for poor performance of MLNs on the

machine reading task. We could improve its performance by using approaches pro-

posed to constrain the size of ground networks constructed by MLNs (Schoenmack-

ers et al., 2008; Singla & Mooney, 2011). Further, techniques proposed by Sorower

et al. (2011) can be incorporated to explicitly handle missing information in text in

both BLPs and MLNs. We could also use techniques proposed by Niu et al. (2012)

to scale MLNs to large corpora like natural language text.

6.2.2.2 Crowdsourcing for large scale evaluation

In Chapters 4 and 5, we manually evaluated additional facts inferred by

the BLP framework on a small set of 40 documents from the IC data set to calcu-

late precision. A natural extension of this work would be to perform large scale

evaluation of inferred facts on a much larger test set. Additionally, we can explore

the annotation of test documents with all possible facts that can be inferred for re-

call calculations as described in Chapter 4. Since the IC data set does not have

ground truth information, manual evaluation on a larger test set is not practical. We
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could employ crowdsourcing techniques such as Amazon Mechanical Turk (Snow,

O’Connor, Jurafsky, & Ng, 2008) to perform a large scale evaluation.

We could also use the ground truth data collected from crowdsourcing to

aid the EM algorithm to learn more accurate parameters for the first-order rules. In

Chapters 4 and 5, we demonstrated that the amount of training data was not suffi-

cient to learn accurate noisy-or parameters using EM on the machine reading task.

Due to incomplete nature of natural language text, relations that are implicit seldom

appear in training data. Further, due to the absence of ground truth information in

the form of relations that can inferred from explicitly stated facts, the training data

is always incomplete. Using a larger training set might solve the problem to some

extent. A more reasonable solution would be to provide additional supervision to

the learning algorithm in the form of ground truth information, i.e. relations that

can be inferred from explicitly stated facts. We hypothesize that weak supervision

in the form of noisy ground truth information collected from crowdsourcing could

still help improve the performance of the EM algorithm for learning noisy-or pa-

rameters.

Zeichner et al.(2012) have proposed a framework to evaluate textual entail-

ment rules using crowdsourcing techniques. Textual entailment rules are similar to

the first-order rules learned from natural language text in this dissertation, but are

much simpler with the antecedent consisting of a single literal. We could explore

the possibility of applying such techniques to evaluate the first-order rules learned

in this dissertation as well.
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6.2.2.3 Alternate approaches to scoring rules using lexical semantics

In Chapter 5, we proposed a novel approach to scoring first-order rules us-

ing WordNet for machine reading. A logical extension of our work involves exper-

imenting with different similarity metrics developed for WordNet. Since a number

of existing similarity metrics do not compute a scaled score between 0 and 1, we

did not explore using these similarity metrics in our work. However, it would be

interesting to explore alternate similarity metrics and approaches to scaling to com-

pute a final score between 0 and 1. Further, we could also develop a novel similarity

metric that is better suited for scoring first-order rules for the machine reading task.

Exploring alternate approaches such as distributional lexical semantics (Garrette

et al., 2011) to compute word similarity for scoring rules is another topic for fu-

ture work. Unlike using a curated ontology such as WordNet to calculate similarity

scores between words, approaches from distributional lexical semantics calculate

similarity measures based on the frequency of occurrence of word pairs in the same

context. Using weights computed by these approaches as initial weights for pa-

rameter learning might help avoid local maxima and converge to a better set of

parameters. Finally, it would be interesting to compare the weights calculated by

these approaches with human judgments as well.

6.2.2.4 Evaluation of multi-relational online rule learning using larger cor-
pora

In Chapter 5, we evaluated our online rule learner on the IC data set for

machine reading. Even though the rule learner is capable of learning rules with
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multiple relation literals in the antecedent, we restricted learning rules with a single

relation in the antecedent due to lack of sufficient data. In future, we would like

to evaluate the online rule learner using a much larger corpora so that we can learn

more useful rules consisting of multiple relations in the antecedent.

6.2.2.5 Improving the recall of IE system

We could use the BLP approach described in Chapter 4 to improve the recall

of the underlying IE system. If the IE system fails to extract a fact that is explicitly

stated and if this fact is inferred by the BLP approach, then augmenting the output

of the IE system with the inferred facts will result in the improvement of the overall

recall of the IE system. Nahm and Mooney (2000) demonstrated the efficacy of this

approach to improve the recall of an IE system on a computer-related job-posting

domain. We could also use the inferred facts as additional training data to learn

new rules and parameters. Since marginal probabilities are available for inferred

facts, these inferences could be used as “virtual evidence” (Pearl, 1988) during

probabilistic inference and learning. Most IE systems output relation instances that

have high confidence scores. It would be interesting to use the inferences made

by the BLP approach to improve the evidence for those extractions that have lower

confidence scores, thereby improving the recall of the underlying system further. A

similar approach has been taken by Welty et al. (2012) to improve the recall on a

question answering task.
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Chapter 7

Conclusion

This dissertation focuses on developing approaches using Bayesian Logic

Programs (BLPs) to solve two real world tasks – plan recognition and machine

reading. Plan recognition involves inferring an intelligent agent’s top-level plans

based on its observed actions. It has practical applications in several domains in-

cluding monitoring activities of daily living for elderly care, intelligent surveillance

systems, and intelligent personal assistants. Machine reading involves automatic

extraction of information from natural language text. Like plan recognition, ma-

chine reading is also widely used in practical applications such as deep question

answering. For these reasons, we have focused on developing approaches using

BLPs on these two tasks. Further, both tasks share a common characteristic in that

they involve learning and inference from incomplete or partially observed data. In

this dissertation, we demonstrate the efficacy of BLPs for inference and learning

from partially observed data.

One of the main advantages of BLPs over other SRL models such as MLNs

lies in its ability to perform focused grounding by constructing ground Bayesian

networks consisting of only those literals that are used to prove the query. We

chose to use BLPs in this dissertation as we hypothesized that this aspect of BLPs
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would help solve real world tasks involving large domains. Further, we also hy-

pothesized that the directed nature of BLPs could provide the additional flexibility

to use different types of logical inference, thereby enabling us to use BLPs on a

variety of real world tasks. Due to these aspects of BLPs, we hypothesized that

they are better suited for solving several tasks when compared to their undirected

counterparts, MLNs. In this dissertation, we demonstrate empirically that our hy-

pothesis is valid by demonstrating the superior performance of BLPs over MLNs

on both plan recognition and machine reading.

