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The striatum is the initial input nuclei of the basal ganglia, and it serves as an 

integral processing center for action selection and sensorimotor learning.  Glutamatergic 

projections from the cortex and thalamus converge with dense dopaminergic axons from 

the midbrain to provide the primary inputs to the striatum.  Striatal output is then relayed 

to downstream basal ganglia nuclei by GABAergic medium – sized spiny neurons, which 

comprise at least 95% of the population of neurons in the striatum.  The remaining 

population of local circuit neurons is dedicated to regulating the activity of spiny 

projection neurons, and although spiny neurons form a weak lateral inhibitory network 

among themselves via local axon collaterals, feedforward modulation exerts more 

powerful control over spiny neuron excitability. 

Of the striatal interneurons, only one class is not GABAergic.  These neurons are 

cholinergic and correspond to the tonically active neurons (TANs) recorded in vivo, 

which respond to specific environmental stimuli with a transient depression, or pause, of 

tonic firing.  Striatal cholinergic interneurons account for less than 2 % of the striatal 
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neuronal population, yet their axons form an extensive and complex network that 

permeates the entire striatum and significantly shapes striatal output by acting at 

numerous targets via varied receptor types.  Indeed, the persistent level of ambient striatal 

acetylcholine as well as changes to that basal acetylcholine level underlie the major 

mechanisms of cholinergic signaling in the striatum, however regulation of this system 

by the local striatal microcircuitry is not well understood. 

This dissertation finds that activation of intrastriatal cholinergic fibers elicits 

polysynaptic GABAA inhibitory postsynaptic currents (IPSCs) in cholinergic 

interneurons recorded in brain slices.  Excitation of striatal GABAergic neurons via 

nicotinic acetylcholine receptors (nAChRs) mediates this polysynaptic inhibition in a 

manner independent of dopamine.  Moreover, activation of a single cholinergic 

interneuron is capable of eliciting polysynaptic GABAA IPSCs onto itself and nearby 

cholinergic interneurons.  These findings provide an important insight into the striatal 

microcircuitry controlling cholinergic neuron excitability. 
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 Chapter 1. Introduction 

 

1.1 THE BASAL GANGLIA 

 

The basal ganglia is comprised of a group of subcortical, interconnected nuclei 

involved in the processing of motor, associative, and limbic inputs for the selection, 

optimization, and execution of voluntary movements.  In general, the basal ganglia 

integrates signals from the cortex, thalamus, and midbrain and then projects to higher 

cortical areas.  The nuclei of the basal ganglia include the striatum, subthalamic nucleus, 

globus pallidus, substantia nigra, and ventral tegmental area, and although a general 

input-output pathway exists for signaling through the basal ganglia, reciprocal 

connections between nuclei and secondary inputs to the basal ganglia add significant 

complexity to the basal ganglia circuit (Figure 1). 

 

1.1.1 Primary pathway of the basal ganglia circuit 

 

The striatum is the primary input nuclei of the basal ganglia.  Indeed, essentially 

all regions of the cerebral cortex (Parent and Hazrati, 1995) target the striatum and 

converge with projections from the thalamus (McFarland and Haber, 2000) and the 

midbrain (Haber et al., 2000).  The classical signaling pathway through the basal ganglia 

begins with striatal projections to the globus pallidus (GP) and substantia nigra (SN).  

The GP is comprised of an external (GPe) and an internal (GPi) segment while the SN is 

divided into the pars reticulata (SNr) and pars compacta (SNc).  The GPi and SNr are 
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usually treated as one structure (SNr/ GPi) based on similarities in anatomy and 

physiology (Francois et al., 1987; Yelnik et al., 1987).  Primary striatal output follows 

two paths. One striatal projection pathway terminates on the SNr/ GPi directly 

(striatonigral pathway), while a second pathway follows a route to the GPe, STN, and 

then to the SNr/ GPi (striatopallidal pathway).  The SNr/ GPi is the primary output 

structure of the basal ganglia and sends topographic projections to the thalamus (Sidibe et 

al., 1997) where they are relayed to the frontal cortex. 

 

1.1.2 Secondary pathway of the basal ganglia circuit 

 

The subthalamic nucleus (STN) also receives significant cortical inputs in a 

topographic fashion (Nambu et al., 1996).  The primary motor cortex, supplementary 

motor area, and premotor area project to the STN which then projects to the SNR/ GPi 

and the GPe (Monakow et al., 1978; Nambu et al., 1996; Nambu and Llinas, 1997).  

Signals from the cortex travel through the STN faster than those through the striatum 

(Nambu et al., 2000), and signaling through this pathway is thought to prime the SNR/ 

GPi/ for the arrival of signals through the corticostriatal pathway.  

 

1.1.3 Feedback within the basal ganglia circuit 

 

The complexity of signaling within the basal ganglia network is enhanced by 

feedback projections from several structures.  For example the GPe forms recriprocal 

connections with the striatum (Bolam et al., 2000), STN (Plenz and Kital, 1999), and the 
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thalamus (Smith et al., 2004).  In a similar respect, the striatum projects back upon the 

dopaminergic neurons of the SNc (Szabo, 1980; Parent et al., 1983).   

 

1.1.4 Summary 

 

A simplified model of basal ganglia signaling proposes that the basal ganglia 

provides feedback to the cortex via the thalamus.  Cortical inputs are relayed through the 

basal ganglia via the striatonigral and striatopallidal pathways, and distinct inputs from 

the thalamus, midbrain, and cortex modulate these signals before they are sent to the 

thalamus and back to the cortex.  Output from the basal ganglia is inhibitory on the 

thalamus, and enhanced signaling through the striatonigral pathway reduces inhibition of 

the thalamus by the basal ganglia, while enhanced signaling through the striatopallidal 

pathway enhances inhibition of the thalamus.  It is believed that the imbalance of these 

pathways underlies symptoms of some movement disorders (Wichmann and DeLong, 

1996).  For example, a relative increase in activity of the striatopallidal pathway and a 

reduced activity in the striatonigral pathway results in an enhancement of the inhibition 

of the thalamus by the basal ganglia.  It is possible that this mechanism may contribute to 

disorders characterized by the reduced ability to initiate movement like Parkinson’s 

disease (Wichmann and DeLong, 2003).  The opposite imbalance, enhanced striatonigral 

and depressed striatopallidal activity, leads to reduced basal ganglia output and 

disinhibition of the thalamus and cortex.  It is possible that this mechanism may 

contribute to the hyperkinesias typical of hemibalisimus and Huntingon’s disease (Pisani 

et al., 2007). 
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Figure 1. The basal ganglia circuit 

Simplified diagram of connectivity within the basal ganglia.  The ventral striatum 
has been excluded for simplicity.  Arrowheads signify excitatory connections, circles 
signify inhibitory connections, and diamonds represent dopamine release sites 
Subthalamic nucleus (STN), substantia nigra pars compacta (SNc), external segment of 
the globus pallidus (GPe), internal segment of the globus pallidus (GPi), substantia nigra 
pars reticulata (SNr).  

Cortex 

Striatum STN SNc 

GPe 

GPi/ 
SNr 

Thalamus 
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1.2 THE STRIATUM 

 

The striatum is the primary point of entry for signals directed to the basal ganglia 

and is divided into two gross compartments containing several nuclei each. The nucleus 

accumbens and part of the olfactory tubercle make up the ventral striatum, while the 

caudate nucleus and putamen comprise the dorsal striatum (Packard and Knowlton, 

2002).  Each nucleus receives differential primary inputs.  In a general sense, cortical 

neurons project to different regions of the striatum and divide the striatum into functional 

areas that receive sensorimotor, associative, and limbic inputs (Bar-Gad et al., 2003; 

Tisch et al., 2004).  The primary motor cortex, somatosensory cortex, premotor cortex, 

and supplementary motor area target the dorsolateral striatum (putamen) and comprise 

the sensorimotor inputs (Takada et al., 1998).  The associative inputs target more 

ventromedial areas of the dorsal striatum (rostral putamen and caudate nucleus) and are 

made up of projections from the prefrontal and frontal areas as well as temporal, inferior 

parietal, preoccipital, and parahippocampal areas (Selemon and Goldman-Rakic, 1985).  

Finally, inputs from the limbic cortex, paralimbic cortex, amygdala, and hippocampus 

delineate the limbic region located in the most ventral areas of the striatum (ventral 

putamen, nucleus accumbens, and the olfactory bulb).  Thus, all corticostriatal inputs are 

generally organized topographically (Veening et al., 1980; McGeorge and Faull, 1989). 

The striatum also receives projections from the thalamus.  The putamen mainly 

receives input from the centre-median/ parafasicular nucleus complex (CM-PF) of the 

thalamus (Sadikot et al., 1992; Parent and Hazrati, 1995; McFarland and Haber, 2000), 

while the caudate nucleus and ventral striatum receive input from the PF and ventral 

motor nuclei of the thalamus, respectively (Sadikot et al., 1992; Sidibe et al., 1997). 
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Dopaminergic neurons from the midbrain also target different areas of the 

striatum.  The substantia nigra pars compacta primarily projects to the dorsal striatum, 

while neurons of the ventral tegmental area predominantly send axons to the ventral 

striatum (Gerfen et al., 1987). 

In addition to ventral and dorsal separation, the striatum can be divided into 

functional areas defined by the spatial distribution and axonal projections of the primary 

cell type of the striatum, the medium spiny neuron (MSN) (Packard and Knowlton, 

2002).  The differential staining of peptides and neurochemicals expressed by MSNs 

reveals a mosaic of distinct “patches” of similarly labeled neurons separated by an 

interconnected “matrix” of distinct MSNs.  Patches were first described as areas with 

enriched µ opiate receptor protein (Pert et al., 1976), and it was later shown that 

acetylcholinesterase was also more prevalent in patches (Graybiel and Ragsdale, 1978; 

Herkenham and Pert, 1981).  In contrast, somatostatin and calbindin-immunoreactive 

neurons were predominantly found in matrix areas (Gerfen, 1984, 1985; Chesselet and 

Graybiel, 1986).  The inputs to patch and matrix areas differ as well.  DA neurons of the 

VTA mainly project to the matrix areas of the ventral striatum, while SNc neurons 

project to both the patch and matrix. (Gerfen et al., 1987; Jimenez-Castellanos and 

Graybiel, 1987).  In addition, patch cells preferentially receive input from the basolateral 

nucleus of the amygdala (Ragsdale and Graybiel, 1988) and prelimbic cortices while 

matrix cells primarily receive projections from the motor and somatosensory areas of the 

cortex (Donoghue and Herkenham, 1986).  A relationship between the laminar 

organization of the cortex and the patch-matrix segregation of the striatum has also been 

shown.  Deep cortical layer V and layer VI send axons to the patch compartment, 

whereas the supragranular layers of cortex target the striatal matrix areas (Gerfen, 1989).  

However, despite such findings the functional relevance of the mosaic remains poorly 
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defined due to inconsistent patch and matrix patterns and inadequate localization of 

markers to specific structures.  Therefore, a more practical compartmental organization of 

the striatum relies upon the differential axonal projections of MSNs. 

Although MSNs exist homogenously throughout the striatum, they project to the 

SNr/ GPi via two distinct routes.  MSNs of the “direct pathway” send axons directly to 

the GPi/ SNr (striatonigral projection), while MSNs of the “indirect pathway” first 

innervate the GPe (striatopallidal projection).  The GPe then projects to the STN and 

SNr/ GPi (Figure 1).   

MSNs are GABAergic and are quiescent until activated by glutamatergic signals 

from the cortex and thalamus (Wilson, 1994).  Striatal targets are GABAergic as well, but 

are continuously firing spontaneous action potentials (Grace and Bunney, 1984; Cooper 

and Stanford, 2000; Bevan et al., 2002).  Therefore, signaling via the striatonigral 

pathway inhibits spontaneously active GABAergic projection neurons of the SNr/GPi 

resulting in disinhibition of the thalamus and transient activation of thalamic targets.  In 

contrast, transient signals from the striatum to the GPe via the striatopallidal pathway 

inhibit spontaneously active GABAergic projection neurons of the GPe causing 

disinhibition of the STN.  The SNr/GPi receives excitatory glutamatergic signals from the 

STN.  So the relief of tonic inhibition of the STN by signaling from striatopallidal MSNs 

results in phasic excitation of the SNr/GPi and enhanced inhibition of the thalamus.  In 

general, increased activity of the striatonigral pathway correlates with facilitation of 

movement, while increased activity of the striatopallidal pathway is associated with 

inhibition of movement (Bar-Gad et al., 2003). 

 

1.2.1 Primary neurons of the striatum 
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MSNs account for the majority (≥ 95%) of the neuronal population of the striatum 

(Chang et al., 1982; Chang and Kitai, 1985; Graveland and DiFiglia, 1985; Rymar et al., 

2004).  These neurons have a medium sized soma and radiate 25 – 30 dendritic branches 

that are covered with spines (DiFiglia et al., 1976; Wilson and Groves, 1980).  

Striatonigral and striatopallidal MSNs are morphologically indistinguishable but vary in 

their expression of neuropeptides and dopamine receptor subtypes.  Striatonigral neurons 

generally express dynorphin, substance P, and contain dopamine D1 receptors, whereas 

striatopallidal neurons generally express enkephalin and the D2 dopamine receptor 

subtype (Surmeier et al., 1996; Wang et al., 2006) . 

Labelling of MSNs indicates that while the majority project to downstream brain 

areas, MSNs also signal within the striatum via extensive local axon collaterals (Bolam et 

al., 2000).  Other MSNs are the primary targets of these intrastriatal spiny neuron 

collaterals (Pickel et al., 1980; Aronin et al., 1981; DiFiglia et al., 1982; Somogyi et al., 

1982; Bolam et al., 1983a; Bouyer et al., 1984; Bolam and Izzo, 1988; Pickel et al., 

1992), and all MSNs are GABAergic and inhibitory upon targets inside and outside the 

striatum (Kawaguchi, 1997). 

