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Advances in information technology have created radically new business mod-

els, most notably the integration of advertising with keyword-based targeting, or

“keyword advertising.” Keyword advertising has two main variations: advertising

based on keywords employed by users in search engines, often known as “sponsored

links,” and advertising based on keywords embedded in the content users view, often

known as “contextual advertising.” Keyword advertising providers such as Google

and Yahoo! use auctions to allocate advertising slots. This dissertation examines the

design of keyword auctions. It consists of three essays.

The first essay “Ex-Ante Information and the Design of Keyword Auctions” fo-

cuses on how to incorporate available information into auction design. In our keyword

auction model, advertisers bid their willingness-to-pay per click on their advertise-

ments, and the advertising provider can weigh advertisers’ bids differently and require

different minimum bids based on advertisers’ click-generating potential. We study the

impact and design of such weighting schemes and minimum-bids policies. We find

that weighting scheme determines how advertisers with different click-generating po-

tential match in equilibrium. Minimum bids exclude low-valuation advertisers and at
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the same time may distort the equilibrium matching. The efficient design of keyword

auctions requires weighting advertisers’ bids by their expected click-through-rates,

and requires the same minimum weighted bids. The revenue-maximizing weighting

scheme may or may not favor advertisers with low click-generating potential. The

revenue-maximizing minimum-bid policy differs from those prescribed in the standard

auction design literature. Keyword auctions that employ the revenue-maximizing

weighting scheme and differentiated minimum bid policy can generate higher revenue

than standard fixed-payment auctions.

The dynamics of bidders’ performance is examined in the second essay, “Key-

word Auctions, Unit-price Contracts, and the Role of Commitment.” We extend

earlier static models by allowing bidders with lower performance levels to improve

their performance at a certain cost. We examine the impact of the weighting scheme

on overall bidder performance, the auction efficiency, and the auctioneer’s revenue,

and derive the revenue-maximizing and efficient policy accordingly. Moreover, the

possible upgrade in bidders’ performance levels gives the auctioneer an incentive to

modify the auction rules over time, as is confirmed by the practice of Yahoo! and

Google. We thus compare the auctioneer’s revenue-maximizing policies when she is

fully committed to the auction rule and when not, and show that she should give less

preferential treatment to low-performance advertisers when she is fully committed.

In the third essay, “How to Slice the Pie? Optimal Share Structure Design

in Keyword Auctions,” we study the design of share structures in keyword auctions.

Auctions for keyword advertising resources can be viewed as share auctions in which

the highest bidder gets the largest share, the second highest bidder gets the second

largest share, and so on. A share structure problem arises in such a setting regarding

how much resources to set aside for the highest bidder, for the second highest bidder,
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etc. We address this problem under a general specification and derive implications on

how the optimal share structure should change with bidders’ price elasticity of demand

for exposure, their valuation distribution, total resources, and minimum bids.
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Chapter 1

An Introduction to Keyword Advertising and

Keyword Auctions

1.1 Introduction

Keyword advertising is a form of targeted online advertising. A basic variation

of keyword advertising is “sponsored links” (also known as “sponsored results” and

“sponsored search”) on search engines. Sponsored links are advertisements triggered

by search phrases entered by Internet users on search engines. For example, a search

for “laptop” on Google will bring about both the regular search results and adver-

tisements from laptop makers and sellers. Figure 1.1 shows such a search-result page

with sponsored links at the top and on the side of the page. Another variation of

keyword advertising is “contextual advertising” on content pages. Unlike sponsored

links, contextual advertisements are triggered by certain keywords in the content.

For example, a news article about “Cisco” is likely to be displayed with contextual

advertisements from Cisco network equipment sellers and Cisco training providers.

Both sponsored links and contextual advertisements can target users who are

most likely interested in seeing the advertisements. Because of its superior targeting

ability, keyword advertising has quickly gained popularity among marketers, and has

become a leading form of online advertising. According to a report by Interactive

Advertising Bureau and PricewaterhouseCoopers (2008), keyword advertising in the

United States reached $8.5 billion in total revenue in 2007. eMarketer (2007) predicts

the market for online advertising will rise from $16.9 billion in 2006 to $42 billion in
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Figure 1.1: Search-based Keyword Advertising

2011, with keyword advertising accounting for about 40% of the total revenue.

A typical keyword advertising market consists of advertisers and publishers

(i.e., websites), with keyword advertising providers in between. There are three

key keyword advertising providers in the U.S. keyword advertising market: Google,

Yahoo!, and MSN adCenter. Next we use Google’s practice to illustrate keyword-

advertising business models.

Google has two main advertising programs, Adwords and AdSense. Adwords

is Google’s flagship advertising program that interfaces with advertisers. Through

Adwords, advertisers can submit ads, choose keywords relevant to their businesses,

and pay for the cost of their advertising campaigns. Adwords has separate programs

for sponsored search (Adwords for search) and for contextual advertising (Adwords

for content). In each case, advertisers can choose to place their ads on Google’s site

only or on publishers’ sites that are part of Google’s advertising network. Advertisers

can also choose to display text, image, or, more recently, video advertisements.

AdSense is another Google advertising program that interfaces with publishers.

Publishers from personal blogs to large portals such as CNN.com can participate in
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Google’s AdSense program to monetize the traffic to their websites. By signing up

with AdSense, publishers agree to publish ads and receive payments from Google.

Publishers may choose to display text, image, and video advertisements on their sites.

They receive payments from Google on either a per-click or per-thousand-impressions

basis. AdSense has become the single most important revenue source for many Web

2.0 companies.

Keyword advertising providers use auctions to sell their keyword advertising

slots to advertisers. The design of such auctions is the focus of this dissertation. A

basic form of keyword auction is as follows. Advertisers choose their willingness-to-

pay for a keyword phrase either on a per-click (pay-per-click) or on per-impression

(pay-per-impression) basis. An automated program ranks advertisers and assigns

them to available slots whenever a user searches for the keyword or browses a content

page deemed relevant to the keyword. The ranking may be based on advertisers’

pay-per-click/pay-per-impression only. It may also include other information, such

as their historical click-through-rate (CTR), namely the ratio of the number of clicks

on the ad to the number of times the ad is displayed. Almost all major keyword

advertising providers use automated bidding systems, but they specific designs differ

from each other and change over time.

