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We have investigated, in various multiple senses, the “capacity” of several models

of erasure networks. The defining characteristic of a memoryless erasure network

is that each channel between any two nodes is an independent erasure channel.

The models that we explore differ in the absence or presence of interference at

either the transmitters, the receivers, or both; and in the availability of feedback

at the transmitters. The crux of this work involves the investigation and analysis of

several different performance measures for these networks: traditional information

capacity (including multicast capacity and feeback capacity), secrecy capacity, and

transport capacity.
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Chapter 1

Introduction

Network information theory is a subset of information theory which deals with

the transfer of information over a networked combination of channels, rather than

across a single channel. There may be either a single, or more than one, source or

destination, which require the transfer of the same, or perhaps unique, pieces of

data. Large wireless systems, those with many users which often lack the ability for

coordinated, universal control, are particularly valuable to study, both for practical

and theoretical reasons. These kinds of systems are becoming ubiquitous: cellular

networks continually must support increasing numbers of customers; more people

expect higher-speed broadband access over their laptops, personal organizers, and

phones; military applications which keep track of the course of battle can help save

lives.

While both theoretical limits and many practical methods are known for single-

user point-to-point communication models, basic understanding of these complex

multiple-user systems is still lacking. There are several very natural, easy to for-

mulate, of practical use, and still open problems in the field of multi-user infor-

mation theory. For example, the precise capacity regions of the broadcast channel

(where one transmitter wishes to communicate two independent data sources to

two different receivers) and the interference channel (where two transmitters send

independent data to two different receivers) are, in general, unknown. In these

cases, it is important to do as much as possible to characterize the behavior of

these multi-user channels. We can do so in several ways - by providing upper and

lower bounds on the general case, by choosing simple but representative models

that are more amenable to analytic description, and by studying the asymptotic

behavior of such systems. My research focuses primarily on the last two methods.
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We choose the erasure channel as a simple, yet wide-reaching, model of wireless

packet communication, and then study both traditional information capacity and

asymptotic transport and throughput capacities.

If we take a directed graph as the basis of our network model, then the dis-

tinguishing feature of an erasure network is that the edges each represent erasure

channels: Either the symbol transmitted across an edge is received correctly at the

endpoint, or a distinct “Error” symbol is received. The model results from viewing

a system from the network layer, rather than the physical layer. We assume that

some mode of error detection coding has already been performed, so that when a

packet is received, we can be assured either that its contents are correct, or that

we have no information about what the contents might actually be. Pioneering

work on networks of erasure channels was done in [1] and [2]. We expand this

work by examining more general models of erasure networks, involving different

types of transmitter and receiver interference and feedback availability. My pri-

mary research aim is to understand the fundamental mathematical limits which

govern communication in different models of erasure networks, in determining the

information theoretic capacity when possible, and in other cases determining the

properties that exact solutions to problems involving both systems that increase

in size and density must have.

1.1 Notions of Capacity: Information Capacity, Transport

Capacity, Secrecy Capacity, and Feedback

The information capacity of a single channel is the maximum rate at which re-

liable communication is possible; it allows us to answer the question “In n uses,

how many unique inputs can the output distinguish amongst with high proba-

bility?” (The number of distinguishable signals grows exponentially in n, with

the capacity as the exponent. [3]) Information capacity is a theoretical limit on

reliable communication; it ignores practical consideration by allowing arbitrarily

long delays and unlimited computational abilities as the transmitter and receivers.
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Nonetheless, it is important to understand and be aware of the fundamental limits

of communication, in an attempt to approach them with real-world algorithms and

approximations.

When dealing with more than a single source and a single destination, the infor-

mation capacity of a system becomes a capacity region, rather than the maximum

of a scalar rate. The convex region is a set of all rate vectors (R1, R2, ...) where the

Ri are rates corresponding to the different source-destination pairs. Even the sim-

ple act of describing such a region, let along computing it, becomes exponentially

more difficult as the number of possible sources and destinations increases.

One example of a multiple-source multiple-destination network problem is “mul-

ticast,” which refers to the case when a number of different destinations all require

the information generated by a single source. Alternatively, “multiple unicast” is

the situation when several source-destination pairs all communication unique data.

Even with a single source-destination pair, networks composed of more than two

nodes and more than a single channel also become problematic: these networks are

generally called relay networks (since the intermediate nodes have no data of their

own to transmit, and have the purpose of aiding the source in relaying its data

to the destination), and the general capacity of such networks is unknown. There

are several achievable strategies for the three-terminal discrete memoryless relay

channel [4] dating back twenty-five years or more, but these only correspond to

best known upper-bound in a particular subset of cases (the physically degraded

and deterministic relay channels, for example).

Because there are only a relatively few cases in which the information capacity

region of multiple-source and/or multiple-destination networks is known, different

approaches must be considered. In order to still obtain a descriptive measure of

the communication capability of networks, other tools are available. Even though

information capacity is seen by some as the apex of information theory, it does

not always tell the whole story. In addition to the difficulty of actually computing

the capacity region, it reflects nothing about the ease of implementation or the
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delay requirement of a particular coding scheme. Random coding, the stock tool

for demonstrating the achievability of a particular capacity value, is largely not

considered for actual use in any real (or even simulated) system - the computation

required and delay incurred would be astronomically huge (doubly exponential

growth, with respect to desired probability of error, is hardly unknown).

All of this makes looking at other measures of the capabilities of any network

a valuable exercise. One popular quantity is the transport capacity. Transport

capacity is the distance-weighted sum of rates for a network, and provides a conve-

nient scalar description of the amount of traffic that a network can support. The

notion was introduced by Gupta and Kumar [5] to study the capabilities of wire-

less networks with additive Gaussian noise. Later, Xie and Kumar [6] provided a

information-theoretic scaling law that shows, under certain high-attenuation con-

ditions, the transport capacity of the additive Gaussian interference network can

grow no faster than linearly in the number of nodes in the network. Franceschetti

et al. [7] demonstrate that linear growth in the number of nodes is achievable

in a random network with an additive Gaussian noise model using routing alone

(and no network coding). The work is often done in two different network settings:

First, the case of dense scaling, where more and more nodes are placed in a fixed

area. This is the sense of Gupta and Kumar’s original paper. [5] Alternatively,

the case of an expansive network is studied, where the physical size of the network

grows and the density of nodes remains a constant as the total number of nodes

increases. These views are unified for the Gaussian interference network in [8],

where it is shown that (arbitrarily close to) linear growth can be achieved in a

dense network using a cooperative, multi-layered MIMO technique based on the

single-layer work of [9].

We use the descriptive tool of transport capacity to investigate the asymptotic

capabilities of several different models of erasure networks.

Another interesting question to ask about the capacity of a network is, “What

happens in the presence of a malicious eavesdropper?” The user would like to

4



communicate information as efficiently as possible to a destination, but realizes

that there may exist an eavesdropper who has knowledge of all the codebooks in

the network, and access to the symbols received by nodes along one or more links in

the network. Therefore, the user wants to prevent the eavesdropper from gaining

any information about his secret message: Not only should the eavesdropper be

unable to determine exactly which message the transmitter is sending, but he

should gain no information about that message, at all. That is, we want the

entropy of the message, given the data symbols which the eavesdropper sees, to be

arbitrarily close to the entropy of the message, given no additional information.

The rate at which the user can communication under such a rate is the secrecy

capacity, otherwise known as the equivocation rate. We try to answer this question

in this work, in the context of wireless erasure networks.

Finally, we know that in point-to-point channels, feedback cannot increase the

channel capacity, but still may have valuable benefits: Increasing the probabil-

ity of error decay exponent, for example, or simplifying the coding scheme. We

demonstrate the benefits of feedback - primarily, a much simplified coding and

transmission scheme - for wireless erasure networks in this work, as well.

1.2 Erasure Network Models

There is a growing interest in the study of the capacity of erasure networks

with constraints that reflect the underlying physical layer [2]. One of the primary

techniques used to study such networks is network coding. Network coding was

first used to achieve the multicast capacity of deterministic wireline networks [10].

It has since been put to a variety of purposes, including wireless erasure networks

with broadcast constraints (but no interference constraints) which were studied in

[2]. This work studied systems with independent erasures between nodes using

both random coding and random linear encoding techniques.

Erasure networks generate interest for two main reasons: First, they can be a

reasonable model for a packetized network which uses error correction and de-
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tection coding. In fact, some practical in-use communication protocols, such as

ethernet, use a check to decide whether to accept or reject a packet. Secondly,

erasure networks are one of the few multiple-terminal networks which offer them-

selves up to analysis. By comparison, much recent work has been concentrated

on network coding models in zero-error, wired networks without any kind of inter-

ference whatsoever [10]. Work involving network coding with interference is now

beginning to be more common, for example [11–13].

We look at several different models of erasure networks, in order to cover multiple

physical phenomenon, and to gain as much understanding as to the underlying

fundamental dynamics of networks.

The simplest of these is the non-interference network model introduced in [1]. It

represents a network by a directed acyclic graph, where each edge is an independent

erasure channel, with a dedicated input and output for each edge. When the

erasure probability is a constant ε on each edge, then it was shown that the single-

source single destination capacity of the network is the traditional min-cut value

(the sum of the number of edges crossing the cut) multiplied by ε̄.

The broadcast nature of wireless networks is accounted for by a new erasure

network model in [2]. In this model, all of the edges that depart any given node

are required to carry an identical symbol in any given timeslot, just as a wireless

antenna transmits just one signal to all the antennas which may be receiving at

that time. This wireless erasure network model assumes some time-sharing or

other interference mitigation scheme, so that the symbols along all incoming edges

to a node are received without interference, as in a vector. It has been demon-

strated that, if the final destinations all know the positions of any erasures in the

network, then the information theoretic cut-set upper-bound (a modification of the

traditional min-cut bound for flow networks) is indeed achievable for multicasting.

This result capacity-achieving result inspires the question, what about a net-

work with no broadcast constraint, but a multiple-access interference constraint

instead? Indeed, for any wireless erasure network with only a broadcast constraint,
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one can create a “dual” multiple-access constraint network: Swap the source and

destination nodes, and reverse the direction of every edge. Eliminate the broadcast

constraint, and institute an additive finite-field multiple access channel at every

receiver node. The cut-set upper bound for this network is then identical to that

of the wireless broadcast erasure network.

Further, we can generalize and create a model which takes into account all of

the cases so far described: In this model, each node is allowed multiple outputs,

and each output is connected to one or more nodes’ receivers by erasure channels.

Each node has at least one receiver, which obtains the finite-field sum of all the

unerased inputs to that receiver. The cut-set upper bound is easy to derive for

this global model, but whether that bound is achievable is still unknown. Further,

if we wish to investigate the transport capacity of any of the above networks, it is

necessary to have a model which translates the geographic distance between any

two nodes and the probability of erasure along the channel between them. We

investigate three separate models: a threshold model (where perfect reception is

assumed for distances smaller than a certain value, and no reception for greater

distances), an exponential decay model, and a polynomial decay model.

1.3 Summary of Results

Our research on erasure networks can be categorized under four main headings:

Work in the field of information capacity for networks with receiver interference,

work in secrecy capacity, work in networks with feedback, and work in transport

capacity.

In Chapter 2, for a single-source single-destination or multicast erasure network,

with additive-finite field receiver interference and with or without broadcast re-

quirements at the transmitter, we have shown that the min-cut max-flow capacity

is in fact achievable when side information detailing the erasure locations along all

the links is available to the final destination.

In Chapter 3, we demonstrate a randomized routing scheme in a unicast wireless
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erasure network which allows for a throughput-optimal, capacity achieving network

operation. The routing scheme is novel in its simplicity, requiring no link-level

feedback and no knowledge of the network topology for success, and only a very

simple acknowledgment feedback from the final destination. The proof mechanism

is also notable because of the intuitive connection between the model of the system

state, and the individual cut-set bounds on throughput which necessarily must

follow.

In Chapter 4, we prove upper and lower bounds on the secrecy capacity of wireless

erasure networks. We give sufficient conditions for when those bounds meet, and

provide counter-examples which demonstrate cases when the intuitive (both upper

and lower) bounds are not tight.

Finally, in Chapter 5, we show that with or without receiver interference, the

wireless erasure network with a broadcast transmit constraint has a transport ca-

pacity which grows no faster than linearly in the number of nodes when a minimum

node separation constraint is enforced. This result holds for both one- and two-

dimensional networks both when the probability of a successful packet transmission

decays exponentially with increasing distance between two nodes and when the

probability decays polynomially as long as the decay exponent β is greater than 3.

Further, it has been shown that linear growth in the number of nodes is achievable

by routing only, without any need for network coding at the intermediate nodes.

Routing, therefore, is an order-optimal strategy in wireless erasure networks.

We hope that, taken together, this work provides a thorough survey of several

different applications of wireless networks and a variety of the characteristics of

these networks.

1.4 General Notation

This section contains some notation which is commonly used throughout the

document. Specialized notation required for individual sections will be defined

and introduced where appropriate.
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In general, we use a directed graph model as the basis for our network topology.

A directed graph G = (V,E) has vertex set V = {1, 2, ..., |V|} and edge set E ⊆
V × V. The number of nodes/vertices |V| in a network is usually referred to as n,

and nodes are most often indexed by the indices i and j.

For a vertex i ∈ V, let NI(i) and NO(i) be the sets of edges entering and leaving

the vertex v, respectively. That is,

NI(j) = {(i, j) : (i, j) ∈ E}

NO(i) = {(i, j) : (i, j) ∈ E}

An s-d cut for s, d ∈ V is a partition of V into two subsets S ⊂ V and SC ⊂ V

such that s ∈ S and d ∈ SC . Let S be the set of all s-d cuts. Further, for any s-d

cut S, define S∗ and SC∗ as

S∗ = {i|∃(i, j) ∈ E s.t. i ∈ S, j ∈ SC}

SC∗ = {j|∃(i, j) ∈ E s.t. i ∈ S, j ∈ SC}

so that S∗ and SC∗ are the sets of nodes with edges that cross the cut-set partition.

Random variables are represented by uppercase letters, specific instantiations of

a random variable by lowercase. For example, channel inputs (i.e. node outputs)

are represented by X or x, and channel outputs by Y or y, which may be indexed

as Xij or xij to denote the specific edge to which the input or output refers.

In this work we use a binary symmetric erasure channel model, where a trans-

mitted symbol is either correctly received at the destination, or remains completely

unknown. Specifically, the input/output relationship is a conditional probability

distribution

p(y|x) =

{

1 − ε y = x
ε y = E

with input alphabet chosen from some finite field Fq and output alphabet Fq

⋃

E,

the input alphabet plus a symbol to represent an erasure. The character ε thus

refers to the erasure probability, and can also be indexed εij to denote the proba-

bility of erasure along a specific edge. If an edge (i, j) does not exist in a network,
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we write εij = 1 to denote the fact that the input is always erased and never trans-

mitted. The symbols γij refer to realizations of Bernoulli binary random variables

with a probability εij of being zero.

The uppercase letters H, G, and A usually refer to transfer matrices, which

in this work are usually 0 − 1 binary random matricies with entries γij. (The

uppercase H is also used to represent entropy, but the context should be clear.)

The notation lg is used to represent the logarithm in base 2.
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Chapter 2

Information Capacity: Receiver Interference

Models

Here we look at the capacity of erasure networks in the traditional information

theory sense. We are interested in both single-source, single-destination capacity

and multicast capacity. The distinguishing feature of erasure networks is that

each edge in the directed graph describing the network topology represents an

independent erasure channel. The innovation of the work in this chapter is the

inclusion of interference in the network model, in particular finite-field addition.

For simplicity, in this section we will consider networks whose transmit alphabet

is limited to the two symbols {0, 1}, but all results hold for larger alphabets(say,

of size q), with the trivial modification of multiplying the rate values by lg q. This

work was performed simultaneously with, but independently from, the work in

[14], which has very similar things to say about deterministic networks with both

broadcast and multiple-access constraints (with an emphasis on the finite-field

sum), and very interestingly, a parallel proof mechanism.

2.1 Prior Work

David Julian help pioneer the concept of the erasure network in [1]. This original

model is loosely based on the concept of flow networks [15]: each link in the network

is an independent erasure channel with an identical erasure probability. Further,

each node in the network sees all of its incoming and outgoing edges as distinct:

it is a completely interference-free network, as if it were a wireline network.

Julian proves, among other statements concerning the erasure channel, that the

capacity of such a network is equal to the capacity of the equivalent flow network,
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multiplied by ε̄, where ε is the uniform erasure probability.

The concept of an erasure network was expanded to provide applicability to

wireless networks in [2]. It has been known for several years that the multicast

cut-set bound for wireline networks (with no interference constraints at either

transmitters or receivers, the cut-set bound is simply the sum of the individual

capacities of all the links across the cut) was achievable [10]. In the work of [2] a

tractable model which accounts for the broadcast nature of the wireless medium

was proposed: specifically, a wireless erasure network is still represented by a

directed graph, but each node is required to transmit an identical symbol down

each of its outgoing links. Incorporating the broadcast nature of the wireless

medium was a significant step forward. While routing (a simple forwarding of

information) is sufficient to achieve the capacity of a unicast wireline network, the

more powerful tool of network coding was required to achieve the modified cut-set

rate-bound for the wireless erasure network. We continue to use network coding

to demonstrate the capacity of alternate classes of erasure networks.

This modification requires a change in the evaluation of the cut-set bound. While

in flow networks and in the network of [1], the cut-capacity is simply the sum of the

capacities of all edges that cross the cut, the broadcast requirement of [2] introduces

a new formula. We take εij as the erasure probability across the edge connecting

node i to node j; S is a partition of the nodes such that source s and destination

d satisfy s ∈ S and d ∈ SC . Then the communication rate is upper-bounded by

R ≤ min
S:S∈S

∑

i∈S



1 −
∏

j∈SC

εij



 . (2.1)

Intuitively, we can understand the rate bound (2.1) as follows: Given a cut,

every node which can possibly transmit a symbol across the cut, contributes to

the sum a quantity equal to the probability that the symbol transmitted along at

least one of the outgoing edges is successfully received across the cut. Intuitively,

as long as any of the symbols crossing the cut from that node are not erased, the
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transmission is accounted successful.

The main result of [2] is that the cut-set rate of Equation (2.1) is indeed achiev-

able, for multicast as well as single-destination networks, under one additional

assumption: The destinations are all aware, as side-information, of the positions

of all the erasures on each link of the network. This assumption is reasonable, as

packets usually carry headers, and the extra amount of information required does

not increase with the packet size.

To demonstrate the achievability of (2.1), the authors of [2] make use of an ex-

tremely interesting proof technique. Random coding is employed over B blocks,

each of size n, at all nodes in the network. Given the locations of all erasures, the

operation of the network is a deterministic function of any input. The destinations

simply simulate the operation of the network, and an error only occurs if two dif-

ferent input sequences (corresponding to two different messages) produce identical

output sequences at the destination.

Because there is no interference between incoming edges at any node, there is

no ambiguity as to which time block any symbol corresponds. (Each node waits

until all symbols corresponding to a given message block arrive before calculating

its output function for that particular message block). It is therefore possible to

follow the evolution of a message block as it traverses the network. As noted above,

an error occurs when there exists at least one input sequence (corresponding to a

message other than the message actually sent) which produces exactly the same

output at the destination node as the actual message. The critical insight of the

proof is in representing this error event (call it E) as the union of error events Es.

Let w0 be the actual message transmitted, and w1 be an alternative message. If

S is a cut, then Es is the event that, for all nodes in S, the inputs w0 and w1

produce distinct outputs, but for all nodes in SC , the received symbols for that

block are identical. Note that the Es (corresponding to the different cut-sets) are

disjoint, and their union is the event E that the destination has an identical block

of symbols for both wo and w1.
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Using the union bound, the probability of E is less than or equal to the sum

of the probabilities of Es, each of which decays exponentially in n, the size of a

block. It is therefore the event Es with the minimum exponent (corresponding to

the min-cut) which dominates the sum and governs the achievable rate.

The key to this proof is the fact the we can follow the progression of a single

message through the network - that there is no “mixing” between symbols corre-

sponding to different blocks. As soon as receiver interference is introduced to the

network, however, this simplification may no longer be available. For example,

in the simple relay network of Figure 2.1, the symbols transmitted by the relay

in the second time block (corresponding to the message of the first time block)

become entwined with the symbols which are simultaneously being transmitted by

the source (corresponding to the message of the second time block).

