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Electroacoustic music is music that uses electronic technology for the compositional

manipulation of sound, and is a unique genre of music for many reasons. Analyzing

electroacoustic music requires special measures, some of which are integrated into the

design of a preliminary percussion analysis tool set for electroacoustic music. This tool

set is designed to incorporate the human processing of music and sound. Models of

the human auditory periphery are used as a front end to the analysis algorithms. The

audio properties of percussivity and self-similarity are chosen as the focus because these

properties are computable and informative.

vi



A collection of human judgments about percussion was undertaken to acquire

clearly specified, sound-event dimensions that humans use as a percussive cue. A total

of 29 participants was asked to make judgments about the percussivity of 360 pairs of

synthesized snare-drum sounds. The grouped results indicate that of the dimensions

tested rise time is the strongest cue for percussivity. String resonance also has a strong

effect, but because of the complex nature of string resonance, it is not a fundamental

dimension of a sound event. Gross spectral filtering also has an effect on the judgment of

percussivity but the effect is weaker than for rise time and string resonance. Gross spectral

filtering also has less effect when the stronger cue of rise time is modified simultaneously.

A percussivity-profile algorithm (PPA) is designed to identify those instants in

pieces of music that humans also would identify as percussive. The PPA is implemented

using a time-domain, channel-based approach and psychoacoustic models. The input

parameters are tuned to maximize performance at matching participants’ choices in the

percussion-judgment collection. After the PPA is tuned, the PPA then is used to analyze

pieces of electroacoustic music. Real electroacoustic music introduces new challenges for

the PPA, though those same challenges might affect human judgment as well.

A similarity matrix is combined with the PPA in order to find self-similarity in

the percussive sounds of electroacoustic music. This percussive similarity matrix is then

used to identify structural characteristics in two pieces of electroacoustic music.
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Chapter 1

Introduction

Electroacoustic music uses electronic technology for the compositional manipulation of

sound and is a unique genre of music for many reasons. Many of these reasons will be

explored in this dissertation, but for the present, it is sufficient to say that composers of

electroacoustic music have fewer limitations than other composers. The traditional music

score is rarely an appropriate tool to describe the musical ideas contained in pieces of

electroacoustic music. In fact, a recording of a piece of electroacoustic music often is the

only objective representation of that piece of music.

When speaking about the analysis of the several pieces of music in Electroacoustic

Music: Analytical Perspectives [1], Risset [2] states that, “... one can by no means reduce

to a blind and automatic dissection according to a priori principles; each work requires its

own approach ...” This attitude is appropriate toward the vast majority of electroacoustic

music compositions due to the diversity of techniques used in composition. One of the

difficulties is “the lack of a written document creates great difficulties for the musicologist

who insists on carrying out rigorous, ‘objective’ work [2].”

Figure 1.1 shows a graphical score [3] of the sixth minute of David Berezan’s

“Unheard Voices, Ancient Spaces [4].” Time is represented along the horizontal axis, the

vertical axis represents the “range of frequency [3],” and contrast or darkness of color

represents amplitude. Berezan “made very subjective decisions regarding layout, but

strictly adhered to the time line [3].” This graphical score was drawn by the composer

after the composition had been created.

Though the percussive content of the piece is not obvious from this graphical score,

it does show how far the ideas of electroacoustic music can stray from a traditional music

score. The creation of such an analytical representation is time intensive. Commenting

1



5:00 5:10 5:20 5:30 5:40 5:50 6:00

Figure 1.1: A graphical score by David Berezan of the sixth minute of his piece, “Unheard
Voices, Ancient Spaces [3].” Time is represented along the horizontal axis, the vertical
axis represents the “range of frequency [3],” and contrast or darkness of color represents
amplitude. Berezan “made very subjective decisions regarding layout, but strictly adhered
to the time line [3].”

on producing the score, Berezan said that he “likely would not undertake such a task just

for myself on a regular basis simply owing to the time requirements [3]!”

Clearly, some rudimentary, automated analysis tools would be helpful in at least

beginning the analysis of electroacoustic music compositions. Tools that present a visual

representation of at least some aspects of the music would be most useful to music analysts.

A visual representation could be published, like a traditional music score, in a journal

article in order to indicate analytical concepts about the composition. A time-based

visual representation also could be scrolled across a screen while a piece of music was being

played. This presentation would allow listeners, even first-time listeners, to understand

more from their listening experience and might even be useful to those with hearing

difficulties.

As is described in later chapters, analyzing electroacoustic music requires special

measures. One important measure is that electroacoustic music will at some point need

to be analyzed purely as sound without musical foreknowledge. Ironically, one must drop

traditional musical expectations in order to analyze the music. It is notable that when

analyzing audio as pure sound, the analysis techniques can apply to any sound and not

just musical sounds. Analysis of other types of music as well as non-musical sound may

benefit from these pure-sound techniques.

The research of this dissertation is intended to be a beginning for an automatic

visualization tool set with consideration for the human processing of electroacoustic music

and sound. The choice is made to use models of the human auditory periphery as a front

2



end to any analysis algorithms. This choice is made to learn more about how humans

process music and sound as well as to imbue the resulting representations of the music

with perception-driven qualities. The results of these tools are a set of time-specified

properties about a piece of music.

During the initial design phase of the algorithms in this research, it was uncertain

exactly which musical and sound qualities would be of interest when analyzing electro-

acoustic music. Informal discussions with musicians and music listeners led to an array of

musical and audio properties that describe an instant of music. These audio properties are

arranged by concept level in Table 1.1 from low level (measurable dimension of sound and

music) to high level (psychological or musical concepts of sound). These audio properties

were considered to be informative about the content when tracking through a piece of

electroacoustic music. Some apply only to music, and some apply more directly to pure

sound. This research has been previously presented by the author [5].

The properties of percussivity and self-similarity were chosen to be the audio prop-

erties explored in this research. These properties are a good compromise between feasi-

bility (computability) and utility. Percussivity is useful because, according to Tanghe

et al. [6], “drum events provide important clues about the rhythmical organization of a

musical piece” and self-similarity can provide even more of the same clues. After choos-

ing these properties, it became apparent that there was a lack of research concerning

which sound-event dimensions humans use as a percussive cue. This deficit motivated the

collection of human percussion judgments found in Chapter 3.

The tool set of this research is embodied by the percussivity-profile algorithm

(PPA) and the percussive similarity matrix (PSM). The PPA is designed to detect per-

cussivity in pieces of music based on models of human hearing and is tuned to perform

similarly to humans at percussion judgment tasks. It, therefore, is able to indicate instants

in electroacoustic music that humans would identify as percussive. The results of the PPA

are used by another algorithm to generate a PSM that indicates areas of self-similarity in

the percussive elements of electroacoustic music.

1.1 Organization of the Dissertation

After sufficient background is provided in Chapter 2 to give context for the current re-

search, the contributions of this dissertation are organized into three chapters. Chapter 3

describes the collection of human percussion judgments. This collection involved first

creating stimulus sounds that crossed between percussive and non-percussive, and then
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Table 1.1: Possible audio properties of an arbitrary piece of music mentioned by musi-
cians and music listeners in informal discussions. These audio properties are arranged
by concept level from low level (measurable dimension of sound and music) to high level
(psychological or musical concepts of sound).

Low Level

amplitude loudness spectral centroid
brightness panning signal-to-noise ratio
harmonics energy perceived energy

compression

Medium Level

percussivity self-similarity backwardness
commodulation noisiness fundamental frequencies
acoustic sounds event durations number of sound sources

harshness event distinction vigor
tempo

High Level

reverberation event types predictability
important moments mood time signature

number of layers sound quality effected sound
conventionality musical key
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asking participants to make judgments about those sounds. The choices then were col-

lected and processed to discover physical dimensions of the stimulus sounds that indicate

percussion. The grouped results of this collection are shown, and these results motivate

the design of the algorithm presented in Chapter 4.

Chapter 4 describes the PPA. First, the general algorithm design and specific mod-

eling techniques are described; this then is followed by the full implementation details of

the PPA. The tuning of the PPA parameters according to the results of the collection

of human percussion judgments follows next. Some practical considerations also are ex-

amined, and finally one constructed and two electroacoustic music examples are used to

show the capabilities and limitations of the PPA.

Chapter 5 explores the use of the PPA and another tool, the similarity matrix,

to find percussive self-similarity in pieces of music. A metric of percussive similarity is

presented and used in order to turn the similarity matrix into a PSM. Some practical

considerations are explored before the utility of the percussive self-similarity is presented

using one constructed example and two electroacoustic music examples.
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Chapter 2

Background

The research in this dissertation draws from many different disciplines including human

hearing, human percussion judgment, electroacoustic music, music information retrieval

(MIR), and musical self-similarity. The following sections are intended to give enough

background in these areas to understand the context of the current research. First, a few

definitions and clarifications of terms and expressions will be made.

2.1 Definitions

In order to be completely clear about terms and ideas, it will be helpful to establish several

definitions. The word sound is used in two contexts in this dissertation. The first context

corresponds to Webster’s [7] definition, “the sensation perceived by the sense of hearing,”

and is the general idea of sound. The second context corresponds to another of Webster’s

definitions, “a particular auditory impression,” and is what one hears when a solitary

event occurs in the physical world. This second meaning of the word sound pertains to

the physical stimulus and can be used interchangeably with the expression sound event,

though the latter is used without the ambiguity of the other meanings of sound. A sound

dimension is any directly measurable physical quantity associated with a sound event,

such as frequency content, sound pressure level (SPL), and temporal fluctuation.

In order to discuss some of the dimensions of sound events, a simplified amplitude

envelope of an isolated sound event [8] is shown in Figure 2.1. The initial rise from no

amplitude to the maximum amplitude is the attack and the duration of the attack is

known as the rise time. Immediately following the attack, a decrease in amplitude called

the decay takes place until the amplitude remains constant for a duration. This constant
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Figure 2.1: The parts of a simplified amplitude envelope of a sound event [8].

amplitude section of the envelope is known as the sustain or steady-state portion of the

envelope. Finally, the amplitude decrease from the sustain level to no amplitude is known

as the release and the duration of the release is known as the fall time.

In the context of this dissertation, the term percussion may have one of three

meanings: a family of musical instruments, the beating or striking of a musical instrument,

or the introduction a sudden pressure change into the air (perhaps explosively). The

expression percussive sound is defined as any sound that a human would judge to arise

from the second or third meaning of percussion. The term percussivity is used throughout

this dissertation to indicate the quality of being percussive and refers to how percussive a

sound or instant would be judged to be. It is worth noting that the definition of percussion

is a based in the physical domain, and the definitions of percussive sound and percussivity

are based in the psychological domain.

One dimension of a percussive sound which is important in the context of this

research is whether it is pitched. A pitched percussive sound carries with it a strong sense

of pitch or tone, and a non-pitched percussive sound does not. According to Rossing [9],

pitch is “an attribute of auditory sensation by which sounds may be ordered from low to
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high.”

A new expression is introduced here to encapsulate the idea of a percussive sound

while trying to remove preconceptions which might be associated with that notion. In

order to be completely clear, the expression single, damped, percussive event (SDPE) is

defined to be

• a single sound event created by the impact of one object with another without either

object breaking (for example, a strike of a xylophone, a hand clap, or a ball bounced

against a wall),

• a single sound event created by the direct introduction of a extremely sudden pres-

sure change in the air (for example, a balloon pop, a pistol shot, or a vocal plosive),

• or any synthetic or electronically manipulated sound event which is reminiscent of

these (for example, an electronic drum).

The source of a single SPDE may be physically complex but should appear to originate

from the same impact or pressure change (example: snare drum). “Damped” in this

context signifies that the sound event decreases in amplitude after the initial attack. This

definition of an SDPE is in the psychological domain.

2.2 Electroacoustic Music

Emmerson and Smalley [10] offer the following definition of electroacoustic music:

Music in which electronic technology, now primarily computer-based, is used

to access, generate, explore and configure sound materials, and in which loud-

speakers are the prime medium of transmission. There are two main gen-

res. Acousmatic music is intended for loudspeaker listening and exists only in

recorded tape form (tape, compact disk, computer storage). In live electronic

music the technology is used to generate, transform or trigger sounds (or a

combination of these) in the act of performance; this may include generating

sound with voices and traditional instruments, electroacoustic instruments, or

other devices and controls linked to computer-based systems. Both genres de-

pend on loudspeaker transmission, and an electroacoustic work can combine

acousmatic and live elements.
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The following short history of electroacoustic music is paraphrased from Risset [2]

and Emmerson and Smalley [10]. Electroacoustic music has a 60-year history. It pri-

marily originates from compositional techniques, aesthetic approaches, and technological

advances developed in Europe, Japan, and the Americas in the 1950s. Early compositions

fell into two stylistic categories: musique concrète and elektronische Musik. In musique

concrète, the composer modifies and assembles sound recordings to make the musical work

as a concrete recording rather than an abstract score. Some of the early composers of

musique concrète were Pierre Schaeffer, Pierre Henry, Luc Ferrari, Francois Bayle, and

Beatriz Ferreyra. In elektronische Musik, the composer uses only electronically produced

sounds with precisely controlled parameters. Early practitioners of this style included

Herbert Eimert, Karlheinz Stockhausen, Gottfried Michael Koenig, and Milton Babbitt.

With his piece Gesang de Jünglinge, Stockhausen became one of the first composers to

combine the two techniques.

In 1957, Max Mathews implemented the first digital computer synthesis of sound

at Bell Laboratories, and initiated the move from analog to digital processing for elec-

troacoustic music. This move opened the door to a world of processing that could be

implemented with reproducibility and precision. Today nearly all recorded sound and

music is created or at least assembled using computers. The techniques pioneered by

electroacoustic musicians now appear in other musical genres, soundtracks, sound design

for theater, and sound environments for museum exhibitions.

Although electroacoustic music has had an influence on modern music and sound

design, and it has a rich history, there has been little critical attention towards it. The

lack of an objective representation of the music contributes significantly to the paucity of

theoretical writing about electroacoustic music [2]. It certainly does not receive the same

analysis and critique as classical music [11]. There have been examples [1], [4], [12], [13]

of analyses and visual representations of electroacoustic music, but they are few and far

between compared to the analysis of other genres.

One trait of electroacoustic music which increases the difficulty of analyzing it

is that composers are not limited to natural sounds. Electroacoustic composers have

a larger palette of sounds than composers of music with more traditional instruments.

Electroacoustic composers, for example, can create sounds by computer synthesis, tape

manipulation, and analog circuitry. These techniques open up not only new sounds, but

also new musical gestures as well. Smalley [14] has attempted to create a new musical

language to explain and understand this new realm of sounds and musical gesture.
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Electroacoustic-music composers also often use the blurry of perception as part of

their compositions. An example of this is the repeating of a set of notes faster and faster

until the notes become indiscernible and create an even tone. Moss’s “Oscillococcinum”

[15] uses this technique.

Composers can tamper with the basic ideas of music as part of a composition. A

large portion of electroacoustic music certainly eschews traditional ideas of rhythm and

tonal structure, but the tampering goes beyond that. For example, an electroacoustic

music composer also can deviate from the traditional ideas of instruments, music voice,

and performance space. This deviation from traditional notions of music is large enough

that some use the term “sonic art” instead of electroacoustic music.

Bossis [16] indicates that human analysis of electroacoustic music is uniquely dif-

ficult:

Analysis of electroacoustic music is particularly arduous due to the complexity

of its composition, the constraints imposed by its very nature, the continuity

of its timbral dimension, the specificity of the electronic instrumentation, and

the difficulties inherent to its performance.

Algorithmic analysis for electroacoustic music certainly will require consideration of the

sound outside of traditional expectations of music or even physical generation.

2.3 Human Hearing

In order to explain the models used in the algorithms of this research, the following

paragraphs discuss some of the anatomy and physiology of a portion of the human auditory

periphery. This explanation is simplified to the level of detail necessary to express the

mechanisms of the models used in this dissertation. For a more complete description of

the physiology of these mechanisms, see Pickles [17] and Moore [18].

The structures of the auditory periphery can be seen in Figure 2.2. Initially when

a sound hits the ear, the pressure variation is guided by the pinna into the ear canal.

The pinna acts as an impedance matching mechanism so that the pressure variation can

travel the length of the ear canal and strike the eardrum (tympanic membrane). At the

eardrum, the pressure variation is transduced into mechanical motion. The ossicles, three

small bones named the hammer (malleus), anvil (incus), and stirrup (stapes), transfer

and amplify the mechanical force at the eardrum to the oval (vestibular) window. The

oval window is a membrane-covered opening which acts as the entrance of the cochlea for
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sound vibration.

A schematic of the structures of an uncoiled cochlea can be seen in Figure 2.3.

The cochlea is a conical cavity roughly 35 mm long, coiled like the inside of an empty

snail shell, and divided roughly in half along its length by the cochlear partition. The

motion of the oval window sends a fluid wave into the top half of the cochlea, the scala

vestibuli. The fluid wave travels the length of the cochlea from base to apex, and then

travels through a hole known as the helicotrema. The fluid wave then passes through the

bottom half of the cochlea from apex to base in the scala tympani eventually reaching the

round window. The round window is another membrane-covered opening to the middle

ear, but it is not connected to a bone like the oval window. The fluid wave sets the basilar

membrane along the cochlear partition into motion.

A detailed cross-section of the cochlea can be seen in Figure 2.4. The cochlear

partition is defined by two membranes, Reissner’s membrane and the basilar membrane,

and the fluid-filled space in between the membranes. The fluid-filled space is called the

scala media and is separated from the scala vestibuli by Reissner’s membrane and from

the scala tympani by the basilar membrane.

A schematic of the detailed structures on the basilar membrane can be seen in

Figure 2.5. A group of cells called the organ of Corti lay along the basilar membrane and

contain the receptor cells called hair cells. There are two anatomically and functionally

distinct types of hair cells: inner and outer. Inner hair cells are the primary sensory

receptors of the auditory system, and are afferently innervated. Outer hair cells appear

to act as an amplifier for sounds, generating motion in the ear. Both types of hair cells

are located on the top of the organ of Corti, and have stereocilia that extend from the top

of the organ of Corti to the tectorial membrane (inside the scala media). The tectorial

membrane is a flap of tissue which extends over the organ of Corti into the scala media,

but does not fully divide the scala media.

When the fluid wave travels in the cochlea it sets the basilar membrane into trans-

verse motion. This motion causes the tectorial membrane to move with respect to the

organ of Corti, which in turn causes the stereocilia on the apical surface of the hair cells

to be sheared. Shearing of the stereocilia on an inner hair cell triggers a release of neu-

rotransmitters from the base of the hair cell into the synapses with the primary auditory

neurons.

Fluid waves traveling in the cochlea set the basilar membrane into unusual and

specific motion. Four instants of this motion over time can be seen in Figure 2.6. Waves

caused by high-frequency sound create motion of the basilar membrane near the base of
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Figure 2.2: The anatomy of the external, middle, and inner ears in humans from Pickles
[17] and originally from Kessel and Kardon [19].
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Figure 2.3: A schematic of the uncoiled cochlear duct from Pickles [17] and originally
from Ryan and Dallos [20].

Figure 2.4: A cross-section of the cochlear duct from Pickles [17] and originally from
Fawcett [21].
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Figure 2.5: A schematic of the detailed structures on the basilar membrane from Pickles
[17] and originally from Ryan and Dallos [20].

the cochlea, and low-frequency sound causes motion of the cochlear partition nearer to

the apex. The transverse wave traveling along the cochlear partition has a sharp peak

of maximum deflection corresponding with the frequency selection displayed by both the

basilar membrane and the auditory nerve fibers. This is a first location for possible

spectral analysis by the auditory periphery.

Auditory nerve fibers connect to the inner and outer hair cells all along the length

of the basilar membrane. The frequency of sound that causes maximum deflection at

the location of innervation by an auditory nerve fiber is in concert with the frequency

selectivity of the auditory nerve fiber itself. A synapse, a specialized junction through

which the cells of the nervous system signal to each other, exists at the interface between

the hair cell and the auditory nerve fiber. When an inner hair cell is triggered by the

appropriate motion, it releases neurotransmitters into the gap of the synapse (synaptic

cleft). If the right combination of neurotransmitters occurs in the synaptic cleft then the

auditory nerve fiber will initiate a neural spike, and these neural spikes are transmitted

to the brain.
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Figure 2.6: Traveling waves in the cochlea showing basilar membrane motion from Pickles
[17] and originally from von Békésy [22]. The solid lines show four successive instants in
time and the dotted line shows the envelope of motion which remains static throughout
constant sound excitation.

2.4 Human Percussion Judgments

In designing an algorithm that can model human percussion judgment, the first step seems

obvious: find out what sounds humans judge to be percussive and what dimensions of

those sounds affect the judgment of the percussivity of a sound the most. Research into

these questions is scarce. Researchers in several different areas simply have made assump-

tions about what is percussive without experimental evidence. Most music researchers

interested in percussive sounds are not interested in sounds which challenge the definition

of percussive. They use sounds from the core of the musical category of percussion. This

will be discussed further in Section 2.5.3.

Rossing [23] describes the subcategories of the percussive instruments and remarks

that “there may be differences of opinion as to whether aerophones and chordophones

properly belong in the percussion family.” Aerophones include whistles, sirens, etc., and

chordophones include the piano and harpsichord. The unquestioned members of the

percussion instruments are the idiophones (xylophone, marimba, chimes, cymbals, gongs,

etc.) and membranophones (drums). Rossing writes little about the short amount of time

associated with the strike and the resulting attack of the generated percussive sound. From

the research of this dissertation, this rise time may be the most important part of a sound

in determining its percussivity. He does, however, write extensively about the resulting

resonant motion of the different percussive instruments.