1.2 A Historical Look at Keyword Auctions

Keyword advertising and keyword auctions were born out of practice. They

were fashioned to replace the earlier, less efficient market mechanisms and are still

being shaped by the accumulative experiences of the keyword advertising industry. In

this subsection, we chronicle the design of keyword advertising markets and keyword

auctions, and show how they evolved.
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1.2.1 Early Internet Advertising Contracts

In early online advertising, advertising space was sold through advance con-

tracts. These contracts were negotiated on a case-by-case basis. As such negotiations

were time-consuming, advertising sales were limited to large advertisers (for example,

those paying at least a few thousand dollars per month). These advertising contracts

were typically priced in terms of the number of thousand-page-impressions (cost-per-

mille, or CPM). CPM pricing was borrowed directly from off-line advertising, such

as TV, radio, and print, where advertising costs are measured on a CPM basis. The

problem with CPM pricing is that it provides no indication as to whether users have

paid attention to the advertisement. Advertisers may be concerned that their adver-

tisements are pushed to web users without necessarily generating any impact. The

lack of accountability is reflected in the saying among marketing professionals: “Half

the money spent on advertising is wasted and you don’t even know which half.”

1.2.2 Keyword Auctions by GoTo.com

In 1998, a startup company called GoTo.com demonstrated a new proof-of-

concept search engine at a technology conference in Monterey, California. At that

time, all other search engines sorted search results based purely on algorithm-assessed

relevancy. GoTo.com, on the other hand, devised a plan to let advertisers bid on top

positions of the search result. Specifically, advertisers can submit their advertisements

on chosen words or phrases (“search terms”) together with their pay-per-click on these

advertisements. Once the submitted advertisements are validated by GoTo.com’s

editorial team, they will appear as a search result. The highest advertiser will appear

at the top of the result list; the second-highest advertiser will appear at the second

place of the result list, and so on. Each time a user clicks on an advertisement, the
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advertiser will be billed the amount of the bid.

GoTo.com’s advertising model contains several key innovations. First, adver-

tising based on user-entered search terms represents a new form of targeted advertising

that is based on users’ behavior. For example, a user who searches “laptop” is highly

likely in the process of buying a laptop. Keyword-based search engine advertising

opens a new era of behavioral targeted advertising.

Second, by billing advertisers only when users click on the advertisements,

GoTo.com provides a partial solution to a longstanding issue of lack of accountability.

Clicking on an advertisement indicates online users’ interests. Therefore, pay-per-click

represents a significant step toward more accountable advertising. The ability to track

behaviorial outcomes such as clicks is a crucial difference between online advertising

and its off-line counterparts. The act of clicking on an advertisement provides an

important clue on advertising effectiveness. Accumulated information on clicking

behavior can be further used to fine-tune advertisement placement and content. In

such a sense, pay-per-click is a significant leap from the CPM scheme and signifies

the huge potential of online advertising.

Finally, the practice of using auctions to sell advertising slots on a continuous,

real-time basis is another innovation. These real-time auctions allow advertisements

to go online a few minutes after a successful bidding. As there is no pre-set minimum

spending, auction-based advertising has the advantage of tapping into the “long tail”

of the advertising market, that is, advertisers who have small spending budgets and

are more likely to “do-it-yourself.”

GoTo.com was re-branded as Overture Services in 2001 and acquired by Yahoo!

in 2003. During the process, however, the auction mechanism and the pay-per-click

pricing scheme remained largely unchanged.
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1.2.3 Subsequent Innovations by Google

Google, among others, made several key innovations to the keyword advertising

business model. Some of these have become standard features of today’s keyword

advertising. In the following, we briefly review these innovations.

Content vs. Advertising. The initial design by GoTo.com features a “paid

placement” model: paid advertising links are mixed with organic search results so

that users cannot tell whether a link is paid for. Google, when introducing its own

keyword advertising in 1998, promoted a “sponsored link” model that distinguished

advertisements from organic search results. In Google’s design, advertisements are

displayed on the side or on top of the result page with a label “sponsored links.”

Google’s practice has been welcomed by the industry and policy-makers and has now

become standard practice.

Allocation Rules. Google introduced a new allocation rule in 2002 in its

“Adwords Select” program in which listings are ranked not only by bid amount, but

also by CTR (later termed as “quality score”). Under such a ranking rule, paying

a high price alone cannot guarantee a high position. An advertiser with a low CTR

will get a lower position than advertisers who bid the same (or slightly lower) but

have higher CTRs. In 2006, Google revised its quality score calculation to include not

only advertisers’ past CTRs but also the quality of their landing pages. Advertisers

with low quality scores are required to pay a high minimum bid or they will become

inactive.

Google’s approach to allocation gradually gained acceptance. At the beginning

of 2007, Yahoo! conducted a major overhaul of its online advertising platform that

considers both the CTRs of an advertisement and other undisclosed factors. Microsoft

adCenter, which came into use only at the beginning of 2006, used a ranking rule
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similar to Google’s Adwords. Before that, all of the advertisements displayed on the

MSN search engine were supplied by Yahoo!.

Payment Rules. In the keyword auctions used by GoTo.com, bidders pay

the amount of their bids. This way, any decrease in one’s bid will result in less pay-

ment. As a result, bidders have incentives to monitor the next highest bids and make

sure their own bids are only slightly higher. The benefits from constantly adjusting

one’s bid create undesirable volatility in the bidding process. Perhaps as a remedy,

Google used a different payment rule in their Adwords Select program. In Adwords

Select, bidders do not pay the full amount of their bids. Instead, they pay the lowest

possible to remain above the next highest competitor. If the next highest competitor’s

bid drops, Google automatically adjusts the advertiser’s payment downward. This

feature, termed as “Adwords Discounter,” is essentially an implementation of second-

price auctions in a dynamic context. One key advantage of such an arrangement is

that bidders’ payments are no longer directly linked to their bids. This reduces bid-

ders’ incentive to game the system. Recognizing this advantage, Yahoo! (Overture)

also switched to a similar payment rule.

Pricing Schemes. As of now, Google’s Adwords for search offers only pay-

per-click advertising. On the other hand, Adwords for content allows advertisers to

bid either pay-per-click or pay-per-thousand-impression. Starting spring 2007, Google

began beta-testing a new billing metric called pay-per-action with their Adwords for

content. Under pay-per-action metric, advertisers pay only for completed actions of

choice, such as a lead, a sale, or a page view, after a user has followed through the

advertisement to the publisher’s website.
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1.2.4 Beyond Search Engine Advertising

The idea of using keywords to place most relevant advertisements is not lim-

ited to search engine advertising. In 2003, Google introduced an “AdSense” program

that allows web publishers to generate advertising revenue by receiving advertise-

ments served by Google. AdSense analyzes publishers’ web pages to generate a list of

most relevant keywords, which are subsequently used to select the most appropriate

advertisements for these pages. The order of advertisements supplied to a page is

determined by Adwords auctions. The proceeds of these advertisements are shared

between Google and web publishers. Yahoo! has a similar program called Yahoo!