In the first part of the dissertation, we developed an approach to abductive

plan recognition using BLPs. Since BLPs use SLD resolution for logical infer-

ence, they cannot be used for abductive reasoning tasks like plan recognition. Here,

our primary contribution involves extending BLPs for abductive reasoning by us-

ing logical abduction instead of deduction to construct ground Bayesian networks.

In logical abduction, missing facts are assumed when necessary to complete proof

trees, and we use the resulting abductive proof trees to construct Bayesian networks.

We call the resulting model Bayesian Abductive Logic Programs (BALPs). We

learned the parameters for the BALP framework automatically from data using the

Expectation Maximization algorithm adapted for BLPs by Kersting and De Raedt

(2008). Experimental evaluation on three benchmark data sets demonstrated that

BALPs outperform the existing state-of-art methods such as MLNs for plan recog-

nition. Here, we demonstrated that the superior performance of BLPs over MLNs

is not only due to its ability to perform constrained grounding, but also due to its

directed nature, which allows to easily use logical abduction instead of standard
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logical deduction to construct ground Bayesian networks.

In the second part of the dissertation, we developed approaches to machine

reading using BLPs. We first developed an approach using BLPs to infer implicit

facts from natural language text. Our approach involves learning probabilistic rules

in first-order logic from a large corpus of extracted facts using LIME (McCreath &

Sharma, 1998), an existing rule learner and then using the resulting BLP to make

effective probabilistic inferences when interpreting new documents. Experimental

evaluation of our system on a realistic test corpus from DARPA’s Machine Reading

project demonstrated improved performance compared to a purely logical approach

based on ILP, and an alternative approach based on MLNs. Here again, we demon-

strated empirically that the superior performance of BLPs over MLNs is due to

its focused grounding that resulted in the construction of smaller ground networks

when compared to those constructed by MLNs, which eventually allows BLPs to

scale to large corpora of natural language text.

Next, we developed a novel online rule learner that is capable of learning

first-order rules from noisy and incomplete natural language extractions, which are

then used to infer implicit facts from natural language text. The rule learner han-

dles the concise, incomplete nature of natural-language text by learning rules in

which the body of the rule typically consists of relations that are frequently explic-

itly stated, while the head is a relation that is more typically inferred. We use the

frequency of occurrence of extracted relations as a heuristic for distinguishing those

that are typically explicitly stated from the ones that are usually inferred. In order to

allow scaling to large corpora, we developed an efficient online rule learner. Exper-
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imental evaluation on the machine reading task demonstrated superior performance

of our rule learner when compared to LIME, an existing rule learner used in our

previous approach.

Finally, we developed a novel approach to scoring first-order rules learned

from IE extractions for the purpose of inferring implicit facts from natural language

text for machine reading. Our approach uses the lexical information from a cu-

rated ontology such as WordNet (Fellbaum, 1998) to score the rules. The basic

idea behind our approach is that more accurate rules typically have predicates that

are closely related to each other in terms of the meanings of the English words

used to name them. Since WordNet is a rich resource for lexical information, we

use it for scoring rules based on word similarity. Experimental evaluation on the

machine reading task demonstrated superior performance of the our approach over

both manual weights and weights learned using EM.

Overall, this dissertation makes important contributions towards learning

and inference from incomplete data using Bayesian Logic Programs. We demon-

strate the efficacy of BLPs on two diverse real-world tasks – plan recognition and

machine reading, both of which have a wide variety of applications in several do-

mains. The approaches developed in this dissertation make advances in the area of

performing inference by integrating evidence from several different sources. Our

approaches to machine reading have the potential to enable computers to read and

understand language better. Further, we demonstrate the superior performance of

BLPs over their undirected counterparts, MLNs on both the tasks. The approaches

developed in this dissertation also have a direct impact on the advancement of com-
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mercial applications that use plan recognition and machine reading. Today, plan

recognition is already being used in commercial intelligent personal assistant sys-

tems such as Siri. Our own work in plan recognition is motivated by the applica-

tion in elderly care for monitoring activities of daily living (Park & Kautz, 2008).

Similarly, our contributions in machine reading can be directly used in intelligent

personal assistants such as Siri for deep question answering. Further, these topics

are of immediate interest to defense and security agencies for quick processing of

huge amounts of natural language text for automatic question answering. In a nut-

shell, we firmly believe that this dissertation makes several contributions towards

advancement of commercial applications as well as scientific research.
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Appendix A

Details of Plan Recognition Datasets

This appendix gives additional details about the data sets used to evaluate

BALPs on the plan recognition task.

A.1 Monroe

The knowledge base constructed from planning knowledge for the Monroe

domain is given below. For additional details on the data set creation, we refer the

reader to Nate Blaylock’s Ph.D. dissertation (2005).

# set-up-shelter sets up a shelter at a certain location
get-electricity(Loc)|set-up-shelter(Loc).
person-get-to(Leader,Loc)|set-up-shelter(Loc),shelter-leader(Leader).
object-get-to(Foodx,Loc)|set-up-shelter(Loc),food(Foodx).

#fix-water-main
shut-off-water(From,To)|fix-water-main(From,To).
repair-pipe(From,To)|fix-water-main(From,To).
turn-on-water(From,To)|fix-water-main(From,To).

# clear-road-hazard cleans up a hazardous spill
block-road(From,To)|clear-road-hazard(From,To).
clean-up-hazard(From,To)|clear-road-hazard(From,To).
unblock-road(From,To)|clear-road-hazard(From,To).

# clear-road-wreck gets a wreck out of the road
set-up-cones(From,To)|clear-road-wreck(From,To).
clear-wreck(From,To)|clear-road-wreck(From,To).
take-down-cones(From,To)|clear-road-wreck(From,To).

# clear-road-tree
set-up-cones(From,To)|clear-road-tree(From,To).
clear-tree(Treex)|clear-road-tree(From,To),tree-blocking-road(From,To,Treex).
take-down-cones(From,To)|clear-road-tree(From,To).
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# plow-road
navegate-snowplow(Driver,Plow,From)|plow-road(From,To),
plowdriver(Driver),snowplow(Plow).
engage-plow(Driver,Plow)|plow-road(From,To),plowdriver(Driver),
snowplow(Plow).
navegate-snowplow(Driver,Plow,To)|plow-road(From,To),plowdriver(Driver),
snowplow(Plow).
disengage-plow(Driver,Plow)|plow-road(From,To),plowdriver(Driver),
snowplow(Plow).

