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A knowledge of morphology can be useful for many natural language

processing systems. Thus, much effort has been expended in developing accu-

rate computational tools for morphology that lemmatize, segment and generate

new forms. The most powerful and accurate of these have been manually en-

coded, such endeavors being without exception expensive and time-consuming.

There have been consequently many attempts to reduce this cost in the de-

velopment of morphological systems through the development of unsupervised

or minimally supervised algorithms and learning methods for acquisition of

morphology. These efforts have yet to produce a tool that approaches the

performance of manually encoded systems.

Here, I present a strategy for dealing with morphological clustering

and segmentation in a minimally supervised manner but one that will be more

linguistically informed than previous unsupervised approaches. That is, this

study will attempt to induce clusters of words from an unannotated text that
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are inflectional variants of each other. Then a set of inflectional suffixes by

part-of-speech will be induced from these clusters. This level of detail is made

possible by a method known as alignment and transfer (AT), among other

names, an approach that uses aligned bitexts to transfer linguistic resources

developed for one language–the source language–to another language–the tar-

get. This approach has a further advantage in that it allows a reduction in

the amount of training data without a significant degradation in performance

making it useful in applications targeted at data collected from endangered

languages. In the current study, however, I use English as the source and

German as the target for ease of evaluation and for certain typlogical proper-

ties of German. The two main tasks, that of clustering and segmentation, are

approached as sequential tasks with the clustering informing the segmentation

to allow for greater accuracy in morphological analysis.

While the performance of these methods does not exceed the current

roster of unsupervised or minimally supervised approaches to morphology ac-

quisition, it attempts to integrate more learning methods than previous stud-

ies. Furthermore, it attempts to learn inflectional morphology as opposed to

derivational morphology, which is a crucial distinction in linguistics.
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Chapter 1

Introduction

A knowledge of morphology can be useful for many natural language

processing systems, e.g. for reducing the dimensionality of word alignments in

machine translation (Al-Onaizan et al., 1999; Hajič, Hric, and Kuboň, 2000;

Nießen and Ney, 2001; Goldwater and McClosky, 2005) or retrieval targets

in information retrieval (Kraaij and Pohlmann, 1996; Krovetz, 2000; Larkey,

Ballesteros, and Connell, 2002; Airio, 2006). In the case of language modeling

for non-isolating languages, it is critical that the system have knowledge of the

morphology to produce natural sounding string sequences (Kornai, 1996; Lee

et al., 2003; Hacioglu et al., 2003).

The most accurate models of morphology that lemmatize, segment and

generate new forms have been manually encoded (Koskenniemi, 1983; Kart-

tunen, Kaplan, and Zaenen, 1992; Trost, 1990). However, manually encoding

such knowledge is an expensive, time-consuming task and there have been

many attempts to learn morphology in an unsupervised manner (Jacquemin,

1997; Brent, 1999; Schone and Jurafsky, 2000; Goldsmith, 2001; Creutz and

Lagus, 2007) or with a reduced level of supervision (Yarowsky and Wicen-

towski, 2000; Yarowsky, Ngai, and Wicentowski, 2001), which often fall short
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of the robustness or detail of manually encoded systems.

Here, I present a strategy for dealing with morphological clustering

and segmentation in a minimally supervised manner but one that will be more

linguistically informed than previous unsupervised approaches. That is, this

study will attempt to induce clusters of words from an unannotated text that

are inflectional variants of each other. Then a set of inflectional suffixes by

part-of-speech will be induced from these clusters. This level of detail is made

possible by a method known as alignment and transfer (AT), among other

names, an approach that uses aligned bitexts to transfer linguistic resources

developed for one language–the source language–to another language–the tar-

get. This approach has a further advantage in that it allows a reduction in

the amount of training data without a significant degradation in performance

making it useful in applications targeted at data collected from endangered

languages. In the current study, however, I use English as the source and

German as the target for ease of evaluation and for certain typlogical proper-

ties of German. The two main tasks, that of clustering and segmentation, are

approached as sequential tasks with the clustering informing the segmentation

to allow for greater accuracy in morphological analysis.

For training the models, I use the English and German portions of

Europarl (Koehn, Och, and Marcu, 2003). Evaluation data is provided by the

TIGER Treebank corpus (Brants and Hansen, 2002) and CELEX (Baayen,

Piepenbrock, and van H., 1993).

Since AT constitutes the core of my approach, I provide an overview of

2



AT in section 2 as well as the core motivation for using AT. Section 3 lays out

two lexical clustering models, where one served as a preliminary experiment

that informed the other, drastically revised approach that constitutes the core

of the current clustering method. The experiments with these models will

be presented in section 4 and the results will be presented in section 5 In

section 6, I discuss my segmentation model that uses information from the

clustering stage to induce linguistically informed affixes. Relevant studies will

be discussed in each of the sections discussing the models. I conclude with a

discussion of my approach.
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Chapter 2

Alignment and Transfer

Alignment and transfer (AT) is an approach that uses aligned paral-

lel corpora to transfer the linguistic resources developed for one language–the

source–to another language–the target. Some other common names in the lit-

erature for this method are: cross-language projection, cross-language trans-

fer, cross-language annotation transfer, etc. It has been used for a diverse

range of tasks such as deriving the syntactic structure of a target language

(Wu, 1997), extracting paraphrases (Pang, Knight, and Marcu, 2003; Ban-

nard and Callison-Burch, 2005), extracting bilingual knowledge(Shin, Han,

and Choi, 1996), or semantic disambiguation (Diab, 2000). Among these, one

group of approaches has focused on inducing basic NLP tools such as POS

taggers, noun chunkers, and morphology analyzers for a given target language

(Yarowsky and Wicentowski, 2000; Yarowsky, Ngai, and Wicentowski, 2001;

Yarowsky and Ngai, 2001; Drábek and Yarowsky, 2005; Ozdowska, 2006).

Yarowsky, Ngai, and Wicentowski (2001) is of particular interest to the

current study since it not only analyzes the morphology of a target language,

but it analyzes its inflectional morphology. Furthermore, it also generates new

inflected forms that were unobserved in the training data and thereby enhances
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the coverage of its model. The shortcoming of this approach is that it is not

unsupervised and some knowledge of the target language is necessary; in par-

ticular: knowledge of some candidate stems, the regular suffixes, the vowels

and consonants, and a weighted matrix laying out the phonological distance

between the characters in the language. The last is used to refine the mini-

mal edit distance algorithm (Navarro, 2001) used in their study. Besides this

knowledge, a core algorithm in the induction of the inflectional morphology

is one which uses the relational transitivity of the word alignments between

source and target to infer conditional probabilities for candidate stems given

some word form. It is based on the intuition that if one lexeme and another

lexeme in the target language have been aligned with more lemmas in the

source language than with some other lemma, the more likely it is that the

two words can be grouped together under some meaningful cluster. The func-

tion itself is a sum of the conditional alignment probabilities expanded by a

Bayesian chain rule marginalized over the lemmata in the source language:

P (Tlemma|Tinfl) =
X

i

P (Tlemma|Slemmai)P (Slemmai|Tinfl) (2.1)

where Tlemma is a candidate lemma for the target language taken from a pre-

defined list, Tinfl is a lexeme in the target and Slemmai is a lemma in the

source.