Publisher Network.
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Chapter 2

Ex-Ante Information and the Design of Keyword

Auctions

2.1 Introduction

Keyword advertising is distinguished from offline advertising and other online

advertising because it delivers the most relevant advertisement to Internet users,

yet in less intrusive ways. The effectiveness of this type of advertising has been

demonstrated in its acceptance among marketers. The leading provider of keyword

advertising, Google, increased its total revenue 39-fold between 2002 and 2007 to

$16.6 billion, mostly from keyword advertising. Keyword advertising has consistently

accounted for about 40 percent of the total online advertising revenue in the last few

years and will remain the biggest form of online advertising for years to come. It is

expected to reach about $16.8 billion by 2011 (eMarketer 2007).

Keyword advertising is undoubtedly enabled by new information technolo-

gies. One of the key differences between keyword advertising and traditional forms

of advertising such as radio and TV is that keyword advertising providers, with the

help of information technology, can better track outcomes of advertisements including

how many Internet users click on them and the number that end up making a pur-

chase. The ability to track such outcomes not only allows marketers to better account

for their advertising campaigns, but also shapes the design of keyword auctions—a

novel mechanism that keyword advertising providers such as Google, Yahoo!, and

MSN use to allocate advertising slots. First, it enables outcome-based pricing (or
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pay-for-performance), including the now standard “pay-per-click,” in which adver-

tisers pay only when Internet users click on their advertisements, and new variants

such as “pay-per-call” (advertisers pay each time an Internet user contacts the ad-

vertiser) and “pay-per-purchase” (advertisers pay each time an Internet user follows

the advertisement to make a purchase). Second, it allows advertising providers to

gather information on advertisers’ potential to generate outcomes. For example, in

pay-per-click advertising, advertising providers typically accumulate information on

advertisers’ click-through rates (CTRs)— the number of clicks on an advertisement

divided by the number of times displayed—which can be used to infer advertisers’

click-generating potential. This paper examines how such information—the ex-ante

information on advertisers’ potential to generate outcomes—should be integrated into

the design of keyword auctions that use outcome-based pricing.

The ex-ante information on advertisers’ outcome-generating potential has been

gradually integrated into keyword auction designs in terms of ranking rules and

minimum-bid policies. The initial keyword auctions, as introduced by Overture (now

a subsidiary of Yahoo!), rank advertisers solely by their willingness-to-pay per click

(henceforth unit price), thus making no use of information on advertisers’ click-

generating potential. In 2002, Google used such information for the first time by

ranking advertisers by the product of unit prices they bid and their historical CTRs

so that, everything else being equal, an advertiser with a higher CTR will get a better

slot. Later, Google extended the ranking factor from CTRs to a more comprehensive

“Quality Score” that also takes into account the quality of the advertisement text and

other unannounced relevance factors. Yahoo! adopted a similar ranking rule in its

new advertising platform. Recently, advertising providers have begun to make min-

imum bids depend on advertisers’ click-generating potential. For example, Google
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recently switched from a one-size-fits-all minimum-bid policy to one that requires

higher minimum bids for advertisers with low CTRs. These novel designs raise many

questions. For example, what is the impact of the weighted ranking rules and dif-

ferentiated minimum-bid policies on advertisers’ equilibrium bidding behavior? How

should advertising providers rank advertisers with different CTRs and set minimum

bids for them? The goal of this paper is to address these issues.

We address the above issues by studying a model of keyword auctions. In this

model, advertisers bid unit prices; the advertising provider not only receives unit-price

bids from advertisers but also takes into account the information on the advertisers’

click-generating potential. Such information allows the advertising provider to differ-

entiate advertisers with high expected CTRs (h-type) from those with low expected

CTRs (l-type). Advertisers, on the other hand, cannot tell another advertiser’s CTR-

type or valuation-per-click. The advertising provider can assign different weighting

factors and impose different minimum bids for advertisers with high and low expected

CTRs. Using such a framework, we study how weighting schemes and differentiated

minimum-bid policies affect advertisers’ equilibrium bidding and how to design such

keyword auctions in terms of choosing weighting factors and minimum bids for ad-

vertisers with different expected CTRs. Such design issues depart from those in

standard auctions where no similar information exists. Our focus on design issues

also differentiates our study from studies that focus on equilibrium analysis under

given auction rules, such as Edelman et al. (2007) and Varian (2007). More impor-

tantly, how to best design weighting schemes and minimum-bid policies is important

to the performance of keyword advertising platforms used by search engines.

We study the design of weighting schemes and minimum-bid policies from

two perspectives: one that maximizes total expected valuation created (the efficient
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design) and one that maximizes the auctioneer’s expected revenue (the revenue-

maximizing design). The efficient design maximizes the “total pie.” Such a design is

most relevant at the developing stage of the keyword advertising market in which ad-

vertising providers are likely to attract advertisers by passing much of the valuation

created to them. As the keyword advertising market becomes mature and market

shares stabilize, advertising providers will more likely focus on profitability, thereby

adopting a revenue-maximizing design.

Our study generates several important insights. We demonstrate that weight-

ing schemes and differentiated minimum bid policies have a significant impact on

equilibrium bidding. The weighting scheme determines how advertisers with differ-

ent expected CTRs match in equilibrium—an advertiser with a low weighting factor

compensates by bidding higher (than one with the same valuation-per-click but a

higher weighting factor). Minimum bids exclude low-valuation advertisers and, when

not equally constraining, can distort the equilibrium matching: some of the less-

constrained advertisers will choose not to compete with their more-constrained com-

petitors by bidding low. Despite these nontrivial equilibrium features, the efficient

keyword auction design is remarkably simple: it weights advertisers’ unit-price bids

with their expected CTRs and requires the same minimum weighted score. This im-

plies that one should rank advertisers as if they bid their true valuation, and set higher

minimum bids for advertisers with lower expected CTRs. The revenue-maximizing de-

sign may generate higher revenue than standard fixed-payment auctions, but requires

fine balancing between low- and high-CTR advertisers based on their expected CTRs

and valuation-per-click distributions. Relative to the efficient weighting scheme, the

revenue-maximizing weighting scheme may favor low- or high-CTR advertisers. In

choosing revenue-maximizing minimum bids, advertising providers should consider
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the effect of excluding low-valuation advertisers as well as that of distorted alloca-

tions among advertisers with different expected CTRs.