�
�
�
�

����

��
YX

Y1 : X1

p(y|x, x1)
p(y1|x)

Figure 2.1: Relay Network with Interference

Other prior work has focused on the capacity of other various network models

with broadcast constraints [11], multiple-access constraints [12], or both [13].

In this chapter, we prove that nonetheless, a max-flow min-cut bound, which

incorporates the interference properties of the model, is achievable using random

coding arguments. We look at two different cases; first, a network which is in many

sense a dual of the broadcast wireless erasure network of [2], where a multiple-access

finite-field sum is used to model receiver interference. We present two distinct

proofs of the min-cut bound achievability for this multiple-access constraint net-

work: a simple proof using the technique of pipelining, which was suggested to us

by Gerhard Kramer; and our original proof of [16] which is a appropriate lead-in
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to the more general case. The second case that we consider is a more general,

in a sense ”‘multiple-antenna,”’ model which subsumes both broadcast-constraint,

only, and receiver-constraint, only, networks. The proof for this case will follow

from our original MAC constraint case, and utilizes some of the results of [14].

2.2 Additive Finite-Field MAC Constraints on Erasure Net-

works

The two network models that we consider are described in detail in this section.

Although the first model, that of the multiple-access finite-field sum erasure net-

works, are technically simply a special case of the second, the erasure network with

arbitrary combinations of broadcast and finite-field sum interference, we present

them separately because of the different proof techniques which are applicable and

valid for each.

2.2.1 Erasure Networks with Only an Additive Finite-Field MAC Con-

straint

For this model, we consider a network very similar to that of [2], but with a dual

multiple-access channel constraint, instead of the broadcast channel constraint.

That is, each node now can send a distinct symbol down all outgoing edges. Instead

of a vector of incoming symbols, however, each node receives the finite-field sum

of the unerased symbols along all incoming edges (erasures are treated as zeros in

the sum). Specifically,

• Each edge (i, j) in the network acts as an independent erasure channel with

a specified erasure probability εij.

• Each node i may transmit unique symbols across each outgoing edge (i, j).

• Each node j receives the finite-field sum of all the non-erased symbols along

incoming edges.
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• The final destination node has access to side information concerning the

erasure locations within the entire network.

In addition, we show that the cut-set upperbound for a given MAC erasure

network is identical to the upperbound obtained for the wireless erasure network

in which

• The source and destination nodes of the MAC network are interchanged, and

• the direction of every edge in the network is reversed, but

• the erasure probabilities along each edge remain unchanged.

Further, we can show that this cut-set bound is achievable, and therefore the

capacity of this network model.

2.3 System Model

We consider a single-source (denoted by s), single-destination (denoted by d)

network, modeled by an acyclic graph G = (V,E). Each node i has |NO(i)| outputs

and exactly one input (i.e. the output of a finite-field additive MAC) and at time

t transmits the |NO(i)|-length vector of symbols Xij(t), where each symbol Xij(t),

(i, j) ∈ NO(i), is chosen from the alphabet {0, 1}. The symbol Xij(t) can depend

on inputs to the node i from times 1 to t−1 and, if i is the source node, the current

message.

At each time t, the node j will receive the single symbol Yj(t), where

Yj(t) =
∑

(i,j)∈NI(j)

γij(t)Xij(t) (2.2)

and the γij(t) are independent (over both time and edge indices) Bernoulli random

variables which take the value 0 with probability εij. We assign εij = 1 if the edge

(i, j) does not exist in E.
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Figure 2.2: Erasure Network With MAC Constraint

In summary, each node has a single input and multiple outputs, which are con-

nected to other nodes’ inputs via erasure channels. At each timestep, every node

receives an input Yj(t), the value of which is the finite-field sum of all the non-

erased symbols transmitted by exactly the edges which are connected that node.

This is illustrated in Figure 2.2. The probability that a symbol transmitted from

an output of node i is successfully received (and therefore added to the sum) of the

input of node j is then 1− εij. Equation (2.3) represents the relationships between

the input and outputs of each node in Figure 2.2.

y1 =γs1xs1

y2 =γs2xs2 + γ12x12 (2.3)

yd =γ1dx1d + γ2dx2d

The destination node d is provided with side information which gives it the

locations of all erasure events throughout the network. Intermediate nodes are

provided no knowledge of the erasure locations.

2.3.1 Erasure Networks with Generalized Broadcast and Finite-Field

Sum Multiple-Access Constraints

The two erasure network models described so far each only consider a single type

of interference - at the transmitter, only, or alternatively, at the receiver, only. The
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erasure network with arbitrary interference is a fairly general network description

which encompasses both of the above models, incorporating both broadcast and

receiver interference.

In this model, each node is allowed multiple outputs, and each output is con-

nected to one or more nodes’ receivers by erasure channels. Each node has at least

one receiver, which obtains the finite-field sum of all the unerased inputs to that

receiver. Specifically,

• Each node i is allowed to have multiple inputs (receivers) and multiple out-

puts (transmitters).

• Each edge in the network is a connection between an output im of one node

and an input jn of a different node. Each edge acts as an independent erasure

channel.

• Each output im of a node is constrained to send the same symbol along

all outgoing edges, but different outputs of a the same node may transmit

different symbols.

• Each input jn to a node receives the finite-field sum of all the non-erased

symbols along incoming edges.

We must begin with a description of notation used to represent such a model.

2.3.2 Notation and Preliminaries

We modify the notation for directed graphs in order to allow for a broad variety

of access and broadcast constraints on a network. A directed graph G = (V,E)

has vertex set V = {1, 2, ..., |V|} and edge set E ⊆ (V × Z+) × (V × Z+). An

edge ((i,m), (j, n)) ∈ E will be abbreviated as (im, jn). Let Mi and Ni denote

the number of outputs and inputs a node i has (which is a distinct concept from

the total number of edges entering or leaving the vertex - each edge connects one
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particular output im of a vertex i to one particular input jn of a different vertex

j).

For a node i ∈ V, let NI(i) and NO(j) be the sets of edges entering and leaving

the vertex v, respectively. That is,

NI(j) = {(im, jn) : (im, jn) ∈ E}

NO(i) = {(im, jn) : (im, jn) ∈ E}

We define similar notation for the set of edges entering and leaving any particular

input or output of the vertex i, as well: NI(jn) and NO(im).

An s-d cut for s, d ∈ V is defined just as in Section 1.4 a partition of V into two

subsets S and SC) such that s ∈ S and d ∈ SC .

2.3.3 System Model

We consider a single-source (denoted by s), single-destination (denoted by d)

network, modeled by by an acyclic graph G = (V,E). Each node i has Mi outputs

and Ni inputs, and at time t transmits the Mi-length vector of symbols Xi(t),

where each symbol Xm
i (t), m ∈ 1..Mi, is chosen from the alphabet {0, 1}.

At each time t, the node j will receive the vector of symbols Yj(t) (of length Nj),

where

Y n
j (t) =

∑

(im,jn)∈NI(jn)

γi,m
j,n (t)Xm

i (t) (2.4)

and the γi,m
j,n (t) are all independent (over both time and edge indices) Bernoulli

random variables which take the value 0 with probability εi,m
j,n . We assume that

each node knows the state of each of the channels incoming to that node, as well.

In summary, each node has multiple inputs and outputs, which are connected

to other nodes’ inputs and outputs via erasure channels. At each timestep, every

node receives a vector of symbols, where each element of the vector corresponds

to one of that node’s inputs. The value of each input’s symbol is the finite-field

sum of all the non-erased symbols transmitted by exactly the outputs which are
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Figure 2.3: Detail of a General Erasure Network With Interference

connected that input. This is illustrated in Figure 2.3. The probability that a

symbol transmitted from the mth output of node i is successfully received (and

therefore added to the sum) of the nth input of node j is then 1 − εi,m
j,n .

2.4 Results

For both of our network models, we have been able to demonstrate that the

capacity is indeed given by a generalized min-cut max-flow bound, by providing

both an upper-bound converse and by providing multiple achievable strategies.

This section explicitly gives those cut-set bounds for the networks.

2.4.1 Cut-Set Bound for Generalized Network Model

For any s−d cut, define the matrix As to be a random matrix with 0−1 entries

of size
∑

j∈SC∗

Nj ×
∑

i∈S∗

Mi.

Each column represents an output im of a node in S∗, (i.e. an input into an erasure

channel in the cut-set) and each row represents an input jn of a node in SC∗ (i.e.

the output of a channel, on the right side of the cut). For every edge (im, jn) in
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the cut-set, there is an entry in (the appropriate row and column of) As which

takes the value 0 with probability εi,m
j,n and 1 with the probability 1 − εi,m

j,n . Every

entry in As which does have a corresponding edge in G will be zero with probability

one. The matrix As then acts as a transfer matrix between the outputs of Vs and

the inputs of Vd: if all nodes on each of the two sides of the cut could cooperate

perfectly, then we could collect all the outputs of the nodes in S∗ into the vector X∗

and the part of the inputs of the nodes in SC∗ that depends only on outputs from

the s side of the s − d cut into a vector Y ∗. The relationship Y ∗(t) = As(t)X
∗(t)

describes the transfer of information across the cut.

Theorem 2.4.1. The rate of reliable communication between the source s and the

destination d in an erasure network, as defined in Section 2.3, is upperbounded as

R ≤ min
S:S∈S

E[rank(As)]. (2.5)

For example, the matrix As for the s-d cut S = {1, 2} illustrated in Figure 2.3

is demonstrated as


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2.4.2 Cut-set Bound for the Multiple Access, Only, Constrained Net-

work

The single-source single-destination rate must satisfy the upperbound

R ≤ min
S:S∈S

∑

j∈SC

(

1 −
∏

i∈S

εij

)

. (2.6)

Further, the rate of Equation (2.6) is achievable, when side information on the

locations of all erasures is available to the destination node.
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Note that Equation (2.6) is merely a simplification of Equation (2.5) for the

special case of a network with multiple-access constraints, only. For example,

consider the network of Figure 2.4, where the expression

[

Y ∗
d

Y ∗
2

]

=

[

0 0 γ1d

γs2 γ12 0

]





Xs2

X12

X1d





defines As for the cut S illustrated.

d

εs1

1

2

s ε12

ε1d

εs2εs2
ε2d

S SC

Figure 2.4: Example Network

2.4.3 Cut-Set Bound for Other Specific Network Instances

We have previously remarked that both the wireless erasure network (with broad-

cast only constraint) of [2] and the no-interference model are both specific instances

of our generalized network.

For a wireline network with no interference at either transmitters or receivers,

we could similarly define another matrix Awireline
s , a random diagonal matrix. Each

entry on the diagonal, representing a particular edge that crosses the cut, say, from

the ith node to the jth node, will be 1 with probability 1 − εij. The rank of this

random diagonal matrix is the sum of all the diagonal entries; the expected value

of the rank is then the sum of the probabilities that the diagonal entries are 1.
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This sum is precisely the sum of the capacities of each edge crossing the cut, which

is the definition of the cut-capacity.

For the wireless erasure network of [2], the transfer matrix As will have |S∗|
columns (one for each node which has a departing edge across the cut) and one

row for each edge in the cut-set. Since only one entry in each row of the matrix

can possibly be non-zero, the rank of the transfer matrix is equal to the number of

column which contain at least one zero. The probability that a column contains at

least one zero is the probability that, of all the edges departing some node in Vs,

at least one of these is not erased. The expected value of the rank of the matrix

AS is thus given by the cut-capacity given in [2].

2.5 Upper Bounds

We will use the cut-set bound, as described in [3], to demonstrate an upper

bound on the rate of reliable communication from source node s to destination

node d in both of our network models.

Recall the definition of the random transfer matrix As with 0-1 entries for any

s − d cut, from Section 2.4.1. We have the following theorem:

Theorem 2.5.1. The rate of reliable communication between the source s and the

destination d in an erasure network with generalized broadcast and finite-field sum

multiple-access constraints, as defined in Section 2.3.3, when the destination d is

provided side-information concerning the locations of all erasures in the network,

is bounded above by

R ≤ min
S∈S

E[rank(As)]. (2.7)

Further, when As is the matrix obtained from the cut S in a multiple access

erasure network, the expression’s right-hand side evaluates as

E[rank(As)] = C(S), (2.8)
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where we define

C(S) =
∑

j∈SC

(

1 −
∏

i∈S

εij

)

. (2.9)

The bound C(S) for the cut S = {s, 1} illustrated in Figure 2.4 evaluates as

1 − ε1d + 1 − ε12εs2.

Proof. If we assemble all of the outputs of nodes in S of the s-d cut into a vector

Xs, the outputs of all nodes in S∗ into the vector X∗, the outputs of nodes in SC

into the vector Xd, the inputs of all nodes in SC into the vector Yd, and the parts

of the inputs of all nodes in SC∗ that depend only on outputs of nodes in S into

the vector Y ∗, we can write

Yd = ÃsXs + AdXd (2.10)

where Ãs is a matrix which contains the entries of As (at the appropriate input-

output positions) and zeros elsewhere, and Ad is a random matrix defined similarly

as As, but as the transfer matrix between outputs and inputs on the destination

side of the s-d cut.

Assuming all the nodes on each side of the cut can mutually cooperate (i.e., all

the nodes in S can jointly decide their output values, nodes in SC can do the same,

and nodes in SC are given each others input values and the erasure locations), an

upper bound on rate is given by

R ≤ sup
p(xij∀(i,j)∈E)

I(Yd, As; Xs|Xd)

= sup
p(xij∀(i,j)s.t.i∈S,j∈SC)

I(Y ∗, As; X
∗). (2.11)

But,

I(X∗; Y ∗, As) = H(Y ∗, As) − H(Y ∗, As|X∗)

= H(As) + H(Y ∗|As) − H(As|X∗) − H(Y ∗|X∗, As)

= H(Y ∗|As) (2.12)

24



where the final equality in Equation (2.12) comes the facts that X∗ and As are

independent and Y ∗ is a deterministic function of X∗ and As.

Now, for any given transfer matrix As(t), the maximum entropy in the vector

Y ∗ is the number of elements in Y ∗ which are linearly independent of each other

(since each element can have maximum entropy 1, but some elements are functions

of other elements). Choosing the entries of X∗ as i.i.d. Bernoulli(1/2) 0-1 ran-

dom variables maximizes the entropy of Y ∗; this follows because the sum of i.i.d

Bernoulli random variables in F2 is also distributed Bernoulli(1/2), and the entropy

H(Y ∗|As = As(t)) is then rank(As(t)). Therefore, the rate over all realizations of

As is bounded by E[rank(As)].

Since for every s-d cut, the rate is upper-bounded by the expected value of the

rank of the transfer matrix As, the rate is then upper-bounded by the minimum,

over all possible s-d cuts, of E[rank(As)].

For the multiple-access erasure network, As will have one row for each node j

in SC∗, and there will be |NI(j) ∩ S| entries (one for each edge connected across

the cut-set to node j) which are possibly non-zero. The rank of As will be the

number of rows which contain at least one 1 entry. Since the probability that the

row corresponding to node j has all zeros is

∏

i:(i,j) s.t i∈S∗,j∈SC∗

εij,

the expected value of the rank of As evaluates to the expression in Equation (2.9).

2.6 Achievability in Multiple-Access Erasure Networks

In this section, we show that rates arbitrarily close to the cut-set upper bound

given in Section 2.5 are achievable for the multiple-access constraint erasure net-

works by using random coding arguments. Our proofs will follow the same general

outline as that of Theorem 1 of [2]. Therefore, we shall summarize the arguments

which are similar and be more precise in the exposition of those steps which are
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particular to our proof. The following section will contain the more recent proof for

the networks with generalized interference, which builds upon the work required

for these proofs.

First, we state the main result:

Theorem 2.6.1. Consider a single-source single-destination multiple-access era-

sure network given by the directed acyclic graph G = (V,E). The capacity of the

network, under the assumptions of Section 2.3.3 (including the assumption of side

information on erasure locations known to the destination node), is given by

R ≤ min
S∈S

C(S). (2.13)

We proceed to demonstrate the achievability of this rate via two different meth-

ods.

2.6.1 Achievability by Pipelining

Recall from our description of the achievability argument of [2] in Section 2.1 that

the achievability proof depended on the no-receiver interference condition: it was

necessary to keep symbols from different blocks independent of each other. Because

each node receives a vector of the incoming data symbols, this was straightforward

to achieve: before transmitting its codeword relating to any specific block, the

node waits until all data for that block (which will in general occur at different

times) is received. For example, in a network with the topology of Figure 2.1, the

receiver Y will receive from the transmitter X the symbols related to a block b in

timeblock b of the network’s operation. However, in timeblock b, the receiver Y will

simultaneously be receiving symbols related to block b−1 from the transmitter X1.

Since there is no interference, it is straightforward to keep these sets of symbols

separate, and then decode the data from block b only after timeblock b + 1 has

been completely received.

In the multiple-access constraint network, pipelining allows us to keep a similar

separation of data from different blocks. In this case, in Figure 2.1, in block b
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the transmitter X will send symbols for the codeword of block b along the link

to receiver Y , while simultaneously sending the codeword for block b + 1 along

the edge to receiver Y1. This allows, in block b, the transmitter X1 to send the

codeword for the message of block b to the receiver Y in timeblock b, so data from

timeblock b only interferes with itself - there is no mixing between blocks. Now

that there is no mixing, the simulation technique and probability of error analysis

of [2] follows explicitly.

Note that the scheduling of such blocks for any directed acyclic graph completely

parallels the scheduling that would be necessary for the dual wireless erasure net-

work with broadcast constraint, only (as described in Section 2.8). Thanks goes

to Gerhard Kramer, who suggested the pipelining technique. This technique, how-

ever, is unable to achieve the capacity of a network with both broadcast and

receiver interference, because there is no way to differentiate timeblocks at either

the transmitter or receiver. This case is studied in Section 2.7.

2.6.2 Achievability by Conditioning on Previous Blocks

This section contains the proof mechanism which we demonstrated in [16].

Let W = {1, 2, ..., 2nRB} be a set of message indices, and let w ∈ W be the mes-

sage, chosen uniformly and independently, that we desire to communicate between

the source and destination node. The network will operate over (B+L)n timeslots

in blocks of size n, where L is the length of the longest path between source and

destination. As B becomes large the achieved rate of B
B+L

R approaches R.

2.6.3 Codebook Generation

Each node i ∈ V generates (B + L) × |NO(i)| codebooks which are encoding

functions over all the possible inputs to that node. Specifically, the source node

generates the (B + L) × |NO(s)| functions

f b
sm : W → {0, 1}n
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and each node i other than the destination generates the (B+L)×|NO(i)| different

functions

f b
im : {0, 1}n → {0, 1}n.

That is, for each output labeled im, m ∈ [1, ..., |NO(i)|], of the node i, the codebook

will contain a different function for each combination of the n inputs from the

previous length-n block.

All codewords are drawn i.i.d. from a binary Bernoulli distribution with param-

eter 1/2. All nodes share their codebooks with the destination node d.

2.6.4 Encoding

After each block of n time slots, each node chooses the appropriate set of code-

words, which are based on the inputs it received in that block and the block

number, and transmits those codewords from its outputs in the next block.

2.6.5 Decoding

Decoding follows a similar, but not identical, procedure to that of [2]. Because of

the lack of interference in the wireless erasure network model, there is no ambiguity

about the information encoded in a block – the codeword in each time-block was a

function of exactly one message. In the multiple-access erasure network, however,

the input received at any particular node in each block is possibly a function of

the codewords sent by the source node over multiple different blocks.

Therefore, the destination node, with knowledge of all the erasures throughout

the network, decodes by simulating all 2nRB messages’ transit of the network.

At least one of these codewords (the true codeword) will yield a result at the

destination node identical to the sequence that was actually received (since the

behavior of the network is a deterministic function of the message and the erasure

pattern); an error occurs either if there are one or more additional codewords that

result in an identical output, or if the pattern of erasures throughout the network

in any time-block is not strongly typical.
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2.6.6 Probability of Error Calculation

Intuitively, an error event occurs either if

• The pattern of erasures in any time-block is atypical, or

• For every time-block, the simulation of the codewords for the two messages

w and w1 produces identical inputs to the destination node.

