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Abstract — We investigate the smallest possible physically mean-
ingful RMB model, which models propagation through a thin slab
of resonant atomic material placed in a recirculating cavity, which
has 2 degrees of freedom in the spatial distribution of the field .
The model may be used to determine the stationary states of the
cavity field, which are then subjected to stability analysis.

1 INTRODUCTION

The Maxwell-Bloch dynamical system consists of
Maxwell’s equations for an electromagnetic field cou-
pled to a quantum-electronic system to represent a res-
onant or near-resonant polarisation induced in the prop-
agation medium. While the full 3D Maxwell equations
along with arbitrary quantum models form excellent
models of nonlinear optics in polarisable media, such
general models are analytically insoluble and compu-
tationally intractable. A very minimal Maxwell Bloch
model, however, is completely integrable, and the in-
tegrable solutions already exhibit complex dynamical
states that are comparable with experimental models.
The integrable reduced Maxwell-Bloch (RMB) model
consists of plane waves (3D to 1D reduction), one-
way propagation (order reduction of the wave equa-
tion) and a near-resonant 2-state atom for the quantum-
electronics (quantum state reduction) [1, 2, 3]. Such
a heavy reduction of the degrees of freedom of the
RMB system while preserving the physical reality of
the model encourages a more systematic investigation
of the question of the active degrees of freedom.

The RMB equations, like any other integrable sys-
tem, possess an infinite sequence of conserved quanti-
ties that can be explicitly determined directly from the
equations. However these are in general infinite in num-
ber, and it is not at all easy to determine the angle vari-
ables that correspond with the actions of the integrals,
and so invert the representation from action-angle vari-
ables to the physical fields.

2 MAXWELL-BLOCH EQUATIONS

Maxwell’s equations for 1-dimensional propagation
(plane waves) along the spatial z-axis are

∂tE + c2∂zB = −ε−1∂tP (1)
∂zE + ∂tB = 0 (2)
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for electric field E, magnetic flux B, and light velocity
c. P is the electronic polarisation induced in the dielec-
tric medium, and is generically described by a quantum
electronic model

P = −Ne 〈Q〉 (3)
∂t 〈Q〉 = (ih̄)−1 〈[Q,H]〉 (4)
∂tΓ = (ih̄)−1[H,Γ] (5)
〈Q〉 = tr{ΓQ} (6)

where H = H0 + eEQ is the quantum Hamiltonian
of electrons in the medium, Γ is the density operator,
and Q is a suitable operator for the electronic dipole
induced in the medium, N is the number density of po-
larised centres (atoms), −e is the electron charge, and
tr{.} represents the matrix or operator trace of its ar-
gument. The very simplest such system occurs when
each polarisation centre is assigned a Hamiltonian con-
sisting of a diagonal 2× 2 matrix H0 = − 1

2 h̄Ω0σ3 and
the dipole operator Q is assigned an off-diagonal sym-
metric 2 × 2 matrix Q = q0σ2; this minimal system
of polarisation is then called a Bloch model, or 2-level
atom [5] .

The second Maxwell equation (2) implies that a po-
tential A may be introduced so that E = −∂tA,B =
∂zA, and then the first Maxwell equation (1) implies
that

c2∂2
zA− ∂2

tA = −ε−1∂tP (7)

which is the wave equation for an electromagnetic po-
tential driven by a dielectric polarisation. An alternative
form for the dipole interaction involving the potentialA
rather than the electric field E is given by

H = H0 + (e/m)ΞA (8)

where Ξ is the operator of electron momentum. In a
2-level Bloch system, Ξ = p0σ2 where p0 is the mo-
mentum parameter. From the Maxwell-Bloch system
one derives easily Poynting’s Theorem

∂z(EB) = − 1
2c
−2∂t(E2 + c2B2)
−µ0∂t 〈H0〉 (9)

⇒ ∂z

∫ ∞
−∞

EBdt = 0 (10)

for suitable boundary conditions at t → ±∞. The
Poynting flux EB is an example of a conserved flux.



3 REDUCED MAXWELL-BLOCH SYSTEMS

A further reduction of the MB equations results after
introducing the one-way wave approximation, leading
to

∂zA+ c−1∂tA = 1
2µ0P (11)

with the same equations ( ) for the polarisation. After
the time-shifted variable τ = t− c−1z is introduced

∂zA = 1
2µ0P (12)

with τ replacing t in the dynamical equations for P .
It is also convenient to introduce the normalised field
ψ = (ep0/m)A, which has the dimensions of fre-
quency. Then the normalised form of the RMB equa-
tions is

∂zψ = −Ktr{Γσ1} (13)
∂τΓ = [U1,Γ] (14)

with U1 = −i(− 1
2Ω0σ3 + ψσ2) and K is a dimension-

alised coupling constant

K =
N

2cε0h̄

(
ep0

mΩ0

)2

. (15)

The reduced Maxwell-Bloch system with a 2 × 2
Hamiltonian H for the polarisation is an example of a
completely integrable evolutionary system [1]. If we
define the two matrices

U = −i(− 1
2ζΩ0σ3 + ψσ2) (16)

V =
iK

ζ2 − 1
(ζρ1σ1 + ρ2σ2 + ζρ3σ3) (17)

where

Γ = 1
2 (σ0 + ρ1σ1 + ρ2σ2 + ρ3σ3) (18)

with a free spectral parameter ζ, then the RMB equa-
tions are equivalent to the zero-curvature condition

∂zU = ∂tV − [U, V ] (19)

identically at all ζ. The zero-curvature condition is the
compatibility condition for the two ODEs

∂tv = Uv (20)
∂zv = V v (21)

with a complex 2-component vector v at each (z, t).