The rest of the paper is organized as follows. In section 2.2 we discuss the re-

lated literature. In section 2.3 we lay out our research model. We examine weighting

scheme design and differentiated minimum bids design in sections 2.4 and 2.5, respec-

tively. We compare keyword auctions to standard fixed-payment auctions in section

2.6. Section 2.7 discusses some extensions, and section 2.8 concludes the paper.

2.2 Related Literature

How auctioneers should use available information has been an important area

of investigation in the auction literature. The early literature focuses on ex-post in-

formation. Riley (1988) finds that in common-value auctions, such as drilling-right

auctions, auctioneers can increase their revenue by tying winners’ payment with the

ex-post information on the item’s value. McAfee and McMillan (1986) demonstrate

that in procurement auctions, making contractors’ (bidders’) payment partially de-

pend on their ex-post realized costs can reduce the buyer’s procurement costs. This

paper focuses on how auctioneers can use ex-ante information on bidders’ outcome-

generating potential.

This research is most related to research on “scoring auctions,” or auctions in

which bidders are ranked by a score that summarizes multiple underlying attributes.

Che (1993) and Asker and Cantillon (2008) study a form of scoring auction used in

procurement settings, in which the score is a function of suppliers’ non-price attributes

(e.g., quality and time-to-completion) minus the price they ask. Ewerhart and Fieseler

(2003) study another form of scoring auction, in which a score is a weighted sum of

unit-price bids for each input factor (e.g., labor and materials). All three papers
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show that scoring auctions, though inefficient, can generate higher revenues than

efficient mechanisms such as fixed-payment first-price auctions. Keyword auctions in

this paper are different from the above scoring auctions in auction rules, equilibrium

bidding behavior, and application settings. For example, we study a multiplicative

scoring rule that is different from other scoring auctions. The difference in scoring

rules also leads to different equilibrium features (e.g., kinks and jumps in our setting).

Another important difference is that equilibrium bidding in other scoring auctions

is determined by a single parameter, whereas in our paper, equilibrium bidding is

determined both by advertisers’ valuation-per-click and by their CTR signals. Besides

scoring rules, we study differentiated minimum bid policies, which are not discussed

in the aforementioned literature.

This paper is closely related to previous studies on ranking rules in keyword

auctions. Recall that one approach ranks advertisers only by their unit prices, whereas

the other approach ranks advertisers using the product of their unit prices and his-

torical CTRs. Liu and Chen (2006) and Lahaie (2006) study the equilibrium bidding

under the two approaches and show that the latter approach is efficient and that the

revenues generated by the two approaches are ambiguously ranked. Liu and Chen

(2006) study the revenue-maximizing design under a more general class of ranking

rules with ranking-by-price and ranking-by-price×CTR as two special cases. They

show that neither ranking-by-price nor ranking-by-price×CTR is revenue-maximizing.

We extend Liu and Chen (2006) in several ways. First, this paper considers a gen-

eral multi-slot setting, while Liu and Chen (2006) assume a single slot. Second, this

paper allows valuation-per-click to be correlated with CTR signals. Third, for the

first time in the literature, this paper studies the use of differentiated minimum bids,

together with the weighted ranking rule, as a way of exploiting ex-ante information
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on advertisers.

Several authors have looked at keyword auctions from different perspectives.

Following the “auction of contracts” literature (McAfee and McMillan 1986; Samuel-

son 1986), a few authors (e.g., Sundararajan 2006) study whether advertisers should

pay a fixed payment, a contingent payment, or a combination of the two. Weber

and Zheng (2007) study a model of paid referrals in which firms can offer a “bribe”

to the search engine in exchange for a higher position. They show that the revenue-

maximizing design is a weighted average of the “bribe” and the quality of the product

offered by each firm. Feng (2007) studies the optimal allocation of multiple slots when

buyers’ valuation of slots decreases at different speeds. Edelman et al. (2007) and

Varian (2007) examine equilibria of auctions with a “generalized second price (GSP)”

payment rule, that is, that winners pay only the lowest price that keeps their po-

sitions. They study GSP auctions under a complete-information setting (that is,

advertisers know each others’ valuation for slots).1 Edelman et al. (2007) show that

GSP auctions under a complete-information setting do not have a dominant-strategy

equilibrium, and advertisers will not bid their true valuation. Both Edelman et al.

(2007) and Varian (2007) show that GSP auctions admit a range of stable equilibria,

and the auctioneer’s equilibrium revenue under the GSP rule is at least as high as

that under the Vickrey-Clarke-Groves mechanism. While their characterization of the

equilibria under the GSP rule applies to both the rank-by-price case and the rank-by-

price×CTR case, they do not study what ranking rules advertising providers should

choose, nor do they study optimal minimum-bid policies. This paper complements

theirs by examining how ranking rules and minimum-bid policies affect equilibrium

1Edelman et al. (2007) also study a related “generalized English auction” where advertisers do
not have complete information on others’ valuation but can observe their previous bids.
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bidding and how advertising providers should design such auction dimensions. Also,

different from Edelman el al. (2007) and Varian (2007), we model keyword auc-

tions as an incomplete-information game (i.e., advertisers only know a distribution of

other advertisers’ valuation and click-generating abilities). The real-world keyword

auctions may lie between complete-information and incomplete-information. For ex-

ample, Google does not publish advertisers’ bids while Yahoo! does with measures

that prevent large-scale automatic harvesting of such information. In either case, ad-

vertisers may not know at every minute how much other advertisers value the slots.

2.3 Model Setup

We consider a problem of assigning m advertising slots associated with a key-

word to n (n ≥ m) risk-neutral advertisers. Each advertiser has one advertisement

for the keyword and can use only one slot. The number of clicks an advertisement can

attract depends both on the quality of the advertisement and on the prominence of

the slot the advertisement is assigned to. The quality of an advertisement is consid-

ered an attribute of the advertisement and may be determined by the relevance of the

advertisement to the keyword, the attractiveness of the advertised product or service,

and how well the advertisement is written. For example, for the keyword “refinance,”

an advertisement from a more reputable lender may generate more clicks than one

from a less reputable lender. The prominence of a slot is considered a slot-specific

factor and may be determined by the position, size, shape, or media format (text,

image, or video) of the slot. For example, an advertisement may attract more clicks

when placed on the top of a page than when placed at the bottom of the page. In this

light, we assume the number of clicks generated by an advertiser at slot j is δjq. δj

is a deterministic factor that we use to capture the prominence of slot j. We assume
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δ1 ≥ δ2... ≥ δm > 0 and normalize δ1 = 1. q is a stochastic number that we use to

capture the quality of the advertisement. We interpret q as the advertiser’s CTR in

the sense that the higher the quality of the advertisement, the more likely a Web user

will click on it. It is important to note that, in general, CTRs are subject to both

the advertisement effect and the slot effect. In this paper, an advertiser’s CTR refers

exclusively to the attractiveness of an advertisement, regardless of any slot effect.