We write this error event E as

E = Etyp

⋃





2nRB−1
⋃

k=1

Ek



 (2.14)

where Etyp is the event that the pattern of erasures in not strongly typical and Ek

is the event that the messages w and wk produce identical inputs to the destination

node d for all time-blocks.

Formally, define Eb to the event that pattern of erasures in time-block b is not

strongly typical, i.e.

Eb = {γij(t)|(i, j) ∈ E, t ∈ [n(b − 1), ..., nb]} /∈ A
(n)
δ . (2.15)

Then, define Etyp as

Etyp =
⋃

b∈(1..B+L)

Eb.

We choose n sufficiently large so that the probability P (Etyp) < δ1, i.e. we

condition the remainder of the probability of error analysis on the event EC
typ that

the erasures are strongly typical.

For any cut Vs, define Bb
s as the event that, after the bth block is simulated, the

inputs to all of the nodes in Vd in the bth block are identical for the true message

w and the incorrect message w1 6= w and the inputs to all of the nodes in Vs

contain some difference for the two codewords. We will average the probability of

error over all codebooks and codewords, as per standard coding arguments, so the

message w1 is arbitrarily chosen.
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When w and w1 produce identical inputs to the destination node in a time-block

b, exactly one of the events Bb
s for one s-d cut occurs. We define E1 as

E1 =
⋂

b∈(1..B+L)

(

⋃

S∈S

Bb
s

)

. (2.16)

Letting Sseq be the set of all (B+L)-length sequences of cut-sets (S1, S2, ..., SB+L),

the expression for E1 in Equation (2.16) can be rewritten as

E1 =
⋃

(S1,S2,...,SB+L)∈Sseq

(

B1
S1

⋂

B2
S2

⋂

...
⋂

BB+L
SB+L

)

(2.17)

Note that the events Bb
sl

and Bb+1
sm

are clearly not independent of each other.

However, given Bb
sl
, the events Bb−1

sk
and Bb+1

sm
are conditionally independent, so

we study the probabilities P (Bb+1
sm

|Bb
sl
, EC

typ) where l and m are indices of cut-sets.

Because of startup transients, the probabilities of the Bb
s events for b ∈ (1..L)

(as the first codeword actually dependent on the message w spreads through the

network) are especially difficult to define. We will show that we can ignore them

in the error analysis, however.

We imagine the events Bb
s as states, each sequence Sseq ∈ Sseq as a path over time

through the different states, and the conditional probabilities P (Bb+1
sm

|Bb
sl
, EC

typ) as

transition probabilities. The goal then is to find the sequence with the maximum

product of transition probabilities, because we desire to upper bound the proba-

bility of error. As long as

2nRB × max
Sseq∈Sseq

P (B1
s1
|EC

typ)
∏

b∈(2..B+L)

P (Bb
sb
|Bb−1

sb−1
, EC

typ) (2.18)

can be made arbitrarily small by increasing n appropriately, then the output at the

destination is uniquely decodable. Since we are upper-bounding the probabilities,

we can set the first L product terms in the right side of Equation (2.18) to unity.

First, examine terms of the form P (Bb+1
sl

|Bb
sl
, EC

typ), which are transitions from

one state back to the same state. Precisely, this means the probability, for the
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different inputs w and w1, given that they produce the same input for exactly

the nodes in SC in time-block b, that they will also produce the same input for

exactly those same nodes in time-block b + 1. All nodes in SC ∩ (SC∗)C , i.e. those

nodes on the destination side of the cut that have no input edges in the cut-set,

will necessarily still have identical inputs for time-block b + 1 – there are no non-

identical inputs to those nodes.

For every node j ∈ SC∗, there is at least one edge with independent codewords

for the two messages w and w1. Say that for node j there is exactly one edge

(i, j) in NI(j) in the cut-set. Then, since the codewords generated at i for the

two messages w and w1 will be independent, the input to j will only be identical

for the two messages if the two codewords differ only in the erased locations. The

probability that the codewords are identical in all unerased locations is no more

than

2−n(1−εij−δ).

Now say node j has the set {mj} = NI(j)
⋂
{

(i, j)|i ∈ Sl, j ∈ SC
l

}

of incoming

edges in the cut-set. For any node j in SC
l , the sum of the unerased values along

incoming edges for the message w1 must be equal to the sum of the unerased values

for the message w for all n time slots in the block b+1 for the event Bb+1
sl

to occur.

If the bits along all edges in {mj} are erased, then the probability of the incoming

sum being identical is 1. If any of the incoming edges has incoming bits which are

unerased, then the probability that the sum of these bits for messages w and w1 are

equal is 1/2 for each time slot. Since the erasures are assumed to be typical, the

probability that all timeslots in the block have identical bits for the two messages

is less than

2
−n(1−∏(i,j)∈{mj} εij−δ)

(2.19)

when all the codewords being transmitted by nodes in Sl are independent. (Recall,

that all the codewords transmitted by nodes in Sl during time-block b + 1 will be

independent, given the event Bb
sl
.) For the event Bb+1

sl
to occur, all nodes j in SC

l
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must receive identical inputs, which will occur with probability less than

P (Bb+1
sl

|Bb
sl
, EC

typ) ≤
∏

j∈SC∗
l

2
−n(1−∏(i,j)∈{mj} εij−δ)

≤ 2−n(C(Sl)−δ|SC∗
l |). (2.20)

Recall that we wish to show that Equation (2.18) can be made arbitrarily small

for any sequence of error cut-sets Sseq as n and B grow large. Assume that Ŝ is the

min-cut, i.e. the argument which minimizes the right-hand side of Equation (2.8).

To prove that the capacity of the network is given by Equation (2.13), we must

show that no sequence of error cut-sets Sseq has probability with error exponent

asymptotically smaller than that of the sequence of min-cuts Ŝseq = {Ŝ, Ŝ, Ŝ, ...}.

There exist transitions which have probabilities much greater than the min-cut

self-transition probability P (Bb+1
ŝ |Bb

ŝ, E
C
typ): Consider the sets Ŝ and S2 = Ŝ

⋃

ŜC∗,

illustrated in Figure 2.5. The set SC
2 has the property that there are no edges

originating from Ŝ with endpoints in SC
2 . All nodes in S∗

2

⋃

SC
2 will then generate

the same codeword for messages w and w1 for block b + 1, since they have had

exactly the same inputs in block b. Therefore, P (Bb+1
s2

|Bb
ŝ, E

C
typ) is nearly 1. (The

probability is slightly less than unity because when Sl ⊂ Ŝ, P (Bb+1
sl

|Bb
ŝ, E

C
typ) is

small, but still positive.)

Ŝ

SC
2

S2

Figure 2.5: The probability P (Bb+1
s2

|Bb
ŝ, E

C
typ) is nearly 1.

Define C(Sm|Sl) to be the exponent of the error transition probability

P (Bb+1
sm

|Bb
sl
, EC

typ), that is

P (Bb+1
sm

|Bb
sl
, EC

typ) ≤ 2−nC(Sm|Sl)+nδ|SC∗
m |.
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We have already shown that C(Sl|Sl) is given by C(Sl), defined in Equation (2.9).

By the same argument,

C(Sm|Sl) =
∑

j∈SC
m

(1 −
∏

i∈Sl

εij). (2.21)

The expression is the sum over every node j in the new error cut SC
m, the prob-

ability that at least one edge which originates in the source-side of the old error

cut Sl and terminates at that node j remains unerased.

Now we use the expression of Equation (2.21) to demonstrate that the probability

of transitioning from error events Bb
sl

to Bb+1
sm

and back to Bb+2
sl

always has an

asymptotically smaller probability that the error event corresponding to staying in

the min-cut error events Bŝ over the two time-block transitions. This is expressed

in Lemma 2.6.1.

Lemma 2.6.1. The expression

C(Sm|Sl) + C(Sl|Sm) ≥ C(Ŝ|Ŝ) + C(Ŝ|Ŝ)

is valid for any cuts Sm and Sl when Ŝ is the min-cut.

Proof. Observe that C(Sm

⋃

Sl) ≥ C(Ŝ) and C(Sm

⋂

Sl) ≥ C(Ŝ), since Ŝ is de-

fined to be the min-cut. Therefore, demonstrating that

C(Sm|Sl) + C(Sl|Sm) − C(Sm

⋂

Sl) − C(Sm

⋃

Sl)

is non-negative will complete the proof. We decompose the expressions result-

ing from the application of Equation (2.21) into summations over the sets {j ∈
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SC
m

⋂

SC
l }, {j ∈ SC

m

⋂

Sl}, and {j ∈ SC
l

⋂

Sm}.

C(Sm|Sl) + C(Sl|Sm) − C(Sm

⋂

Sl) − C(Sm

⋃

Sl)

=
∑

j∈SC
m

(1 −
∏

i∈Sl

εij) +
∑

j∈SC
l

(1 −
∏

i∈Sm

εij)

−
∑

j∈SC
m

⋂

Sl

(1 −
∏

i∈Sm
⋂

Sl

εij) −
∑

j∈SC
m

⋃

Sl

(1 −
∏

i∈Sm
⋃

Sl

εij) (2.22)

= −
∑

j∈SC
m

⋂

SC
l

(

∏

i∈Sl

εij +
∏

i∈Sm

εij

)

−
∑

j∈SC
m

⋂

Sl

(

∏

i∈Sl

εij

)

−
∑

j∈SC
l

⋂

Sm

(

∏

i∈Sm

εij

)

+
∑

j∈SC
m

⋂

SC
l





∏

i∈Sl
⋃

Sm

εij +
∏

i∈Sl
⋂

Sm

εij





+
∑

j∈SC
m

⋂

Sl





∏

i∈Sl
⋂

Sm

εij



+
∑

j∈SC
l

⋂

Sm





∏

i∈Sl
⋂

Sm

εij





(2.23)

By combining the common sums and factoring out the common products of εij’s

within those sums, we obtain

∑

j∈SC
m

⋂

SC
l





∏

i∈Sl
⋂

SC
l

εij







1 +
∏

i∈Sl
⋂

SC
m

εij

∏

i∈Sm
⋂

SC
l

εij −
∏

i∈Sl
⋂

SC
m

εij −
∏

i∈Sm
⋂

SC
l

εij





+
∑

j∈SC
m

⋂

Sl





∏

i∈Sl
⋂

SC
l

εij







1 −
∏

i∈Sl
⋂

SC
m

εij





+
∑

j∈SC
l

⋂

Sm





∏

i∈Sl
⋂

SC
l

εij







1 −
∏

i∈Sm
⋂

SC
l

εij



 (2.24)

where each of the three terms is clearly non-negative.

Now, we generalize Lemma 2.6.1:

Lemma 2.6.2. For any sequence of K error-state transitions (sb, sb+1, ..., sb+K =

sb) which begins and ends with the same error cut-set, the error exponent for the
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K transitions is greater than the error exponent for the error event of staying in

the min-cut error cut-set for those K time-blocks. Formally,

K
∑

k=1

C(Sb+k|Sb+k−1) ≥
K
∑

k=1

C(Sk) (2.25)

≥ KC(Ŝ),

where new self-transition error-cuts Sk are defined for k ∈ (1, ..., K) as

Sk = {i : i is in exactly k of the sets (Sb+1, ..., Sb+K)}.

The proof proceeds along the same lines as that of Lemma 2.6.1.

Thus, the probability of the error event E is bounded by

P (E) ≤ P (Etyp) +
2nRB
∑

k=1

P (Ek|EC
typ)

≤ δ1 + 2nRB max
S∈S

P (B1
s1
|EC

typ)
∏

b∈(2..B+L)

P (Bb
sb
|Bb−1

sb−1
, EC

typ)

≤ δ1 + 2nRB
∏

b∈(1+L..B+L)

P (Bb
ŝ|Bb−1

ŝ , EC
typ)

≤ δ1 + 2nRB−nBC(Ŝ)+nBδ|ŜC∗|.

Thus, if R < C(Ŝ), a code with rate R and arbitrarily small error probability

exists to communicate information from the source node to the destination node

when the destination node has side information describing the locations of all the

erasures in the network. We have thus demonstrated that the unicast capacity

of the multiple-access erasure network is given by a modified min-cut max-flow

cut-set rate bound.

2.7 Achievability in Erasure Networks with Generalized

Broadcast and Finite-Field Sum Interference

In Section 2.6.2, we explicitly compute the conditional entropy H(Y ∗|As), as

defined in Section 2.5 and use that entropy to compute C(Sm|Sl), the exponent
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of the error transition probabilities P (Bb+1
sm

|Bb
sl
, EC

typ) in Equation (2.21). We are

able to prove Lemmas 2.6.1 and 2.6.2 through manipulations of these particular

expressions, as in Equations (2.22, 2.23, and 2.24).

The work of [14] makes the same claims in the context of deterministic networks,

but contains a more general statement. That is, assuming a product distribution

on the transmitted symbols at each of the nodes (which is the distribution that

maximizes the cutset bound on our linear finite-field sum multiple-access interfer-

ence model),

H(YSC
2
|XSC

1
) + H(YSC

3
|XSC

2
) + ... + H(YSC

1
|XSC

K
) ≥ KH(YŜC |XŜC ) (2.26)

where the terms are defined for any non-repeating sequence of cuts. (Lemma 6.4

of [14]). We then apply this lemma directly to our probability of error calculations,

and the achievability follows with the same proof mechanism of Section 2.6.2.

2.8 Duality Observations

This work was inspired by studying the wireless erasure network of [2] and con-

sidering what form a receiver interference constraint might take. The finite-field

sum is a first-cut choice to model a multiple-access channel, and in calculating the

cut-set bound of such networks (with and without a broadcast channel constraint)

the following observation was made:

Lemma 2.8.1. The capacity of any multiple-access erasure network is equal to the

capacity a wireless erasure network (of [2]) where the source and destination nodes

from the multiple-access erasure network are interchanged, where the direction of

every edge is reversed, and where the erasure probabilities associated with each edge

remains unchanged.

For example, the multiple-access erasure network in the top of Figure 2.6 has

the same capacity of the wireless erasure network at the bottom of the figure. The

relationship between the node inputs and outputs in the multiple-access network
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is given by the matrix equation





Y2

Y3

Y4


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



γ12 0 0 0 0
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while the relationship in the dual wireless erasure network is given by
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Figure 2.6: Dual multiple-access and wireless broadcast erasure networks

Is is interesting to note that the same capacity duality exists for the generalized

interference setting, as well, again simply by swapping the source and destination
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nodes, reversing the direction of each edge, and interchanging broadcast and re-

ceiver interference constraints at each appropriate antenna. It is easy to see that

the capacities are identical, because the corresponding transfer matrices As for the

dual networks are just transposes of each other. The rank of AT , obviously, is

equal to the rank of A.
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Chapter 3

Benefits of Feedback

This chapter is joint work with Professor Babak Hassibi, at the California Insti-

tute of Technology.

3.1 Introduction

This chapter presents a throughput-optimal transmission strategy for a unicast

wireless erasure network when feedback is available, which has the following advan-

tages: The algorithm requires a very limited form of acknowledgment feedback. It

is completely distributed, and independent of the network topology. Finally, com-

munication at the information theoretic cut-set rate requires no network coding

and no rateless coding on the packets. This simple strategy consists of each node

randomly choosing a packet from its buffer to transmit at each opportunity. How-

ever, the packet is only deleted from a node’s buffer once it has been successfully

received by the final destination.

It is well know that in the point-to-point channel model, feedback can never

increase the value of the information theoretic capacity[3]. However, there sev-

eral significant advantages to having feedback. Feedback allows coding strategies

which can significantly increase the probability of error exponent, for example the

Schalkwijk-Kailath scheme for additive Gaussian noise channels[17]. Feedback can

also allow transmission strategies with extremely simple coding algorithms. Specif-

ically, consider the binary symmetric erasure channel. When feedback is available,

the transmitter can simply repeat each bit until successfully received. Capacity is

achieved, and in some sense, no coding whatsoever is required.

In this chapter, a unicast model of a lossy wireless network of queues is con-
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sidered, similar in spirit to the wireless erasure network[2] that we have been

discussing, but from more of a networking perspective. This network model still

contains the crucial characteristics of independent erasure channels/loss probabili-

ties on a directed graph, a wireless broadcast requirement, and unicast for a single

source-destination pair, but now also includes asynchronous transmission timing.

With transmit opportunities occurring as a unit rate Poisson process, a transmis-

sion by one node will be received independently with some fixed probability by

each other node in the network. The network model will allow general feedback,

but it will be shown that only a very limited form of acknowledgment feedback is

required to achieve the throughput-optimal cut-set capacity. The primary differ-

ences between the model of this chapter and that of [2] are first, the availability of

feedback, and second, an asynchronous, memoryless arrival process (rather than a

slotted-time model). We do not believe the difference in timing model to be critical,

and conjecture that the given transmission algorithm will be throughput-optimal

in a slotted-time model. Additionally, the addition of feedback eliminates the re-

quirement for any side-information concerning the location of erasures throughout

the network to achieve capacity, in contrast with the decoding strategies of [2] and

of Chapter 2.

A similar asynchronous network model was studied in [18]. The authors’ model

demonstrates the usefulness of network coding: with no feedback, but allowing net-

work coding and additionally, a packet header describing the linear combinations

of data packets included in the transmission, they demonstrate the achievability of

the cut-set bound. This work highlights somewhat of a dual statement: without

any sort of coding, but with feedback, the same cut-set packet rate is achievable.

The paper [19] also is concerned with a similar wireless lossy packet network

model. With a backpressure algorithm, throughput-optimality in a multicommod-

ity sense is also achieved in a multiple-source multiple-destination network. This

algorithm requires link-level feedback, and for each node to maintain knowledge

of the queue state of, in worst case, every other node in the network. It provides

a decision process, when multiple nodes in the network receive copies of the same
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packet, to determine which (if any) of those nodes should keep that packet and

attempt to forward it onward.

In contrast, the routing algorithm described in this chapter is completely decen-

tralized and requires no conferencing among nodes to decide who should “keep”

a packet that it has received. Instead, there will in general be multiple copies of

each packet throughout the network.

Specifically, the algorithm is as follows: Whenever a node has an opportunity

to transmit a packet, it will randomly choose one packet from its buffer. Every

time that a packet successfully reaches the final destination node, that node will

(errorlessly) broadcast an acknowledgment to every node in the system stating

that this particular packet has successfully completed its transit of the network.

Only after receiving this acknowledgment from the final destination node will any

node remove the packet from its buffer. Indeed, the entire network will then flush

that packet from all the buffers. This paper shows via Foster’s Theorem and

an application of an appropriate and novel Lyapunov function the stability of all

network queues under this operation as long as the input data rate is less than

the minimum-cut of the network. The authors are unaware of previous uses of an

exponential Lyapunov function of the form we consider in showing stability results.

The advantages of this throughput optimal strategy include

• It requires no coding, particularly no network coding at intermediate nodes.

• The only information that a packet header must contain is an identifier - no

additional information is required.

• It is completely decentralized. No coordination or conferencing, other than

the acknowledgment feedback, is required.

• It is topology independent. No node other than the source needs any infor-

mation about the layout of the network. The source must only be given the

value of the min-cut, which could even be adaptively estimated, if desired.
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• The only feedback required, a simple acknowledgment from the destination,

is practically already implemented in real systems.

The main thrust of this chapter: A demonstration that, in this lossy unicast wire-

less network, feedback obviates the need for coding, network coding in particular.

3.2 Network Model and Notation

Consider a directed (possibly cyclic) graph G(V,E) with n + 2 nodes: a source

node, a destination node, and n intermediate nodes. Label the source node s,

the destination d, and index the other nodes as i ∈ 1, .., n. To each edge pair

(i, j) ∈ V × V assign an erasure probability 0 ≤ εij ≤ 1. If the directed edge (i, j)

does not exist in the graph, then assign εij = 1. Define µij = 1 − εij.

Because of the wireless nature of the model, when a node i transmits a packet,

each other node in the system j has the probability µij of successfully receiving

that packet. The events that packets are dropped are independent, that is i.i.d.

across time for any fixed edge (i, j), and independent between every pair of edges.

We will consider the case where the events corresponding to combinations of packet

drops from a single transmitter at a fixed time can be correlated in a later section.