The research of Ohta et al. [24] stands out in relation to the current research. They
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played impulsive sounds (“characterized by very short duration, steep attack, and high

sound pressure level”) to 20 participants who rated the sounds according to a seven-point

scale for 18 different semantic descriptors. Examples of the semantic descriptors are the

ranges of “hard to gentle,” “powerful to weak,” and “reverberant to dead.” The sounds

came from the categories of “musical instruments, sports, construction, and explosion.”

Although the physical measures of the sounds did not include rise time, they did include

D30, the duration between the maximum sound pressure level, Lmax, and Lmax − 30 dB.

Among other correlations, a large correlation exists between D30 and the descriptor “re-

verberant.”

The research of Lakatos [25] is related closely to the measurements needed for

the current research. He used a multidimensional scaling (MDS) algorithm to assess

the similarity of three groups of sounds: harmonic, percussive, and the combination of

both. He found that two of the dimensions which indicate similarity of percussive sounds

correlate highly with spectral centroid and logarithm of rise time. He also found that

the two dimensions which indicate similarity of the combined-group sounds correlate with

logarithm of rise time and spectral centroid as well. This latter analysis, however, did

not fully separate percussive sounds from harmonic sounds as significant group overlap

occurred.

Other investigations have focused on measuring physical and perceptual properties

that can be obtained from MDS of judgments of the striking of objects. McAdams et al.

[26] used synthesized sounds of bar instrument impacts to quantify the psychophysical

relations between dissimilarity judgments and the varied parameters of the synthesis.

Giordano [27] works with participants judging mallet and material hardness directly from

the sound of the impact between the two.

In an effort to help percussion detection and percussion classification research,

Tanghe et al. [6] collected drum annotation from experienced drummers and percussionists

for 49 real-world music excerpts. Their annotations are freely available on the Internet,

but their database does not include any representative examples of electroacoustic music.

2.5 Music Information Retrieval

According to Fingerhut [28], in the 1990s the field of music information retrieval (MIR)

appeared. It connected many different disciplines for the purpose of retrieving information

from music at a higher level than the direct audio signal. That higher level information

may be note and sound event characteristics (onset, pitch, duration), instrumentation,
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performance space characteristics, musical segmentation, dynamics, musical key, tempo,

musical similarity to other pieces, or any number of other features. MIR also includes

using higher level information to retrieve pieces of music from a large collection. The

following MIR disciplines are pertinent to this research: automatic music transcription,

onset detection, percussion detection, and percussive sound classification. The intersecting

discipline of auditory scene analysis is also of interest.

It is important to note at this point, that most MIR research concerns music

which follows a traditional musical score. This adherence to a score carries with it a

strong expectation of pulse, beat, and traditional rhythm in the music being analyzed

(for example, the work of Klapuri et al. [29] involves determining the musical meter, and

the work of Laroche [30] involves tracking the beat and tempo of music). A great portion

of the MIR percussion research also concerns percussion sounds that are known ahead

of the analysis (for example, the work of Zils et al. [31] involves extracting the energy

of drums sounds known a priori, and the work of Sandvold et al. [32] involves extracting

kick, snare, and cymbal sounds from polyphonic music). This adherence to a traditional

notion of rhythm and foreknowledge of percussion sounds does not integrate well with

analysis of electroacoustic music for reasons stated in Section 2.2.

2.5.1 Automatic Music Transcription

Automatic music transcription (AMT) is the process of extracting enough information

from a piece of music to create a visual representation of it. The goal of AMT systems

has typically been to create a traditional musical score from a recording of a piece of music

(for example, the work of Bello et al. [33] involves the evaluation of two AMT systems for

transcribing monophonic and simple polyphonic music, and the work of Reis and Vega

[34] involves the use of genetic algorithms for AMT to create traditional musical scores

from audio). Obviously, any AMT system which works to produce a traditional music

score will fail with a large portion of electroacoustic music compositions.

2.5.2 Onset Detection

A discipline related to AMT is onset detection. Onset detection involves determining

when new notes or sound events start in a piece of music. This task is often made difficult

by confounding sound energy in the spectrum of polyphonic music. Onset detection is

generally focused in two realms: percussive sounds and non-percussive sounds. Percussion

detection will be discussed in the Section 2.5.3. Non-percussive sounds are generally
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expected to have longer rise times and contain a significant pitch component.

Following the review work of Bello et al. [35], Collins [36] gives an even more

complete review of the different onset detection methods for non-pitched percussive (NPP)

and pitched non-percussive (PNP) sound events. He suggests that “the NPP case is

effectively solved by fast intensity change discrimination processes, but that stable pitch

cues may provide a better tactic for the latter.” Although non-pitched non-percussive

sound events are important to electroacoustic music, the review work of Bello et al. does

not discuss them.

Dixon [37] extends the evaluation work of Collins by including a new set of algo-

rithms and adding a significantly larger data set of piano notes. Some of Dixon’s results

contradict previously published results and suggest that “a similarly high level of perfor-

mance can be obtained with a magnitude-based (spectral flux), a phase-based (weighted

phase deviation), or a complex domain (complex difference) onset detection function.”

He also concludes that some of the algorithms are sensitive to implementation details or

parameter settings.

You and Dannenberg [38] work to improve onset detection by using machine learn-

ing. A major issue with machine learning is that a library of training data must be

available. You and Dannenberg work to solve this issue by training a machine-learning

onset-detection algorithm by using musical instrument digital interface (MIDI) scores of

orchestral music alongside the digital audio recordings. Problems arise with the accuracy

of the score-to-audio alignment that they handle with semi-supervised and bootstrapping

techniques. These techniques are used to iteratively refine the onset detection functions

and the data used to train the functions. Their machine learning adaptations do improve

the performance of a general purpose onset detection algorithm for use with orchestral

music.

In order to deal with the problem of aligning the score and audio file, a second

audio file is generated from the MIDI score. All three files are used to generate the onset

times for the training data. The results of their work indicate that a machine-learning

algorithm can be trained to perform well at onset detection given a large enough training

set for a particular subclass of music.

2.5.3 Percussion Detection

Percussion detection involves the marking of the onset times of percussive sounds in music.

The vast majority of this research is focused on sounds which are known ahead of time or

are very limited in scope compared to sounds one might find in electroacoustic music. For
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example, FitzGerald’s [39] work involves “polyphonic percussion transcription and sound

source separation of a limited set of drum instruments, namely the drums found in the

standard rock/pop drum kit.”

A remarkable exception to the foreknowledge and limited-scope research is the

work by Uhle et al. [40]. They use independent component analysis techniques to focus

solely on some dimensions that they claim cause a sound to be percussive. The dimensions

they chose are measures of percussiveness, dissonance, spectral flatness, and noise-likeness.

These dimensions, although they may be appropriate, are not specifically motivated from

experimental understanding of which dimensions make a sound percussive. Their results

indicate as much as 95% accuracy at finding percussive sounds using single dimensions,

but a false positive rate of as much as 71% as well. Nesbitt, Hollenberg, and Senyard’s

[41] work makes use of Uhle et al.’s work to transcribe Australian aboriginal music with

some success.

Beat/rhythm detection generally uses the information from onset detection and

percussion detection to try to establish the time signature and/or tempo of a piece of

music. Gouyon et al. [42] compiles many different current algorithms for tempo induc-

tion and gives a performance comparison. As mentioned before, the work of Klapuri

et al. [29] involves the determination of musical meter. Scheirer’s work [43] also in-

cludes an autocorrelation mechanism for finding the tempo of a piece of music from the

psychoacoustically-processed, unsegmented digital audio.

Percussion sound classification follows from percussion detection as well and con-

cerns classifying a particular sound as one of a set of previously known percussion sounds

or sound groups. The work of Van Steelant et al. [44] involves the use of support vector

machines for discerning bass and snare onsets in music where the two may overlap. The

work of Gouyon et al. [45] is another example of percussion classification, but this work

uses zero-crossing rate to classify bass and snare sounds in popular music.

2.5.4 Auditory Scene Analysis

Auditory Scene Analysis by Bregman [46] describes an approach to understanding how

humans organize sound. Through a huge number of examples and experiments, Bregman

proposes the ideas of integrating and segregating the complex spectrum arriving at the

eardrums into auditory streams associated with sound sources. A sound source is often

the physical origin of a particular sound, but also could be a conglomerate of physical

sources, for example, a violin section of an orchestra all playing the same note. An

auditory stream is an individual sound source or group of sources linked together over
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time. An example of this is the “cocktail party effect,” (a description is given by Arons

[47]) where a person at a cocktail party can listen to another individual in a conversation

while other conversations are happening nearby. (A different phenomenon known also as

the “cocktail party effect” is described by Pierce [48].)

Computational auditory scene analysis (CASA) is the field of trying to make com-

puters perform auditory scene analysis and is a discipline which intersects with MIR.

Much of CASA involves speech processing as in the initial work of Brown and Cooke [49],

which explores using CASA in order to separate speech from background noise includ-

ing other speech. Ellis [50] explores the idea of a prediction-driven CASA system that

guesses at which energy in the total spectrum is due to particular sound sources. Ellis’s

prediction-driven system is an attempt to avoid the pitfalls of a data-driven approach

that would always evaluate a particular sound in the same way, regardless of context.

Ellis’s main example is street noise, a sound mixture that is found in examples of elec-

troacoustic music. Goto [51] extensively describes the application of CASA to traditional

musical audio signals (though his description includes musical expectations that may be

inappropriate for electroacoustic music).

It is important to mention CASA because, although it is not the specific path

followed by this dissertation’s research, CASA does offer a significant advantage over other

methods for analyzing electroacoustic music. CASA is psychoacoustically motivated, and

works toward stream separation without requiring a traditional notion of musical rhythm

or melody.

2.5.5 Processing Choices

According to Scheirer [43], most engineering approaches to music analysis depend on some

time-frequency representation of the sound. Some examples of this representation are dis-

crete Fourier transform (DFT) (example: Moreau and Flexer [52]), “constant-Q” filters

(example: Brown and Puckett [53]), wavelets (example: Kronland-Martinet and Gross-

man [54]), or psychoacoustic models (example: Meddis and O’Mard [55]). The choice

for the time-frequency representation has an effect on what information can be retrieved

from the music, and therefore the usefulness of a particular representation for a particular

application. For example, the psychoacoustic models are generally inappropriate for an

analysis system which depends on resynthesizing sounds from the original signal due to

information loss inherent in the psychoacoustic filtering.

Another decision to make when designing algorithms for MIR is whether the system

will attempt to separate the sound field into sound sources as defined in auditory scene
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analysis. Unseparated processing takes the audio signal as a whole and works to extract

information without separation into sources. Scheirer [43] calls this approach “top-down”

processing and uses it when estimating the tempo of real-world music examples. Separated

processing first separates the audio signal into sources or notes, and then attempts to

reconstruct information based on the information. CASA is an example of a separated-

processing approach. The approach of the current research is unseparated processing,

and is focused on the initial processing of the entire sound field by the auditory periphery

without source separation.

In designing a separated-processing approach, another decision must be made

about the algorithm. Is it analysis-only or analysis-resynthesis? Analysis-resynthesis

allows for the reconstruction of the different sources in the total sound field. This can be

used to reconstruct part of the sound field for better intelligibility (for example, the speech

work of Brown and Cooke [49]) or further analysis (for example, the work of Zils et al.

[31] involves resynthesis of individual drum sounds from the original audio for percussion

classification).

When designing a music-analysis system, the decision also must be made whether

to model human psychoacoustic behavior. It has been argued [56] that building psy-

choacoustic prototypes can lead to a better understanding of how humans process sound

and pieces of music. If an algorithm tries to model human psychoacoustic behavior, the

successes and failures of that algorithm can lead to new psychophysical models.

The above stands in contrast to a more mathematical or opaque approach to the

algorithms. For example, Kostek [8] outlines many examples of applying neural nets to

music information retrieval. These are examples of algorithms that can produce excellent

results, but are less intuitive when trying to understand the results in terms of human

psychoacoustic processes. It was the desire for this understanding that motivated the

current research to use a more psychoacoustic approach.

2.6 Musical Self-Similarity

Self-similarity in the context of the current research refers to a property of a piece of

music. A piece of music is said to have high self-similarity if there are many sections of

the piece which are similar to other sections. Foote [57] created a useful tool when he

used a similarity matrix based on mel-frequency cepstral coefficients (MFCCs) to show the

similarity of short time windows of a piece of music with every other short time window.

A similarity matrix already had been used in other fields (for example, the work of Church
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and Helfman [58] involves using similarity matrices to visualize similarity in text), but

Foote brought the similarity matrix to music.

Foote’s similarity matrix is a starting point for many other projects, such as audio

thumbnailing [59] and audio segmentation [60]. Audio thumbnailing is a process of creat-

ing a small representation of a piece of music that would be part of an easily searchable

database. Foote and Cooper [61] extend the usefulness of the similarity matrix by using

it to find a beat spectrum of a piece of music, and later to segment audio [62].

A competing indicator of self-similarity is given by Dannenberg and Hu [63], in

which they show several different techniques of music segmentation as well as one mech-

anism for displaying the relationship between segments. That mechanism uses differently

shaded bars under the waveform graph sometimes with a piano roll notation as well.

Chai [64] uses a mixture of both self-similarity indication methods described above

(similarity matrix and shaded bars) in his research on automatic music segmentation,

summarization, and classification. He uses a similarity matrix along with approximate

pattern matching for analyzing recurrent structural analysis. He then uses colored bars

similar to Dannenberg and Hu’s shaded bars to display similar segments of the analyzed

music.

2.7 Concluding Remarks

Sufficient background now has been given in order to put into context the research pre-

sented in the next chapters. Electroacoustic music has some unique traits which require

that it be given special treatment when analyzing it. In order to understand the mod-

els of the human auditory periphery used in this research, the physiological process of

translating pressure variations at the ear into neural spikes was presented. Little research

exists in the area of human percussion judgments, although a few articles are relevant.

Music information retrieval is an active and broad research field that can be applied with

some caveats to electroacoustic music. One tool for displaying self-similarity in music, the

similarity matrix, stands out above the rest. Chapter 3 discusses the collection of more

data in the field of human percussion judgment.
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Chapter 3

Collection of Human Percussion

Judgments

In order to design the algorithm for percussion detection, the dimensions of a sound event

that define it as a percussive sound need to be known. As shown in Section 2.4, few articles

exist in the literature concerning the specific dimensions determining the percussivity of

a sound event. Data needed to be collected concerning which sound event dimensions

determine percussivity according to human judgment.

This chapter will describe how human judgments about the percussivity of sound

events were collected. The methodology section will describe choices made concerning

the specific stimulus sounds and how collection of percussion judgments was achieved.

The results will then be presented in several different forms along with their statistical

validity. Finally some concluding remarks will be made about how the results showed

which dimensions of the stimulus sounds could be used as cues to human judgment of

a sound’s percussivity. A summary of the research in this chapter has been previously

presented by the author [65].

3.1 Methodology

In order to collect the human judgments about percussion, a collection methodology

needed to be created. The following sections will describe the stimuli used as well as the

technique collection techniques follow the suggestions of Martins [66].
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3.1.1 Stimuli

The base for the stimulus sounds for judgment collection was the sound of a snare drum

synthesized using the program Csound [67]. A snare-drum sound was chosen because an

unmanipulated snare-drum sound is generally accepted as a percussive sound and using

a synthesized sound permitted the manipulation of many dimensions of the sound. The

snare-drum synthesizer consists of a complex harmonic tone generator and a white noise

generator that are gated and filtered both separately and together. The stimulus sounds

were synthesized with many different dimension changes to the base sound that were

chosen to explore each dimension’s effect on the sound’s percussivity.

All of the synthesized sounds retained the following properties: 100 milliseconds of

silence preceded the sound, the sound lasted between 360–420 milliseconds, and the sound

was followed by at least 200 milliseconds of silence. The output of the synthesis was a

monophonic, 44.1 kHz, 16 bit WAV audio file, which then was used in the data-collection

procedure described in Section 3.1.2.

Choices about which dimensions of sound to explore needed to be made. Based

on discussions with peers, references [25] [40], and pilot work, the dimensions of rise

time (see Section 2.1), tonal content, and gross spectral filtering were chosen initially

for study. Tonal content was manipulated by two methods. The simpler method was to

vary the percentages of the total synthesized sound from the tone generator and the noise

generator. The sum of the two percentages was always 100%. This method was called

“noise percentage.” The other method, called “string resonance,” was to use a Csound

string resonator module (streson) to impose a tonal character on the noise by repeatedly

echoing with feedback at a fixed time delay. This latter method creates harmonic character

in the spectrum of the filtered sound with harmonics peaks at n
T

Hz where n is a positive

integer and T is the time delay (see the description of comb filters in Dodge and Jerse

[68]).

Three different stimulus sets were generated and each set consisted of 16 different

sounds. Within each stimulus set, the sounds were arranged in a four-by-four grid and

varied along two dimensions. Dimension 1 was varied along one axis and dimension 2

was varied along the other axis. Two different numbering systems were used for the

stimulus sounds, as shown in Figure 3.1. Number system A varies dimension 1 locally

and dimension 2 globally. Number system B varies dimension 1 globally and dimension 2

locally.

The dimensions for the three stimulus sets are presented in Table 3.1. Figure 3.2
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Figure 3.1: The two numbering systems that identify the stimulus sounds. Number system
A varies dimension 1 locally and dimension 2 globally. Number system B varies dimension
1 globally and dimension 2 locally.

Table 3.1: Dimension choices and ranges for the three sets of stimulus sounds.

stimulus set dimension 1 dimension 2

A rise time (10–70 ms) string resonance (20–80%)

B gross spectral filtering (low–high) noise percentage (20–80%)

C rise time (10–70 ms) gross spectral filtering (low–high)

shows the time and frequency domain plots of three example stimulus sounds and more

detailed descriptions of those stimuli follow.

For the stimuli in stimulus set A, the dimensions of rise time and string resonance

were varied. Rise time was varied using the values of 10, 30, 50, and 70 milliseconds.

String resonance was varied using the values of 20, 40, 60, and 80%, with the original signal

automatically filling the remainder. The noise generator of the snare-drum synthesizer

was fixed at a 100% level, which automatically sets the tone generator level to 0%. The

example sound “set A, stimulus 1” in Figure 3.2 shows the stimulus sound with rise time

set to 10 milliseconds and string resonance set to 20%.

For the stimuli in stimulus set B, the dimensions of noise percentage and gross

spectral filtering were varied. The noise percentage was varied using the values of 20,

40, 60, and 80%. The gross spectral filtering was achieved by using different sets of

low-pass and high-pass filters to change the spectral content of the stimuli. These filters

remained constant throughout the length of the stimuli. The four implemented filter
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Figure 3.2: Amplitude (left) and spectral (right) plots of three examples of the stimulus
sounds: set A stimulus 1 (top row), set B stimulus 11 (middle row), and set C stimulus 8
(bottom row). Stimulus 1 of set A is a mostly unmodified snare sound with a 10 ms rise
time. Stimulus 11 of set B displays a low noise percentage, so the first two harmonics are
visible in the spectrum. Stimulus 8 of set C is filtered with a single low-pass filter, which
is visible in the spectrum.
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Table 3.2: The four filter sets used for gross spectral filtering.

filter set filters

A 5 serially-chained, first-order low-pass filters with a 1000 Hz cutoff

B 1 first-order low-pass filter with a 2000 Hz cutoff

C 1 first-order high-pass filter with a 1000 Hz cutoff

D 10 serially-chained, first-order high-pass filters with a 3500 Hz cutoff

sets are described in Table 3.2, and Figure 3.3 shows the spectrum of the base stimulus

sound in the top graph and the effects of the gross spectral filtering in the bottom graph.

Applying the gross spectral filtering reduced apparent loudness of the stimulus sounds,

so the sound pressure level (SPL) was adjusted to present approximately equal loudness

to the participant. The choices of filter parameters were based on pilot work, and were

implemented using a Csound filter module (resonx ). For stimulus set B, rise time was

fixed at 40 milliseconds. The example sound “set B, stimulus 11” in Figure 3.2 shows the

stimulus sound with a noise percentage of 60% and global spectral filtering implemented

with filter set C; the first two harmonics are visible in the spectrum of this sound.

In order to assess whether interaction occurs between rise time and gross spec-

tral filtering, stimulus set C was created in which the dimensions of rise time and gross

spectral filtering were varied (if an interaction occurs, then the effects of varying the

two dimensions are not simply additive). The rise time was varied as in stimulus set

A (10–70 milliseconds), and the gross spectral filtering was varied as in stimulus set B

(low–high). The noise generator of the snare-drum synthesizer again was fixed at a 100%

level, which automatically sets the tone generator level to 0%. The Csound orchestra and

score source code for stimulus set C can be seen in Appendix A. The example sound “set

C, stimulus 8” in Figure 3.2 shows the stimulus sound with a rise time of 70 milliseconds

and global spectral filtering implemented with filter set B.