As noted previously, the glutamatergic fibers from the cortex and thalamus 

converge within the striatum, and both corticostriatal and thalamostriatal inputs target 

MSNs.  However, several notable differences exist between the two projections 

indicating differential effects of signaling through these pathways.  First, terminals from 

corticostriatal fibers form synapses primarily with dendritic spines (Bolam et al., 2000), 

while the thalamic terminals predominantly form asymmetric synapses on dendritic shafts 

of MSNs (Smith and Bolam, 1990; Sadikot et al., 1992; Smith et al., 1994; Sidibe and 

Smith, 1996).  Although thalamostriatal terminals may form a minority of synapses upon 

spines as well (Xu et al., 1991).  Second, anatomical studies indicate thalamostriatal 
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fibers selectively target striatonigral MSNs and corticostriatal fibers target striatopallidal 

MSNs (Sidibe and Smith, 1996; Berretta et al., 1997; Parthasarathy and Graybiel, 1997), 

however synaptic stimulation of striatal afferents has failed to discriminate between 

striatonigral and striatopallidal populations (Ding et al., 2008).  Finally, paired pulse 

experiments combined with manipulations of extracellular calcium indicate a high basal 

probability of quantal transmitter release at thalamostriatal synapses upon MSNs and a 

low probability of release by corticostriatal terminals (Ding et al., 2008).  Differences in 

probability of transmitter release did not differ between striatonigral and striatopallidal 

MSNs.  

MSNs typically rest at around the K+ equilibrium potential of -80 mV (downstate) 

but exhibit plateau – like shifts to a depolarized state near -60 mV (upstate) in response 

substantial excitatory inputs from the cortex or thalamus (Wilson and Kawaguchi, 1996; 

Plenz and Kitai, 1998).  The membrane potential of MSNs is controlled by the interplay 

of constitutively active K+ channels, ionotropic receptors, metabotropic receptor effects, 

and voltage gated cation channels.  Indeed upstate transitions follow AMPA and NMDA 

receptor activation, and are characterized by the closure or inactivation of several K+ 

channels (Kir2, Kv1, and Kv4), reduced SK channel opening (Wickens and Wilson, 

1998), and enhanced L-type Ca2+ (Cav 1.2 and Cav 1.3) channel currents (Vergara et al., 

2003).  MSNs typically do not fire action potentials while in the downstate, and it appears 

that transitions to the upstate potential are necessary for action potential generation 

(Wilson and Groves, 1981; Wilson and Kawaguchi, 1996; Wickens and Wilson, 1998). 

Thus, upstates directly modulate basal ganglia output. 

 

1.2.2 Interneurons of the striatum 
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Striatal interneurons comprise less than 3% of the rat striatum (Rymar et al., 

2004) and can either act as feedforward modulators of MSN excitability (Tepper and 

Bolam, 2004; Tepper et al., 2004) or as independent sources of input to other striatal 

neurons (Kawaguchi, 1993; Bennett et al., 2000).  Four interneuron populations have 

been identified based on differential morphology, neurochemistry, and physiology 

(Kawaguchi et al., 1995).  Three of the neuron types are GABAergic while the fourth 

type is cholinergic. 

Although axon collaterals from MSNs form an inhibitory network within the 

striatum, synaptic connections between MSNs are weak and located on distal dendrites 

(Wilson and Groves, 1980; Bolam et al., 1983b; Jaeger et al., 1994; Tepper et al., 2004).  

On the other hand, accumulating evidence indicates that striatal interneurons are powerful 

regulators of MSN activity.  For instance, simultaneous electrophysiological recordings 

between connected neurons indicate that two types of GABAergic interneurons exert 

strong inhibitory control over MSNs (Koos and Tepper, 2002; Tepper and Bolam, 2004), 

and the effectiveness of acetylcholine receptor antagonists for the treatment of 

Parkinson’s disease suggests powerful modulation of MSN activity by the striatal 

cholinergic interneurons (Katzenschlager et al., 2003). 

 

1.2.2.1 Fast spiking interneurons 

 

Fast spiking interneurons are the best characterized of the striatal interneurons 

(Tepper and Bolam, 2004), and received their name based on their ability to maintain 200 

– 300 Hz firing with little or no spike frequency adaptation.  The resting membrane 

potential of FSIs ranges from -70 to -80 mV with input resistance near 100 MΩ (Koos 

and Tepper, 1999, 2002).  Early neurochemical studies identified a small population of 



 

11 

GABAergic neurons within the striatum that displayed more intense staining for glutamic 

acid decarboxylase (GAD) than did MSNs (Ribak et al., 1979; Bolam et al., 1985; 

Bennett and Bolam, 1994), and it was later reported that these neurons co-expressed the 

calcium binding protein parvalbumin (Gerfen, 1984; Kawaguchi, 1993).  These neurons 

account for less than 1% of the neuronal population within the rat striatum (Larsson et al., 

2001; Luk and Sadikot, 2001; Rymar et al., 2004), but their complex axonal branches 

ensure effective connectivity with MSNs and other FSIs (Kawaguchi, 1993; Kita, 1993; 

Bennett and Bolam, 1994; Koos and Tepper, 1999; Kubota and Kawaguchi, 2000).  FSIs 

also display a dendritic field ranging up to 600 µm that receives input from the cortex, 

striatal cholinergic interneurons, other FSIs, and from the GPi (Figure 2) (Chang and 

Kita, 1992; Lapper et al., 1992; Bevan et al., 1998; Ramanathan et al., 2002).   

Furthermore, FSIs have gap junctions (Kita et al., 1990), and recordings between pairs of 

FSIs indicate a level of electrotonic coupling between neurons (Koos and Tepper, 1999). 

FSIs exert powerful feedforward inhibition upon MSNs.  FSI dendrites mostly 

form perisomatic synapses with MSNs (Kita et al., 1990; Kita, 1993; Bennett and Bolam, 

1994), and estimates based on quantal analysis of synaptic potentials suggest that a single 

FSI forms multiple (N ≥ 7) synapses with each MSN (Koos et al., 2004; Tepper et al., 

2004).  Additionally, single action potentials in FSIs rarely fail to evoke a response and 

produce relatively high conductance (~ 3 nS) IPSCs in connected MSNs (Koos and 

Tepper, 2002).  The number, location, and strength of FSI synapses on MSNs allows 

single action potentials in FSIs to delay or prevent spiking in MSNs, and the summation 

of IPSPs resulting from multiple action potentials with short inter - spike intervals 

enables pronounced inhibition (Koos and Tepper, 1999; Koos et al., 2004).  Importantly, 

FSIs and MSNs receive excitatory glutamatergic input from the same areas of cortex 

(Lapper et al., 1992). 
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1.2.2.2 Persistent low threshold spiking interneurons 

 

A second class of striatal interneuron was identified based on selective 

histochemical staining for NADPH diaphorase/ nitric oxide synthase (NOS), 

neuropeptide Y, and somatostatin (Vincent et al., 1983; Dawson et al., 1991; Kawaguchi, 

1993).  Subsequent NADPH labeling of biocytin filled neurons characterized these cells 

as persistent low threshold spiking (PLTS) interneurons based on the consistent presence 

of low threshold calcium spikes riding on a persistent depolarization following return 

from hyperpolarization (Kawaguchi, 1993).  Both dual – labeling for GAD67 (Vuillet et 

al., 1990; Kubota et al., 1993) and attempts to detect GAD mRNA (Chesselet and 

Robbins, 1989; Catania et al., 1995) failed to conclusively illustrate the GABAergic 

nature of PLTS interneurons (Kawaguchi et al., 1995), however GABAergic boutons 

were found on PLTS axons using a colloidal immunogold labeling technique (Kubota and 

Kawaguchi, 2000).  In addition, positive staining of PLTS interneurons for NOS 

combined with reports that nitric oxide (NO) excites at least one other striatal neuron 

suggests that PLTS cells also release NO as a neurotransmitter (Kawaguchi, 1993; 

Centonze et al., 2001).  Therefore, PLTS interneurons join FSIs as powerful regulators of 

striatal activity. 

Indeed, despite a population that comprises less that 1% of the total neuronal 

population of the striatum (West et al., 1996; Rymar et al., 2004), PLTS interneurons 

extend dense axonal and dendritic processes (up 1 mm in rats) enabling PLTS output to 

affect a large number of cells over a relatively vast area (Kubota and Kawaguchi, 2000).  

Ultrastructural evidence indicates that PLTS interneurons receive direct cortical (Vuillet 

et al., 1989; Thomas et al., 2000) and thalamic (Sidibe and Smith, 1999) innervation and 
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project to MSNs (Koos and Tepper, 1999) as well as cholinergic interneurons (Vuillet et 

al., 1992) but not FSIs (Figure 2) (Morello et al., 1997).  Whole cell recordings revealed 

that PLTS interneurons rest close to -60 mV with relatively high input resistances of 500 

MΩ - 1.5 GΩ (Kawaguchi, 1993; Kubota and Kawaguchi, 2000; Centonze et al., 2002), 

allowing for the possibility that small excitatory conductances may evoke action 

potentials in these cells.  Simultaneous recordings between connected PLTS – MSN pairs 

show that PLTS – evoked postsynaptic responses in MSNs are similar to FSI – evoked 

responses (Tepper and Bolam, 2004).  Like FSIs, summation of short interval inhibitory 

responses may significantly delay MSN firing.  Moreover, although not yet shown, it may 

be possible for a hyperpolarizing inhibitory input to cause transmitter release via low 

threshold spiking from PLTS neurons.  In this manner, PLTS interneurons may act to 

facilitate inhibition between neurons.  For example, PLTS interneurons may translate 

typically slower hyperpolarizing metabotropic responses into faster GABAergic 

inhibitory signals.  Therefore, the morphological and electrophysiological properties of 

PLTS interneurons enable a sparse number of cells to translate weak excitatory or 

inhibitory synaptic inputs into strong inhibition of a large number of distant neurons. 

 

1.2.2.3 Calretinin – immunoreactive interneurons 

 

The third known type of GABAergic interneuron in the striatum differentially 

expresses the calcium binding protein calretinin (Jacobowitz and Winsky, 1991; Resibois 

and Rogers, 1992; Bennett and Bolam, 1993).  Early observations identified that 

catretinin - positive interneurons label positively for GABA and GAD, thus suggesting 

that these interneurons are GABAergic (Kubota et al., 1993; Kawaguchi et al., 1995).  

Calretinin – positive interneurons are similar in size to MSNs and FSIs, and like FSIs and 
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PLTS neurons they comprise less that 1% of the neuronal population of the striatum 

(Rymar et al 2004).  These interneurons are distributed throughout the striatum, including 

the patch and matrix compartments (Rymar et al., 2004), however a greater density of 

calretinin – immunoreactive cells is found towards the rostral end of the striatum.  

Ultrastructural studies suggest that calretinin - positive interneurons form connections 

with MSNs as a significant number of calretinin - immunoreactive terminals formed 

asymmetrical synapses on spines, however symmetrical connections were observed as 

well (Bennett and Bolam, 1993). 

The electrophysiological properties of striatal calretinin - immunoreactive 

interneurons remain unknown, however Koos and Tepper presented evidence of a novel 

striatal neuronal behavior from an unlabeled cell type.  This cell fired low – threshold 

spikes similar to PLTS interneurons, but failed to maintain a persistent depolarization 

following membrane hyperpolarization.  Simultaneous recordings from this unknown cell 

type connected to MSNs showed that these neurons can delay or block spiking of MSNs 

much like PLTS interneurons and FSIs (Koos and Tepper, 1999).  Although pure 

speculation, it is possible that the behavior of the unlabeled cell type described by Koos 

and Tepper will later be found in caltretinin – immunoreactive interneurons. 

 

1.2.2.4 Cholinergic Interneurons 

 

Cholinergic interneurons make up a small percentage of the striatal neuronal 

population (< 1% in rats; Larsson et al., 2001; Rymar et al., 2004), yet they have dense, 

widespread axonal arbors that provide a rich source of ACh within the striatum 

(Oorschot, 1996).  Indeed, striatal acetylcholine release appears to be integral for regular 

movement control and dysregulation of this system plays a prominent role in Parkinsons 
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disease (PD; Fahn et al., 1990; Kaneko et al., 2000; Salamone et al., 2001; Zhou et al., 

2002).  Within the striatum, acetylcholine acts as both a classical neurotransmitter and as 

a modulator of signaling and cell activity, thereby providing a multifaceted system for 

control over striatal output.   

Cholinergic interneurons fire action potentials spontaneously at 1-10Hz in vitro 

(Kawaguchi, 1993; Bennett and Wilson, 1999).  This firing is driven autonomously by 

intrinsic conductances and is modulated by interactions between these conductances and 

synaptic inputs to these neurons (Bennett and Wilson, 1998).  Cholinergic interneurons 

receive glutamatergic inputs from the cortex and thalamus (Lapper and Bolam, 1992; 

Thomas et al., 2000; Reynolds et al., 2004) and dopaminergic inputs from the midbrain 

(Chang, 1988) in addition to local cholinergic and GABAergic inputs from other striatal 

interneurons (Tepper and Bolam, 2004).  Indeed, clear ultrastructural evidence indicates 

that PLTS interneurons and MSNs form synapses with cholinergic interneurons (Vuillet 

et al., 1992), however studies have failed to illustrate connectivity from FSI axons onto 

cholinergic interneurons (Chang and Kita, 1992).  In turn, ultrastructural evidence shows 

putative cholinergic axon terminals forming synapses with MSNs, FSIs, PLTS 

interneurons and other cholinergic axons (Figure 2), however these connections are rare 

as it has been estimated that only 9% of observed cholinergic terminals form synapses 

(Chang and Kita, 1992; Contant et al., 1996; Descarries et al., 1997).  These rare 

cholinergic synapses are primarily located on distal dendritic shafts, spine necks, and 

axon boutons (Bolam et al., 1984; Phelps et al., 1985; Descarries et al., 1997).  

Cholinergic signaling may occur via direct synaptic transmission but it is believed 

that a greater number of targets is reached by extrasynaptic or intersynaptic transmission 

of ACh (Contant et al., 1996; Descarries and Mechawar, 2000; Koos and Tepper, 2002).  