#quell-riot
declare-curfew(Townx)|quell-riot(Loc),in-town(Loc,Townx).
person-get-to(Px,Loc)|quell-riot(Loc),police-unit(Px),in-town(Loc,Townx).
set-up-barricades(Px)|quell-riot(Loc),police-unit(Px),in-town(Loc,Townx).

#provide-temp-heat
person-get-to(Person1,Ploc)|provide-temp-heat(Person1),shelter(Ploc),
person(Person1).
generate-temp-electricity(Ploc)|provide-temp-heat(Personx),person(Personx),
atloc(Personx,Ploc).
turn-on-heat(Ploc)|provide-temp-heat(Personx),person(Personx),
atloc(Personx,Ploc).

#fix-power-line
crew-get-to(Crew,Lineloc)|fix-power-line(Lineloc),power-crew(Crew).
vehicle-get-to(Van,Lineloc)|fix-power-line(Lineloc),power-van(Van).
repair-line(Crew,Lineloc)|fix-power-line(Lineloc),power-crew(Crew).

#provide-medical-attention
person-get-to(Personx,Hosp)|provide-medical-attention(Personx),
hospital(Hosp).
treat-in-hospital(Personx,Hosp)|provide-medical-attention(Personx),
hospital(Hosp).
emt-treat(Personx)|provide-medical-attention(Personx).

# clean-up-hazard
call(fema)|clean-up-hazard(From,To),hazard-seriousness(From,To,very-hazardous).
crew-get-to(Ht,From)|clean-up-hazard(From,To),hazard-team(Ht).
clean-hazard(Ht,From,To)|clean-up-hazard(From,To),hazard-team(Ht).

# block-road - blocks off a road
set-up-cones(From,To)|block-road(From,To).
person-get-to(Police,From)|block-road(From,To),police-unit(Police).

# unblock-road - unblocks a road
take-down-cones(From,To)|unblock-road(From,To).

# get-electricity provides electricity to a site (if not already there)
generate-temp-electricity(Loc)|get-electricity(Loc),no-electricity(Loc).

# repair-pipe
crew-get-to(Crew,From)|repair-pipe(From,To),water-crew(Crew).
set-up-cones(From,To)|repair-pipe(From,To).
open-hole(From,To)|repair-pipe(From,To).
replace-pipe(Crew,From,To)|repair-pipe(From,To),water-crew(Crew).
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close-hole(From,To)|repair-pipe(From,To).
take-down-cones(From,To)|repair-pipe(From,To).

# open-hole
vehicle-get-to(Backhoex,From)|open-hole(From,To),backhoe(Backhoex).
dig(Backhoex,From)|open-hole(From,To),backhoe(Backhoex).

#close-hole
vehicle-get-to(Backhoex,From)|close-hole(From,To),backhoe(Backhoex).
fill-in(Backhoex,From)|close-hole(From,To),backhoe(Backhoex).

# set-up-cones
crew-get-to(Crew,From)|set-up-cones(From,To),work-crew(Crew).
place-cones(Crew)|set-up-cones(From,To),work-crew(Crew).

# take-down-cones
crew-get-to(Crew,From)|take-down-cones(From,To),work-crew(Crew).
pickup-cones(Crew)|take-down-cones(From,To),work-crew(Crew).

# clear-wreck
tow-to(Veh,Dumpx)|clear-wreck(From,To),
wrecked-vehicle(From,To,Veh),garbage-dump(Dumpx).

# tow-to - tows a vehicle somewhere
vehicle-get-to(Ttruck,Vehloc)|tow-to(Veh,To),tow-truck(Ttruck),
vehicle(Veh),atloc(Veh,Vehloc).
hook-to-tow-truck(Ttruck,Veh)|tow-to(Veh,To),tow-truck(Ttruck).
vehicle-get-to(Ttruck,To)|tow-to(Veh,To),tow-truck(Ttruck).
unhook-from-tow-truck(Ttruck,Veh)|tow-to(Veh,To),tow-truck(Ttruck).

# clear-tree
crew-get-to(Tcrew,Treeloc)|clear-tree(Treex),tree-crew(Tcrew),
tree(Treex),atloc(Treex,Treeloc).
cut-tree(Tcrew,Treex)|clear-tree(Treex),tree-crew(Tcrew).
remove-blockage(Treex)|clear-tree(Treex).

# remove-blockage
crew-get-to(Crew,Loc)|remove-blockage(Stuff),work-crew(Crew),atloc(Stuff,Loc).
carry-blockage-out-of-way(Crew,Stuff)|remove-blockage(Stuff),work-crew(Crew).
object-get-to(Stuff,Dumpx)|remove-blockage(Stuff),garbage-dump(Dumpx).

# declare-curfew
call(ebs)|declare-curfew(Townx).
call(police-chief)|declare-curfew(Townx).

# generate-temp-electricity
make-full-fuel(Gen)|generate-temp-electricity(Loc),generator(Gen).
object-get-to(Gen,Loc)|generate-temp-electricity(Loc),generator(Gen).
hook-up(Gen,Loc)|generate-temp-electricity(Loc),generator(Gen).
turn-on(Gen)|generate-temp-electricity(Loc),generator(Gen).

# make-full-fuel - makes sure arg1 is full of fuel
object-get-to(Gc,Ss)|make-full-fuel(Gen),gas-can(Gc),service-station(Ss).
add-fuel(Ss,Gc)|make-full-fuel(Gen),gas-can(Gc),service-station(Ss).
object-get-to(Gc,Genloc)|make-full-fuel(Gen),gas-can(Gc),atloc(Gen,Genloc).
pour-into(Gc,Gen)|make-full-fuel(Gen),gas-can(Gc).
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object-get-to(Gen,Ss)|make-full-fuel(Gen),service-station(Ss).
add-fuel(Ss,Gen)|make-full-fuel(Gen),service-station(Ss).

# add-fuel (at service-station)
pay(Ss)|add-fuel(Ss,Obj).
pump-gas-into(Ss,Obj)|add-fuel(Ss,Obj).

# repair-line
shut-off-power(Crew,Lineloc)|repair-line(Crew,Lineloc).
clear-tree(Treex)|repair-line(Crew,Lineloc),tree(Treex).
remove-wire(Crew,Lineloc)|repair-line(Crew,Lineloc).
string-wire(Crew,Lineloc)|repair-line(Crew,Lineloc).
turn-on-power(Crew,Lineloc)|repair-line(Crew,Lineloc).

# shut-off-power
call(Powerco)|shut-off-power(Crewx,Loc),in-town(Loc,Town1),
powerco-of(Town1,Powerco),power-crew(Crewx).