4 DISCRETISED MAXWELL-BLOCH EQUA-
TIONS

The discretisation of the spatial variable z may be con-
templated in two circumstances; either, as a sampling

of the dependent variables on the underlying continuum
of z, or as a model for discrete polarisation induced in
concentrated points of the z-axis, with free-space prop-
agation in the space between the polarisation centres.
Either of these scenarios leads to the same canonical
discretised MB system.

In the second of these scenarios, of a set of con-
centrated polarisation sources located at discrete points
along the z-axis, consider the following spatially peri-
odic problem. Concentrated polarisation centres are lo-
cated at the points z = zk = kL, k = 0, 1, . . ., and
an initial condition is prescribed for the field ψ(0, t)
which we assume also to be periodic in time with pe-
riod T , so that ψ(0, t + T ) = ψ(0, t). This field prop-
agates freely between the polarisation centres so that
ψ(z, τ) = ψ(zk, τ), but undergoes a jump change at
each polarisation centre so that

ψ(zk+1, τ)− ψ(zk, τ) = 1
2µ0LPk+1(τ)

where Pk(τ) is the polarisation induced in the concen-
trated dielectric at z = zk. The discrete Maxwell-Bloch
system is then

ψk − ψk−1 = −KLtr{Γkσ1} (22)
ih̄∂τΓk = [Hk,Γk] (23)

whereHk(τ) is the Hamiltonian for the electrons at z =
zk. This system is a model of propagation through a se-
quence of periodically placed polarising sheets, which
can also be regarded as an unfolded ring cavity con-
taing a single polarising sheet per period of the cavity.
In order to apply this model in the ring cavity context
it is further required to determine what initial condition
ψ0(τ) for the unfolded sequence will result in a station-
ary field in the folded cavity. This completes the specifi-
cation of an electromagnetic Maxwell-Bloch system. It
is necessary then to address the question of what canon-
ical integrable RMB system closely or exactly models
the electromagnetic one.

When space is discretised a canonical integrable
RMB system has a compatibility (zero-curvature) con-
dition

∂τvk = Ukvk (24)
vk+1 = Φkvk (25)

where Φk is a unitary operator, and the compatibiity of
these two equations requires that

Uk+1 = ΦkUkΦ−1
k + ∂τΦkΦ−1

k (26)

which is the equivalent of the zero-curvature condition.
This condition has the form of a gauge transformation
for advancing the matrix Uk from step k to step k + 1.

In order to match the canonical integrable system to
the electromagnetic one, we have available the choice



of the matrices U and Φ. It is natural to choose the ma-
trix U to be identical to that for the continuous-z case,
as previously, and to construct a Φ-matrix to ‘best ap-
proximate’ the electromagnetic model. Let us present
Φ in the form

Φ = aI + bV (27)

where a and b are scalars, and V is anti-hermitian so
that V † = −V .

When both time and space are discretised in the com-
patible matrix equations we have

vm+1
k = Ψm

k v
m
k (28)

vmk+1 = Φmk v
m
k (29)

with Φmk and Ψm
k two unitary operators. For compati-

bility of these two equations it is required that vm+1
k+1 is

the same for both routes of computing it, leading to

Ψm
k+1Φmk = Φm+1

k Ψm
k (30)

A suitable candidate for the Ψ operator of this pair is

Ψm
k = (1 + 1

2∆tU
m
k )(1− 1

2∆tU
m
k )−1. (31)

Since U2 = (ζ2 + ψ2)I the Cayley-Hamilton theorem
can be applied to obtain

Ψm
k = cosh θmk + Umk

sinh θmk
θmk

(32)

with θmk =
√
ζ2 + (ψmk )2.

5 DISCRETE INTEGRABLE EQUATIONS

The integrability of any discrete evolution system is em-
bedded in the Lax equations

Lk+1 = GkLkG
−1
k (33)

vk+1 = Gkvk (34)

where, for k = 0, 1, . . ., Lk is a linear operator acting in
some Hilbert space, vk is an eigenvector in the spectrum
of Lk, and the operator Gk effects a gauge transforma-
tion in the Hilbert space. The first equation guarantees
that any eigenvalue of Lk, λk is preserved by the evo-
lution from step k to step k + 1. Generally, Lk is a dif-
ferential or pseudo-differential operator and the Hilbert
space is a space of functions of a transverse variable τ ,
physically identified with time. For the RMB system of
integrable equations the Lax operator for continuous τ
is

L = ∂2
τ + (i∂tψ + ψ2) (35)

which is similar to that for the mKdV hierarchy of inte-
grable equations [4]. The eigenvalue problem Lv = λv
is equivalent to the matrix system

∂t

(
v1
v2

)
= −i

(
ψ ζ
ζ −ψ

)(
v1
v2

)
(36)

with ζ2 = −λ, which is itself equivalent by gauge trans-
formation to

∂t

(
v′1
v′2

)
= −i

(
ζ −iψ
iψ −ζ

)(
v′1
v′2

)
.(37)

If, in addition, the time variable τ is discretised to a
finite number of sample times τm, then the Lax operator
L is a matrix acting on discrete vectors v in a space of
dimension M , and has a finite number M of discrete
eigenvalues λ. This finite number of eigenvalues forms
a generating function for the invariants of the doubly
discretised system in the form of the polynomial

det(λ− Lk) =
M∑
j=1

Ijλ
j

as the coefficients of powers of λ [4]. If the elements of
the matrix L are values of the field ψ at discrete times,
then the invariants Ij are polynomials of these field val-
ues.

The appropriate Lax operator for discretised systems
of RMB type is obtained by replacing the derivative ∂τ
by a suitable finite difference operator, and constructing
a compatible set of operators Φ. The smallest nontrivial
physically meaningful system of this type occurs when
time is discretised to three values with periodic bound-
ary conditions.
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