With just (2.1) and a fixed set of stems, they post a precision of 0.992

and a recall of 0.994 for the 12M word French Hansards. However, it should be
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noted that the induction was performed for only verbs in the target language.

Also, they had implemented a POS tagger for the target induced through

similar minimally supervised means before inducing a morphological analyzer.

With further refinements, they post a precision of 0.99 and retrieval of 1.00.

Yarowsky and Wicentowski (2000) is recommended for further details on this

minimally supervised morphology induction scheme.

2.1 Motivation for using alignment and transfer

Unsupervised approaches for morphology induction can be categorized

into two groups. One approach does not use any contextual information and re-

lies purely upon the information derived from the orthography–in other words,

the distributional properties of the characters in relation to the word types–to

segment the words observed in a text (Jacquemin, 1997; Brent, 1999; Gold-

smith, 2001; Creutz and Lagus, 2007). The other approach takes a more

sophisticated view of morphology by assuming that some form of semantic

relatedness must be considered as well as surface string similarity (Schone and

Jurafsky, 2000; Schone and Jurafsky, 2001; Baroni, Matiasek, and Trost, 2002;

Freitag, 2005). The basis of this semantic relatedness is a statistical analysis

of the distribution of the words in an unannotated text.

Unfortunately, distributional properties alone cannot generate clusters

that go beyond any fuzzy notion of semantic relatedness and face the same

limitations as other bag-of-word approaches (Jones and Mewhort, 2007). The

morphological clusters induced by these approaches are unable to distinguish
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words that are related through syntactic inflection and semantic derivation.

Considering that this is a core distinction in standard approaches to morphol-

ogy, it is a grave oversight. AT can overcome these limitations, not because

of the superiority of the underlying model, but because it can leverage any

resources that might exist for the source language and induce fine-grained

structural information about the target language.

The absolute size of the data involved can also be reduced through AT.

Though the original motivation for AT was to reduce the costs involved in re-

source production, AT has rarely been applied to an even further impoverished

subgroup of under-resourced languages, that of underdocumented, endangered

languages. In an informal survey of colleagues who work on underdocumented

languages, the amount of data collected was concentrated mostly in the thou-

sands to the low tens of thousands with one outlier that had accumulated

700,000 words, albeit with significant contributions from the indigenous com-

munity. Contrast this with monolingual, distribution-based approaches which

were based on corpora ranging from 1.2 million to 28 million words. In light

of this fact, I propose that one further dimension must be added to the dis-

cussion of under-resourced languages in the AT literature in addition to the

amount of annotated data and NLP tools: the amount of raw data that has

been amassed for a language.

Therefore, with an explicit aim to help the documentary community, I

provide the final motivation for this approach by latching on to an aspect of

data collected in the field on underdocumented languages in that they are of-
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ten interlinearized with a translation or gloss in a language that has a healthy

amount of linguistic resources. Furthermore, in some situations, an underdoc-

umented language will have partial or whole translations of the Bible, broad-

ening the landscape in which this approach may be applied. In many cases,

the metalanguage in which the language is documented will be a language

with considerable NLP resources such as English or Spanish, and therefore I

assume, like Yarowsky et al., that a rich set of computational and linguistic

resources are available for the source language.

Given the difficulty of evaluating such an approach, I use German as

the target language for ease of evaluation since it constitutes part of CELEX.

Also, I use the 28M word Europarl corpus as our training set but limit the

size of our data to simulate data collected from the field. In addition to these

logistic conveniences, German possesses some interesting typological charac-

teristics that are advantageous to us from a linguistic perspective. It displays

diverse morphological patterns that encapsulate much of the regular morphol-

ogy observed in human languages. It has a regular circumfix in addition to

its regular suffixes; its separable prefixes exhibit regular behavior when finite;

it has a considerable amount of vowel gradation (which could be considered

analogous to infixation). Also, given its liberal use of noun compounding, it

could even potentially be employed as a testbed for agglutinative patterns.
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Chapter 3

Clustering

Previous studies have shown that improvements in performance can

been gained for morphological segmentation when some form of semantics is

considered (Schone and Jurafsky, 2000; Freitag, 2005). This vague notion of

semantics is induced by conducting a statistical analysis over the distribution

of the words in a monolingual text. I present an alternative approach based

on AT that can induce more informative clusters that conform to linguistic

notions of inflectional morphology and that label these clusters by part-of-

speech that will used for the segmentation step.

In the following sections, I discuss in more detail relevant approaches,

a preliminary method that helped refine the current core clustering approach,

Figure 3.1: Overview of alignment based two-constraint clustering.
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and my AT-based two-constraint clustering. In brief, my core method (Fig-

ure 3.1) induces clusters based on inflectional paradigms by using constraints

from word alignments between bitexts and a string similarity measure between

words or candidate clusters. Then, through a HMM POS-tagger I induce for

the target language, I tag the clusters obtained.

3.1 Relevant Studies

In the literature, morphological clustering is a lexical clustering task

that attempts to group words together based on some form of morphological

affinity (Jacquemin, 1997; Schone and Jurafsky, 2000; Schone and Jurafsky,

2001; Baroni, Matiasek, and Trost, 2002; Freitag, 2005). In these studies,

no distinction is made between inflectional morphology and derivational mor-

phology, and the term conflation set is often used to refer to the clusters gen-

erated, as there is no corresponding term in standard studies of morphology

from a non-computational perspective. In traditional approaches, the central

dichotomy in morphological processes is between inflectional morphology and

derivational morphology. This lack of distinction in computational approaches

seems to have not had an effect on performance when applied to information

retrieval (Krovetz, 2000; Larkey, Ballesteros, and Connell, 2002).1 When mor-

phological processing is applied to MT, however, a strict distinction is made so

that only processing for inflectional variation is done (Hajič, Hric, and Kuboň,

2000; Nießen and Ney, 2001; Goldwater and McClosky, 2005) for any highly

1see Kraaij and Pohlmann (1996) or Airio (2006) for different results
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inflecting languages that might be involved in the task.