Though an advertiser’s CTR is realized only after the auction, the adver-

tiser and the auctioneer may have ex-ante information about the advertiser’s future

CTRs. This is because e-commerce technologies make it easy for advertising providers

to track advertisers’ past CTRs and to make predictions about their future CTRs.

We assume that the auctioneer can observe a signal about each advertiser’s future

CTR; the same signal is observed by the advertiser but not by other advertisers. For

simplicity, we assume that such signal allows the auctioneer to distinguish between

two types of advertisers, those with high expected CTRs (h-type) and those with low

expected CTRs (l-type). We will extend our model to a multiple CTR-type case in

section 2.7. Denote Qh and Ql (Qh > Ql > 0) as the expected CTRs for l-type and

h-type advertisers, respectively. We assume the probabilities for advertisers being

h-type and l-type are α and 1 − α, respectively. These probabilities are common

knowledge.

Each advertiser has a valuation v for each click, termed the advertiser’s valuation-

per-click. Advertisers may differ in valuation-per-click. For example, for the key-

word “refinance,” bankone.com may have a higher valuation-per-click than aggregate

lender lendingtree.com. The distribution of the valuation-per-click may be corre-

lated with the advertiser’s CTR signal such that l- and h-type advertisers may have

different valuation-per-click distributions. For example, aggregate lenders (e.g., lend-
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ingtree.com) may have higher CTRs but lower valuation-per-click than banks (e.g.,

bankone.com) for the keyword “refinance.” Let Fl(v) and Fh(v) denote the cumula-

tive distribution of valuation-per-click for l- and h-type advertisers, respectively. The

realization of an advertiser’s valuation-per-click is not known by the auctioneer or

other advertisers. But the distributions Fh(v) and Fl(v) are common knowledge.

We assume Fl(v) and Fh(v) have a fixed support [0, 1], and the density func-

tions, fl(v) and fh(v), are positive and differentiable everywhere within the support.

This assumption can be generalized to [vl, v̄l] and [vh, v̄h] for l- and h-type advertisers,

respectively. We also assume that one advertiser’s valuation-per-click and expected-

CTR type are independent of another advertiser’s.2

We assume advertisers’ payoff functions are additive in their total valuation

and the payment. In particular, conditional on winning slot j, an advertiser’s payoff

is

vqδj − payment. (2.1)

Advertising slots are sold through a weighted unit-price auction, which we de-

scribe below. Each advertiser is asked to submit a b that is the advertiser’s willingness-

to-pay per click, or unit price. The auctioneer assigns each advertiser a score based

on the advertiser’s unit-price bid and CTR signal. The score for an advertiser is

s =

{
b, if the advertiser is h-type

wb, if the advertiser is l-type
, (2.2)

where w is the weighting factor for l-type advertisers, and the weighting factor for

h-type advertisers is normalized to 1. The auctioneer allocates the first slot to the

2The independent-private-value assumption applies to auctions in which the bidders are buying
for their own use and not for resale (McAfee and McMillan 1987). We consider keyword auctions as
independent-private-value auctions because advertisers or their advertising agencies bid on slots to
display their own advertisements, and slots, once sold, are assigned to specific advertisements and
cannot be resold to other advertisers.
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advertiser with the highest score, the second slot to the advertiser with the second

highest score, and so on. Winners pay for their realized clicks at unit prices they

bid.3 We call such an auction format a weighted unit-price auction.

By allowing w to take different values, we can accommodate the following

stylized auction formats. When w equals one, the winners are determined solely by

the prices they bid. One example is Overture’s auction format. When w is less

than one, bid prices from l-type advertisers are weighted less than those from h-type

advertisers. Google’s auction fits in this category because under Google’s ranking

policy, bids from advertisers with high click-generating potential are weighted more.

We also allow the auctioneer to set different minimum bids (or reserve prices)

for advertisers with different CTR signals. In particular, we let bl and bh be the

minimum bids for l- and h-type advertisers, respectively.

The auction proceeds as follows. First, the auctioneer announces weighting

factors and minimum bids. All advertisers receive signals about their future CTRs

and learn their valuation-per-click before the auction. Then, each advertiser submits

a unit-price bid, and the auctioneer assigns advertisers to slots based on their unit-

price bids and CTR signals according to the announced weighting scheme. Finally,

the number of clicks is realized, and advertisers pay the realized clicks at the unit

prices they bid.

3An alternative payment rule is a “second-score” rule; that is, advertisers will pay a price that
matches the next highest score rather than their own scores (all scores are calculated using expected
CTRs). We show in the appendix that under our framework, the “second-score” weighted unit-price
auctions generate the same expected revenue for the auctioneer as the “first-score” version studied
here. The main results in this paper apply also to the “second-score” setting, as these results concern
only the expected revenue. We choose to work with the “first-score” format as it permits explicit
bidding functions.
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2.4 Designing Weighting Scheme

We start by assuming no minimum bids so that we can focus on the design of

the weighting scheme. We will first consider how weighting factors affect advertisers’

equilibrium bidding. Then, we will examine the efficient and revenue-maximizing

weighting schemes.

2.4.1 Weighting Scheme and Equilibrium Bidding

Throughout this paper, we consider a symmetric, pure-strategy Bayesian-Nash

equilibrium. By “symmetric,” we mean that advertisers with the same valuation-per-

click and CTR signal will bid the same.

Let bh (v) denote the equilibrium bidding function for h-type advertisers, and

bl (v) for l-type advertisers. A bidding function in our setting is a function that asso-

ciates advertisers’ unit-price bids with their valuation-per-click. Because advertisers

differ both in valuation-per-click and in expected CTRs, we need a pair of bidding

functions to describe our equilibrium. The condition for the pair to be an equilib-

rium is that an advertiser finds it is optimal to bid according to this pair if all other

advertisers bid according to this pair. We conjecture that both bidding functions are

strictly increasing (we verify this in the appendix). The following result is key to our

analysis.

Lemma 2.4.1. An l-type advertiser with valuation-per-click v matches an h-type

advertiser with valuation-per-click wv in equilibrium. Formally,

bh(wv) = wbl(v), ∀v, wv ∈ [0, 1] . (2.3)

Proof. Unless otherwise noted, all proofs are in the appendix.
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The intuition for Lemma 2.4.1 is as follows. Consider an h-type advertiser

with valuation-per-click wv and an l-type advertiser with valuation-per-click v. If

the former bids wb and the latter bids b, the two advertisers tie, and therefore their

chances of winning each slot are the same. Meanwhile, conditional on winning the

same slot, the l-type advertiser’s payoff (Qlδj(wv − wb)) differs from the h-type ad-

vertiser’s (Qhδj(v − b)) only by a scalar. So their total expected payoffs differ only

by a scalar, too. Because multiplying the objective of an optimization problem by a

scalar does not change the solution to the problem, we conclude that if bidding b is

optimal for the l-type advertiser then bidding wb must also be optimal for the h-type

advertiser, and vice versa.