It is estimated that removal of synaptic ACh by acetylcholinesterase occurs rapidly (~ 1 
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ms; Dani et al., 2001), however repetitive firing of cholinergic interneurons and the 

probable diffusion of ACh from synaptic clefts (Barbour and Hausser, 1997) results in a 

basal ambient ACh concentration in the striatum (Descarries et al., 1997).  

The most suggestive evidence concerning the function of cholinergic signaling 

within the striatum has come from in vivo electrophysiological recordings of putative 

cholinergic interneurons.  Microelectrode studies in live animals grouped recorded 

neurons based on differences in basal action potential firing patterns (Crutcher and 

DeLong, 1984; Kimura et al., 1984; Alexander and DeLong, 1985b).  ‘Phasically active 

neurons’ (PANs) exhibited relatively extended silences interrupted by short – duration 

groups of action potentials, and this group includes MSNs (Kimura et al., 1990; Wilson, 

1993).  In contrast, a population of ‘tonically active neurons’ (TANs) were observed to 

fire continuously at 3 – 12 Hz and are now believed to correspond to the cholinergic 

interneurons of the striatum (Wilson et al., 1990; Aosaki et al., 1994b; Reynolds et al., 

2004). 

TANs and PANs exhibit differential activity in response to sensory stimuli, during 

learning, and during conditioned movement (Apicella, 2007)  Specifically, PANs are 

normally quiescent but fire action potentials preceding or following the execution of a 

conditioned movement by a trained animal (Alexander and DeLong, 1985a; Zhou et al., 

2002).  TANs, however, exhibit a transient depression, or pause, of firing in response to 

the presentation of a cue that an animal has learned will predict a rewarding or aversive 

stimuli (Kimura et al., 1984; Aosaki et al., 1995; Ravel et al., 1999) and to the stimuli 

itself (Graybiel et al., 1994; Apicella et al., 1997).  In this respect, TANs are thought to 

be involved in the detection of stimuli that have motivational significance (Apicella, 

2007). 
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However, the link between the TAN pause and learning is not simply a stimulus – 

induced response.  Early studies illustrated that the pause response develops over time as 

the animal learns (Aosaki et al., 1994a), and that the number of responsive TANs 

increases as well.  In addition, the pause response extinguishes alongside the conditioned 

behavior in the absence of reward (Aosaki et al., 1994b), and the population behavior of 

TANs accurately predicts the probability that an animal will initiate movement in 

response to a conditioned stimulus (Blazquez et al., 2002).  These findings support the 

hypothesis that modulation of TAN firing is integral to processing, not just reporting, 

information regarding salient environmental stimuli as it relates to motor output. 
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Figure 2. Targets of interneurons within the striatum 

Schematic diagram illustrating intrastriatal neuronal connections.  Axons of 
MSNs and axo – axonic connections have been left out for simplicity.  Arrows signify an 
excitatory synapse, and circles signify an inhibitory synapse.  Persistent low threshold 
interneuron (PLTS), cholinergic interneuron (ChI), fast spiking interneuron (FSI), 
medium spiny neuron (MSN). 

MSN 
(Striatonigral) 

MSN 
(Striatopallidal) 

PLTS ChI FSI 
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1.3 ACETYLCHOLINE IN THE STRIATUM 

 

Within the striatum, the results of cholinergic signaling are primarily mediated by 

muscarinic receptors, however nicotinic receptors play an important role in the shaping of 

striatal output as well. Muscarinic acetylcholine receptors (mAChRs) are metabotropic 

and have seven transmembrane domains.  Molecular cloning has identified five distinct 

receptor isoforms (M1 – M5) that are grouped into M1 – like mAChRs (M1, M3, M5) and 

M2 – like mAChRs (M2, M4) (Wess, 1996; Caulfield and Birdsall, 1998).  M1 – like 

mAChRs are Gq – coupled and result in the mobilization of intracellular calcium through 

activation of phospholipases.  M2 – like mAChRs couple to Gi/o proteins that inhibit 

adenylyl cyclase to reduce cyclic – AMP formation and also inhibit calcium channels.  In 

the striatum, expression of M1 and M4 is dominant over M2, M3, and M5 mostly because 

M1 and M4 mAChRs are found on MSNs (Weiner et al., 1990; Levey et al., 1991; 

Gomeza et al., 1999; Pisani et al., 2007). 

Nicotinic acetylcholine receptors (nAChRs) are ionotropic receptors made up of 

five subunits that interact to create a central hydrophilic pore (Role and Berg, 1996; 

Albuquerque et al., 1997; Dani, 2001; Dani et al., 2001).  Neuronal nAChRs are 

comprised either of a combination of α (α2 – α10) and β (β2 – β4) subunits or of just α 

subunits, and the combination of different subunits confers distinct functional and 

structural properties to the receptor.  The majority of nAChRs in the striatum are α2β4 – 

containing and α7 – containing receptors (Wada et al., 1989; Seguela et al., 1993; 

Colquhoun and Patrick, 1997) and are mainly located on axonal terminals and modulate 

transmitter release (Dani and Bertrand, 2007).  nAChR channels are permeable only to 

monovalent and divalent cations, and many important roles of  nAChRs are due to Ca2+ 
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entry through these channels (Dani and Bertrand, 2007).  Indeed signaling through 

nAChRs can result in Ca2+ - induced Ca2+ release (Sharma and Vijayaraghavan, 2003), 

modulation of neurotransmitter exocytosis (Tredway et al., 1999), and possibly contribute 

to the induction of synaptic plasticity (Mansvelder and McGehee, 2000).  

 

1.3.1 ACh signaling on medium spiny neurons 

 

MSNs predominantly express M1 and M4 mAChRs (Weiner et al., 1990; Levey et 

al., 1991; Bernard et al., 1992; Ince et al., 1997), and M4 receptor mRNA is significantly 

more abundant on striatonigral MSNs compared to striatopallidal MSNs (Yan et al., 

2001).  While the ultimate effects of M4 activation upon MSN activity are poorly 

characterized due to inadequate pharmacological isolation, it is well understood that M1R 

activation depolarizes MSNs by suppressing standing K+ currents (Hsu et al., 1996).  

Acetylcholine binding to M1Rs hydrolyzes membrane – bound phosphotidyl inositol (PI) 

into cytoplasmic diacylglycerol (DAG) and inositol triphosphate (IP3).  IP3 then signals to 

mobilize Ca2+ from intracellular stores, and this Ca+ acts with DAG to activate protein 

kinase C (PKC).  M1 – dependent PI hydrolysis ultimately leads to suppression of K+ 

currents through KCNQ (M – channel) and Kir2 channels (Galarraga et al., 1999; Shen et 

al., 2005).  Notably, M1R activation potently reduces Kir2 currents in striatopallidal 

MSNs, while only weakly reducing currents through the same channels in striatonigral 

MSNs (Shen et al., 2007).  The result is that tonic muscarinic activation provided by 

continuous striatal cholinergic interneuron firing persistently enhances the excitability of 

MSNs by reducing Kir2 channel currents, which are active at resting potentials and tend 

to hold the MSNs in the down – state near the K+ equilibrium potential. 
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M1R activation also suppresses voltage – activated Ca2+ channels on MSNs.  It 

was first shown that muscarine reduces the duration of Ca2+ - dependent plateau 

potentials (Misgeld et al., 1986), and later studies illustrated that specific Ca2+ channels 

were inhibited by M1R activation of distinct signaling pathways.  M1Rs inhibit N – and 

P/Q – type Ca2+ channels by activating a pertussis toxin – sensitive G protein (Howe and 

Surmeier, 1995).  Ca2+ entry through these Ca2+ channels is important for Ca2+ - 

dependent K+ channel activation during action potential after – hyperpolarizations 

(Vilchis et al., 2000), and inhibition of N – and P/Q – type Ca2+ channels by M1R 

activation reduces AHP length to shorten the interval between MSN action potentials 

(Perez-Rosello et al., 2005).  Additionally, M1R activation of a pertussis toxin – 

insensitive G protein inhibits L – type Ca2+ channels (Howe and Surmeier, 1995; Perez-

Rosello et al., 2005).  Ca2+ entry through L - type Ca2+ channels occurs during upstates 

(Carter and Sabatini, 2004) and is required for the induction of corticostriatal LTD on 

MSNs (Calabresi et al., 1994).  Thus M1R modulation of Ca2+ channels on MSNs serves 

to enhance striatal output by increasing firing frequency and reducing the susceptibility of 

MSNs towards LTD induction mechanisms. 

Acetylcholine also acts through postsynaptic M1Rs to promote excitatory 

signaling upon MSNs by enhancing membrane depolarization resulting from NMDA 

receptor activation (Calabresi et al., 1998a).  It is believed that M1R activation results in 

phosphorlyation of NMDARs via inositol triphosphate – dependent Ca2+ release from 

intracellular stores and subsequent activation of phosphokinase C by diacylglycerol and 

Ca2+.  Phosphorlyation of NMDARs enhances cation entry through activated receptors 

and may play a role in the induction of postsynaptic long-term potentiation (LTP) of 

corticostriatal synapses (Carter and Sabatini, 2004). 
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Finally, tonic activation of M1Rs on MSNs is involved in the suppression of 

inhibitory signaling onto these neurons.  When paired with mAChR activation, Ca2+ 

influx facilitates the release of endocannabinoids, and the subsequent retrograde signaling 

inhibits release of GABA upon MSNs (Narushima et al., 2007).  This study showed that 

the coincidence of a single action potential from ChIs with MSN depolarization was 

capable of suppressing IPSCs on MSNs.  Therefore continuous M1R activation by tonic 

ChI firing should prime MSNs to release endocannabinoids in response to Ca2+ influx.  

In summary, tonic M1R activation by ChI firing generally enhances the 

excitability of MSNs.  mAChRs suppress the persistent inhibitory influence of Kir2 

channels, promote upstate transitions by enhancing currents through NMDARs, augment 

MSN output by increasing spike rate, reduce the efficacy of inhibitory signaling onto 

MSNs, and prevent LTD induction. 

 

1.3.2 ACh signaling on fast spiking interneurons 

 

Immunolabeling first illustrated the presence of cholinergic synapses upon 

parvalbumin positive neurons (Chang and Kita, 1992), and functional studies later found 

that ACh acts through both nicotinic and muscarinic receptors to influence FSI output.  

Postsynaptic nicotinic responses of FSIs isolated by focal pressure application of ACh 

failed to desensitize, thereby suggesting a tonic depolarizing influence of nicotinic 

receptors on FSIs (Koos and Tepper, 2002).  This finding is supported by previous 

reports that nonselective cholinergic agonists increase striatal GABA levels in a nAChR – 

dependent manner (Limberger et al., 1986; Koos and Tepper, 2002).  In contrast, 

simultaneous recordings of connected neurons illustrate that muscarine reduces the 
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amplitude of FSI input onto MSNs (Koos and Tepper, 2002).  Thus, nAChRs and 

mAChRs provide oppossing mechanisms for regulating FSI output (Table 2). 

 

1.3.3 ACh signaling on cholinergic interneurons 

 

Striatal cholinergic interneurons express M1, M2 and M4 mAChRs (Bernard et al., 

1992; Yan and Surmeier, 1996; Alcantara et al., 2001; Bonsi et al., 2008), and activation 

of these autoreceptors serves to reduce basal striatal acetylcholine levels (James and 

Cubeddu, 1987).  M2 and M4 mAChRs are found on somato – dendritic regions of 

cholinergic interneurons in addition to axon terminals (Alcantara et al., 2001; Zhang et 

al., 2002b), and activation of these receptors results in both the opening of Kir3 K+ 

channels and inhibition of N- and P- type Ca2+ channels (Yan and Surmeier, 1996; 

Calabresi et al., 1998c).  K+ channel activation by mAChRs induces membrane 

hyperpolarization of ChIs and provides a mechanism for feedback regulation of ChI 

action potential frequency and overall excitability (Bonsi et al., 2008).  In addition, N- 

and P- type Ca2+ channel inhibition by mAChR activity reduces Ca2+ entry into ChIs by 

acting through Gi/o proteins (Yan and Surmeier, 1996).  N- and P- type Ca2+ channels are 

commonly found at axonal terminals of other cell types, and inhibition of these channels 

in ChIs presumably acts to reduce transmitter release (Dunlap et al., 1995).  In mice 

lacking either M4 or M2 and M4 mAChRs, standard stimulation protocols failed to induce 

corticostriatal LTD onto MSNs confirming the necessity of these receptors for this form 

of plasticity (Bonsi et al., 2008).   Muscarinic autoreceptors clearly provide an important 

brake for the striatal cholinergic system, and the dysregulation of these receptors may 

contribute to Parkinson’s disease symptoms (Table 2; Pisani et al., 2007). 
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1.3.4 ACh signaling on striatal afferent axon terminals 

 

Glutamatergic and dopaminergic axon terminals within the striatum express ACh 

receptors (Hersch et al., 1994; Jones et al., 2001), and cholinergic control of glutamate 

and dopamine release represents a powerful method of shaping striatal output (Table 3).  

By recording from MSNs in striatal slices, it was shown that M2 and M3 mAChR agonists 

reduced the amplitude of evoked EPSPs, and it is believed that this occurs through the 

reduction of Q – type Ca2+ channel activity and subsequent decrease of transmitter 

release from glutamatergic terminals (Calabresi et al., 1998b; Barral et al., 1999).  In line 

with this finding, it was recently shown that individual action potentials from cholinergic 

interneurons control glutamate release upon MSNs and other cholinergic interneurons by 

acting through presynaptic mAChRs (Pakhotin and Bracci, 2007).  Likewise, muscarinic 

receptor activity modulates dopamine release from terminals of axons arising from 

midbrain nuclei, yet studies of muscarinic control of DA release contradict and the 

different findings may result from variable expression of mAChR subtypes on DAergic 

terminals.  For example, in vivo microdialysis studies report that M1 – like receptor 

activation increases while M2 – like receptor activation decreases striatal DA levels (Xu 

et al., 1989; Smolders et al., 1997), however knockout of M1 and M2 receptors failed to 

alter dopamine release evoked by a general muscarinic agonist (oxotremorine; Zhang et 

al., 2002a). 

