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The collision probability approach to neutron transport can be used to

obtain the energy-dependent neutron spectrum in nuclear reactor systems as

well as other quantities of interest. This method makes the approximation that

the neutron distribution is constant within homogeneous regions, or cells, in the

system. This assumption restricts geometries that can be modeled by the collision

probability approach. The geometry modeled is typically an infinite lattice of two

homogeneous cells: a fuel pin cylinder and the coolant that surrounds it. The

transport of neutrons between the homogeneous cells is done using probabilities

describing the chance that a neutron having a collision in one cell has its next

collision in another cell. These collision probabilities can be cast in terms of

escape and transmission probabilities for each cell.

Some methods exist that extend the collision probability approach to

systems composed of more than two homogeneous cells. In this work, we present

a novel collision probability method, based on previous work by Schneider et al.
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(2006a), for an arbitrary number of cells. The method operates by averaging the

transmission probabilities across cells of the same shape, and thus assumes a

certain level of homogeneity across all cells.

When using multigroup cross sections, which the collision probability

approach requires, it is necessary to consider the effect that a system’s geometry

and composition has on those multigroup cross sections. The cross sections must

be computed in a way that accounts for the resonance self-shielding that may

reduce the reaction rates in the resonance region. The process of developing self-

shielded cross sections in a heterogeneous system utilizes an escape cross section.

We compute this escape cross section using the same collision probabilities used

to obtain the energy spectrum.

Results are presented for simple two-cell systems, and preliminary results

for four-cell simulations are also given. An extension to the method is provided

that accounts for the fact that in thermal systems the assumption of homogeneity

is not always valid.
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Chapter 1

Introduction

Nuclear reactor physics is concerned with obtaining the spatial and spec-

tral neutron distribution in a reactor. This information is critical for reactor

design and analysis, and can be used by reactor operators on a daily basis, but

may also be used in the attempt to license the use of new fuels through the

National Regulatory Commission or another regulatory agency. As an example,

one may use this information to discover how a reactor’s composition evolves in

time.

This work focuses on only one portion of a reactor analysis code: the

spectral lattice calculation. Here one seeks a fine description of the neutron

distribution as a function of energy, but assumes that the variation of the distribu-

tion in space is minimal. So-called collision probability methods are well-suited

to such calculations. The method accounts for the spatial variable using proba-

bilities that describe the chance that a neutron moves from region or cell of the

system to another. Traditionally, such codes assume that a lattice is composed of

two cells: a fuel pin and the surrounding coolant. We present a novel collision

probability method that allows for the system to be modeled with more than two

cells.
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1.1 Popular Codes

The texts by Bell and Glasstone (1970) and Stamm’ler and Abbate (1983)

both describe the common modules of reactor analysis codes. The use of the

collision probability method, while it makes large assumptions about a system’s

configuration, is commonly a part of most large codes. Even for geometries that

are heterogeneous on the assembly level, a collision probability method is often

used before doing a whole core calculation. The review (Hébert, 2007) provides

a history of popular lattice codes, listing codes such as WIMS and the open-source

DRAGON code with which Hébert is associated.

Of particular interest is the collision probability formulation given by

Stamm’ler and Abbate (1983) that extends the collision probability approach

to multiple annular regions so that a coarse flux distribution in the fuel pin is

obtained. This formulation was recently implemented by Ozgener and Ozgener

(2005).

1.2 Background

This work is a continuation of an ongoing project to develop a reactor

physics code for rapid fuel cycle scoping calculations. The original code that

came from this work, VBUDS, could be used to predict the evolution of a reactor’s

material composition, or perform what is known as a burnup calculation. Such

calculations require a detailed knowledge of the energy distribution of neutrons

in the system. This was obtained for a two-cell (fuel pin and moderator) geometry
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with just over one thousand energy groups.

The work resulted in a number of publications on the method itself

and on its application to nuclear fuel cycle studies (Schneider et al., 2005,

2006a,b). Since then, a number of students have extended this work in different

directions. Barratt (2003), who was at Cornell University toward the end of

Dr. Schneider’s doctoral work, studied the calculation of the Dancoff factor, a

necessary component of a general collision probability formulation. Matavosian

(2007) performed his doctorate research at the University of Texas at Austin on a

collision probability method that incorporates a number of annular sub-regions.

Most recently, Saller (2009) and Dembia et al. (2012) have performed work on

resonance self-shielding calculations for collision probability models.

In the present work, a code has been developed that can produce a

neutron spectrum and reaction rates for general simple lattice geometries. It is

intended that the code performs burnup calclulations, as does (Schneider, 2002),

but due to time limitations such functionality is not incorporated into the work.

The task of obtaining the neutron spectrum requires that the multigroup

cross section data takes into account the nature of the system being studied. This

is necessitated by the well-known resonance self-shielding effect, by which cross

sections of one nuclide affect the flux in the cell and thereby alter the reaction

rates for the other nuclides in the same cell. In a heterogeneous system, the

fact that neutrons can move between cells further affects the computation of

effective multigroup cross sections. This is treated by introducing an escape

cross section that describes how likely a neutron is to escape a cell. A number of

3



different methods can be used to compute the escape cross section; we use the

same collision probabilties from the spectral solution for this purpose.

1.3 Overview

This work is divided into a chapter on the novel multi-region (or multi-

cell) collision probability method, and a chapter on the processing of multigroup

cross sections for this method. It is assumed the reader is comfortable with the

fundamental nuclear engineering concepts of flux and cross section. Results for

a few different reactor types are presented. For simple geometries, the method

yields excellent results in comparisons to MCNPX.
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Chapter 2

Neutron Transport with Collision Probabilities

The objective of this chapter is to formulate a method for obtaining the

neutron flux distribution in energy and in all discrete cells of a system. We start

at the beginning, with the complete steady-state differential neutron transport

equation for the angular neutron flux. This equation is a function of space,

energy, and direction. The form of the equation that we will use is substantially

simplified from this initial form. We address the treatment of the transport

equation for each of the three variables in turn.

In deriving the form of the transport equation that we use in our collision

probability the method, we introduce a number of unknowns that describe the

probability that neutrons move between discrete cells in the system. The second

half of this chapter focuses on deriving expressions for these unknowns. It is this

portion of the work that includes novel contributions to the theory of collision

probabilities.

Much of this section was informed by the texts by Bell and Glasstone

(1970) and Stamm’ler and Abbate (1983), which are both very popular in the

field. In particular, the Stamm’ler text provides very clear and concise explana-

tions of some of the most important concepts. Unfortunately, the Stamm’ler text

5



is out of print.

2.1 The Transport Equation

The steady state neutron transport equation, in its most general form,

casts the neutron flux as a function of space, direction, and neutron energy

(Schneider, 2002). It is derived through the conservation of neutrons about r

{cm} with energy about E {eV} traveling in a direction about Ω {ster}:

Ω · ∇ψ(r, E,Ω)+Σt(r, E)ψ(r, E,Ω) = (2.1)
∫

4π

dΩ′
∫ ∞

0

dE′Σs(r, E← E′,Ω← Ω′)ψ(r, E′,Ω′)

+χ(E)

∫

4π

dΩ′
∫ ∞

0

dE′ ν
Σ f (r, E′)

4π
ψ(r, E′,Ω′)

where ψ {#/cm2/s/eV/ster} is the angular neutron flux. The left hand side

terms represent neutron sinks, and the right hand side terms represent neutron

sources. More accurately, the left hand side provides the total interaction rate;

the term includes self-scattering which is not a sink. We look at each term in

Equation 2.1 in turn.

Streaming Ω · ∇ψ(r, E,Ω)

This accounts for the net flow of neutrons out of a differential volume

element dV at r in the direction given by the unit vector Ω.

6



Removal Σt(r, E)ψ(r, E,Ω)

This represents the chance that a neutron in the volume element dV about

r with energy about E traveling in a direction about Ω undergoes a collision

that removes it from the system, changes its energy, or changes its direction

of travel. The total cross section Σt(r, E) {cm−1} is the sum of all other

cross sections (i.e. scattering and absorption).

Scattering
∫

4π
dΩ′

∫∞

0
dE′Σs(r, E← E′,Ω← Ω′)ψ(r, E′,Ω′)

This accounts for the chance that a neutron in the volume element dV

about r with any energy E′ traveling in any direction Ω′ may collide with

a nucleus that causes it to have an energy about E and a direction of

travel about Ω. The double differential scattering cross section Σs(r, E←

E′,Ω← Ω′) {cm−1/eV/ster} encapsulates the sometimes complex nature

scattering. It is called double differential because it describes the chance

of a scatter into (or from) both a differential energy range and into (or

from) a differential direction of travel. This term represents a source into E

and Ω, and accounts for neutrons from energy or direction of travel before

it scattered. For this reason, this quantity is integrated over all possible

incident energies and solid angles. Note that we have used left-pointing

arrows rather than the conventional right-pointing arrows in the arguments

of the scattering cross section. This notation allows for a cleaner transition

to a computational implementation of the transport equation.

Fission χ(E)/(4π)
∫

4π
dΩ′

∫∞

0
dE′ ν/Σ f (r, E′)ψ(r, E′,Ω′)

This accounts for the chance that a neutron in the volume element dV

7



about r with any energy E′ may collide with a nucleus and induce a fission

that produces χ(E)ν(E′) neutrons at r with energy E in direction Ω. The

fission spectrum χ(E) is a (unitless) probability distribution describing

the energies of fission neutrons. The quantity ν (unitless) is the average

number of fission neutrons released per fission and is a weak function of E′.

Σ f (r, E′) {cm−1} describes the probability of fission occurring. Often, ν and

Σ f are grouped together. For this reason, ν is not shown as an independent

function of energy. The factor of 4π, which has units of steradians, comes

from the fact that the fission cross section is independent of direction. This

can be understood by expressing Σ f (r, E′,Ω′) = Σ f (r, E′)/4π.

The only unknown in Equation 2.1 is the angular flux ψ, as all other

quantities are properties of the materials in the system and are obtained from

a mix of theory and experiment. With the flux, one can model the power

distribution in a reactor, or one can find reaction rates for particular interactions

(e.g. absorption, fission) to model the evolution of a system’s composition over

time.

Equation 2.1 is not amenable to analytical solutions for systems of practi-

cal interest. To make practical use of the relation, it is often discretized in one

or more of its variables and solved using computational methods. There are

many ways to discretize the relation, and the method chosen depends on our

objective. As for the direction variable, both diffusion theory and the spherical

harmonics expansion treat the angular dependence of the flux in an approximate

8



sense. Alternatively, one can use the method of discrete ordinates to discretize

the equation in direction and therefore obtain a detailed angular dependence.

With all of these methods, it is common to discretize the equation in the energy

variable to form a set of multigroup equations (Bell and Glasstone, 1970). In

this work, we are ultimately concerned with obtaining a flux that can be used

to model the evolution of the reactor’s composition. This requires a detailed

knowledge of the energy dependence of the flux, but only very coarse knowledge

of its spatial dependence.

In the remainder of this chapter, we develop a form of the transport equa-

tion that provides a detailed energy description of the flux but that approximates

its spatial distribution through the use of collision probabilities. In order to do

this, we address each of the variables r, E, and Ω separately. First, we remove the

angular dependence of the transport equation. Then we discretize the resulting

equations in energy to form general multigroup equations. Then, we account

for the spatial dependence with probabilities that describe how neutrons move

between discrete uniform cells in the system. This last step will provide what is

known as an integral transport equation.

2.2 Direction

We are interested in obtaining the energy and spatial dependence of the

flux, but not its angular dependence. Therefore, we seek a way to remove this

variable from the transport equation. We replace the angular flux ψ(r, E,Ω) with

a flux φ(r, E) integrated over all directions Ω.
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φ(r, E) =

∫

4π

dΩψ(r, E,Ω) (2.2)

Accordingly, φ(r, E′) has units of {#/cm−2/s/eV}. The 4π below the

integral symbol indicates the integral is performed over all solid angles. We at-

tempt to remove the transport equation’s dependence on direction by integrating

the entire equation over all directions Ω. We examine each term in Equation 2.1

in turn.

Streaming

Beginning with:
∫

4π

dΩΩ · ∇ψ(r, E,Ω)

we observe that we can rearrange this expression as follows:

∇ ·
∫

4π

dΩΩψ(r, E,Ω)

and define the net current J(r, E) to be:

J=

∫

4π

dΩΩψ(r, E,Ω)

so that the streaming term can be written independently of direction as:

∇ · J(r, E)

Removal

Beginning with:
∫

4π

dΩΣt(r, E)ψ(r, E,Ω)

10



we observe that the total cross section is independent of direction:

Σt(r, E)

∫

4π

dΩψ(r, E,Ω)

and use the definition of the φ(r, E) to obtain:

Σt(r, E)φ(r, E)

Scattering

Beginning with:
∫

4π

dΩ

∫

4π

dΩ′
∫ ∞

0

dE′Σs(r, E← E′,Ω← Ω′)ψ(r, E′,Ω′)

we move around the energy integral and the angular flux:
∫ ∞

0

dE′
∫

4π

dΩ′ψ(r, E′,Ω′)

∫

4π

dΩΣs(r, E← E′,Ω← Ω′)

and express the right two integrals in the simpler notation:

Σs(r, E← E′)φ(r, E′)

thereby defining the single differential scattering cross section as:

Σs(r, E← E′) =
1

φ(r, E′)

∫

4π

dΩ′ψ(r, E′,Ω′)

∫

4π

dΩΣs(r, E← E′,Ω← Ω′)

so that the scattering term can be written independently of direction as:
∫ ∞

0

dE′Σs(r, E← E′)φ(r, E′)
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Fission

Beginning with:

χ(E)
4π

∫

4π

dΩ

∫

4π

dΩ′
∫ ∞

0

dE′νΣ f (r, E′)ψ(r, E′,Ω′)

we observe that the νΣ f cross section is independent of direction:

χ(E)
4π

∫ ∞

0

dE′ νΣ f (r, E′)

∫

4π

dΩ

∫

4π

dΩ′ψ(r, E′,Ω′)

and use the definition of the flux φ(r, E) to obtain:

χ(E)
4π

∫ ∞

0

dE′ νΣ f (r, E′)φ(r, E′)

∫

4π

dΩ

and we observe that no terms depend on the outgoing direction Ω:

χ(E)

∫ ∞

0

dE′ νΣ f (r, E′)φ(r, E′)

Combining the results above yields the following for the neutron transport

equation independent of Ω:

∇ · J(r, E) +Σt(r, E)φ(r, E) =

∫ ∞

0

dE′Σs(r, E← E′)φ(r, E′) (2.3)

+χ(E)

∫ ∞

0

dE′ νΣ f (r, E′)φ(r, E′)

This introduces an additional unknown, the neutron current J. This

vector quantity can be understood as a direction-weighted flux that points in

the direction of the net flow of neutrons. One way to manage this additional
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unknown is to introduce the diffusion approximation, which removes the current

J as an unknown by relating it to the flux φ. Given the method we use to

discretize space in Section 2.4, we will be able to ignore the streaming term, and

so it is not discussed further here.