Allow an infinite buffer to exist at each node in the network. Packets will exoge-

nously arrive at the source node s according to a Poisson process with arrival rate

λ. At average rate 1 exponentially distributed intervals, each node in the network

(other than the destination node) receives an opportunity to transmit a packet.

Each packet has a unique identifier in its header. Therefore, if a node already

has a copy of a particular packet and it receives that packet again, the contents of

that node’s buffer remain unchanged.

A feedback mechanism exists such that when the destination node receives a

packet, it instantaneously, via a delay-free feedback, notifies all of the other nodes

in the system of that fact. All nodes in the system can then immediately remove

that particular packet from their buffer.
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Finally, this asynchronous model does not consider any receiver interference or

the possibility of simultaneous arrivals.

3.3 Cut-set Upper Bound and Transmission Strategy

Under any transmission strategy, the cut-set upper-bound remains valid. In-

tuitively, the cut-set upper-bound is obtained by dividing the network into two

parts S and SC and creating two super-nodes. That is, by allowing free, unlimited

communication among the nodes in S and among the nodes in SC , we can only

increase the capacity of the system.

With that in mind, let S be a subset of the n + 2 nodes such that s ∈ S and

d ∈ SC . There are 2n such subsets. Let S be the set of all such subsets. The

super-node created by joining all nodes in S together will still have opportunities

to transmit at exponentially distributed intervals, but now the sum rate will be

|S| – a rate of 1 for each node in S. For each node i ∈ S, because of the unlimited

free communication on the right side of the cut in SC , as long as one of the nodes

j ∈ SC successfully receives the packet, we can count it in the total communication

throughput. Therefore, define

C(S) =
∑

i∈S



1 −
∏

j∈SC

εij



 (3.1)

as the cut-set capacity for the subset S, i.e. an upperbound on the rate of packets

that can be transmitted across the S − SC cut, exactly as per [2].

The total throughput T < C(S) then, for every subset S, and

R < min
S∈S

C(S).

The authors would like to emphasize the key role that the subsets S will play in

the proof and the derivation of the stability results. The minimum of C(S) over

all S−SC cuts must emerge from any stability equations; therefore it is reasonable

that each cut-set represented by S must play a role. As will be further explained,
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the sets S will become essential as indices to the variables mS which describe the

state of our Markov chain model. It will become clear that as the state variable mS

corresponding to the subset S becomes large, the requirement λ < C(S) becomes

a dominant constraint.

The network operates in the following manner: At every transmission opportu-

nity for a node, that node randomly chooses one of the packets in its buffer to

transmit. If the buffer is empty, then that transmission opportunity is lost. Only

when acknowledgment from the final destination d is received will a node remove a

packet from its buffer; therefore in general there are multiple copies of each packet

in the network.

Theorem 3.3.1. Under this randomized transmission strategy, all queues in a

wireless erasure network with feedback are stable as long as λ < C(S) for all S ∈ S.

At first glance, this randomized strategy seems unnecessarily wasteful. Consider

a network which is a simple serial line of queues. In this case, it is obvious that

an optimal strategy, when link-level feedback is available, is to stop attempting to

transmit a packet (and remove it from one’s queue) as soon as it is successfully

received at the next queue down the line. Leaving a successfully transmitted packet

in the queue could result in the retransmission of that packet, possibly wasting a

transmission opportunity that could be put to better use sending a new packet.

However, the randomization is crucially important in achieving the minimum-

cut value for this network and for a general network. To achieve the min-cut, it is

essential that all transmitters on the min-cut boundary transmit packets at almost

every channel use and that these packets be almost always distinct. As the input

rate λ increases, the min-cut slowly becomes the bottleneck of the network and

the queues on its boundary will grow large. This will ensure that each transmitter

always has a packet to transmit with high probability. The randomization in

packet transmission guarantees that for such long queues the probability that two

transmitters along the min-cut transmit the same packet is very low. Deterministic

strategies, such as FIFO for example, cannot guarantee this without coordination,
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and so the randomized strategy is essential to achieving the optimal throughput

in a completely decentralized manner.

In the line network in particular, edges which are not the minimum cut can

afford to retransmit a certain number of packets, since they have extra capacity.

In fact, edges which lie downstream of the minimum cut edge will have relatively

short queue lengths (compared to the queues upstream of the minimum cut edge)

since they can remove packets from their queue at a faster rate than those packets

can arrive across the minimum cut edge.

All queues upstream of the minimum cut, however, will have a relatively large

number of packets. If many packets are transmitted multiple times across the

minimum-cut edge, then the queue length at that edge will grow large. However,

as the queue length grows large (with new arrivals), the probability of picking a

“useless” packet will decrease as most of the packets in the queue have not yet been

successfully sent. This unwanted probability will be made as arbitrarily small as

required (depending on the ratio between λ and the minimum µ) as the queue

length grows.

Note that strategies such as the one in [19] implement an algorithm to assure that

there is only one copy of each packet in the network at a time. Such strategies nec-

essarily require some amount of link-level feedback and inter-node communication

to guarantee the single copy, under the broadcast nature of the wireless medium.

The strategy of this work eliminates the need for any additional intra-network

communication, other than the single feedback acknowledgment.

3.4 Proof Preliminaries

3.4.1 Notation and Description of Markov Chain Model

Before formally beginning the proof of Theorem 3.3.1, some additional notation

must be defined.

The subset S has already been defined to be an element of S, which is essentially

the power-set of n. Precisely, S differs the power-set of n only in that all S ∈ S
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always include the source node s and never include destination node d. Equiva-

lently, each element S can represent an index in the set {0, 1, 2, ..., 2n − 1}. With

this notion, the length-n binary expansion of S indicates which of the n nodes are

contained within the subset S. This yields a one-to-one correspondence between

subsets, cut-sets, and indices, all represented by the overloaded notation S.

A continuous time Markov chain model is used to describe the state of the

queuing network. Transitions between states will occur when one of three different

types of events happen in the network:

• A new packet is received (at rate λ) by the source node s.

• A packet is successfully transmitted from some node i in the system to some

subset of the receivers.

• A packet is successfully received by the the destination node d and therefore

exits the network.

By the asynchronous, continuous time model of the network, no two of these events

can occur simultaneously.

In the n = 1 three node network, the size of the buffers at the source node s and

the intermediate node 1 are sufficient to describe any state of the system. There

must be more packets at the source node s than at the intermediate node 1 at

any point in time. By the given network operation protocol, no packet is deleted

from a queue until it reaches the final destination, so that if a packet is present

anywhere within the system, it must be present at the source node s.

One option for the state variable of the system is to use q = (q(s), q(1)), repre-

senting the lengths of the queues at source and relay nodes respectively. This nota-

tion has the disadvantage that there would exist constraints such as “the number of

packets at 1 must be smaller than the number of packets at s”, i.e. q(s) ≥ q(1), on

the state space. To eliminate the need for such constraints, consider an alternate

notation to describe the system state.

46



Let m1 be the number of packets which appear at both the nodes s and 1. Let

m0 be the number of packets which appear at the source node uniquely. Then the

source node has a total of m0 + m1 packets, while the relay node has exactly m1

packets in its buffer.

This state description can be generalized to an n+2 node network. The Markov

chain describing the system state is a vector m with 2n dimensions:

m = (m0,m1, ...,mS, ...,m2n−1) (3.2)

The dimensions of the state vector m are indexed by the subsets S ∈ S. The

value mS is the number of packets which appear at every node i ∈ S and at no

node j ∈ SC . Therefore, the number of packets q(i) which appear any node i 6= s, d

in the network is a function of m. Let

Si =
{

S ∈ S|the ith-least significant bit in the binary expansion of S is a 1
}

.

Then

q(i) =
∑

S∈Si

mS,

while the destination node d retains no buffer, and the source node s has

q(s) =
∑

S∈S

mS

packets in its buffer.

Figure 3.1 illustrates the queue lengths for a network with n = 2, using the

binary expansion of the S indices.

3.4.2 Markov Chain Evolution - Transition Model

To understand the evolution of the Markov chain model describing the state m

of the queuing system, first take an example of the network where n = 1.

Successful transmission events can cause three different kinds of transitions to

the state vector m = (m0,m1).
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q(2) = m10 + m11

q(1) = m01 + m11

d

2

1

q(s) = m00 + m01 + m10 + m11

s

Figure 3.1: Relationship between queue lengths and state for the case with two
relay nodes

d

εs1
ε1d

εsd
q(s) = m0 + m1

q(1) = m1

ddds

1

Figure 3.2: A general n = 1 wireless erasure network.

• There is an exogenous arrival to the system. In this case, the source node

receives a new packet; the source is therefore the only node in the system

which has that particular packet in its buffer. Thus, the value of m0 is

increased by 1.

• A packet at the source node s or the relay node 1 can be successfully received

by the destination d, and therefore flushed from the network. If this packet

was transmitted by the source, it may have come from either the set of m0

packets (with probability m0/ (m0 + m1)) or from the set of m1 packets (with

probability m1/ (m0 + m1)). In this case, the appropriate variable m0 or m1

would decrease by 1. If this packet was transmitter by the relay node 1, then

by definition it must have been one of the m1 packets at both the source and

the relay, so m1 would decrease by 1.

• If the transmitter selects a packet from the set of m0 packets, and that

packet is successfully received by node 1, but not by the receiver, then that
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particular packet would now be in both nodes’ queues. In that case, we

have a transition in which m0 decreases by 1 (there is one less packet which

is unique to node 1) and m1 increases by 1 (there is one additional packet

which is located at both the source node s and the relay node 1.)

Each of these possible transitions and their individual rates are illustrated in Figure

3.3.

(m0,m1 − 1)

(m0 + 1,m1)

(m0 − 1,m1 + 1)

(m0 − 1,m1)

λ
(m0,m1)

µs1εsd
m0

m0+m1

µ1d + µsd
m1

m0+m1
µsd

m0

m0+m1

Figure 3.3: Possible transitions and transition rates from a state (m0,m1) in the
n = 1 wireless erasure network.

In general, a network with n relay nodes has these same three kinds of transitions:

• A packet arrives at the source node, with rate λ. In this case, m0 increases

by 1.

• A packet (which exists in the subset S1 of nodes) exits the system from some

node i, with rate
∑

i∈S1

µid
mS1

q(i)
.

Here, mS1 decreases by 1.

• A packet (which exists in the subset S1) transmitted at some node i is suc-

cessfully received at some subset of possible receiver nodes, at least one of

which did not previously have that particular packet in its buffer. In this case,
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let S2 be the new subset of nodes which have this packet. This constrains

S1 ⊂ S2, and this occurs with rate

∑

i∈S1





∏

j∈S2/S1

µij

∏

j /∈S2

εij





mS1

q(i)
.

Here, mS1 decreases by 1 while mS2 increases by 1. It is important to note

that in this kind of transition, the subset S2 whose variable mS2 increases

must always be a superset of the subset S1 whose variable mS1 decreases.

3.4.3 Queue Stability and Foster’s Theorem

We desire to show that, for any arrival rate λ < minS∈S C(S), all the queues in

the network are stable. We first present a review of Foster’s Theorem, which is the

main proof mechanism[20].

Theorem 3.4.1. Foster’s Theorem. Let the transition matrix P on the countable

state space M be irreducible and suppose there exists a function V : M → R such

that infm V (m) > −∞ and

∑

k∈M

pmkV (k) < ∞ for all m ∈ F

∑

k∈M

pmkV (k) < V (m) − δ for all m /∈ F

for some finite set F and some δ > 0. Then the corresponding homogeneous

Markov chain is positive recurrent.

Intuitively, the theorem states that as long as there is a Lyapunov function which

is on average decreasing, then the value of that function cannot go to infinity with

increasing time.

3.5 Proof for the Case n = 1

This section contains a demonstration of the stability proof for the simplest

network, the case where n = 1, illustrated in Figure 3.2. Note that for this
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particular network, the cut-set bound evaluates to

min (1 − εs1εsd, 1 − ε1d + 1 − εsd)

Lemma 3.5.1. The network illustrated in Figure 3.2 is stable for

λ <
N

N + 1

1

1 + δ
min (1 − εs1εsd, 1 − ε1d + 1 − εsd)

for any fixed N > 0 and δ > 0.

By choosing N >> 1 and δ << 1 appropriately, for any λ less than the cut-set

bound, the randomized transmission policy with feedback stabilizes all the network

queues.

Proof. Consider the Lyapunov function

V (m0,m1) = N (1 + δ)m0 + (1 + δ)m0+m1 . (3.3)

This Lyapunov function is “rewarded” (i.e. decreases) when m0 decreases and

penalized when m0 increases. When a packet is received at the relay node, the

function is rewarded (while m1 increases, m0 simultaneously decreases) and when

a packet leaves the system (i.e. m1 decreases) the function is also rewarded.

We identify three different cases to study. These cases arise first, because several

state transitions in the Markov chain of Figure 3.3 become unavailable in certain

states (for example, when m0 = 0 a packet cannot transition from the subset m0 to

the subset m1). Secondly, some of the cases individually give rise to the required

cut-set constraints on λ that the cut-set bound requires.

• Case 1: When m0 = 0 and m1 > 0.

• Case 2: When m0 > 0 and m1 = 0.

• Case 3: When both m0 > 0 and m1 > 0.

As previously stated, when one of the variables in the state description m is equal

to zero, one or more transitions from the state transition Figure 3.3 become un-

available.
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3.5.1 Case 1 : m0 = 0

Evaluate the expected change in the value of the Lyapunov function V (0,m1) to

determine when it is bounded away from zero:

λ (V (1,m1) − V (0,m1)) + (µ1d + µsd) (V (0,m1 − 1) − V (0,m1)) < 0

λ
(

N(1 + δ)1 + (1 + δ)1+m1 − N(1 + δ)0 − (1 + δ)m1
)

+ (µ1d + µsd)
(

N(1 + δ)0 + (1 + δ)m1−1 − N(1 + δ)0 − (1 + δ)m1
)

< 0

λ (Nδ + (1 + δ)m1(1 + δ − 1)) + (µ1d + µsd) (1 + δ)m1−1 (1 − (1 + δ)) < 0

λ (N + (1 + δ)m1) < (µ1d + µsd) (1 + δ)m1−1

λ < (µ1d + µsd)
(1 + δ)m1−1

(1 + δ)m1 + N

The first line represents the change in Lyapunov function for all possible state

transitions from the state m = (0,m1), weighted by the appropriate rates to cal-

culate the expectation. The right hand side of the final inequality approaches as

arbitrarily close to (µ1d + µsd)
1

1+δ
as desired for sufficiently large m1. That is, for

any given λ < (µ1d +µsd)
1

1+δ
, there exists a finite m̃1 such that the expected value

of the Lyapunov function decreases for states m = (0,m1) for all m1 > m̃1.

Note that for this case, one of the two cut-set bounds on λ is obtained.

3.5.2 Case 2 : m1 = 0

For m = (m0, 0), Figure 3.3 indicates that we desire

λ (V (m0 + 1, 0) − V (m0, 0))

+ µsd (V (m0 − 1, 0) − V (m0, 0)) + µs1εsd (V (m0 − 1, 1) − V (m0, 0)) < 0

λ (N(1 + δ)m0 + (1 + δ)m0) < µsd

(

N(1 + δ)m0−1 + (1 + δ)m0−1
)

+ µs1εsdN(1 + δ)m0−1

λ(N + 1)(1 + δ) < µsdεsd(N + 1) + µs1εsdN

λ < µsd
1

1 + δ
+ µs1

N

N + 1

1

1 + δ

As long as

λ < (1 − εsd + εsd(1 − εs1))
N

N + 1

1

1 + δ
= (1 − εsdεs1)

N

N + 1

1

1 + δ
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then the expected value of the Lyapunov function decreases for all states of the

form m = (m0, 0).

3.5.3 Case 3 : m0,m1 > 0

All of the transitions in Figure 3.3 are possible from the state m = (m0,m1).

λ(V (m0 + 1,m1) − V (m0,m1))

+

(

µ1d + µsd
m1

m0 + m1

)

(V (m0,m1 − 1) − V (m0,m1))

+

(

µsd
m0

m0 + m1

)

(V (m0 − 1,m1) − V (m0,m1))

+

(

µs1εsd
m0

m0 + m1

)

(V (m0 − 1,m1 + 1) − V (m0,m1)) < 0

λN(1 + δ)m0 + (1 + δ)m0+m1

< (µ1d + µsd) (1 + δ)m0+m1−1

+ µsd
m0

m0 + m1

N(1 + δ)m0−1 + (1 + δ)m0+m1−1

+ µs1εsd
m0

m0 + m1

N(1 + δ)m0−1

λ
(

N(1 + δ) + (1 + δ)m1+1
)

< (µ1d + µsd) (1 + δ)m1 + (1 − εs1εsd)
m0

m0 + m1

N

By inspection, note that regardless of the value of m0, an m∗
1 can be chosen suf-

ficiently large such that if λ < (µs1 + µsd)
1

1+δ
, the expected value of the Lyapunov

function is decreasing for all states with m1 > m∗
1. Likewise, for any fixed m1,

choose m0 > Nm1, and if λ < min(1− εs1εsd, µ1d +µsd), then the expected value of

the Lyapunov function is decreasing. Thus, there are only a finite number of states

where the expected value of Lyapunov function is increasing, and the requirements

of Foster’s Theorem are fulfilled.

3.6 Proof for General Network

Recall Theorem 3.3.1, which we desire to prove:
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Theorem 1: Under the given randomized transmission strategy, all queues in a

wireless erasure network with feedback are stable as long as λ < C(S) for all S ∈ S.

For a general wireless erasure network with n+2 nodes, recall the Markov chain

describing the system evolution described in Section 3.4.1. Foster’s Theorem is

utilized to demonstrate the stability of this Markov chain for a general n + 2 node

network.

3.6.1 General Lyapunov Function

For a n + 2 node network, define the Lyapunov function V (m) as

V (m) =
∑

S∈S

N|S| (1 + δ)
∑

S′⊆S mS′ (3.4)

where the N|S| and δ are fixed constants. The N|S| should jointly satisfy

N|S| > N
∑

S′⊃S

N|S′|. (3.5)

To form some intuition on the particular choice of Equation (3.4), consider the

three kinds of transitions that can occur in our Markov Chain. When a packet

arrives in the system, m0 increases by 1, and the value of the Lyapunov function

increases. Whenever any other transition occurs, the system is, in some sense,

advancing a packet toward the final destination, and we would like the value of

the Lyapunov function to decrease. This can happen in two ways:

• A packet which appears in the subset S1 of nodes can exit the system. Then,

mS1 will decrease, and all of the terms in the summation corresponding to

S ⊇ S1 will decrease in value. (i.e., those terms which contain the factor

(1 + δ)mS1 ). The Lyapunov function therefore decreases in value.

• A packet which appears in the subset S1 of nodes will arrive at some other

nodes, and then will appear in the subset S2 ⊃ S1. Then, all the terms in the

summation corresponding to S such that S1 ⊆ S, but S2 * S, will decrease
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in value (i.e. those which contain the factor (1 + δ)mS1 but not (1 + δ)mS2 ).

However, those which contain both the factor (1 + δ)mS1 and (1 + δ)mS2 will

remain unchanged (since mS1 decreases by 1 and mS2 increases by 1).

3.6.2 Proof

The proof of Theorem 3.3.1 follows directly from the following lemma:

Lemma 3.6.1. The expected value of the function V (m), defined in Equation (3.4),

is increasing only on a finite number of states whenever λ < N
N+1

1
(1+δ)2

minS∈S C(S).

Thus, for any λ < minS∈S C(S), we can find an appropriate Lyapunov function

to show the system’s stability by choosing N sufficiently large and δ sufficiently

small.

Proof. First fix S ∈ S, and examine the term in the main summation of Equation

(3.4) corresponding that S. Then, determine which transitions of the Markov chain

effect the value of that term.

Let

VS(m) = N|S| (1 + δ)
∑

S′⊆S mS′ . (3.6)

An arrival to the system effects every VS, since every term VS contains m0. Thus

∀S ∈ S,

VS(m0 + 1,m1, ...) − VS(m0,m1, ...)

= N|S| (1 + δ)
∑

S′⊆S mS′+1 − N|S| (1 + δ)
∑

S′⊆S mS′

= δN|S| (1 + δ)
∑

S′⊆S mS′ (3.7)

These events occur at rate λ.