3.1.2 Percussion-Judgment Collection

Percussion judgments were collected using a Linux-based desktop computer with a Sound

Blaster Live audio controller (model# CD4830), MATLAB 7.0 (R14) software, and a

set of Sony MDR-7506 closed-ear, “can”-style headphones. For reference, the output of

the pulse-code modulation (PCM) stream and the master volume of the audio controller
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Figure 3.3: Spectral graphs showing the gross spectral filtering of the different sets of
filters. In each graph, the spectrum of the base sound is shown in grey and the spectrum
of the base sound passed through the filter set specified in the graph’s title is shown in
black.
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were set to 80% with no equalization or signal processing enabled, which resulted in

SPLs of 71–83 dBA (re 20 µPa) presented at the ear for the stimulus sounds. Due to a

move, the collection equipment was housed in two different acoustics laboratories at The

University of Texas at Austin during the judgment collection: first in room 630 of the

Engineering Science building, and then in room 4.156 of the Engineering Teaching Center.

The conditions and equipment provided a high signal-to-noise ratio (approximately 95 dB

for the sound card, and approximately 84 dB for the sound files) and did not introduce

corruption due to electrical or acoustic noise.

For the collection of percussion judgments, a total of 29 participants came to the

collection location for one, two, or three sessions in order to complete judgment collections.

The participants were not selected for musical ability, and stated that they believed that

they had normal hearing for someone of their age. The collection session required about

30 minutes for each stimulus set. Each participant was given $10 compensation for their

time and effort. This was all done in compliance with the procedures for human research

at The University of Texas and received internal review board (IRB) approval (protocol#

2004-08-0083).

For each stimulus set, the participants were presented with 150 pairs of two stimuli.

According to the binomial coefficient equation [69]

(

n

k

)

=
n!

k!(n − k)!
(3.1)

which reduces to the following for the case of k = 2 (for pairs out of n objects),

(

n

2

)

=
(n)(n − 1)

2
(3.2)

120 pairs of two stimuli are possible for n = 16. The first 30 pairs presented were training

pairs randomly selected from the 120 possible pairs and the participant’s choices for the

training pairs were not recorded. The next 120 pairs represented all possible pairs and

were presented in a different random order for each participant. For each pair of stimuli,

the order of the two stimuli was randomly determined.

For each presentation of a stimulus pair, the participants were presented with a

pair-choice window (see Figure 3.4) that allowed them to listen to each stimulus as many

times as they liked, to choose the stimulus they judged to be more like an SDPE, to

specify how difficult that judgment was to make, and finally to submit their choices. If
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the participant failed to choose a stimulus as more like an SDPE, the same pair of stimuli

was presented again immediately in the pair-choice window. For each pair of stimuli,

the following data were collected: the number of times the participant listened to each

pair stimulus, which stimulus the participant judged to be more like an SDPE, and the

difficultly rating the participant reported in making the judgment.

In order to calculate a ranked list of the 16 stimuli, a round-robin tournament

algorithm was used. Each stimulus “competed” once against every other stimulus in the

set of 16 with the “winner” of each “match” being determined by the participant’s choice.

The “winstrength” was determined by the difficulty rating given to the judgment by the

participant; purely easy had a winstrength of 1 and purely difficult had a winstrength

of 0.5. The winner of the match received winstrength points and the loser of the match

received 1 − winstrength. At the end of the stimulus set, the points awarded to each

stimulus were summed and that sum was sorted to determine the ranks of the stimuli in

a final ranked list.

That ranked list was then presented to the participant (see Figure 3.5). The list

was ordered from “most like an SDPE” to “least like an SDPE,” and the participant could

listen to each stimulus in the list as many times as they liked. The participant was asked

to choose the first stimulus from the list that was no longer an SDPE in their judgment.

This threshold value was stored and the collection session then ended for the stimulus set.

3.2 Results

In the rank graphs that follow (Figures 3.6–3.11 and 3.13–3.18), the “global” dimension is

the dimension that changes once every four stimulus numbers according to the numbering

system shown in Section 3.1.1 and the “local” dimension value changes for each stimulus

number but cycles four times throughout the stimulus numbers. The left column presents

dimension 2 (from Table 3.1) as the global dimension, and the right column presents

dimension 1 as the local dimension. The top two graphs show all 16 stimuli according

to the two different numbering systems and their normalized mean rank in the final,

ranked lists generated by the round-robin tournament algorithm. The bottom two graphs

show means over the local dimensions and therefore the effect of the global dimension on

judgment of percussivity of a stimulus sound. Each local-dimension mean represents the

mean across one value step of the global dimension. A higher rank value indicates “more

like an SDPE.”
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Figure 3.4: The user interface for the pair choices. The user can play both sounds as
many times as desired, make the stimulus choice, and rate the difficulty of the decision
before clicking the “Submit” button.
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Figure 3.5: The user interface for the threshold choice. The participant is presented with the 16 stimulus sounds ranked
according to that participant’s pair choices and asked to choose the first stimulus sound which is “not an SDPE.”
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3.2.1 Mean Ranks

Figure 3.6 shows the mean results for stimulus set A (26 participants). For stimulus set A,

the results show that, as string resonance increased, the perceived percussivity decreased.

This is evident because of the monotonic decrease in mean rank for the local-dimension

means in the bottom left graph. The results also show that for the values given, as rise time

increased, the perceived percussivity decreased, again shown by a monotonic decrease in

the local-dimension means in the bottom right graph. The larger delta (highest− lowest)

value for rise time indicates that for the values given, it is a stronger cue for percussivity

than string resonance.

Figure 3.7 shows the mean results for stimulus set B (27 participants). For stimu-

lus set B, the results show that noise percentage has no consistent effect on the perceived

percussivity, which is shown by the almost constant value of the local-dimension means

in the bottom left graph. It is notable that for individual participants, the noise per-

centage was a cue, a negative cue, or no cue for percussivity, but for the entire group of

participants, no consistent effect was seen in the displayed means. Gross spectral filtering

also had little consistent effect even for individual participants except filter set D, which

consistently displayed lower SDPE-likeness ratings. This was shown by the single low

value of the local-dimension mean associated with filter set D.

Figure 3.8 shows the mean results for stimulus set C (24 participants). For stimulus

set C, the results show that gross spectral filtering had little consistent effect, which is

shown by almost constant values of the local-dimension means in the bottom left graph.

The effect of gross spectral filtering was lessened in comparison to stimulus set B. As with

stimulus set A, the results also show that, as rise time increased, the perceived percussivity

decreased, which is shown by a monotonic decrease in the local-dimension means in the

bottom right graph.

3.2.2 Mode Ranks

Another method of analyzing the results of the percussion-judgment collection using the

modal choices are shown in Figures 3.9–3.11 for, respectively, stimulus sets A, B, and C.

For this method, the modal choice (most common choice) for each sound stimulus pair was

determined, and then ranks were assigned based on a round-robin tournament algorithm

using those choices. A difficulty rating of maximum ease was assigned for any instance

where the modal choice was clear, and maximum difficulty was assigned for any instance

where the number of participants choosing each sound stimulus was exactly equal.
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Figure 3.6: Normalized mean ranks for stimulus set A. Higher values represent “more like
an SDPE.” The top left graph shows the mean values for each of the stimulus sounds
using number system A. The top right graph shows the same mean values using number
system B. The bottom left graph shows the mean ranks averaged in groups of four using
number system A. This graph shows the effect of only the global dimension from the
graph above it. The bottom right graph shows the mean ranks averaged in groups of four
using number system B from the graph above it. The delta values represent the difference
between the maximum and minimum local-dimension means.
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Figure 3.7: Normalized mean ranks for stimulus set B. Higher values represent “more like
an SDPE.” The top left graph shows the mean values for each of the stimulus sounds
using number system A. The top right graph shows the same mean values using number
system B. The bottom left graph shows the mean ranks averaged in groups of four using
number system A. This graph shows the effect of only the global dimension from the
graph above it. The bottom right graph shows the mean ranks averaged in groups of four
using number system B from the graph above it. The delta values represent the difference
between the maximum and minimum local-dimension means.
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Figure 3.8: Normalized mean ranks for stimulus set C. Higher values represent “more like
an SDPE.” The top left graph shows the mean values for each of the stimulus sounds
using number system A. The top right graph shows the same mean values using number
system B. The bottom left graph shows the mean ranks averaged in groups of four using
number system A. This graph shows the effect of only the global dimension from the
graph above it. The bottom right graph shows the mean ranks averaged in groups of four
using number system B from the graph above it. The delta values represent the difference
between the maximum and minimum local-dimension means.

36



The normalized mode ranks were similar to the normalized mean ranks with one

notable difference. The normalized mode ranks are forced to rest at 16 discrete equal

steps between 0 and 1. This was how a single participant’s ranks would appear if the

participant had made all of the choices most common for each stimulus sound pair.

The local-dimension means for the normalized mode ranks also were similar to the

local-dimension means for the normalized mean ranks. The local-dimension means for

the normalized mode ranks did show slightly higher delta values than the local-dimension

means for the normalized mean ranks. The higher delta values may be due to the forcing

of the normalized ranks into specific values,

3.2.3 Outliers Removed

The responses of a few of the participants seemed to be significantly different from the

majority of participants. In order to find these outlier participants, each participant’s

choices were compared against the modal choices. Participants then were sorted according

to the percentage of their choices that were the same as the modal choice. The sorted list

of participants for all stimulus sets is shown in Figure 3.12.

In each of the stimulus sets, the one or two participants with the lowest percentage

of choices like the modal choices represented a sudden unusual drop in this percentage.

For each stimulus set, these last one or two participants were declared outliers and their

data were removed from the total data set.

The mean values of participants’ choices which were the same as the modal choices

for stimulus sets A, B, and C were 82.60, 69.04, and 81.35%, respectively. The lower mean

for stimulus set B indicates that for whatever reason, less consistency existed between

participants for their stimulus pair choices for this stimulus set. The highest percentages

of any single participant’s choices which were the same as the modal choices for stimulus

sets A, B, and C were 95.00, 85.00, and 92.50%, respectively.

The mean ranks with the outliers removed for all data sets are shown in Fig-

ures 3.13–3.15 for stimulus sets A, B, and C, respectively. The effect on the mean ranks

of removing the outliers in all of the stimulus sets was minimal. The changes seen in the

delta of the local-dimension means for the mean rank values were less than 6% of the

maximum possible delta. For stimulus set A, the effect of string resonance decreased the

delta by 1.1% while the effect of rise time increased the delta by 3.2%. For stimulus set

B, the effect of noise percentage increased the delta by 1.4% and the effect of gross spec-

tral filtering increased the delta by 4.2%. For stimulus set C, the effect of gross spectral

filtering decreased the delta by 0.9% while the effect of rise time increased the delta by
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Figure 3.9: Normalized mode ranks for stimulus set A. Higher values represent “more like
an SDPE.” The top left graph shows the mean values for each of the stimulus sounds
using number system A. The top right graph shows the same mean values using number
system B. The bottom left graph shows the mean ranks averaged in groups of four using
number system A. This graph shows the effect of only the global dimension from the
graph above it. The bottom right graph shows the mean ranks averaged in groups of four
using number system B from the graph above it. The delta values represent the difference
between the maximum and minimum local-dimension means.

38



0 5 10 15
0

0.2

0.4

0.6

0.8

1

m
od

e 
ra

nk

stimulus number

set B, global = noise percentage

0 5 10 15
0

0.2

0.4

0.6

0.8

1

m
od

e 
ra

nk
stimulus number

set B, global = gross filtering

1 2 3 4
0

0.2

0.4

0.6

0.8

1

m
ea

n 
ra

nk

local dimension mean

delta 0.109

1 2 3 4
0

0.2

0.4

0.6

0.8

1

m
ea

n 
ra

nk

local dimension mean

delta 0.562

Figure 3.10: Normalized mode ranks for stimulus set B. Higher values represent “more
like an SDPE.” The top left graph shows the mean values for each of the stimulus sounds
using number system A. The top right graph shows the same mean values using number
system B. The bottom left graph shows the mean ranks averaged in groups of four using
number system A. This graph shows the effect of only the global dimension from the
graph above it. The bottom right graph shows the mean ranks averaged in groups of four
using number system B from the graph above it. The delta values represent the difference
between the maximum and minimum local-dimension means.
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Figure 3.11: Normalized mode ranks for stimulus set C. Higher values represent “more
like an SDPE.” The top left graph shows the mean values for each of the stimulus sounds
using number system A. The top right graph shows the same mean values using number
system B. The bottom left graph shows the mean ranks averaged in groups of four using
number system A. This graph shows the effect of only the global dimension from the
graph above it. The bottom right graph shows the mean ranks averaged in groups of four
using number system B from the graph above it. The delta values represent the difference
between the maximum and minimum local-dimension means.
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Figure 3.12: Participants sorted by the percentage of their choices which matched the
modal choices for stimulus sets A, B, and C. Outliers were determined by a sudden
unusual drop in this percentage between sorted participants.
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the largest amount of 5.8%.

The modal ranks with outliers removed are shown in Figures 3.16–3.18 for stimulus

sets A, B, and C, respectively. For stimulus sets A and C, removing the outliers had no

effect on the mode ranks at all. For stimulus set B, removing the outlier changed the

mode ranks more significantly. The effect on the local-dimension means for the global

dimension of noise percentage was a change of 14.1% of the maximum possible delta.

This large change indicates that, as stated in Section 3.2.1, the balance of participants

using noise percentage as a cue for percussivity and participants using it as a negative cue

was nearly equal. Removing even one participant’s choices from the calculation of modal

ranks had a significant effect. For gross spectral filtering, the change in the delta of the

local-dimension means was only 1.5%.

3.2.4 Statistical Verification

Because the Jarque-Bera test [70] shows that 3 of the 24 sets of local-dimension means

for the mean rank values are not from normally distributed data, the Friedman non-

parametric test [71] was used to test the following null hypothesis: the variation of the

dimensions of the stimulus sounds caused no effect on the local-dimension means. Accord-

ing to the Friedman test, the null hypothesis was rejected with at least a 95% confidence

level for all of the local-dimension means.

3.2.5 Percussion Threshold

Table 3.3 shows the mean and mode percussion threshold points for each stimulus set

across participants both with and without outliers. These threshold values represent the

cross-participant means and modes of the number of stimulus sounds that participants

judged to be SDPEs from their own ranked list. The mode value for percussion threshold

remained the same with and without outliers.

3.3 Concluding Remarks

The goal of this collection of human percussion judgments was to find one or two funda-

mental dimensions of sound events that could be used as a cue to anticipate the human

judgment of percussivity. Perhaps unsurprisingly, the results indicate that rise time was

the strongest cue for percussivity of the dimensions tested.
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Figure 3.13: Normalized mean ranks for stimulus set A without outliers. Higher values
represent “more like an SDPE.” The top left graph shows the mean values for each of the
stimulus sounds using number system A. The top right graph shows the same mean values
using number system B. The bottom left graph shows the mean ranks averaged in groups
of four using number system A. This graph shows the effect of only the global dimension
from the graph above it. The bottom right graph shows the mean ranks averaged in groups
of four using number system B from the graph above it. The delta values represent the
difference between the maximum and minimum local-dimension means.
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Figure 3.14: Normalized mean ranks for stimulus set B without outliers. Higher values
represent “more like an SDPE.” The top left graph shows the mean values for each of the
stimulus sounds using number system A. The top right graph shows the same mean values
using number system B. The bottom left graph shows the mean ranks averaged in groups
of four using number system A. This graph shows the effect of only the global dimension
from the graph above it. The bottom right graph shows the mean ranks averaged in groups
of four using number system B from the graph above it. The delta values represent the
difference between the maximum and minimum local-dimension means.
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Figure 3.15: Normalized mean ranks for stimulus set C without outliers. Higher values
represent “more like an SDPE.” The top left graph shows the mean values for each of the
stimulus sounds using number system A. The top right graph shows the same mean values
using number system B. The bottom left graph shows the mean ranks averaged in groups
of four using number system A. This graph shows the effect of only the global dimension
from the graph above it. The bottom right graph shows the mean ranks averaged in groups
of four using number system B from the graph above it. The delta values represent the
difference between the maximum and minimum local-dimension means.
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Figure 3.16: Normalized mode ranks for stimulus set A without outliers. Higher values
represent “more like an SDPE.” The top left graph shows the mean values for each of the
stimulus sounds using number system A. The top right graph shows the same mean values
using number system B. The bottom left graph shows the mean ranks averaged in groups
of four using number system A. This graph shows the effect of only the global dimension
from the graph above it. The bottom right graph shows the mean ranks averaged in groups
of four using number system B from the graph above it. The delta values represent the
difference between the maximum and minimum local-dimension means.
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Figure 3.17: Normalized mode ranks for stimulus set B without outliers. Higher values
represent “more like an SDPE.” The top left graph shows the mean values for each of the
stimulus sounds using number system A. The top right graph shows the same mean values
using number system B. The bottom left graph shows the mean ranks averaged in groups
of four using number system A. This graph shows the effect of only the global dimension
from the graph above it. The bottom right graph shows the mean ranks averaged in groups
of four using number system B from the graph above it. The delta values represent the
difference between the maximum and minimum local-dimension means.
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Figure 3.18: Normalized mode ranks for stimulus set C without outliers. Higher values
represent “more like an SDPE.” The top left graph shows the mean values for each of the
stimulus sounds using number system A. The top right graph shows the same mean values
using number system B. The bottom left graph shows the mean ranks averaged in groups
of four using number system A. This graph shows the effect of only the global dimension
from the graph above it. The bottom right graph shows the mean ranks averaged in groups
of four using number system B from the graph above it. The delta values represent the
difference between the maximum and minimum local-dimension means.
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Table 3.3: Mean and mode SDPE threshold values. These threshold values represent the
cross-participant means and modes of the number of stimulus sounds that participants
judged to be SDPEs from their own ranked list for the three stimulus sets.

stimulus set mean threshold
mean threshold

without outliers
mode threshold

A 10.88 10.96 10

B 10.38 10.44 11

C 10.27 10.67 8

String resonance also had a strong effect on whether humans judged a sound event

to be percussive, but because of the complicated spectral and temporal effects of string

resonance, it is neither a fundamental nor feasibly measured dimension of a sound event.

Originally, the effect of string resonance had been intended to create a tone-like sound

from pure noise, but according to the comments of the participants after the judgment

collection, the addition of string resonance created complicated temporal and spectral

changes to the stimuli. It may have been these other changes that were affecting the

percussion judgments instead of the tonal content of the stimulus. It is impossible to

determine the specific cause of the effect of string-resonance on percussion judgment from

the current judgment collection.

Gross spectral filtering also had an effect on the human judgment of percussivity,

although it was smaller than the effects of either rise time or string resonance. The effect

of gross spectral filtering also was weaker when the much stronger cue of rise time was

present. Perhaps it would be only in the absence of a stronger cue that gross spectral

filtering would become an effective cue of percussivity.

These results were used to motivate the design of the percussion detection algo-

rithm discussed in Chapter 4. How the rise time, the modal choices, and threshold values

were used will be discussed there. Chapter 6 discusses some possible changes to the

methodology of this collection.
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Chapter 4

Percussivity-Profile Algorithm

This chapter describes the motivation, implementation, realization, and results of the

percussivity-profile algorithm (PPA). Percussivity refers to how percussive an instant of

a piece of music is. A percussivity profile is a percussivity rating for all instants of the

entire length of a segment of sound. Because the PPA operates on a discrete-time input

sound, “instants” actually refer to short time windows when discussing the PPA. The

exact length of the windows will be examined as a design parameter.

The reason the PPA was created was to provide an algorithm which detects in-

stants that humans would label as percussive in recordings of electroacoustic music. The

approach used for the PPA a time-domain, channel-based algorithm using psychoacoustic

models. Once the algorithm was implemented, the results of the percussion-judgment

collection from Chapter 3 were used to tune the PPA. After the tuning took place, the

PPA then was used to analyze a constructed example and two pieces of electroacoustic

music. The pieces of electroacoustic music introduced new challenges, and the results of

the analysis are described in the final section of this chapter.

4.1 Algorithm Models

In order to achieve the goal set forth for the PPA, the algorithm was designed based

on time-domain onset detection, but also implemented models of the human auditory

periphery. This section describes the general time-domain, onset-detection algorithm and

the models of the human auditory periphery used.
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Figure 4.1: A general algorithm for time-domain onset detection. Some form of pressure
variation enters a time-frequency front end where the input time waveform is split into
multiple channels. The derivative of each channel is taken and then half-wave rectified.
Some form of cross-channel summation is performed to create an event-onset indicator.

4.1.1 General Algorithm for Time-Domain Onset Detection

From the percussion-judgment collection, rise time was found to be the most impor-

tant fundamental audio property that would indicate the percussivity of a sound event.

One approach to a rise-time algorithm is to use the basic processing of a time-domain,

onset-detection algorithm based on amplitude over time. The general design for such an

algorithm is shown in Figure 4.1 and is seen in many of the algorithms in the reviews

listed in Section 2.5.2. This approach is not inherently psychoacoustically motivated, but

can be adapted to include psychoacoustic models. This general model has been previously

presented by the author [72].

In the general form of the algorithm, a time-frequency front end is used to perform

some initial time and frequency analysis of an incoming pressure variation represented by

a sound file and then to generate many channels of output where each channel corresponds

to some region in the frequency domain of the incoming pressure variation. The derivative

followed by half-wave rectification of the information in each channel is then taken in order

to find short time windows of increasing amplitude of the output of the time-frequency

front end. The corresponding information is then collected in various ways across all of

the incoming channels in order to generate an event-onset indicator.