Fission is adequately assumed to emit neutrons isotropically, and so this

term does not have an angular dependence and the fission cross section was

removed from the integral over direction above.

Scattering, on the other hand, cannot always be assumed to be isotropic.

In particular, scattering is quite forward-biased with any target at high energies

or with hydrogen at epithermal and higher energies. Accordingly, the differential

scattering cross section in Equation 2.3, with units of {cm−1/eV}, depends on

direction and even the angular flux. Though it is not always valid, let us briefly

consider the case of isotropic scattering. In this case the single differential

scattering cross section reduces to:

Σs(r, E← E′) =
Σs(r, E← E′,Ω← Ω′)

φ(r, E′)

∫

4π

dΩ′ψ(r, E′,Ω′)

∫

4π

dΩ (2.4)

The first integral is simply φ(r, E′), and the second integral evaluates to

4π. Thus the single differential and the double differential cross sections differ

simply by the total solid angle over all directions.

Σs(r, E← E′) = 4πΣs(r, E← E′,Ω← Ω′) (2.5)
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It is clear from this expression that the single differential scattering cross

section Σs(r, E← E′) has units of {cm−1/eV}. This situation is clearly preferable,

as it allows us to remove the dependence on the angular flux of the scattering

term. It is possible to assume linear anisotropy and still use this convenient

form of the scattering cross section. The procedure for doing this is called the

transport correction (Stamm’ler and Abbate, 1983).

2.2.1 The Transport Correction

In most cases, it can be safely assumed that the angular dependence

of the scattering cross section is only through one variable, the cosine of the

scattering angle µ = Ω ·Ω′. As such, the scattering cross section function can

be represented by a Legendre polynomial expansion in µ (Bell and Glasstone,

1970).

Σ(E← E′,µ) =
∞
∑

n=0

2n+ 1

4π
Σn(E← E′)Pn(µ) (2.6)

The subscript s and the position argument r have been removed for

clarity. The double differential scattering cross section Σ(E← E′,µ) has units of

{cm−1/eV/ster}. The quantity Pn represents the Legendre polynomial of order n.

The quantity Σn represents the coefficient for the n-th order term with units of

{cm−1/eV}, and is independent of µ. The first Legendre polynomial is defined as

simply P0 = 1 and the second polynomial is P1(µ) = µ. In the case of isotropic

scattering, only the n= 0 coefficient, Σ0, is non-zero and Equation 2.6 reduces

to Equation 2.5. If only the first two terms are kept, then the expansion yields:
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Σ(E← E′,µ) =
1

4π
Σ0(E← E′) +µ

3

4π
Σ1(E← E′) (2.7)

This provides an approximate dependence of the scattering from E′ to

E as a function of the scattering cosine. Since this equation is linear in µ, this

case is called linear anisotropic scattering. The magnitude of Σ1 is typically

very small, but it cannot be neglected for scattering with any material at high

energies, or for scattering with hydrogen at most energies.

In the method of spherical harmonics, and sometimes in the method

of discrete ordinates, a number of terms from the Equation 2.6 expansion are

inserted into the transport equation, Equation 2.1. It is convenient in such cases

to have a polynomial representation of the scattering cross section rather than

some other complicated function, as it allows a simple explicit treatment of the

angular dependence of scattering. However since we are avoiding the use of

the angular flux and Equation 2.7 is a function of direction, we cannot use the

expansion explicitly. We must either assume isotropic scattering so that Σs is

independent of µ, or we must employ what is known as the transport correction.

We seek to replace Σ1 in Equation 2.7 with the average value of the

scattering angle for scattering occurring at energy E′, µ̄(E′). This quantity is

obtained by applying the average value theorem:

µ̄(E′) =

∫∞

0
dE
∫ 1

−1
dµµ(E′)Σ(E← E′)

∫∞

0
dE
∫ 1

−1
dµΣ(E← E′)

(2.8)
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If Σ(E ← E′) is given by the Legendre expansion in Equation 2.6, then

Equation 2.8 conveniently reduces to:

µ̄(E′) =
Σ1(E′)
Σ0(E′)

(2.9)

This is a result of the orthogonality of the Legendre polynomials. Here,

Σ0(E′) and Σ1(E′) are obtained by integrating over all outgoing energies. In-

serting Equation 2.9 into the linear anisotropy approximation of Equation 2.7

yields:

Σ(µ) =
1

4π

�

Σ0+ 3µµ̄Σ0

�

=
1

4π
Σ0(1+ 3µµ̄) (2.10)

where all quantities (except the µ input) are functions of E′ and E, but the

notation has been omitted for clarity. At energies where scattering can be

assumed to be isotropic in the center-of-mass frame of the collision, µ̄ is given

by a constant in energy:

µ̄=
2

3A
(2.11)

where A is the atomic number of the target. However, at high neutron energies,

center-of-mass isotropy cannot be assumed and doing so leads to substantial

errors. In such cases the value of µ̄ can be obtained from a nuclear data
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processing code such as NJOY (MacFarlane and Muir, 1994). This new form

of the linear anisotropy approximation is more convenient since Σ1 has been

removed, Σ0 is simply the total scattering cross section, and µ̄ is given by

Equation 2.11 or is tabulated.

In the transport correction we make the crude approximation that the

total scattering cross section Σs is the sum of a term that represents the isotropic

portion of the scattering, Σt r
s , and a term that accounts for solely forward

scattering (i.e. no interaction), µ̄Σs. This allows us to express the quantity Σt r
s

in terms of known quantities:

Σt r
s (E) = Σs(E)− µ̄(E)Σs(E) (2.12)

The quantity Σt r
s is called the transport corrected total scattering cross

section, and it can be used as an effective isotropic scattering cross section. It is

clear that as scattering becomes isotropic, Σt r approaches Σs.

The transport correction is illustrated in Figure 2.1, which shows that

the transport correction yields a cross section in which the anisotropy of the

scattering cross section has been removed. This is how the transport correction

is discussed by Stamm’ler and Abbate (1983).

The transport correction can be obtained by a different method, as is

presented by Lamarsh (1965). In this method, one derives a transport cross

section Σt r(E) from a mean free path that describes the distance a neutron travels

before it “forgets” its original direction of travel. This new cross section can be

17



= -

transport neglected forward componentscattering

Figure 2.1: An illustration of the transport correction. The transport corrected
scattering cross section is obtained by subtracting the forward-scattering com-
ponent from the anisotropic scattering cross section. Alternatively, a transport
cross section can be defined using the average distance that a neutron moves in
a particular direction.

used in place of the total cross section when necessary:

Σt r(E) = Σt(E)− µ̄(E)Σs(E) (2.13)

or equivalently

Σt r(E) = Σa(E) +Σs(E)(1− µ̄(E)) (2.14)

The author finds that for a computer implementation of the transport

correction the formulation by Stamm’ler is clearer. Both yield the same total cross

section, but the derivation by Lamarsh does not indicate that the scattering events

themselves should also be treated differently. In Section 2.3.1, the transport

correction is adapted to multigroup cross sections.

2.3 Energy: Multigroup Transport

With a simpler direction-independent form of the transport equation, we

now turn to the task of obtaining the flux’s energy dependence. Beyond this step,
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we are left only with the task of discretizing the equation in space.

We begin by discretizing all quantities into G energy groups that span a

range of energies from EG to E0. The g-th energy group spans an energy range

from Eg to Eg−1. As is typical, the groups are ordered in descending energy so

that the highest energy is E0 and the lowest is EG, and in general Eg < Eg−1. The

width of an energy group is ∆Eg = Eg−1− Eg and is not the same across groups.

The flux φg is now defined discretely for each energy group through the

continuous flux:

φg(r) =

∫

g

dEφ(r, E) (2.15)

An integral over g indicates an integral from Eg to Eg−1. The group flux

φg(r) has units of {#/cm2/s} as it has been integrated over energy. The position

argument r is temporarily removed for clarity in the proceeding equations,

though all quantities may still be functions of position. Logically, the group

flux is larger for a larger ∆Eg with the same number of neutrons per energy.

We must also obtain cross sections that depend on energy group rather than

on a continuous energy domain to form so-called group constants. We use σg

and Σg to represent, respectively, the microscopic and macroscopic group cross

section in group g for any interaction. In this case, it is not appropriate to

simply integrate the value of the cross section over the energy group. The group

cross sections must be defined in such a way that they preserve the reaction

rates R(E) = Nσ(E)φ(E) of the interactions that occur in the system. It is the
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reactions in the system that define its criticality, its power distribution, and the

evolution of its composition. We can attempt to preserve the reaction rates by

enforcing that the product of the group cross section and group flux is equal to

the integral of the continuously-defined reaction rate over the group.

σgφg =

∫

g

dEσ(E)φ(E) (2.16)

The constraint of Equation 2.16 defines the group cross section σg (and

consequently Σg) for any interaction as follows:

σg =

∫

g
dEσ(E)φ(E)

φg
=

∫

g
dEσ(E)φ(E)
∫

g
dEφ(E)

(2.17)

The group cross section σg has units of barns, and does not increase with

increasing group width for constant σ(E). The group to group scattering cross

section is defined analogously, and may be called a group transfer cross section.

σs,g←g ′ =

∫

g
dE
∫

g ′
dE′σs(E← E′)φ(E)

φg
(2.18)

This group transfer cross section has units of {b/eV}. Equipped with

group quantities, we are prepared to express the transport equation as a set of

multigroup equations. We integrate each term in Equation 2.3 over group g

so that all quantities within a are independent of energy. We reintroduce the

position argument r for completeness.
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Streaming
∫

g

dE∇ · J(r, E) =∇ · Jg(r)

Removal
∫

g

dEΣt(r, E)φ(r, E) = Σt g(r)φg(r)

Scattering

We find the following with the help of Equation 2.18:
∫

g

dE

∫ ∞

0

dE′Σs(r, E← E′)φ(r, E′) =
G
∑

g ′
Σs,g←g ′(r)φg ′(r)

Fission
∫

g

dE χ(E)

∫ ∞

0

dE′ νΣ f (r, E′)φ(r, E′) = χg

G
∑

g ′
νΣ f g ′(r)φg ′(r)

The quantity νΣ f (E) is group-averaged as a single quantity to form νΣ f g .

As mentioned before, the method by which we discretize the spatial

variable does not rely on the neutron current J. Therefore, it is not necessary to

define Jg(r). The terms above are combined to provide G coupled differential

equations for the G unknowns φ0 through φG. These equations are coupled

through the scattering and fission sources. The position argument r is removed

for clarity.

∇ · Jg +Σt gφg =
G
∑

g ′
Σs,g←g ′φg ′ +χg

G
∑

g ′
νΣ f g ′φg ′ (2.19)

=
G
∑

g ′

�

Σs,g←g ′ +χgνΣ f g ′
�

φg ′ (2.20)
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For brevity, we define a source term Sg to be the source of neutrons into

group g from any other group g ′ (including g ′ = g).

Sg =
G
∑

g ′

�

Σs,g←g ′ +χgνΣ f g ′
�

φg ′ (2.21)

Now, Equation 2.19 can be expressed in a simpler form.

∇ · Jg +Σt gφg = Sg (2.22)

All terms have units of {#/s/cm3}. This can easily be seen as a conser-

vation of neutrons: all neutrons that enter group g must eventually collide in

group g or stream away. This includes neutrons that undergo a scattering event

that does not change its energy enough to change its group (in-group scattering).

A subtlety in this derivation is that the quantities Σt g , Σs,g←g ′ , and νΣ f g

actually depend on φ(E), and so they are not known quantities in Equation 2.19.

To obtain these group constants, we must initially approximate φ(E). The

procedure for this is discussed in Chapter 3.

2.3.1 The Multigroup Transport Correction

We adapt the transport correction of Section 2.2.1 to the multigroup

formulation. Previously, the transport correction was formulated only for total

scattering. Here, we apply the correction to the group transfer cross section only.
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We subtract the forward-scattering component from only the in-group scattering

terms, Σs,g←g ′:

Σt r
s,g←g ′ = Σs,g←g ′ − µ̄gΣs,g (2.23)

where Σs,g is the total scattering cross section for group g:

Σs,g =
G
∑

g ′
Σs,g←g ′ (2.24)

and the t r superscript again denotes that the cross section is transport corrected.

Accordingly, the transport corrected total scattering cross section for scattering

out to any other group is

Σt r
s,g = Σs,g − µ̄gΣs,g (2.25)

Lastly, the transport corrected total cross section is:

Σt r
t,g = Σa +Σ

t r
s (2.26)

What is often omitted from the literature is that in a multigroup formula-

tion the scattering kernel Σs,g←g ′ must be modified for the transport correction.

If only the total scattering cross section Σs,g and the total cross section Σt,g (both

being vectors) are transport corrected, then the cross sections are inconsistent. In

the present work, we have only modified the kernel and have let that correction

propagate through to the other cross sections.
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In the remaining sections, the t r superscript is removed from the notation,

but it is to be assumed that the total cross section is always transport corrected.

In particular, it is used in the computation of the mean free path of neutrons in

Section 2.5.5, and in the self-shielding of cross sections in (Equation 3.12).

The derivation of the transport correction in this work relies heavily on

(Stamm’ler and Abbate, 1983), which is out of print.

2.4 Space: The Integral Transport Equation

In discretizing Equation 2.1 into macroscopic regions in space, we develop

a so-called integral transport equation because the continuous functions in

Equation 2.1 are integrated over finite cells in space. This allows us to work with

quantities that are no longer functions of space. This will allow us to solve for

the flux at different energies and in different cells in space. This, of course, is

our goal in this work.

The present formulation is for any number of uniform cells in space. The

only assumption we make is that the flux is constant within each of these cells.

This is the so-called flat flux approximation (FFA) (Bell and Glasstone, 1970;

Stamm’ler and Abbate, 1983). It is valid at energies away from resonances.

Additionally, we only consider infinite geometries, so that neutrons cannot leak

from the system. We currently do not need to know any more about the geometry

than this. In Section 2.5, our implementation of the integral transport equation

will require us to further restrict the geometry that can be considered.
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We consider a system of C uniform cells. Cell i has volume V i and surface

area S i. In a two-dimensional problem, the volume V i reduces to the cross

sectional area of the cell. The cross sections in cell i are constant with space

so that Σi
g(r) = Σ

i
g . By the flat flux approximation, the flux in cell i is given by

Equation 2.27.