In contrast, nAChRs clearly, and powerfully, regulate striatal DA release by 

acting through β2 – containing nAChRs on dopaminergic axon terminals (Jones et al., 

2001; Rice and Cragg, 2004).  Specifically, voltammetric measurements of DA in striatal 

slices show that the β2 – containing nAChR antagonist, DHβE, decreases action potential 

– dependent DA release, indicating that nAChR activity enhances striatal DA release 
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from single action potentials (Zhou et al., 2001).  Moreover, this nAChR – dependent 

enhancement contributes to a use – dependent short – term depression of DA release 

during high frequency DA neuron activity by significantly reducing the number of 

available DA – carrying vesicles to be released during later spikes (Cragg, 2003).  Thus 

nAChR activity enhances release of DA from single DA neuron action potentials but 

limits DA release during high – frequency periods of DA neuron firing. 

 

1.4 DOPAMINE AND THE STRIATUM 

 

Axons originating from dopaminergic neurons in the midbrain branch extensively 

within the striatum to form a broad network (Prensa and Parent, 2001), and labeling 

studies paired with ultrastructural evidence indicate that cholinergic and dopaminergic 

axons physically intertwine within the striatum (Contant et al., 1996; Descarries and 

Mechawar, 2000; Zhou et al., 2001).  Like striatal ChIs, midbrain DA neurons are 

tonically active both in vivo and in vitro, and changes in their activity are known to 

encode information regarding reward – relevant events (Schultz et al., 1997).  MSNs and 

striatal interneurons express DA receptors and are targets of dopaminergic axons 

(Centonze et al., 2003; Maurice et al., 2004; Surmeier et al., 2007), however DA, like 

ACh, is thought to influence these targets mainly through volume transmission (Grace, 

1991; Barbour and Hausser, 1997).  The convergence and similarity of cholinergic and 

dopaminergic systems within the striatum suggests a close functional interaction between 

these two neurotransmitter systems. 
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1.4.1 Dopamine signaling on medium spiny neurons 

 

As mentioned previously, MSNs are divided into two populations based largely 

on their axonal projections.  Each population differentially expresses either D1 or D2 

receptors.  Striatonigral MSNs project to the SNr and GPi and express D1 receptors, 

while the striatopallidal MSNs project to the GPe and express D2 receptors.  Classically, 

activation of D1 receptors excites direct pathway MSNs whereas D2 receptor activation 

reduces indirect pathway MSN excitability, however these generalizations are not 

completely accurate.  The effects of DA signaling are more complicated for at least two 

reasons.  First, DA release occurs on two timescales.  DA neurons are tonically active and 

fire intrinsically – driven action potentials at 1 – 10 Hz in vivo, but these neurons also fire 

brief groups of action potentials at a higher frequency, or ‘bursts’, in response to specific 

environmental stimuli.  Second, MSNs transition between two states, and DA signaling 

affects each state differently (Table 1). 

 

1.4.1.1 Modulation of striatonigral MSN function by D1 receptors 

 

D1 receptors on MSNs couple to Golfα to drive phosphorylation by PKA through 

an adenylyl cyclase/ cAMP – dependent cascade (Herve et al., 1995; Zhuang et al., 

2000), and the results of D1 receptor activation differ depending on the state of the MSN.  

For MSNs in the downstate, activation of this pathway modulates voltage – gated and 

ionotropic receptor channels to promote upstate transitions.  The dominating features of 

MSN upstate transitions are the closure or inactivation of several K+ channels (Kir2, Kv1, 

and Kv4) and reduced SK channel opening (Wickens and Wilson, 1998), and D1 receptor 

activation works to promotes these changes.  Additionally, phosphorylation resulting 
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from D1 receptor signaling increases L-type Ca2+ (Cav 1.2 and Cav 1.3) channel 

openings, which has been shown to promote upstates in slices (Vergara et al., 2003), and 

also reduces SK channel activity by reducing Ca2+ entry through Cav2 Ca2+  channels 

(Vilchis et al., 2000).  The result of these changes is to promote the excitability of direct 

pathway MSNs and enhance the probability that glutamatergic input will evoke transition 

to the upstate and action potential firing. 

In contrast, D1 receptor activation limits action potential firing during the upstate 

of MSNs by reducing voltage – dependent Na+ channel function.  D1 receptor - 

dependent PKA phosphorylation of the pore – forming Na+ channel subunit leads to a 

transition into a non-conducting state that reverses only upon hyperpolarization 

associated with return to a downstate (Surmeier et al., 1992; Carr et al., 2003).  It is 

believed that limited action potential generation by Na+ channel phosphorylation serves 

to either prevent weaker glutamatergic input to evoke MSN firing or to act as a brake 

upon firing and encourage transition to the downstate. 

D1 receptor signaling on MSNs induces longer lasting changes as well.  Notably, 

surface expression of AMPA and NMDA receptors is increased by D1 receptor – 

dependent PKA activity (Snyder et al., 2000; Hallett et al., 2006).  The trafficking 

pathway remains poorly defined, but it is known to require FYN kinase and the striatal 

enriched protein phosphatase (STEP) (Braithwaite et al., 2006).  In addition, studies in 

vitro have demonstrated LTP after high frequency stimulation of corticostriatal afferents 

(Kerr and Wickens, 2001; Centonze et al., 2003).  This LTP required co-activation of D1 

and NMDA receptors but did not depend upon Ca2+ entry from L-type Ca2+ channels.  

This evidence suggests that coincident dopaminergic and glutamatergic signaling results 

in the strengthening of synapses.  As a result, the cumulative effect of D1 signaling upon 

striatonigral MSNs appears to enhance the excitability of these neurons by promoting 
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upstate transitions and strengthening of synapses, however D1 receptor activation also 

reduces the firing of these neurons. 

 

1.4.1.2 Modulation of striatopallidal MSN function by D2 receptors 

 

D2 receptors are highly expressed on striatopallidal MSNs, and like the activation 

of D1 receptors on striatonigral MSNs, these subunits modulate ionotropic and voltage 

gated currents to influence the downstate and upstate responses of MSNs to glutamatergic 

input.  

D2 receptor activation stabilizes the downstate of striatopallidal MSNs by 

affecting L – type Ca2+ channels, Kir K+ channels, and Nav 1.1 channels via the D2 – 

coupled Gi/o protein cascade.  Gβγ activates phospholipase C (PLC) to induce IP3 – 

dependent Ca2+ release from intracellular stores.  This Ca2+ can be taken up by 

calmodulin which ultimately reduces L – type Ca2+ (CaV 1.3) channel activity by acting 

on protein phosphatase 2B (Hernandez-Lopez et al., 2000).  Unlike other L – type Ca2+ 

channels which are high – voltage activated, CaV 1.3 channels activate in response to 

modest depolarization (Koschak et al., 2001; Olson et al., 2005) and their inhibition by 

D2 receptor activation results in a reduction in spiking (Hernandez-Lopez et al., 2000; 

Olson et al., 2005).  Additionally, Gβγ releases diacylgylcerol (DAG) to stimulate protein 

kinase C (PKC) and reduce Nav 1.1 Na+ channel opening (Surmeier et al., 1992).  This 

mechanism likely works by augmenting slow inactivation of Na+ channels (see above), 

and functionally limits MSN spiking.  Finally, an enhancement in Kir channel opening 

stabilizes the downstate of MSNs thereby increasing the threshold that must be overcome 

by excitatory input to induce an upstate transition (Freedman and Weight, 1989). 
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D2 receptor activation also reduces the excitability of MSNs by reducing the 

number of functional AMPA receptors available in the postsynaptic membrane.  Studies 

in slices have suggest that D2 receptor activation of Gαi subunits produces 

dephosphorylation of GluR1 at S845 (Hakansson et al., 2006).  Previous studies have 

shown that phosphorylation of S845 produces trafficking of GluR1 subunits to the 

membrane and increases AMPA channel conductance (Roche et al., 1996; Banke et al., 

2000), thus dephosphorylation should promote trafficking of GluR1 away from the 

membrane.  Indeed, D2 receptor activation reduced AMPA receptor currents in 

dissociated MSNs (Hernandez-Echeagaray et al., 2004). 

In contrast to the depressing actions of Gβγ during striatopallidal MSN downstates, 

D2 activation of this protein enhances firing of striatopallidal MSNs during upstates.  

Cav2 Ca2+ channel inhibition by Gβγ reduces Ca2+ - dependent K+ entry (SK channel) 

during action potential AHPs and this reduces intervals between spikes (Salgado et al., 

2005).  Thus like D1 receptor signaling on striatonigral MSNs, D2 signaling on 

striatopallidal MSNs elicits variable responses during downstates and upstates.  D2 

signaling enhances the stability of the downstate, but once in the upstate D2 signaling 

acts to shorten the time between action potentials to presumably increase the efficacy of 

MSN signaling. 
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D1 effects 
Striatonigral MSNs 

D2 effects 
Striatopallidal MSNs 

Downstate Upstate Downstate Upstate 

↓ K Channel 
function (Kir2, Kv1, 
Kv4, SK) 

↓ Voltage gated Na 
channel function 

↓ L - type Ca 
channel function 
(CaV 1.3) 

↑ Cav 2 Ca channel 
inhibition (reduces 
SK current) 

↑ L - type Ca 
channel function 
(CaV 1.2 and 1.3) 

↑ AMPA and 
NMDA surface 
expression 

↓ Nav1 channel 
function 

 

↑ N and P/Q type 
Ca channel function 
(CaV 2.2 and 2.1) 

D1 receptors are 
required for LTP 

↓ AMPA receptor 
surface expression 

 

 

Table 1. Effects of dopamine signaling upon medium spiny neurons 
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1.4.2 Long term depression of corticostriatal synapses upon MSNs 

 

Long term depression (LTD) of glutamatergic neurostransmission can be induced 

by paring high frequency stimulation with postsynaptic depolarization and has been 

observed in both direct and indirect pathway MSNs (Calabresi et al., 1992a; Calabresi et 

al., 1992b; Lovinger et al., 1993; Wang et al., 2006).  This LTD is most likely induced 

postsynaptically via calcium entry from L – type Ca2+ (Cav 1.3) channels combined with 

signaling through mGluRs, and it is well established that the induction of this LTD is 

dependent upon D2 receptor activation (Calabresi et al., 1992a; Calabresi et al., 1992b; 

Wang et al., 2006).  The differential expression of dopamine receptors by the two 

populations of MSNs suggests that the location of the D2 receptor involved in 

corticostriatal LTD may not be located on MSNs.  Indeed, recent evidence indicates that 

corticostriatal LTD depends upon D2 receptor – dependent inhibition of ChI firing and 

subsequent disinhibition of Cav 1.3 Ca2+ channels on MSN terminals by reduced M1 

muscarinic receptor activity.  The resulting increase of Ca2+ within the spine produces 

endocannabinoid release into the synaptic cleft and CB1 – dependent depression of 

glutamate release from corticostriatal terminals (Wang et al., 2006).   

LTD of glutamatergic synapses upon MSNs is also induced by dopamine – 

dependent release of nitric oxide.  As mentioned earlier, NOS staining selectively 

identifies PLTS interneurons within the striatum, and burst firing by midbrain dopamine 

neurons results in NOS activation in vivo (Sammut et al., 2006).  Dopamine – dependent 

NOS activity in these cells requires D1 – family DA receptor activation, and 

pharmacological stimulation of these receptors on PLTS interneurons produces NO 

release and LTD induction (Centonze et al., 2003).   
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1.4.3 Dopamine signaling on fast spiking interneurons and PLTS interneurons 

 

As previously described, phasic DA neuron signaling elicits striatal NOS activity 

presumably from PLTS interneurons.  Thus, as striatal interneurons act as feedforward 

modulators of MSN output, DA – dependent regulation of striatal interneurons adds to 

the complexity of dopaminergic modulation of striatal output (Table 2).  Both FSIs and 

PLTS interneurons express DA receptors and receive dopaminergic innervation (Kubota 

et al., 1988; Kawaguchi et al., 1995), and in vitro studies report that DA application 

depolarizes the membranes and increases the input resistance of both cell types (Bracci et 

al., 2002; Centonze et al., 2002).  In both interneuron populations, DA acts 

postsynaptically through D1 – like receptors (Centonze et al., 2003) while D2 receptor 

activation fails to alter resting membrane conductances.  However, DA – dependent 

depolarization of FSIs augmented IPSCs on MSNs in only a subset of recorded neuron 

pairs suggesting that some FSIs may be more responsive to DA than others (Tecuapetla et 

al., 2007).  Regardless, it stands that dopaminergic enhancement of striatal GABAergic 

interneuron excitability extends the inhibitory power of DA.  Not only can DA inhibit 

MSNs directly, but DA – dependent enhancement of GABAergic signaling upon MSNs 

also provides a powerful mechanism to limit striatal output. 

 

1.4.4 Dopamine signaling on cholinergic interneurons 

 

Dopaminergic regulation of ChI output is mediated by D2 and D1 – like DA 

receptors (Table 2).  Specifically, D1 – like receptor activation increases striatal 
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acetylcholine release in vivo, while spontaneous acetylcholine release is reduced by D2 

receptor activation (Damsma et al., 1990; DeBoer and Abercrombie, 1996).  DA 

depolarizes ChIs through D1 receptor activation of an adenylyl cyclase – cAMP 

dependent pathway that closes a resting K+ conductance and opens a nonselective cation 

conductance (Aosaki et al., 1998).  Membrane depolarization results in an increase in the 

spontaneous firing frequency of ChIs that likely raises the ambient level of striatal ACh.  

Paradoxically, D1 – like receptor activation also enhances GABAA currents in ChIs (Yan 

and Surmeier, 1997).  This study reported that the only D1 family receptor expressed by 

ChIs is the D5 receptor, and that D5 receptor activation triggers a cascade involving PKA 

and PP1 to boost GABAA currents.  Centonze et al confirmed that D5 receptors are 

primarily responsible for the D1 – like DA effect upon ChIs by using D1 knockout mice 

(Centonze et al., 2003).  Moreover, D5 receptors are required for the induction of LTP of 

glutamatergic input to ChIs (Suzuki et al., 2001).  Thus it appears that D5 receptors 

perform a dual regulatory function upon striatal ACh by both enhancing and reducing the 

excitability of ChIs. 