There are some significant problems with this algorithm when using it for per-

cussion detection. The most serious is the influence of both the analysis window length

and the analysis start time. The numerical implementation of d
dt

(explained further in

Section 4.2.7) requires a value △t, which is the analysis window length. If the analysis

window length is too long, then percussive events might be missed because an entire per-

cussive attack and at least some of the sustain or release might rest within the analysis

window length. If the analysis window length is too short, then too many false positives

51



will occur due to inaccurate representation of the amplitude envelope. Even if the analysis

window is somehow exactly the right length for every percussive event within the piece of

music, the analysis start time will change the resulting percussivity values. The analysis

start time also might cause the beginning of an analysis window to fall midway through

the rise of a percussive event, effectively cutting the percussivity rating of that instant in

the music by half. Techniques for avoiding these problems are presented in Section 4.2.6.

4.1.2 Human Hearing Model

The PPA makes use of the Auditory Toolbox [73] by Slaney. The Auditory Toolbox pro-

vides algorithms for examining different types of auditory time-frequency representations

of sound. One of these representations uses a model proposed by Patterson et al. [74] of

psychoacoustic filtering based on a critical band function implemented with a gammatone

filter bank. A critical band refers to a small frequency band which describes the frequency

selectivity of humans determined by the ability of wideband noise to inhibit the percep-

tion of a pure tone [75]. A gammatone filter bank is a set of psychoacoustically-designed

filters which mimic human frequency selectivity and time sensitivity. An example of the

spectrum of a gammatone filter bank is shown in Figure 4.2. The model proposed by

Patterson et al. was extended with the Auditory Image Model software [76] and more

details can be found in the documentation of that software. The number of filters in the

filter bank and the frequency range that they cover are two of the PPA design parameters.

Within the time-frequency representation, a model of the neurotransmitter release

at the base of inner hair cell proposed by Meddis [77] follows the gammatone filter bank.

Meddis’s model is used to predict the neural spike patterns, and is described in the

following paragraph. Inner hair cells are the primary sensory receptor cells of the auditory

system and are located in the cochlea. A neural spike (a neural firing, neurotransmission,

or synaptic transmission) is the electrochemical mechanism by which neurons (nerve cells)

transmit information.

The Meddis model is concerned with the initiation of a neural spike in an auditory

nerve fiber by an inner hair cell. It uses a probabilistic model for neurotransmitter release

from inner hair cells, auditory neural firings, and discharge patterns. The model assumes

that the amount of neurotransmitter released from the hair cell is a function of the stimulus

intensity, that some of the neurotransmitter is taken back into the hair cell, and that some

amount of neurotransmitter is lost from the synaptic cleft. A schematic of the mechanisms

can be seen in Figure 4.3. For a complete description of the model see Meddis [77].

Using several functions in the Auditory Toolbox, it is possible to implement the
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Figure 4.2: A spectral plot showing the frequency selectivity of an example gammatone
filter bank.

Figure 4.3: A synapse according to the Meddis model [77]. This shows neurotransmitter
substance being generated and released by the hair cell into the synaptic cleft according
to the stimulus intensity. Some neurotransmitter substance is assumed to be taken back
into the hair cell; some is assumed to be lost.
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described time-frequency representation. The chain of these functions converts a WAV

sound file into a series of neural spike potentials hypothetically traveling along auditory

nerve fibers of the cochlear nerve.

4.2 Description of the Percussivity-Profile Algorithm

The PPA is an analysis-only algorithm that takes as input a monophonic, WAV sound file,

and returns a percussivity profile for that sound file. The parameters of the auditory pro-

cessing that allow control of the PPA performance are nChannels (the number of divisions

of the basilar-membrane model), lowFreq (the lowest frequency analyzed by the basilar-

membrane model), windowTimeLen (the time division for decimation and differentiation),

hairCellScaling (the apparent amplitude of the sound file), and nChannelGroups (the

number of groups into which the basilar-membrane channels are combined).

The results of the PPA are two indicators of percussivity. One is a single value

of percussivity over time and is called the single-value percussivity profile (SPP). The

SPP is shown as a graph; the axes of the graph are time (abscissa) and percussivity

(ordinate). This value is post-processed to improve visibility of percussive instants, and

this post-processing is described in Section 4.4.1, and is called SPPp.

The other indicator, called the group percussivity profile (GPP), is a matrix.

The rows of the GPP indicate maximum percussivity within frequency bands and the

columns indicate maximum percussivity within time windows. The GPP is shown as a

two-dimensional image with larger values in the elements of the matrix displayed more

darkly; the axes of the image are time (abscissa) and channel group (ordinate). The

channel groups are the frequency bands mentioned, and low number channel groups con-

tain high-frequency percussivity while high number channel groups contain low-frequency

percussivity. The channel groups of the GPP are dependent on nChannels, lowFreq, and

nChannelGroups as detailed in the following algorithm description.

The amplitude waveform, post-processed percussivity profile (SPPp), and GPP for

an electroacoustic music example are shown in Figure 4.4. This example is described and

analyzed further in Section 4.5.3.

The basic processing of the PPA involves first converting an input sound file into

neural spike probabilities along hypothetical neural channels, and then grouping and

manipulating those neural spike probabilities into useful indicators of percussivity over

time. The details of the PPA can be broken down into the following discrete steps:
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1. cochlear response

2. zero padding

3. hair-cell response

4. time realignment

5. low-pass filter

6. copy with time-shift and decimation

7. differentiation

8. half-wave rectification

9. channel-group means

10. upsample and unshift

11. maximums of channel-group means

12. means of copies

13. removing zero padding

Figure 4.5 shows how the steps connect with one other, and the details of the algorithm

steps follow.

4.2.1 Cochlear Response

The cochlear response step consists of using the audio-rate (44.1 kHz for this research)

sound file to predict the motion reaction of the different areas of the basilar membrane

to the pressure variation represented by the sound file. The ERBFilterBank function

of the Auditory Toolbox is used for this prediction. This step does not account for the

issues of transduction to the basilar membrane, and also does not account for the limited

range over which the basilar membrane can move; it is assumed that the motion of the

basilar membrane is a linear scaling of the input. This step does account for the delay

in maximum motion of the basilar membrane from the initial motion arriving at the oval

window, and also accounts for the psychoacoustic frequency distribution along the basilar

membrane.

The output of this step is a set of audio-rate, scaled representations of the basilar-

membrane motion in the region of each channel. The basic mechanism of this step is a

gammatone filter bank described in Section 4.1.2. The gain of each filter of the gammatone

filter bank is 0 dB at the center frequency of the filter. The parameters of lowFreq

and nChannels affect, respectively, the lowest frequency and number of channels of the

gammatone filter bank used in this step. The highest frequency of the gammatone filter

bank is the Nyquist frequency, fs

2 , derived from the sampling frequency, fs, of the sound
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Figure 4.5: Detailed model of the percussivity-profile algorithm. The input to this model is a sound file and the output
is a single-value percussivity profile and a group percussivity profile (GPP).
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file being processed. Once the basilar-membrane motion for each channel is generated in

this step, each channel is subsequently processed separately with no interaction between

channels until the channel-group means step near the end of the algorithm.

4.2.2 Zero Padding

The zero padding step consists of adding zero values to the beginning and end of the output

of the cochlear response step. This padding process prepares the cochlear response for

subsequent processing and permits later in-channel time-shifting of the channels. Zero

padding adds high frequency content to the analysis at the transition points if the input

waveform is not preprocessed with a fade-in and fade-out amplitude envelope.

4.2.3 Hair-Cell Response

The hair-cell response step consists first of scaling the cochlear response channels ac-

cording to a predetermined listening level of the sound file, and then the MeddisHairCell

function of the Auditory Toolbox is used to predict the neural-spike probability along

the channel-appropriate portion of the cochlear nerve. The scaling of the cochlear re-

sponse is controlled by the hairCellScaling parameter. The MeddisHairCell function

does take into account the effect of amplitude levels on the firing rates of the hair cells

and the possible deficit of neurotransmitter substance in the synaptic cleft at the base of

the hair cell due to previous excitation of the basilar membrane. The results of this step

are non-dimensionalized by windowTimeLen, the window time length chosen, divided by

a maximum possible firing rate for a neuron of 1000 spikes
s

. This high normalization value

for firing rate is chosen to extend beyond the range of any possible firing rate values from

the MeddisHairCell function and is based on a refractory period of 1.0 millisecond [78].

The output of this step is a set of audio-rate, non-dimensionalized firing rates

that indicate the rate at which neural spikes would be firing from the base of the hair

cells. One firing-rate stream exists for each channel. Unfortunately, with regard to the

output of the MeddisHairCell function of the Auditory Toolbox, “the amplitude level is

arbitrary [73]” so only relative percussivity values are given. The output level is controlled

both by the input level (determined by hairCellScaling and the amplitude level of the

incoming sound file) and constants within the function (which have remained constant

throughout the entirety of this research), so percussivity values can be compared between

pieces of music analyzed only if the input parameter values remain constant. Differences

in musical style and recording technique still may affect the percussivity values enough

58



that direct comparison is not possible. Because percussivity values are relative, if there

is no percussive event that the algorithm would label as percussive in the piece of music

being analyzed, then the results of the PPA on that piece of music will not necessarily be

meaningful.

4.2.4 Time Realignment

The time realignment step consists of shifting the channels earlier in time according to

the time delay imposed by the gammatone filter bank. This time realignment is done

according to both the gross features of the envelope imposed by the gammatone filter

bank and by the fine structure of the phase of the resulting basilar membrane motion at

the center frequency of the region of interest. Low-frequency channels are shifted further

(earlier) in time than high-frequency channels. There is evidence to both validate [79] and

contradict [80], [81] that this time realignment is done in the processing of the auditory

system, but the model of the human auditory periphery used up to this point does not

include any time realignment. Based on testing and tuning described later in Section 4.3.3,

the decision was made to artificially impose this time realignment. The output of this

step is a time-realigned version of the output from the hair-cell response step (audio-rate

firing rates) with one firing-rate stream for each channel.

4.2.5 Low-Pass Filter

The low-pass filter step consists of using a second-order, infinite-impulse-response (IIR),

low-pass filter suggested by Slaney [73] with a cutoff frequency set to a normalized value of
fs

2Rd
, where fs is the sample rate and Rd is the decimation ratio used in the next step. This

prepares the channels of time-realigned hair-cell firing rates to be decimated in the next

step. The output of this step is effectively channels of an audio-rate firing-rate envelope.

4.2.6 Copy with Time Shift and Decimation

The copy with time shift and decimation step consists of first making Nst copies of the

channel-time-step matrix of the hair-cell response, then shifting each of those copies earlier

in time an amount n
Nst

of the window time length, where n is the copy number and Nst is

the number of copies. The copies are created in order to be individually processed and then

averaged back together in the means of the copies step of the PPA. This averaging process

removes the dependency on analysis start time for PPA. Nst = 10 copies were found

to be a good balance between elimination of start-time dependency and computational
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demands. This copy-and-average process is similar to taking a fast Fourier transform

(FFT) with window overlap set to Nst−1
Nst

of the number of points in the FFT (90% for

Nst = 10).

The final part of this step is a decimation of the hair-cell responses. The decimation

is done according to the parameter windowTimeLen, which is the length of time used for the

following differentiation step. The decimation has a two-fold purpose: it both reduces the

amount of data which must be subsequently processed and provides half of the mechanism

by which the subsequent numerical differentiation occurs.

The output of this step is effectively Nst copies (with slightly differing start times)

of all channels of a slower-than-audio-rate firing-rate envelope. Because of the low-pass

filter step, these envelopes have been properly filtered for the new sampling rate of 1
△t

where △t is determined by the parameter windowTimeLen.

4.2.7 Differentiation

The differentiation step consists of taking the numerical derivative of the firing-rate en-

velopes with respect to time in order to determine when and how fast each envelope is

rising and falling. The simple numerical formulation [82] of

df

dt
≈

f(t + △t) − f(t)

△t
(4.1)

is used to calculate the slope. Differentiation also has the effect of high-pass filtering,

which is a benefit; the faster the rise of the firing-rate envelope, the faster the rise time

of the sound event causing the rise. The output of this step is Nst copies of all channels

of the firing-rate envelope slopes.

4.2.8 Half-Wave Rectification

The half-wave rectification step consists of setting all negative values of the firing-rate

envelope slopes to zero. This rectification is done in order to only detect the rise time

(positive slope) of sound events. These positive slopes are an indication of percussivity,

so the output of this step is Nst copies of the percussivity in all channels.

4.2.9 Channel-Group Means

The channel-group means step consists of simply grouping the channels into some num-

ber of channel groups. The number of channel groups is determined by the parameter
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nChannelGroups. The channels are grouped into channel groups in increasing order as

evenly as possible, but for any percussivity-profile calculation, the channel groups may

not be comprised of an equal number of channels due to integer division. Because the psy-

choacoustic frequency distribution was used in the cochlear response step, the frequency

distribution in the channel-group means is still psychoacoustically motivated. For each

channel group, the mean percussivity value is calculated from the grouped channels. At

this point the percussivity values in the individual channels are no longer passed forward,

and all percussivity values are contained only in the channel-group means. The output of

this step is Nst copies of the channel-group percussivity means.

4.2.10 Upsample and Unshift

The upsample and unshift step consists of first duplicating each percussivity value within

a channel-group Nst times (the number of copies created in the copy with time shift

and decimation step). This is sample-and-hold interpolation and does introduce high-

frequency noise at the transitions between hold values, though the means will be taken

across copies which reduces this added noise. Each copy is then shifted n values later

in time, where n is the copy number. This realigns the copies accurately according to

their analysis start times. The output of this step is Nst copies of the start-time-realigned

channel-group percussivity means at a new sampling rate of Nst

△t
.

4.2.11 Maximums of Channel-Group Means

The maximums of channel-group means step consists of calculating the maximum of the

channel-group means across channel groups for each time window along the upsampled

percussivity values. This step is only implemented for the SPP. The maximum is chosen

because it appears that the gross spectral content generally does not determine the per-

cussivity of a sound event, so high percussivity in any channel group could indicate high

percussivity for the current time window in a piece of music. Choosing the mean here

would have negated the effect of channel groups. (Taking the mean of means would be

the same as taking the mean of the original values.) For each analysis-start-time copy, the

maximums of the channel-group means over all time windows represents the percussivity

profile of that copy. The output of this step is Nst copies of the maximum channel-group

percussivity means.
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4.2.12 Means of Copies

The means of copies step consists of averaging together the upsampled and appropriately

time-shifted percussivity values across the Nst start-time copies. For the SPP, this aver-

aging is done with the maximums of the channel-group means. For the GPP, this is done

directly with the channel-group means before the maximums are calculated.

4.2.13 Removing Zero Padding

The removing zero padding step consists of removing the region of the percussivity profile

corresponding to the zero values added in the zero padding step. The resulting out-

put vector and matrix are, respectively, the SPP and GPP. The PPA also produces the

analysis-window start times generated at the sampling rate of the percussivity profile,
Nst

Rd
fs = Nst

△t
.

4.3 Tuning the Percussivity Profile Algorithm

The main motivation for creating the PPA was to produce an algorithm that would identify

sound events in pieces of electroacoustic music that humans would label as percussive. In

order for the PPA to return results that are guided by human choice, the PPA needed to be

tuned according to a human metric of percussion. The results of the percussion-judgment

collection in Chapter 3 provided that metric.

The following sections describe how the goal for human-performance matching was

chosen as the measurement of success and the how the heuristic tuning method employed

sought an optimal solution. It is worth noting that this ad hoc tuning method does not

guarantee an optimal solution, but works well in practice.

4.3.1 Choice of Human-Performance Goal

In order to evaluate the performance of the PPA in comparison to human performance, a

measurable goal for success was needed. Because the dimension of rise time was chosen as

the fundamental audio dimension from the percussion-judgment collection in Chapter 3,

the choice of human-performance goal needed to be focused on rise time.

Because rise time appears in both stimulus sets A and C as described in Sec-

tion 3.1.1, the choice of human-performance goal for the PPA was to maximize PmAC ,

the percentage similarity of choices with the participant modal choices for stimulus sets A

and C. The sounds of stimulus set A were varied in the dimensions of rise time and string
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Table 4.1: Names, variable types, and tuning ranges of the algorithm parameters in the
PPA.

parameter type minimum maximum

nChannels integer 6 300

lowFreq float 20 Hz 400 Hz

windowTimeLen float 5 ms 200 ms

hairCellScaling float 500 100000

nChannelGroups integer 1 100

resonance. The stimulus sounds of stimulus set C were varied in the dimensions of rise

time and gross spectral filtering. The sounds of stimulus set B did not include variation

in rise time, so were not included in the human-performance goal.

The PPA was tuned using the participant’s modal choices from the percussion-

judgment collection. Some of the same software that was used to acquire the participant’s

pair choices was also used to acquire pair choices made by the PPA. The pair choice

of the PPA was determined according to which of the pair-choice sounds had a higher

percussivity rating. For a given stimulus set, the choices of the PPA were then compared

to the participant’s modal choices to determine success of the PPA for the particular set

of algorithm parameters. The names, variable types, and tuning ranges of the algorithm

parameters are listed in Table 4.1.

Although the ranked list of stimuli was generated just as for the human participants

in the percussion-judgment collection, only the actual choices between pairs of sounds were

used to evaluate the performance of the PPA. No mechanism was created to collect the

threshold value for judging a sound event to be an SDPE from the PPA. This decision

leads to a user-guided threshold mechanism which is described further in Section 4.5.

Two remarks should be made here. First, if human participants chose the two

sounds in a pair an equal number of times, then there was no modal choice, and the

PPA can never make a similar choice for that pair. This design decision avoids arbitrary

matching. Second, the choice of PmAC as human-performance goal does not use the does

not use the participants’ decision-difficulty ratings.
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4.3.2 Tuning

In order to find the algorithm parameters that provided the most human-like perfor-

mance from the PPA with a limited amount of computational effort, several methods

from mathematical programming (optimization) were employed. Combining the methods

of parameter exploration and line search [83] provided a mechanism to find consistently

high values of PmAC . The line-search method seeks the best result by varying only one

parameter between two limits while holding the rest constant. The line-search method

requires the assumption that the algorithm parameters have separable effects, which was

not proven in this case, although the line-search method was still effective. The parameter

exploration method employs simple parameter-space exploration guided by a user.

Table 4.1 shows the parameter values over which the tuning occurred. The param-

eter space was explored in several iterations. First a line search was done in turn for each

of the five parameters and the results were examined. Parameter exploration then was

employed to ensure that the appropriate choice was made for each parameter. Further

iterations of the line-search technique then occurred, followed by parameter exploration

based on those results, until a satisfactory and constant maximum for PmAC was found.

Restrictions on the algorithm parameters affected the tuning procedure. The

nChannels and nChannelGroups parameters must be integers with an additional restric-

tion that nChannels ≥ nChannelGroups. The technique of relaxation was used, which, in

this case, allows the requirements of integer values for integer parameters to be dropped

while searching for parameter values, but returned to integer values for any specific cal-

culation of PmAC . The parameter space was restricted to regions where nChannels ≥

nChannelGroups. Also, because 120 discrete choices were made for two stimulus sets, the

resulting value is not a continuous function of the independent variables (the algorithm

parameters).

The best parameter set found through this tuning method is shown in Table 4.2.

For this parameter set, the PPA made the same choice as the modal participant choice

95.83% of the time for stimulus set A and 95.00% for stimulus set C, with a mean of

95.42% for both sets. For comparison, the highest percentage any single participant made

the same choice as the modal participant choice was 95.00% of the time for stimulus set

A and 92.50% for stimulus set C, with a mean of 93.75% for both sets. The best mean

for both stimulus sets for any individual, however, was 92.50%.

About 24 critical bands span the audible frequency range according to Rossing

[9]. A set of 95 channels spanning the range from 115 Hz to 20 kHz is four times the
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Table 4.2: Algorithm parameters tuned to provide a consistently high value of PmAC .

nChannels lowFreq windowTimeLen hairCellScaling nChannelGroups

95 115 Hz 12.6 ms 9213 6

amount of critical bands for the same frequency band, but the channels, which follow the

gammatone filters, are not intended to be critical bands. The bandwidth of the channels

is a scaled version of the critical bandwidth at the same center frequency.

Example Tuning – hairCellScaling

Figure 4.6 shows the effect of hairCellScaling on PmAC . This is one example of how the

algorithm parameters affect the performance of the PPA. The rest of the parameters are

set to nChannels = 95 channels, lowFreq = 115 Hz, windowTimeLen = 0.0126 seconds,

and nChannelGroups = 6 groups.

According to Slaney [73], the value of hairCellScaling can be set with

hairCellScaling = 10

“

Lp

20
−1.35

”

(4.2)

which comes from the standard formula for sound pressure level (SPL) [84],

Lp = 20 log10
prms

pref
(4.3)

where Lp is the SPL, prms is the root-mean-square (RMS) pressure, and pref is the standard

reference pressure in air of 20 µPa. The normalization of −1.35 is added to the exponent

in (4.2), according to the suggestion of Meddis [77] following the normalization in the

work of Schroeder and Hall [85].

Because the stimulus sounds are percussive rather than continuous sounds, spec-

ifying the value of prms is not as useful as specifying the peak pressure, ppeak. For the

formula above, prms is estimated to be
ppeak

2 , because prms of a peak becomes dependent

on the time window used to measure it, this procedure is also used when calculating

hairCellScaling for pieces of music.