In spite of its usefulness, lemmatization–the task of grouping together

words that are mutual variants in an inflectional paradigm–is very challeng-

ing to approach as an unsupervised task. Viewed as a clustering problem, it

is not plausible, as is done with a popular clustering algorithm such as the

K-means, to posit a fixed number of clusters beforehand. Basing distance be-

tween cluster members solely on some measure of string similarity ignores the

many irregularities that will exist in any morphologically complex language;

to say nothing of the problems that exist for words which might be similar in

terms of orthography but are unrelated in terms of either semantics or syn-

tax. Therefore, to induce clusters of words belonging to the same inflectional

paradigm, it is necessary to apply a clustering constraint based on both se-

mantics and syntax in conjunction with a string similarity measure. It need

not be said that there is no known way of inducing such a syntactic/semantic

constraint in an unsupervised manner that is sufficiently robust to serve as the

basis for other tasks.

As a result of such challenges, current methods in morphological clus-

tering disregard distinctions between inflectional and derivational morphology,

but an approach exists which improves clustering performance within this loose

definition of morphological relatedness. In its broad outlines, it is a two com-

ponent process that uses the distribution of words on the one hand and surface

features, i.e. the string representation itself, on the other to refine the clusters.

Quite possibly an exhaustive overview of such studies is listed below:
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First used in Schone and Jurafsky (2000) 2, the two-constraint clus-

tering model induces a loose set of clusters based on word distribution and

then further refines the clusters through some means dependent on the sur-

face strings. Specifically, Schone and Jurafsky (2000) uses latent semantic

analysis (Deerwester et al., 1990) to build a vector space of the words in an

unannotated document in English, then using a ranked set of suffixes derived

from a forward trie (Fredkin, 1960) and a ranked set of prefixes from a back-

ward trie, it further refines the the vector space to build pairs of potential

morphological variants. Using a cutoff theshold of 0.7 in the vector space they

induce clusters with an f-score of 84.3 when evaluated against CELEX. They

use the TREC corpus comprising some 8 million words for the training.

Schone and Jurafsky (2001) extends this model to consider transitive

links between words that may not be directly related in the vector space model

but might be considered related through transitivity. They also extend their

model to consider circumfixation. They use newswire texts for English (6.7M

words), German (2.3M words) and Dutch (6.7M words) to induce clusters and

evaluate against CELEX. Evaluated for suffixes alone, they obtain f-scores of

88.1, 92.3, 85.5 for English, German and Dutch respectively.

Baroni, Matiasek, and Trost (2002) uses pointwise mutual information

to induce the first set of distribution based clusters and refines these clusters

with the Levenshtein edit distance measure. They run their experiments using

2The idea itself was preceded in Xu and Croft (1998). This was, however, a semi-
supervised approach.
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the Brown corpus for English and the APA corpus for German which constitute

1.2M words and 28M words respectively. To evaluate, they manually build a

standard of some 5000 word pairs using the XEROX morphology analyzer for

each language and compare the top ranked pairs induced by their model with

this standard. By this measure, precision ranged from 97% for the standard

with 500 pairs to 50% for the standard containing all 5000 pairs.

Freitag (2005) employs information theoretic co-clustering (Dhillon,

Mallela, and Modha, 2003) to automatically induce a set of term clusters

such that the difference in mutual information between clusters is maximized.

Then it induces a set of affixes on a method that is similar to the trie used

in Schone and Jurafsky (2000). Next, it goes further then the two previous

studies by building a finite state automaton from these clusters and affixes.

This automaton is built from the Wall Street Journal corpus and is evaluated

over CELEX. Note that it is the automaton that is evaluated and not any

clusters that have been induced. In these experiments, the f-score ranges from

81 to 92 depending on the size of the automaton that is evaluated.

One common feature of these studies is that, in spite of the fact that

all of the above models have parameters that need to be or can be tuned,

no held-out development sets are used to set them. Instead, either separate

results are presented according to parameter value or they are assumed (as in

the size of the rank for LSA approximation in Schone and Jurafsky (2000)).

My core two-constraint approach faces the same limitations, and evaluation

results will be presented for various parameter values and subsets of results
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in section 5. The previous incarnation of two-constraint clustering was an

attempt to eliminate as many manually determined parameters as possible

while using the Levenshtein edit distance as a string similarity measure. I

present this pilot approach in detail in section 3.2.

Another common aspect of these studies is their limitation in terms of

the morphological phenomena they deal with: prefixation, suffixation and–only

in the case of Schone and Jurafsky (2001)–circumfixation. This is a limitation

that cannot be overcome with trie based methods. Instead, I present a novel

string similarity measure that can deal with a greater variety of morphological

processes in section 3.3.

3.2 Pilot clustering

The intent of this approach was to examine whether lemmatization

with AT is possible without the transitivity function function (2.1). First, I

limit the set of candidate lemmata to the word types in the target language

which have the greatest possibility of being associated with some lemma in the

source language. With this candidate lemma, I generate one set of lemmata to

inflected form mappings by limiting the linkages to those source lemmata and

target word type associations which exceed a manually determined probability

threshold. I generate a second set of mappings from a candidate lemma to a

set of target word types which has been limited to those which have been

observed in alignment with a source lemma and then further reduced through

an automatically induced edit distance threshold.

14



3.2.1 Lemmatization candidate trimming

Through some alignment model, whether it is a heuristic alignment

such as the Dice coefficient or EM-based alignment (Och and Ney, 2003), the

conditional probabilities between POS tagged and lemmatized words in the

source and raw types in the target are calculated:

P (�sTs|wt) (3.1)

P (wt|�sTs) (3.2)

where subscripts s and t are source and target texts, respectively, � and T are

lemma and POS tag, respectively, and w is a word type in the target language.

�s is an element of the set Λs which is the set of all lemmata observed in the

source language and wt is an element of the set Wt which is the set of all

types observed in the target language. In contrast to Yarowsky, Ngai, and

Wicentowski (2001) where only morphology for verbs were induced, I attempt

here and later in section 3.3 to induce the inflectional morphology for nouns,

verbs, and adjectives–in short, all the content word categories in English except

for the adverbs.

This is one reason that all lemmata in the English source had to be

considered with their respective POS tags, considering that many lemmata

in English can be ambiguous with regard to word category when judged on

their surface form alone. In this section, to simplify notation, all source lemma
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arguments in functions shall be assumed to also be tagged with relevant POS

information. As such, the above equations are equivalent to

P (�s|wt) (3.3)

P (wt|�s) (3.4)

Also, note that words in the aligned target text are merely assumed to

be a word type in the most general sense, since no assumptions can be made

at this point whether a particular word form observed in the target language

is the inflected form of some lemma or is itself the general “dictionary entry

form”.

In the estimation of the probablities in (3.3) and (3.4), I made an

unjustified but practical decision to limit the set of target word types under

examination to those which have string lengths of four or longer. This was

mainly due to the fact that the Levenshtein edit distance algorithm is incapable

of calculating meaningful scores when the strings being compared are both very

short.

To limit the search space, I build two mapping tables, one from the

target word types to the source lemmata and another from the source lemmata

to the target word types.