Dopamine D2 receptors are located on somatodendritic areas and on the axons of 

cholinergic inteneurons (Alcantara et al., 2003).  Activation of D2 receptors on ChIs 

reduces striatal ACh levels by reducing autonomous spiking and by reducing transmitter 

release (DeBoer and Abercrombie, 1996; Yan and Surmeier, 1997; Deng et al., 2007).  

D2 signaling reduces ChI firing by stabilizing Na+ channels in a slow – inactivating state 

(Maurice et al., 2004) and by increasing currents through HCN channels ( Ih ;Deng et al., 

2007).  Functionally, these effects decrease the frequency of spontaneous action 

potentials in cholinergic interneurons and reduce the ambient concentration of striatal 

ACh.  Additionally, D2 receptors suppress N-type Ca2+ channels to presumably reduce 
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striatal ACh efflux from ChI terminals (Yan and Surmeier, 1997).  The combined result 

of D2 activation upon ChIs is a robust decrease in ambient ACh levels. 

 

1.4.5 Dopamine signaling on striatal afferent axon terminals 

 

D2 receptors, but not D1 receptors, are located on corticostriatal terminals as well 

as dopaminergic terminals within the striatum (Sesack et al., 1994; Wang and Pickel, 

2002), and signaling through these terminal D2 receptors provides yet another powerful 

control point for DA in the striatum (Table 3).  D2 receptor activation on corticostriatal 

terminals inhibits glutamate release in a manner that limits glutamate release from only 

“weaker” terminals (Bamford et al., 2004a; Bamford et al., 2004b).  That is, D2 

activation provides greater inhibition to terminals with a low probability of release but 

leaves terminals with a high probability of release relatively unaffected.  Moreover, D2 

inhibition of corticostriatal glutamate release was substantially greater when firing was 

evoked at higher frequencies (10 – 20 Hz), suggesting that DA signaling on corticostriatal 

terminals functions as a low – pass filter for weak terminals.  The end result is that DA 

limits the efficacy of signaling through weak glutamatergic terminals but allows signaling 

through strong terminals (Horvitz, 2002). 

D2 receptors located on dopaminergic dendrites and terminals within the striatum 

also inhibit neurotransmitter release (Kennedy et al., 1992; Cragg and Greenfield, 1997).  

However, D2 – dependent inhibition of DA release may depend upon the location of the 

terminals within the striatum (Cragg et al., 1997; Cragg and Greenfield, 1997).  The SNc 

and VTA project to different areas of the striatum, and significantly less D2 DA receptor 

mRNA was found in SNc neurons compared to those in the VTA (Hurd et al., 1994; 

Haber et al., 1995).  The mechanism of inhibition of dopaminergic terminals by D2 
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receptors is not completely understood but may work through reducing N and P/Q – type 

Ca2+ channel currents at terminals (Cardozo and Bean, 1995).  Autoreceptor – dependent 

inhibition of DA release provides a mechanism for feedback inhibition of DA neuron 

activity within the striatum, presumably to maintain homeostatic levels of ambient DA in 

this brain area.  
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Dopaminergic Cholinergic 
 

D1 D2 nACh mACh 

ChI 

Membrane 
depolarization 

 
↑ GABAA 
current 

↓ ACh release 
 

↓Na channel 
function 

 
↑ HCN current 

unknown 
↓ ACh release 

 
membrane 

hyperpolarization 

FSI Membrane 
depolarization 

↓ GABA 
release 

membrane 
depolarization no effect 

PLTS Membrane 
depolarization unknown membrane 

depolarization no effect 

Calretinin 
positive unknown unknown unknown unknown 

 

Table 2. Dopaminergic and cholinergic modulation of striatal interneurons 
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Dopaminergic Cholinergic 
 

D1 D2 nACh mACh 

Glutamatergic 
terminal no effect ↓ release at 

weak terminal unknown ↓ release 

Dopaminergic 
terminal no effect ↓ release of DA ↑ release by 

single AP ↓ release 

Table 3. Dopaminergic and cholinergic modulation of striatal afferent terminals 
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1.5 DOPAMINERGIC AND CHOLINERGIC MODULATION OF STRIATAL OUTPUT 

 

Early clinical studies demonstrating the effectiveness of ACh antagonists and DA 

agonists for the treatment of Parkinson’s disease led to the proposal that ACh and DA 

exert opposing actions in the striatum (Barbeau, 1962).  Support for the balance 

hypothesis is contributed by observations of each system during associative learning 

tasks.  For instance, in vivo studies illustrate that salient reward – relevant stimuli induce 

coincident but opposing changes in the tonic firing patterns of both midbrain DA neurons 

and striatal TANs (Aosaki et al., 1994b; Schultz, 1998; Morris et al., 2004).  The firing 

rate of midbrain DA neurons increases in response to a primary reward or a conditioned 

cue predicting a reward while TAN firing is transiently suppressed (Schultz, 1986; 

Aosaki et al., 1994b).  

Additionally, several lines of physiological evidence support the hypothesis that 

ACh and DA balance the other’s effects within the striatum.  These include the spatial 

overlap of the cholinergic and dopaminergic systems in the striatum (Zhou et al., 2002), 

dopaminergic signaling on most targets including MSNs and glutamatergic terminals, and 

cholinergic signaling on MSNs and DA terminals. 

One theory regarding the antagonistic interaction between ACh and DA views the 

dopaminergic system as a mechanism that limits the effectiveness of weak glutamatergic 

inputs to elicit striatal output while enhancing the effectiveness of strong glutamatergic 

signals to result in striatal output (Nicola et al., 2000; Horvitz, 2002).  Here, combined 

pre- and postsynaptic actions of DA reduce the ability of glutamate to evoke MSN output 

such that only strong, converging cortical input effectively induces MSNs to fire action 

potentials.  Moreover, when glutamatergic inputs are strong enough to overcome the 
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suppressing effect of DA, DA signaling then facilitates MSN output.  The persistent DA 

receptor activation resulting from tonic DA neuron firing therefore, sets a threshold that 

glutamatergic input must overcome to elicit striatal output and then augments MSN 

output when the threshold has been surpassed.  In contrast, when strong glutamatergic 

signaling occurs in coincidence with the phasic DA signal, MSN output is enhanced over 

the level provided by tonic DA.  Yet when the phasic DA signal occurs independently of 

strong glutamatergic signaling, MSN output is further suppressed.  The interaction of 

dopaminergic signaling upon striatal afferent terminals, interneurons, and MSNs 

presumably underlies the mechanism for this hypothesis (Table 4).   

On the other hand, the DA – ACh balance hypothesis predicts that ACh opposes 

the threshold set by the tonic DA signal.  Indeed, persistent mAChR activation on MSNs 

by tonic ChI firing antagonizes the effects of tonic DA by increasing postsynaptic 

excitability via membrane depolarization (Calabresi et al., 2000).  In this regard, the 

balance of the tonic levels of ACh and DA helps to set a threshold that glutamatergic 

input must overcome to elicit striatal output.  However, the functions of the striatal 

cholinergic system extend beyond the role of ACh to balance DA.  For example, 

cholinerigic signaling reduces glutamate release, enhances DA release, and increases the 

excitability of FSIs (Table 4).  Each of these effects contrast with the idea that ACh acts 

to enhance the excitability of the striatum, and clearly point to other roles for ACh 

signaling within the striatum. 

There are at least four additional roles for the cholinergic system of the striatum.  

1) Muscarinic autoreceptors on cholinergic axon terminals underlie feedback regulation 

of ACh release.  2) nAChRs enhance release of DA during tonic DA neuron firing, but 

reduce DA release during high – frequency DA neuron firing.  Therefore, DA release is 

enhanced when DA bursts coincide with pauses in ChI firing.  3) mAChRs suppress 
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glutamate release from glutamatergic terminals such that a pause in ChI firing again 

functionally enhances glutamate release.  4) nAChR signaling depolarizes FSIs to 

enhance GABAergic inhbition within the striatum.  Notably, the combined effects of 

these cholinergic mechanisms can be reconciled with the hypothesis that the phasic signal 

of the cholinergic system, like the phasic dopaminergic signal, establishes conditions in 

the striatum that favor the ability of coincident glutamatergic signaling to elicit striatal 

output.  According to this idea, a pause in ChI firing enhances DA release, reduces 

inhibition of glutamate release, and decreases inhibition of MSNs by FSIs.  Each of these 

effects occurs in the area of the striatum targeted by the topographic glutamatergic inputs.  

Additionally, outside the target area, a pause in ChI firing results in decreased MSN 

excitability and increased GABA release.  In this respect, the cholinergic system 

promotes signaling through the targeted area of the striatum and reduces the possibility of 

signaling outside the target area. 
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Tonic ACh effects Phasic ACh effects 
(Pause in tonic firing) 

muscarinic nicotinic muscarinic nicotinic 

↓ DA release ↑ DA release relieve inhibition of 
DA terminals ↑↑ DA release 

↓ ACh release ↑ FSI excitability relieve inhibition of 
ACh terminals 

relieve FSI 
excitability 

↓ GABA release 
from FSIs  relieve inhibition of 

FSI terminals  

↓ Glutamate release  relieve inhibition of 
glutamate terminals  

↑ MSN excitability  relieve excitability 
of MSNs  

 

Table 4. Tonic versus phasic effects of dopamine signaling in the striatum 
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1.6 HYPOTHESIS AND SPECIFIC AIMS 

 

ChIs are thought to correspond to the tonically active neurons (TANs) recorded in 

vivo, which respond to sensory stimuli with a transient depression, or pause, of tonic 

firing during sensorimotor conditioning (Wilson et al., 1990; Aosaki et al., 1994b).  

These neurons are spread throughout the striatum and give rise to extensive axonal arbors 

forming a dense plexus of cholinergic fibers (Zhou et al., 2002).  Notably, despite the 

topographical arrangement of striatal inputs and evidence suggesting that the TAN pause 

results from thalamostriatal signaling, TANs respond as a population during sensorimotor 

conditioning (Apicella, 2007).  Indeed, the percentage of TANs that respond to a stimulus 

directly correlates with the probability of the stimulus to induce a motor response 

(Blazquez et al., 2002), suggesting that striatal output can be dependent upon TAN 

activity. 

Accumulating evidence indicates an important role of the local microcircuitry in 

regulating the activity of striatal projection neurons, the MSNs.  Spiny neurons form a 

weak lateral inhibitory network among themselves via local axon collaterals, yet 

feedforward signaling by striatal interneurons exerts more powerful control over MSN 

excitability.  For example, single action potentials from one FSI can inhibit MSN firing 

(Koos and Tepper, 1999), and as described previously, at least two types of GABAergic 

interneurons exist in the striatum along with FSIs.  These are the PLTS interneuron and 

the calretinin – positive interneuron.  PLTS interneurons and MSNs, but not FSIs, make 

synaptic contacts with ChIs. Local electrical stimulation has revealed that GABAergic 

input can delay action potential firing of ChIs (Bennett and Wilson, 1998), and electrical 

stimulation of cortico- and thalamostriatal glutamatergic fibers produces monosynaptic 
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EPSPs followed by polysynaptic GABAA IPSPs in cholinergic interneurons (Suzuki et 

al., 2001).  However, the regulation of ChIs by the striatal GABAergic network is not 

completely understood, and these studies suggest a role for the feedforward modulation 

of ChI function by GABAergic neurons within the striatum.  The working hypothesis of 

this dissertation is that striatal GABAergic neurons form an inhibitory network among 

cholinergic interneurons.  The existence of such a network may reconcile evidence 

illustrating that TANs respond to specific sensory cues as a population spread throughout 

the striatum with evidence that the striatal inputs likely to transmit the relevant sensory 

cues to TANs target the striatum topographically. 

The first specific aim will test the hypothesis that polysynaptic GABAergic 

inhibition transiently suppresses the tonic firing of striatal cholinergic interneurons.  For 

this aim, GABAergic responses evoked by intra – striatal synaptic stimulation will be 

pharmacologically isolated in ChIs under whole cell voltage and current clamp.  

GABAergic IPSCs will be characterized based on physiological and pharmacological 

tests, and then the effect of evoked polysynaptic IPSCs on ChI firing will be evaluated. 

The second specific aim will test the hypothesis that dopamine receptor activation 

modulates polysynaptic inhibition upon cholinergic interneurons of the striatum.  As 

explained above, strong evidence exists linking the striatal cholinergic network with the 

axonal network formed by midbrain DA neurons projecting to the striatum. Therefore, 

this aim will monitor changes in polysynaptic inhibitory responses in ChIs in response to 

pharmacological manipulation of DA receptors and striatal DA concentration in order to 

identify the type and location of DA receptor located in the polysynaptic circuit.  
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Chapter 2: Materials and methods 

 

2.1 SLICES AND SOLUTIONS 

 

All animal procedures were performed in accordance with the NIH guideline and 

approved by the Institutional Animal Care and Use Committee at UT Austin.  Oblique 

horizontal slices (30-45°, 230 µm) containing the dorsal striatum were prepared from 

male Sprague-Dawley rats (21-28 day).  Slices were cut using a vibratome (VT1000S; 

Leica Microsystems, Bannockburn, IL) in ice-cold saline containing (in mM): 2.5 KCl, 

1.25 NaH2PO4, 7.5 MgCl2, 0.5 CaCl2, 10 glucose, 205 sucrose, 25 NaHCO3 (saturated 

with 95% O2 and 5% CO2), and then incubated at 35°C for >1 hr in physiological saline 

containing (in mM): 126 NaCl, 2.5 KCl, 1.2 NaH2PO4, 1.2 MgCl2, 2.4 CaCl2, 11 glucose, 

21.4 NaHCO3, 5 kynurenic acid (saturated with 95% O2 and 5% CO2, ~295 mOsm/kg).  

Recordings were made at 35°C in the same saline (without kynurenic acid) perfused at 2-

3 ml/min. 