# turn-on-power
call(Powerco)|turn-on-power(Crewx,Loc),in-town(Loc,Townx),
powerco-of(Townx,Powerco),power-crew(Crewx).

# shut-off-water
call(Waterco)|shut-off-water(From,To),in-town(From,Townx),
waterco-of(Townx,Waterco).

# turn-on-water
call(Waterco)|turn-on-water(From,To),in-town(From,Townx),
waterco-of(Townx,Waterco).

# emt-treat
crew-get-to(Emt,Personloc)|emt-treat(Personx),emt-crew(Emt),
atloc(Personx,Personloc).
treat(Emt,Personx)|emt-treat(Personx),emt-crew(Emt).

# stabilize
emt-treat(Personx)|stabilize(Personx).

# get-to
drive-to(Personx,Veh,Place)|person-get-to(Personx,Place),person(Personx),
vehicle(Veh).
drive-to(Crewx,Veh,Place)|crew-get-to(Crewx,Place),work-crew(Crewx),
vehicle(Veh).
drive-to(Personx,Veh,Place)|vehicle-get-to(Veh,Place),person(Personx),
vehicle(Veh).
vehicle-get-to(Veh,Objplace)|object-get-to(Obj,Place),atloc(Obj,Objplace),
vehicle(Veh).
get-in(Obj,Veh)|object-get-to(Obj,Place),vehicle(Veh).
vehicle-get-to(Veh,Place)|object-get-to(Obj,Place),vehicle(Veh).
get-out(Obj,Veh)|object-get-to(Obj,Place),vehicle(Veh).
navegate-vehicle(Personx,Veh,Loc)|drive-to(Personx,Veh,Loc).
load(Personx,Obj,Veh)|get-in(Obj,Veh),person(Personx).
unload(Personx,Obj,Veh)|get-out(Obj,Veh),person(Personx).
climb-in(Personx,Veh)|get-in(Personx,Veh).
climb-out(Personx,Veh)|get-out(Personx,Veh).
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# axioms

# points
point(X)|hospital(X).
point(X)|garbage-dump(X).
point(X)|park(X).
point(X)|shelter(X).
point(X)|school(X).
point(X)|university(X).
point(X)|mall(X).
point(X)|transport-hub(X).
point(X)|service-station(X).

# vehicles
vehicle(X)|ambulance(X).
vehicle(X)|bus(X).
vehicle(X)|power-van(X).
vehicle(X)|truck(X).
vehicle(X)|police-van(X).
vehicle(X)|car(X).
vehicle(X)|wrecked-car(X).
truck(X)|dump-truck(X).
truck(X)|tow-truck(X).
truck(X)|water-truck(X).
truck(X)|backhoe(X).
truck(X)|snowplow(X).
fit-in(Obj,Veh)|vehicle(Veh),person(Obj).
fit-in(Obj,Veh)|dump-truck(Veh),tree(Obj).
fit-in(Obj,Veh)|vehicle(Veh),generator(Obj).
fit-in(Obj,Veh)|vehicle(Veh),food(Obj).
can-drive(Personx,Veh)|ambulance(Veh),emt-crew(Personx).
can-drive(Personx,Veh)|power-van(Veh),power-crew(Personx).
can-drive(Personx,Veh)|truck(Veh),truck-driver(Personx).
can-drive(Personx,Veh)|bus(Veh),bus-driver(Personx).
can-drive(Personx,Veh)|police-van(Veh),police-unit(Personx).
can-drive(Personx,Veh)|tow-truck(Veh),tow-truck-driver(Personx).
can-drive(Personx,Veh)|backhoe(Veh),construction-crew(Personx).
can-drive(Personx,Veh)|water-truck(Veh),water-crew(Personx).
can-drive(Personx,Veh)|snowplow(Veh),plowdriver(Personx).
can-drive(Personx,Veh)|adult(Personx).

# people
person(X)|adult(X).
person(X)|child(X).
adult(X)|emt-crew(X).
adult(X)|work-crew(X).
adult(X)|bus-driver(X).
adult(X)|truck-driver(X).
adult(X)|police-unit(X).
adult(X)|tow-truck-driver(X).
adult(X)|plowdriver(X).
adult(X)|shelter-leader(X).

# lifting
can-lift(Personx,Obj)|person(Obj),emt-crew(Personx).
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# work-crew
work-crew(X)|power-crew(X).
work-crew(X)|tree-crew(X).
work-crew(X)|construction-crew(X).
work-crew(X)|water-crew(X).
work-crew(X)|hazard-team(X).

# roads and locs
atloc(Obj,Loc)|on-road(Obj,Loc,To).

A.2 Reformulated Monroe

The knowledge based constructed for Reformulated Monroe is given below:

# set-up-shelter sets up a shelter at a certain location
get-electricity(Locx)|set-up-shelter(Locx).
person-get-to(Leaderx,Locx)|set-up-shelter(Locx),shelter-leader(Leaderx).
object-get-to(Foodx,Locx)|set-up-shelter(Locx),food(Foodx).

#fix-water-main
shut-off-water(From,To)|fix-water-main(From,To).
repair-pipe(From,To)|fix-water-main(From,To).
turn-on-water(From,To)|fix-water-main(From,To).

# clear-road-hazard cleans up a hazardous spill
block-road(From,To)|clear-road-hazard(From,To).
clean-up-hazard(From,To)|clear-road-hazard(From,To).
unblock-road(From,To)|clear-road-hazard(From,To).

# clear-road-wreck gets a wreck out of the road
set-up-cones(From,To)|clear-road-wreck(From,To).
clear-wreck(From,To)|clear-road-wreck(From,To).
take-down-cones(From,To)|clear-road-wreck(From,To).

# clear-road-tree
set-up-cones(From,To)|clear-road-tree(From,To).
clear-tree(Treex,From,To)|clear-road-tree(From,To),
tree-blocking-road(From,To,Treex).
take-down-cones(From,To)|clear-road-tree(From,To).

# plow-road
engage-plow(Driver,Plow)|plow-road(From,To),plowdriver(Driver),
snowplow(Plow).
navegate-snowplow(Driver,Plow,From,To)|plow-road(From,To),
plowdriver(Driver),snowplow(Plow).
disengage-plow(Driver,Plow)|plow-road(From,To),plowdriver(Driver),
snowplow(Plow).