The mapping from the target to the source, TS : Wt → Λs, is built by

TS(wt) = �s iff P (�s|wt) > θal (3.5)
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The mapping from the source to the target, ST : Λs → Wt is built by

ST (�s) = arg max
wt

P (wt|�s) (3.6)

Using the two mappings TS and ST , I automatically determine a min-

imal Levenshtein edit distance threshold by comparing the edit distance be-

tween all possible Wt to Wt mappings,

ST (TS(wt)) = w�
t (3.7)

where wt, w�
t ∈ Wt. The mapping obtained here will be necessary for

limiting the search space for the first set of candidate lemma to candidate

inflectional form mappings.

Declare: a[0 . . . n]
1: for j from 0 to n do
2: a[j] := 0
3: end for
4: for all wt ∈ Wt do
5: if TS(wt) �= NONE then
6: w�

t := ST (TS(wt))
7: d := edit distance(wt,w�

t)
8: if d < n + 1 then
9: a[d] := a[d] + 1

10: end if
11: end if
12: end for
13: return min(a[0 . . . n])

Figure 3.2: Algorithm for computing edit distance threshold

17



The specific algorithm for computing the edit distance threshold is laid

out in Figure 3.2. The edit distance for every wt, w�
t pair in (3.7) is calculated

and I tabulate how many times each edit distance score was observed (which

is stored in an array a of length n in the algorithm; in this case, an array of

length 9 is used). Finally, the edit distance threshold is determined to be the

minima among the frequency counts by edit distance score. Furthermore, even

if the number of edit distance scores I keep track of is increased to include

all edit distance scores, it is evident that a score and its frequency count

will continue to increase until reaching some asymptotic upper limit for all

real-word data. Therefore, though the highest edit distance score the model

maintains a frequency count of is 9, there is no possibility that the frequency

count will decrease at some point above that score. The intuition behind the

approach is that two target words which have an edit distance beyond a certain

threshold are more likely to be noise and those which do not exceed it will be

related within some inflectional paradigm; and that this threshold exists at

the minima of the frequency counts.

3.2.2 Candidate set induction

The first set of lemma group candidates were induced as follows. First,

generate a mapping M from a source lemma �s to a set of target word types

Ωt ⊂ Wt where

Ωt = {wt|P (wt|�s) > 0}
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With this mapping

M(�s) = Ωt (3.8)

further trim Ωt by pegging the lemma candidate as ST (�s) (see equation (3.6))

and removing all the elements in Ωt which have a Levenshtein edit distance

score from ST (�s) greater than the distance threshold obtained through the

algorithm in Figure 3.2, resulting in Ω�
t, a subset of Ωt.

Thus, a set of lemma candidates Λt in the target language is obtained

Λt = {�t|∀�s ∈ Λs, ST (�s) = �t}

and a set of inflections associated with each �t in Λt

C1(�t) = Ω�
t

Furthermore, the candidate lemma �t inherits the POS tag from the

source language, so that �t is also specified for whether it is an adjective,

noun, or verb.

A second candidate set, or a mapping from candidate lemma to candi-

date inflected forms, is induced by trimming the mapping TS to a subset of

mappings where if the length of the common substring between the input and

the output is less than 4, it is removed. However, the common substring in

this case is not the longest common substring assumed in general, but merely

the common substring from the beginning of each string being compared.
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The justification for this is as follows. A very simple assumption can

be made that a language will be either prefixal or suffixal in its inflectional

system. By implementing two tries over the entire set of word types in the

target language Wt, one trie starting from the beginning of the strings and

another starting from the end of the strings, it seems possible to compare how

many terminal nodes there are for the forward trie and the reverse trie, the

intuition being that the more terminal nodes a particular trie has, the less

likely it is that morphological affixation occurs at the terminal nodes of that

trie. In the case of this approach, it was found that the forward trie had 898

terminal nodes whereas the reverse trie had 4387 terminal nodes. Hence, I

came to the simplified conclusion that the target language was suffixal rather

than prefixal in generating inflected forms.

The second candidate lemma to candidate inflection mapping, unlike

the first candidate mapping, is not from a word type to a set, but from a word

type to a word type. I define the second candidate mapping C2 as follows:

1: for all wt ∈ Wt do

2: if ST (TS(wt)) �= NONE then

3: w�
t := ST (TS(wt))

4: if CS(wt, w�
t) < 3 then

5: C2(wt) = w�
t

6: end if

7: end if

8: end for
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where CS is a function on two strings which returns an integer value of the

longest common substring starting from the beginning of the two arguments

and ST (TS(wt)) is the mapping stated in (3.7).

Finally, the model combines the two candidate mappings into a final

candidate mapping C which is a relation from a word type to a set of word

types. If there are coinciding �t in C1 and C2, then the output of C2 is merged

into the set generated by C1. Otherwise, candidates are simply added to the

mapping C.

3.3 AT-based two-constraint clustering

In this revised approach, the aim is the same: it is to induce clusters of

inflectional variants of a stem for the target language, based on a speculative

lemmatization inferred from the parallel corpus. This is implemented as a

two constraint clustering task where one set of measures based on alignment

probability between words in a bitext pair and another set of measures based

on string similarity between words in the target are used to define the clusters.

Prior to alignment, as in the previous approach, the source text is POS

tagged and lemmatized. The intent is to partition the source in such a way that

the word space is clearly reduced and segmented along the semantic and syn-

tactic dimension. By lemmatizing the source, diverse word forms are reduced

to a corresponding lemma with a resulting reduction of the source semantic

space that the target must align with. That is, if one assumes that inflected

variants of a stem all share semantics, sources of noise are reduced for the
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target by reducing this space. However, if you also assume that the eliminated

morphemes are at the same time somehow indicative of the syntactic proper-

ties of a source word, POS tagging the source can maintain the reduction in

semantic space and simultaneously create a partition with reduced noise along

the syntactic domain so that alignments from and to the target have clear

indicators regarding syntax. This approach allows the model to go beyond

morphological clustering and perform lemmatization.

3.3.1 Word alignment

Again, an alignment dictionary is built between the source and target

using a statistical alignment model. However, the use of a heuristic alignment

algorithm such as the Dice coefficient of the Jaccard measure is not ruled out.

3.3.2 String similarity: longest common subsequence measure.

The longest common subsequence (LCS) algorithm searches not for the

longest contiguous substring between two strings but the longest sequence of

characters in common between two strings regardless of intervening material.

Illustrating this with the string pair william and willlaim (Bilenko et al., 2003),

the LCS is either willim or willam depending on which string one assumes as

the pivot of comparison. I devise a measure LCSM based on the LCS that

outputs a score between 0 and 1 that proportionally indicates a higher degree

of string relatedness:
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LCSM(t1, t2) =
1

2
·
µ
|LCS(t1, t2)|

|t1|
+

|LCS(t1, t2)|
|t2|

∂

Basically, this averages over the LCS value normalized by the length of each

string. Using this measure, the distance between william and willlaim is 0.79.