As stated in Section 3.1.2, the maximum SPL of the sounds presented to the

percussion-judgment participants was around 83 dBA (re 20 µPa). The maximum ppeak

of the normalized amplitudes of stimulus sets A and C was calculated to be 0.397. Using
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Figure 4.6: The effect of hairCellScaling on PmAC . Other parameter values are
nChannels = 95 channels, lowFreq = 115 Hz, windowTimeLen = 0.0126 s, and
nChannelGroups = 6 groups.
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the following equation,

hairCellScaling =
10

“

Lpeak

20
−1.35

”

ppeak

2

(4.4)

hairCellScaling was determined to be 3178 for the stimulus sets.

The value for hairCellScaling found through parameter tuning that gives the

maximum PmAC is 9213. The difference in values may be caused by the estimation of

prms from ppeak.

Example Tuning – nChannelGroups

Figure 4.7 shows the effect of nChannelGroups on PmAC . This is another example of

how the algorithm parameters affect the performance of the PPA. In this case, five values

centered around the best parameters are shown for each of nChannels (85, 90, 95, 100,

and 105 channels). lowFreq (105, 110, 115, 120, and 125 Hz), windowTimeLen (0.0120,

0.0123, 0.0126 0.0129, and 0.0132 seconds), and hairCellScaling (7213, 8213, 9213,

10213, 11213).

There are several remarkable features of the effect of nChannelGroups. PmAC

increases monotonically as nChannelGroups increases to six groups in all cases. For any

case in which PmAC reaches the maximum value of 95.42%, that maximum value occurs

at nChannelGroups = 6 groups. In almost all cases the value of PmAC is maximum only

for nChannelGroups = 6 groups. In most of the remaining cases, PmAC is maximum

at least at nChannelGroups = 6 groups. In a few cases, the values of PmAC is not

maximum at nChannelGroups = 6 groups. In those cases where PmAC has a maximum

value at a location other than nChannelGroups = 6 groups, the maximum value is found

at nChannelGroups = 14 or 16 groups.

In this tuning process, nChannelGroups could vary in the range of 1 to 100 groups.

If nChannelGroups = 1, this has the effect that the percussivity value is the maximum

across all channels. While nChannels was at a value of 100 or fewer, it was possible for

nChannelGroups = nChannels. This equality has the effect that the percussivity value

is the mean across all channels. Because the maximum value of PmAC is achieved for

neither of these values of nChannelGroups, the use of the combination of the maximums

and means in the PPA is validated.
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Figure 4.7: The effect of nChannelGroups on PmAC . Unless specified, the other parame-
ters are set to nChannels = 95 channels. lowFreq = 115 Hz, windowTimeLen = 0.0126 s,
and nChannelGroups = 6 groups. The top left graph shows the effect of nChannelGroups
on PmAC for several values of nChannels, the top right graph for several values of lowFreq,
the bottom left graph for several values of windowTimeLen, and the bottom right for sev-
eral values of nChannelGroups.
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4.3.3 Algorithm Development

The PPA is a culmination of much design and testing work. Several different choices were

made during the development for the time-realignment, low-pass filter, and copy with

time-shift and decimation steps. With each of these choices, the motivating factor was

always the higher value of PmAC . Each option was implemented and then the algorithm

parameters were tuned. The option which provided the higher value for PmAC was then

chosen for the final design of the PPA.

4.3.4 Threshold

Figure 4.8 shows the percussivity profile of the stimuli from stimulus set A ordered in a

sound file by decreasing SDPE-likeness according to the participant modal choices. The

top plot shows the amplitude, the middle plot shows SPPp, and the bottom plot shows the

GPP. For the GPP, higher-numbered channel groups represent groups of lower-frequency

channels shown at the bottom of the plot. Using number system A from Section 3.1.1, the

order is 1, 5, 2, 9, 6, 13, 10, 3, 14, 7, 15, 11, 4, 8, 12, 16. As stated in Section 3.2.5, the

modal choice for percussion threshold was the tenth stimulus. This threshold is indicated

by the dotted line in the percussivity profile plot of Figure 4.8.

Figure 4.9 shows the percussivity profile of the stimuli from stimulus set C ordered

in a sound file by decreasing SDPE-likeness according to the participant modal choices.

Using number system A, the order is 5, 9, 1, 13, 10, 6, 2, 14, 7, 11, 3, 15, 12, 8, 4,

16. As stated in Section 3.2.5, the modal choice for percussion threshold was the eighth

stimulus. This threshold is indicated by the dotted line in the SPPp plot of Figure 4.9.

The usefulness of these threshold values are discussed further in Section 4.4.1.

The percussivity-profile plots of both Figure 4.8 and Figure 4.9 show the general

trend of higher to lower percussivity, although several of the individual stimuli in each

set appear to be out of order according to the PPA. In the GPP plot of stimulus set A,

little difference can be seen between adjacent stimulus sounds, but a general trend from

higher values (darker) to lower value (lighter) for the stimulus sounds can be seen. In the

GPP plot of stimulus set C, the differing frequency content of the stimulus sounds can be

seen clearly by their GPP signature. By comparing the “spikes” of stimulus sounds with

similar GPP signatures from left to right, the general trend from higher values (darker)

to lower values (lighter) also can be seen (for example, the 4th, 8th, 12th, and 16th spikes

show this trend).
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Figure 4.8: Amplitude (top plot), SPPp (middle plot), and GPP (lower plot) of the ranked list of participant modal choices
in stimulus set A.
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Figure 4.9: Amplitude (top plot), SPPp (middle plot), and GPP (lower plot) of the ranked list of participant modal choices
in stimulus set C.
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4.4 Practical Considerations

Analyzing a real piece of music is significantly different from analyzing isolated percussive

events. The presence of non-percussive sounds adds complexities to identifying sounds

as percussive, so some post-processing is helpful in making the percussive sounds more

obvious. The arbitrary output level of the PPA is also an issue for the choice of thresh-

old value. The length of the sound file causes issues with memory usage and computer

runtime. The next sections describe the practical considerations that affect the analysis

of real music.

4.4.1 Post-Processing Manipulation

The SPP represents the grouped and averaged nerve spike potentials along the cochlear

nerve. This representation is not the most visually useful representation of the sound in

a piece of music. Some further processing enhances the indication of percussive sounds.

The final value of the post-processed SPP is

SPPp =
SPP 2

SPPrms
(4.5)

where SPPp is the post-processed SPP, SPP is the raw SPP, and SPPrms is the RMS value

of SPP over a short window.

In order to make the peaks in the percussivity profile more visually apparent, the

values were squared. This manipulation separates the high values from the noisiness of

the non-percussive sounds represented in the SPP. In order to display the peaks in relation

to the surrounding noise of non-percussive sound in the SPP, the value of SPP 2 is divided

by SPPrms.

4.4.2 Threshold

A sound event is labelled as percussive according to a threshold value of SPPp, and any

peaks that lay above that value are considered percussive. The threshold data were

collected as shown in Section 3.1.2 and relate to the stimuli as shown in Section 4.3.4.

When analyzing percussive sounds within pieces of music, however, the threshold for

isolated, percussive sounds is not particularly useful. This fact is apparent in Section 4.5,

where the threshold value for SPPp is discussed further. An appropriate threshold value

for SPPp must be chosen in a user-guided fashion based on what percussive aspects the

user wants to display while avoiding false positive identification.
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Once again, the actual output values from the PPA are “arbitrary,” although stable

for any set of given algorithm parameters. This means that for any new set of parameters

and probably for any new piece of music, a new threshold value will need to be chosen.

Threshold choice is discussed more in Section 4.5.

4.4.3 Block Processing

Although much effort went into keeping memory usage to a minimum, at one point the

algorithm requires approximately

Mmax = 17.6NsNcNst (4.6)

bytes, where Mmax is the maximum memory required, Ns is the number of samples in

the sound file, Nc is nChannels, and Nst is the number of copies from the copy with time

shift and decimation step from Section 4.2.6. For the values of Nc = 95, and Nst = 10,

Equation 4.6 reduces to Mmax = 16720Ns bytes. This translates to about 1.46 seconds

of monaural music sampled at 44.1 kHz which can be processed for every 1 GB of free

memory.

The following computer run times are given as a base line performance of the

PPA, and can be used to anticipate performance on other computer systems. On a Dell

Precision 530 workstation with two Intel 32-bit Xeon 1.80 GHz processors, 1 GB of RAM,

and running Ubuntu Linux 7.10, typically 500 MB of RAM was free for processing, and

one second of music could be processed in approximately 19.4 seconds of real time. On a

Dell Poweredge 2950 rack mount workstation with two 3.75 GHz 64-bit Intel Dual-Core

Xeon processors, 8 GB of RAM, and running Ubuntu Linux 7.04, typically 7 GB of RAM

was free for processing, and one second of music could be processed in approximately

7.13 seconds of real time.

Although MATLAB can process data structures up to the sum of free RAM and

free virtual memory available, doing so obviously requires the use of virtual memory.

Using virtual memory incurs a significant speed reduction that can reach a slowdown of

several orders of magnitude when moving beyond the boundary of free memory. Given

the speed benefit of avoiding using virtual memory, it was necessary to create a function

that processes longer pieces of music in smaller blocks and then reconnects the resulting

shorter percussivity profiles into a single percussivity profile. The block size is determined

using Equation 4.6 in order to use less than the amount of available free memory.
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4.5 Results

The following sections describe how the PPA performed when analyzing one constructed

example and two examples of electroacoustic music: a section of “Jeux Imaginaires” by

Åke Parmerud [86] (labelled as the easy example), and a section of “Le Vertige Inconnu”

by Gilles Gobeil [87] (labelled as the difficult example). The constructed example is

presented in order to provide at least one objective measure of the performance of the

PPA. The easy example was chosen as an example of music in which the percussive

sounds are clearly percussive, and would be fairly easy for the PPA to analyze. The

difficult example was chosen as an example of music in which the percussive sounds are

obscured or not clearly percussive, and would point out some of the problems the PPA

might have. All of these examples are monaural audio (reduced from stereo by averaging

if necessary) and recorded at a 44.1 kHz sampling rate with 16 bit resolution.

4.5.1 Constructed Example

This section describes the performance of the PPA on a constructed example. This con-

structed example consists of a sound mixture of a short section (from 6:57.03 to 7:21.36)

of “2/1” by Brian Eno [88] and a series of decreasing amplitude repetitions of stimulus 1

from stimulus set A (see Section 3.1.1). This section of “2/1” was chosen because it does

not contain any percussive sounds at all. This constructed example is presented in order

to provide an objective measure of the performance of the PPA. The analysis of the two

sound-mixture components are presented individually first, followed by the mixture.

Figure 4.10 shows the section of “2/1.” This section of this piece of music consists

of vocal sounds layered on top of one another and none of the sounds are considered

percussive. A 0.5 second amplitude fade-in is used at the beginning and a 0.5 second

amplitude fade-out is used at the end. The top plot of Figure 4.10 shows the waveform

amplitude of the section, and that the maximum normalized amplitude of this section of

music is 0.5. The middle plot shows SPPp of the same section of music. The maximum

value of SPPp in this nonpercussive example is 0.0752; this value affects the choice of

threshold level when searching for percussive sound events in the upcoming sound mixture.

The bottom plot shows the GPP for the same section of music. The short time window

used to calculate SPPrms was 0.5 seconds.

Figure 4.11 shows 37 decreasing amplitude repetitions of stimulus 1 from stimulus

set A. The top plot shows the waveform amplitude of the sound. The maximum normalized

amplitude of the repetitions is 0.5 and the repetitions decrease in linear dB amplitude
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Figure 4.10: Amplitude (top plot), SPPp (middle plot), and GPP (lower plot) of a section (from 6:57.03 to 7:21.36) of
“2/1” by Brian Eno [88]. The maximum value of SPPp in this nonpercussive mixture is 0.0752 and represents the lowest
threshold value at which events would be identified as percussive. SPPrms was taken over a 0.5 s window.
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until repetition 37, which is 25 dB lower than repetition 1. The middle plot shows SPPp

of the same sound. The peaks that are identified as percussive events are marked with

circles and are determined by a simple threshold value of 0.076 for SPPp. The bottom

plot of Figure 4.11 shows the GPP for the same sound. The short time window used to

calculate SPPrms was 0.5 seconds.

The threshold value of 0.076 is used in order to discriminate from the maximum

nonpercussive levels (0.0752) seen in Figure 4.10. This threshold value causes the PPA to

identify 26 percussive events in the stimulus repetitions. The amplitude of repetition 26

is 17.25 dB lower than repetition 1. In this isolated sound environment, a lower threshold

could be used to identify more percussive events, but in context of the task of percussion

detection in the upcoming sound mixture, the current threshold value is appropriate.

Figure 4.12 shows the sounds of Figure 4.10 and Figure 4.11 mixed by straight-

forward sample by sample addition. The top plot of Figure 4.12 shows the waveform

amplitude of the sound. The middle plot shows SPPp, the post-processed percussivity

profile of the same sound mixture. The peaks that are identified as percussive events are

marked with circles and were determined by a simple threshold value of SPPp. As in Fig-

ure 4.11, a threshold value of 0.076 is used. The bottom plot of Figure 4.12 shows the GPP

for the same sound. The short time window used to calculate SPPrms was 0.5 seconds.

The threshold value of 0.076 causes the PPA to identify 21 stimulus repetitions

as percussive events. The amplitude of repetition 21 is 13.80 dB lower than repetition 1.

Identifying 21 stimulus repetitions as percussive events represents a performance decrease

of 19% (21 out of 26 events found) from the isolated performance (as long as humans

would identify the 5 unidentified stimulus repetitions as percussive in the new context of

the sound mixture).

In Figure 4.12, if the sound of “2/1” is considered noise while trying to identify

the signal of percussive events, then stimulus repetition 1 in the sound mixture has a

signal-to-noise ration (SNR) of 1:1 or 0 dB. Repetition 21 has an SNR of approximately

1:5 (0.204) or -13.80 dB. Because repetition 26 of the isolated stimulus repetitions was

able to be identified at a level of -17.25 dB compared to the level of event 1, the noise of

“2/1” is blocking the ability of the PPA to identify percussive events at a level of 3.45 dB.

4.5.2 Easy Example

Figure 4.13 shows a section (from 3:12.41 to 3:43.26) of the piece of music “Jeux Imagi-

naires” by Åke Parmerud [86]. This section of this piece of music was chosen because the

percussive sounds in it are clearly percussive and therefore should be easily identified by
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Figure 4.11: Amplitude (top plot), SPPp (middle plot), and GPP (lower plot) of repetitions of stimulus 1 from stimulus
set A at decreasing amplitude. The circled peaks in the SPPp plot represent percussive instants according to a threshold
value of 0.076. SPPrms was taken over a 0.5 s window.
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Figure 4.12: Amplitude (top plot), SPPp (middle plot), and GPP (lower plot) of a mixture of a section “2/1” by Brian
Eno and repetitions of stimulus 1 from stimulus set A. The circled peaks in the SPPp plot represent percussive instants
according to a threshold value of 0.076. SPPrms was taken over a 0.5 s window.

78



the PPA. Real-world examples often provide more difficulties than anticipated, however,

and this section of real electroacoustic music is no exception. The beginning of the ex-

ample was modified by a fade-in amplitude ramp in order to avoid the sudden onset of

sound at an arbitrary cut being identified as a percussive sound.

The top plot of Figure 4.13 shows the waveform amplitude of the section of “Jeux

Imaginaires.” The middle plot shows SPPp of the same section of music. The peaks that

were identified as percussive events are marked with circles and were determined by a

simple threshold value of SPPp. A threshold value of 0.065 was used for this example.

The bottom plot shows the GPP for the same section of music. The short time window

used to calculate SPPrms was 0.5 seconds.

Most of the sudden amplitude increases in the top plot represent percussive sounds

according to the percussivity profile. The two shaded regions in Figure 4.13 will be

discussed in more detail in the following paragraphs. It is worth noting that some of the

sudden amplitude increases are not identified by the PPA as being as strongly percussive

or even percussive at all, and are discussed in the following paragraphs as well.

Figure 4.14 shows more detail of Region 1 (from 0:05.00 to 0:07.00) in the amplitude

plot of Figure 4.13. Within this section of music five percussive sound events are clearly

identified. The sound events occur at a very regular interval and sound as if perhaps they

are an artificially truncated strike of a drum stick on a wood block.

At roughly halfway between the second and third, the third and fourth, and the

fourth and fifth identified percussive sound events are sudden amplitude increases that

are not identified as percussive sound events. These amplitude increases sound as if they

are perhaps artificially truncated strikes of marbles against one another, and might be

identified as percussive by a listener. These sound events, however, are approximately

0.0025 seconds in length, which is only 20 percent of the time window (0.0126 seconds)

being used to analyze the section of music and is only 25 percent of the shortest rise

time (0.010 seconds) tested in the percussion-judgment collection. These sound events

were clearly beyond the capabilities of the PPA to identify as percussive, and are perhaps

sound events that press the limits of what humans define as percussive.

Figure 4.15 shows more detail of Region 2 (from 0:08.75 to 0:11.50) in the amplitude

plot of Figure 4.13. Within this section of music, seven percussive sound events are clearly

identified. The sound events at the beginning and end of this section sound like a drum

being struck, and the five sound events in the middle are similar to the truncated wood-

block strikes from Region 1 (see Figure 4.14).

A few important traits of the algorithm are highlighted in Region 2. It is notable
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Figure 4.13: Amplitude (top plot), SPPp (middle plot), and GPP (lower plot) of a section (from 3:12.41 to 3:43.26) of
“Jeux Imaginaires” by Åke Parmerud [86]. The circled peaks in the SPPp plot represent percussive instants according to
a threshold value of 0.065. SPPrms was taken over a 0.5 s window.
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Figure 4.14: Amplitude (top plot), SPPp (middle plot), and GPP (lower plot) of Region 1 of a section (from 3:12.41 to
3:43.26) of “Jeux Imaginaires” by Åke Parmerud [86]. The circled peaks in the SPPp plot represent percussive instants
according to a threshold value of 0.065. SPPrms was taken over a 0.5 s window.

81



9 9.5 10 10.5 11 11.5
−1

−0.5

0

0.5

1
am

pl
itu

de

time (s)

amplitude of region two of easy example

9 9.5 10 10.5 11 11.5
0

0.2

0.4

0.6

S
P

P p

time (s)

threshold peaks of processed percussivity profile of region two of easy example

ch
an

ne
l g

ro
up

time (s)

group percussivity profile of region two of easy example

9 9.5 10 10.5 11 11.5

2

4

6

Figure 4.15: Amplitude (top plot), SPPp (middle plot), and GPP (lower plot) of Region 2 of a section (from 3:12.41 to
3:43.26) of “Jeux Imaginaires” by Åke Parmerud [86]. The circled peaks in the SPPp plot represent percussive instants
according to a threshold value of 0.065. SPPrms was taken over a 0.5 s window.
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that the first wood-block strike (the second sound event identified as percussive in this

example) is found to be percussive even though it is situated in other noise. It is also

notable that the last percussive sound event in this example has noise leading up to it.

Because the PPA processes channel groups separately, if a percussive sound event contains

frequency components in a different group from the other noise in which it is situated,

then the percussive sound event is still identified.

4.5.3 Difficult Example

Figure 4.16 shows a section (from 4:22.93 to 5:11.30) of “Le Vertige Inconnu” by Gilles

Gobeil [87]. This section of music contains sound events and sound mixtures that press

the limits of what is percussive, both in terms of the stimulus sounds used to tune the

PPA and what humans might label as percussive. This section of music is intended to

demonstrate some of the problems associated with identifying percussive sound events in

real electroacoustic music.

In Figure 4.16, the top plot represents the waveform amplitude, the middle plot

shows SPPp, and the bottom plot shows the GPP for the piece of music. No fade-in

amplitude ramp was necessary in this example because the initial amplitude of the example

is so low. The peaks in SPPp that have been identified by the PPA as percussive are marked

with a circle, and this identification was done by simple thresholding SPPp. A threshold

value of 0.044 was used for this example. The short time window used to calculate SPPrms

was 0.5 seconds.

Most of the sudden amplitude increases in the top plot represent percussive sound

events according to the percussivity profile; however, there are some significant counterex-

amples. The two shaded regions in Figure 4.16 will be discussed in more detail below.

Once again, the PPA identifies some of the amplitude increases as not being strongly

percussive and some as not percussive at all.

Perhaps most significantly, the large-amplitude sound between 10 and 12.5 seconds

in the amplitude plot was not identified by the PPA as percussive. This section of sound

could be described as the spinning up of a motor, along with some knocks and rattling,

and finally the slam of a heavy door all taking place in a reverberant environment. The

last component of this section, the door slam, seems as if it should be identified as a

percussive event.

There are several possible reasons that the PPA does not identify the door slam as

a percussive event: there may be too much competing noise across the frequency spectrum

for the door slam to be identified separately, the tuning of the algorithm parameters may
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Figure 4.16: Amplitude (top plot), SPPp (middle plot), and GPP (lower plot) of a section (from 4:22.93 to 5:11.30) of “Le
Vertige Inconnu” by Gilles Gobeil [87]. The circled peaks in the SPPp plot represent percussive instants according to a
threshold value of 0.044. SPPrms was taken over a 0.5 s window.
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be inappropriate for this specific sound to be identified as a percussive event, it might

be a completely different mechanism (for example, dynamic filtering) that would cause

humans to identify this sound as percussive, or this sound event might not be identified

as percussive by humans at all. Regardless of the reason, this sound event does point out

challenges for the PPA.