φ i
g =

1

V i

∫

V i

dVφg(r) = const. (2.27)

Similarly to how we have approached the transport equation previously,

we integrate the multigroup transport equation over the volume V i of a cell.

Streaming

This vanishes because the flux is constant within a cell.

Removal
∫

V i

dVΣt g(r)φg(r) = V iΣ j
t gφ

i
g

Scattering
∫

V i

dV
G
∑

g ′
Σs,g←g ′(r)φg ′(r) = V iΣi

s,g←g ′φ
i
g ′

Fission
∫

V i

dVχg

G
∑

g ′
νΣ f g ′(r)φg ′(r) = V iχ i

gνΣ
i
f g ′φ

i
g

We cannot simply write the transport equation by setting the removal

equal to the scattering and fission sources. This is because the neutrons that

are born into cell i and group g do not necessarily undergo their next collision
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(removal) in cell i. It is possible that neutrons that are removed from cell i

had their last collision in some other cell j. This behavior provides the spatial

dependence of the flux. We may express the conservation of neutrons in the

system through the following:

�

removal collisions
in cell i

�

=
C
∑

j











probability of being
born in cell j

and having the next
collision in cell i











�

sources in
cell j

�

(2.28)

This states that all of the collisions that occur in cell i are executed by

neutrons that are born in any other cell, including i. Importantly, this equation

implies the system is of infinite extent. This is because there is no sink term on

the left hand side that accounts for the leakage of neutrons from the system.

In order to express Equation 2.28 as an equation that we can solve, we

define the term Πi← j to be the probability that a neutron born in cell j has its

next collision in cell i. These probabilities are dependent on cross sections, and

accordingly the probabilities may be different for each energy group. Using Πi← j

we obtain the following for the integral transport equation:

V iΣi
t gφ

i
g =

C
∑

j

Πi← j
g V jS j

g (2.29)

where V i is the volume of cell i, and both sides of the equation have units of

{#/s}. The source term S j
g is now defined for each cell j and represents the
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source of neutrons starting in cell j and having a collision in group g ′ that causes

the introduction of neutrons into group g.

S j
g =

G
∑

g ′

�

Σ j
s,g←g ′φ

j
g +χgνΣ

j
f g ′

�

φ
j
g ′ (2.30)

It is this term that couples the equations in energy. Some cells do not

contain fissionable isotopes, such as moderator or control rod cells. For these

cells, the fission cross section is zero and the source term consists only of

scattering from other groups.

Equations 2.29 and 2.30 constitute the integral transport equation using

collision probabilities. It consists only of discrete quantities. The task in Sec-

tion 2.5 is to find expressions for those collision probabilities in terms of known

quantities.

We have C ×G algebraic equations that are coupled through their energy

dependence and now their spatial dependence. These equations will be amenable

to solution through iteration or through an eigenvalue solution. It is useful to

visualize these C × G equations as a matrix.

2.4.1 Matrix Representation

Equation 2.31 presents the integral transport equation, Equation 2.29,

as a matrix for a single group g. Thus, there are G many matrices like this that

must be solved.
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



















V 1Σ1
t gφ

1
g

V 2Σ2
t gφ

2
g

...
V iΣi

t gφ
i
g

...
V CΣC

t gφ
C
g





















=






Πi← j

































V 1
�

∑

g ′ Σ
1
s,g←g ′φ

1
g ′ +

χg

k∞

∑

g ′ νΣ f g ′φ
1
g ′

�

V 2
�

∑

g ′ Σ
2
s,g←g ′φ

2
g ′ +

χg

k∞

∑

g ′ νΣ f g ′φ
2
g ′

�

...

V j
�

∑

g ′ Σ
j
s,g←g ′φ

j
g ′ +

χg

k∞

∑

g ′ νΣ f g ′φ
j
g ′

�

...

V C
�

∑

g ′ Σ
C
s,g←g ′φ

C
g ′ +

χg

k∞

∑

g ′ νΣ f g ′φ
C
g ′

�



























(2.31)

The left hand side represents sinks in cell i, and the right hand side

provides sources in cell j. The element Π(i, j) in the Π matrix maps the neutron

sources in cell j to the sink in cell i. It is this analog to matrix notation that has

led us to use left-pointing arrows in our function arguments, superscripts and

subscripts. As already mentioned, this equation is amenable to an eigenvalue

solution if the quantities are rearranged into the following form:

Rφ = Sφ +
1

k∞
Fφ (2.32)

Here, R, S, and F are square matrices with side C×G and they respectively

represent removal, scattering, and fission. Accordingly, the unknown vector φ

has length C × G. This matrix equation is further rearranged:

(R− S)φ =
1

k∞
Fφ (2.33)

In this form, it is evident that 1/k∞ is the eigenvalue.
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To solve for the flux, three types of cross sections are needed: the scat-

tering kernel, the total cross section, and the νΣ f cross section. The scattering

kernel includes inelastic scattering, and the total cross section is the sum of the

elastic, inelastic, capture, and fission cross sections. The consideration of the

(n,2n) and (n,3n) interactions can be implemented easily by the method used

in WIMS (Leszczynski et al., 2007) (see Chapter B for its implementation in

this work). These are assumed to be known, and are processed by the method

discussed in Chapter 3. However, the Π matrix is as of yet unknown. Obtaining

Π is the task in the next section.

2.5 Collision Probabilities

Logically, the derivation of collision probabilities, that is, Π, requires us

to specify something about the system’s geometry. We present the geometry we

intend to model, and then proceed to derive the collision probabilities for this

geometry.

A number of methods exist for deriving these collision probabilities.

For certain cylindrical systems, Carlvik provided an exact solution for multiple

annular regions that employs Bickley functions (Stamm’ler and Abbate, 1983).

Our method relies on approximations of escape and transmission probabilities.

This method was developed in recent years by Dr. Bingham Cady, Dr.

Geoff Recktenwald, and Dr. Mark Deinert. The work is informed by the method

of collision probabilities presented by Stacey (2001) and Stamm’ler and Abbate
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(1983). The method extends the collision probability method used in the VBUDS

mentioned in the introduction to a multi-region reactor core.

2.5.1 Infinite Lattice Geometry

The geometry is a regular infinite lattice of pins, denoted P, and “antipin”

regions surrounding the pins, denoted A. The antipin regions are square with a

circular pin cut out of the middle. The pin usually contains fuel and the antipin

contains coolant or moderator. For the sake of generality, we do not restrict

ourselves to this mapping of materials to cell shapes. Note that the use of the

term “antipin” is not conventional; it is typical to simply refer to the pin as the

fuel cell and the antipin as the coolant or moderator cell. If cell i is a pin cell, its

diameter is di. If cell i is an antipin region, it has pitch pi and must be associated

with with a cell ip whose diameter is dip.

The cells are numbered 1 through C . By convention, the antipin cells

come first. This ordering is important, given the arrangement of terms in the

Π matrix. As an example, the system may consist of both UO2 and IMF (inert

matrix fuel) pins of different diameters in a water moderator. Each fuel cell must

be surrounded by its own moderator. Cell 1 may be the moderator surrounding

UO2, cell 2 the moderator surrounding IMF, cell 3 the UO2 pin, and cell 4 the

IMF pin.

It is necessary to quantify the relative amounts of the two types of cells.

This is done with the fractions αi for the antipin cells and βi for the pin cells.

These two quantities must have the property
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∑

i∈A

αi = 1
∑

i∈P

βi = 1 (2.34)

The fractions may be given by the volume fraction of a cell among cells

of the same shape, or simply by the number of cells of a given shape divided by

the total number of cells of the same shape. These fractions will be used shortly

in the calculation of transmission probabilities.

In the present work, we only consider infinite multi-pin-cell geometries

as described here. However, the only aspect of the formulation that depends on

the specific geometry of the cells is the rational approximation of transmission

probabilities (Section 2.5.5).

2.5.2 Escape and Transmission

We introduce two new quantities, the escape and transmission probabili-

ties, that we will use to define the transport probabilities Πi← j. Through these

two probabilities, the transport probabilities are ultimately a function of both

the geometry of the system and of the total (transport corrected) cross section of

the cell.

In this procedure, we consider only one energy group. As a result, in-

scattering and fission are identical from the point of view of the group. Thus, we

use the term “source” to mean that a neutron has been born in a given cell by

either scattering or fission.
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The escape probability P i is the probability that a neutron that had its last

interaction in cell i leaves the cell before interacting in it through scattering

or absorption.

The transmission probability T i is the probability that a neutron that enters

cell i leaves the cell before interacting in it through scattering or absorption.

The two probabilities differ solely by how the neutron was introduced to

cell i. The escape probability is used at neutron birth, while the transmission

probability is used to describe the neutron’s behavior after its birth. Since

neutrons only have two options in a given cell, to interact or to not interact, we

can mention two related probabilities. The probability that a neutron that enters

cell i interacts next in the same cell i is:

1− T i (2.35)

and is called the cell’s blackness by Stamm’ler and Abbate (1983). The non-

escape probability is the chance that a neutron born in cell i has its next interac-

tion in the same cell i before escaping:

1− P i (2.36)

In general, T i and P i are functions of neutron energy.
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We develop explicit expressions for the escape probability P i and the

transmission probability T i in Sections 2.5.5 and 2.5.6, respectively. For now, we

only seek to employ these quantities to define the transport probabilities, Πi← j.

We define an average antipin transmission probability T A and an average

pin transmission probability T P through the following:

T A =
∑

i∈A

αi T
i T P =

∑

i∈P

βi T
i (2.37)

Given that we have divided the cells into antipin cells and pin cells, it is

helpful to represent Π as a block matrix.

Π=
�

ΠA←A ΠA←P

ΠP←A ΠP←P

�

(2.38)

The upper left block represents transport between antipin cells, and

the lower right cell represents transport between pin cells. The upper right

block represents transport from the pin cells to antipin cells, and the lower left

represents transport from antipin cells to pin cells. The columns of the matrix

must sum to one, since each source particle must be present somewhere in the

system.

The form of a term Πi← j depends on its location in the matrix. We address

the diagonal elements first.
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2.5.3 Self-Collision

Let us first consider the probability that a neutron born in an antipin cell

i ∈ A has its next collision in the same cell i, Πi←i. Such neutrons can meet this

fate in cell i in a number of ways. The simplest case is that after being born, the

neutron collides in the cell before leaving it. This is the non-escape probability

1− P i.

Alternatively, after birth the neutron may leave cell i (P i), pass through

the average pin cell once (T P), then enter cell i again to meet its demise ((1−

T A)αi). This last expression is the probability that the neutron does not transmit

through the average antipin cell, weighted by the chance that the antipin cell in

which it collides is cell i. Combining all these terms yields:

�

probability of being born in cell i and
colliding in cell i after 1 transmission

�

= P i T P(1− T A)αi (2.39)

This expression is for antipin cells only. The neutron can in fact pass

through other cells any number of times before ultimately colliding in cell i

where it was born. To account for this, we can add to the previous probability

the probability of transmitting through the average antipin cell T P and then the

average pin cell again T A before finally interacting in cell i. We consider n such

pairs of transmissions.

�

probability of being born in cell i and
colliding in cell i after n transmission

�

= P i T P(T AT P)n(1− T A)αi (2.40)
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The quantities are displayed in order of occurrence from left to right. The

quantity Πi←i is given by the sum of all of these probabilities.

Πi←i = (1− P i) +
∞
∑

n

P i T P(T AT P)n(1− T A)αi i ∈ A (2.41)

Since T AT P is necessarily less than 1, the sum in this equation describes a

converging geometric series and we can express Πi← j in its final form for antipin

cells:

Πi←i = (1− P i) + P i T PτAαi i ∈ A (2.42)

where we define τA to be the probability that a neutron’s path ends in an antipin.

τA =
1− T A

1− T AT P τP =
1− T P

1− T AT P (2.43)

Analogously, τP is the probability that a neutron’s path ends in a pin. The

derivation for pin cells is similar, and yields the following:

Πi←i = (1− P i) + P i T AτPβi i ∈ P (2.44)

This infinite sum in the transport probabilities, resulting from the infinite

lattice geometry, is described in Bell and Glasstone (1970). The novelty of
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the method presented here is the inclusion of the fractions αi and βi, and the

average transmission probabilities T̄ A and T̄ P to extend the two-cell formulation

into a multi-cell formulation. Note that in order for the average transmission

probabilities to be accurate the cells must be distributed in a homogeneous

manner.

The infinite lattice can alternatively be realized through the invocation

of a reflective or white boundary condition at the cell surface, as is done in the

multi-region method (for annular rings) by Stamm’ler and Abbate (1983) and

Ozgener and Ozgener (2005).

2.5.4 Remaining Elements of the Transport Matrix

The remaining elements of the Π matrix are easier to obtain now that

we have obtained the diagonal elements. The probability of transporting from

antipin cell j to a different antipin cell i is the probability of escaping cell i

after birth (P i), transmitting through the average pin cell (T P), and transmitting

through other cells any number of times before not transmitting through cell i,

(τAαi).

Πi← j = P j T PτAαi i, j ∈ A (2.45)

The probability of transporting from pin cell j to a different pin cell i is

obtained similarly.
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Πi← j = P j T AτPβ i i, j ∈ P (2.46)

The probability of transporting from antipin cell j to pin cell i does not

include T P , since the neutron no longer needs to transmit through the first pin

it enters; it may simply collide there. Logically, this probability depends on the

fraction βi for the cell it is colliding in, as well as on τP .

Πi← j = P jτPβi i ∈ P, j ∈ A (2.47)

The probability of transporting from pin cell j to antipin cell i is obtained

similarly.

Πi← j = P jτAαi i ∈ A, j ∈ P (2.48)

We have addressed each type of element in the transport probability

matrix Π. The four blocks of this matrix for 2 antipin cells and 2 pin cells is

provided.
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ΠA←A =
�

(1− P1)+ P1T PτAα1 P2T PτAα1

P1T PτAα2 (1− P2)+ P2T PτAα2

�

(2.49)

ΠP←P =
�

(1− P3)+ P3T AτPβ3 P4T AτPβ3

P3T AτPβ4 (1− P4)+ P4T AτPβ4

�

(2.50)

ΠP←A =
�

P1τPβ3 P2τPβ3

P1τPβ4 P2τPβ4

�

(2.51)

ΠA←P =
�

P3τAα1 P4τAα1

P3τAα2 P4τAα2

�

(2.52)

Note that all elements in column j contain the quantity P j and all ele-

ments in row i contain the quantity αi or β i, whichever is appropriate. The

former represents escape from j and the latter represents blackness in i.