#quell-riot
declare-curfew(Townx)|quell-riot(Locx),in-town(Locx,Townx).
person-get-to(Px,Locx)|quell-riot(Locx),police-unit(Px),in-town(Locx,Townx).
set-up-barricades(Px)|quell-riot(Locx),police-unit(Px),in-town(Locx,Townx).
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#provide-temp-heat
person-get-to(Person1,Ploc)|provide-temp-heat(Person1),shelter(Ploc),
person(Person1).
generate-temp-electricity(Ploc)|provide-temp-heat(Person1),person(Person1),
atloc(Person1,Ploc).
turn-on-heat(Ploc,Person1)|provide-temp-heat(Person1),person(Person1),
atloc(Person1,Ploc).

#fix-power-line
crew-get-to(Crew,Lineloc)|fix-power-line(Lineloc),power-crew(Crew).
vehicle-get-to(Van,Lineloc)|fix-power-line(Lineloc),power-van(Van).
repair-line(Crew,Lineloc)|fix-power-line(Lineloc),power-crew(Crew).

#provide-medical-attention
person-get-to(Personx,Hosp)|provide-medical-attention(Personx),
hospital(Hosp).
treat-in-hospital(Personx,Hosp)|provide-medical-attention(Personx),
hospital(Hosp).
emt-treat(Personx)|provide-medical-attention(Personx).

# clean-up-hazard
call(fema,From)|clean-up-hazard(From,To),
hazard-seriousness(From,To,very-hazardous).
clear(From,To)|clean-up-hazard(From,To).
crew-get-to(Ht,From)|clean-up-hazard(From,To),hazard-team(Ht).
clean-hazard(Ht,From,To)|clean-up-hazard(From,To),hazard-team(Ht).

# block-road - blocks off a road
set-up-cones(From,To)|block-road(From,To).
person-get-to(Policex,From)|block-road(From,To),police-unit(Policex).

# unblock-road - unblocks a road
take-down-cones(From,To)|unblock-road(From,To).

# get-electricity provides electricity to a site (if not already there)
generate-temp-electricity(Locx)|get-electricity(Locx),no-electricity(Locx).

# repair-pipe
crew-get-to(Crewx,From)|repair-pipe(From,To),water-crew(Crewx).
set-up-cones(From,To)|repair-pipe(From,To).
open-hole(From,To)|repair-pipe(From,To).
replace-pipe(Crewx,From,To)|repair-pipe(From,To),water-crew(Crewx).
close-hole(From,To)|repair-pipe(From,To).
take-down-cones(From,To)|repair-pipe(From,To).

# open-hole
vehicle-get-to(Backhoex,From)|open-hole(From,To),backhoe(Backhoex).
dig(Backhoex,From,To)|open-hole(From,To),backhoe(Backhoex).

#close-hole
vehicle-get-to(Backhoex,From)|close-hole(From,To),backhoe(Backhoex).
fill-in(Backhoex,From,To)|close-hole(From,To),backhoe(Backhoex).

# set-up-cones
crew-get-to(Crewx,From)|set-up-cones(From,To),work-crew(Crewx).
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place-cones(Crewx,From,To)|set-up-cones(From,To),work-crew(Crewx).

# take-down-cones
crew-get-to(Crewx,From)|take-down-cones(From,To),work-crew(Crewx).
pickup-cones(Crewx,From,To)|take-down-cones(From,To),work-crew(Crewx).

# clear-wreck
tow-to(Vehx,Dumpx)|clear-wreck(From,To),wrecked-vehicle(From,To,Vehx),
garbage-dump(Dumpx).
clear(From,To)|clear-wreck(From,To).

# tow-to - tows a vehicle somewhere
vehicle-get-to(Ttruck,Vehloc)|tow-to(Veh,To),tow-truck(Ttruck),vehicle(Veh),
atloc(Veh,Vehloc).
hook-to-tow-truck(Ttruck,Veh)|tow-to(Veh,To),tow-truck(Ttruck).
vehicle-get-to(Ttruck,To)|tow-to(Veh,To),tow-truck(Ttruck).
unhook-from-tow-truck(Ttruck,Veh)|tow-to(Veh,To),tow-truck(Ttruck).

# clear-tree
crew-get-to(Tcrew,Treeloc)|clear-tree(Treex,From,To),tree-crew(Tcrew),
tree(Treex),atloc(Treex,Treeloc).
cut-tree(Tcrew,Treex,From,To)|clear-tree(Treex,From,To),tree-crew(Tcrew).
remove-blockage(Treex,From,To)|clear-tree(Treex,From,To).

# remove-blockage
crew-get-to(Crewx,Loc)|remove-blockage(Stuff,From,To),work-crew(Crewx),
atloc(Stuff,Loc).
carry-blockage-out-of-way(Crewx,Stuff,From,To)|remove-blockage(Stuff,From,To),
work-crew(Crewx).
object-get-to(Stuffx,Dumpx)|remove-blockage(Stuffx,From,To),garbage-dump(Dumpx).

# declare-curfew
call(ebs,Townx)|declare-curfew(Townx).
call(police-chief,Townx)|declare-curfew(Townx).

# generate-temp-electricity
make-full-fuel(Genx)|generate-temp-electricity(Locx),generator(Genx).
object-get-to(Genx,Locx)|generate-temp-electricity(Locx),generator(Genx).
hook-up(Genx,Locx)|generate-temp-electricity(Locx),generator(Genx).
turn-on(Genx)|generate-temp-electricity(Locx),generator(Genx).

# make-full-fuel - makes sure arg1 is full of fuel
object-get-to(Gc,Ss)|make-full-fuel(Gen),gas-can(Gc),service-station(Ss).
add-fuel(Ss,Gc)|make-full-fuel(Gen),gas-can(Gc),service-station(Ss).
object-get-to(Gc,Genloc)|make-full-fuel(Gen),gas-can(Gc),atloc(Gen,Genloc).
pour-into(Gc,Gen)|make-full-fuel(Gen),gas-can(Gc).
object-get-to(Gen,Ss)|make-full-fuel(Gen),service-station(Ss).
add-fuel(Ss,Gen)|make-full-fuel(Gen),service-station(Ss).

# add-fuel (at service-station)
pay(Ss)|add-fuel(Ss,Obj).
pump-gas-into(Ss,Obj)|add-fuel(Ss,Obj).

# repair-line
shut-off-power(Crewx,Lineloc)|repair-line(Crewx,Lineloc).
clear-tree(Treex,From,To)|repair-line(Crewx,Lineloc),tree(Treex).
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remove-wire(Crewx,Lineloc)|repair-line(Crewx,Lineloc).
string-wire(Crewx,Lineloc)|repair-line(Crewx,Lineloc).
turn-on-power(Crewx,Lineloc)|repair-line(Crewx,Lineloc).