Figure 4.17 shows more detail of Region 1 in the amplitude plot of Figure 4.16. In

this region, eight percussive sound events are identified. The first six are perhaps strikes

of a bell and the next two are perhaps truncated balloon pops. This region also is full

of other non-percussive sounds, so it is remarkable that the PPA is able to extract the

bell sounds as percussive amidst the milieu of other sounds occurring. This is an example

of the effectiveness of using channel groups to provide percussion detection in spectral

regions.

Figure 4.18 shows more detail of Region 2 in the amplitude plot of Figure 4.16.

In this region, eight percussive sound events are identified. The analysis of this region of

music is divided into four subregions.

Subregion A occurs from 35.0 until about 38.0 seconds. During this subregion

many different sources of sound are contributing to the general noise. The identifiable

sources are a buzzing horn, crickets, and what seems to be several machines tapping out

a rhythm of some sort. Certainly some of the sounds of the machine rhythm would be

considered percussive if heard in isolation, but the quick repetition of these sounds creates

the effect of static and mechanical noise. Within this intense jumble of sounds it is difficult

to focus on any one percussive event. In this subregion, however, the PPA identifies four

percussive sound events.

Subregion B occurs from around 38.0 until around 39.8 seconds. In this subregion

first the sound of the buzzing horn becomes louder, precluding the PPA from finding

any more percussive sound events in the machine rhythm. At around 39.0 seconds, a new

sound event, which sounds somewhat like a subway car approaching, increases the musical

intensity. In this region no percussive sound events are found.

Subregion C occurs from around 39.8 until around 40.5 seconds. In this subregion

a sound mixture occurs which is arguably a percussive event, but is not identified in the

least as a percussive event by the PPA (no percussive sound events are identified by the

PPA in this subregion). The sounds in this subregion appear to be pressurized air being

released and then the closing of a metal gate mixed with a chorus of human voices saying

the syllable, “cho.” The pressurized air sound is mixed with all of the previous sounds

until the sound mixture of the gate closing and choral ”cho” occurs. At this point, many
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Figure 4.17: Amplitude (top plot), SPPp (middle plot), and GPP (lower plot) of Region 1 of a section (from 4:22.93 to
5:11.30) of “Le Vertige Inconnu” by Gilles Gobeil [87]. The circled peaks in the SPPp plot represent percussive instants
according to a threshold value of 0.044. SPPrms was taken over a 0.5 s window.
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Figure 4.18: Amplitude (top plot), SPPp (middle plot), and GPP (lower plot) of Region 2 of a section (from 4:22.93 to
5:11.30) of “Le Vertige Inconnu” by Gilles Gobeil [87]. The circled peaks in the SPPp plot represent percussive instants
according to a threshold value of 0.044. SPPrms was taken over a 0.5 s window.
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of the other sounds stop, and it is this point in the music that is of interest regarding

being labelled as percussive by humans.

This point in the music does have several characteristics of percussive sound events:

it has a sharp decrease in musical energy (a fall) immediately following it, it has a sharp rise

in audio energy (a rise) at the closing of the gate, and it does appear to be a combination

of two sounds, each of which fits one of the definitions of an SDPE (see Section 2.1). The

timing, spectra, and mixture of the different sounds may interfere with one another so

as to prevent the PPA and possibly humans from identifying this point as a percussive

event. Certainly this point in the music is not a simple SDPE, but it does represent a

sudden change in musical context.

Subregion D occurs from around 40.5 until 43.0 seconds. In this subregion, the

dénouement of the intensity plays out with the general dampening of the sounds. There

are four sound events that appear to be releases of steam. Each of these is identified by

the PPA as a percussive event even though its amplitude is not significantly greater than

the surrounding noise, especially the first release.

4.6 Concluding Remarks

This chapter described the details of a percussivity-profile algorithm (PPA) that was

created to identify instants in pieces of music that humans would similarly identify as

percussive. The implementation details are described fully. Tuning over the algorithm

parameters was performed to maximize the PPA’s performance at matching the most

common choices made by participants in the percussion-judgment collection. With this

tuning, the PPA was used to analyze one constructed example and two electroacoustic

music examples. The results show that the PPA appears to perform well at the percussion-

detection task, although the ambiguity of certain sound events and sound mixtures cause

the PPA to not identify some sound events as percussive that might be heard as such by

humans.

The stimulus sounds used in the percussion-judgment collection certainly had a

significant effect on the sounds that can be identified as percussive by the PPA. An

example of this is the truncated marble strikes in Region 1 of the easy example (see

Figure 4.14). These sounds have a total length less than the shortest rise time used for

the stimulus sounds in the percussion-judgment collection. Because the PPA is tuned

from the results of the percussion-judgment collection, the tuning goal is incongruous

with identifying those truncated marble strikes as percussive. Suggestions for how to
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choose new stimulus sounds are given in Section 6.2.

In listening to real electroacoustic music, like Region 2 of the difficult example

(see Figure 4.18), a person can hear massive shifts in musical context. These context

shifts seem to have a musical effect similar to a percussive event. The electroacoustic

composer is probably conscious of this effect and is composing with this phenomenon in

mind. Discussion as to whether these context shifts should be considered percussive re-

quires further exploration of the word “percussive” and other sound events besides single,

damped, percussive events (SDPEs) which would be considered percussive by humans. It

is unsurprising that a PPA based on a collection of human percussion judgments that is

subsequently based on a definition of an SDPE has some trouble performing clearly with

these ambiguous sounds.

Chapter 5 discusses a method to use the results of the PPA in order to illuminate

the self-similarity in the percussive sounds of electroacoustic music. Chapter 6 discusses,

amongst other things, several ways in which the performance of the PPA might be mea-

sured and improved.
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Chapter 5

Percussive Self-Similarity

This chapter describes the similarity matrix used by Foote [57] to visualize self-similarity

in music. This chapter also describes how the similarity matrix can be combined with

the results of the percussivity-profile algorithm (PPA) from Chapter 4 in order to find

self-similarity in the percussive sounds of a piece of music. Practical limitations of such an

analysis are considered, and the performance of this type of analysis for one constructed

example and two examples of electroacoustic music are shown.

Self-similarity in this context refers to a property of a piece of music. A piece of

music is said to have high self-similarity if there are many sections of the piece which

are similar to many other sections. Depending on the application, the sections under

consideration may be longer than half the length of the piece of music or as short as a

percussive event.

The percussivity similarity matrix (PSM) is one mechanism by which the results

of the PPA can be used in order to provide more information about a piece of music

than might otherwise be available. The PSM shows where a piece of music exhibits self-

similarity in the percussive sounds and helps to identify structural characteristics of a

piece of music.

5.1 Algorithm

This section describes Foote’s [57] similarity matrix and how the PPA can be integrated

with it to provide a PSM. A diagonal summation of the PSM is also shown as a helpful

indicator of percussive self-similarity.
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5.1.1 Similarity Matrix

Foote [57] suggests that a two-dimensional similarity matrix can be used to visualize pieces

of music in order to emphasize sections of the music which are similar to other sections.

An example similarity matrix [89] for “The Magical Mystery Tour” by The Beatles [90]

is shown in Figure 5.1. In the similarity matrix, time runs from left to right and from

top to bottom. The time difference, or time lag, between two points being compared is

indicated by the horizontal or vertical distance (always the same) from the main diagonal.

The brightness of a point (i, j) in the matrix is proportional to the similarity at instants

i and j of the piece of music. In reality, the “instants” are created by dividing the piece

of music into short time windows.

Foote and Cooper [61] suggest that any appropriate similarity metric, s(i, j), may

be chosen. In their analyses, they most commonly use the cosine distance between mel-

frequency cepstral coefficients (MFCCs) to make the comparison for time windows of

100 milliseconds [61]. MFCCs are coefficients which represent a short-term audio power

spectrum. Cosine distance of MFCCs and a 100 millisecond time window are used in

Figure 5.1. Figure 5.2 shows how the similarity matrix is constructed.

Because the main diagonal of the similarity matrix indicates a time offset of 0 sec-

onds, the similarity matrix has a white stripe running along the main diagonal of the

matrix. This white stripe indicates that each time window is similar to itself (autocor-

relation is maximum at a time lag of 0 seconds). For a piece of music that maintains

the same tempo throughout its length, other white stripes running parallel to the main

diagonal indicate similarity found at a time offset. Note that the similarity matrix is

symmetric across the main diagonal when s(i, j) = s(j, i).

5.1.2 Percussive Similarity Matrix

By choosing a similarity metric that is based on percussivity, the similarity matrix can

be turned into a PSM. Issues arise when trying to create a PSM, however. Percussion

is, by its nature, short and often comprises little of the total time of a piece of music, so

most of a piece of music will be strongly similar to itself (no percussion is similar to no

percussion). Obviously, exceptions exist depending on musical style.

It is only during short time periods of the music that the presence of a percussive

event will be compared to the presence of another percussive event. If these percussive

events are rated as similar by the percussive similarity metric chosen, then the PSM

indicates similarity by plotting a light pixel at the appropriate location. If percussive
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Figure 5.1: Example of a similarity matrix from Cooper and Foote [89] (modified slightly).
Time runs horizontally to the right and vertically down. Light regions indicate similarity
and dark regions indicate less or no similarity. The time difference, or time lag, between
two points being compared is indicated by the horizontal of vertical distance (always the
same) from the main diagonal.
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Figure 5.2: Creation of the similarity matrix from Cooper and Foote [62]. D(i, j) here is
the cosine distance between MFCCs at points i and j in the audio. D(i, j) is one choice of
similarity metric, s(i, j). “Stream” here refers to the audio stream of the piece of music.
The value of similarity for any point in the similarity matrix is value of D(i, j).

comparisons line up at the same time offsets, then a white line appears parallel to the

main PSM diagonal. This white line passes through the intersections of the horizontal

and vertical dark lines created by percussive events, Figure 5.3 shows a PSM from a

constructed example for immediate reference. This example is more fully explained in

Section 5.2.1.

In order to quantify the self-similarity in a piece of music, the values of mean

similarity are taken along the PSM diagonals. If percussive similarity is regularly present

at a specific time offset, that similarity appears in the comparison of the PSM diagonal

means. This work follows Foote and Cooper’s [61] work on “beat spectrum,” but that

nomenclature is inappropriate when analyzing electroacoustic music because the lack of

musical beat is common in the genre.

5.1.3 Percussive Similarity Metric

The percussive similarity metric used is given by

s(i, j) = 1 −
d(i, j)

dmax

(5.1)
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Figure 5.3: PSM for a constructed sound example using the GPP in the similarity metric.
At the intersections of percussive events (dark lines), light pixels indicates high similarity
and dark pixels indicate low similarity.
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where

d(i, j) = ||xi − xj|| =

√

√

√

√

n
∑

k=1

(xi,k − xj,k)
2 (5.2)

is the Euclidean distance [91] between the vectors xi and xj and dmax is the maximum

Euclidean distance between the group percussivity profile (GPP) vectors of any two time

windows in the piece of music (see Section 4.2 for an explanation of the GPP). In Equa-

tion 5.2, xi represents the vector of GPP values at time window i, n is the number of values

at a given time window in the GPP (and is equal to the PPA parameter nChannelGroups),

and xi,k is a value of the GPP at time window i and channel group k. The quantity is

normalized so that absolute percussive similarity gives a percussive similarity value of 1.0,

and the least-similar point on the matrix has a value of 0.0. This normalization is ap-

propriate because the percussivity values from the PPA are arbitrary (see Section 4.4.1),

and because the amount of percussion in the piece of music will have a significant effect

on the PSM diagonal means.

Basing the percussive similarity metric on the GPP has the effect of discerning

different types of percussive sounds from one another if the differences appear in the

frequency discernment of the GPP. In order to search for percussive self-similarity based

only on the fact that any percussive event occurred, a percussive similarity metric based

on only the single-value percussivity profile (SPP) could be used (see Section 4.2 for an

explanation of the SPP). An example of a PSM using this similarity metric is shown in

Section 5.2.1.

5.1.4 Practical Considerations

The memory requirements for the PSM and associated manipulation are given by Equa-

tion 5.3,

Mmax = 17.6

(

lm

lw

)2

(5.3)

where lm is the length in seconds of the piece of music to be analyzed, and lw is the time

window length in seconds. From Equation 5.3, if 7 GB of real memory are available,

then the value of 20700 is the maximum for lm
lw

without moving into virtual memory

and significantly slowing down the calculations. Given the values of 0.0126 seconds for

the windowTimeLen PPA parameter (see Section 4.3.2) and 10 start times distributed

throughout the PPA time window (see Section 4.2.6), GPP values exist at time windows

of 0.00126 seconds. Using this value for lw gives an lm of only 26.1 seconds.
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In order to analyze pieces of music longer than 26.1 seconds, some form of deci-

mation must occur. Using 15 minutes as the longest lm, a value of 0.05 seconds for lw is

calculated. In order to avoid the problems that arise from such a long lw (compared to

the rise time of percussive events), decimation is performed according to the maximum

percussivity value within the channel group over lw with an overlap of lw
2 . The overlap

is necessary to avoid splitting a single percussive event across two windows, but unfor-

tunately reduces the longest lm by a factor of four. An lw of 0.05 seconds is used for all

examples in this chapter under 3.75 minutes. An lw of 0.1 seconds is used for all examples

over 3.75 minutes.

5.2 Results

The following sections describe how the PSM indicates percussive self-similarity. The first

example is a somewhat artificial, constructed example and is intended to display percussive

self-similarity with a minimum of musical interference. Two examples of electroacoustic

music follow the constructed example: a section of “La Ou Vont les Nuages...” by Gilles

Gobeil [87] (labelled as the simple example) and a section of “Associations Libres” also

by Gilles Gobeil [87] (labelled as the complex example). The simple example was chosen

to demonstrate the ability of the PSM to display percussive self-similarity for a musical

selection with almost completely regular percussive time intervals. The complex example

was chosen to demonstrate the ability of the PSM to display percussive self-similarity for

a more musically complex selection. All of these examples are monaural audio (reduced

from two channels by averaging if necessary) and are recorded at a 44.1 kHz sampling

rate with 16 bit resolution.

5.2.1 Constructed Example

In order to better explain the PSM, an example exhibiting significant percussive self-

similarity with no other musical interference was constructed using three different per-

cussive sounds from stimulus set B of the collection of human percussion judgments (see

Section 3.1.1). Figure 5.4 shows the amplitude, SPPp, and GPP of the constructed ex-

ample. All of the percussive sounds exhibit the fastest rise time of the stimulus set

(0.01 seconds), and the three individual sounds were the stimulus sounds processed using

filter sets A, B, and C.

The percussive sounds were placed in the order B, A, C, B, A, C at the following

times in the sound file: 0.1, 0.6, 1.6, 3.8, 4.3, and 5.3 seconds. There is no other noise

96



0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

1
am

pl
itu

de

time (s)

amplitude of a constructed example

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

S
P

P p

time (s)

post−processed percussivity profile

ch
an

ne
l g

ro
up

time (s)

group percussivity profile

0 1 2 3 4 5 6 7

0

2

4

6

Figure 5.4: Amplitude (top plot), SPPp (middle plot), and GPP (lower plot) of the constructed sound example. These
values are decimated using lw = 0.05 s.
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or sound added to the example and it ends at 7.1 seconds. This particular percussion

pattern generates strong self-similarity at a time offset of 3.7 seconds as well as weaker

self-similarity at other time differences between the percussive sounds (at a time offset of

0.5 seconds, for example). The SPPp plot shows that these percussive events are recognized

as percussive, and the GPP plot shows that each of the filter sets creates a unique channel-

group signature. The SPPp and GPP plots also show the effects of decimation.

Figure 5.3 (in Section 5.1.2) shows the PSM for the constructed example. The

expected white line along the main diagonal (upper left to lower right) is present showing

that the entire piece of music is similar to itself. Parallel white lines can be seen in the

bottom left quadrant (through points (0.1, 3.8), (0.6, 4.3), and (1.6, 5.3)), and in the

upper right quadrant (through points (3.8, 0.1), (4.3, 0.6), and (5.3, 1.6)). These parallel

lines indicate similarity between two sections of the piece of music at a time offset. The

time offset is the vertical or horizontal time offset from the main diagonal for any specific

time window, and in this case has a value of 3.7 seconds. It is important to note that not

every percussive event is considered similar to every other percussive event. This fact is

evidenced by the display of low similarity (dark pixels) at many of the intersections of

percussive events, for example at (0.1, 0.6).

Figure 5.5 shows the PSM diagonal means from the upper triangle of the PSM for

the constructed example. The upper triangle of a matrix is all matrix values above and

including the main diagonal in the matrix layout. Only the upper triangle is used because

of the symmetry of the PSM across the main diagonal. The value of 1.0 at a time offset

of 0 seconds is the mean value of the main diagonal. After the main diagonal, the highest

peak in the PSM diagonal means occurs at a time offset of 3.7 seconds, indicating that

the highest amount of similarity across this example occurs at that time offset. Smaller

peaks represent some of the other time differences between the percussive sounds (at a

time offset of 0.5 seconds, for example).

It is worth noting that every PSM diagonal is of a different length, and PSM diag-

onals near the upper right corner have few values over which the mean is taken. Because

the average of a small number of observations of a random variable is not guaranteed to

be near its expected value according to the law of large numbers [92], the PSM diagonal

means are not presented where the number of diagonal values is 50 or fewer.

In order to show a PSM when every percussive event is calculated to be similar

to every other percussive event, Figure 5.6 shows the PSM for the constructed example

using the normalized difference of the SPP as the similarity metric. In this case the GPP

signature of each percussive event has no effect, and simply the SPP is important. This
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Figure 5.5: PSM diagonal means of the constructed sound example using the GPP in the
similarity metric.
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is evidenced in Figure 5.6 by the high similarity (light pixels) at the intersection of every

percussive event with every other percussive event. Figure 5.7 shows how the change in

similarity metric affects the PSM diagonal means. The smaller peaks from Figure 5.5

become more prominent.

5.2.2 Simple Example

The first electroacoustic music example used for the application of the PSM is a section

(from 2:40.98 to 3:25.94) of “La Ou Vont les Nuages...” by Gilles Gobeil [87], and was

chosen to demonstrate the ability of the PSM to display percussive self-similarity for a

musical selection with almost completely regular percussive time intervals. The amplitude,

SPPp, and GPP of this example are shown in Figure 5.8. There are many sounds presented

in the complex sonic environment of this example: shuffling and announcements in a large

space reminiscent of a train station, several tones reminiscent of a distant fog horn or of

feedback, the tick of a clock, and most important to this analysis, what sounds like the

regular percussive strike of a metal box with the strike of a bell on every other box strike.

This example was chosen as the simple example because, although it has a complex

sonic milieu, the percussive sound events are prominent and regular so there is significant

percussive self-similarity. The percussive strikes occur at regular intervals of approxi-

mately 4.6 seconds. Of the 10 box strikes, the bell sound is combined with the box sound

on the first, third, fifth, seventh, and ninth strikes.

The PSM for this example is shown in Figure 5.9. The regular percussive sound

events create a regular grid in the PSM. The white line along the main diagonal is once

again visible. Wherever two percussive sound events interact on the PSM, percussive

similarity is also shown by the white points at the intersection. Because these interactions

are at such regular intervals, they line up in diagonals parallel to the main diagonal.

Figure 5.10 shows the diagonal means of the upper triangle of the PSM for this

example. At a time offset of 0 seconds, the diagonal mean is 1.0 as expected. The

peaks, seen at every multiple of 4.6 seconds, indicate percussive self-similarity at every

multiple of 4.6 seconds. Because the bell sound combines with the box sound at every

other box sound, a more significant increase of the second peak was expected, but did

not materialize. Because the PPA only recognizes the attack of a percussive sound, it

may be that the bell sound had little effect on the percussivity signature of the percussive

sound in the GPP, and therefore had little effect on the percussive similarity metric. The

slight increase in the fourth peak may be due to subtle differences in the percussive sound

timings that lead to groups of four aligning slightly better than other groupings.
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Figure 5.6: PSM for a constructed sound example using the SPP in the similarity metric.
Every intersection of percussive events (dark lines) indicates high similarity (light pixels).
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Figure 5.7: PSM diagonal means of the constructed sound example using the SPP in the
similarity metric.
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Figure 5.8: Amplitude (top plot), SPPp (middle plot), and GPP (lower plot) of a section (from 2:40.98 to 3:25.94) of “La
Ou Vont les Nuages...” by Gilles Gobeil [87]. These values are decimated using lw = 0.05 s.
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Figure 5.9: PSM of a section (from 2:40.98 to 3:25.94) of “La Ou Vont les Nuages...” by
Gilles Gobeil [87].
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Figure 5.10: PSM diagonal means of a section (from 2:40.98 to 3:25.94) of “La Ou Vont
les Nuages...” by Gilles Gobeil [87].
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5.2.3 Complex Example

The final example used to show the application of the PSM is a section (from 1:48.08 to

2:34.24) of “Associations Libres” by Gilles Gobeil [87], and was chosen to demonstrate

the ability of the PSM to display percussive self-similarity for a more musically complex

selection. The amplitude, SPPp, and GPP of this example are shown in Figure 5.11. This

example is musically complex and aggressive. The sounds in this example include sounds

reminiscent of automatic gunfire, the cocking of a gun, a gong, a distorted and amplified

spring being struck and processed vocally, a drum roll played with a bell, and the tick of

a clock.