If a packet appearing in cut-set S1 departs the system, precisely the terms VS(m)

when S ⊇ S1 will decrease, since they are the only terms in the Lyapunov function
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Equation (3.4) which contain mS1 . For S ⊇ S1,

VS(m0,m1, ...,mS1 − 1, ...) − VS(m0,m1, ...)

= N|S| (1 + δ)
∑

S′⊆S mS′−1 − N|S| (1 + δ)
∑

S′⊆S mS′

= −δN|S| (1 + δ)
∑

S′⊆S mS′−1 . (3.8)

These events will occur when any node i ∈ S1 transmits a packet in S1 which is

successfully received by the destination node d. Given an opportunity to transmit,

the node i chooses a packet in S1 with probability
mS1

q(i)
, and the packet is success-

fully received at the destination with probability µid. Thus, packets from S1 will

leave the system with rate
∑

i∈S1

mS1

q(i)
µid (3.9)

The final possible transition type occurs when a packet located at the nodes in

subset S1 is successfully received at some set of nodes which did not previously

have that packet, but not the destination d, resulting in that packet being finally

in the subset S2 ⊃ S1. Thus mS1 will decrease by 1, and mS2 will increase by

1. The only terms VS(m) that will change are those containing mS1 but not mS2 .

Thus, for S such that S ⊇ S1 and S + S2,

VS(m0,m1, ...,mS1 − 1, ...,mS2 + 1, ...) − VS(m0,m1, ...)

= N|S| (1 + δ)
∑

S′⊆S mS′−1 − N|S| (1 + δ)
∑

S′⊆S mS′

= −δN|S| (1 + δ)
∑

S′⊆S mS′−1 . (3.10)

These events occur when any node i ∈ S1 transmits a packet in S1, and that packet

is successfully received by all the nodes j ∈ S2/S1, and not successful in reaching

nodes {j|j /∈ S2}, including the destination node d. The total rate of such events

is
∑

i∈S1

mS1

q(i)

∏

j∈S2/S1

µij

∏

j /∈S2

εij. (3.11)

The expected increase in the total Lyapunov function due to arrivals should be

less than the expected decrease due to departures and transitions on all but a finite
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number of state m. The sum of changes over all of the terms must therefore satisfy

λ
∑

S∈S

N|S| (1 + δ)
∑

S′⊆S mS′

<
∑

S∈S

∑

{(S1,S2)|S1⊂S2,S1⊆S,S2*S}





∑

i∈S1

mS1

q(i)

∏

j∈S2/S1

µij

∏

j /∈S2

εij



N|S| (1 + δ)
∑

S′⊆S mS′−1

+
∑

S∈S

∑

S1⊆S

(

∑

i∈S1

mS1

q(i)
µid

)

N|S| (1 + δ)
∑

S′⊆S mS′−1 (3.12)

In the second line of Equation (3.12), the first summation is over terms in the

Lyapunov function. The second summation is over transitions of the possible pairs

of S1 and S2 which will effect that particular term, and the third summation is

over nodes which could possibly transmit and create that transition. The final

terms of the second line represent the value of the change in that term VS(m).

Similarly, in the third line of Equation (3.12), the first summation is over the

terms of the Lyapunov function, and the second is over the possible departures

from the system which can effect the value of each term. Within the parentheses

is the rate of those departures, and the final terms again represent the value of the

change in the term VS(m).

Note that if q(i) = 0, that is, no packets are currently in the queue at node i,

then for any S such that i ∈ S, mS = 0. In this case, take

mS

q(i)
=

0

0
= 0

since this node cannot transmit any packets.

We must show that Equation (3.12) holds for all but a finite number of states

m. To begin, consider the states of the form m = (0, 0, ..., 0,mS′′ , 0, ..., 0), where

all but a single one of the 2n variables mS = 0. As in Section 3.5, each of these

states will provide the individual cut-set bounds on λ required for stability by the
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theorem. For m of this form, Equation (3.12) reduces to

λ
∑

S⊇S′′

N|S| (1 + δ)mS′′ + λ
∑

S+S′′

N|S|

<
∑

S⊇S′′

∑

{S2|S2⊃S′′,S2*S}





∑

i∈S′′

∏

j∈S2/S′′

µij

∏

j /∈S2

εij



N|S| (1 + δ)mS′′−1

+
∑

S⊇S′′

∑

i∈S′′

µidN|S| (1 + δ)mS′′−1 (3.13)

As long as N|S′′| is chosen such that

N|S′′| +
∑

S⊃S′′

N|S| < N|S′′|
N + 1

N

which is equivalent to the requirement of Equation (3.5).

We can replace Equation (3.13) with

λN|S′′|
N + 1

N
(1 + δ) + λ

∑

S+S′′

N|S| (1 + δ)−mS′′+1

<
∑

S2⊃S′′





∑

i∈S′′

∏

j∈S2/S′′

µij

∏

j /∈S2

εij



N|S′′|

+
∑

i∈S′′

µidN|S′′|. (3.14)

Because the left-hand side has been increased and the right-hand side has been

decreased, satisfying Equation (3.14) assures that Equation (3.13) holds.

Rearrange Equation (3.14) as

λ
N + 1

N
(1 + δ) + λ

1

N|S′′|

∑

S+S′′

N|S| (1 + δ)−mS′′+1

<
∑

i∈S′′



µid +
∑

S2⊃S′′





∏

j∈S2/S′′

µij

∏

j /∈S2

εij









=
∑

i∈S′′



1 − εid + εid

∑

S2⊃S′′





∏

j∈S2/S′′

µij

∏

{j|j /∈S2,j 6=d}
εij







 (3.15)
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and recognize that for any particular S2, the product in the inner parentheses

represents the probability that a packet transmitted from a particular node i re-

mains unerased at exactly the subset S2/S
′′ of possible receiver nodes. As S2 runs

over all possible supersets of S ′′ that contain at least one node, the cut-set bound

C(S ′′) is recovered by definition. Observe, for example, that if A = {1, 2, ..., n}
and 0 ≤ aj ≤ 1, then

∑

A1⊆A





∏

j∈A1

aj

∏

j /∈A1

(1 − aj)



 = 1 (3.16)

Choose mS′′ such that

∑

S+S′′

N|S| (1 + δ)−mS′′+1 <
N + 1

N
(1 + δ)2 − N + 1

N
(1 + δ)

and Equation (3.15) reduces to λ < N
N+1

1
(1+δ)2

C(S ′′).

Thus, it has been shown that for states of the form m = (0, 0, ..., 0,mS′′ , 0, ..., 0)

whenever λ < N
N+1

1
(1+δ)2

C(S ′′), there exists a m̃S′′ sufficiently large such that the

expected value of the Lyapunov function is decreasing for mS′′ > m̃S′′ . Each of

the required cut-set bounds on λ for all of the different cuts S ∈ S are obtained in

this manner.

It remains to show that there are only a finite number of general states m =

(m0,m1, ..., ,mS, , ...,m2n−1) where the expected value of the Lyapunov function is

increasing.

To do so, first examine the state variable m2n−1; that is, the variable counting

the number of packets which appear at every node in the system other than the

destination. We will show that there exists a finite m∗
2n−1 for which, as long as

m2n−1 > m∗
2n−1, regardless of the value of m0,m1, and every other state variable

up to m2n−2, the expected value of the Lyapunov function Equation (3.12) will be

decreasing.

Let Ŝ be the subset Ŝ ∈ S which contains all n relay nodes and the source node

s, i.e. the largest subset of the nodes. Also, let N|Ŝ| = 1. Equation (3.12) can be
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rewritten as

λ (1 + δ)mŜ+
∑

S′⊂Ŝ mS′ + λ
∑

S⊂Ŝ

N|S| (1 + δ)
∑

S′⊆S mS′

<
∑

S1⊆Ŝ

(

∑

i∈S1

mS1

q(i)
µid

)

(1 + δ)mŜ+
∑

S′⊂Ŝ mS′−1

+
∑

S⊂Ŝ

∑

S1⊆S

(

∑

i∈S1

mS1

q(i)
µid

)

N|S| (1 + δ)
∑

S′⊆S mS′−1 (3.17)

(by ignoring the second line of Equation (3.12) and breaking the third line into

two parts) since there can be no transitions from Ŝ to a larger subset. By dividing

Equation (3.17) through by

(1 + δ)mŜ+
∑

S′⊂Ŝ mS′−1 ,

increasing the second term on the left-hand side, and decreasing the right-hand

side by dropping the final term, the constraint

λ(1 + δ) + λ(1 + δ)1−mŜ

∑

S⊂Ŝ

N|S| (3.18)

<
∑

S1⊆Ŝ

∑

i∈S1

mS1

q(i)
µid

=
∑

i∈Ŝ

∑

{S1|i∈S1}

mS1

q(i)
µid =

∑

i∈Ŝ

µid = C(Ŝ) (3.19)

is obtained.

Therefore there exists a m∗
Ŝ

for which, for all states m with mŜ > m∗
Ŝ
, regardless

of the values of the other state variables, the expected value of the Lyapunov

function will be decreasing when λ < C(Ŝ) 1
(1+δ)2

.

Next, consider any set
ˆ̂
S which contains all but one of the n relay nodes. Define

Ci(S) = 1 −
∏

j /∈S

εij

for pairs (i, S) such that i ∈ S. Ci(S) represents the contribution to the cut-set

bound for the cut S from the node i ∈ S. Use the same logic as in Equations (3.15
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and 3.16) to note that for a fixed set S and fixed node i ∈ S,

∑

{(S1,S2)|S1⊂S2,S1⊆S,S2*S}





∑

i∈S1

mS1

q(i)

∏

j∈S2/S1

µij

∏

j /∈S2

εij



+
∑

S1⊆S

mS1

q(i)
µid

=
∑

{S1|S1⊆S,i∈S1}

mS1

q(i)
Ci(S).

Use this simplification to rewrite Equation (3.12) as

λ
∑

S∈S

N|S| (1 + δ)
∑

S′⊆S mS′

<
∑

S∈S

(

∑

i∈S

∑

{S1|S1⊆S,i∈S1} mS1Ci(S1)

q(i)

)

N|S| (1 + δ)
∑

S′⊆S mS′−1 (3.20)

and since whenever S1 ⊆ S, Ci(S1) > Ci(S), satisfying

λ
∑

S∈S

N|S| (1 + δ)
∑

S′⊆S mS′

<
∑

S∈S

(

∑

i∈S

∑

{S1|S1⊆S,i∈S1} mS1

q(i)
Ci(S)

)

N|S| (1 + δ)
∑

S′⊆S mS′−1 (3.21)

will assure that Equation (3.20) holds.

Assume that mŜ < m∗
Ŝ
. If m ˆ̂

S
> m∗

Ŝ
2n

δ
, it will be shown that Equation (3.21)

holds for any λ < N
N+1

1
(1+δ)2

minS∈S C(S).

There are two cases to consider:

• None of the mS other than m ˆ̂
S

are greater than m ˆ̂
S

δ
2n .

• At least one of the mS is greater than m ˆ̂
S

δ
2n .

In the first case, divide all the sets S into two classes: S1 = {S| ˆ̂S ⊆ S} and SC
1 .

For S ∈ S1,
∑

{S1|S1⊆S,i∈S1} mS1

q(i)
>

mS′′

mS′′ + δmS′′
=

1

1 + δ
,

so term by term of the outer summation of Equation (3.21), when λ < N
N+1

1
(1+δ)2

C(S),

the terms in the class S1 are satisfied.
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Now consider any of the terms in the class S ∈ SC
1 . Divide both sides of Equation

(3.21) by

msum = (1 + δ)
∑

S′⊆ ˆ̂
S

mS′−1

and note that msum is greater than the sum in the exponent of the (1 + δ) for any

the terms S ∈ SC
1 by more than m∗

Ŝ
. The contribution to the left hand side from

these terms becomes arbitrarily small, just as in Equation (3.18). Equation (3.21)

is thus satisfied when none of the mS other than m ˆ̂
S

are greater than m ˆ̂
S

1
2n .

In the case where at least one of the other mS is greater than m ˆ̂
S

δ
2n , define

SU =
⋃

{S|mS>m ˆ̂
S

δ
2n }

S

as the union of all these sets S. The same analysis holds from the above case:

For each term S ∈ S of Equation (3.21), either S ⊇ SU and the right hand side is

greater than a 1
1+δ

fraction of C(S), or the exponent of that term is more than m∗
Ŝ

less than the exponent of the SU term, and is thus inconsequential.

Define m∗
S so that whenever |S1| = |S2| − 1, m∗

S1
> m∗

S2

2n

δ
. The same arguments

already made are used inductively to show that as long as mS > m∗
S for at least

one S, then Equation (3.21) is satisfied.

3.7 Spatial Correlation of Dropped Packets

It is also possible to consider a model where the dropping of packets transmitted

from each transmitter i ∈ V are correlated events. That is, if the node i transmits

a packet, the probability that exactly the set W ⊆ V successfully receives that

packet can be considered to be p(i,W ). In the independent model used in the

majority of this chapter,

p(i,W ) =
∏

j∈W

µij

∏

j∈W C ,j 6=i

εij,
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and

∑

W∈S

p(i,W ) = 1

just as observed in Equation (3.16).

The cut-set bound for the S−SC cut can still be interpreted as the sum of rates

for which nodes in S can transmit and at least one node in SC will successfully

receive the packet:

C(S) =
∑

i∈S

∑

{W |W∩SC 6=∅}
p(i,W ). (3.22)

Replacing the transition probabilities in the Markov chain model with these p(i,W )

requires no substantive changes in the proof technique - the values of the cutset

bounds C(S) and the probabilities Ci(S) change accordingly, and the proof of

queue stability follows.

Allowing correlations across time for a single or multiple edges is a much different

problem. An entire new set layers of the Markov chain would be required, and the

whether the cut-set bound is achievable is still unknown in even the feedback-

free model of [2]. Because of the asynchronous nature of our model, this same

difficulty is encountered if it is desired to correlate erasures of packets from different

transmitters. Such events would be simultaneous in the slotted-time model, and

therefore are dealt with in [2], but would induce correlations over time in our

model.

3.8 Conclusion

In this chapter, we have demonstrated a parallel between the erasure channel

and a network of such channels: When acknowledgment feedback is available, there

exists a simple transmission strategy by which the information-theoretic capacity

(calculated by the cut-set bound) can be achieved for a unicast network without any

need for a coding scheme. We have described a novel randomized and decentralized
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strategy which requires only a surprisingly small amount of information about the

network (specifically, no knowledge whatsoever about the network topology) to

succeed in stabilizing the queues and achieving throughput optimality.
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Chapter 4

Secrecy Capacity

This chapter is joint work with Emina Soljanin, of Alcatel-Bell Labs, T. Charles

Clancy of the University of Maryland, and Andrew Mills, of the Computer Science

Department of the University of Texas at Austin.

4.1 Introduction

In this chapter, we are concerned with the secrecy capacity of unicast communi-

cations over broadcast erasure networks with no interference in the presence of a

wiretapper that has access to a certain number of network links of his choice. The

key difference in this section from much prior work on secrecy capacity is that the

model incorporates the broadcast nature of the wireless medium - the work in [21]

studies the secrecy capacity of a broadcast channel, rather than that of a network of

such channels. The wireless erasure network model captures the physical nature of

the medium to a large extent, provides key insights into viable network protocols,

and is much more tractable than the more general network information-theoretic

setting that also includes interference. As we have pointed out before, the capacity

of wireless erasure networks has been studied in significant depth, and for multiple

settings it has been characterized in closed form [2, 18, 22, 23].

Just as the capacity of networks has been analyzed in different domains using

different assumptions and notions of network throughput, secure communication

over networks has been studied using multiple distinct assumptions and notions of

secrecy. In particular, perfect secrecy capacity for the general class of information-

theoretic channels has seen a resurgence of interest in recent years [21, 24, 25].

For a single source multicast networks implementing network coding, the problem
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of making a linear network code information-theoretically secure in the presence

of a wiretap adversary that can look at a bounded number, say k, of network

edges was first studied by Cai and Yeung in [26]. They considered directed (V,E)

graphs and demonstrated the existence of a code over an alphabet with at least
(|E|

k

)

elements which can support a secure multicast rate of up to n − k. They

also showed that such codes can be designed in O(
(|E|

k

)

) steps. The required edge

bandwidth and the secure code design complexity are main drawbacks of this

pioneering work. Feldman et al. derived trade-offs between security, code alphabet

size, and multicast rate of secure linear network coding schemes in [27], by using

ideas from secret sharing and abstracting network topology. El Rouayheb and

Soljanin showed that network security can be achieved by using the Ozarow-Wyner

approach of coset coding at the source on top of the implemented network code [28].

Weakly secure network coding (which insures that only useless information rather

than none is revealed to the adversary) was studied by Bhattad and Narayanan in

[29], and practical schemes are missing in this case as well. Another approach was

taken by Jain in [30] who obtained security by merely exploiting the topology of

the network in question.

In this chapter, we deal with wireless erasure networks in an attempt to find

a network generalization of the information-theoretic perfect secrecy analysis for

the Wyner wiretap channel model [24] to the capacitated network secrecy capacity

for unicast networks. In particular, we determine achievable strategies and upper

bounds on secrecy capacity, which match for a class of broadcast-constrained era-

sure networks. We will also present example networks which fall outside of this

class, demonstrating that the intuitive upper and lower bounds we describe are

not sufficient to characterize the secrecy capacity of wireless erasure networks in

general. Finding a general description of the secrecy capacity of wireless erasure

networks may indeed be a problem with an elusive solution.
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4.2 System Model

The network under investigation is a single-source, single-destination, lossy, wire-

less packet network, modeled as a directed acyclic graph (V,E) with nodes V and

communication links E. An example is illustrated in Figure 4.2. The “wireless”

component of the network is manifested in a broadcast constraint; that is, each

transmitter must send a single, identical packet on every communication link exit-

ing that node in any given time-slot. These broadcasted packets are all taken to be

symbols of a finite field transmit alphabet GF (q) for some (large) q. The network

is “lossy” because each edge in the graph experiences packet drops, or equivalently,

symbol erasures. These erasures are independent across both time and space, and

associated with each directed edge (i, j) between nodes i and j is the value of that

erasure probability, denoted by εij. We assume that each receiver obtains all of

the symbols along its incoming edges without interference. The capacity of this

non wire-tapped network model was first given in [2] (and its achievablilty alter-

natively demonstrated by a random linear network coding scheme in in [18]). We

again provide the expression for convenience:

C = min
S

lg q
∑

i∈S



1 −
∏

j∈SC

εij



 (4.1)

where S is a vertex-cut. Specifically, S is any subset of the nodes which contains

the source and not the destination. We now extend the work on this notion of a

lossy wireless network to demonstrate its secrecy capacity.

Source
Dest.

Figure 4.1: System Model - Dotted Edges Represent an Example Edge Cut-set.
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Along the lines of the model in [26], the eavesdropper has access to any k edges

of this network, in the sense that it can observe the outputs of each edge in the

network. Specifically, if the packet transmitted along any wire-tapped edge is

erased (or dropped), the wire-tapper as well as the receiving node fails to receive

it. Our objective is to ensure perfect secrecy of the message in the network from

the wire-tapper, defined in the sense of [24]. Specifically, we wish to determine

the highest rate possible such that the wire-tapper gains no information about

the message being communicated, and that the mutual information between the

wire-tapper’s information and the source’s intended message is zero.

Let s ∈ V denote the source and d ∈ V the destination. We define an edge cut

as any set T ⊂ E such that there does not exist a path from s to d in E \ T . We

assume a path from s to d exists in E, so a cut must be nonempty. Also, note

that E itself defines a cut in this network. The definition of an edge cut in this

chapter is distinct from that used in [2] and the rest of this document, which is a

vertex-based definition of a “cut” in the network.