Though there are other measures of string similarity that are com-

monly used in information retrieval and morphology clustering such as Jaro-

Winkler (Cohen, Ravikumar, and Fienberg, 2003) or the Levenshtein edit

distance measure, I found that they were unsuitable to both our assumptions

and this task. While I make no assumptions whatsoever about the morpholog-

ical patterning of our target language, the Jaro-Winkler measure is weighted

to favor matching prefixes, and therefore only suitable for suffixal languages.

The Levenshtein edit distance (LED) measure is affected by long sequences

of non-matching material, making it inadequate for detecting morphological

variation. LED is also unnormalized3, and therefore the LED between a string

pair such as ab and abc is equal to the difference between abcdef and abcdefg.

It would be preferable to penalize differences in short strings over differences

in longer strings. LCSM is free of these problems.

3.3.3 Clustering.

Standard bottom-up clustering is performed, starting with each target

word form in its own clusters, and merging clusters iteratively (Jain, Murty,

3Though normalizing it to have a value between 0 and 1 is trivial. I note that Baroni,
Matiasek, and Trost (2002) do not normalize it.
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and Flynn, 1999). Merging proceeds as long as merging thresholds are ex-

ceeded.

3.3.4 Thresholds for clusters.

Two different thresholds for merging two clusters are used:

• an alignment threshold: θal,

• a similarity threshold for LCSM : θsim

For a source language word form s, the set of target words aligned with

s according to θal are defined as

ALθal
(s) = {t ∈ T | Pst(t|s) > θal ∨ Pts(s|t) > θal}

where T is the vocabulary of the target language, Pst is alignment probability

for the alignment from English to the target language, and Pts is the alignment

probability for the inverse alignment.

The distance between any two clusters (both singleton and non-singleton)

is defined as:

d(C1, C2) =
1

|C1| · |C2|
X

t1∈C1,t2∈C2

LCSM(t1, t2) > θsim

That is, the distance is the mean of the LCSM between each and all elements

in the two clusters.
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Then, clusters are merged if they fit the following criterion:

(∃s ∈ S : ∃t1 ∈ ALθal
(s) ∧ ∃t2 ∈ ALθal

(s)) ∧
d(C1, C2) > θsim

That is, two clusters are merged if at least one of the members in each

cluster have a high alignment probability with a common source word, and if

their string similarity according to the LCS measure is high.

Use of the alignment scores in conjunction with string distance mea-

sures ensures that many false positives, which would have been matches under

a methodology that is based purely on string similarity, are culled from the

search.

3.3.5 POS tagging the target and induced clusters

The lemma and POS information that are assigned to the English text

is transferred to the target text, then used to train an HMM tagger to tag the

target.

Words in the target sentences are initially given a POS tag by di-

rect transfer from the source sentences that they are aligned with. Then

ten forward-backward iterations are then run with HMM tagger from the

AustinNLP suite over the tagged target text to obtain the HMM model param-

eters. This model is used to tag the target text that it trained, overwriting the

previous tags which had existed. This HMM tagged target is used to calculate

the unigram tag probabilities P (POS|target word type). Next, the clusters
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derived through the core two-constraint approach above are given a POS tag.

With the probabilities derived through the HMM, I take a simple naive Bayes

assumption and give the cluster Ck the POS tag τ as follows:

arg max
τ

Y

t∈Ck

P (τ |t)
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Chapter 4

Data and Experiments

4.1 Data

The German and English sections of the Europarl parallel corpus (Koehn,

2005) were used in this study. The Europarl parallel corpus is a collection of

texts in 11 languages 1 extracted from the proceedings of the European par-

liament with each text comprising some 25 to 30 million words. Different por-

tions of this corpus were used for the pilot clustering and the two-constraint

clustering task.

Normalization steps are taken for both texts. All ISO 8859-1 upper

ASCII alphabet characters are simplified to corresponding lower ascii char-

acters (e.g. è → e, ñ → n) or, in the case of German specific characters,

converted to conform to notations in the CELEX database2. Then, all upper-

case characters are lowercased and all non-alphabetic characters are excluded

from the clustering process.

1i.e. 11 of the 23 official languages in the European Union: Danish, Dutch, English,
Finnish, French, German, Greek, Italian, Portuguese, Spanish and Swedish

2i.e. the standard conversions of ä → ae, ö → oe, ü → ue, and ß → ss
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4.2 Word alignment

Word alignment was done with GIZA++ (Och and Ney, 2003). I use

both an alignment with English as source and German as the target languages,

and the inverse alignment with German as the source.

4.3 Clustering experiments

4.3.1 Pilot clustering experiments

Data In the pilot clustering experiment I used the entire English and German

portions of Europarl, though sentences which were longer than 45 words in

length were excluded to reduce the burden of the alignment task.

POS tagging of source text Before alignment, the English source text was

tagged for part-of-speech. POS tagging for the English text was done with the

maximum entropy based C&C tagger (Curran and Clark, 2003), which was

trained on the Wall Street Journal of the Penn Treebank.

Alignment GIZA++ alignment was executed using the default parameters

of five iterations each of Model-1 > HMM > Model-3 > Model-4. Given the

amount of data available, accuracy is pursued over coverage.

Induction of edit distance threshold Using the algorithm outlined in

Figure (3.2), I induce the minima of the edit distance for the entire data set.
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The frequencies can be observed in Figure 4.1, the graph of which is a convex

function.
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Figure 4.1: Extraction of Levenshtein edit distance threshold

In this figure, the minima of the function is found at 3. This threshold

is used to trim the candidate clusters obtained in section 3.2 through (3.8).

4.3.2 Two-constraint clustering experiments

Data For the task at hand, sentences of ≤ 30 words length were selected at

random from the corpus English/German portions of Europarl. To be able to

check corpus size effects, I built Europarl subsets of 1K, 2K, 4K, . . ., 512K

words, in geometric increments, each subset incorporating the previous one.

Rather than use the full amount of text in Europarl, I handicap the size of the

data sets, as mentioned in section 2, to test the feasibility of this approach on

underdocumented languages.

29



Lemmatization and POS tagging of source text Before alignment, the

English source text was tagged for part-of-speech and lemmatized. POS tag-

ging for the English text was done with the maximum entropy based C&C

tagger (Curran and Clark, 2003), which was trained on the Wall Street Journal

of the Penn Treebank. The POS tagged source text was then supplied to the

lemmatizer, Morpha (Minnen, Carroll, and Pearce, 2001). This preprocessing

step reduces the number of source types that can be aligned to some type in

the target. This process of POS tagging and lemmatization restricts the align-

ments to a specific subset of clusters so that a partition is established between

POS boundaries within a reduced lexical space.