The arrangement of the piece can be seen in the amplitude and SPPp plots of

Figure 5.11. There are a total of eight musical swells in the piece. The first four swells are

separated from the final four by a musical pause. Each swell generally consists of a drum

roll played on a bell, a gun-cocking sound, and a gong strike, although the fourth swell

removes the gong strike, and the fifth swell uses automatic gun fire instead of the drum

roll played on a bell as the rise of the swell. The distorted and amplified spring sounds

occur throughout both groups of swells, but during the second group, the spring sounds

appear even more distorted, processed, and aggressive. The musical pause starts with the

missing gong sound of the fourth swell, and includes quiet processed vocal sounds and the

tick of the clock. The pause ends when a gun-cocking sound leads into the sound of the

automatic gunfire of the fifth swell.

The percussive self-similarity in the piece can be somewhat extrapolated from the

SPPp plot of Figure 5.11. The gong strikes appear in two groups of three (at times 1.8,

7.3, and 13.0 seconds; and 26.7, 32.4, and 37.9 seconds), and all of the swells are visible

in the SPPp plot. Self-similarity is expected to arise at the time offset between the swells

within a group (at about 5.6 seconds) and also at the time offset between the groups (at

about 25.0 seconds). Weaker self-similarity should appear at the time offsets between

groups of less than four sounds; for example, there exists weaker self-similarity at a time

offset of 30.6 seconds between the first three swells of the first group and the last three

swells of the second group.

The PSM for this example is shown in Figure 5.12. The main diagonal is, of

course, white again. In the upper left quadrant and lower right quadrant, lighter lines of

similarity parallel to the main diagonal can be seen at time offsets that are multiples of

the time between the swells (approximately 5.6 seconds). In the bottom left and upper

right quadrants, parallel light lines can be seen that are at time offsets related to the
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Figure 5.11: Amplitude (top plot), SPPp (middle plot), and GPP (lower plot) of a section (from 1:48.08 to 2:34.24) of
“Associations Libres” by Gilles Gobeil [87]. These values are decimated using lw = 0.05 s.
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interval between the two groups of swells (approximately 25.0 seconds) with multiples

of the interval between swells within a group (approximately 5.6 seconds) added and

subtracted.

Figure 5.13 shows the diagonal means of the upper triangle of the PSM for this

example. The two highest peaks, aside from the peak at an offset of 0 seconds, are the

most significant. The highest peak of these is at 5.6 seconds and represents the percussive

self-similarity between swells within a group. Because four swells appear in each group,

a second, weaker multiple of this peak is seen at 11.2 seconds. The significant width

of the peaks is caused by the similarity of the percussivity within a swell. The second

highest peak is at 25.0 seconds and represents the percussive self-similarity between the

two groups of swells. Other, weaker peaks seen at 19.4 and 30.6 seconds are caused by

the interactions of the groups as mentioned previously.

The PSM for the full piece of music is shown in Figure 5.14. It does not appear

that any other sections of this piece of music exhibit the self-similarity seen in the previ-

ously chosen section. The PSM of that segment can be seen from approximately 108 to

154 seconds.

5.3 Concluding Remarks

The percussivity similarity matrix (PSM) and the diagonal means of the PSM do point

out self-similarity in the percussion of pieces of music. These tools are able to indicate

easily when a regular pulse or beat occurs in the music, but also are able to indicate

repetitions of percussive events in music that simply have the same timing.

One aspect of the PSM not yet mentioned is the issue of tempo changes. Tempo

changes here refer specifically to the repetition of a section of a piece of music faster or

slower than the original section. This type of tempo change would create a white (or

lighter) line in the PSM that would not be exactly parallel to the main diagonal but at

an angle to it. A new technique for finding this type of line would need to be employed

rather than a simple averaging of the diagonals.

Another aspect of the PSM not yet specifically mentioned is that the strength

of the peaks of the PSM diagonal means is dependent on how the section was chosen

from the piece of music. In the examples given, the sections of music exhibited strong

self-similarity, and the sections were chosen in order to display that effectively. If longer

sections of the pieces of music had been analyzed, the peaks of the PSM diagonal means

might not have been as strong due to the lack of self-similarity across the entire section.
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Figure 5.12: PSM of a section (from 1:48.08 to 2:34.24) of “Associations Libres” by Gilles
Gobeil [87].
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Figure 5.13: PSM diagonal means of a section (from 1:48.08 to 2:34.24) of “Associations
Libres” by Gilles Gobeil [87].
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Figure 5.14: PSM of the full piece of music “Associations Libres” by Gilles Gobeil [87].
Decimation for this example was lw = 0.10 s.
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Foote and Cooper [61] utilize the presence of the white lines across small diagonal sections

of their similarity matrix and scan through pieces of music with strong beat or pulse in

small chunks to find the time signature of such pieces of music.

At this point, it is left to a user of the PSM to choose the sections that best display

percussive self-similarity. The results of the PSM can be used to corroborate a human

musical analysis or discover new facets of the musical structure. A new algorithm possibly

could search for white (or lighter) lines in the PSM and choose an appropriate section of

the music or an appropriate direction for taking a diagonal mean in order to automatically

find percussivity self-similarity.

Chapter 6 summarizes this dissertation and points out its unique contributions.

Further study is also considered.
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Chapter 6

Summary and Concluding

Remarks

Following the presentation of this dissertation’s motivation and the background

necessary for context, Chapter 3 described the collection of human percussion judgments.

Synthesized snare-drum sounds were used as stimulus sounds for this collection, and the

sounds were varied in two different dimensions for the three sets of stimulus sounds. The

collection involved 29 participants assessing at least one of the three sets of 120 pairs

of stimulus sounds. For each pair of stimulus sounds, a participant judged which sound

was more like a single, damped, percussive event (SDPE). The grouped results of this

collection show that rise time and string resonance could be used as a primary cue for

sound percussivity. However, due to the complex nature of string resonance, it is not a

feasibly measurable nor fundamental dimension of a sound. Gross spectral filtering also

appears to affect the percussivity of a sound, but not as strongly as, nor in the presence

of, rise time. Threshold judgments also were collected. These judgments specify a point

in a ranked list of stimulus sounds where the participants judged the SDPE threshold to

be.

Chapter 4 described the percussivity-profile algorithm (PPA). After a generic rise-

time algorithm and a human hearing model were shown, the PPA was described in full

detail. The tuning of the PPA according to the results of the collection of human percus-

sion judgments was a significant part of its development. Practical considerations were

shown which involved issues with memory usage and the final visual presentation of the

percussivity profile. Finally, one constructed and two electroacoustic music examples of
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using the PPA to display percussive instants in music were shown.

Chapter 5 described the percussive similarity matrix (PSM) based on Foote’s [57]

similarity matrix for music. For its similarity metric, the PSM uses the Euclidean distance

between time-window vectors of group percussivity profile (GPP). After some practical

considerations were presented, the percussive similarity matrix was shown for one con-

structed example and two electroacoustic music examples.

6.1 Contributions

Several unique contributions to the body of knowledge were made during the course of

this research. The collection of human percussion judgments was motivated by a need for

a clear understanding of which sound dimensions can be correlated with human judgment

of a sound event’s percussivity. One sound dimension that is clearly correlated with

percussivity and is easily measurable is rise time.

The percussivity profile is the result of the PPA. The percussivity profile is a new

two-fold measure of the percussivity at any instant during a piece of music. It is intended

to indicate those instants in music that humans also would identify as percussive. The

two parts of the percussivity profile are the single-value percussivity profile (SPP) and

the GPP matrix.

The PPA was tuned to make the most common participant choices for two of

the stimulus sets in the collection of human percussion judgments. This tuning of the

PPA apparently represents the first percussion-detection algorithm that uses experimental

results from a human-behavior study in order to determine the algorithm parameters for

more human-like behavior.

The PPA parameters that result in the performance most consistent with the par-

ticipants in the human judgment collection suggest some ideas about human hearing.

These suggestions, outlined in the following paragraphs, obviously are not facts, as a

computer model is not the human ear, but these suggestions do warrant further investi-

gation.

The value of 115 Hz for lowFreq (the lowest frequency analyzed) suggests that, at

least for the stimulus sounds in sets A and C (those stimulus sets with rise time as a varied

dimension, see Section 3.1.1), no sound below 115 Hz is necessary in order to discern the

percussivity of a sound. The value of 95 channels for nChannels (the number of divisions

of the basilar membrane model) suggests a frequency selectivity in the auditory periphery

above 115 Hz for percussive sounds. The value of 0.0126 seconds for windowTimeLen
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(the time division for decimation and differentiation) suggests something about the time

integration of the auditory periphery when presented with percussive sounds.

Perhaps the most remarkable result of the PPA tuning was the value of 6 groups

for nChannelGroups. It was clearly the best choice under many different values of the

other parameters. The actual value for nChannelGroups of 6 groups may be significant.

This value suggests a concrete number of groups into which channels may be combined

in some fashion during the human processing of percussive sounds. The fact that the

optimal value for nChannelGroups is neither one nor nChannels is an indication that a

grouping of channels in some fashion may occur in the human processing of percussive

sounds. This non-boundary value for nChannelGroups validated the use of the GPP.

The utility of the GPP was demonstrated using a new tool that indicates self-

similarity in the percussive instants of music, the percussive similarity matrix (PSM).

Using the GPP as part of a similarity metric, the PSM indicates self-similarity based not

only on the timing of percussive events, but also based on their GPP signature.

6.2 Suggestions for Further Study

The following paragraphs contain many suggestions by which the present research can be

expanded. These include changes to the percussion-judgment collection, further measure-

ments of success of the PPA and PSM, changes to the PPA and the PPA tuning, new

dimensions of percussive events, a technique for processing stereo recordings, and changes

to the display of the information contained in the PPA and PSM.

A personal trait that might affect how a person listens to percussive sounds is

musical experience. In any further percussion judgment collection, more information

about the musical experience of the participants would be useful, and processing the

results of musical experts separately from others may prove informative.

The results of the percussion-judgment collection of Chapter 3 are significantly

influenced by the choice of the base stimulus sound, and those results subsequently affect

the performance of the tuned PPA and PSM. The synthesized snare drum is intended to

be a quintessential example of a single, damped, percussive event (SDPE). Through this

research, the concept of an SDPE has been shown to be possibly insufficient to describe

all of the sound events which humans might label as percussive. Examples of these types

of non-SDPE sound events were discussed in Section 4.5.3, and research should be done

to first determine if humans would label them as percussive events. If humans would label

them as percussive, then research should be done to characterize and detect these types
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of sound events.

Even if one accepts that SDPEs are the target of the PPA and that a synthesized

snare drum represents an SDPE, as is done in this research, the choice of a synthesized

snare drum carries with it inherent specifications of what is percussive by means of its

sound spectrum over time. Indirectly, these specifications become expressed in the tuned

algorithm parameters of the PPA. This effect was in fact desired on at least one level,

but may be too specific in the exact details. Any particular choice of percussive base

sound will create similar general specifications, but also will differ in the details. It is

probable that other base stimulus sounds would generate at least slightly differing results

for further percussion-judgment collections. These new collection results in turn would

probably generate differing tuned algorithm parameters and performances for the PPA. By

exploring the tuned PPA parameters for several different base sounds (for example, a click,

a timpani drum, and a door slam), sets of effective PPA parameters might be found. As an

example, if a click were used as the base stimulus sound, the tuned algorithm parameters

might lead to PPA performance which would have identified the truncated marble strikes

described in Section 4.5.2. By combining these different sets of algorithm parameters in

some way, a more broadly scoped PPA might be designed.

Another method which might lead to a more robust PPA would be to first perform

a percussion-judgment collection using a stimulus set comprised of completely different

percussive and almost percussive sounds. This method may not easily demonstrate the

effect of a single sound dimension as a percussive cue, but it might lead to a PPA which

could identify more types of percussive sound events. In this case a neural-net design for

the PPA seems appropriate. A neural net would unfortunately obfuscate the algorithm

aspects that lead to better understanding of human sound processing.

Even when working specifically with a single base stimulus sound, several different

new dimensions could be explored as well. The discussions with peers, references, and pilot

work mentioned in Section 3.1.1 did not initially generate the following sound dimensions

as candidates that might affect the percussivity of a sound event: loudness, fall time, and

total sound length. Spectral centroid is another sound dimension that could be explored,

though it is related to the gross spectral filtering which was researched. A sound dimension

that could possibly have a strong effect on percussivity, but which might be harder to

implement in a percussion-judgment collection is dynamic spectral filtering (or the related

dimension of dynamic spectral centroid). Even within the sound dimensions already

explored, shorter rise times should be added to the current set of stimulus dimension

values, as pointed out by the extremely short rise times of the possibly percussive events
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in Section 4.5.2.

In this research an assumption is made that may reduce the effectiveness of the

PPA. The assumption is that the results of the percussion-judgment collection based on

the isolated stimulus sounds are also valid for similar sounds found in a musical environ-

ment. This assumption is almost certainly inaccurate and a mechanism for researching it

would be useful. That mechanism might include a new way of collecting human percussion

judgments.

A few additions could be made to the PPA that might improve its performance

at identifying percussive instants. A weighting factor could be added to the channels

or channel groups so that some channels or channel groups are more important when

determining percussivity. Another possible addition is multiscaled rise-time detection

across the frequency spectrum. Low-frequency sounds generally have a longer rise time

than high-frequency sounds due to the time required to pass through a complete cycle of

the waveform. Searching for different rise times across the channels of the cochlear model

or across the channel groups might improve the performance of the PPA. Both of these

examples would need to be tuned in order to achieve consistently good performance with

the PPA.

One of the most important follow-up steps to this research is to answer the question

as to exactly how well the PPA and PSM perform the tasks of finding percussive instants

and percussive self-similarity in pieces of electroacoustic music. The metric against which

they should be judged is human performance at the same task, and expert percussionists

should be asked to annotate pieces of electroacoustic music for percussive instants. The

collection of this type of information for evaluation of the PPA could be taken in a

fashion similar to the collection of percussion annotation by Tanghe et al. [6]. These drum

annotations of electroacoustic music could also be used as a new human-performance goal

for the tuning of the PPA. New dimensions of sound events may also need to be explored

in order to identify percussive events in pieces of music based on what is labelled as

percussive by the experts.

The algorithm parameters of the PPA affects the form of the resulting percussivity

profile. As an example, a shorter values of windowTimeLen tends to make the SPP appear

more noisy and long values tend to make it appear smoother. Another area which would

be worth researching is changing these parameters by hand in order to evaluate the effect

each parameter has on the percussivity profile. The results of this new understanding of

the algorithm parameters could be useful to try to tune the PPA performance by hand.

It would be useful to account for the repetition rate at which the integration of
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quickly repeated percussive strikes becomes a single sound rather than an experience of

multiple strikes, such as a drum roll or static-like sounds. No attempt was made to deal

with this phenomenon, although it affects the PPA performance in the difficult example

in Section 4.5.3. Non-uniform spacing between the strikes may affect this experience as

well.

A mechanism to more fully integrate the stereo (or multitrack) experience into the

PPA would be useful. Problems arose with trying to process stereo sounds with the PPA.

Monaural combination of the two channels worked well under many circumstances, but a

few examples existed for which the experience of the monaural combined audio was sig-

nificantly different from the separated stereo audio (for example, the piece “Superstrings”

by Adrian Moore [93] [not shown]). This difference may have been due to out-of-phase

versions of the same audio in the separated tracks, or simply different timing on repeated

percussive sounds.

A final aspect of this research, which should be further explored, is the visual

representation mentioned in Chapter 1. The percussivity profile and PSM are not the

most intuitive representations of music. A graphic designer may be able to create a

representation of percussivity and percussive self-similarity which would be more intuitive

to general listeners.
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Appendix A

Source Code

Partially due to Dixon’s [37] comment that some of the onset-detection algorithms are

sensitive to implementation details or parameter settings, the source code for the most

important components of this dissertation is included here. A more complete set of source

code used for this dissertation is available on the Internet at http://academic.konfuzo.net.

A.1 Csound Source Code

The following Csound orchestra and score file will generate the WAV file shown in the top

plot of Figure 4.9.

A.1.1 snare-setC.orc

; csound

; John Anderson Mi l l s I I I − nodog

; 2008−05−12

;

; snare−setC . orc

;

s r = 44100

kr = 44100

ksmps = 1

nchnls = 1

;======================================================================

; snare attempt one

; taken from ohio p layer s ’ ” j i v e turkey ”

; s i n g l e fundamental with changing harmonic content
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; f i l t e r e d no i s e added on top

; another crazy amplitude envelope

; with added high pass f i l t e r i n g

i n s t r 74

;−−− i n i t i a l i z a t i o n −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

;−−−from−score−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i dur = p3 ; durat ion

idbamp = p4 ; amplitude

i r i s e = p5 ; r i s e time

idecay = p6 ; decay time

i t n f q = p7 ; tone f r equency

i h i c u t = p8 ; h i c u t o f f f r eq

ispktm = p9 ; sp ike time

ins s t tm = p10 ; no i s e s t a r t time

i n s cyc = p11 ; number o f no i s e c y c l e s

inscntm = p12 ; no i s e continuous s t a r t time

inspcnt = p13 ; per cent no i s e

i c e n t f q = p14 ; center f r eq f o r the f i l t e r

ibandw = p15 ; bandwidth o f the f i l t e r

inumlay = p16 ; number o f l a y e r s in the resonx f i l t e r

;−−−constants −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

iamp = ampdb( idbamp ) ; l i n e a r amplitude

i s t s t = idur − i r i s e − i decay ; steady s ta t e time

i s i n e = 1 ; that ’ s my s i n e wave

i c o s i n e = 2 ; that ’ s my co s i n e wave

i s o f f = 0 .0 ; o f f

i s on = 1.0 ; on

i s e o f f = 0.005 ; e f f e c t i v e o f f f o r exponent i a l enve l opes

i h a l f = 0 .5 ; h a l f

i l s e e d = 0.1 ; l e f t random number seed

i r s e e d = 0.9 ; r i gh t random number seed

i p i = 3.141592653 ; p i

i h i f q = 20000 ; h i ghe s t f r equency heard

inharm = i h i f q / i t n f q ; number o f harmonics in the gbuzz un i t

i on r a t = 0.92 ; not qu i te 1 . 0 f o r harmonic amplitude mu l t i p l i e r

i o f f r a t = 0.2 ; not qu i te 0 . 0 f o r harmonic amplitude mu l t i p l i e r

i lharm = 1.0 ; l owes t harmonic pr es ent

i s c l = 1 ; s c a l i n g done by the resonx f i l t e r

;−−− i n i t i a l i z a t o n −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

;−−−performance−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

; l i n e a r amplitude gate on e n t i r e sound ( e f f e c t s r i s e and f i n a l 4% of decay )

k l i n g t l i n s e g i s o f f , i r i s e , i son , i s t s t , i son , i decay ∗0 .96 , i son , \

i decay ∗0 .04 , i s o f f , idecay , i s o f f
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; exponent i a l amplitude gate on the en t i r e sound ( c on t r o l s decay only )

kexpgt expseg i son , i r i s e , i son , i s t s t , i son , idecay , i s e o f f

; the r e a l gate i s the l e s s e r o f the l i n e a r and exponent i a l

agate = ( k l i n g t < kexpgt ? k l i n g t : kexpgt )

; harmonic amplitude mu l t i p l i e r

krat l i n s e g i onrat , ispktm , i onrat , ispktm , i o f f r a t , idur −2∗ ispktm ,

i o f f r a t

; the fundamental tone i s a gbuzz un i t which has varying f r equency content

afund gbuzz i son , i tn f q , inharm , i lharm , krat , i c o s i n e

; no i s e continuous gate

ansctgt l i n s e g i s o f f , inssttm , i s o f f , inscntm−inssttm , i son , idur , i s on

; no i s e cyc l e gate

anscygt l i n s e g i s o f f , inssttm , i son , inscntm−inssttm , i s o f f , idur , i s o f f

; no i s e cyc l e s i g n a l ( from 0 to 1 s t a r t i n g at 0)

anscysg o s c i l i i son , i n s cyc /( inscntm−i n s s t tm ) , i c o s i n e

anscysg = i h a l f − anscysg ∗ i h a l f

; no i s e gate i s a combination o f these two

ansgt = ( ansctgt+(anscygt ∗ anscysg ) )

; no i s e

a lns randi ansgt , i h i cu t , i l s e e d

arns randi ansgt , i h i cu t , i r s e e d

; putt ing i t a l l together

a l s i g = iamp∗ agate ∗((1.0− i n spcnt ) ∗afund+inspcnt /2.0∗ a lns )

a r s i g = iamp∗ agate ∗((1.0− i n spcnt ) ∗afund+inspcnt /2.0∗ arns )

; f i l t e r i n g

a l f i l t resonx a l s i g , i c en t f q , ibandw , inumlay , i s c l

a r f i l t resonx ar s i g , i c en t f q , ibandw , inumlay , i s c l

; outs a l f i l t , a r f i l t

outs a l f i l t

;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

endin

;======================================================================
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A.1.2 stimulusCollage-setC.sco

; csound

; John Anderson Mi l l s I I I − nodog

; 2007−02−02

;