 

2.2 ELECTROPHYSIOLOGICAL RECORDINGS 

 

Cells were visualized using an upright microscope (BX51WI; Olympus America, 

Center Valley, PA) with IR/DIC or oblique illumination optics.  Whole-cell recordings 

were made with borosilicate glass pipettes (1.6-2.2 MΩ) filled with internal solution 

containing (in mM): 115 K-methylsulfate, 20 KCl, 1.5 MgCl2, 10 HEPES, 0.025 EGTA, 

2 Mg-ATP, 0.2 Na2-GTP, and 10 Na2 phosphocreatine (pH 7.25-7.3, ~280 mOsm/kg).  
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Data were acquired using a Multiclamp 700A or 700B amplifier (Molecular Devices, 

Union City, CA), filtered at 2-5 kHz, digitized at 5-20 kHz, and collected using Axograph 

X (Axograph Scientific, Sydney, Australia).  The membrane potential was corrected for a 

liquid junction potential of 7 mV. 

 

2.3 DOPAMINE DEPLETION 

 

Rats were injected intraperitoneally with the vesicular monoamine transporter 

inhibitor reserpine (5 mg/kg, 24 hr prior to dissection) and the tyrosine hydroxylase 

inhibitor α-methyl-para-tyrosine (AMPT; 300 mg/kg, 4 hr before dissection, plus 200 

mg/kg, 2 hr before dissection).  Slices were pre-incubated in reserpine (1 µM), AMPT 

(30 µM), and D-amphetamine (1 µM), and recordings were done in the continuous 

presence of reserpine (1 µM) and AMPT (30 µM) to ensure complete depletion of 

dopamine. 

 

2.4 DRUGS 

 

6,7-dinitroquinoxaline-2,3-dione (DNQX), 4-hydroxyquinoline-2-carboxylic acid 

(kynurenic acid), D-(-)-2-amino-5-phosphonopentanoic acid (APV), 3-((R)-2-

carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP), (5R,10S)-(-)-methyl-10,11-

dihydro-5H-dibenzo[a,d]cyclohepten-5-imine maleate (MK-801), dihydro-β-erythroidine 

hydrobromide (DHβE), and (R)-(+)-7-Chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-

tetrahydro-1H-3-benzazepine hydrochloride (SCH23390) were obtained from Tocris 
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Bioscience (Ellisville, MO).  All other chemicals were obtained from Sigma/RBI (St. 

Louis, MO). 

 

2.5 DATA ANALYSIS 

 

Data are expressed as means ± SEM.  Statistical significance was determined with 

Student’s t test.  The difference was considered significant at p < 0.05.  The onset of 

suppression in tonic firing was defined as the first of three consecutive bins (bin width = 

20 ms) that deviated significantly from the baseline firing frequency before the stimulus, 

whereas the offset was defined as the first of three consecutive bins that returned to the 

baseline level (Aosaki et al 1995). 
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Chapter 3: Results 

 

3.1 AIM 1: POLYSYNAPTIC GABAERGIC INHIBITION TRANSIENTLY SUPPRESSES THE 
TONIC FIRING OF STRIATAL CHOLINERGIC INTERNEURONS 

 

3.1.1 Polysynaptic GABAA IPSCs in cholinergic interneurons 

 

Cholinergic interneurons were identified by their large soma (25-50 µm) and 

unique electrophysiological properties (Fig. 3A,B), such as spontaneous action potential 

firing, a long-duration afterhyperpolarization, and a depolarizing sag in response to 

hyperpolarizing current injection (Wilson, 2005; Sullivan et al., 2008).  In order to 

investigate local synaptic inputs onto these neurons, we made whole-cell voltage clamp 

recordings at a holding potential of -87 mV and measured synaptic currents evoked every 

20 s by intrastriatal stimulation using a bipolar electrode (100-200 µm tip separation) 

placed 100-300 µm from the recorded cell.  This causes stimulation of both intrinsic 

fibers from striatal neurons and extrinsic inputs from other structures.  Recordings were 

done in the presence of an AMPA/kainate receptor antagonist DNQX (10 µM) to 

eliminate responses produced by stimulation of glutamatergic fibers from the cortex and 

thalamus (Lapper and Bolam, 1992).  A single stimulus induced compound postsynaptic 

currents (PSCs) containing multiple peaks in 7 cells tested with various stimulus 

intensities (50-800 µA, 0.2 ms) (Fig. 3C).  At threshold intensity (50-150 µA), a single 

peak (150 ± 29 pA) was elicited with a long latency (14.2 ± 0.6 ms) after the stimulus.  

The PSC increased in amplitude, duration, and number of peaks with an increase in 

stimulus intensity.  At the same time, the onset latency became shorter up to a certain 
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level in each cell, ranging from 6.6 to 10.8 ms (8.2 ± 0.7 ms), consistent with the idea that 

it is evoked polysynaptically.  Higher intensity stimulation produced an additional 

component (30-200 pA) that occurred with a much shorter latency (1.2-3.6 ms, 2.1 ± 0.3 

ms).  The latency to this early component was not changed by further increase in stimulus 

intensity, implying that it is a monosynaptic response.  The range of the onset latency of 

the two components had no overlap.  Furthermore, the late component was selectively 

suppressed with an increase in extracellular concentrations of divalent cations (4 mM 

Ca2+ and 4 mM Mg2+, n = 4) (Fig. 4), a treatment commonly used to block polysynaptic 

responses by elevating action potential threshold (Cruikshank et al., 2002; Liao and 

Walters, 2002).  Therefore, the early and late components represent monosynaptic and 

polysynaptic PSCs, respectively. 

GABAergic transmission makes a major contribution to the striatal microcircuitry 

(Tepper and Bolam, 2004; Tepper et al., 2004).  Indeed, both monosynaptic and 

polysynaptic PSCs were completely blocked by bath application of GABAA receptor 

antagonists, GABAzine (10 µM) or picrotoxin (100 µM) (Fig. 3D,E).  Furthermore, the 

charge transfer mediated by the polysynaptic component reversed at -45 ± 3 mV (n = 12) 

(Fig. 3F), close to the estimated equilibrium potential for Cl- (ECl = -47 mV) under our 

recording conditions, as would be expected for Cl--permeable GABAA conductance.  

Together, these results demonstrate that intrastriatal stimulation produces rapid 

monosynaptic and delayed polysynaptic GABAA IPSCs in cholinergic interneurons under 

AMPA/kainate receptor blockade.  It should be noted that polysynaptic GABAA IPSCs 

were consistently elicited in all cholinergic interneurons tested for intrastriatal stimulation 

in this study.  In contrast, only monosynaptic IPSCs, without any polysynaptic IPSCs, 

were observed in spiny projection neurons (n = 8, data not shown).  These monosynaptic 

IPSCs in spiny neurons and cholinergic interneurons are most likely caused by 
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stimulation of intrinsic GABAergic fibers from striatal GABAergic neurons, although 

extrinsic GABAergic inputs from the globus pallidus may also be involved (Kita, 2007). 

It has been shown that electrical stimulation of the subcortical white matter, 

which contains cortico- and thalamostriatal glutamatergic fibers, produces polysynaptic 

GABAA IPSCs in cholinergic interneurons via AMPA receptor-dependent excitation of 

striatal GABAergic neurons (Suzuki et al., 2001).  To test if the intrastriatal stimulation 

described above can invoke this mechanism, we also recorded PSCs in the absence of 

DNQX.  Intrastriatal stimulation (200-800 µA) produced a large monosynaptic 

component (50-600 pA) with a short latency (2.6 ± 0.1 ms, n = 10) followed by a delayed 

polysynaptic component (Fig. 3D).  The early component was largely reduced by DNQX 

(10 µM) and abolished by the combination of DNQX and GABAzine (10 µM) or 

picrotoxin (100 µM), indicating that it represents a mixture of monosynaptic AMPA 

EPSCs and GABAA IPSCs.  In contrast, DNQX had no effect on the late component, 

which was abolished by subsequent application of GABAzine or picrotoxin, as described 

above (Fig. 3D,E).  Furthermore, NMDA receptor antagonists, APV (100 µM) or CPP 

(100 µM), failed to affect either the early or late component (Fig. 3E).  Therefore, 

activation of glutamatergic fibers does not contribute to the generation of polysynaptic 

GABAA IPSCs by intrastriatal stimulation.  All of the experiments hereafter were 

performed in the presence of DNQX to eliminate monosynaptic AMPA EPSCs. 
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Figure 3.  

Intrastriatal stimulation elicits monosynaptic and polysynaptic GABAA 
IPSCs in cholinergic interneurons. 

(A) Photomicrograph of a recorded cholinergic interneuron in a striatal slice.  (B) 
Representative traces of a spontaneously firing cholinergic interneuron depicting its 
response to positive and negative current injections.  (C) A series of PSC traces evoked 
by intrastriatal stimulation of various intensities.  The experiment was done in the 
presence of DNQX (10 µM).  (D) Representative traces of PSCs in control (black), in 
DNQX (red), and in DNQX plus GABAzine (10 µM; blue).  (E) Summary bar graphs 
showing the effects of DNQX (10 µM), APV (100 µM) or CPP (100 µM), and 
GABAzine (GBZ, 10 µM) or picrotoxin (PTX, 100 µM) on early monosynaptic (left) and 
late polysynaptic (right) components of PSCs.  (F) Summary graph plotting the charge 
transfer of the polysynaptic component versus the holding potential (n = 12).  The dotted 
line represents linear fit to the data. 
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Figure 4.  High divalent cation solution selectively blocks the late component of PSCs. 

(A) Time graph illustrating the effect of high divalent cation solution containing 4 
mM Ca2+ and 4 mM Mg2+ on PSCs.  Representative traces of PSCs from the same 
experiment in control and in high divalent cation solution are shown on the right.  (B) 
Summary bar graph showing the selective blockade of the late component of PSCs by 
high divalent cation solution. 
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3.1.2 β2-containing nAChRs mediate polysynaptic GABAA IPSCs 

 

It is possible that polysynaptic GABAA IPSCs are mediated by stimulation of 

local cholinergic fibers, causing excitation of striatal GABAergic neurons via nAChRs.  

To test this possibility, we examined the effects of different nAChR antagonists.  Bath 

application of general nAChR antagonists, hexamethonium (10-50 µM) or 

mecamylamine (1-10 µM), selectively abolished the polysynaptic component of GABAA 

IPSCs without affecting the early monosynaptic component (Fig. 5A,B).  MK-801, a 

commonly used NMDA receptor antagonist, is known to potently block nAChRs as well 

(Amador and Dani, 1991; Yamakura et al., 2000).  Indeed, MK-801 (20-100 µM) also 

inhibited the polysynaptic component by 92 ± 5% (n = 8) (Fig. 5B).  Furthermore, DHβE 

(100 nM), a selective antagonist of nAChRs containing β2 subunits, completely 

suppressed the polysynaptic component (Fig. 5A,B).  β2-containing nAChRs are readily 

desensitized by relatively low concentrations of nicotine (<1 µM) (Giniatullin et al., 

2005).  Consistent with the involvement of β2-containing nAChRs, the polysynaptic 

component of GABAA IPSCs was eliminated by bath application of nicotine (500 nM) 

for ~5 min (Fig. 5A-C).  Recovery from this desensitizing effect of nicotine required tens 

of minutes, in agreement with the recovery time course of the effects of nicotine on β2-

containing nAChR-mediated responses in previous studies using brain slices (Zhou et al., 

2001; Mansvelder et al., 2002).  During this slow recovery, the number of peaks in IPSCs 

gradually increased (Fig. 5A, bottom trace), suggesting a gradual increase in the number 

of spikes in GABAergic neurons mediating polysynaptic transmission.  Scopolamine (1 

µM), a muscarinic ACh receptor antagonist, had no measurable effect on either 

component of GABAA IPSCs (n = 3, data not shown).  These results demonstrate that 
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stimulation of intrastriatal cholinergic fibers excites GABAergic neurons via activation of 

β2-containing nAChRs, inducing polysynaptic GABAA IPSCs in cholinergic 

interneurons. 
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Figure 5.  β2-containing nAChRs mediate polysynaptic GABAA IPSCs. 

(A) Representative traces of GABAA IPSCs illustrating the effects of 
hexamethonium (50 µM), mecamylamine (10 µM), DHβE (100 nM), and nicotine (500 
nM).  All of these drugs selectively blocked the late polysynaptic component.  (B) Bar 
graphs summarizing the effects of hexamethonium (HEX, 10-50 µM), mecamylamine 
(MEC, 1-10 µM), DHβE (100 nM), and nicotine (500 nM) on monosynaptic (left) and 
polysynaptic (right) components of IPSCs.  (C) Time graph of a representative 
experiment depicting the effect of nicotine (500 nM) on the charge carried by 
polysynaptic GABAA IPSCs.  Note the slow time course of recovery. 
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3.1.3 Activation of a single cholinergic interneuron elicits polysynaptic GABAA 
IPSCs 

 

We next asked if activation of a single cholinergic interneuron can drive 

polysynaptic inhibition.  To test this, an unclamped action potential was evoked every 20 

s by a 2-ms depolarizing pulse in cholinergic interneurons voltage clamped at -87 mV.  

These experiments were done in the presence of a muscarinic ACh receptor antagonist 

scopolamine (1 µM).  The generation of an action potential was confirmed by a large 

action current during the voltage step (Cui et al 2007).  This resulted in a “feedback” PSC 

in the same neuron in 9 out of 428 neurons tested (197 ± 35 pA, 16.0 ± 1.2 ms latency 

from the peak of action current) (Fig. 6).  We further performed dual recordings from 

pairs of cholinergic interneurons (20-150 µm apart).  An unclamped action potential 

evoked in one neuron produced a “feedforward” PSC in the other neuron in 7 out of 199 

pairs (136 ± 50 pA, 13.8 ± 1.1 ms latency).  The mean success rate to cause a PSC with 

each action potential was 48 ± 5% in these 16 cases.  Interestingly, both feedback and 

feedforward PSCs were observed in 3 pairs.  In 2 of these 3 pairs, activation of one of the 

two neurons evoked PSCs in itself and the other neuron (an example is illustrated in Fig. 

6A-C), whereas in the other pair, PSCs were induced only in one of the two neurons by 

activation of either neuron.  In the former case, the induction of feedback PSCs and that 

of feedforward PSCs succeeded or failed together with each action potential, suggesting 

that both neurons in the pair were contacted by the same GABAergic neuron(s) (Fig. 