We call two advertisers comparable if they tie or match (in scores) in equilib-

rium without minimum bids. Lemma 1 greatly simplifies the derivation of advertisers’

equilibrium winning probabilities. Let us first consider an l-type advertiser’s winning

probability against any advertiser, or the advertiser’s one-on-one winning probability,

denoted as Gl(v). Lemma 1 suggests that an l-type advertiser with valuation-per-click

v can beat another advertiser, say B, if and only if B is l-type and has valuation-per-

click less than v, or B is h-type and has valuation-per-click less than wv. Hence,

Gl(v) = αFh(wv) + (1− α)Fl(v). (2.4)

Similarly, an h-type advertiser’s winning probability against any advertiser,

Gh(v), is

Gh(v) = αFh(v) + (1− α)Fl(v/w). (2.5)

We denote P j
l (v) and P j

h(v) as l- and h-type advertisers’ probabilities of win-

ning the jth slot, respectively. We can write P j
l (v) and P j

h(v) as

P j
θ (v) = (n−1

n−j)Gθ(v)n−j [1−Gθ(v)]j−1 , θ ∈ {l, h} . (2.6)
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Figure 2.1: Equilibrium Bidding Functions

Proposition 2.4.2. Given w (w > 0), equilibrium bidding functions are given by





bl(v) = v −
∫ v
0

∑m
j=1 δjP j

l (t)dt
∑m

j=1 δjP j
l (v)

,∀v ∈ [0, 1]

bh(v) = v −
∫ v
0

∑m
j=1 δjP j

h(t)dt
∑m

j=1 δjP j
h(v)

,∀v ∈ [0, 1]
. (2.7)

Proposition 2.4.2 characterizes the equilibrium for a weighted unit-price auc-

tion. In Figure 2.1, we plot advertisers’ equilibrium scores when l-type’s weighting

factor is 0.5 and the valuation distributions are uniform. Recall that score is bid times

weighting factor. We plot scores instead of unit-price bids because the former better

illustrates the equilibrium matching between l- and h-type advertisers. Clearly, an

l-type with valuation-per-click 1 ties with an h-type with valuation-per-click 0.5, and

h-type advertisers with higher valuation have no comparable l-type advertisers.

Interestingly, the figure shows a kink in h-type advertisers’ equilibrium bidding

function. Intuitively, this is because h-type advertisers with valuation-per-click less

than 0.5 compete with both l- and h-type advertisers, whereas h-type advertisers
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with valuation-per-click higher than 0.5 complete only with h-type advertisers. The

sudden change in the number of competitors causes h-type advertisers with valuation-

per-click higher than 0.5 to bid considerably less aggressively than h-type advertisers

with valuation-per-click lower than 0.5, thus the kink. Generally speaking, when

the weighting factor w for l-type advertisers is less than one, the h-type advertisers’

equilibrium bidding function has a kink at w. When w is greater than one, the l-type

advertisers’ equilibrium bidding function has a kink at 1/w.4 These kinks reflect the

impact of weighting scheme on the equilibrium matching between l-type and h-type

advertisers.

Proposition 2.4.2 has the following implications. Advertisers who receive a

high weighting factor are favored in equilibrium allocation, and can win more often

with the same unit price. Some advertisers who receive a high weighting factor may

out-compete all advertisers who receive a low weighting factor, and thus can benefit

from such a situation by bidding less aggressively. Increasing l-type’s weighting factor

causes the following effects. It increases l-type advertisers’ one-on-one winning proba-

bility and decreases h-type advertisers’ one-on-one winning probability (see (2.4) and

(2.5)). Consequently, l-type advertisers are selected more often into high-ranked slots

and have a larger total expected winning (defined as the expected value of the slot an

advertiser may win, i.e.,
∑m

j=1 δjP
j
θ (v)). Meanwhile, it causes more h-type advertisers

to bid aggressively because there are more h-type advertisers with valuation-per-click

below w who face competition from both CTR-types.

4If we allow more general supports, such as [vl, v̄l] and [vh, v̄h], there may be as many as two
kinks in the bidding functions. For example, with general supports [1, z] (2 < z < 4) for l-type and
[1, 2] for h-type and w = 0.5, l-type advertisers’ equilibrium bidding function has a kink at 2, and
h-type advertisers’ equilibrium bidding function has a kink at z/2. In some special cases, such as
with supports [2, 4] for l-type and [1, 2] for h-type and w = 0.5, there is no kink in either type’s
equilibrium bidding function.
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2.4.2 Efficient Weighting Scheme

We measure the efficiency by the total value created. The efficiency criterion,

therefore, emphasizes the “total pie,” which is important if the auctioneer’s objec-

tive is to transfer much of the value to advertisers in return for their participation.

This is especially true when the keyword advertising market is still nascent, and on-

line advertising providers are still trying to steal market share from the traditional

advertising providers. The efficiency criterion may become the criterion of choice

for advertising providers who aim at long-term development rather than short-term

profits, regardless of their market positions.

We define the efficient weighting factor, weff , as one that maximizes the total

expected valuation. We focus on expected valuation (thus ex-ante efficiency) because

advertisers’ valuation for slots is also determined by the realized CTRs after the

auction. The assignment of an advertiser with valuation-per-click v and CTR-signal

θ to slot j will generate an expected valuation of vδjQθ, θ ∈ {l, h}. Given that the

probability of assigning an advertiser to slot j is P j
θ (v), the total expected valuation

generated by all advertisers is,

W = n (1− α) Ql

∫ 1

0

v

m∑
j=1

δjP
j
l (v) fl (v) dv

+nαQh

∫ 1

0

v

m∑
j=1

δjP
j
h (v) fh (v) dv. (2.8)

Proposition 2.4.3. The efficient weighting factor (for l-type advertisers) is Ql/Qh.

Proposition 2.4.3 suggests that it is efficient to weight advertisers’ bids by

their expected CTRs (note that the weighting factor pair (Ql/Qh, 1) is equivalent to

the pair (Ql, Qh)). Such a weighting scheme is also efficient if advertisers were to bid

their true valuation. In other words, the auctioneer can achieve efficiency by weighting
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unit-price bids by expected CTRs as if advertisers are bidding their true valuation,

despite that in our model advertisers generally do not bid their true valuation-per-

click. The reason for this lies in the way l- and h-type advertisers are matched in

equilibrium. According to Lemma 2.4.1, an l-type advertiser with valuation-per-click

v is comparable with an h-type advertiser with valuation-per-click wv. The efficiency

criterion requires comparable advertisers to generate the same expected valuation.