2.5.5 Rational Approximations

Having obtained all the transport probabilities in terms of the escape and

transmission probabilities, the task becomes to obtain explicit expressions for

these two probabilities. Many expressions are available for these quantities. The

expressions that one uses may only work for a certain cell geometry. We are

concerned only with circular (cylindrical) pin and antipin cells. The derivation

of transmission and escape probabilities for other geometries, though possible, is

not considered here. All quantities in this section are properties of cell i, but this

notation has been removed for clarity.

We consider the escape probability P for pin cells first. The escape proba-

bility is a function of the geometry and the composition (specifically the mean

free path λ of the neutrons) of the cell. An exact solution for any geometry can
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be obtained through integration of an expression describing exponential attenua-

tion of the source in the cell. This integration is always performed assuming an

isotropic and uniform source, and so it is important that the transport correction

to the scattering cross section is used so that scattering can be treated as isotropic

(Section 2.2.1).

It is possible to avoid the integration and instead use rational approxima-

tions to the escape probability for potentially arbitrary geometries. In such cases

the dependence on geometry is primarily through the mean chord length l̄,

l̄ =
4V

S
(2.53)

The simplest rational approximations are for the two limiting cases: for a

very thin cell, the escape probability is 1, and for a cell whose dimensions are

much larger than the neutron mean free path, it is given by

lim
r→∞

P =
A

4V
λ=

λ

l̄
(2.54)

where r represents some characteristic dimension of the cell. It is through

Equation 2.54 that the mean chord length enters into this topic. The most

ubiquitous of the rational approximations is Wigner’s rational approximation:

P =
1

1+ l̄/λ
(2.55)
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This approximation is a balance between the two limiting cases just

described (Bell and Glasstone, 1970). Monte Carlo simulations show that the

unitless parameter R= l̄/λ can be treated as a lumped parameter so that these

approximations are a function of only R (Stacey, 2001). Bell introduced a

correction factor a to Wigner’s approximation:

P =
1

1+ R/a
(2.56)

Carlvik proposed a two-term approximation(Stamm’ler and Abbate, 1983):

P = 1− R
�

b1

R+ a1
+

b2

R+ a2

�

(2.57)

For cylinders, a1 = 2, a2 = 3, b1 = 2, b2 =−1. Others have used similar

approximations with more than just two terms (Hébert and Marleau, 1991).

Lastly we present an approximation given in Stacey (2001) that we refer to as

the Sauer approximation.

P =
1

R

�

1−
1

(1+ R/c)c

�

(2.58)

The parameter c depends on the geometry. It is this approximation that

we use in the present work, with c = 5.00 for pin cells. Figure 2.2 compares

some of these approximations to each other. A log scale is used for the x axis

because the parameter R varies with cross section, which we always consider on

a log scale.
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Figure 2.2: Comparison of the rational approximations to the escape probability
as a function of R. In this work, Sauer’s approximation is used.

For the antipin cells, the transmission probability is also called the Dancoff

factor. An exact solution is not quite as easy to obtain, and so it is often tabulated

through Monte Carlo methods. Schneider (2002) and Barratt (2003) discuss

such methods in detail. In our work, we simply employ the Sauer approximation

but with a smaller value for c, c = 2.35. The mean chord length for pins and

antipin cells is provided:

l̄ =







d pin

d

�

4p2

πd2 − 1

�

antipin

where d is the diameter and p is the pitch associated with the cell. The mean

free path used in this section is computed from the total cross section, λ =

1/Σt , after the transport correction has been applied to the scattering cross
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section (Section 2.2.1). As such, the escape probability and thus the transport

probabilities depend on energy group.

2.5.6 Reciprocity and the Transmission Probability

All that remains for calculating the transport probabilities is obtaining an

expression for the transmission probability. This is obtained via the reciprocity

relationship, which provides (for any cell):

1− T = RP (2.59)

This relation arises from equations that relate the flux at some point B

due to a source at some point D to the flux at D due to a source at B. The

relation is valid for arbitrary geometries, and a thorough derivation is given in

Bell and Glasstone (1970). This specific form of the reciprocity relation assumes

that neutrons are born isotropically. It is derived using one-group transport, and

so both in-scattering and fission are treated equivalently as sources. This means

that scattering must be treated isotropic. This again necessitates the use of the

transport correction to the scattering cross section when computing the mean

free path in R (Section 2.2.1).

As a result of reciprocity, the transmission probability is given by the

following when Sauer’s approximation is used for the escape probability:

T =
1

(1+ R/c)c
(2.60)
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Figure 2.3: The geometry for which the homogeneity correction is derived. It
consists of two antipin-pin cell pairs X and Y that extend infinitely. The cell pairs
can be present in a 1:1 or a 3:1 ratio.

2.6 The Homogeneity Correction

As will be shown in Chapter 4, the method outlined in this chapter yields

excellent results for two-cell systems. Chapter 4 also shows that the model is not

quite as successful for four-cell systems. In this section we propose an extension

to our method to account for this discrepancy. Part of the error in the four-cell

results arise from the definition of the average transmission probabilities.

In the remainder of this section we restrict ourselves to a system with two

antipin cells numbered 1 and 2 and two pin cells numbered 3 and 4. The cells

are paired into pairs X and Y , so that pair X consists of cells 1 and 3 and pair Y

consists of cells 2 and 4. This geometry is given in Figure 2.3. While it is possible

to extend this method to more general geometries, we do not do so here.

The average pin transmission probability, defined in Equation 2.37 is:
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T P =
β3

�

1+ l̄Σ3
t /c
�c +

β4
�

1+ l̄Σ4
t /c
�c (2.61)

where Σi
t = 1/λi. The term T P appears in Π for the antipin terms in both pairs,

X and Y . This means that the transport in one pair is affected by the cross

sections in the other pair. Thus, a resonance in Σ4
t appears to remove neutrons

from cell 1, even though it is from the other pair. While it is realistic that a

resonance in one discrete region causes a flux depression in other regions, the

use of Equation 2.61 overestimates this effect. Simply, the expression assumes a

level of homogeneity that may not be accurate.

The current method can be extended by considering more carefully

when the system appears homogeneous to neutrons. The system can be well-

approximated as homogeneous when the flux is the same in different cells, or

when the mean free path of neutrons is greater than the largest dimension of

any uniform cell. This assumption is often valid at high energies, but is not valid

in water-moderated systems at thermal energies where the high scattering cross

section of water provides a very short mean free path for neutrons. Thus, the

formulation of Π provided in Section 2.5 is only valid at energies and in cells

where the mean free path of neutrons is larger than the cell dimensions or some

other characteristic dimension. In the case that the mean free path is less than

cell dimensions, we expect that neutrons will not leave their cell pair. Thus, any

terms that transport neutrons from one cell pair to the other, such as Π2←1 or

Π3←4 can be neglected.
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We now refer to the Π we originally formulated in Equations 2.49 through

2.52 as ΠO, as it is only valid for seemingly homogeneous systems. We define

a new matrix ΠE that is expected to be valid only for seemingly heterogeneous

systems. Then, the Π used in the transport of neutrons is given by

Π= hΠO + (1− h)ΠE (2.62)

where h = h(λ) is a function of mean free path called the homogeneity. Its

key property is that its value is close to 1 when the system appears mostly

homogeneous and is close to 0 when the system appears mostly heterogeneous.

The intent with Equation 2.62 is that at energies and in cells where the system is

seemingly homogeneous, ΠO dominates the transport, and vice versa. This new

definition of Π will still preserve the property that the columns sum to 1.

It is important to note that since h is dependent on mean free path, it

varies strongly with neutron energy, and a different value of h is given to each

group. We choose to model h with the error function, as this provides a smooth

transition between the homogeneous and heterogeneous cases. Figure 2.4 shows

the homogeneity function as it varies with the mean free path. The value of

λ = λh is chosen to be a characteristic dimension of the system above which

the system is seemingly homogeneous and below which the system is seemingly

heterogeneous. Additionally, h(λ) can be parameterized by the slope at λh to

change how gradually the homogeneous effects are replaced with heterogeneous

effects. A possible form of the homogeneity function is:
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Figure 2.4: The homogeneity function h(E) is defined using the error function
shifted so that its inflection point occurs at λh, a threshold mean free path. This
threshold is set to a characteristic dimension of the system.

h(λ) =
1

2

�

1+ erf[k(λ−λh)]
�

(2.63)

where k is the parameter that controls the slope at λ= λh.

The value of λh for a given group is obtained by a volume-weighted

average of the mean free path in the antipin of each cell pair.

λg =α1λ
1
g +α2λ

2
g (2.64)

=
α1

Σ1
g

+
α2

Σ2
g

(2.65)

The cross sections appearing in Equation 2.65 are known. Now that h

is completely defined, we turn turn to defining ΠE. All terms that represent
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transport between cell pairs vanish. Furthermore, the average transmission

probabilities across cells of the same type, T A and T P , reduce to the transmission

probabilities T i given directly by Equation 2.60. The terms τA and τP , which

depended on T A and T P , are correspondingly redefined in terms of T i.

For the four-cell geometry this yields:

ΠE =











Q1+ P1T 3τ1 0 P3τ1

0 Q2+ P2T 4τ2 0 P4τ2

P1τ3 0 Q3+ P3T 1τ3 0
0 P2τ4 0 Q4+ P4T 2τ4











(2.66)

where Qi = 1−P i has been used for brevity. The first and third rows and columns

of Equation 2.66 describe the heterogeneous transport within cell pair X , and the

second and fourth do the same for cell pair Y . Since there are no cross-pair terms,

the cell pairs are uncoupled in space at energies where h= 0. However, the cell

pairs are still coupled to each other through energies at which the homogeneous

assumption and ΠO are valid. To approach an understanding of Equation 2.66,

note that the T 3 appearing in the first row and column in the homogeneous case

are replaced by T P = β3T 3+ β4T 4 in the heterogeneous case presented here.
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Chapter 3

Self-Shielded Multigroup Cross Sections

In this chapter we describe the method for obtaining multigroup cross

sections that are corrected for the resonance self-shielding effect. This effect

must be considered because the presence of resonances affects the integrals

in Equation 2.17. This subject is an area of active research, particularly as

researchers attempt to to improve simulation fidelity. We are interested in

obtaining self-shielded cross sections for a heterogeneous geometry.

The traditional method for treating heterogeneity involves applying an

equivalence relation to the background cross section of the Bondarenko (1964)

method (Kidman et al., 1972; Stamm’ler and Abbate, 1983; Gopalakrishnan and

Ganesan, 1998; Schneider et al., 2006a; Yamamoto, 2008; Joo et al., 2009). The

desire to improve simulation fidelity, which can be particularly important for

modeling next generation reactors with more complex geometries, has led to

the use subgroup methods (Cullen, 1974; Hebert, 1997; Chiba, 2003; Huang

et al., 2011). These methods, for example, are more capable of managing

configurations that exhibit double heterogeneity (Powney and Newton, 2004).

Self-shielding methods primarily differ in the accuracy with which they attempt

to approximate the neutron flux within a group. The subgroup method is beyond

48



the scope of this work. An overview of the different self-shielding methods is

provided in the review papers by Hwang (1982) and Hébert (2007).

3.1 Resonance Self-Shielding

In this section we consider the process for obtaining correct multigroup

cross sections, which were introduced in Section 2.3. It was mentioned then that

the calculation of multigroup cross sections requires knowledge of the unknown

flux φ(E). If the flux φ(E) is roughly constant through a group then the flux

drops out of Equation 2.17, and the flux is not needed to obtain group cross

sections. This assumption is often valid, but cannot be used when the flux varies

rapidly within a group as is the case in groups where the cross section exhibits

resonances. To obtain group cross sections in these cases, the flux φ(E) must be

known or approximated and the integration in Equation 2.17 must be performed

for the relevant interactions. However, it is not possible to work in a spectral

code with the point-wise data this integration requires, as the continuous flux

is never known. It is necessary to precompute this integration with a separate

data processing code. In the next section we describe the self-shielding effect

that affects the shape of the continuous flux φ(E). In Sections 3.2 and 3.3 we

introduce the background cross section method that allows this integration to be

performed in a problem-independent manner.

Consider a homogeneous mixture of two nuclides: a moderator such as

oxygen and a resonant absorber such as uranium-238 with a resonance at energy

E∗. If the uranium-238 is present with a high concentration, then many neutrons
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will be absorbed in its resonance and the flux exhibits a sharp dip at E∗. Since

the reaction rates with which group cross sections are computed depend on this

flux, all group cross sections are decreased from the value they would have if the

flux did not dip.

However, the presence of a resonant isotope does not ensure a dip in

the flux. If other nuclides in the system are present with a concentration much

greater than that of the resonant absorber, then the resonance has little effect

on the flux and there is no self-shielding. We expect then that the resonance

self-shielding effect depends largely on the composition of the system under

consideration. We will identify a parameter σ0 that characterizes this problem

dependence.

3.2 Flux Approximation

We initially consider a flux approximation for homogeneous systems, and

will extend our result for homogeneous systems to heterogeneous systems in

Section 3.4 with an equivalence relation. For a homogeneous system containing

M nuclides, the macroscopic total cross section is given by:

Σt(E) =
M
∑

m

N mσm(E) (3.1)

where N m is the number density of the m-th nuclide in the mixture. In this homo-

geneous medium, the neutron balance is given by the following (Gopalakrishnan

and Ganesan, 1998):
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Σt(E)φ(E) = S(E) (3.2)

where S(E) is a smooth function that represents the flux profile within a group

if the total cross section were constant (i.e. neglecting resonance effects). S(E)

can be treated as constant for small energy groups, but depends on energy if

the group covers an energy range that is wide enough for the flux to rise or fall

appreciably. For example, in a thermal spectrum reactor, S(E) would be given by

a Maxwell-Boltzmann relation plus a fission spectrum. We can use Equation 3.2

to express the flux φ(E) in terms of the macroscopic total cross section:

φ(E) =
S(E)
Σt(E)

(3.3)

This equation shows the effect mentioned earlier, that the presence of

a resonance peak in Σt(E) causes φ(E) to dip. Equation 3.3 can be used to

approximate the behavior of the in-group flux under the narrow resonance (NR)

approximation (Bell and Glasstone, 1970). We employ this flux approximation in

the definition of the group cross section, Equation 2.17, to arrive at Equation 3.4:

σm
g =

∫

g

dEσm(E)
S(E)
Σt(E)

∫

g

dE
S(E)
Σt(E)

(3.4)

Here, σm
g represents the microscopic group cross section for the m-th

nuclide in the mixture. Equation 3.4 can be used to generate the appropriate
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group cross section for every individual reaction of interest. Note that it is the

total cross section that always appears on the right hand side of Equation 3.4, as

a resonance in any of the interactions that contribute to the total cross section

cause a depression in the flux.