Letting A ⊆ E be a set of edges of the graph, we define a size m × n incidence

matrix. The number of columns n will be equal to the number of distinct parent

vertexes of the edges in A. That is, n = |IA|, where IA = {i|(i, j) ∈ A}. The

number of rows m in a network with no interference will be equal to the number

of edges in A, that is m = |A|. For each time slot t, the incidence matrix GA(t)

will contain a 1 in each row corresponding to an edge whose symbol was not

dropped, in the column corresponding to the corresponding parent vertex. Let

Xi denote the symbol transmitted from node i, Yj,i denote the symbol received at

node j which had been transmitted from node i, and γij be independent Bernoulli

random variables with P [γij = 0] = εij. Then, for the network displayed in Figure

4.2, the matrix




Y2,s

Y2,1

Yd,1



 =





γs2 0
0 γ12

0 γ1d





[

Xs

X1

]

defines GA for the cut A = {(s, 2), (1, 2), (1, d)}. Note that when A is chosen to

be the set of edges crossed by the vertex min-cut, then the expected value of GA
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corresponds precisely to the value of the min-cut capacity given in Equation (4.1).

d

εs1

1

2

s ε12

ε1d

εs2εs2
ε2d

Figure 4.2: Example Network and Edge Cut Set

4.3 Upper Bound on Secrecy Capacity

Example: Consider for a moment a simple unicast scenario shown in Fig. 4.4.

Assume that the source is directly connected to the destination through n network

ds
ε2

ε3

ε1

εn

Figure 4.3: Example Network and Edge Cut Set

Figure 4.4: At the source node, k information symbols are encoded into h coded
symbols, which are then simultaneously transmitted to the destination.

links where link i, 1 ≤ i ≤ n has erasure rate εi, and that any k of these edges can

be accessed by a wiretapper. If we assume that all erasure rates are equal, that

is ε , ε1 = . . . εn, then this network unicast is equivalent to the Wyner wiretap

channel model in which the intended user observes the output of an erasure channel
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with the erasure rate εn, and the wiretapper observes the output of a degraded

channel with the erasure rate εk.

Outer Bound: Let S be any set of k edges in the network. Let T : S ⊆ T ⊆ E

be a cut in the network. Then, the secrecy capacity of the network is bounded by:

C ≤ lg q (E[rank(HT )] − E[rank(GS)]) (4.2)

where HT is the incidence matrix of the cut T and GS the incidence matrix of S.

Specifically, secrecy capacity for the network is upper bounded by:

C ≤ lg q min
T : T is a cut

[

E[rank(HT )] − max
S

E[rank(GS)]
]

In the notation of [2], this expression is equivalent to

C ≤ min
A

lg q
∑

i∈A





∏

j:j∈AC ,(i,j)∈S

εij







1 −
∏

j:j∈AC ,(i,j)/∈S

εij



 (4.3)

where, to be clear, A refers to a vertex cut and S refers to the set of edges to which

the wire-tapper has access.

Proof: Wire-tappers are placed on any k edges of the graph (V,E), forming the

subset S ⊆ E. Consider any edge cut, and if necessary, supplement it with the

edges in S to form the edge cut T ⊇ S with inputs Xn(T ) and outputs Y n(T ).

Intuitively, in this setting, our goal is to upper bound the secrecy capacity of the

network by a cutset bound: The amount of information that the receiver can get

while the wire-tapper still has no information about the source should be no more

than the rate that the network can get across any cut, minus the amount that the

wire-tapper can see on that same cut.
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nRe

(a)

≤ H(W |Y (S)n)

(b)

≤ H(W |Y (S)n) − H(W |Y (T )n) + nεn

= I(W ; Y (T )n) − I(W ; Y (S)n) + nεn

= H(Y (T )n) − H(Y (T )n|W ) − H(Y (S)n)

+ H(Y (S)n|W ) + nεn

(c)
= H(Y (R)n|Y (S)n) − H(Y (R)n|W,Y (S)n) + nεn

≤ H(Y (R)n|Y (S)n)

− H(Y (R)n|X(T )n,W, Y (S)n) + nεn

≤
n
∑

i=1

(H(Y (R)i|Y (S)i)

− H(Y (R)i|X(T )n,W, Y (S)n, Y (R)i−1))

(d)
=

n
∑

i=1

(H(Y (R)i|Y (S)i) − H(Y (R)i|X(T )i, Y (S)i))

=
n
∑

i=1

(I(X(T )i; Y (T )i) − I(X(T )i; Y (S)i))

(e)

≤
n
∑

i=1

(I(X(T )i; Y (T )i) − I(X(S)i; Y (S)i))

≤
n
∑

i=1

max
p(X(T )i)

(I(X(T )i; Y (T )i) − I(X(S)i; Y (S)i))

= n max
p(X(T ))

(I(X(T ); Y (T )) − I(X(S); Y (S)))

where

(a) follows from the definition of secrecy rate

(b) follows from Fano’s inequality [31]. All the information must be retrieved from

the final destination node with high probability, and the Data Processing Inequal-

ity applies since W → T → Yd is a Markov Chain.

In (c), R is defined as T \ S so that X(T ) = (X(R), X(S)) (d) follows from the
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fact that, given X(T )i, Y (S)i is conditionally independent of W and Y (S)i−1.

(e) follows because X(S)i is a degraded version of X(T )i.

Intuitively, for every cut T ⊇ S, The network behaves as an information-theoretic

wiretap channel with a (physically) degraded wire-tapper. Note that in the (sym-

metric) erasure network setting, it is easy to show that the optimum input distri-

bution is uniform (straightforward extension of result in [2]), and thus the upper

bound reduces to the difference between the max-rate across the cut T and the

max-rate across the subset of nodes S. From [16], the rate across any subset of

nodes is given by the expected rank of its incidence matrix. This gives us the

result. This converse is general, and holds for some additional models of erasure

networks. Specifically, in a network with additive finite-field interference at the

receivers (for example, [13] or [16], or an extension of [32]) then the cut-capacity

still evaluates to the expected rank of the incidence matrix.

4.4 Achievability for a Special Class

In this section, we show that the outer bound given by (4.2) can be achieved un-

der certain conditions. Specifically, let T ∗ be the cut that minimizes lg qE(rank(HT ∗)),

i.e, T ∗ is the cut that minimizes the (non-wiretap) capacity of the network. Let S∗

be a k−edge subset of T ∗ such that the upper bound given by (4.2) is minimized

for T ∗. 1 Define

C∗ , lg qE(rank(HT ∗)) − E(rank(GS∗))

Our goal in this section is to show that in a broadcast-constrained erasure net-

work, if T ∗∗ is the minimizing cut for (4.2) and T ∗∗ = T ∗, then C∗ is the secrecy

capacity of the network.

Achievability: Given that the system has k wire-tappers placed arbitrarily on

the cut T ∗ as defined above, a (linear) encoding scheme exists such that C∗ is

1Note that T
∗ may not be the minimizing cut for (4.2) of this graph.
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achievable with a perfect secrecy constraint.

Proof: The key idea, similar to that in [27] and [33], is to send information

packets and “noise” packets such that the legitimate receiver can decode both

the information and noise packets, while the wire-tapper can only decode the

“noise” packets. The noise packets are independent of information packets thus

guaranteeing perfect secrecy.

Note that two coding schemes exist that achieve the cut-set upper bound on

capacity of broadcast-constrained erasure networks (in a non-wiretap setting). The

first is based on random coding arguments in [2], while the second is based on

random linear network coding in [2, 13, 18]. Note that in [2], but not necessarily in

[13, 18], it is assumed that the exact erasure locations at the intermediate nodes

is known to the receiver. In the rest of this document, we will utilize the linear

network coding framework for coding at the intermediate nodes in [2]. Note that

our proof for secrecy capacity can be modified to the case when random network

coding is used [2].

Let n be a positive integer. Define m , nE(rank(HT ∗)) and l , nE(rank(GS∗)).

Then C∗ = m−l
n

lg q. Intuitively, we show that if m un-erased packets reach the

legitimate destination and l un-erased packets reach the wire-tapper, then there

exists a coding scheme that achieves C∗.

The encoding scheme is as follows: A transmit vector of length m packets for

some ε > 0 is constructed consisting of (m− l − nε) information (or data) packets

and (l + nε) noise packets that are independent of the data source and chosen

uniformly from GF (q). We refer to this as the vector xm, with a(m−l−nε) denoting

data packets, bl+nε denoting “noise” packets, and xm = [a(m−l−nε) b(l+nε)].

A linear encoding scheme is used at each node, which results in n × m transfer

matrices Mn and Fn for the legitimate destination and the wire-tapper respectively.

By the weak law of large numbers (which results in the notion of strong typicality

as in [31]), the received vector at the legitimate destination is at least an (m−nε)-

sized subset of the n-length vector Mnxm with probability greater than 1 − δ.
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Similarly, the wire-tapper observes at most an (l + nε)-ary subset of the vector

Fnx
m with high probability.

In [2, Section 7-A], the authors show that averaging over all matrices, the average

probability of error in decoding can be made less than ε. Therefore, the information

vector am−l−nε is received successfully with high probability at the destination

allowing for a rate arbitrarily close to C∗ − ε.

Let the (l + nε)-ary subset of the vector Fnx
m received at the wire-tapper with

high probability be denoted as:

zl+nε , Fl+nεx
m

Define

ẑ(l+nε) , F̂(l+nε)b
(l+nε)

where F̂(l+nε) is a (l +nε)× (l +nε) matrix of the last (l +nε) columns from Fl+nε.

A key step is for us to choose coefficients for the network (i.e., one particular

Mn and Fn) such that:

• a(m−l−nε) is decodable at the legitimate destination with probability of error

arbitrarily small, and

• F̂l+nε is invertible.

Note that a random choice in coefficients ensures both of these simultaneously

with high probability [2, 34], and therefore a particular set of Mn and Fn exist that

satisfy these requirements.

By Fano’s inequality [31], the information recovered by the wire-tapper is upper

bounded by:
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I(am−l−nε; zl+nε) = H(zl+nε) − H(zl+nε|am−l−nε)
(a)
= H(zl+nε) − H(ẑl+nε|am−l−nε)
(b)
= H(zl+nε) − H(ẑl+nε)
(c)
= H(zl+nε) − (l + nε) lg q
(d)

≤ (l + nε) lg q − (l + nε) lg q
= 0

where:

(a) follows from the definition of ẑ(l+nε) and the property of entropy.

(b) follows from the independence between a(m−l−nε) and b(l+nε).

(c) follows from the invertibility of F̂(l+nε), and that b(l+nε) are i.i.d. and uniform.

Or in essence, no information is recovered by the wire-tapper. This concludes the

achievability proof.

4.5 Counter-Example to the Upper Bound

Counter to the authors’ intuitive expectations, the upper bound of Section 4.3 is

not tight in general. This section provides a counter example demonstrating this

fact.

s

ε = .8

ε = .5

r
ε = .4

d

ε = 1

Figure 4.5: Upper Bound Counter Example

Consider the three node network shown in Figure 4.5. This network has two

independent edges which connect the source to the destination. The wiretapper

may choose any one edge to wiretap, but it is clear that the set consisting of the
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edge S = {sr} is the most favorable. Note that this set S does not lie in the

minimum cut edge set of the original network Tmin = {rd, sd1, sd2}, whose cut

value is 1 − (.8)(.5) = .6.

We evaluate along the cut T = {sr, sd1, sd2},

E[rank(HT )] − E[rank(GS)] = (1 − (.4)(.5)(.8)) − .6 = .24

to find the minimum of the outerbounds on capacity from Equation 2.13. However,

the actual secrecy capacity of this network is equal to zero.

The wiretapper receives the data transmitted by the source, with a loss of 40%

of all the symbols. The destination will also receive the data transmitter by the

source, again with a loss of 40% of the symbols. Therefore, whatever the desti-

nation d can decode, the wiretapper will also be able to decode, and there is no

secrecy capacity.

4.6 An Alternate Achievability and Counter-Example

We had conjectured that the capacity described as in Equation (4.3), was in all

cases achievable, through a strategy more standard to the information-theoretic

community, that of binning [21]. Intuitively, the strategy is equivalent to that

described in Section 4.4: Provide more random, noisy information to the destina-

tion, in an amount equivalent to the amount of information able to be decoded by

any wiretapper, so that the desired message remains completely unknown. Specif-

ically, operate the network as follows: Follow the coding strategy of [2], creating

codebooks for the 2nRtot messages using n channel uses, for any sufficiently large

n and Rtot less than the untapped network’s capacity. Bin the 2nRtot messages

randomly into 2nRsec bins, and the encoding strategy to communicate at a rate of

Rsec is to randomly choose any message in the appropriate bin, and transmit using

the original codebook. The destination node will be able to decode the expanded

message, and therefore be able to determine in which bin it lies.

We then need to compute at what rate Rsec we can bin the messages so that a
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wiretapper cannot gain any information about which bin the true expanded mes-

sage was chosen from. The wiretapper can only attempt to decode the message

using the same strategy as the final destination does it [2]: Assuming the wiretap-

per knows all of the erasure locations in the network and all of the relay nodes’

codebooks, simulate the progress each of the possible messages through the net-

work. The sender must guarantee that the wiretapper finds, to within a small

factor, an equivalent number of possible messages in every bin. By the same ar-

guments of distinguishable and indistinguishable messages used in both [2] and

Chapter 2, this will be the case as long as Rsec < Rtot − Rsec−cut, where Rsec−cut

is the cutset for the minimum cut separating the source and all of the wiretapped

edges.

We had conjectured that the difference Rtot−Rsec−cut was equal to the expression

in Equation (4.3), and would therefore be the capacity of the network. However,

we show in this second counterexample of Figure 4.6 that only binning at the

source is not a good enough strategy to achieve the network secrecy capacity.

s dr
ε = .9

ε = .9

ε = .9
ε = .8

ε = .8

Figure 4.6: Counter Example: Source-side Binning is Insufficient to Achieve Se-
crecy Capacity

The untapped capacity of the wireless erasure network of Figure 4.6 is equal to

the minimum of (1− .93) = .271 and (1− .82) = .36, or .271. We will assume that

the wiretapper can only choose one edge to tap. If he chooses one of the edges

between the source and the relay, then Rsec−cut = .1; however, if he chooses one of

the edges between the relay and the destination, his minimum cut (and therefore

Rsec−cut) is equal to .2. By the strategy of source-side binning, a rate of .071 is

thus achieved.
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We will demonstrate, however, that there exists a strategy which can achieve a

secrecy capacity of .16, which is the value obtained by the application of Equation

(4.3). This strategy consists of re-binning the messages at the relay node.

The source should encode messages at the source at a rate of Rtot = .26 and bin

them to achieve Rsec = .16. Since a wiretapper at the intermediate node can only

see a rate of Rsec−cut of .1, perfect secrecy is assured to the relay node.

The relay node will have a codebook designed for the rate of Rtot = .36, and

again bin these messages with Rsec−cut = .2 redundancy so that again, a rate of

Rsec = .16 can be transmitted from relay to destination with perfect secrecy, as a

wiretapper on one of these edges can only see a maximum rate of .2. So a secrecy

rate of .16, which is the maximum, by our upper bounds, is indeed achievable on

the network of Figure 4.6.

We have demonstrated in this section that source-side binning alone is therefore

unable to achieve the capacity of every wireless erasure network.

4.7 Conclusions

This work investigates the secrecy capacity, or specifically the equivocation rate,

of a wire-tapped wireless erasure network. Secrecy capacity for this network takes

the same intuitive form as it does in many other network models: we desire to

maximize the difference in the amount of data that the receiver can interpret

and the amount of information from the source the wire-tapper could receive. In

a simple, error and interference-free network, this result has the straightforward

interpretation of subtracting the number of wire-tapped edges from the number

of edges in the minimum cut. For the wireless erasure network, the subtraction

is equivalent, given the modified cut-set bound, for a few special cases only. We

have shown that the upper-bound is achievable when the wire-tappers are chosen

from a specific subset of the nodes, that is, along the minimum cut of the original

network. The strategy for this network class is interesting because of its history

in the secrecy context, and its application to a non-traditional secrecy model.
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Because there are networks where the intuitive min-cut max-flow upperbound is

not achievable, and networks where the intuitive source-side binning strategy is

sub-optimal, the general problem of secrecy capacity in wireless networks seems

unlikely to be easily solvable.

79



Chapter 5

Transport Capacity

In general, finding the capacity region for multi-terminal networks is an open

problem. Even simple cases are difficult to solve, and the exact capacity region is

known only in a few special cases, such as the multiple-access channel and degraded

broadcast channel. Wireless erasure networks, first introduced by Dana, Gowaikar,

and Hassibi [2], as we have seen in Chapters 2 and 3, constitute another class of

networks where a precise characterization of capacity is possible. The authors of

[2], and our additions to their model, determine the capacity for any single pair of

source and destination nodes, as well as the multicast capacity. Wireless erasure

networks are also practical: most ARQ systems with packet errors act like erasure

channels, with either successful or completely unsuccessful delivery of each packet.

While the exact capacity of the single-source wireless erasure network is known

in the unicast and multicast scenarios, current research can only bound the capac-

ity region for more general networks with many nodes and multiple sources and

destinations. The alternate notion of transport capacity provides a descriptive and

convenient scalar quantity that captures much of the overall network’s behavior.

We assume the erasure probability over each channel is a function of the physical

distance between the transmitting and receiving nodes. Intuitively, nodes spaced

far apart from each other should have a difficult time communicating, thus an

increase in the erasure probability should occur with increasing distance. This

concept parallels the models used in [5] and [6], where the received power from a

wireless source decays according to a polynomial power-law or exponentially with

increasing distance. The authors of [6] use minimum-cut maximum-flow arguments

to upper-bound the transport capacity of a network with Gaussian channels, a
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technique we will also follow.

Adding in receive-side as well as transmit constraints allows us to capture both

the broadcast nature of the wireless medium and the influence of interference in a

wireless network.

In our setting, we allow each transmitting node to broadcast one symbol across

all of its outgoing edges (so-called broadcast constraint on each transmitting node).

We consider two disparate settings on the receive-side: One with no interference

among nodes, and the other with finite-field additive interference at the receivers.

The reasons these two models are of great interest are as follows:

• An upper bound on throughput under the “no-interference model” provides

an upper bound on throughput for a class of wireless channels with interfer-

ence. If Xi, 1 ≤ i ≤ m represent the input to the channel, settings where the

interference can be decomposed into separate erasures on each link producing

Yi, 1 ≤ i ≤ m followed by an interference mapping Z = g(Y1, . . . , Ym) with Z

being the channel output, the no-interference case provides an outer bound

on throughput. This is because the receiver in the no-interference case can

“mimic” the interference function g, thus making the maximum throughput

for the interference case less than that of the no-interference case.

• The finite field additive interference is intuitively a pessimistic interference

model. This is because interference is traditionally thought to increase the

total received power (or equivalently, for finite field inputs Xi ∈ F , the

channel output Z belongs to a field with alphabet size larger than that of

F ). Thus, restricting the output to belong to the same (finite) field as each

of the inputs represents a “stringent” interference requirement.

Thus, the no-interference and finite-field interference represent an optimistic and

a pessimistic extreme respectively, with many other interference settings lying in

between these two settings.
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5.1 Prior Work

Transport capacity, introduced in [5], was first used to describe the asymptotic

capabilities of a Gaussian interference network on a fixed area, as the number of

nodes in the network n (and therefore the node density of the network) scales

larger and larger. Transport capacity is defined as the maximum, over all possible

sets of feasible rate vectors, of the distance-weighted rate-sum, i.e.

T = sup
feasible{R1,...,RL}

L
∑

l=1

Rld(l) (5.1)

where the supremum is taken over all possible sets of source-destination pairs,

there are L source-destination pairs, d(l) be the distance between the source node

sl and destination node tl, and Rl is the rate associated with the lth pair.

Making transport capacity meaningful requires that increasing physical distance

separating two nodes to have a degrading effect on the communication ability

between those nodes. Many authors [5],[6],[7],[8] invoke a polynomially or expo-

nentially decaying power law to accomplish this.

Under the outage capacity and routing-only constraints of the model, [5] showed

that the total transport capacity of the Gaussian interference network is upper-

bounded as O(
√

n), and that at least Ω(
√

n/ lg n) growth is achievable by routing

alone. Franceschetti et. al [7] sharpen the lower bound and demonstrate that

linear growth in the number of nodes (removing the lg n term) is achievable in a

random network with an additive Gaussian noise model using routing alone.