Hence, the efficient weighting factor must be Ql/Qh.

It is worth noting that the efficient weighting factor is independent of the

distribution of valuation-per-click and that of CTR types. This feature makes it

straightforward to implement an efficient weighting scheme: the auctioneer only needs

to estimate the expected CTR for each advertiser-keyword combination and use it

to weight the advertiser’s unit-price bid. Given that keyword auctions have already

been set up to accumulate CTR information for all advertisers and all keywords, it is

possible to estimate an advertiser’s CTR on a particular keyword and that estimation

can be perfected over time.

2.4.3 Revenue-Maximizing Weighting Scheme

Another useful design criterion is revenue-maximization. As the industry ma-

tures and the competition for market shares settles, an efficient design toward future

growth becomes less appealing, and the auctioneer’s objective is likely to transform

from maximizing the “total pie” to maximizing the total revenue from existing ad-

vertisers. Next, we examine how an auctioneer should choose the weighting factor to

maximize the expected revenue.

We define the revenue-maximizing weighting factor, w∗, as one that maximizes

the total expected revenue of the auctioneer. We can explicitly derive the auctioneer’s
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expected revenue (π) as (see the appendix for details)

π = n(1− α)Ql

∫ 1

0

m∑
j=1

δjP
j
l (v)

(
v − 1− Fl(v)

fl(v)

)
fl(v)dv

+nαQh

∫ 1

0

m∑
j=1

δjP
j
h(v)

(
v − 1− Fh(v)

fh(v)

)
fh(v)dv. (2.9)

In the above, the total expected revenue consists of the expected revenue from

l-type advertisers (the first term) and the expected revenue from h-type advertisers

(the second term). Recall that P j
l (v) is an l-type advertiser’s probability of winning

the jth slot, and P j
h(v) is an h-type advertiser’s probability. We interpret the terms

Ql

[
v − 1− Fl(v)

fl(v)

]
and Qh

[
v − 1− Fh(v)

fh(v)

]
(2.10)

as l-type’s and h-type’s “revenue contribution” to the auctioneer if they are assigned

to a standard slot (δ = 1), respectively. Revenue contribution refers to the revenue

captured by the auctioneer, which is usually less than the total valuation created.

The difference between advertisers’ revenue contribution and their valuation for slots

is considered to be the informational rent kept by the advertisers. According to

this interpretation, the total expected revenue can be viewed as the total expected

revenue contribution of the winners at all slots. The concept of revenue contribution

is closely related to the concept of “virtual valuation” introduced by Myerson (1981)

in the optimal auction setting. One difference is that we consider revenue contribution

across multiple slots, whereas Myerson (1981) studies a single object.

The revenue-maximizing weighting factor can be characterized by the first-

order condition of the total expected revenue with respect to the weighting factor.

Except in some special cases, the revenue-maximizing weighting factor cannot be

expressed in an explicit form. Next, we focus on two issues regarding the revenue-

maximizing weighting factor. First, how is it different from the efficient weighting
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factor? Second, how is it affected by the underlying model primitives, especially

valuation-per-click distributions? We first consider a setting in which the valuation-

per-click is independent of the CTR signal, so that the valuation-per-click distribu-

tions for l- and h-type advertisers are the same (commonly denoted as F (v)).

We say a distribution function F (v) is an increasing-hazard-rate (IHR) distri-

bution if its hazard rate f(v)
1−F (v)

increases in v throughout the support. Many distri-

butions, including uniform, normal, and exponential, are IHR.

Proposition 2.4.4. If the valuation-per-click and CTR signals are independent, and

F (v) is IHR, then the revenue-maximizing weighting factor w∗ must be higher than

the efficient weighting factor weff .

Proposition 2.4.4 implies that when the distributions of valuation-per-click are

the same across l- and h-type advertisers, the revenue-maximizing weighting factor

is generally inefficient and discriminates against h-type advertisers relative to the

efficient design. The intuition is as follows. For any weighting factor less than weff , if

the valuation-per-click distribution is IHR,

Ql

(
v − 1− F (v)

f(v)

)
> Qh

(
wv − 1− F (wv)

f(wv)

)
, for all v. (2.11)

In other words, for any weighting factor less than weff , the revenue contribution of an

l-type advertiser is always higher than that of a comparable h-type advertiser. Thus,

the auctioneer can always earn a higher revenue by raising w to allocate the slots

more often to l-type advertisers.

When l- and h-type advertisers have different valuation-per-click distributions,

however, the revenue-maximizing weighting factor may or may not be higher than the

efficient weighting factor, as illustrated by the following example.
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Example 2.4.5. Assume there is only one slot and the valuation-per-click of l- and h-

type advertisers are uniformly distributed on [0, z] and [0, 1], respectively. Let α = 0.5,

Ql = 0.5, Qh = 1, and n = 5. We can explicitly solve the revenue-maximizing

weighting factor as w∗ = 1
0.6z+0.8

, which is lower than weff = 0.5 when z > 2 and

higher than weff when z < 2.

In the above example, when z increases, the valuation-per-click distribution

of the l-type advertisers becomes less “tight.” As a result, they can claim more in-

formational rent and contribute less to the total revenue. So the auctioneer should

allocate the slots less often to them by lowering the weighting factor for l-type adver-

tisers. When l-type advertisers’ valuation distribution is loose enough, the revenue-

maximizing weighting factor can be less than the efficient weighting factor.

The above example highlights that it is not always best to discriminate against

advertisers with high expected CTRs. This is fundamentally because advertisers’ rev-

enue contribution is determined both by expected CTRs and valuation distributions.

h-type advertisers do not necessarily contribute less to the total revenue than l-type

advertisers who have the same total valuation for slots, especially when the former

have “tighter” valuation distributions.

2.5 Designing Differentiated Minimum Bids

The optimal auction literature suggests that an optimal design often involves

imposing minimum bids to exclude advertisers whose participation reduces the auc-

tioneer’s revenue. In our setting, the auctioneer can impose differentiated minimum

bids for l- and h-type advertisers because of the information on advertisers’ future

CTRs.
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We say a minimum bid for h-type advertisers is more constraining than that

for l-type advertisers if the comparable h-type advertiser for the lowest participating

l-type advertiser is excluded by the minimum bids. We similarly define the case of

a more constraining minimum bid for l-type advertisers. A pair of minimum bids is

equally constraining if neither bid is more constraining.