3.3 The Background Cross Section

A key contribution of Bondarenko (1964) was to separate the macroscopic

total cross section into a term that depends solely on the point-wise cross section

for the desired nuclide m and a term that encompasses all other isotopes in the

mixture (i.e. the system of interest). We separate the macroscopic cross section

(Equation 3.1) into two terms:

Σt = N mσm
t +

∑

n6=m

N nσn
t (3.5)

The cross sections in Equation 3.5 are continuous functions of energy,

but we have omitted the energy argument for brevity. We factor out the number

density of nuclide m, for which we desire the group cross section, from both

terms:

Σt = N m

 

σm
t +

1

N m

∑

n6=m

N nσn
t

!

(3.6)

= N m(σm
t +σ

m
0 )

where σm
0 is called the background cross section:
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σm
0 =

1

N m

∑

n6=m

N nσn
t (3.7)

Combining Equations 3.4, 3.5, and 3.7, we obtain a new expression for

the group cross section using the background cross section:

σm
g = σ

m
g (σ

m
0 ) =

∫

g

dEσm S

σm
t +σ

m
0

∫

g

dE
S

σm
t +σ

m
0

(3.8)

where σm
t , σm

0 , and S are again functions of energy. Later, we will assume that

the background cross section is constant within a given group. It is clear from

Equation 3.8 that the dependence of the group cross section on a specific problem

is contained in the background cross section. The background cross section given

by Equation 3.7 sheds light on the nature of self-shielding. Importantly, the

self-shielding effect vanishes as the background cross section increases.

• As the concentration of nuclide m decreases, we reach what is called

infinite dilution: a dilute nuclide m does not cause a flux depression simply

because there is very little of it and so few neutrons interact with it.

• As the concentration of nuclide m increases, the denominator of the flux

approximation increases, causing a dip in the flux. This dip in the flux in

turn decreases the value of the group cross section from its value at infinite

dilution.
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• As the concentration or cross section of any nuclide n 6= m increases, we

again approach the case of infinite dilution in which the cross section of

nuclide m becomes less important.

3.4 Heterogeneous Systems and the Equivalence Relation

Equation 3.8 applies to a homogeneous mixture of nuclides. Nuclear

reactors, by contrast, are typically heterogeneous systems with distinct regions for

fuel, coolant and control materials. This is important because in a heterogeneous

system it is not just the total cross section that affects the in-group flux. The

probability that neutrons of a given energy will escape from a cell must also be

taken into consideration. In order to capture this effect we modify the neutron

balance in Equation 3.2 by adding an escape cross section Σe {cm−1}:

[Σt(E) +Σe(E)]φ(E) = S(E) (3.9)

Equation 3.9 constitutes a so-called ‘equivalence relation‘ because it

allows us to treat the heterogeneous case identically to how we treated the

homogeneous case by simply adding an effective cross section to the total cross

section (Bell and Glasstone, 1970). We rearrange Equation 3.9 to obtain the flux

φ(E):

φ(E) =
S(E)

Σt(E) +Σe(E)
(3.10)

We momentarily delay the task of obtaining an expression for the escape
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cross section Σe. Expanding the denominator of Equation 3.10 as we did before,

we obtain:

Σt +Σe = N m

 

σm
t +

1

N m

∑

n6=m

N mσn
t

!

+Σe

= N m

 

σm
t +

1

N m

 

∑

n6=m

N mσn
t +Σe

!!

(3.11)

= N m(σm
t +σ

m
0 )

where the background cross section is now given by:

σm
0 =

1

N m

 

∑

n6=m

N mσn
t +Σe

!

(3.12)

This equation provides the background cross section for cell i. The escape

cross section can be viewed as the cross section of an additional nuclide in a

homogeneous system. Equations 3.8 and 3.12 can then be used to obtain the

group cross section for any reaction, any nuclide, and in any cell of a reactor.

3.5 The Escape Cross Section

We now turn to the task of obtaining an expression for the escape cross

section. To do this, we employ the use of collision probabilities (Section 2.5) that

describe the flow of neutrons among an arbitrary number of cells. We observe

that the following equality, which relates the collision probabilities to the total

and escape cross sections, must hold true.
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Πi←i =
Σt

Σt +Σe
(3.13)

The cross sections here are defined for cell i and are functions of energy.

This equation states that a neutron born in cell i has two options: to collide in

cell i or to escape it. The probability of colliding in cell i by definition must be

equal to Πi←i. This expression is equivalent to the Wigner rational approximation

(MacFarlane and Muir, 1994), which is used commonly in the study of collision

probabilities. The escape cross section of a cell is often simply approximated

as the reciprocal of the average chord length l̄ of the cell (Bell and Glasstone,

1970).

Σe =
1

l̄
=

S

4V
(3.14)

Here, S and V are respectively the surface area and volume of cell i.

In their derivation of the more advanced neutron current method, Yamamoto

(2008) provides a conventional equivalent background cross section that employs

Equation 3.14 as well as a Dancoff factor D to account for lattice geometry:

σ0 =
1

N m

 

∑

n6=m

N nσn
t + D

S

4V

!

(3.15)

Methods more advanced than the Bondarenko method relate the collision

probabilities to the escape cross section by employing Carlvik’s two-term rational

approximation (Stamm’ler and Abbate, 1983) or other multi-term approxima-

tions (Hébert and Marleau, 1991).
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Alternatively, one can use Equation 3.13 as an implicit definition of the

escape cross section (MacFarlane and Muir, 1994; Nasr and Roushdy, 1991;

Schneider et al., 2006a).

Σe = Σt

�

1−Πi←i

Πi←i

�

(3.16)

For a homogeneous system, Πi←i is equal to 1 and the escape cross section

vanishes as expected. Equation 3.16 can be used if the collision probabilities

are known and a value for the escape cross section is sought. Indeed, this is our

situation. Thus, we use the collision probabilities we computed in Section 2.5

to obtain the escape and background cross section. It is noted then that our

procedure for obtaining correct group cross sections is tied to our method for

obtaining a spectral solution.

3.6 The Self-Shielding Factor

The limit of the group cross section as the background cross section

approaches infinity yields what is called the infinite dilution (or unshielded)

cross section. It is common to define a self-shielding factor f as the ratio of the

group cross section to the infinite dilution cross section:

f (σ0) =
σg(σ0)

σg(σ0→∞)
(3.17)

Accordingly, the quantity σg(σ0) = f (σ0)σg(σ0→∞) is called the self-

shielded cross section. Both σg(σ0) and σg(σ0 → ∞) are obtained through
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Figure 3.1: The self-shielding factor for the U-238 capture cross section at its
6.67 {eV} resonance as a function of background cross section. The red dots
denote the dilution grid (see Section 3.7) used in this work for interpolating the
cross sections based on background cross section.

Equation 3.8, but the latter is obtained assuming that σg is unaffected by the

other nuclides in the mixture. Figure 3.1 shows the self-shielding factor as a

function of background cross section for the uranium-238 capture cross section

at 6.67 eV. The figure shows that the self-shielding factor generally falls between

zero and unity, and approaches unity as the background cross section increases.

The function is commonly fit to a tanh curve (Kidman et al., 1972):

f (σ0) = Atanh [B(lnσ0+ C)] + D (3.18)

where the constants A, B, C , and D are fitting parameters. A method for obtaining

these parameters for given self-shielding data is described by Kidman et al.

(1972).

Figure 3.2 compares the point-wise U-238 capture cross section to the
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Figure 3.2: The three lowest energy resonances in the U-238 capture cross
section, given as point-wise, infinite dilution, and at a background cross section
of σ0 = 0.1 {b}.

group cross section at infinite dilution as well as at a background cross section

of σ0 = 0.1 {b}. It is clear from this figure that self-shielding only has an effect

at resonances, as in most bins the infinite dilution and σ0 = 0.1 {b} group cross

sections have the same value.

3.7 Implementation

In this section we describe how the Bondarenko approach is implemented

in a spectral code. This procedure is also shown in the flowchart of Figure 3.3.

Remember that a key benefit of the Bondarenko method is that the integration

over point-wise data is done with the problem dependence contained a single

parameter σ0. The generation of group cross sections is performed by a data

processing code such as NJOY (MacFarlane and Muir, 1994) for select values of
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Figure 3.3: Flowchart describing self-shielding calculations in which the escape
cross section is computed directly from collision probabilities.

σ0, and this data is stored for use in the spectral code.

Recall that the calculation of the group constants depends on a source

function S(E). Typically, a code such as NJOY provides a number of options for

the function S(E) to be used in computing the integrals. Thus, this function

is managed by the data processing code, and need not be considered when

computing the background cross section of a system. However, the form of S(E)

depends on the type of reactor being studied (fast, thermal, etc.) In our work,

we have set NJOY to use S(E) = 1/E.

The values of σ0 at which cross sections are obtained form what is called
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a dilution grid. The background cross section can vary from 0.1 to 1010 barns

(infinite dilution), and so the dilution grid must span a large range of values. As

a result, some care must be taken in choosing the proper values of σ0 to use in

the grid. We have found that the values 0.1, 1, 10.0 100.0, 103, 105, and 1010

(infinite dilution) capture the behavior of the self-shielding factor (Schneider,

2002). This grid is shown in Figure 3.1 as red dots. This provides us with a

table, for each nuclide and each energy group, of self-shielded cross sections (or

equivalently, self-shielding factors) at different values of σ0. We can interpolate

on this table using the values of σ0 that describe our specific system, which we

obtain through Equations 3.7 and 3.12. The group cross sections are a function of

temperature as well, and so this interpolation table is typically two-dimensional.

Although the background cross section was derived using continuous

quantities, we must use grouped cross sections instead because a spectral code

only has access to group cross sections. Therefore, it is necessary to ignore

any possible energy dependence of σ0(E) within an energy group. Fortunately,

under the narrow resonance approximation this practice is expected to introduce

minimal error (Gopalakrishnan and Ganesan, 1998). Note that the collision

probabilities are also used as group-averaged quantities rather than as continuous

functions even though they were initially presented as such.

The use of group cross sections instead of continuous energy quantities

for obtaining σ0 introduces yet another issue. The background cross section is

now computed using the very same quantities that the background cross section

is supposed to provide. As a result, the self-shielding procedure is iterative. It
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is common to initially assume that all group cross sections have their infinite

dilution value. A value of σ0 is computed from these infinite dilution group cross

sections. Then, this newly-computed σ0 is used to obtain self-shielded cross

sections using the interpolation table.
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Chapter 4

Results

We present results for both two-cell and four-cell systems. The method

has been shown to provide excellent results in the two-cell cases. However, the

four-cell configuration poses a challenge for the method.

4.1 Two-Cell Reactors

The two-cell reactors that we present are a light water reactor and a

sodium-cooled fast reactor. This infinite geometry is described in Figure 4.1.

First, we show the effectiveness of the self-shielding method by presenting self-

shielded cross section for the uranium in both of these reactors. Subsequently, we

show spectrum, reaction rate, and criticality results for each of the two two-cell

configurations.

The results for both of the simulations are benchmarked against MCNPX

2.7.0, and the results of the light water simulation are additionally compared to

the well-known Rowlands benchmark (Rowlands, 1999).
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2

1

Figure 4.1: Diagram of a two-cell system. The system consists of a pin (cell 2)
and a surrounding antipin cell (cell 1) that repeat as an infinite lattice.

4.1.1 A Light Water Thermal Reactor

The Rowlands benchmark is part of an OECD effort to obtain the dis-

crepancy in results (multiplication factor, reaction rates, etc.) that arises from

the processing of the same set of nuclear data by different methods across the

industry (Rowlands, 1999). To this end, the benchmark specifies a number of

cases of simplified reactor configurations (UOX-fueled and MOX-fueled LWRs).

This benchmark is commonly used in the literature to evaluate resonance self-

shielding methods (Gopalakrishnan and Ganesan, 1998; Hébert, 2005). Thus,

we have chosen to model our light water reactor after case 1 of this benchmark.

Case 1 of the benchmark is provided for both a square moderator cell and

a circularized moderator cell (using the Wigner-Seitz method). We implement

the square cell version of case 1. This case incorporates a 0.05 {cm} thick
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Table 4.1: Dimensions and composition of the LWR from case 1 of the Rowlands
benchmark (Rowlands, 1999). The fuel is enriched uranium dioxide, and is
surrounded by a water moderator. A zirconium fuel rod is modeled by smearing
the appropriate amount of zirconium across the water.

Pin
diameter 0.8000 cm
temperature 294.0 K

nuclide density (#/b/cm2)

U-235 0.0007080
U-238 0.0226040
O-16 0.0466240

Annulus
pitch 1.2000 cm
temperature 294.0 K

nuclide density (#/b/cm2)

H-1 0.0574461
O-16 0.0286544
Zr-90 0.0061594

zirconium fuel rod. In our simulation we do not model the fuel rod exactly

and instead we smear the same amount of zirconium across the moderator as

would be contained in the fuel rod. Since our system, described in Table 4.1, is

not exactly that specified by the benchmark, we also compare our results to an

MCNPX simulation with the same input as with our method. We compare results

for the multiplication constant and reaction rates between all three simulations,

but compare the neutron spectrum only to MCNPX (a neutron spectrum is not

provided in the Rowlands benchmark). We model the system using 100 energy

groups from 1 {meV} to 10 {MeV}.
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Table 4.2: Dimensions and composition of a sodium fast reactor. The fuel is
enriched uranium dioxide and is surrounded by a sodium moderator. A steel fuel
rod is modeled by smearing chromium, iron, and nickel across the sodium.

Pin
diameter 1.3727 cm
temperature 900.0 K

nuclide density (#/b/cm2)

U-235 0.0062999
U-238 0.0183091
O-16 0.0492181

Annulus
pitch 2.0000 cm
temperature 600.0 K

nuclide density (#/b/cm2)

Na-23 0.0210618
Cr-52 0.0016310
Fe-56 0.0053902
Ni-58 0.0007107

4.1.2 A Sodium Cooled Fast Reactor

We model an infinite lattice of a sodium-cooled fast reactor fueled with

fresh uranium dioxide. A fuel pin is modeled by smearing a 0.5 {cm} thick

steel rod (using only chromium, iron, and nickel) across the moderator. The

dimensions and composition of this system are provided in Table 4.2. For this

system, we use 43 energy groups that are equally spaced in lethargy from

400 {eV} to 10 {MeV}; the flux at energies below this range is zero.