In an alternative to the fixed area, dense network scaling of [5], some authors

[6] [7], [8] study a network whose geographic expanse increases with the number of

nodes, so that the density remains constant. Xie and Kumar [6] provide an infor-

mation theoretic upperbound of linear transport capacity growth for a sufficiently

high-attenuation power law. Finally, Tse et. al demonstrate in [8] a hierarchical

cooperative MIMO scheme which achieves linear transport capacity growth for

both the dense and expansive network cases, building upon a cooperative scheme

introduced by Aeron and Saligrama [9].
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We have investigated the capabilities of erasure networks from a transport ca-

pacity viewpoint, and present our results in the following sections. Recall that

for the wireless erasure network without any interference, the cut-set bound on

capacity is given by

R ≤ min
S∈S

∑

i∈S



1 −
∏

j∈SC

εij



 . (5.2)

or for the general erasure network with additive interference, by the minimum of

the expected value of the rank of the transfer matrices for each source-destination

cut.

5.2 Transport Capacity of Erasure Networks

In this chapter, a wide-variety of models for erasure networks are analyzed. The

differences between the various models fall into the following different categories:

• Expansive networks (those with constant density as the number of nodes n

increases versus dense networks (those with constant area as n increases).

• Random networks versus arbitrary networks. We shall prove, in general,

a single identical upper bound on the rate of transport capacity growth for

both networks, but demonstrating achievability in a network designed for

maximizing transport capacity growth versus one where the sources and des-

tinations are randomly assigned require different approaches.

• The threshold, exponential, and polynomial decay models are three dif-

ferent cases we study in relating the probability of an erasure to the physical

distance between the transmitting and receiving nodes.

• While it is simple to show that the upper-bound on any wireless erasure

network without receiver interference is also valid in the same wireless

network with additive finite-field interference, achievability in the in-

terference model requires substantial additional proof.
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This work provides a linear upper-bound (in terms of the number of nodes n) to

the transport capacity in both the wireless erasure network (broadcast constraint,

but no receiver interference) and the broadcast erasure network with interference

(a single transmit and single receive antenna at each node), under each of the three

decay models for expansive and dense networks.

Further, the work demonstrates that in expansive random wireless erasure net-

work with and without interference, routing alone (no network coding) can achieve

this order-wise optimal linear bound.

It is shown that only in the dense wireless network with interference (with and

without random source destination pairs) are the achievable lower and obtainable

upper bounds not tight. We conjecture that the cut-set upperbound, used in

various methods in all of these cases, is not strong enough to show the true capacity

for the dense model with interference.

5.2.1 Models

In demonstrating the upper bound, we use three different models to describe

how the probability of an unerased transmission decays with distance:

In the threshold model, over distances less than or equal to d∗, there is never

an erasure, but for distances greater than d∗, an erasure will always occur. This

model is motivated by straightforward signal-to-noise ratio considerations.

In the exponential model, the probability of successful transmission decays ex-

ponentially with increasing distance:

ε (d) = 1 − αd = 1 − e−d/d∗ ,

where the decay parameter α satisfies 0 < α < 1. The exponential model is

motivated by the error rates for coding over long blocks with a signal-to-noise

ratio which decays with increasing distance according to a power-law.

In the polynomial model, the probability of successful transmission follows a
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power-law decay:

ε (d) = 1 − 1

1 + dβ
,

where β > 0.

Note that for all of the models, there is no erasure when d = 0 and a zero

probability of successful transmission when d = ∞.

In all models, transmit output symbols (i.e. channel input symbols) are chosen

from the alphabet Fq.

Because of the broadcasting requirement of the wireless medium, we can consider

the network to be a complete graph: There exists some probability (non-zero, in

all but the threshold model) that any node will successfully receive the symbol

transmitted by any node in the network. Therefore, we no longer have a directed

acyclic graph, as per the system models in Chapter 2. We do prove, however, that

back-edges cannot increase the cut-set bound on capacity.

In the expansive network model, we make use of one of two assumptions in

order to prove a linear upperbound. Either, a random placement is assumed, or

we impose a minimum separation distance constraint on the node placement: For

all nodes i and j, dij ≥ dmin for some dmin which is independent of n. A random

placement, intuitively, assures that “not too many” nodes are within this minimum

distance of each other.

In the wireless erasure network model, we make the same assumption of no

receiver interference as [2]. For the broadcast erasure network with interference,

we assume that in each timeslot, the node j receives the sum Yj(t), where

Yj(t) =
n+1
∑

i6=j,i=1

hij(t)Xi(t) (5.3)

and hij(t) are independent (over both indices and timeslots) zero-one binary ran-

dom variables that take the value 0 with probability εij. When the receiver node j

has knowledge of the states hij, this formulation provides the same information to

a receiver in the broadcast erasure network with no interference as a model with
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the additional output symbol “Erased” in the output alphabet: if hij = 0, then

the receiver knows that the corresponding symbol was erased.

The network contains L source-destination nodes pairs (sl, tl). We desire to

reliably decode each of the L independent information sources, each available to

one of the source nodes sl, at the corresponding destination node tl at the rate Rl.

Let d(l) be the distance between the source node sl and destination node tl. The

transport capacity of a network is the supremum of the distance-weighted sum of

reliable rates

T = sup
feasible{R1,...,RL}

L
∑

l=1

Rld(l) (5.4)

where the supremum is taken over all possible sets of source-destination pairs.

5.3 Summary of Results

The following proofs will show

• For expansive networks with a geometric threshold, a polynomial decay (β >

3), or an exponential decay, a linear growth in transport capacity is both the

upperbound and achievable (to a polylog factor) in arbitrary and random

networks.

• For dense networks with a geometric threshold, a polynomial decay (β >

3), or an exponential decay exponential decay, a linear growth in transport

capacity is an upperbound.

• For dense networks with no receiver interference, a linear growth in transport

capacity is achievable in both arbitrary and random networks.

The sole case where upperbound and lowerbounds do not meet, in a asymptotic

growth rate sense, are dense networks with interference.

All of the achievability strategies considered in this paper are routing-only strate-

gies. That is, they do not require network-coding, that is, any combination of the

86



information within packets at any of the relay nodes. Forwarding of packets is suf-

ficient. Thus for the settings under consideration (β > 3) only routing is required

to provide the correct order of maximum throughput. That is, network coding in

the case α > 3 for an erasure network with broadcast constraints with or without

receive side constraints can provide no more than a polylog factor improvement in

performance.

5.4 Converse Techniques

In this section, the various different converse techniques that can be used to

upperbound the transport capacity of these networks are described.

5.4.1 Threshold Model

The proof of linear growth in the geometric model is similar in spirit to that

of the proofs in [6]. We allow n nodes to be distributed arbitrarily on the plane,

subject only to the d ≥ dmin minimum distance constraint. Let d∗ be the maxi-

mum distance over which transmissions are successful. We will examine an infinite

number of cuts, vertical and horizontal, corresponding to the lines y = idmin/2 and

x = jdmin/2. Any source-destination pair of distance d must cross at least d/dmin

of these cuts. The cut-set bound on rates across each of the horizontal and vertical

cuts (in either direction, i.e. from S to SC and from SC to S) will be denoted

Rv(i) and Rh(j), respectively. We are now interested in the expression

√
5

2
dmin

∞
∑

i=−∞
Rv(i) +

√
5

2
dmin

∞
∑

j=−∞
Rh(j) (5.5)

which bounds the total transport capacity. The value of each cut is bounded by

the total number of nodes which are within a distance d∗ of that cut, so each node

in the network can contribute lg q bits of rate to a maximum of 8d∗/dmin cuts

(four cardinal directions, and the transmission can reach to at most 2d∗/dmin cuts

in any of those directions). Any source-destination pair which crosses a cut can

be separated by a distance of at most
√

5/2, so Equation (5.5) and the transport
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capacity are thus bounded by 4
√

5nd∗ lg q.

5.4.2 Information Theoretic Background for Converses

Each of the remaining converse proofs uses the information-theoretic notion of

cut-set bounds to show the upperbound. Before the main converse proofs, we will

prove and evaluate a general cut-set bound for the sum-rate of reliable information

flow across a partition of the nodes.

Since we assume that each receiver j knows not only the symbol, but also the

channel state for all the channels which terminate at node j, define Y ∗
j (t) to be

the vector consisting of both Yj(t) (the received symbol or symbols at j )and all

channel states hij(t), for i ∈ 1..n + 1.

Assemble the random variables into vector notation as follows: For any subset

S of nodes, consider XS(t), XSC (t), YSC (t) which are defined intuitively. Define

matrices H1(t) and H2(t) such that

YSC (t) = H1(t)XS(t) + H2(t)XSC (t). (5.6)

Then Y ∗(t) is the collection (Y (t), H1(t), H2(t)). As we have discussed in Chapter

2, the form of the various H transfer matrices depends whether we are discussing

networks with or without interference, but for all general H the arguments follow

identically.

Define V (t) as the received vector YSC (t), under the situation that the nodes in

SC did not have any transmitters:

V (t) = H1(t)XS(t) (5.7)

Also, define V ∗(t) and the collection of (V (t), H1(t)).

Define XT as the combined vector of all X(t) vectors, t ∈ 1..T . Similarly define

XT
S , XT

SC , V T , V ∗T , Y T
SC , and Y ∗T

SC .

Over T timeslots, we wish to transmit messages from some set of L source-

destination node pairs at rates R(l), l ∈ 1..L. The lth source-destination pair has
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source node s(l) and destination node d(l). Let Wcut be the vector of messages

whose source nodes are in S and whose destination nodes are in SC . WSC will be

the messages whose source nodes are in SC , regardless of their destinations. All

messages W (l) are independent of each other and uniformly chosen from the set

(1, 2, .., 2TR(l)).

Lemma 5.4.1. If a set of rates R(l) are achievable, then

∑

s(l)∈S,d(l)∈SC

R(l) ≤ I(XS; V |H1) (5.8)

for some joint distribution p(x1, x2, .., xn+1). Further, this cut-set bound evaluates

to the expected value of the rank (in Fq) of the random matrix H1 multiplied by

lg q.

Proof. The proof is based on the work of Xie and Kumar [6] and the text by Cover

and Thomas.[3]

Starting from the fact that the rate across the cut is equal to the entropy of the

messages that go across the cut:

T
∑

s(l)∈S,d(l)∈SC

R(l) = H(Wcut) (5.9)

= I(Wcut; V
T , HT

1 , HT
2 ,WSC )

+ H(Wcut|V T , HT
1 , HT

2 ,WSC ) (5.10)

≤ I(Wcut; V
T , HT

1 , HT
2 ,WSC ) + TεT (5.11)

where Equation (5.11) comes from Fano’s inequality and the fact that

Wcut → (V T , HT
1 , HT

2 ,WSC ) → (Y ∗T
SC ,WSC ) (5.12)

forms a Markov chain. The messages Wcut are decoded from knowledge of YSC ,

WSC , HT
1 , and HT

2 .
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Returning to Equation (5.11), the steps continue

= I(Wcut; WSC ) + I(Wcut; V
∗T , HT

2 |WSC ) + TεT (5.13)

= 0 + H(V ∗T |HT
2 ,WSC ) + H(HT

2 |WSC )

− H(HT
2 |WSC ,Wcut) − H(V ∗T |HT

2 ,Wcut,WSC ) + TεT (5.14)

= H(V ∗T |HT
2 ,WSC ) − H(V ∗T |HT

2 ,Wcut,WSC ) + TεT (5.15)

≤ H(V ∗T ) − H(V ∗T |HT
2 ,Wcut,WSC ) + TεT (5.16)

Equations (5.14 and 5.15) follow because messages Wl and channel states hij are

independent.

We’ll now examine the second term in Equation (5.16).

H(V ∗T |HT
2 ,Wcut,WSC )

=
T
∑

t=1

H(V ∗(t)|V ∗t−1,Wcut,WSC , HT
2 ) (5.17)

≥
T
∑

t=1

H(V ∗(t)|XS(t),Wcut,WSC , HT
2 ) (5.18)

=
T
∑

t=1

H(V ∗(t)|XS(t)) (5.19)

Equation (5.19) follows because

(V ∗t−1,WSC ,Wcut, H
T
2 ) → XS(t) → V ∗(t) (5.20)

is a Markov chain, since V (t) = H1(t)XS(t).

Thus,

T
∑

s(l)∈S,d(l)∈SC

R(l) = H(Wcut)

≤
T
∑

t=1

I(XS(t); V ∗(t)) + TεT

=
T
∑

t=1

I(XS(t); V (t)|H1(t)) + TεT (5.21)
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since XS and H1 are independent, which shows the first part of the lemma.

Now, examine each mutual information term I(XS(t); V (t)|H1(t)) which equals

H(V (t)|H1(t)) since V (t) is a deterministic function of H1(t) and XS(t).

Maximizing the entropy in the vector V is achieved by making all of the elements

in XS(t) independent random variables uniformly distributed over the field Fq and

observing that

H(V (t)|H1(t))

= H(V1(t)|H1(t)) + H(V2(t)|H1(t), V1(t)) + ...

+ H(Vm(t)|V m−1(t), H1(t)) (5.22)

where m = |SC |, Vk(t) is the received symbol at the kth node in SC , and V k(t) is the

collected vector (V1(t), ..., Vk(t)). Each term in Equation (5.22) has a maximum

value of lg q, and, given a particular instance of the transfer matrix H1(t), if a

term can be written as a linear combination of terms with smaller indices, then

the conditional entropy of that term is zero. Thus, the value of H(V (t)|H1(t)) is

lg q times the number of linearly independent elements of the vector V (t), or in

other words, the rank of the matrix H1(t) in the finite field Fq times lg q. Taken

over all possible instances of the matrix H1(t), the cutset bound on rates across

the cut becomes the expected value of the rank of H1(t) times lg q.

5.4.3 One-Dimensional Exponential and Polynomial Decay Models

This section contains the proofs of the first techniques that we discovered for

upper-bounding the transport capacity. They are of mathematical interest be-

cause the specifics and uniqueness of the proof mechanism, despite having been

superseded by the more general and simpler proofs of Section 5.4.5.

Our network consists of n + 1 nodes placed along a line, subject to a minimum

separation of dmin. Index them from 1 to n + 1, in geographic order. Let di be the

distance between the ith and (i + 1)th nodes in this linear network.

We will examine n cuts, where the mth cut separates the nodes into the two sets
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S, consisting of nodes with indexes from 1 to m, and SC , consisting of the nodes

with indexes from m + 1 to n + 1. Let Rm be the cut-set bound on sum-rate from

S to SC across the mth cut, and R′
m be the sum rate bound on the information

from SC to S.

The total distance weighted sum of reliable rates is therefore bounded by

Ttot ≤
n
∑

m=1

dm (Rm + R′
m) (5.23)

In Section 5.4.1 and in [6] the proofs are formed by examining an infinite number

of cuts, each placed a constant distance apart from each other. In contrast, the

proof in this section examines exactly n cuts, with unequal spacing between cuts.

The basic strategy of the proof is to examine the maximum rate across a single

cut. In the exponential decay model, we will show that the rate across any cut is

bounded by αdi times some constant K. This is accomplished by assuming that all

other inter-node distances are reduced to dmin, making them as small as possible,

an act which only increases the rate bound across the cut under examination.

Thus, transport capacity across this is bounded by Kdiα
di , which is bounded by

a constant Te1, and total transport capacity is bounded by nTe1.

In the polynomial model, we will construct a similar bound (in the form of a

summation) for a single cut and again show that the summation converges to a

constant for the case when β > 3.

Theorem 5.4.1. In a one-dimensional wireless erasure network with an exponen-

tial decay law and n+1 nodes, the total transport capacity is upperbounded by nTe1,

where

Te1 = 2(e ln
1

α
)−1(

1

1 − αdmin
)2. (5.24)

Proof. We will examine the rate Rm across the mth cut. By Equation (5.2), this

rate is

Rm =
m
∑

j=1

(

1 −
n
∏

k=m

(

1 − α
∑k

i=j di

)

)

(5.25)
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Using the fact that
n
∏

i=1

(1 − ai) ≥ 1 −
n
∑

i=1

ai (5.26)

for 0 < ai < 1, we can rewrite Equation 5.25 as

Rm ≤
m
∑

j=1

n
∑

k=m

α
∑k

i=j di . (5.27)

Reducing all of the di, i 6= m, to dmin only increases the value of this expression,

so

Rm ≤
m
∑

j=1

n
∑

k=m

αdmin(k−j)αdm (5.28)

= αdm

n
∑

k=m

αkdmin

m
∑

j=1

α−jdmin (5.29)

= αdmαmdmin

(

1 − α(n−m+1)dmin

1 − αdmin

)

α−dmin

(

α−mdmin − 1

α−dmin − 1

)

(5.30)

≤ αdm
1

(1 − αdmin)2 . (5.31)

R′
m is bounded similarly, and therefore, the transport capacity across this link only

is bounded by

dmαdm
2

(1 − αdmin)2 . (5.32)

Finally, because

dmαdm ≤
(

e ln
1

α

)−1

(5.33)

the per-node transport capacity is bounded by Te1 for all node distributions which

obey the minimum-distance constraint.

In a result which closely parallels that of [6], we find that different asymptotic

growth rates are possible under various values for the power-law decay parameter

β. We will restrict attention to the high-attenuation regime, specifically, when

β > 3 for a linear, one-dimensional network.
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Theorem 5.4.2. In a one-dimensional wireless erasure network with high-attenuation

polynomial decay (β > 3), and n + 1 nodes, the total transport capacity is upper-

bounded by n2Tp1, where Tp1 is a constant independent of n.

Proof. Again we examine the sum-rate bounds Rm and R′
m across the mth cut:

Rm ≤
m
∑

j=1

(

1 −
n
∏

k=m

1

1 + (
∑k

i=j di)β

)

. (5.34)

As in Section 5.4.3, bound the product term in 5.34 by a summation,

≤
m
∑

j=1

n
∑

k=m

1

1 +
(

∑k
i=j di

)β
, (5.35)

and upper-bound by decreasing the denominator by dropping the ’1+’ and chang-

ing all di 6= dm to dmin.

≤
m
∑

j=1

n
∑

k=1

1

(dm + (k − j)dmin)β
(5.36)

Bound the summation with integrals

≤
∫ m

0

∫ ∞

m

(dm − xdmin + ydmin)−β (5.37)

which evaluate to

=
1

d2
min

1

(β − 1)(β − 2)

[

1

dβ−2
m

− 1

(dm + mdmin)β−2

]

(5.38)

Equation 5.38 is upper bounded by

=
1

d2
min

1

(β − 1)(β − 2)

1

dβ−2
m

(5.39)

Recall that Equation (5.39) is an upper-bound Rm on the rate across the mth

cut. Multiply (5.39 by dm to bound the transport capacity across this cut only,

and the result is a decreasing function of dm when β > 3. Since dm ≥ dmin, the

transport capacity across each and every cut is upper-bounded by the constant

Tp1 =
1

(β − 1)(β − 2)

dmin

dβ
min

. (5.40)
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The same analysis holds for R′
m, thus the value of dm (Rm + R′

m) is upper-bounded

by the constant 2Tp1. Therefore, the total transport capacity of the network is

linearly bounded by 2nTp1.

5.4.4 The Squish Technique

Again, this is an early upper-bound technique for a two-dimension model. It

was successful for providing the upperbound for a network with the exponential

decay model, but failed for a polynomial decay model, with even large values of

the polynomial decay exponent β, representing high attenuations.

In Section 5.4.3, we were able to give an upper bound on the rate across the

mth cut (specifically, αdmin/(1−αdmin)2) so that the transport capacity across any

single cut is bounded by a constant. In a planar two-dimension model, this is no

longer the case: Consider a network of 2n nodes, placed at (x, y) coordinates (1, k)

and (−1, k) for k = 1..n. The value of the cut along the y-axis grows linearly with

n, so a different proof strategy is required.

Theorem 5.4.3. In a two-dimensional wireless erasure network with an exponen-

tial decay law and n+1 nodes, the total transport capacity is upperbounded by nTe2,

where Te2 is a constant independent of n.

Before beginning this proof, we will introduce some new notation. As in Section

5.4.1, we will use two sets of cuts, both vertical and horizontal. Unlike Section

5.4.1, we will not have equal spacing between the cuts, but rather proceed as in

Section 5.4.3. Label the nodes from 1 to n + 1 in order of increasing y-coordinate.