6B,C).  Reciprocal feedforward PSCs were not observed in 199 pairs tested.  These PSCs 

elicited by an action potential in a single presynaptic neuron routinely had only one peak, 

although 2-3 peaks were occasionally detected in 2 out of the 16 cases (Fig. 6D), 
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suggesting multiple spikes in a GABAergic neuron connecting two cholinergic 

interneurons in the pair and/or recruitment of multiple GABAergic neurons.   

Feedback (n = 5) and feedforward (n = 5) PSCs were completely abolished by 

both DHβE (100 nM) and GABAzine (10 µM) (Fig. 6B,E), consistent with the idea that 

they are polysynaptic GABAA IPSCs mediated by activation of GABAergic neurons via 

β2-containing nAChRs.  In line with this, PSCs reversed at -49 ± 3 mV (n = 3), close to 

the estimated ECl of -47 mV (Fig. 6F).  These results show that action potential firing in a 

single cholinergic interneuron can induce polysynaptic IPSCs in both itself and nearby 

cholinergic interneurons. 
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Figure 6.  Recurrent polysynaptic inhibition between single cholinergic interneurons. 

(A) Evoking an action potential in one cholinergic interneuron produced a 
feedback PSC in the same neuron as well as a feedforward PSC in the other neuron 
recorded simultaneously.  An unclamped action potential was elicited by a 2-ms 
depolarizing pulse of 80 mV from a holding potential of -87 mV.  (B) Representative 
time graph showing the effects of DHβE (100 nM) and GABAzine (10 µM) on feedback 
and feedforward PSCs.  The recording was from the same pair of cholinergic 
interneurons as in (A).  (C) Schematic diagram illustrating synaptic connections between 
the pair of cholinergic interneurons (ChIs) shown in (A) and (B).  An intermediate 
GABAergic neuron (GBN) is also depicted.  In this particular pair, stimulation of one 
cholinergic interneuron (left) produced GABAA IPSCs in both neurons, whereas 
stimulation of the other neuron (right) failed to elicit IPSCs in either neuron.  (D) An 
example trace of a feedback PSC exhibiting three distinct peaks.  (E) DHβE and 
GABAzine completely eliminated PSCs produced by activation of single cholinergic 
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interneurons in 10 experiments performed as in (B).  (F) Summary graph showing I-V 
relationship of PSCs evoked by stimulation of single cholinergic interneurons (n = 3).  
The dotted line represents linear fit to the data. 
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3.1.4 Polysynaptic GABAA IPSCs are depressed by repetitive firing 

 

Cholinergic interneurons fire tonically at ~1-8 Hz both in vitro and in vivo 

(Wilson et al., 1990; Bennett et al., 2000).  If action potentials in single cholinergic 

interneurons are capable of eliciting polysynaptic IPSCs, one would expect to observe 

many spontaneous polysynaptic IPSCs.  However, we rarely detected large spontaneous 

IPSCs (>50 pA) resembling the polysynaptic IPSC triggered by an action potential 

elicited in voltage-clamped cholinergic interneurons.  Thus, it is possible that 

polysynaptic IPSCs are depressed during repetitive firing of cholinergic interneurons.  To 

test this, we evoked a train of action potentials (5 at 2 Hz) in cholinergic interneurons that 

produced either feedback (n = 4) or feedforward (n = 1) IPSCs, and then elicited a single 

action potential with different intervals (1-10 s) after the train (Fig. 7A).  These 

recordings were done in scopolamine (1 µM).  The average success rate of a presynaptic 

action potential to evoke a polysynaptic IPSC was 59 ± 8 % for the first spike of the train 

(n = 5) (Fig. 7B,C).  However, subsequent spikes in the train completely failed to produce 

polysynaptic IPSCs, suggesting a failure of firing in GABAergic neurons mediating 

polysynaptic transmission.  The success rate gradually recovered over seconds and 

reached 60-90% of the initial value after 10 s.  There was no detectable change in the 

amplitude of polysynaptic IPSCs during the recovery period, implying that GABAergic 

synapses on the postsynaptic cholinergic interneurons were not significantly depressed.  

We further investigated this short-term depression by applying a train of 5 

intrastriatal stimuli at 2 Hz.  These experiments were done in the presence of DNQX (10 

µM), scopolamine (1 µM), and sulpiride (10 µM).  In 4 cells tested at threshold intensity 

(100-200 µA), the first stimulus in the train evoked single-peak IPSCs averaging 210 ± 
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52 pA with a latency of 13.3 ± 0.5 ms.  The mean success rate for the first stimulus to 

trigger a polysynaptic IPSC was 64 ± 9%.  The amplitude, latency, and success rate were 

comparable to the values for the IPSCs produced by an action potential elicited in a 

single cholinergic interneuron voltage clamped at -87 mV, suggesting that a single 

cholinergic fiber, likely severed from the tonically firing soma in a slice preparation, is 

stimulated at threshold intensity.  In line with this idea, the second through fifth stimuli in 

the train were completely ineffective at triggering IPSCs (Fig. 7D), similar to the spike 

train evoked in a single cholinergic interneuron.   However, when higher stimulus 

intensity (500-600 µA) was used to evoke polysynaptic IPSCs with multiple peaks, the 

fifth stimulus in the 2-Hz train still produced robust polysynaptic IPSCs: the charge 

carried by polysynaptic IPSCs evoked by the fifth stimulus was 40 ± 9% of the charge of 

those evoked by the first stimulus (n = 5) (Fig. 7D,E).  The onset latency of polysynaptic 

IPSCs was prolonged from 8.9 ± 0.5 ms for the first stimulus to 13.6 ± 0.7 ms for the 

fifth stimulus (p < 0.01), suggesting that nAChR-mediated excitation of GABAergic 

neurons was reduced during the train.  Although monosynaptic IPSCs also displayed 

some depression during the 2-Hz train, the magnitude of depression was much smaller 

than that for polysynaptic IPSCs: the amplitude of monosynaptic IPSCs elicited by the 

fifth stimulus was 77 ± 7% of the amplitude of those caused by the first stimulus (n = 4). 

Taken together, these results demonstrate that repetitive firing of cholinergic 

interneurons leads to depression of polysynaptic GABAA IPSCs mostly due to a 

reduction in cholinergic excitation of GABAergic neurons without much depression of 

GABAergic synapses onto the postsynaptic cholinergic interneurons.  However, 

simultaneous activation of multiple cholinergic fibers can partially overcome this 

depression and produce sufficient nAChR-dependent depolarizations in GABAergic 

neurons, thus reliably triggering polysynaptic IPSCs in cholinergic interneurons. 
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Figure 7. Short-term depression of polysynaptic IPSCs. 

(A) Illustration of the protocol used to evoke a train of action potentials in 
presynaptic cholinergic interneurons.  Depolarizing pulses were applied in a train of 5 at 
2 Hz, followed by a single pulse applied at various intervals after the train.  (B) Summary 
data from 5 cells tested with the protocol depicted in (A).  The success rate for a 
presynaptic action potential to evoke an IPSC is plotted for the first and second spikes in 
the train and for the single spikes evoked at different intervals (1-10 s) after the train.  
Data for the third through fifth spikes in the train, which always failed to evoke IPSCs, 
are not shown for simplicity.  (C) Traces of IPSCs from an experiment using the protocol 
in (A).  Feedforward PSCs were evoked in this particular experiment.  In each row, traces 
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of IPSCs are shown superimposed for the first spike in the train (left column) and for the 
single spike evoked at the indicated interval after the train (right column).  The number of 
successes out of the number of trials is indicated above each group of traces.  (D) 
Summary graph illustrating short-term depression of polysynaptic IPSCs evoked by a 
train of 5 intrastriatal stimuli at 2 Hz.  The success rate for each stimulus to elicit a 
polysynaptic IPSC is plotted for experiments where IPSCs were evoked using threshold 
stimulus intensity (n = 4), while the charge carried by polysynaptic IPSCs is plotted for 
experiments using suprathreshold stimulus intensity (n = 5).  (E) Representative traces of 
IPSCs induced by the first and fifth stimuli in the 2-Hz train using suprathreshold 
intensity. 
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3.1.5 Polysynaptic inhibition leads to suppression of tonic cholinergic interneuron 
firing 

 

Striatal cholinergic interneurons (i.e., TANs) display a pause of tonic firing in 

response to sensory stimuli during associative learning in vivo (Aosaki et al., 1994b; 

Apicella, 2007).  To examine how polysynaptic inhibition affects cholinergic neuron 

activity, we tested the effect of intrastriatal stimulation on the spontaneous firing of 

cholinergic interneurons recorded using cell-attached configuration.  Firing recordings 

were done in DNQX (10 µM) to prevent time-locked action potentials triggered by 

monosynaptic EPSPs and also in eticlopride (100-200 nM) to eliminate the potential 

contribution of D2 receptor-dependent inhibition of Na+ channels in cholinergic 

interneurons resulting from stimulation of dopaminergic fibers (Maurice et al., 2004).  

Under these conditions, intrastriatal stimulation (400-600 µA) produced a pronounced 

suppression of tonic firing that started ~20 ms after the stimulus and lasted for ~250 ms 

(Fig. 8).  Furthermore, GABAA antagonists, GABAzine (10 µM) or picrotoxin (100 µM), 

and a general nAChR antagonist hexamethonium (50 µM) blocked this suppression of 

tonic firing.  None of these drugs significantly changed the baseline firing frequency.  

These results demonstrate that nAChR-mediated polysynaptic GABAergic inhibition 

produces a transient suppression of cholinergic interneuron firing. 
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Figure 8.  Polysynaptic GABAA IPSCs cause transient suppression of spontaneous 
cholinergic interneuron firing. 

(A) Representative traces of the firing activity of a cholinergic interneuron in 
control and in GABAzine (10 µM).  Fifty traces are overlaid in each condition.  
Intrastriatal stimulation was applied at the time indicated by the arrow.  The baseline 
firing frequency was 1.1 Hz and 1.2 Hz in control and in GABAzine, respectively.  (B) 
Peristimulus time histograms (bin width = 20 ms) of cholinergic interneuron firing in 
control and in GABAzine (10 µM) or picrotoxin (100 µM).  Intrastriatal stimulus was 
applied at time 0.  The data were averaged from 7 cells.  The duration of the firing 
suppression in control was 260 ms in these 7 cells.  (C) Overlay of 50 traces of the firing 
of a cholinergic interneuron in control and in hexamethonium (50 µM).  The baseline 
firing frequency was 3.0 Hz and 3.3 Hz in control and in hexamethonium, respectively.  
(D) Averaged histograms in control and in hexamethonium (50 µM) from 4 cells.  The 
duration of the firing suppression was 220 ms in these 4 cells. 
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3.2 AIM 2: DOPAMINE RECEPTOR ACTIVATION MODULATES POLYSYNAPTIC 
INHIBITION UPON CHOLINERGIC INTERNEURONS OF THE STRIATUM 

 

3.2.1 Dopamine receptor activation is not required for polysynaptic IPSCs in 
cholinergic interneurons 

 

Recent evidence indicates that phasic activation of β2-containing nAChRs 

expressed on dopaminergic terminals facilitates dopamine release in the striatum (Zhou et 

al., 2001; Rice and Cragg, 2004; Zhang and Sulzer, 2004).  To examine the involvement 

of dopamine in the polysynaptic transmission, we next tested dopamine receptor 

antagonists.  Combined application of a D1-like receptor antagonist SCH 23390 (1 µM) 

and a D2-like receptor antagonist sulpiride (10 µM) had no significant effect on 

polysynaptic IPSCs (n = 4) (Fig. 9A).  Moreover, polysynaptic IPSCs were easily evoked 

in slices prepared from dopamine-depleted rats (n = 8) (Fig. 9B).  We further confirmed 

that these polysynaptic IPSCs evoked in dopamine-depleted slices were blocked by 

GABAzine (10 µM, n = 5), hexamethonium (50 µM, n = 5), or DHβE (100 nM, n = 2) 

(Fig. 9B,C).  From these results, we conclude that dopamine is not directly involved in 

the generation of nAChR-mediated polysynaptic GABAA IPSCs. 
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Figure 9.  Dopamine does not mediate polysynaptic IPSCs. 

(A) The charge carried by polysynaptic IPSCs before and after coapplication (7-
10 min) of SCH 23390 (SCH; 1 µM) and sulpiride (SLP; 10 µM) is plotted for individual 
cells (n = 4).  (B) An example trace of an IPSC having both monosynaptic and 
polysynaptic components in a cholinergic interneuron from a dopamine-depleted rat.  A 
trace (gray) in DHβE (100 nM) and that in GABAzine (10 µM) are also shown.  (C) 
Summary bar graphs illustrating the effect of GABAzine (GBZ, 10 µM) and that of 
hexamethonium (HEX, 50 µM) or DHβE (100 nM) on monosynaptic (left) and 
polysynaptic (right) components of IPSCs in cholinergic interneurons from dopamine-
depleted rats. 
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Chapter 4: Discussion 

 

The main finding of the present study is that striatal cholinergic interneurons 

communicate with each other via GABAergic neurons.  This recurrent polysynaptic 

connection among cholinergic interneurons is dependent on the activation of β2-

containing nAChRs.  Although nAChR-mediated excitation of GABAergic neurons is 

depressed during repetitive cholinergic interneuron firing, simultaneous activation of 

many cholinergic fibers by intrastriatal stimulation reliably evokes polysynaptic GABAA 

IPSCs in cholinergic interneurons, resulting in a transient suppression of tonic firing.  

These findings illustrate a novel microcircuit within the striatum that exerts powerful 

control over the firing activity of cholinergic interneurons. 