; soundEvent−setC . sco

;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

; f unc t i on s

; s i n e f unc t i on i s always number one in my book

; f 01 s t a r t s i z e gen p1

f01 0 . 0 8192 10 1

; co s i n e f unc t i on f o r gbuzz

; f 02 s t a r t s i z e gen p1

f02 0 . 0 8192 9 1 1 .0 90 . 0

;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

t 0 60

; snare drum sounds

; i 74 s t a r t dur amp r i s e decay tn fq h i cut spktm nssttm \

nscyc nscntm nspcnt i c e n t f q ibandw inumlay

i74 0 . 1 0.360 88 0 . 01 0 . 30 158.0 15000 0.005 0.004 \

5 .0 0.030 1 . 0 1000 2000 1

f0 0.620

s

i 74 0 . 1 0.360 85 0 . 01 0 . 30 158.0 15000 0.005 0.004 \

5 .0 0.030 1 . 0 10500 19000 1

f0 0.620

s

i 74 0 . 1 0.360 91 0 . 01 0 . 30 158.0 15000 0.005 0.004 \

5 .0 0.030 1 . 0 500 1000 5

f0 0.620

s

i 74 0 . 1 0.360 91 0 . 01 0 . 30 158.0 15000 0.005 0.004 \

5 .0 0.030 1 . 0 11500 16000 10

f0 0.620

s

i 74 0 . 1 0.380 85 0 . 03 0 . 30 158.0 15000 0.005 0.004 \

5 .0 0.030 1 . 0 10500 19000 1

f0 0.620

s

i 74 0 . 1 0.380 88 0 . 03 0 . 30 158.0 15000 0.005 0.004 \

5 .0 0.030 1 . 0 1000 2000 1

f0 0.620

s

i 74 0 . 1 0.380 91 0 . 03 0 . 30 158.0 15000 0.005 0.004 \

5 .0 0.030 1 . 0 500 1000 5
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f 0 0 .620

s

i 74 0 . 1 0.380 91 0 . 03 0 . 30 158.0 15000 0.005 0.004 \

5 .0 0.030 1 . 0 11500 16000 10

f0 0.620

s

i 74 0 . 1 0.400 88 0 . 05 0 . 30 158.0 15000 0.005 0.004 \

5 .0 0.030 1 . 0 1000 2000 1

f0 0.620

s

i 74 0 . 1 0.400 85 0 . 05 0 . 30 158.0 15000 0.005 0.004 \

5 .0 0.030 1 . 0 10500 19000 1

f0 0.620

s

i 74 0 . 1 0.400 91 0 . 05 0 . 30 158.0 15000 0.005 0.004 \

5 .0 0.030 1 . 0 500 1000 5

f0 0.620

s

i 74 0 . 1 0.400 91 0 . 05 0 . 30 158.0 15000 0.005 0.004 \

5 .0 0.030 1 . 0 11500 16000 10

f0 0.620

s

i 74 0 . 1 0.420 85 0 . 07 0 . 30 158.0 15000 0.005 0.004 \

5 .0 0.030 1 . 0 10500 19000 1

f0 0.620

s

i 74 0 . 1 0.420 88 0 . 07 0 . 30 158.0 15000 0.005 0.004 \

5 .0 0.030 1 . 0 1000 2000 1

f0 0.620

s

i 74 0 . 1 0.420 91 0 . 07 0 . 30 158.0 15000 0.005 0.004 \

5 .0 0.030 1 . 0 500 1000 5

f0 0.620

s

i 74 0 . 1 0.420 91 0 . 07 0 . 30 158.0 15000 0.005 0.004 \

5 .0 0.030 1 . 0 11500 16000 10

f0 0.620

e

A.2 MATLAB Source Code

The following MATLAB source code is the percussivity-profile algorithm. Several func-

tions from Slaney’s Auditory Toolbox [73] are necessary to run the code. The Auditory

Toolbox is available at http://www.slaney.org/malcolm/pubs.html.
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A.2.1 percussivityProfile.m

function [ p e r cP r o f i l e , g roupPercPro f i l e ] = p e r c u s s i v i t yP r o f i l e ( . . .

soundFilename , debug , . . .

nChannels , lowFreq , windowTimeLen , ha i rCe l l S ca l i ng , nChannelGroups , . . .

nStartAvgs ) ;

% PERCUSSIVITYPROFILE

% re turns two matrices :

% − a 2 by N matrix where the f i r s t row i s a measure o f p e r c u s s i v i t y f o r the

% current i n s t an t in the WAV f i l e and the second row i s the time of the

% beg inn ing o f the timeframe .

% − a M by N matrix where each row i s a measure o f p e r c u s s i v i t y f o r the current

% in s t an t in the WAV f i l e f o r the current timeframe and group of neural

% channe ls .

%

% One can always s p e c i f y the func t ion parameters in the func t ion c a l l , or

% one can creat e a d e f au l t s .mat f i l e wi th the l a s t s i x parameters as v a r i a b l e s

% and the func t ion w i l l load those i f they aren ’ t s p e c i f i e d .

%

% soundFilename − t he f i lename of the sound to process

% debug − a va lue o f 1 turns on debugging output

% nChannels − number o f d i v i s i o n s o f the b a s i l a r membrane model

% lowFreq − t he lowes t f requency analyzed by the b a s i l a r membrane model

% windowTimeLen − t he time d i v i s i on f o r decimat ion and d i f f e r e n t i a t i o n

% ha i rCe l l S ca l i n g − t he apparent ampl i tude o f the sound f i l e

% nChannelGroups − number o f groups t ha t the channe ls are put in to

%

% example :

% [ p , g ] = p e r c u s s i v i t yP r o f i l e ( ’ g ob e i l−f i r s t 3 0−mono . wav ’ )

% p l o t ( p ( 2 , : ) , p ( 1 , : ) )

% p l o t ( p ( 2 , : ) , g ( 1 , : ) , p ( 2 , : ) , g ( 2 , : ) )

% Dependent on custom func t i on s :

% ca lcRea l i gnShi f tSamps

% Dependent on Auditory Toolbox f unc t i on s :

% MakeERBFilters

% ERBFilterBank

% MeddisHairCell

% d i s s e r t a t i o n research

% John Anderson Mi l l s I I I − nodog

% 2007−11−08

% CONSTANTS =========================================================

% Take care o f d e f a u l t parameters ( from opt imizat ion ) .

i f nargin < 8 , load d e f a u l t s nStartAvgs ; end

i f nargin < 7 , load d e f a u l t s nChannelGroups ; end

i f nargin < 6 , load d e f a u l t s h a i rC e l l S c a l i n g ; end
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i f nargin < 5 , load d e f a u l t s windowTimeLen ; end

i f nargin < 4 , load d e f a u l t s lowFreq ; end

i f nargin < 3 , load d e f a u l t s nChannels ; end

i f nargin < 2 , debug = 1 ; end

i f nargin < 1 , disp ( ’ s o und f i l e must be given . ’ ) ; return ; end

subtractSpontaneous = 1 ; % sub t rac t the spont f i r i n g rat e from the hai r c e l l

maxFiringRate = 1000; % assumed max f i r i n g rat e f o r a neuron

f i r s tO r d e r = 1 ; % d i f f e r e n c e order

acros sCo l = 1 ; % dimension d i r e c t i on

acrossRow = 2 ; % dimension d i r e c t i on

acros sP ln = 3 ; % dimension d i r e c t i on

switchRowCol = [ 2 1 3 ] ; % use to swi t ch the rows and columns of a 3d matrix

% Measure the compute time .

i f debug , startTime = cputime ; end ;

% Acquire input data ( the s ound f i l e ) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[ soundEvent , sampFreq , nBits ] = wavread( soundFilename ) ;

nSampsSoundEvent = size ( soundEvent , 1 ) ;

% CALCULATIONS ( f i nd the sound f i l e ’ s r a t i n g ) =======================

% Cochlear Reaction Step −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f debug , t ic ; disp ( ’ s tep − co ch l ea r r esponse ’ ) ; end ;

% Determine the f i l t e r c o e f f i c i e n t s .

f i l t C o e f s = MakeERBFilters ( sampFreq , nChannels , lowFreq ) ;

% Calcu la t e the coch lear reac t ion to the input s t imu lus .

coch l ea = ERBFilterBank( soundEvent , f i l t C o e f s ) ;

[ cochleaRows , coch l eaCo l s ] = size ( coch l ea ) ;

clear ( ’ soundEvent ’ , ’ f i l t C o e f s ’ ) ;

% Zeropadding Step −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f debug , toc ; t ic ; disp ( ’ s tep − zeropadding ’ ) ; end ;

% Zero pad the coch lea response to prepare f o r time real ignment

% Calcu la t e the upcoming time real ignment s h i f t s .

r ea l i gnSh i f tSamps = ca l cRea l i gnSh i f tSamps ( lowFreq , sampFreq , nChannels ) ;

maxRealignShiftSamps = max( r ea l i gnSh i f tSamps ) ;

% Window samps f o r lowpass avging

nSampsLPWin = ce i l ( windowTimeLen∗sampFreq ) ;

% Zero pad with ( f i r s t mu l t i p l e o f nSampsLPWin > maxRealignShiftSamps ) + 1

nSampsCochZeroPad = nSampsLPWin ∗( ce i l ( maxRealignShiftSamps /nSampsLPWin ) + 1 ) ;

coch l ea = [ zeros ( nChannels , nSampsCochZeroPad ) coch l ea ] ;

% Hair Ce l l Reaction Step −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f debug , toc ; t ic ; disp ( ’ s tep − ha i r c e l l r e sponse ’ ) ; end ;
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% Modify the coch lea response in to the reac t ion of the hai r c e l l .

% The output o f MeddisHairCell i s t ime vs f i r i n g rat e ( sp i k e s / sec ) so i t i s

% non−dimens iona l i zed by mu l t i p l y i n g by ( time/maxFiringRate ) .

ha i rC e l l = ( windowTimeLen/maxFiringRate ) ∗ . . .

MeddisHairCel l ( coch l ea ∗ ha i rCe l l S ca l i ng , sampFreq , subtractSpontaneous ) ;

[ nHairCellRows , nHai rCe l lCo l s ] = size ( h a i rC e l l ) ;

clear ( ’ coch l ea ’ ) ;

% Time Realignment Step −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f debug , toc ; t ic ; disp ( ’ s tep − time real ignment ’ ) ; end ;

% s h i f t t he ha i rC e l l s a number o f samples according to the c f of t he channel

% and remove the rat e o f f i r i n g at the f i r s t sample to avoid a f a l s e i nd i c a t i on

for iChannel = 1 : nChannels

% s h i f t

ha i rC e l l ( iChannel , : ) = . . .

c i r c s h i f t ( h a i rC e l l ( iChannel , : ) , [ 0 −r ea l i gnSh i f tSamps ( iChannel ) ] ) ;

% remove the f i r i n g rat e at the f i r s t sample from the en t i r e channel to avoid

% spur ious a r t i f a c t s o f low pass f i l t e r i n g the i n i t i a l va lue .

ha i rC e l l ( iChannel ) = ha i rC e l l ( iChannel ) − ha i rC e l l ( iChannel , 1 ) ;

end

% Lowpass F i l t e r Step −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f debug , toc ; t ic ; disp ( ’ s tep − l owpass f i l t e r ’ ) ; end ;

% Lowpass f i l t e r the ha i rCe l l data f o r decimat ion ( f o l l ow i n g Slaney ’ s example )

% Note t ha t Slaney ’ s example does ∗not∗ preserve ampl i tude at a l l , so

% t h i s i s reverse eng ineer ing h i s example in to a more u s e f u l form .

c u t o f f = 1/nSampsLPWin ;

f i l t B = [ 2∗ c u t o f f ] ;

f i l t A = [ 1 −1∗( 1 − f i l t B ) ] ;

LPHairCel l = f i l t e r ( f i l tB , f i l tA , ha i rCe l l , [ ] , acrossRow ) ;

% Copy with Time−Sh i f t and Decimation Step −−−−−−−−−−−−−−−−−−−−−−−−−−

i f debug , toc ; t ic ; disp ( ’ s tep − copy with time−s h i f t and decimation ’ ) ; end ;

% This c r ea t e s nStartAvgs p lanes o f lowpass−f i l t e r e d , time−s h i f t e d , decimated

% ha i rCe l l response . Each plane i s the ha i rCe l l data time−s h i f t e d by

% s t a r t S h i f t L e n g t h = windowTimeLen/nStartAvgs .

% s h i f t l e ng t h f o r averag ing d i f f e r e n t s t a r t po in t s t og e t he r

s t a r tSh i f tLeng th = f loor ( nSampsLPWin/nStartAvgs ) ;

% Now decimate and s h i f t t he lowpassed hai r c e l l data

LPDecHairCell = zeros ( . . .

nHairCellRows , ce i l ( nHai rCe l lCo l s/nSampsLPWin ) , nStartAvgs ) ;

for i S h i f t = 1 : nStartAvgs
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i f debug , toc ; t ic ; disp ( sprintf ( ’ s h i f t %d of %d ’ , i S h i f t , nStartAvgs ) ) ;

end ;

tempLPHairCell = c i r c s h i f t ( LPHairCell , [ 0 − i S h i f t ∗ s t a r tSh i f tLeng th ] ) ;

LPDecHairCell ( : , : , i S h i f t ) = . . .

tempLPHairCell ( : , 1 : nSampsLPWin : nHai rCe l lCo l s ) ;

end % i S h i f t

clear ( ’ h a i rC e l l ’ , ’ LPHairCel l ’ , ’ tempLPHairCell ’ ) ;

[ LPDecHairCellRowSize , LPDecHairCel lColSize , LPDecHairCel lPlnSize ] = . . .

size ( LPDecHairCell ) ;

% Di f f e r e n t i a t i on Step −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f debug , toc ; t ic ; disp ( ’ s tep − d i f f e r e n t i a t i o n ’ ) ; end ;

% now we need the s l ope o f the h a i r c e l l a c t i v i t y

% d i f f i s a ” d i f f e r e n c e ” so to make i t a s l ope one must d i v i de by windowTimeLen

di f fAvgHai rCe l l= di f f ( LPDecHairCell , f i r s tOrde r , acrossRow )/windowTimeLen ;

clear ( ’ LPDecHairCell ’ ) ;

% Half−Wave Re c t i f i c a t i on Step −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f debug , toc ; t ic ; disp ( ’ s tep − ha l f−wave r e c t i f i c a t i o n ’ ) ; end ;

% we ’ re only i n t e r e s t e d in the onset , so hal fwave r e c t i f y

ha l fD i f fAvgHa i rCe l l = di f fAvgHai rCe l l ;

ha l fD i f fAvgHa i rCe l l ( find ( ha l fD i f fAvgHa i rCe l l < 0 ) ) = 0 ;

[ nHalfDif fAvgHairCel lRows , nHal fDi f fAvgHairCel lCol s , . . .

nHa l fD i f fAvgHairCe l lPlns ] = size ( ha l fD i f fAvgHa i rCe l l ) ;

clear ( ’ d i f fAvgHai rCe l l ’ ) ;

% Channel Group Means Step −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f debug , toc ; t ic ; disp ( ’ s tep − channel groups ’ ) ; end ;

% Create groups o f channe ls from the nChannels , and ge t the average response

% for each group ( the average response i s used because d i f f e r e n t groups can

% have d i f f e r e n t numbers o f channe ls in the group ) .

groupingFactor = nChannels /nChannelGroups ;

groupOnsetInd icator = . . .

zeros ( nChannelGroups , nHal fDi f fAvgHairCel lCol s , nStartAvgs ) ;

for iChannelGroup = 1 : nChannelGroups

groupStart = f loor ( ( iChannelGroup − 1 ) ∗ groupingFactor ) + 1 ;

groupEnd = f loor ( iChannelGroup ∗ groupingFactor ) ;

% Take the average across each channel group

groupOnsetIndicator ( iChannelGroup , : , : ) = . . .

mean( ha l fD i f fAvgHa i rCe l l ( groupStart : groupEnd , : , : ) , ac ros sCo l ) ;
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end % iChannelGroup

clear ( ’ ha l fD i f fAvgHai rCe l l ’ ) ;

% Upsample and Unshi f t Step −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f debug , toc ; t ic ; disp ( ’ s tep − upsample and unsh i f t ’ ) ; end ;

% In order to proper ly average across the d i f f e r e n t t ime o f f s e t s , t he d i f f e r e n t

% planes need to be time o f f s e t c o r r e c t l y . This f i r s t r e qu i r e s a upsampling by

% repeat ing e lements by a f ac t o r o f nStartAvgs .

dummy = repmat ( groupOnsetIndicator , nStartAvgs , 1 ) ;

upSampGroupOnsetIndicator = reshape ( dummy, . . .

nChannelGroups , nStartAvgs∗nHal fDi f fAvgHairCel lCol s , nStartAvgs ) ;

clear ( ’dummy ’ ) ;

% Then the p lanes must be s h i f t e d f o r t h e i r d i f f e r e n t t ime o f f s e t s

sh i f tedGroupOnset Ind i cator = zeros ( size ( upSampGroupOnsetIndicator ) ) ;

for i S h i f t = 1 : nStartAvgs

% s h i f t t he upSampGroupOnsetIndicator e x a c t l y i S h i f t samples l a t e r in time

sh i f tedGroupOnset Ind i cator ( : , : , i S h i f t ) = . . .

c i r c s h i f t ( upSampGroupOnsetIndicator ( : , : , i S h i f t ) , [ 0 i S h i f t ] ) ;

end % i S h i f t

clear ( ’ upSampGroupOnsetIndicator ’ ) ;

% Maximums of Channel−Group Means Step −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f debug , toc ; t ic ; disp ( ’ s tep − maximums of channel−group means ’ ) ; end ;

% The ouse t Ind i c a t o r f o r each plane i s the max of the group va lues .

on s e t Ind i ca to r = max( shi f tedGroupOnset Indicator , [ ] , ac ros sCo l ) ;

[ on s e t Ind i ca to rCo l s ] = size ( onset Ind i ca to r , acrossRow ) ;

% Means of Time−Sh i f t e d Copies Step −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f debug , toc ; t ic ; disp ( ’ s tep − means o f time−s h i f t e d cop i e s ’ ) ; end ;

% The averagedOnset Indicator i s the average across p lanes .

averagedOnset Ind i cator = mean( onset Ind i ca to r , acros sP ln ) ;

% Average across p lanes f o r the mult igroup p e r c p r o f i l e .

averagedGroupOnsetIndicator = mean( shi f tedGroupOnset Indicator , acros sP ln ) ;

% OUTPUT ============================================================

% put the pe r cPro f i l e in i t s f i n a l form ( removing zeropadding ) .

% Calcu la t e i nd i c a t o r frames to remove f o r zero padding the pe r cPro f i l e

nFramesZeroPad = nStartAvgs∗ f loor ( nSampsCochZeroPad/nSampsLPWin ) ;
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endTime = ( nSampsSoundEvent − 1 ) /sampFreq ;

nPe r cPr o f i l eCo l s = ( on s e t Ind i ca to rCo l s − nFramesZeroPad ) ;

p e r cP r o f i l e = [ . . .

averagedOnset Ind i cator ( ( nFramesZeroPad + 1 ) : on s e t Ind i ca to rCo l s ) ; . . .

[ 0 : endTime /( nPe r cPr o f i l eCo l s − 1 ) : endTime ] ] ;

g r oupPercPro f i l e = . . .

averagedGroupOnsetIndicator ( : , ( nFramesZeroPad + 1 ) : on s e t Ind i ca to rCo l s ) ;

% Show the compute time .

i f debug

toc ;

disp ( sprintf ( ’ p e r c u s s i v i t y P r o f i l e took %d seconds to complete . ’ , . . .

round ( cputime − startTime ) ) ) ;

end ; % i f debug

A.2.2 calcRealignShiftSamps.m

function shi f tSamps = ca l cRea l i gnSh i f tSamps ( lowFreq , sampFreq , nChannels )

% CALCREALIGNSHIFTSAMPS

% ca l c u l a t e s the number o f samples in each channel necessary to time r e a l i g n

% due to the s h i f t imposed by the Gammatone f i l t e r b a n k .

% Dependent on custom func t i on s :

% Dependent on Auditory Toolbox f unc t i on s :

% ERBSpace

% d i s s e r t a t i o n research

% John Anderson Mi l l s I I I − nodog

% 2007−11−19

n r c y c l e s = 2 ;

% s h i f t t he ha i rC e l l s a number o f samples according to the c f of t he channel

centerFreqs = ERBSpace ( lowFreq , f loor ( sampFreq/2 ) , nChannels ) ;

% This i s taken almost d i r e c t l y from the A. I .M. code of Ste fan Bleeck

EarQ = 9 . 26449 ; % Glasberg and Moore Parameters

minBW = 24 . 7 ;

order = 4 ;

ERB = (( centerFreqs /EarQ) . ˆ order + minBWˆorder ) . ˆ (1/ order ) ;

b=1.019.∗ERB;

B=1.019∗2∗pi .∗ERB;

envelopecomptime=(order −1) . /B;

phasea l i gn=−2∗pi .∗ centerFreqs .∗ envelopecomptime ;

phasea l i gn=mod( phaseal ign , 2∗ pi ) ;
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phasea l i gn=phasea l i gn . / (2∗ pi .∗ centerFreqs ) ;

shi f tSamps = zeros ( nChannels , 1 ) ;

for iChannel = 1 : nChannels

% use t h i s l i n e f o r gross s t ruc t u r e and l o c a l phase

shi f tTime = envelopecomptime( iChannel ) + phasea l i gn ( iChannel ) ;

% use t h i s l i n e f o r gross s t ruc t u r e only .

%shi f tTime = envelopecomptime ( iChannel ) ;

% use t h i s l i n e f o r a number o f the wave length c y c l e s .

%shi f tTime = nr cy c l e s / centerFreqs ( iChannel ) ;

shi f tSamps ( iChannel ) = round ( shi f tTime ∗sampFreq ) ;

end
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