4.1.3 Light Water Reactor Cross Sections

The cross sections are compared to their values at infinite dilution, as

well as to the cross sections that MCNPX reports for a simulation of this system.
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The MCNPX cross sections are obtained from the reaction rates provided by a

cell tally in conjunction with the appropriate tally multiplier. The MCNPX cross

sections are assumed to be self-shielded.

Figure 4.2 shows the capture cross section for uranium-238 in the energy

range 1 eV to 100 keV. The top graph shows that there is substantial self-shielding

of this cross section. This is expected, because uranium-238 is present in such

a great concentration and many neutrons are absorbed in its resonances. The

middle graph shows the error between MCNPX and our method. The bottom

graph shows the background cross section for uranium-238, as well as the escape

portion of this background cross section. Over the entire energy range, the

background cross section has a relatively small value, as we expect in the case

where self-shielding is substantial. Though the error between MCNPX and our

method is large in a few energy groups, the method is mostly able to compute

the escape probability that yields the correct self-shielded cross sections.

Figure 4.3 shows the capture cross section for uranium-235, which is

present in a much smaller concentration than is uranium-238. As a result, the

background cross section is large and the infinite dilution cross section is valid.

By comparing the bottom graph of Figure 4.3 to the unshielded cross section in

Figure 4.2, it is evident that the background cross section for uranium-235 is

dominated by the uranium-238 capture cross section.
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Figure 4.2: Group cross section for U-238 capture from 1 eV to 100 keV. The top
graph provides the infinite dilution cross section and compares the cross section
generated by our method (“CPM”) to that obtained by MCNPX. The middle graph
provides the error between our method and MCNPX. The bottom graph shows the
background cross section that yields the self-shielded cross section shown at top,
as well as the escape portion of this background cross section.
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Figure 4.3: Group cross section for U-235 capture from 1 eV to 100 keV. The top
graph provides the infinite dilution cross section and compares the cross section
generated by our method (“CPM”) to that obtained by MCNPX. The middle graph
provides the error between our method and MCNPX. The bottom graph shows the
background cross section that yields the self-shielded cross section shown at top,
as well as the escape portion of this background cross section.
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4.1.4 Fast Reactor Cross Sections

In Figure 4.4 and Figure 4.5 we again present the cross sections for

capture by uranium-238 and uranium-235 but now in the fast reactor. The shape

of the escape cross section is now dominated by the sodium cross section. Again,

as expected the background cross section for uranium-238 is much smaller than

it is for uranium-235 because it is present in a much higher concentration. As a

result the uranium-238 cross section is substantially self-shielded.

4.1.5 Thermal Spectrum and Reaction Rates

The neutron spectrum obtained by our method, shown in Figure 4.6,

correctly captures all essential features of the MCNPX flux, including the three

resonance dips in the epithermal region. The coefficient of determination R2

between the two results, at 0.9998, indicates a high accuracy of our method

across the energy groups.

Table 4.3 compares 3-group reaction rates from our method to those

given in the Rowlands benchmark. The results are normalized to 100,000 total

absorptions in the system. On the other hand, Table 4.4 compares our results

to those obtained by an MCNPX simulation in which the zirconium fuel rod has

also been smeared. Table 4.4 indicates a high level of accuracy of our method in

computing reaction rates, as all errors are below 5%. However, it is clear from

Table 4.3 that smearing the zirconium throughout the moderator introduces

substantial error in comparison to published Rowlands results.

70



10
0

σ 
(c

m
−

1 )

 

 
inf. dilution
MCNPX
CPM

−10

0

10

re
la

tiv
e 

er
ro

r 
(%

)

10
3

10
4

10
5

0

20

40

60

80

energy (eV)

σ 
(c

m
−

1 )

 

 
R2 = 0.9987 σ

0

σ
e

Figure 4.4: Self-shielded uranium-238 capture cross section in a sodium-cooled
fast reactor. The top graph provides the infinite dilution cross section and
compares the self-shielded cross section produced by our method (“CPM”) to
MCNPX. The middle graph presents the error between our cross section and
MCNPX’s. The bottom graph shows the background cross section generated by
our code as well as the escape portion of this background cross section. The
escape cross section is dominated by the sodium-23 resonance present in the
coolant. The relatively small value for the background cross section gives rise
to substantial self-shielding. The coefficient of determination between the two
results is 0.9987.
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Figure 4.5: Self-shielded uranium-235 capture cross section in a sodium-cooled
fast reactor. The top graph provides the infinite dilution cross section and
compares the self-shielded cross section produced by our method (“CPM”) to
MCNPX. The middle graph presents the error between our cross section and
MCNPX’s. The bottom graph shows the background cross section generated by
our code as well as the escape portion of this background cross section. The
escape cross section is dominated by the sodium-23 resonance present in the
coolant. However, uranium-235 is present in a smaller concentration than
uranium-238 and so its background cross section is larger than for uranium-238.
The coefficient of determination between the two results is 0.9992.
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Figure 4.6: Comparison to MCNPX of spectral flux in the fuel of the LWR from
case 1 of the Rowlands benchmark. The top graph compares the fuel flux from
our method (“CPM”) to MCNPX results. The bottom graph provides the error
between our method and MCNPX. The coefficient of determination between the
results is 0.9998.

73



Table 4.3: Comparison to Rowlands results of 3-group reaction rates in the
LWR from case 1 of the Rowlands benchmark. The absorption rates for the
uranium isotopes are provided. Our method is noted as “CPM”. The numbers are
normalized to 100,000 total absorptions in the system. The errors are slightly
higher than in Table 4.4 as a result of how we have approximated the presence
of the fuel rod.

nuclide reaction group MCNPX CPM error (%)

U-235 fission fast 728 674 -7.42
res. 4363 4038 -7.45

thermal 51926 49555 -4.57

capture fast 117 110 -5.98
res. 2386 2365 -0.88

thermal 9051 8795 -2.83

U-238 fission fast 2963 2785 -6.01
res. 1 1 0

capture fast 2262 2161 -4.47
res. 16148 15303 -5.23

thermal 8771 8420 -4.00

Table 4.4: Comparison to MCNPX of 3-group reaction rates in the LWR from case
1 of the Rowlands benchmark. The absorption rates for the uranium isotopes
are provided. Our method is noted as “CPM”. The numbers are normalized to
100,000 total absorptions in the system. All errors are below 5%, and are slightly
smaller than in Table 4.3 because the fuel rod has been smeared in MCNPX just as
it has been in our model.

nuclide reaction group MCNPX CPM error (%)

U-235 fission fast 675 674 -0.15
res. 4093 4038 -1.34

thermal 49424 49555 0.27

capture fast 110 110 0
res. 2371 2365 -0.25

thermal 8762 8795 0.38

U-238 fission fast 2765 2785 0.72
res. 1 1 0

capture fast 2171 2161 -0.46
res. 15218 15303 0.56

thermal 8395 8420 0.30
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Figure 4.7: Comparison to MCNPX of spectral flux in the fuel of the sodium fast
reactor in the results. The top graph compares the fuel flux from our method
to MCNPX results. Our method is able to capture the flux dips corresponding
to resonances. The bottom graph provides the error between our method and
MCNPX. The coefficient of determination between the results is 0.9990.

4.1.6 Fast Reactor Spectrum and Reaction Rates

The neutron spectrum in the fuel is compared in Figure 4.7 to results

obtained by MCNPX for the same system. The relative error between the two

results is shown in the lower graph. The coefficient of determination R2 between

the two results is 0.9977, which indicates a good correlation of the results across

the energy groups.

Table 4.5 compares one-group reaction rates computed by our method
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Table 4.5: Comparison to MCNPX of one-group reaction rates in a sodium fast
reactor. The absorption rates for the uranium isotopes are provided. Our method
is noted as “CPM”. These reaction rates encompass the entire energy range that
is modeled, from 400 {eV} to 10 {MeV}. The numbers are normalized to 100,000
total absorptions in the system. All errors are below 5%.

nuclide reaction MCNPX CPM error (%)

U-235 fission 56438 56325 -0.20

capture 14802 14694 -0.73

U-238 fission 5126 5340 4.17

capture 22848 22870 0.10

(“CPM”) to those obtained from MCNPX. We focus on the absorption reactions

with uranium. In most cases, our method presents minimal error. The numbers

presented are normalized to a total of 100,000 absorptions in the entire system

(in both the fuel and moderator).

4.1.7 Criticality

A summary of the multiplication factors for both the fast and thermal

reactors is provided in Table 4.6. The error in the thermal results is very small,

especially when compared to the same model in MCNPX. The discrepancy with

the published Rowlands results is attributed to the smearing of the zirconium

fuel rod in our simulation. An error of less than 10 mk is considered acceptable

(Schneider et al., 2006a).
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Table 4.6: Comparison to MCNPX and published Rowlands results of the mul-
tiplication factor for both the fast and thermal reactor. Our method is noted
as “CPM”. Our model provides very accurate results in comparison to MCNPX

simulations. There is greater error between our model and the results provided
by the Rowlands benchmark because we have smeared the zirconium fuel rod in
the benchmark across the moderator.

run comparison CPM error (mk)

fast 1.536340 1.539315 2.975
Rowlands 1.390110 1.401140 11.030
Rowlands in MCNPX 1.397500 1.401140 3.640

4.2 A Four-Cell Reactor

We present three sets of results for four-cell geometries. The first set is

for a fast reactor, and the second two are for a thermal reactor.

4.2.1 Fast Reactor

The reactor is fueled by highly enriched uranium dioxide and by pluto-

nium dioxide. We present the neutron spectrum for the uranium dioxide cell

in Figure 4.9, and for the plutonium dioxide cell in Figure 4.10. The results

align fairly well with MCNPX results. This indicates that the current method is

satisfactory for the analysis of multi-region fast reactors. The difference in the

multiplication factor between MCNPX and our method is only 10 mk.

4.2.2 Thermal Reactor

We present a light water moderated reactor composed of low enriched

uranium, using the same pin composition as in the Rowlands benchmark, as
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Pin cells Annular cells

HEU
diam. 0.8000 cm
temp. 294.0 K

nuclide N (#/b/cm2)

U-235 5.6642 × 10−3

U-238 2.2604 × 10−2

O-16 4.6624 × 10−2

PuO2
diam. 0.8000 cm
temp. 294.0 K

nuclide N (#/b/cm2)

Pu-239 2.5560 × 10−2

O-16 5.1119 × 10−2

HEU sodium
pitch 1.2000 cm
temp. 294.0 K

nuclide N (#/b/cm2)

Na-23 2.3111 × 10−2

PuO2 sodium
pitch 1.2000 cm
temp. 294.0 K

nuclide N (#/b/cm2)

Na-23 2.3111 × 10−2

Figure 4.8: Dimensions and composition of a four-cell UOX and plutonium
doixide fueled reator. The ratio of UOX pins to plutonium pins is 3:1.

well IMF (inert matrix fuel). The geometry and composition of the system are

described in Table 4.7. The four-cell thermal reactor results are not as promising

as the fast reactor results. This is largely because the system does not appear

homogeneous to neurons in the thermal range. The flux is qualitatively different

from that given by MCNPX. At 42 mk, the error in the multiplication factor is not

acceptable.

For this reason, we explored a method to account for the fact that the

system appears heterogeneous at low energies, where the hydrogen cross section

is high and the neutron mean free path is small. We modify the theory according

to Section 2.6, and obtain the new results shown in Figure 4.13 and Figure 4.14.

This correction slightly improves our results, as the coefficients of deter-

mination have come closer to unity. Additionally, the error in the multiplication
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Figure 4.9: Four-cell fast reactor spectral flux in the uranium fuel pin. The
correlation between MCNPX and our method (“CPM”) is fairly high.
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Figure 4.10: Four-cell fast reactor spectral flux in the plutonium fuel pin. The
correlation between MCNPX and our method (“CPM”) is fairly high.
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Table 4.7: Dimensions and composition of a four-cell model moderated with
water and fueled with enriched UOX and IMF (inert matrix fuel). The ratio of
UOX pins to IMF pins is 3:1. The dimensions and coolant for both of these pins
are the same.

Pin cells Annular cells

UOX
diam. 0.8000 cm
temp. 294.0 K

nuclide N (#/b/cm2)

U-235 7.0800 × 10−4

U-238 2.2604 × 10−2

O-16 4.6624 × 10−2

IMF
diam. 0.8000 cm
temp. 294.0 K

nuclide N (#/b/cm2)

Pu-239 1.4704 × 10−3

Pu-240 4.3800 × 10−4

Pu-241 3.0650 × 10−4

Pu-242 8.6500 × 10−5

Zr-90 1.8900 × 10−2

Zr-94 6.3844 × 10−3

Y-89 6.4825 × 10−3

UOX water
pitch 1.2000 cm
temp. 294.0 K

nuclide N (#/b/cm2)

H-1 6.6988 × 10−2

O-16 3.3414 × 10−2

IMF water
pitch 1.2000 cm
temp. 294.0 K

nuclide N (#/b/cm2)

H-1 6.6988 × 10−2

O-16 3.3414 × 10−2
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Figure 4.11: Four-cell thermal reactor spectral flux in the UOX fuel.
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Figure 4.12: Four-cell thermal reactor spectral flux in the IMF fuel.
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Figure 4.13: Four-cell thermal reactor spectral flux in the UOX fuel, homogeneity
corrected.

factor drops from 42 mk to 31 mk.

Alternate implementations of the method provided in Section 2.6 are

possible, and may lead to further improvement of the results.
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Figure 4.14: Four-cell thermal reactor spectral flux in the IMF fuel, homogeneity
corrected.
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Appendix A

Relevant Cross Sections

Cross section plots are shown for all nuclides in the systems presented in

Chapter 4. For each nuclide, the total cross section is compared to the transport

corrected total cross section. It is evident that except for hydrogen, this correction

only affects cross sections at high energies.
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Figure A.1: Total microscopic cross section for H-1 bound in water.
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Figure A.2: Total cross section for O-16.
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Figure A.3: Total cross section for Na-23.
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Figure A.4: Total cross section for Cr-52.
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Figure A.5: Total cross section for Fe-56.
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Figure A.6: Total cross section for Ni-58.
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Figure A.7: Total cross section for Zr-90.
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Figure A.8: Total cross section for U-235.
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Figure A.9: Total cross section for U-238.
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Appendix B

Code Manual

The code used to implement the methods described in this work has

been called VBUDSII, after the VBUDS (Visualiziation: Burnup, Depletion, Spectra)

collision probability spectral and burnup code developed by Schneider (2002).