 

4.1 THE MECHANISM OF POLYSYNAPTIC TRANSMISSION 

 

Polysynaptic GABAA IPSCs described here have not been observed in previous 

studies recording synaptic responses of cholinergic interneurons in striatal slices (Bennett 

and Wilson, 1998; Calabresi et al., 1998c; Momiyama and Koga, 2001; Centonze et al., 

2003; Pakhotin and Bracci, 2007).  Although the exact reason for the discrepancy is 

unclear, it may be due to the difference in experimental conditions, such as temperature, 

location and type of the stimulating electrode, slice plane, and use of MK-801 as an 

NMDA receptor antagonist, which actually blocks nAChRs as well (Amador and Dani, 

1991; Yamakura et al., 2000).  Of particular interest is the previous report demonstrating 

that stimulation of the subcortical white matter containing both cortico- and 

thalamostriatal glutamatergic fibers results in polysynaptic GABAergic inhibition 
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through activation of AMPA receptors (Suzuki et al., 2001).  This polysynaptic 

GABAergic inhibition was observed in only ~10% of the recorded cholinergic 

interneurons, whereas polysynaptic IPSCs were invariably evoked in our case using 

intrastriatal stimulation.  It is possible that our results have characterized part of the 

pathway underlying the polysynaptic IPSCs described in this previous study.  In this 

scenario, coincident glutamatergic excitation presumably evokes synchronous firing of a 

population of cholinergic interneurons via AMPA receptors, leading to nAChR-

dependent excitation of GABAergic neurons and subsequent inhibition of cholinergic 

interneurons. 

Dopamine has been shown to play an important role in the pause response of 

tonically active cholinergic interneurons in behaving animals (Aosaki et al., 1994a; 

Watanabe and Kimura, 1998).  However, phasic dopamine release in the striatum may 

not directly trigger the pause, since it can be observed in the absence of phasic dopamine 

response under certain conditions during sensorimotor conditioning (Morris et al., 2004).  

Moreover, systemic administration of a general dopamine receptor agonist apomorphine 

can restore the pause response suppressed by infusion of dopaminergic neurotoxin into 

the striatum (Aosaki et al., 1994a), suggesting a permissive role of tonic dopamine in 

enabling pause generation. 

Dopamine receptor antagonists or dopamine depletion did not affect polysynaptic 

GABAergic inhibition.  This result rules out the scheme in which stimulation of 

cholinergic fibers indirectly excites striatal GABAergic neurons via phasic dopamine 

release triggered by activation of β2-containing nAChRs on dopaminergic terminals 

(Zhou et al., 2001; Rice and Cragg, 2004; Zhang and Sulzer, 2004).  Therefore, it is most 

likely that cholinergic fibers make direct synaptic contacts onto GABAergic neurons that 

in turn innervate cholinergic interneurons, as illustrated in Fig. 6C. 
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Evoking an action potential in a single cholinergic interneuron produced 

polysynaptic IPSCs in itself and nearby cholinergic interneurons.  It has been reported 

recently that firing of a single cholinergic interneuron leads to suppression of 

glutamatergic and GABAergic transmission onto neighboring spiny projection neurons 

and cholinergic interneurons via activation of muscarinic ACh receptors (Narushima et 

al., 2007; Pakhotin and Bracci, 2007).  Our results demonstrate that activation of a single 

cholinergic interneuron can also drive excitation of surrounding GABAergic neurons 

through activation of nAChRs.  The latency of polysynaptic IPSCs triggered by single 

cholinergic neuron activation, as well as those evoked by threshold intrastriatal 

stimulation, was fairly long (~14-16 ms), which presumably reflects the time for 

relatively small nicotinic EPSPs to elicit a spike in GABAergic neurons.  Although 

polysynaptic connectivity between single cholinergic interneurons was sparse (~3%), 

stimulation of intrastriatal cholinergic fibers was capable of eliciting polysynaptic IPSCs 

in all cholinergic interneurons tested in this study.  Hence, each cholinergic interneuron 

invariably receives input from those GABAergic neurons that are activated by local 

cholinergic input.  In other words, each cholinergic interneuron can be polysynaptically 

influenced by the activity of other cholinergic interneurons, likely reflecting extensive 

axonal arborizations of GABAergic neurons as well as cholinergic interneurons. 

Our results further showed that repetitive firing of cholinergic interneurons at 2 

Hz induces depression of nAChR-mediated transmission onto GABAergic neurons.  This 

ensures that polysynaptic inhibition of cholinergic interneurons is not constantly triggered 

by the spontaneous activity of individual cholinergic interneurons.  Therefore, 

synchronous activation of multiple cholinergic interneurons is necessary to overcome this 

depression and mediate efficient inhibition of cholinergic neuron excitability.  It remains 

to be determined whether this short-term depression is due to presynaptic depression of 
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ACh release, postsynaptic desensitization of nAChRs, or both.  Activity dependence of 

cholinergic transmission in the CNS is not well known, mainly because of the difficulty 

in evoking cholinergic synaptic responses in brain slices (Dani and Bertrand, 2007).  β2-

containing nAChRs are readily desensitized by a small but sustained elevation of ACh 

levels (Giniatullin et al., 2005).  However, removal of ACh by acetylcholinesterase at 

synapses is thought to be very rapid (~1 ms), thereby precluding significant nAChR 

desensitization by synaptically released ACh (Dani et al., 2001).  In line with this, β2-

containing nAChRs on dopaminergic terminals remain in a non-desensitized, functional 

state in the striatum despite the constant release of ACh resulting from the tonic activity 

of cholinergic interneurons (Zhou et al., 2001).  Thus, presynaptic depression may play a 

more dominant role in the short-term depression of cholinergic transmission onto 

GABAergic neurons.  Indeed, repetitive stimulation at 2-20 Hz has been shown to cause 

short-term depression of nicotinic EPSPs via a presynaptic mechanism in cervical 

sympathetic ganglion neurons (Birks and Isacoff, 1988). 

The present study strongly suggests the presence of GABAergic neurons 

expressing β2-containing nAChRs in the striatum.  In addition to GABAergic projection 

neurons, a small percentage (2-3%) of striatal neuronal population is comprised of 

different types of GABAergic interneurons (Tepper and Bolam, 2004).  Detailed 

histochemical evidence indicates that nAChR β2-subunit immunoreactivity cannot be 

detected in spiny projection neurons (Hill et al., 1993; Jones et al., 2001).  nAChR-

mediated depolarization has been recently shown in fast-spiking (FS) interneurons, 

however pharmacological examination has ruled out the involvement of β2-containing 

nAChRs (Koos and Tepper, 2002).  Furthermore, it has been reported that synaptic 

connectivity between cholinergic and FS interneurons is unidirectional, in that 

cholinergic terminals make synaptic contacts onto parvalbumin-positive FS interneurons 
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but not vice versa (Chang and Kita, 1992).  On the other hand, reciprocal synaptic 

contacts between cholinergic interneurons and neuropeptide Y-containing neurons, which 

corresponds to persistent and low-threshold spike (PLTS) interneurons, has been detected 

(Vuillet et al., 1992).  It should also be noted that PLTS interneurons have depolarized 

resting membrane potential (-50 to -60 mV) close to action potential threshold and very 

high input resistance (>500 MΩ) (Kawaguchi, 1993; Tepper and Bolam, 2004).  These 

intrinsic membrane properties, together with their elongated axonal arbors (up to 1 mm) 

(Kawaguchi, 1993; Kubota and Kawaguchi, 2000), would make PLTS interneurons 

suited for transforming small excitatory cholinergic input into extensive inhibition of 

downstream neurons. 

 

4.2 FUNCTIONAL SIGNIFICANCE OF RECURRENT INHIBITION AMONG CHOLINERGIC 
INTERNEURONS 

 

It is well established that the pause response of cholinergic interneurons, or 

TANs, to sensory cues develops during reward-based conditioning (Aosaki et al., 1994b; 

Morris et al., 2004), and the population response of these neurons has been linked to the 

behavioral output (Blazquez et al., 2002; Apicella, 2007).  Previous studies in vivo have 

indicated the important roles of glutamatergic and dopaminergic inputs in the generation 

of the pause (Aosaki et al., 1994a; Watanabe and Kimura, 1998; Matsumoto et al., 2001; 

Reynolds et al., 2004).  Accordingly, a number of studies in vitro have addressed the 

potential mechanisms underlying the pause based on the premise that it results from the 

interplay among glutamatergic and dopaminergic inputs, local GABAergic transmission, 

and intrinsic cholinergic neuron properties (Yan and Surmeier, 1997; Suzuki et al., 2001; 

Maurice et al., 2004; Wilson, 2005; Deng et al., 2008).  However, a pause mimicking the 
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in vivo pause has not been readily induced by synaptic stimulation in brain slices.  In this 

study, under AMPA receptor blockade to prevent time-locked action potentials and 

subsequent prolonged afterhyperpolarizations (Bennett et al 2000), intrastriatal 

stimulation of cholinergic fibers reliably produced a transient suppression of tonic 

cholinergic interneuron firing for ~250 ms, which is comparable to the duration of the 

pause response in behaving animals (Aosaki et al., 1995; Morris et al., 2004).  The pause 

response in vivo is frequently preceded by a small, brief (<50 ms) increase in firing 

frequency (Apicella, 2007), which represents roughly synchronized firing of a population 

of cholinergic interneurons within a short time window.  Successive small nicotinic 

EPSPs during this time window may well summate to produce sizable depolarizations in 

GABAergic interneurons, thereby driving their firing.  Therefore, the polysynaptic 

inhibitory mechanism described in this study may contribute, at least partially, to the 

generation of pause by transforming activation of a population of cholinergic 

interneurons into recurrent inhibition of a larger population of these neurons. 

 

Chapter 5: Conclusions 

 

The network of ChIs within the striatum plays a pivotal role in regulating striatal 

activity by affecting varied targets and operating over several timescales.  In a simplified 

view, the tonic activity of ChIs establishes a basal level of excitability within the 

striatum, while the phasic cholinergic signal functions to limit excitability in areas of the 

striatum not receiving coincident glutamatergic and dopaminergic inputs.  This model 

requires that ChIs (TANs) can pause simultaneously; either by receiving simultaneous 

input from striatal afferents or via connections within the striatum.   
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The primary findings of this dissertation indicate that the population of striatal 

ChIs is connected via a network of GABAergic neurons (Figure 10), and that signaling 

through this inhibitory network can suppress the firing of ChIs.  It is possible that 

signaling through the described GABAergic network among ChIs contributes to the 

pause response observed during learning.  This hypothesis relies upon evidence that 

glutamatergic axons from the thalamus provide the primary excitatory input to ChIs in 

the striatum, and that these axons target areas of the striatum topographically.  

Accordingly, the GABAergic network among striatal ChIs acts to reverse the polarity of 

the thalamic signal while also distributing the inhibition among distant ChIs.  In this 

manner, excitatory signals become inhibitory, and area – specific signals become 

generalized.  As a result, MSNs that are near the target ChI and which receive coincident 

glutamatergic and dopaminergic input while ACh is reduced, transition to an upstate to 

fire downstream.  In contrast, MSNs located away from the topographically specific 

glutamatergic and dopaminergic inputs are less excitable due to diminished mAChR 

activity and reduced inhibition of GABA release from FSI terminals.  So a pause 

mediated by a recurrent inhibitory network among ChIs promotes signaling through the 

targeted area of the striatum and reduces the possibility of signaling outside the target 

area. 
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Figure 10. Recurrent inhibitory network among cholinergic interneurons 

Diagram of the working hypothesis and findings of this dissertation.  The 
population of cholinergic interneurons (ChI) within the striatum are connected by a 
network of GABAergic neurons (GBN).   
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Additionally, the network of GABAergic neurons connecting ChIs provides a 

location for long – term plastic changes in ChI firing.  nAChR activation is required for 

activation of the GABAergic neurons in the inhibitory network among ChIs, and Ca2+ 

entry through nAChRs provides a possible source of inducing plasticity within the circuit.  

The mechanism underlying the increase in the number of TANs that pause as an animal 

learns is unclear, and plasticity dependent upon Ca2+ entry through nAChRs may underlie 

this development.  A striking benefit derived from locating the source of plasticity on the 

GABA neuron within the circuit is that the induction of plasticity will depend upon other 

striatal inputs as well.  For example, the primary source of glutamatergic input to the 

GABA neuron may arrive from a cortical area, while it is known that the majority of 

glutamatergic inputs to ChIs are thalamic, and plasticity may be dependent upon 

coincident nAChR – dependent Ca2+ entry and cortex – driven depolarization of the 

GABA neuron.  It is also possible that both thalamic and cortical inputs arrive upon the 

GABA neuron, as is the case for FSIs.  These advantages provided by the recurrent 

inhibitory network need to be elucidated through experimentation. 

Subsequent work is also needed to elucidate the possibility that DA modulates 

inhibitory signaling between ChIs via the network presented here.  As discussed 

previously, it is possible that GABAergic IPSCs participate in the pause of TAN firing 

observed in vivo during associative learning, yet DA signaling is required for the 

expression of the pause in vivo (Aosaki et al., 1994a) and not necessary for the 

polysynaptic IPSCs between ChIs presented by this dissertation.  Our findings indicate 

that polysynaptic inhibition between ChIs persists in the presence of dopamine receptor 

antagonists and in dopamine depleted slices, and this suggests that the GABAergic IPSCs 

studied in this project may not underlie the pause observed in vivo.  However, it is likely 

that the conditions for our experiments and those of Aosaki et al. fail to accurately mimic 
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the conditions found in vivo.  Specifically, the role of DA as a modulator of ionotropic 

signaling is well established, and like other striatal responses, tonic DA helps to establish 

resting conditions while phasic DA enables the response without actually causing the 

response.  Our synaptic stimulation and Aosaki’s use of systemic apomorphine probably 

overcame the modulatory capabilities of the DA system.  Presumably, the synaptic 

stimulation used in this study recruited so many cholinergic fibers at such a high intensity 

that any probable signal modulation by DA was obsolete.  Likewise, systemic 

apomorphine probably activated DA receptors in the striatum to levels above the 

maximum reached by phasic DA neuron signaling in vivo.  It would be interesting to 

observe the occurrence of the pause during local injection of selective DA receptor 

agonists in vivo. 

To conclude, this dissertation presents evidence for a novel inhibitory network 

connecting ChIs of the striatum.  The reported findings are the first to mimic the learning 

– related pause of TAN firing in a brain slice preparation.  More importantly, signaling 

through this network requires activation of nAChRs, and provides a mechanism to 

transfer the simultaneous excitation of a small number of ChIs into the inhibition of a 

widespread population of striatal ChIs. 
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