If any set of nodes share the same y-coordinate, label those in order of increasing

x-coordinate. Let dij be the distance between the ith and jth nodes, and let dv
i be

the vertical projection of the distance between nodes i and i + 1. Similarly define

dh
i , for when the nodes are re-labeled in order of increasing x-coordinate. Rv

i and

Rh
i are defined as the rates across the ith vertical and horizontal cuts. Rv

i
′ and Rh

i
′

are the sum rates for the opposite direction across the cuts.
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The transport capacity Ttot is therefore bounded by

Ttot ≤
n
∑

m=1

dv
m (Rv

m + Rv
m

′) +
n
∑

m=1

dh
m

(

Rh
m + Rh

m
′) (5.41)

We only need to follow the expressions for one set of cuts, say the horizontal

cuts, and for one direction of information flow across the cuts, because the analysis

of the other cuts and flow will be identical.

Proof. The expression for the vertical portion of the transport capacity, Tv, is

Tv ≤
n
∑

m=1

dv
m

m
∑

j=1

(

1 −
n+1
∏

k=m+1

(

1 − αdjk
)

)

(5.42)

≤
n
∑

m=1

dv
m

m
∑

j=1

n+1
∑

k=m+1

αdjk (5.43)

We use geometry to lowerbound the value of djk. As long as j ≤ m < k,

djk ≥

√

√

√

√

(

m
∑

i=j

dv
i

)2

+
d2

min

3
(k − m) − dmin

2
(5.44)

where the bound comes from packing (k −m) circles of radius dmin/2 into a semi-

circle whose near side is at least
∑m

i=j dv
i − dmin/2 away from node j.

Thus, Equation(5.43) is upperbounded by

≤ α−dmin/2

n
∑

m=1

m
∑

j=1

dv
m

∞
∑

k=1

α

√

(
∑m

i=j dv
i )

2
+kd2

min/2 (5.45)

which can be bounded again by replacing the innermost summation with an inte-

gral to obtain

≤ 6α−dmin/2

d2
min

n
∑

m=1

m
∑

j=1

dv
mα

∑m
i=j dv

i

(

m
∑

i=j

dv
i

1

− ln α
+

1

(ln α)2

)

(5.46)

Equation (5.46) can be split into two parts. By redefining a = − ln α, K1 =

6α−dmin/2

a2d2
min

, and K2 = aK1 we can write

= K1

n
∑

m=1

m
∑

j=1

dv
me−a

∑m
i=j dv

i (5.47)

+K2

n
∑

m=1

m
∑

j=1

dv
m

(

m
∑

i=j

dv
i

)

e−a
∑m

i=j dv
i
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and examine the two parts separately.

By defining xi = dv
n−i for i = 0, 1, ..., n − 1, the first summation in Equation

(5.47) can be written as K1

∑n−1
k=0 Sk where S0 = x0e

−ax0 and the Sk are defined

recursively as

Sk = e−axk(Sk−1 + xk). (5.48)

The Sk are therefore upperbounded by a constant, since all xk ≥ 0. Similarly,

the second summation in Equation (5.47) can be written as K2

∑n−1
k=0 Vk, where

V0 = S0 and

Vk = e−axk(Vk−1 + xkSk−1 + x2
k). (5.49)

Each Vk is also upper-bounded by a constant, so the summation Tv, and likewise

Th and Ttot, can grow no faster than linearly in the number of nodes n.

5.4.5 General Technique for Two Dimensional Networks

As we have stated before, the previous proof techniques were devised and de-

veloped in order to solve specific cases of the one- and two-dimensional expansive

networks, and build on the work done previously by other authors [5], [6], for ex-

ample. The most general proof technique, presented in this section, makes use of

ideas, lemmas, and the experience gained in the previous sections to create a more

elegant exposition.

Theorem 5.4.4. The transport capacity of an arbitrary expansive broadcast era-

sure network, with or without interference, grows no faster than linearly in the

number of nodes when there exists a constant minimum node separation dmin, un-

der the geometric threshold, exponential, and polynomial (with decay β > 3) decay

models.

Proof. To begin, we will examine the cut-set bound across and infinite number

of equally spaced cuts, both horizontal and vertical, as in Section 5.4.1 and in

[6]. Space these vertical and horizontal cuts a distance of dmin apart from each
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other, and index them by k. Similarly to Equation (5.5), let R(m) denote the

cutset bounds across each particular cut. The n nodes of the network will be

indexed using i and j, and let Lk be the set of nodes on the left side of the kth cut

(similarly define Rk. Define εij as εdij and similarly, µij as 1 − εij. We bound the

total transport capacity of the network by

∞
∑

m=1

2dminR(m)

=
∞
∑

m=1

2dmin lg q
∑

i∈Lm



1 −
∏

j∈Rmε(ij



 (5.50)

We can write the rate as we do in Equation (5.50) because of the derivation in

Section 5.4.2 showing that back edges do not add anything to the value of the

cutset bound. Applying Equation(5.26) yields

∞
∑

m=1

2dmin lg q
∑

i∈Lm

∑

j∈Rm

µij. (5.51)

Define

Cij = {cuts m which separate node i from node j}

in order to rearrange Equation (5.51) as

2dmin lg q
n
∑

i=1

n
∑

j=1,j 6=i

∑

m∈Cij

µij. (5.52)

The value of µij is fixed for every cut m which it crosses. Defining a normalized

internodal distance d̃ij = dij/dmin, then there are at most 2d̃ij cuts (both horizontal

and vertical) that separate node i from node j. The transport capacity is thus

bounded by

4dmin lg q

n
∑

i=1

n
∑

j=1,j 6=i

d̃ijµij.

Now, take and apply the main idea from the Squish technique of Section 5.4.4:

Because of the dmin minimum node-separation constraint, the kth closest node to
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any node i must be a distance at least dmin

√

k/6 away from node i, by a packing

argument. The transport capacity is then no greater than

4dmin lg q√
6

n
∑

i=1

∞
∑

k=1

√
kµik (5.53)

where we have reindexed the nodes j in order of increasing distance from the node

i under the index k.

At this point, we can apply the different decay models to Equation (5.53) to

bound the sum ∞
∑

k=1

√
kµik (5.54)

for each node i. In the threshold model, no more than a constant number of nodes

can lie within the distance given by the threshold d∗, and Equation (5.54) is less

than
√

d∗/dmin. In the exponential decay model, Equation (5.54) becomes

∞
∑

k=1

√
k exp(−αdmin

√
k)

which is again bounded by a constant (as was shown in Equation (5.46)). Finally,

in the polynomial decay model, we again (as in Equation (5.36) bound µij as 1/dβ
ij

to bound Equation (5.54) by

∞
∑

k=1

√
k

(√
kdmin

)β
= d−β

min

∞
∑

k=1

k−(β−1)/2

which is a constant for all β > 3.

The final summation is over each node i, and therefore covers all n nodes in the

network once each. Therefore, the transport capacity of such networks are always

upperbounded by a linear function of n, the total number of nodes.

We have thus provided linear upper-bounds on all arbitrary wireless erasure

networks with a minimum distance constraint.
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5.4.6 Dense Network Converses

Consider a network with n nodes. Each source (of which there are no more than

n of) can only generate symbols with a maximum entropy of lg q. The rate of

information transfer between any source and any destination is therefore bounded

above by a constant. Also, the maximum distance between any source and any

associated destination is bounded by a constant - the network does not grow in

size as the number of nodes increases. Therefore, an upperbound on the transport

capacity is the maximum rate per node, multiplied by the maximum distance that

the information travels, multiplied by the total number of source destination pairs.

Two of these quantities are constants, and the third (the number of pairs) by

definition grows no faster than linearly in the number of nodes. The transport

capacity of a dense wireless erasure network thus can grow no faster than linearly

in the number of nodes, whether there be interference or no interference. It might

be argued that, while this is clearly an upperbound on the transport capacity of

a broadcast erasure network with additive interference, it may not be a “good”

upperbound. Here, we demonstrate that the best cut-set upperbound does, in fact,

grow linearly in the number of nodes. We will lower-bound the value of the cut-set

upperbound and show that our lower-bound grows linearly.

From the more general work of [35], we derive the following lemma:

Lemma 5.4.2. Consider a random 0−1 n×n matrix in GF2 where the probability

of the entry in the ith column and jth row being a 1 is pij. As long as 1− log n/n >

pij > /logn, then with probability 1−O(n) the matrix is non-singular as n goes to

infinity.

We consider one specific node configuration for a dense network. This is suf-

ficient, since the upperbound for all networks must be at least as large as the

upperbound for a specific network. Place each of n nodes along a line spaced at in-

tervals of 1/n. The cut-set upperbound for this network will be computed exactly

as done in, for example, Subsection 5.4.3: We will sum, over all cuts, the width of

that cut multiplied by the cut-set bound on rate across that cut.

100



The width of each cut is 1/n. The cutset rate for the kth is E[Hk], that is the

expected value of the kth transfer matrix. The cutset bound for transport capacity

is thus equal to

n
∑

k=1

1

n
E[rank(Hk)]

≥ 1

n

4n/5
∑

k=n/5

E[rank(Hk)].

Now, the transfer matrix Hk will have k rows and n − k columns. As n grows

large, the probability that the entries in all but at most O(log n) of those rows will

be 1 will be between the required bounds on pij of log n and 1 − log n. We can

therefore choose a sub-matrix of Hk of size 2k/3, all of whose entries will be within

the required bounds. Thus, E[rank(Hk)] > 2k/3 with high probability.

1

n

4n/5
∑

k=n/5

E[rank(Hk)]

≥ 1

n

4n/5
∑

k=n/5

2k

3

= Θ(n)

Therefore, the best upper-bound on the transport capacity of a broadcast erasure

network with interference that uses the technique of the cut-set upperbound must

be at least linear in the number of nodes in the network.

We know of no linear achievability strategy for a dense network with interference,

however.

5.4.7 Relating Upperbounds for networks with and without additive

interference

Precisely computing the expected value of the rank of a random matrix is a

difficult problem [35]. However, to linearly bound the transport capacity of the

broadcast erasure network with interference, only a simple bound is required:
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Lemma 5.4.3. The expected value of the rank of any random matrix is upper-

bounded by the expected value of the number of columns with non-zero entries in

that random matrix.

The proof is obvious.

The important relationship here is that the expected value of the rank of a

random matrix with the form required by a broadcast erasure network with no

interference is exactly equal to the number of columns with non-zero entries. The

interpretation is the usual one - for every transmitting node on the left hand side

of the cut, (represented by a column of the transfer matrix), is there at least one

successful reception (or, is there at least one 1 in that column of the transfer

matrix)? For example, we again present the appropriate transfer matrices As for

an example network in Figure 5.1.

If Figure 5.1 represents a broadcast erasure network with no interference, then

the expression




Yd1

Yd2

Y21



 =





0 γ1d

γs2 0
0 γ12





[

Xs

X1

]

defines As for the cut S.

However, if Figure 5.1 represents a broadcast erasure network with additive

finite-field interference, then the expression

[

Yd

Y2

]

=

[

0 γ1d

γs2 γ12

] [

Xs

X1

]

defines As for the same cut.

The conclusion: The upperbound on a wireless erasure network without inter-

ference is always also an upperbound on a wireless erasure network with additive

finite field interference.
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Figure 5.1: Example Network

5.5 Achievability Proofs

5.5.1 Dense Networks Without Any Interference

In a network with a constant expanse - that is, the maximum distance between

any two nodes is upperbounded by a constant dmax - and no receiver interference,

achieving a linear growth rate is a straightforward process for any node placement

when the polynomial or exponential decay models are used. In each of these

models, there is a non-zero constant rate between any source and destination,

regardless of what any other nodes in the network are transmitting. Each source

and destination pair therefore can communicate at this rate, and ignore all the

other traffic in the network. Simultaneous single-hop routing is therefore optimal.

The situation is only slightly different in the geometric threshold model. If the

threshold d∗ is greater than the expanse of the network, then there is no change in

the procedure and a rate of lg q is available to every single source-destination pair.

If the threshold is less than the expanse, then multi-hop routing, with a TDMA

scheme dividing the network into T = (dmax/d
∗)2 squares with side-length d∗ each,

will again achieve the constant rate arbitrarily close to lg q/T for each pair in a

situation where the nodes are uniformly and randomly placed in the network. If

the user is allowed to arbitrarily place the nodes, simply place each destination
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within the threshold distance d∗ of its source to achieve the rate of lg q.

5.5.2 Expansive Networks - Achievability for Interference Networks

Implies Achievability for Non-Interference Networks

In a dual statement to that of Section 5.4.7, it is easy to see that if a set of rates

Rl can be achieved in a network with the additive finite field interference, that

same set of rates can be achieved in a network without interference, since each

receiver can simulate the input in the interference network (by summing up all of

its received symbols) with the data that it is given. In the following, then, we shall

only consider achievability of a linear growth rate in the expansive network with

additive finite field interference.

5.5.3 Random Expansive Networks

Our proof of the achievability of Ω(n) transport capacity follows from the work

of M. Franceschetti et al [7]. We shall summarize their prior results of which we

will make use and be more precise with the exposition of those changes that are

particular to our model.

The authors of [7] examine a Gaussian interference network of size
√

n × √
n,

and show that for a random matching of source-destination pairs on a uniformly

randomly distributed set of nodes, a per-node throughput capacity of Ω(1/
√

n)

bit/sec is achievable. The main idea of the proof is to divide the network into

horizontal rectangles and show that there exit “highways,” or disjoint paths which

can be used to carry data from the left edge to the right edge of the network.

Similarly, a known density of vertical highways also exist, and this mesh of paths

transports the information from sources to destinations. The network operation

protocol has three parts: A draining phase, where data is routed from source

nodes to the highways, a transport phase, where data travels along the highways,

and a distribution phase, where the data is routed from the highway to its final

destination node.

Theorem 5.5.1. A random broadcast erasure network with interference can achieve
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a per-node throughput capacity of Ω(1/
√

n) bit/sec, and hence a total transport ca-

pacity of Ω(n).

The construction of the highways and the routing protocol are identical to the

procedure in [7]. Our contribution is determine necessary conditions for the re-

quired rate to be achievable in our erasure model, and to show that those conditions

are met.

Nodes are distributed according to a Poisson process of unit intensity on square

of area n. The total area is divided into smaller squares of side-length c, and a

horizontal “highway” consists of a collection these smaller squares, each containing

at least one node, which form a continuous path across the total area.

Our proof proceeds as follows: First, we will show the analog of Theorem 3 in

[7], namely that there exists a rate R(d) > 0 such that a node in our network can

transmit w.h.p. at rate R(d) to any destination within a distance d using a TDMA

scheme on squares of side length c. Further, as d tends to infinity,

R(d) = Ω
(

d−2e−d/d∗
)

. (5.55)

Next, the network is divided in horizontal slabs of constant width cκ ln
√

n/c2,

where the parameter κ is to be later determined, and consecutively assign highways

to slabs. From [7], Theorem 5 we see that w.h.p., each node is at most a distance

d ≤
√

2cκ ln
√

n√
2c

from its highway. Substituting this d into R(d) in Equation

5.55 and appropriately choosing κ, we find the rate that one node in a square of

side length c can transmit data to the highway. There may be as many as ln
√

n
c

nodes in a square which will have to share this rate. Transmitting data from the

highway back to a destination node (the distribution phase) is the dual problem,

and therefore is possible to perform at the same rate.

In the highway phase, we note that each node is no more than a distance 2
√

2c

from the next node along the highway, so each highway can carry data at a constant

rate. There are no more than O(
√

n) nodes in any slab, so the highway can

devote a 1/
√

n fraction of its (constant) throughput to each node. As long as
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the R(d) achievable in the draining and distribution phases is Ω(1/
√

n), then a

throughput of rate Ω(1/
√

n) is achievable. In summary, there are n/2 random

transmit-receive pairs, each providing a rate Ω(1/
√

n) over a distance Ω(
√

n), for

a transport capacity of Ω(n).

Proof. Assume that nodes in the network wish to transmit data to destination

nodes at most a distance d away. We will say that the transmission was success-

ful only if both 1) the symbol sent by the transmitting node was not erased at

the receiver and 2) any symbols sent by simultaneously transmitting nodes are

all erased. We will operate the network in a TDMA scheme with T = (kd/c)2

timeslots, where k is to be determined.

If the intended receiver is at most a distance d from the transmitter, then it is

at most d/c squares away from the transmitter. Under the TDMA scheme, the

nearest simultaneously operating transmitter is at least (k− 1)d
c
− 1 squares away,

and the 8 closest transmitters are all (at least) this distance from the receiver. The

next 16 operating transmitters are all at least (2k − 1)d
c
− 1 squares away, and so

on so that there are 8i transmitters at least distance of (ik − 1)d − c from the

intended receiver, for all positive integers i.

The union bound on the probability that the symbol from at least one of these

transmitter is not erased, Pint, is

Pint ≤
∞
∑

i=1

8ie−((ik−1)d−c)/d∗

= 8e(d+c)/d∗ e−kd/d∗

(1 − e−kd/d∗)
2 . (5.56)

We can show that by choosing

k > 1 + (d∗ ln 32 + c) /d (5.57)

so that the TDMA scheme operates in

T = d(d/c + d∗ ln 32/c + 1)2e (5.58)
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timeslots, Pint < 1 and thus

R(d) ≥ e−d/d∗(1 − Pint)T
−1. (5.59)

Using that facts that in the draining and distribution phases, d ≤
√

2cκ ln
√

n√
2c

,

that the number of timeslots T = Θ(d2), and that there may be O(ln n) nodes in

each square, we see that the achievable rate in these phases is

Ω
(

e−d/d∗(1 − Pint)d
−2(ln n)−1

)

(5.60)

= Ω
(

e
−
√

2cκ ln
√

n√
2c

/d∗
(ln n)−3

)

(5.61)

= Ω
(

n−
√

2cκ/2d∗(ln n)−3
)

(5.62)

As long as we choose
√

2cκ/2d∗ < 1/2 (5.63)

while keeping

c2 > ln 6 + 2/κ (5.64)

to fulfill the requirements of [7], Theorem 5, a per-node throughput of Ω(1/
√

n) in

our random broadcast erasure network with interference is achievable.

When the network uses a polynomial decay, rather than the exponential decay,

the analysis is similar.

Replace the union bound on the probability that the symbol from at least one

of these transmitter is not erased, Pint, is thus

Pint ≤
∞
∑

k=1

8k ((ck − 1)ρ)−α (5.65)

The sum converges for α > 3, the range we are interested in, and by choosing an

appropriate ρ (independent of n) the upperbound on the probability Pint can be

made less than 1. The probability of a successful transmission between two nodes

in adjacent cells (located no further apart than 2ρ, with no interfering symbols

simultaneously received, is then better than

Rneighbor =
1

1 + (2ρ)α
(1 − Pint) . (5.66)
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Each node in the cell gets at least a 1/ρ2 log n fraction of this rate; and the

TDMA scheme allows the cell to operate at 1/c2 fraction of the time.

5.6 Discussion of Results

We have studied the transport capacity of non-interference wireless erasure net-

works, where the probability of a erasure increases with distance according to

three different models. Under the geometric model, the exponential model, and

the high-attenuation polynomial decay model, we have shown that the transport

capacity can grow no faster than linearly in the number of nodes. These results

nicely parallel the theorems of [6], despite the fact that we are studying the same

phenomenon under two different network models.
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Chapter 6

Summary

6.1 Summary

The erasure channel is an appropriate model to describe the action of channel-

coded communication from the network-layer point of view. It has the additional

advantage of analytic tractability. Investigation of the operation of networks of

such channels has allowed us to ask and answer a number of compelling and intellec-

tually interesting system level questions. For example, we were able to investigate

the capacity of a more generalized class of erasure networks, incorporating both

broadcast and receiver interference. We demonstrated the tremendous benefits of

feedback, particularly in simplifying coding and routing, in erasure networks. We

explored bounds on the secrecy capacity of wireless erasure networks, and showed

that our intuitive guesses on such capacity do not hold for all possible networks.

Finally, we demonstrated that, very similarly to Gaussian interference networks,

the asymptotic transport capacity of wireless erasure networks is linear in a variety

of physical layer models. In addition, unlike for Gaussian networks, we have shown

that routing is an order-optimal strategy - network coding can yield only constant,

or at most, logarithmic gains.
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