A description of the modules and data structures of VBUDSII is given in this

appendix.

Currently, three versions of VBUDSII exist. The first is the development

version. The second is a cleaned-up version of the development version that was

created after the code yielded accurate results. The third is a loose object-oriented

implementation, named VBUDSIIOO, that was created solely for debugging pur-

poses. All results presented in this work were generated using the development

version. All three versions are implemented in MATLAB . Except for one section,

this manual focuses on the cleaned-up version of VBUDSII .

B.1 Modules

The VBUDSII code is intended to (1) provide self-shielded multigroup

cross sections given a cell geometry, (2) produce the energy-dependent neutron

spectrum, (3) perform diffusion on three homogeneous regions or fuel campaigns,
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DIFFUSION

CROSS SECTION COLLAPSE

SELFSHIELDING

MULTICELL

SELFSHIELDING

MULTICELL

SELFSHIELDING

MULTICELL

BATEMANBATEMAN BATEMAN

Figure B.1: The modules planned for VBUDSII. Development on the BATEMAN

and DIFFUSION modules was performed at Cornell, and this thesis discusses the
MULTICELL module. The cross section collapse is the procedure of collapsing
many-group cross sections into few-group (e.g. 3) cross sections averaged over
space. The cross section collapse and diffusion modules are performed across
all three regions in the system, while the self-shielding, spectral solution, and
burnup are performed individually for each of the three regions.

and (4) update the system’s material composition through a burnup calculation.

The interconnection of these modules is shown in Figure B.1. In this work, only

(1) and (2) are completely implemented. However, progress has been made on

(3) and (4). The manual only describes (1) and (2).

DATAPROCESSING Microscopic cross section (as well as ν and µ̄) tables are in-

terpolated in temperature and (the initially guessed) background cross

section to obtain system-dependent data. The microscopic cross sections

are cell-collapsed to obtain macroscopic cross sections for each cell, and
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the derived quantities νΣ f and Σt are computed. The transport correction

is also applied before Σt is formed. Then, new values for the background

cross section are obtained from SELFSHIELDING and part of MULTICELL, and

the interpolation in background cross section is performed again. This is

repeated until the background cross section everywhere converges.

SELFSHIELDING The background cross section is calculated for each nuclide in

each cell (at all energies). This module requires that Π has been calculated.

MULTICELL This module contains the function CreatePi() that computes Π, as

well as the function SpectralMatrix() that places the macroscopic cross

section data into matrix Equation 2.31 and the function SpectralSolve()

that solves the matrix equation.

DIFFUSION While much code is present for this module, it is not integrated.

BATEMAN This module has not been written, but the Bateman() function pro-

vides pseudocode for its implementation.

A brief description of all relevant functions is provided here. We begin

with functions that are not part of one of the above modules. All variables

mentioned here are described shortly.

Vbudsii() This is the main function, and requires Param and Geom as input.

This function calls all modules in turn. The function returns Results,

Param, Geom, and Lib.

95



initparam() Initializes a Param struct that can be used as an input to Vbudsii().

This can be used as a reference to see what fields are required to run the

code.

initgeom() Initialize a Geom struct.

initunitcell() Initialize a uc struct, which becomes part of the Geom struct.

Preprocessor() Checks Geom for errors, runs InterpFissionSpectrum() and

initializes Results.

Postprocessor() Performs post-processing of data, such as creating plots.

Note the code is organized using MATLAB packages, which are created

using folders whose names are prepended with an addition (“+”) symbol. To

call Vbudsii(), the user types:

vbudsii.Vbudsii(Param, Geom)

in the command window, assuming the folder +vbudsii/ is on the MATLAB path.

We now describe the remaining functions.

B.1.1 Dataprocessing

ResolveXS() Runs most of the other functions in this module to interpolate

data and perform self-shielding.

ResolveTemp() Interpolates Lib by temperature and stores the results in

Results.Region().Cell().fine().z().t().
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ResolveXS() Interpolates data in Results by background cross section σ0 and

stores the results in Results.Region().Cell().fine().z().s.

InterpFissionSpectrum() Returns a Watt fission spectrum.

CollapseCell() Computes the derived quantities νΣ f , Σt , and manages the

(n, 2n) interaction if requested. Creates cell-level macroscopic cross sec-

tions and stores them in Results.Region().Cell().fine().value.

CollapseData() Calculates reaction rates and few-group cross sections and

stores them in Results.Region().Cell().one() and

Results.Region().Cell().few()

CollapseEnergy() Collapses cross sections in energy to create few-group cross

sections from fine-group cross sections. This is called by CollapseData().

B.1.2 Selfshielding

Selfshielding() Runs CalculateS0() for all cells and nuclides.

CalculateS0() Uses Π and the cell-level macroscopic cross section to com-

pute the escape and background cross section for a particular cell and

nuclide. The results are stored in Results.Region().SEscapes and

Results.Region().S0s

B.1.3 Multicell

Multicell() Calls SpectralMatrix() and SpectralSolve() onceΠ has been

calculated.
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CreatePi() Computes the transport probabilities matrix Π, which is stored in

Results.Region().PI.

SpectralMatrix() Arranges cross section data and Π into a matrix equation.

SpectralSolve() Solves the matrix equation returned by SpectralMatrix()

and obtains the multiplication factor and spectrum of the reactor. This func-

tion also computes the power density of the system. These results are stored

in Results.Region().kInf and Results.Region().spectralFlux.

B.2 Data Structures

All of the important data that flows through VBUDSII is stored in one of

four structs. Parameters that control options are stored in Param, and the

definition of the reactor geometry and composition is stored in Geom. These two

structs constitute the input to VBUDSII . All data output is stored in Results,

and the cross section library is stored in Lib. These are often abbreviated,

respectively, as p, g, R, and L. The VBUDSIIOO code implements structs that are

substantially improved over the ones presented here, and it is hoped that the

project migrates to the use of those structs instead of those presented here.

Figure B.2 illustrates how the data structures are connected to the modules.
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B.2.1 Parameter Input

The Param struct can be initialized by the function initgeom(). The

text of that function is placed here for reference. Descriptions are placed as

comments.

p = struct(’nFineGroups’, [], ... % length(fineGroupDef)-1
’nFewGroups’, [], ... % length(fewGroupDef)-1

’fineGroupDef’, [], ... % units of eV
’fewGroupDef’, [], ... % units of eV
’nTimeSteps’, 1, ... % For burnup.
’resolveXS’, 1, ... % Self-shielding?

’verbose’, 1, ... % VBUDSII talks to you.
’XSLibraryMAT’, ’’, ... % located in +vbudsii/+data/
’S0iterthresh’, 0.00001, ...

’doPlot’, 0 ... % Plots output.
);

Some of the fields above require further description and are described

below.

fineGroupDef Fine-group energy group structure for spectral calculations.

There are G + 1 values for G groups, since the left and right edge of

each group must be provided. Units are {eV}.

fewGroupDef Few-group energy group structure for few-group reaction rates

and diffusion (when it is implemented). Units are {eV}.

resolveXS A value of false tells VBUDSII skip the self-shielding of cross sections.

In this case, the field p.constS0 can be specified to set the value of σ0 to

be used for all cross sections.
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XSLibraryMAT Name of the library MAT-file to load. The file must be located in

the +vbudsii/+data/ directory.

S0iterthresh Threshold for error in σ0 between iterations. This controls when

the self-shielding iterations stop.

Other fields that may be used in the development version of the code are

presented in Section B.4.

B.2.2 Geometry Input

The geometry input allows the specification of multiple reactor regions.

These would be used in the diffusion of neutrons between regions, such as if the

reactor was composed of three fuel campaigns. In this work only one region is

used.

g = struct(’nRegions’, [],...
’regionDef’, struct(’name’,’’,...

’uc’, struct(), ...
’nCells’,[],...

’relVolumes’,[],... % unitless
’isFissionable’,[],... % logical

’cellDef’,struct(’name’,’’,...
’isFissionable’,[],... % logical

’initZAIDs’,[],...
’initNumDensities’,[],... % #/b/cm

’initDensity’,[],... % g/cm^3
’initTemp’,[]... % K

)));
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The isFissionable fields are actually filled in by the code, and the user

does not set them. The ZAID identifies a nuclide by concatenating its proton

number with its atomic number. For example, the ZAID for U-235 is 92235. The

user must also specify the unit cell uc for each region. An example of this struct

is provided below for a four-cell region.

uc = struct();
uc.pinPitch = sqrt(0.538^2 * pi)*[1 1]; % cm
uc.pinDiam = 2 * 0.289*[1 1]; % cm
uc.f = [0.75 0.25]; % alpha % unitless weight, sums to 1.
uc.g = [0.75 0.25]; % beta % unitless weight, sums to 1.
uc.sauerConst.mod = 2.35;
uc.sauerConst.fuel = 5.00;
uc.PinCellNames = {’UOX fuel’, ’IMF fuel’};
uc.AntipinCellNames = {’UOX coolant’, ’IMF coolant’};

The last two fields must match the names given on the name field in the

Geom, or g, struct. An example Geom input is provided:
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g.regionDef(1).uc = uc;

enrichment = .026;
density_H2O = .72; % g/cm^3
density_UO2 = 11; %g/cm^3
[ao, wo, N_H2O] = matl([1001 2;

8016 1], 1, density_H2O);
[ao, wo, N_UO2] = matl([92235 enrichment;

92238 1-enrichment;
8016 2], 1, density_UO2);

% define
% one region with two cells: UO2 and H2O
g.nRegions = 1;
g.regionDef(1).name = ’campaign1’;
g.regionDef(1).nCells = 2;
g.regionDef(1).relVolumes = [...

pi/4*uc.pinDiam^2, ...
uc.pinPitch^2-pi/4*uc.pinDiam^2 ...
];

% UO2 cell
g.regionDef(1).cellDef(1).name = ’fuel’;
g.regionDef(1).cellDef(1).initZAIDs = [92235 92238 8016];
g.regionDef(1).cellDef(1).initNumDensities = N_UO2’;
g.regionDef(1).cellDef(1).initDensity = density_UO2;
g.regionDef(1).cellDef(1).initTemp = 900;
% H2O cell
g.regionDef(1).cellDef(2).name = ’coolant’;
g.regionDef(1).cellDef(2).initZAIDs = [11 8016];
g.regionDef(1).cellDef(2).initNumDensities = [N_H2O];
g.regionDef(1).cellDef(2).initDensity = density_H2O;
g.regionDef(1).cellDef(2).initTemp = 600;

We have made use of the matl() function, which is described in Sec-

tion B.3.
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B.2.3 Results

The Results struct consists of only two fields, though all of the output is

stored in Region, which is itself a struct. Region is initialized by the following:

Region = struct(’spectralFlux’,[],... % nGroups x nCells
’fewFlux’,[],... % unused so far.
’kInf’,[],... % highest eigenvalue.
’kInfall’, [], ... % all eigenvalues.
’relativePower’,[],... % scalar.
’PI’,[],... % nCells x nCells x nFineGroups
’powerDensity’,[],... % scalar.
’few’,struct(’value’,[]),... % few-group XS’s.
’pi2cellIdxs’, [], ... % index mapping, internal.
’cell2piIdxs’, [], ... % index mapping, internal.
’Cell’,struct(’spectralFlux’,[],... % fine flux result.

’fewFlux’,[],... % collapsed flux.
’kInf’,0,... % unused.
’temp’,0,... % taken from Geom.
’ZAIDs’,[],... % row vector of composition.
’numDensities’,[],... % row vector (n/b/cm)
’S0s’,[],... % background xs, nFineGroups x nCells
’SEscapes’,[],... % escape xs, nFineGroups x nCells
’one’,struct(’RR’,[],... % 1-group data

’value’,[],...
’z’,struct(’t’,[],...

’s’,[], ...
’RR’,[])),...

’few’,struct(’RR’, [], ... % few-group data
’value’,[],...
’z’,struct(’t’,[],...

’s’,[], ...
’RR’, [])),...

’fine’,struct(’value’,[],... % fine-group data
’z’,struct(’t’,[],...

’s’,[]))));
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The Results struct is then given by the following:

Results = struct(’runtime’, [], ...
’Region’, struct());

The Results struct stores all unshielded microscopic and self-shielded

microscopic and macroscopic cross sections, as well as reaction rates, the mul-

tiplication factor, and reactor composition (since if burnup is performed the

composition may change). In the last few fields, one, few, and fine, the z

subfield stores cross section data for each nuclide (ZAID), and accordingly the

length of this field is the number of nuclides in the cell. The t subfield provides

temperature-interpolated cross sections as an nGroups x nS0s matrix, where

“S0” is the base-10 logarithm of the background cross section log10(σ0). The

s subfield provides self-shielded temperature-interpolated cross sections as an

nGroups x 1 array.

Some examples of the use of the Results struct at the MATLAB command

prompt are provided below.
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R = Results.Region(1);
R =

spectralFlux: [42x2 double]
fewFlux: [3x1 double]

kInf: 1.5393
kInfall: [84x1 double]

relativePower: [2.4000e-11 0]
PI: [2x2x42 double]

powerDensity: 6.0000e-12
few: [1x52 struct]

pi2cellIdxs: [2 1]
cell2piIdxs: [2 1]

Cell: [1x2 struct]
one: [1x52 struct]

>> length(R.Cell)
ans =

2

The length of R.Cell is 2 because there are two cells in region 1.
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Cell itself is a struct containing cell-specific information:

>> R.Cell(1)
ans =

spectralFlux: [42x1 double]
fewFlux: [3x1 double]

kInf: 0
temp: 900 % in Kelvin.

ZAIDs: [92235 92238 8016] % nuclides
numDensities: [0.0063 0.0183 0.0492] % densities

S0s: [42x3 double] % nGroups x nZAIDs
SEscapes: [42x3 double] % nGroups x nZAIDs

one: [1x52 struct] % 1-g data
few: [1x52 struct] % few-group data

fine: [1x52 struct] % fine-group data
relativePower: 0

The fine-group microscopic and macroscopic cross sections are stored in the fine

subfield. The length of this subfield is the number of MT’s present in the data

library associated with this VBUDSII run.

>> size(R.Cell(1).fine)
ans =

1 52 % there are 52 MT’s (reactions) in L.

MT = 7 yields the total cross section.

>> R.Cell(1).fine(L.MT(7))
ans =

value: [42x1 double] % macroscopic for cell
z: [1x3 struct] % microscopic for each ZAID

The length of z is 3 because there are 3 nuclides in the cell.
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>> R.Cell(1).fine(L.MT(7)).z(1)
ans =

t: [42x7 double] % nGroups x nTemps; interp’d by T
s: [42x1 double] % nGroups x 1; interp’d by S0

The t subfield is populated by ResolveTemp(), and the s subfield is

populated by ResolveS0(). See the code for more information.