# shut-off-power
call(Powerco,Loc)|shut-off-power(Crewx,Loc),in-town(Loc,Townx),
powerco-of(Townx,Powerco),power-crew(Crewx).

# turn-on-power
call(Powerco,Locx)|turn-on-power(Crewx,Locx),in-town(Loc,Town1),
powerco-of(Town1,Powerco),power-crew(Crewx).

# shut-off-water
call(Waterco,From)|shut-off-water(From,To),in-town(From,Town1),
waterco-of(Town1,Waterco).
water-off(From,To)|shut-off-water(From,To).

# turn-on-water
call(Waterco,From)|turn-on-water(From,To),in-town(From,Townx),
waterco-of(Townx,Waterco).
water-on(From,To)|turn-on-water(From,To).

# emt-treat
crew-get-to(Emt,Personloc)|emt-treat(Personx),emt-crew(Emt),
atloc(Personx,Personloc).
treat(Emt,Personx)|emt-treat(Personx),emt-crew(Emt).

# stabilize
emt-treat(Personx)|stabilize(Personx).

# get-to
drive-to(Personx,Veh,Place)|person-get-to(Personx,Place),person(Personx),
vehicle(Veh).
drive-to(Crewx,Veh,Place)|crew-get-to(Crewx,Place),work-crew(Crewx),
vehicle(Veh).
drive-to(Personx,Veh,Place)|vehicle-get-to(Veh,Place),person(Personx),
vehicle(Veh).
vehicle-get-to(Veh,Objplace)|object-get-to(Obj,Place),atloc(Obj,Objplace),
vehicle(Veh).
get-in(Obj,Veh)|object-get-to(Obj,Place),vehicle(Veh).
vehicle-get-to(Veh,Place)|object-get-to(Obj,Place),vehicle(Veh).
get-out(Obj,Veh)|object-get-to(Obj,Place),vehicle(Veh).
navegate-vehicle(Person1,Veh,Loc)|drive-to(Person1,Veh,Loc).
load(Person1,Obj,Veh)|get-in(Obj,Veh),person(Person1).
unload(Person1,Obj,Veh)|get-out(Obj,Veh),person(Person1).
climb-in(Person1,Veh)|get-in(Person1,Veh).
climb-out(Person1,Veh)|get-out(Person1,Veh).

# axioms

# points
point(X)|hospital(X).
point(X)|garbage-dump(X).
point(X)|park(X).
point(X)|shelter(X).
point(X)|school(X).
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point(X)|university(X).
point(X)|mall(X).
point(X)|transport-hub(X).
point(X)|service-station(X).

# vehicles
vehicle(X)|ambulance(X).
vehicle(X)|bus(X).
vehicle(X)|power-van(X).
vehicle(X)|truck(X).
vehicle(X)|police-van(X).
vehicle(X)|car(X).
vehicle(X)|wrecked-car(X).
truck(X)|dump-truck(X).
truck(X)|tow-truck(X).
truck(X)|water-truck(X).
truck(X)|backhoe(X).
truck(X)|snowplow(X).
fit-in(Obj,Veh)|vehicle(Veh),person(Obj).
fit-in(Obj,Veh)|dump-truck(Veh),tree(Obj).
fit-in(Obj,Veh)|vehicle(Veh),generator(Obj).
fit-in(Obj,Veh)|vehicle(Veh),food(Obj).
can-drive(Person1,Veh)|ambulance(Veh),emt-crew(Person1).
can-drive(Person1,Veh)|power-van(Veh),power-crew(Person1).
can-drive(Person1,Veh)|truck(Veh),truck-driver(Person1).
can-drive(Person1,Veh)|bus(Veh),bus-driver(Person1).
can-drive(Person1,Veh)|police-van(Veh),police-unit(Person1).
can-drive(Person1,Veh)|tow-truck(Veh),tow-truck-driver(Person1).
can-drive(Person1,Veh)|backhoe(Veh),construction-crew(Person1).
can-drive(Person1,Veh)|water-truck(Veh),water-crew(Person1).
can-drive(Person1,Veh)|snowplow(Veh),plowdriver(Person1).
can-drive(Person1,Veh)|adult(Person1).

# people
person(X)|adult(X).
person(X)|child(X).
adult(X)|emt-crew(X).
adult(X)|work-crew(X).
adult(X)|bus-driver(X).
adult(X)|truck-driver(X).
adult(X)|police-unit(X).
adult(X)|tow-truck-driver(X).
adult(X)|plowdriver(X).
adult(X)|shelter-leader(X).

# lifting
can-lift(Person1,Obj)|person(Obj),emt-crew(Person1).

# work-crew
work-crew(X)|power-crew(X).
work-crew(X)|tree-crew(X).
work-crew(X)|construction-crew(X).
work-crew(X)|water-crew(X).
work-crew(X)|hazard-team(X).

# roads and locs
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atloc(Obj,Loc)|on-road(Obj,Loc,To).

A.3 Linux

The knowledge base constructed for the Linux domain is given below. For

additional details on the data set creation, we refer the reader to Nate Blaylock’s

Ph.D. dissertation (2005).

#find a file named arg1
find(Prename,Name,Size,Prepath,Path)|
find-file-by-attr-name-exact(Name),file-prepath(Prename),
file-size(Size),source-dir-prepath(Prepath),source-dir-name(Path).
cd(Prepath,Path)|
find-file-by-attr-name-exact(Name),source-dir-prepath(Prepath),
source-dir-name(Path).
ls(Path,Name)|
find-file-by-attr-name-exact(Name),source-dir-prepath(Path),
file-name(Name).

#find a file that ends in arg1
find(Prename,Ext,Size,Prepath,Path)|
find-file-by-attr-name-ext(Ext),file-prepath(Prename),file-size(Size),
source-dir-prepath(Prepath),source-dir-name(Path).
cd(Prepath,Path)|
find-file-by-attr-name-ext(Ext),source-dir-prepath(Prepath),
source-dir-name(Path).
ls(Path,Ext)|
find-file-by-attr-name-ext(Ext),source-dir-prepath(Path),file-name(Ext).