Alignment For this task, GIZA++ alignment was executed using only a

combination of Model-1 and HMM instead of a standard four model combina-

tion. For the purposes of the current experiment, Model-3 and Model-4 take

into account fertilities and distortion probabilities and thus perform too much

smoothing by eliminating alignments generated in the previous models, align-

ments which might prove useful in our situation where we are not depending

on these probabilities to estimate new probabilities but merely depending on

them to build a loose, initial cluster. Since the corpora are small, I err in favor

of coverage rather than accuracy.
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Chapter 5

Results and discussion

In this section, I discuss the results from an experiment with the tran-

sitivity function (2.1) as used in Yarowsky, Ngai, and Wicentowski (2001).

Next, I present the results from my pilot clustering experiment and finally the

two-constraint clustering.

5.1 Evaluation of transitivity function

In my implementation of the transitivity function in (2.1), I modified

the model so that it would not make any assumptions about which words in

the target are lemmata and which are not. A small subsample of the results

can be observed in Figure 5.1. In addition to the examples observed in the

subsample, the amount of noise in the results in general were excessive and

ultimately unfit for inducing lemmatization schemes. A qualitative inspection

of the results for this method, however, do indicate that a form of clustering

according to a vague notion of semantics occurs.
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Lemma Inflections

Verbs
ergänzen unternommenen betriebsrat ergänzung abrunden

abkehr zusammenführen vervollständigen weswegen
flüchtlingskonvention entwicklungschancen staat-
sangehörigkeit ergänzend ergänzen einander durch-
schlagen . . .

sterben sterben verhungern helfern designierten jährlich zutritt
meistens amerikanern irakern fünfte tod planeten indus-
triegebieten fonds dramatisch us-regierung

Nouns
knie asiatischen zusammengestellt zufügt kniefall knie knien

apartheid-regime rechtsanspruch
euro ausübt euroraums euroumstellung euro-raums euros

euro-länder euro-ländern euro-zusammenarbeit euro
euro-raum euroländer euro-system . . .

Figure 5.1: A list of German candidate verb and noun lemmas and their
inflected forms extracted automatically through alignment and transitive link-
age. List of candidate inflections is unordered either in terms of frequency or
in terms of dictionary precedence.

5.2 Pilot clustering

In this section, I discuss the results obtained from the pilot clustering

experiments.

5.2.1 TIGER Treebank Corpus

The TIGER Treebank (Brants and Hansen, 2002) corpus was used as

the evaluation corpus on which to test the initial lemmatization schemes. The

corpus, which is currently at version 2.1, is a collection of German newspaper

text gathered from the Frankfurter Rundschau and consists of app. 900,000

tokens. It is annotated with POS tags and lemmata for terminal nodes and
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has been manually annotated for syntactic information. Since this corpus is a

full-text corpus, it provided a window into how well the scheme induced from

one domain would translate to another.

5.2.2 Results

There were 193582 word types in the German portion of the Europarl

corpus. From this set Wt, 15945 lemma candidates were induced after apply-

ing the culling outlined in section 3. These lemma candidates were mapped

to a total of 29056 candidate inflected forms, an average of 1.8 inflectional

candidates to a lemma candidate.

Evaluation was conducted using two separate measures. One was over

the tokens observed in the TIGER corpus (Figure 5.1) and another was over

types (Figure 5.2).

ADJ N V Overall

Precision 0.711 0.903 0.718 0.836
Recall 0.277 0.330 0.080 0.267
F-Score 0.399 0.483 0.144 0.405

Table 5.1: Scores by tokens and POS tag

ADJ N V Overall

Precision 0.711 0.795 0.840 0.772
Recall 0.822 0.899 0.463 0.874
F-Score 0.762 0.844 0.596 0.791

Table 5.2: Scores by types and POS tag

To evaluate type accuracy in this task, I used a measure similar to the
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Jaccard distance between true and induced inflectional forms for a lemma. The

precision of an individual clustering was defined as the size of the intersection

between an induced set of inflectional forms and the standard set of inflectional

forms divided by the size of the standard set. By summing the individual

clustering precision figures over the entire set Λ of sets of inflectional forms Ii,

and normalizing this by N = |Λ|, the precision was calculated as

1

N

X

Ii∈Λ

|Ii ∩ Ig|
|Ii|

where Ig is a cluster from the gold TIGER Treebank and one that is defined

to have at least one element in common with Ii.

Recall was defined similar to the above but divided by |Ig| instead:

1

N

X

Ii∈Λ

|Ii ∩ Ig|
|Ig|

These results are given in Fig. 5.2.

5.3 Two-constraint clustering

Here, I first lay out the evaluation metric used in Schone and Jurafsky

(2000). Then I evaluate two baselines and present the results for the two-

constraint clustering.

As with Schone and Jurafsky (2000), evaluation is conducted on CELEX.

The CELEX lexical database (Baayen, Piepenbrock, and van H., 1993) has
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been built for Dutch, English and German and provides detailed entries that

list and analyze the phonological, morphological and syntactic properties of

word forms along with frequency information and orthographic variations. In

the case of German, one subset of the data holds 51,728 stems with 365,530

corresponding wordforms or inflectional variants for an average of 7 inflected

forms per stem for nouns, adjectives and verbs. Though it does not exhaus-

tively list all possible inflections for the stems in its list, it is still the largest

database of its kind that I know of.

5.3.1 Evaluation metric

Schone and Jurafsky (2000) define what they call a “conflation set”. It

is a set of word types which are related through either inflectional or deriva-

tional morphology. They calculate the sums of ratios for each model derived

conflation set in relation to the conflation set in CELEX and calculate separate

values that are correct (C), inserted (I), and deleted (D):

C =
X

∀w

(|Xw ∩ Yw|/|Yw|)

I =
X

∀w

(|Xw − (Xw ∩ Yw)|/|Yw|)

D =
X

∀w

(|Yw − (Xw ∩ Yw)|/|Yw|)

where Xw is the model conflation set and Yw is the standard conflation set.
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However, |Yw| is only counted for those word types which have been observed

in the training text. Next, precision, recall, and the f-score are defined as:

precision = C/(C + I)

recall = C/(C + D)

f-score =
2 · precision · recall
precision + recall

The subset of the CELEX database that is used in this experiment

lists inflectional variants of a stem as well as its part-of-speech. Every entry

in this subset of CELEX is given a unique number that it shares with other

entries that are inflectional variants. I use this data set to measure the current

model’s performance in terms of lemmatization as opposed to morphological

clustering. I also use it to measure the performance of two baseline models.