B.2.4 Data Library

The Lib struct has the following form:

L = struct(’groupDef’,p.p.groupDef,... % eV
’nGroups’,length(p.p.groupDef)-1,...
’ZAIDs’,ZAIDs,...
’MTs’,MTs,...
’mainMTs’,mainMTs,...
’Ts’,Ts,...
’S0s’,log10(S0s),...
’ZAID’,[],...
’MT’,[],...
’mainMT’,[],...
’T’,[],...
’S0’,[],...
’MTmap’,[],...
’z’,struct(’isFissionable’,[],...

’inelasticMTs’,[],...
’m’,struct(’hasResonances’,[],...

’xs’,[])));

The fields ZAIDs, MTs, mainMTs, Ts, and S0s list the values that are available

for each of these settings. The fields ZAID, MT, mainMT, T, and S0 sparse arrays
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(except for S0, which is a container.Map) that are used to index into the

library. All the cross section data is stored in the z field, and its usage is shown

below. The mainMTs field is used in the code for looping through only the

relevant interactions. The names of the relevant MT’s is found in the L.MTmap

container.Map.

The following presents three examples of library usage.

% Total cross section for hydrogen bound in water.
L.z(L.ZAID(11)).m(L.MT(7)).xs(:,L.T(600),L.S0(10))
% Capture for O-16 at T = 600 and S0 = 10.
L.z(L.ZAID(8016)).m(L.MT(102)).xs(:,L.T(600),L.S0(10))
% Total scattering kernel for hydrogen bound in water.
L.z(L.ZAID(11)).m(L.MT(2)).xs(:,:,L.T(600),L.S0(10))

To accommodate our usage of ENDF data, we have introduced the follow-

ing new symbols:

ZAID 11 Hydrogen bound in water (1001 is free gas hydrogen).

MT 7 The total cross section obtained from the sum of capture, fission, elastic

scattering, and inelastic scattering. The total cross section is also modified

by the inclusion of the (n,2n) cross section.

MT 8 This used to be the transport cross section, but is now deprecated.

MT 9 The νΣ f cross section.

The user may create a library of this form by any means, but we have

used the functions FarmXS() and FarmXSVIIp1() to do so.
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B.3 Utility Functions

A number of functions have been developed that aid the use of VBUDSII ,

but that are not part of VBUDSII . Most of these have been placed in the util/

folder of VBUDSII .

FarmXS() Runs NJOY to create Lib. The input to this function is fairly detailed.

FarmXSVIIp1() Runs NJOY to create Lib. The input to this function is fairly

detailed. This version is more up to date and works only with ENDFVII. It

has only been tested ENDFVII.1.

VbudsiiVsMcnpx() Takes the output of VBUDSII and MCNPX runs and creates a

report of the results.

VbudsiiVsVbudsii() Takes the output of two MCNPX runs and creates a report

of the results.

matl() Provides density information for a mixture of isotopes.

visualizelibrary() Takes a Lib and plots various cross sections across the

library.

writeMCNPXSpectralInput() Writes an MCNPX input file, given a VBUDSII input.

This has been replaced by the McnpxWrap class.

writeSerpentSpectralInput() Writes an SERPENT input file, given a VBUDSII

input. This has been replaced by the SerpentWrap class.
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printnuclearplot() Creates a latex plot of cross section or flux data.

TallyPull2() Parses an MCNPX output file. Written by Geoff Recktenwald.

McnpxWrap A class to create, run, and post-process an MCNPX run generated

from a VBUDSII input.

SerpentWrap A class to create, run, and post-process a SERPENT run generated

from a VBUDSII input.

B.4 Development Options

In the course of development of VBUDSII , many “tweaks” were made to

the code so that it could operate in different ways depending on certain fields of

the Param struct. For instance, at some point in development the method for

computing the fission spectrum was changed. In order to maintain the behavior

of the code, the new method was implemented by placing the following line in

the code:

if isfield(p, ’useWatt’) && p.useWatt

This line checks to see if the field useWatt exists in the Param struct. If

it does and if its logical value is true, then the Watt fission spectrum is used in

lieu of a tabulated fixed-group array. These options are listed below, along with

the function in which the option is present. Only a brief description is given;

refer to the code for more information.
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Many of the available options lead to incorrect and invalid results. They

exist because they were used to investigate errors. As a result, a new version

of the code exists in which all options that lead to incorrect results have been

stripped. None of the options need to be specified for the code to run, though to

obtain correct results a number of the options must be used. In the cleaned-up

version of the code, by default the options that lead to correct results are used.

However, the following options are still present in the new version and their use

still makes sense: usen2nn, homogenize, constS0, AntipinCellNames and

PinCellNames, and mode.

Sample usage of most of these options is provided in the scripts folder.

immutableMyMTs in MakeLibrary(), CollapseCell(): Chooses between three

options for the creation of derived cross sections (νΣ f , Σt and possibly

Σt r).

transscale in CollapseCell(): Scales the transport cross section for all ma-

terials using the value of p.transscale.

transscalewateronly in CollapseCell(): Same as transscale, except that

only the water cross section, if it exists, is scaled.

macromultNuFission in CollapseCell(): Toggles whether the νΣ f cross sec-

tion is computed before or after macroscopic cross sections are formed. It

is incorrect to do the latter.
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macromultTransport in CollapseCell(): Same as above, except for the trans-

port cross section.

usen2nn in CollapseCell(): If an (n,2n) kernel is available (MT = 16), then

it is correctly subtracted from the absorption cross section and added to

the scattering kernel. The method used to include the (n,2n) cross section

is much like that used in WIMS-D (Leszczynski et al., 2007).

stammlertransport in CollapseCell(): Uses the method presented clearly

by Stamm’ler for performing the transport correction. In this method, the

scattering kernel is reduced. If this option is not used then transport is

created as a separate cross section.

nomubarforo16 in CollapseCell(): µ̄ for O-16 is set to zero.

nomubarforu235 in CollapseCell(): Same as above, but for U-235.

nomubarforu238 in CollapseCell(): Same as above, but for U-238.

hboumdu in CollapseCell(): A crude piecewise linear approximation for the

bound hydrogen µ̄ is used.

homogenize in ResolveXS(): Uses CreatePi4() for the four-cell homogeneity

correction described in Section 2.6. Must specify four cells to use this.

useMCNPXTalyXS in ResolveXS(), Multicell(): Uses MCNPX cross sections

in the code, when possible, instead of the cross sections in Lib. The
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value of the field must be a modified TallyP struct returned by Geoff

Recktenwald’s TallyPull2() or the McnpxWrap class.

iFuelPin in ResolveXS(): Specifies the index of the fuel pin in Geom.

addInInelastic in ResolveXS(): Adds the inelastic cross section (ENDF MT=51

through MT=91) to the elastic cross section (MT = 2). Only relevant when

using MCNPX cross sections; the addition of the inelastic cross section is

otherwise taken care of by MakeLibrary().

runtimeXSplots in ResolveXS(): Creates cross section plots while VBUDSII is

running.

doctorKernel in ResolveXS(), InterpFissionSpectrum(): Edit the kernel

so that only one element is nonzero.

MCNPXhomewaterkernel in ResolveXS(): Replace water’s scattering kernel by

the one provided as the value of p.MCNPXhomewaterkernel.

MCNPXwaterCorrectionFactor in MakeLibrary(): Scales all water cross sec-

tions by the value of this field.

MCNPXcorrectTheseMTIDXS in MakeLibrary(): Deprecated. If an external li-

brary is used for water, then chooses which cross sections from this external

library are used.

MCNPXcorrectKernel in MakeLibrary(): Similar to the above.
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waterPiece in MakeLibrary(): Use an external library for the scattering ker-

nel for hydrogen bound in water.

waterWhole in MakeLibrary(): Deprecated. Use an external library for the

scattering kernel for ZAID 222, which used to be water.

noInelastic in MakeLibrary(): Stops the combining inelastic scattering into

elastic scattering.

zeromu in MakeLibrary(): Set µ̄ to zero for all nuclides.

waterTransportFromParts in MakeLibrary(): Deprecated. Affects how the

transport cross section for water (ZAID 222) is computed.

useWatt in InterpFissionSpectrum(): Uses a Watt fission spectrum instead

of a tabulated one. The parameters for the spectrum are taken from the

MCNPX manual (Pelowitz, 2011).

AntipinCellNames in CreatePi(): If the user has specified a particular num-

bering of cells, use this prescribed order.

PinCellNames in CreatePi(): See above.

totalfortransport in CreatePi(): Use the total cross section instead of the

transport cross section in computing Π. If stammlertransport is used,

then transport is undefined, and total it is transport.

useTimsModTransmission in CreatePi(): Uses an external function to com-

pute the transmission probability for antipin cells.
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saveProbabilities in CreatePi(): Saves collision probabilities to a MAT

file.

weightbydE in SpectralMatrix(): When computing the fission source, weight

the source terms by the width of the corresponding energy group.

transportfortotal in SpectralMatrix(): Uses the transport cross section

in the place of the total cross section in the sink term of Equation 2.31.

mode in Vbudsii(): Chooses the mode in which to run VBUDSII .

B.5 Further Work

The following are ideas for the extension of VBUDSII.

Input validation This is done in various places, but should be more thorough

and all validation should occur in Preprocessor().

Group structure Currently, the user specifies the group structure in the Param

struct as well as through the data library. The group structure should

only be set through the data library. Ideally, the library is pre-made for two

or three group structures, and the user can choose which is used.

Library management Currently, VBUDSII spends most of its time loading the

cross section library into memory. This becomes less important when the

code is used up for burnup simulations, as the library is only loaded once.

However, as more materials are added, not all of the current library can
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be loaded into the memory at once. It is suggested that a more efficient

scheme is used for loading the data, and for also exploiting the sparsity

of most of this data to save memory. Additionally, µ̄ is tabulated for all

the temperatures and background cross sections that the other data is

stored for. However, µ̄ does not vary with background cross section. Some

memory can be saved here.

Coupled data structures Right now, accessing cross sections in Region requires

the L.MTs field to map from MT numbers to struct indices. It would be

better to use the format implemented in VBUDSIIOOS in which MT is never

used beyond the library. Another place where data structures are coupled

to each other is through the fact that the user specifies the group structure

in the Param struct, but this should really be specified only in Lib.

Region struct initialization Currently the Region struct is initialized through

many loops. This should be done in an alternative way.

Descriptive variables Currently, the cross section interaction types are specified

using the undescriptive ENDF MT numbers. These were put into use in a

time when text space was sacred, but now it is possible to use descriptive

names for each interaction. The VBUDSIIOO code uses a much better format

for the Results struct, and this must be consulted before any future

work is done.

Object oriented The use of highly nested structs obviates that VBUDSII should

be an object oriented code. For example, there could exist a Region class
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which contains a list of Cell objects. Then, the Cell objects would contain

a list of Nuclide objects, thereby describing its composition. This would

alleviate the headache that is the Results struct.

Additional cell geometries CreatePi() can be written for other cell geome-

tries, such as hexagonal lattices.

Fission spectrum Right now, one fission spectrum is used for all fissionable

nuclides. However, there are slight differences in the fission spectrum

between nuclides, as given by different Watt parameters. This could be

accounted for, and would require a change in how the fission spectrum is

incorporated. However, it is not expected that the accuracy of the code

would change much by implementing this.

Diffusion and burnup modules Partial work has been done on both of these

modules, but completing these modules would yield a fully functional

reactor analysis code. This would require the inclusion of a burnable

poison in the materials in order to control the criticality of the system.

Leakage A leakage term can be included in the integral transport to so that

finite geometries can be modeled. This is done in (?).

(n,2n) reaction The (n,2n) interaction has been integrated into the code, but

its use needs to be tested.

Multi-region The results of the homogeneity correction indicate that more work

can be done in improving the code’s ability to model a geometry of more
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than two cells.

B.6 Development Notes

In this section we briefly mention the issues that arose in attempting

to match our results to those produced by MCNPX . These issues are related to

obtaining the proper data rather than on errors in the method or theory. The

issues are sorted by importance so that the first is the most important.

Transport correction Most theoretical texts only provide a cursory explanation

of the transport correction. When tasked with developing a multigroup

model, more information about the use of the transport correction is

required. Stamm’ler and Abbate (1983) provides such information. He

details that the transport correction is applied to the diagonal terms of the

scattering kernel. Previously, the transport correction was only applied to

the total cross section. This leads to cross sections that are inconsistent

with themselves and results consequently suffer grave inaccuracies.

Bound hydrogen In a water-moderated system, it is well known that at thermal

energies hydrogen cannot be modeled as a free gas. If using a nuclear

data processing code like NJOY (MacFarlane and Muir, 1994), that code

must be made aware that hydrogen data should be obtained for the case

that it is bound in a water molecule. The scattering cross section for

hydrogen bound in water is much higher at thermal energies than it is for

free hydrogen. Additionally, the average scattering angle µ̄ departs from
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its constant value of 2/3 at thermal energies, and approaches zero. Much

time was spent ensuring that such modified data was obtained. As an

alternative, Schneider (2002) and Ozgener and Ozgener (2005) chose to

use theoretical models for the hydrogen scattering cross section. Schneider

(2002) still obtained µ̄ using NJOY , but Ozgener and Ozgener (2005)

computed µ̄ directly from his theoretical model (the Nelkin kernel) using

Equation 2.8.

Temperature The temperature of the reactor has a substantial effect on the

shape and location of the thermal peak of the flux, and also affects the

multiplication factor of the system through the Doppler broadening of

resonances. Some time was spent ensuring that the libraries obtained from

NJOY for all nuclides, but in particular for hydrogen, were obtained for the

proper temperature.

Fission spectrum The fission spectrum used with the fission source affects

the shape of the fast peak of the spectrum. It is important that when

benchmarking the method against other codes, the same fission spectrum

is used. In this work a Watt fission spectrum is used using parameters

taken directly from the MCNPX manual (Pelowitz, 2011) for induced fission.

Inelastic scattering Inelastic scattering makes a non-negligible contribution to

the scattering kernel at high incident energies for most nuclides other

than hydrogen. The process of obtaining this data from NJOY is somewhat

painful. Though NJOY suggests that the single MT number 4 can be used
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to obtain the total inelastic cross section, the user must actually request

MT 51 through 91, which provide the individual contributions to inelastic

scattering from each excited state, and sum the result.
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