#find a file that begins with arg1
find(Prename,Stem,Size,Prepath,Path)|
find-file-by-attr-name-stem(Stem),file-prepath(Prename),
file-size(Size),source-dir-prepath(Prepath),source-dir-name(Path).
cd(Prepath,Path)|
find-file-by-attr-name-stem(Stem),source-dir-prepath(Prepath),
source-dir-name(Path).
ls(Path,Stem)|
find-file-by-attr-name-stem(Stem),source-dir-prepath(Path),file-name(Stem).

#find a file that was last modified arg1
cd(Prepath,Path)|
find-file-by-attr-date-modification-exact(Date),source-dir-prepath(Prepath),
source-dir-name(Path).
ls(Path,Name)|
find-file-by-attr-date-modification-exact(Date),source-dir-prepath(Path),
file-name(Name).
egrep(Date,Prepath,Path)|
find-file-by-attr-date-modification-exact(Date),file-prepath(Prepath),
file-name(Path).
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fgrep(Date,Prepath,Path)|
find-file-by-attr-date-modification-exact(Date),file-prepath(Prepath),
file-name(Path).
grep(Date,Prepath,Path)|
find-file-by-attr-date-modification-exact(Date),file-prepath(Prepath),
file-name(Path).

#compress all directories named arg1
compress(Prepath,Dirname)|
compress-dirs-by-attr-name(Dirname),source-dir-prepath(Prepath),
source-dir-name(Dirname).
gtar(Destprepath,Destpath,Sourceprepath,Dirname)|
compress-dirs-by-attr-name(Dirname),file-prepath(Destprepath),
file-name(Destpath),source-dir-prepath(Sourceprepath),
source-dir-name(Dirname).
gzip(Prepath,Dirname)|
compress-dirs-by-attr-name(Dirname),source-dir-prepath(Prepath),
source-dir-name(Dirname).
tar(Destprepath,Destpath,Sourceprepath,Dirname)|
compress-dirs-by-attr-name(Dirname),file-prepath(Destprepath),
file-name(Destpath),source-dir-prepath(Sourceprepath),
source-dir-name(Dirname).
zip(Destprepath,Destpath,Sourceprepath,Dirname)|
compress-dirs-by-attr-name(Dirname),file-prepath(Destprepath),
file-name(Destpath),source-dir-prepath(Sourceprepath),
source-dir-name(Dirname).

## compress all subdirectories in directories arg1
compress(Prepath,Dirname)|
compress-dirs-by-loc-dir(Dirname),source-dir-prepath(Prepath),
source-dir-name(Dirname).
gtar(Destprepath,Destpath,Sourceprepath,Dirname)|
compress-dirs-by-loc-dir(Dirname),file-prepath(Destprepath),
file-name(Destpath),source-dir-prepath(Sourceprepath),
source-dir-name(Dirname).
gzip(Prepath,Dirname)|
compress-dirs-by-loc-dir(Dirname),source-dir-prepath(Prepath),
source-dir-name(Dirname).
tar(Destprepath,Destpath,Sourceprepath,Dirname)|
compress-dirs-by-loc-dir(Dirname),file-prepath(Destprepath),
file-name(Destpath),source-dir-prepath(Sourceprepath),
source-dir-name(Dirname).
zip(Destprepath,Destpath,Sourceprepath,Dirname)|
compress-dirs-by-loc-dir(Dirname),file-prepath(Destprepath),
file-name(Destpath),source-dir-prepath(Sourceprepath),
source-dir-name(Dirname).

##find out how much file space file arg1 uses
ls(Path,Filename)|
know-filespace-usage-file(Filename),file-name(Filename),
file-prepath(Path).
du(Prepath,Partition-name)|
know-filespace-usage-partition(Partition-name),
source-dir-name(Partition-name),source-dir-prepath(Prepath).

##find out how much file space is free on filesystem arg1
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df(Prepath,Partition-name)|
know-filespace-free(Partition-name),
source-dir-name(Partition-name),source-dir-prepath(Prepath).

##find out if machine arg1 is alive on the network on not
ping(Machine-name,Machine-path)|
determine-machine-connected-alive(Machine-name),
machine-prepath(Machine-path).
ruptime(Machine-name)|
determine-machine-connected-alive(Machine-name).
rsh(Machine-name,Command)|
determine-machine-connected-alive(Machine-name).
rlogin(Machine-name)|
determine-machine-connected-alive(Machine-name).

##create a file named arg1 in a preexisting directory named arg2
cd(Prepath,Dirname)|
create-file(Filename,Dirname),file-name(Filename),source-dir-name(Dirname),
source-dir-prepath(Prepath).
vi(Prepath,Filename)|
create-file(Filename,Prepath),file-name(Filename),source-dir-name(Prepath).
cat(Prepath,Filename)|
create-file(Filename,Prepath),file-name(Filename),source-dir-name(Prepath).
touch(Prepath,Filename)|
create-file(Filename,Prepath),source-dir-name(Prepath),file-name(Filename).

##create a subdirectory named arg1 in a preexisting directory named arg2
mkdir(Dirname,Parent-dir-name)|
create-dir(Dirname,Parent-dir-name),source-dir-name(Parent-dir-name),
dir-name(Dirname).
cd(Prepath,Parent-dir-name)|
create-dir(Dirname,Parent-dir-name),source-dir-name(Parent-dir-name),
source-dir-prepath(Prepath),dir-name(Dirname).

##delete all files ending in arg1
rm(Prepath,Ext)|
remove-files-by-attr-name-ext(Ext),file-name(Ext),file-prepath(Prepath).

##delete all files which contain more than arg1 bytes
rm(Prepath,Name)|
remove-files-by-attr-size-gt(Numbytes),file-size(Numbytes),file-prepath(Prepath),
file-name(Name).

## copy all files ending in arg1 to a preexisting directory named arg2
cp(Dest-prepath,Dirname,Source-prepath,Ext)|
copy-files-by-attr-name-ext(Ext,Dirname),file-name(Ext),
dest-dir-prepath(Prepath),dest-dir-name(Dirname),file-prepath(Source-prepath).

##copy all files containing less than arg1 bytes to a preexisting
directory names arg2
cp(Dest-prepath,Dirname,Source-prepath,Name)|
copy-files-by-attr-size-lt(Numbytes,Dirname),filesize(Numbytes),
dest-dir-name(Dirname),dest-dir-prepath(Dest-prepath),
file-prepath(Source-prepath),file-name(Name).