5.3.2 Baseline

Two baselines are evaluated: (1) each word type forms its own cluster

(2) a word type which is of length > 2 can constitute the centroid of a cluster

and any other word types which include it as a prefix are considered members

of the cluster. To provide an example of the second, if ein is the centroid, the

words ein, einbeziehung, eindeutig, eine, einem, einmal, einsatz, . . . will be

members of this cluster. Table 5.3 tabulates the first baseline and Table 5.4

tabulates the latter.
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Data-set Recall Precision F-score

1K 41.4 100 58.5
2K 37.7 100 54.7
4K 34.4 100 51.1
8K 31.9 100 48.3
16K 30.9 100 47.2
32K 29.1 100 45.1
64K 27.8 100 43.5
128K 27.1 100 42.6
256K 26.3 100 41.6
512K 25.5 100 40.6

Table 5.3: Singleton cluster baseline.

In the singleton cluster baseline, I state the obvious that it is possible

to get perfect precision by limiting the size of the clusters. It can be seen

that recall drops monotonically as the size of the dataset is increased, but the

decrease is most pronounced from the 1k to 16k dataset. While in no way

conclusive, I surmise that the recall figures are indicative of the general stem

to inflected form ratio for the respective datasets. For example, in the 1k

dataset, every word type that occurs in the data has 2.41 inflected forms in

the same set whereas there are 3.92 inflected forms in the 512k dataset. This

conforms to the intuitive notion that more inflected variants of a word type

would be observed as the size of the data is increased.

The prefix based baseline was implemented to measure the effect of

favoring recall over precision. It is obvious that perfect recall could have been

achieved if every word was placed in the same cluster. Also, the baseline was

implemented assuming that the target language is suffixal in its inflectional
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Data-set Recall Precision F-score

1K 56.6 32.6 41.4
2K 56.1 25.8 35.4
4K 59.1 21.6 31.6
8K 60.2 15.0 24.0
16K 63.1 9.9 17.1
32K 67.2 6.9 12.5
64K 68.5 4.7 08.8
128K 71.0 3.3 06.3
256K 75.6 2.3 04.5
512K 80.8 1.3 02.6

Table 5.4: Prefix based baseline.

behavior, which German is to a certain degree. I surmise that recall could be

higher if a similar baseline had been implemented for English.

5.3.3 Evaluation on CELEX

Though Schone and Jurafsky (2000) is used to evaluate the results, it

must be mentioned that the results are not directly comparable. Their exper-

iments were based on an English training set, a language with considerable

differences compared to German in terms of morphosyntax. Also, their eval-

uation was based on a comparison with the CELEX suffix table for English

and evaluation was conducted only for words which had a frequency of ≥ 10.

Applying different thresholds on the vector space in their model, they obtain a

consistent f-score in the range of 83 and 85. The evaluation here upon strictly

defined inflection clusters could therefore be considered more rigorous.

In Figures 5.2~ 5.5, I observe the effect of various theshold values for

38



0

0.2

0.4

0.6

0.8

1

1.2

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Threshold value

recall
precision
f-score

Figure 5.2: Learning curve of recall, precision and f-score as the value of θsim

is increased in increments of 0.05. θal = 0.0001 with 8K corpus.

θal and θsim upon the recall, precision and f-score of this model. No matter

the changes in the value of θal and θsim, recall decreases by approximately two

percentage points for the 8k dataset and by approximately four percentage

points for the 64k dataset. The curves show that θsim has the greatest influence

on precision as precision increases by almost 100 percentage points from worst

to best in the 64k dataset and by about 70 percentage points in the 8k dataset.

This is not to say that the alignment threshold has no effect upon performance.

It does indicate that once alignment links are formed between the vocabularies,

the threshold for inclusion in the clusters does not play as great a role. In

Table 5.5, I tabulate performance for all datasets when the parameters are set
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Figure 5.3: Learning curve of recall, precision and f-score as the value of θsim

is increased in increments of 0.05. θal = 0.0001 with 64K corpus.

to θsim = 0.88, θal = 0.0001.

While it seems that the consistency of the affect of alignment thresholds

upon performance might be similar for most languages, I do not think it is

equally valid to assume that changes in string similarity thresholds would show

a similar learning curve across different languages. Exactly what effect it does

have will require further examination over diverse languages.

The weakness of the current approach is in its low level of recall and

in general its low cluster to word type ratio (Table 5.6). While recall does

seem to increase steadily as more data is added, it is nowhere near the rates
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Figure 5.4: Learning curve of recall, precision and f-score as the value of θal is
geometrically increased in multiples of

√
10. θsim = 0.88 with 8k corpus.

suggested by our prefix based baseline (Table 5.4).
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Figure 5.5: Learning curve of recall, precision and f-score as the value of θal is
geometrically increased in multiples of

√
10. θsim = 0.88 with 64k corpus.

Recall Precision F-score

1K 41.7 99.6 58.8
2K 38.5 99.8 55.6
4K 35.6 98.2 52.3
8K 33.5 98.3 50.0
16K 33.2 97.8 49.5
32K 32.8 96.5 48.9
64K 32.5 95.3 48.5
128K 33.5 93.3 49.3
256K 34.6 89.7 49.9
512K 36.0 87.3 51.0

Table 5.5: Performance at θsim = 0.88, θal = 0.0001
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8k 32k 128k 512k

words 2373 5964 13965 30139
clusters 2274 5532 12272 24786

ratio 1.043 1.078 1.138 1.216

Table 5.6: Number of word types to cluster ratio by POS category.
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Chapter 6

Segmentation

In this section, I use the results of the previous lemmatization model

to generate a set of inflectional prefixes and suffixes for the target language

for separate POS categories using a directed acyclic graph. First, I discuss

related work, then present the approach.

6.1 Related work

Unsupervised monolingual morphology segmentation is a topic that has

been tackled many times in the literature (Goldsmith, 2001; Sassano, 2001;

Goldwater, 2006; Hammarström, 2006; Creutz and Lagus, 2007). Though

such approaches generally manage to provide relatively reliable segmentation

schemes with precisions between the ranges of 0.8 and 0.9, it is difficult to

generalize beyond the segmentation of individual word types to how they relate

to the POS categories in a given language or its syntax.

There is also a considerable amount of literature on finite state ma-

chines and morphology (Koskenniemi, 1983; Karttunen, Kaplan, and Zaenen,

1992; Dhonnchadha, Pháid́ın, and Genabith, 2003; Pretorius and Bosch, 2003).

Also, Freitag (2005) was an attempt to build a finite state machine that de-
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scribes the morphology of a text using unsupervised means. While the former

approach is precise at the cost of implementation time, the latter has min-

imal labor costs but the results do not advance beyond any loose notion of

morphology.

6.2 Directed acyclic graph segmentation

I build a directed acyclic graph of the words for each cluster that was

induced. The generation process of the state machine itself creates segmen-

tations. First, I build a standard acyclic finite state machine based on the

character strings inside the cluster so that the states are single characters.

Then I perform a horizontal merge operation where we collapse sequential

states if and only if the preceding node has one outgoing transition and the

following node has only one incoming transition. The resulting state is a con-

catenation of the characters representing the states. Next, I perform a vertical

merge operation where any and all outgoing transitions from a given state

are merged if and only if the character sequences representing the states are

identical.