## move all files ending in arg1 to a preexisting directory named arg2
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mv(Dest-prepath,Dirname,Source-prepath,Ext)|
move-files-by-attr-name-ext(Ext,Dirname),file-name(Ext),
file-prepath(Source-prepath),dest-dir-name(Dirname),
dest-dir-prepath(Dest-prepath).
copy-files-by-attr-name-ext(Ext,Dirname)|
move-files-by-attr-name-ext(Ext,Dirname),file-name(Ext),dest-dir-name(Dirname).
remove-files-by-attr-name-ext(Ext)|
move-files-by-attr-name-ext(Ext,Dirname),file-name(Ext),dest-dir-name(Dirname).

## move all files beginning with arg1 to a preexisting directory named arg2
mv(Dest-prepath,Dirname,Source-prepath,Stem)|
move-files-by-attr-name-stem(Stem,Dirname),file-name(Stem),
dest-dir-name(Dirname),file-prepath(Source-prepath),
dest-dir-prepath(Dest-prepath).
cp(Dest-prepath,Dirname,Source-prepath,Stem)|
move-files-by-attr-name-stem(Stem,Dirname),file-name(Stem),
dest-dir-name(Dirname),file-prepath(Source-prepath),
dest-dir-prepath(Dest-prepath).
rm(Source-prepath,Stem)|
move-files-by-attr-name-stem(Stem,Dirname),file-name(Stem),
dest-dir-name(Dirname),file-prepath(Source-prepath).

## move all files containing less than arg1 bytes to a preexisting directory
mv(Dest-prepath,Dirname,Source-prepath,Name)|
move-files-by-attr-size-lt(Num-bytes,Dirname),file-size(Num-bytes),
dest-dir-name(Dirname),file-name(Name),file-prepath(Source-prepath),
dest-dir-prepath(Dest-prepath).
cp(Dest-prepath,Dirname,Source-prepath,Name)|
move-files-by-attr-size-lt(Num-bytes,Dirname),file-size(Num-bytes),
dest-dir-name(Dirname),file-name(Name),file-prepath(Source-prepath),
dest-dir-prepath(Dest-prepath).
rm(Source-prepath,Name)|
move-files-by-attr-size-lt(Num-bytes,Dirname),file-size(Num-bytes),
dest-dir-name(Dirname),file-name(Name),file-prepath(Source-prepath).
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Silander, T., & Myllymäki, P. (2006). A simple approach for finding the globally

optimal Bayesian network structure. In Proceedings of Uncertainty in Artifi-

cial Intelligence (UAI 2006).

Singla, P., & Domingos, P. (2008). Lifted first-order belief propagation. In Pro-

ceedings of the Twenty Third National Conference on Artificial Intelligence

(AAAI 08).

Singla, P., & Mooney, R. (2011). Abductive Markov Logic for plan recognition. In

Twenty-fifth National Conference on Artificial Intelligence (AAAI 2011).

167



Snow, R., O’Connor, B., Jurafsky, D., & Ng, A. Y. (2008). Cheap and fast—but is it

good?: evaluating non-expert annotations for natural language tasks. In Pro-

ceedings of the Conference on Empirical Methods in Natural Language Pro-

cessing (EMNLP 2008), EMNLP 2008, pp. 254–263. Association for Com-

putational Linguistics.

Sorower, M. S., Dietterich, T. G., Doppa, J. R., Walker, O., Tadepalli, P., & Fern,

X. (2011). Inverting Grice’s maxims to learn rules from natural language

extractions. In Proceedings of Advances in Neural Information Processing

Systems 24 (NIPS 2011).

Srinivasan, A. (2001). The Aleph manual. http://web.comlab.ox.ac.uk/

oucl/research/areas/machlearn/Aleph/.

Stickel, M. E. (1988). A Prolog-like inference system for computing minimum-cost

abductive explanations in natural-language interpretation. Tech. rep. Techni-

cal Note 451, SRI International, Menlo Park, CA.

Tamaddoni-Nezhad, A., Chaleil, R., Kakas, A., & Muggleton, S. (2006). Applica-

tion of abductive ilp to learning metabolic network inhibition from temporal

data. Machine Learning, 64(1-3), 209–230.

Teyssier, M., & Koller, D. (2005). Ordering-based search: A simple and effective

algorithm for learning Bayesian networks. In Proceedings of Uncertainty in

Artificial Intelligence (UAI 2005), pp. 584–590.

Thompson, C., & Mooney, R. (1994). Inductive learning for abductive diagnosis.

In Twelfth National Conference on Artificial Intelligence (AAAI 1994).

168



Wainwright, M. J. (2006). Estimating the wrong graphical model: Benefits in the

computation-limited setting. Journal Machine Learning Research, 7, 1829–

1859.

Welty, C., Barker, K., Aroyo, L., & Arora, S. (2012). Query driven hypothesis

generation for answering queries over nlp graphs. In International Semantics

Web Conference (2) (ISWC), pp. 228–242.

Wu, Z., & Palmer, M. (1994). Verb semantics and lexical selection. In Proceedings

of the 32nd Annual Meeting of the Association for Computational Linguistics

(ACL 1994), pp. 133–138.

Yates, A., & Etzioni, O. (2007). Unsupervised resolution of objects and relations on

the web. In Proceedings of Human Language Technologies: The Annual Con-

ference of the North American Chapter of the Association for Computational

Linguistics (NAACL-HLT 2007).

Zeichner, N., Berant, J., & Dagan, I. (2012). Crowdsourcing inference-rule eval-

uation.. In Proceedings of the 50th Annual Meeting of the Association for

Computational Linguistics (ACL 2012), pp. 156–160. The Association for

Computer Linguistics.

169



Vita

Sindhu Vijaya Raghavan was born in 1981 in Bangalore, India. She finished

high school at Vijaya High School and National College, both located in Bangalore

in 1999. She then went on to study Computer Science and Engineering at the R.V.

College of Engineering in the Visvesvaraya Technological University, where she

received a Bachelor of Engineering degree and was awarded the fifth rank for the

university in 2003. She then went to work as a software engineer in Intel, I2 tech-

nologies, and Delmia Solutions Private Ltd. After her brief stint of four years in

the software industry, she returned to graduate school at the University of Texas at

Austin to pursue a doctorate degree in Computer Science in 2007. In 2010, she

received her Master of Science degree in Computer Science from the University of

Texas at Austin. Since then, she has continued her research in the areas of machine

learning and natural language processing at the University of Texas at Austin. After

graduation, she will join Samsung Telecommunications in Dallas starting January

2013.

Permanent address: sindhu.vijayaraghavan@gmail.com

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special version of
Donald Knuth’s TEX Program.

170