The implementation is an acyclic FSM, but there are some additional

constraints on how it inserts or creates new nodes. Some of the constraints

are:

1. Favor graphs with fewer nodes and arcs. This constraint ensures that

contiguous substrings will generally have no or fewer intervening nodes
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between each other. This makes analysis of the graph easier and less

time consuming for any recursive procedures and, in general, tends to

“bunch up” the stems towards the middle. Figures 6.3 and 6.4 illus-

trate this constraint with a nonsensical example of the cluster ein einem

eieineinemem:

START ei
ei

n

ein
em

END

em

Figure 6.1: 8 nodes and 11 arcs. The paths for ein and einem have intervening
nodes and are distributed across more nodes than is minimally possible

START
eiein

ein
em END

em

Figure 6.2: 6 nodes and 8 arcs. ein and einem have no intervening nodes and
the minimum number of nodes necessary to represent the cluster is used

2. Disfavor arcs that share nodes with single, isolated characters. This

constraint also has the effect of reducing the number of nodes and arcs,

but erases some substring commonalities between strings. It is used

to favor node sharing between stems but not between affixes (on the

assumption that stems will be longer than affixes in general, and that

there might be affixes which share a single character but no more). An
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example with the cluster verehrte geehrte is shown in figures 6.3 and 6.4.

START

v

g

e
r

ehrte END

Figure 6.3: The e in ver and ge are shared

START

ver

ge

ehrte END

Figure 6.4: ver and ge are split across different nodes

Then the segments are categorized according to this simple heuristic:

• If a segment has an outgoing transition to the terminating (empty) state

but does not have an incoming transition from the beginning (empty)

state, then it is a suffix

• If a segment has an incoming transition from the beginning state but

does not have an outgoing transition to the terminating state, then it is

a prefix.

6.3 Data

Output from the task defined in section 4.3.2 is used in this stage.
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6.4 Segmentation results

Tables 6.0(a) and 6.0(b) list the five most common suffixes and two

most common prefixes for the entire set of corpora when θal = 0.01, θsim = 0.8.

It can be seen that smaller datasets for the previous tasks can result in less

reliable results. A comparison of the results between the prefixes and suffixes

hints that German is probably suffixal rather than prefixal in its inflectional

morphology.
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Chapter 7

Conclusion

I have presented an approach that induces the inflectional morphol-

ogy of a target language using bitexts. This approach does not require the

substantial amount of text used by monolingual unsupervised approaches, po-

tentially allowing it to be applied to data collected from endangered language

documentation projects where most of the text is aligned and glossed. Fur-

thermore, even with reduced amounts of data, it is able to induce informative

affixes and prefixes for separate part-of-speech categories, paving the way for

the generation of unobserved forms.

This has been made possible by bringing together three disparate, yet

simple elements in a novel way such that the semantic, syntactic and surface

components of a target vocabulary are considered within the model.

The first element is the alignment and transfer method which uses the

rich linguistic resources developed for one language and projects this infor-

mation to an aligned target text with some degree of noise. This allows the

induction of more restricted, informative clusters that conform to linguistic

notions of inflection and POS categories.

The second element is a string similarity measure that makes no as-
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sumptions about the morphological properties of the language in question by

favoring longer common subsequences, regardless of contiguity and absolute

position of characters.

The final element is a morphologically informed directed acyclic graph

that is used for discovering boundary affixation patterns without the space

requirements of the trie that is often used in morphology induction. Further

experiments and improvements will be aimed at discovering infixation patterns

and phonological distance between the orthographic characters in a language,

patterns that would be very challenging to discover with a trie.

References

Airio, Eija. 2006. Word normalization and decompounding in mono- and

bilingual ir. Inf. Retr., 9(3):249–271.

Al-Onaizan, Y., J. Curin, M. Jahr, K. Knight, J. Lafferty, D. Melamed, F. Och,

D. Purdy, N. Smith, and D. Yarowsky. 1999. Statistical machine trans-

lation. In Final Report, JHU Workshop, Baltimore, MD.

Baayen, R. H., R. Piepenbrock, and Rijn van H. 1993. The CELEX lexical

data base on CD-ROM. Linguistic Data Consortium, Philadelphia, PA.

Bannard, Colin and Chris Callison-Burch. 2005. Paraphrasing with bilingual

parallel corpora. In ACL ’05: Proceedings of the 43rd Annual Meeting

on Association for Computational Linguistics, pages 597–604, Morris-

town, NJ, USA. Association for Computational Linguistics.

51



Baroni, Marco, Johannes Matiasek, and Harald Trost. 2002. Unsupervised

discovery of morphologically related words based on orthographic and

semantic similarity. In Proceedings of the ACL-02 workshop on Morpho-

logical and phonological learning, pages 48–57, Morristown, NJ, USA.

Association for Computational Linguistics.

Bilenko, Mikhail, Raymond Mooney, William Cohen, Pradeep Ravikumar,

and Stephen Fienberg. 2003. Adaptive name matching in information

integration. IEEE Intelligent Systems, 18(5):16–23.

Brants, Sabine and Silvia Hansen. 2002. Developments in the TIGER an-

notation scheme and their realization in the corpus. In Proceedings of

the Third Conference on Language Resources and Evaluation (LREC

2002), pages 1643–1649, Las Palmas.

Brent, Michael R. 1999. An efficient, probabilistically sound algorithm for

segmentation andword discovery. Mach. Learn., 34(1-3):71–105.

Cohen, W., P. Ravikumar, and S. Fienberg. 2003. A comparison of string

distance metrics for name-matching tasks. In Proceedings of the IJCAI-

2003, pages 73–78.

Creutz, Mathias and Krista Lagus. 2007. Unsupervised models for morpheme

segmentation and morphology learning. ACM Trans. Speech Lang. Pro-

cess., 4(1):3.

52



Curran, James R and Stephen Clark. 2003. Investigating GIS and smoothing

for maximum entropy taggers. In Proceedings of the 11th Meeting of

the European Chapter of the Association for Computational Linguistics

(EACL-03).

Deerwester, Scott C., Susan T. Dumais, Thomas K. Landauer, George W.

Furnas, and Richard A. Harshman. 1990. Indexing by latent seman-

tic analysis. Journal of the American Society of Information Science,

41(6):391–407.

Dhillon, Inderjit S., Subramanyam Mallela, and Dharmendra S. Modha. 2003.

Information-theoretic co-clustering. In KDD ’03: Proceedings of the

ninth ACM SIGKDD international conference on Knowledge discovery

and data mining, pages 89–98, New York, NY, USA. ACM.

Dhonnchadha, Uı́, Caoilfhionn Nic Pháid́ın, and Josef Van Genabith. 2003.
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