Next we will focus on the scenario in which the weighting factor for l-type

advertisers is no higher than that for h-type advertisers (assumption A1 below) and

the minimum bid for h-type advertisers is equally or more constraining (assumption

A2). Analyses of other scenarios—where the weighting factor for l-type is higher

and/or the minimum bid for l-type is more constraining—are analogous. We also

assume that the minimum bid for h-type advertisers is low enough such that at least

some l-type advertisers have comparable participating h-type advertisers (assumption

A3). This assumption excludes a trivial case in which l-type advertisers and h-

type advertisers each compete with advertisers of their own type. Formally, these

assumptions are:

A1) w ≤ 1. A2) wbl ≤ bh. A3) bh < w.

As in section 2.4, we first examine the impact of differentiated minimum bids

on equilibrium bidding and then study the efficient and revenue-maximizing minimum

bid design.

2.5.1 Minimum Bids and Equilibrium Bidding

We conjecture that a pure-strategy equilibrium exists. l-type advertisers’ equi-

librium bidding function must satisfy two criteria: (a) the lowest participating l-type

advertiser must have a valuation-per-click of bl and bid his or her true valuation-per-

click, (b) the equilibrium bidding function must be strictly increasing. The criterion
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(a) is simply the consequence of minimum bids, and the criterion (b) is required by

the incentive compatibility condition (see the appendix for a proof). The criteria for

h-type advertisers are symmetric.

Since the minimum bid for h-type advertisers is more constraining, some low-

valuation l-type advertisers cannot match any participating h-type advertiser in the

equilibrium score. But l-type advertisers with high enough valuation-per-click can.

We call the lowest valuation-per-click for l-type advertisers to match a participating

h-type advertiser the matching point for l-type advertisers, denoted as v0.

If the matching point equals one, no l-type advertiser can match an h-type

advertiser in equilibrium. We will focus on the more interesting case of the matching

point less than one and assume the condition for that is satisfied (see Proposition

2.5.2 for such a condition).

Will l-type advertisers with valuation-per-click above the matching point match

with their comparable h-type advertisers as in the case of no minimum bids? The

following lemma shows that they do.

Lemma 2.5.1. Under assumptions A1-A3, an l-type advertiser with valuation-per-

click v above the matching point match an h-type advertiser with valuation-per-click

wv in equilibrium. Formally,

bh(wv) = wbl(v),∀v > v0. (2.12)

The question remains where the matching point is. One may conjecture that

the matching point will be the valuation-per-click of the l-type advertiser who is

comparable with the lowest participating h-type advertiser. However, we show that

this may be not the case.
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Remark 2.5.1 (Postponed Matching). If the minimum bid for h-type advertisers is

more constraining, at least some low-valuation l-type advertisers will bid lower scores

than their comparable h-type advertisers.

Suppose the opposite, that is, every l-type advertiser will match the compara-

ble h-type advertiser in equilibrium whenever the latter is not excluded by minimum

bids. The first l-type advertiser to have a comparable h-type advertiser is bh/w.

By definition, bh/w is also the matching point. Since the h-type advertiser with

valuation-per-click bh must bid the true valuation (by criterion (a)) and earn zero

payoff, the l-type advertiser must also bid his/her true value (by Lemma 2.5.1) and

earn zero payoff. However, this cannot be an equilibrium because the l-type adver-

tiser can always earn a positive payoff by bidding less. This contradiction leads us to

conclude that the matching point must be higher than bh/w. In other words, l-type

advertisers avoid matching their comparable h-type ones in equilibrium until their

valuation-per-click is high enough.

Given that the minimum bids are not equally constraining, the two bidding

functions cannot both be continuous. If both bidding functions were continuous, by

the definition of the matching point, the l-type advertiser with valuation-per-click v0

must match the h-type advertiser with valuation-per-click bh in equilibrium scores

and both must earn zero payoff. Our previous argument shows that this cannot be

an equilibrium. The following proposition establishes the equilibrium bidding with

minimum bids.

Proposition 2.5.2. Under assumptions A1-A3, the equilibrium bidding functions are

given by

bθ(v) = v −
∫ v

bθ

∑m
j=1 δjP

j
θ (t) dt

∑m
j=1 δjP

j
θ (v)

,∀v ∈ [bθ, 1] , θ ∈ {l, h}, (2.13)

31



where P j
l (v) and P j

h(v) are defined in (2.6) and the one-on-one winning probabilities

for l- and h-type advertisers are now

Gl (v) =

{
αFh (bh) + (1− α) Fl (v) for v ∈ [bl, v0)
αFh (wv) + (1− α) Fl (v) for v ∈ [v0, 1]

(2.14)

Gh (v) =

{
αFh (v) + (1− α) Fl (v0) for v ∈ [bh, wv0)
αFh (v) + (1− α) Fl

(
v
w

)
for v ∈ [wv0, 1]

(2.15)

The matching point v0 is determined by

w

∫ v0

bl

m∑
j=1

δjP
j
l (t) dt =

∫ wv0

bh

m∑
j=1

δjP
j
h (t) dt. (2.16)

when w
∫ 1

bl

∑m
j=1 δjP

j
l (t) dt <

∫ w

bh

∑m
j=1 δjP

j
h (t) dt, and is 1 otherwise.

Proposition 2.5.2 characterizes the equilibrium under a weighted unit-price

auction with differentiated minimum bids. In Figure 2.2, we show an example of

h-type advertisers facing a more constraining minimum bid. In this example, we let

m = 1, n = 5, α = 0.5, Fl(v) = Fh(v) = v, w = 0.5, bl = 0, and bh = 0.1. Figure 2.2

shows the equilibrium scores for l- and h-type advertisers.

From the figure, l-type advertisers with valuation-per-click lower than the

matching point (0.26) bid lower scores than any h-type advertisers. l-type advertis-

ers with valuation-per-click above the matching point match with their comparable

h-type advertisers (with valuation-per-click between 0.13 and 0.5). h-type advertisers

with valuation-per-click higher than 0.5 beat any l-type advertisers. h-type advertis-

ers with valuation-per-click lower than 0.13 bid lower scores than l-type advertisers

below the matching point but bid higher than l-type advertisers above the matching

point. As before, the kinks are explained by an abrupt increase/decrease in the num-

ber of competing advertisers: the first kink in h-type advertisers’ equilibrium bidding

function is because l-type advertisers start matching h-type advertisers; the second

is because l-type advertisers can no longer match h-type advertisers.
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Figure 2.2: Equilibrium Bidding Functions with Minimum Bids

The example confirms the “postponed matching” effect outlined in Remark

2.5.1. In this example, l-type advertisers with valuation-per-click between 0.2 and

0.26 are comparable with h-type advertisers with valuation-per-click between 0.1 and

0.13, but choose not to match the latter. Intuitively, the minimum bid forces h-

type advertisers with low valuation-per-click to bid close to their true valuation.

Their comparable l-type advertisers, who do not face such a constraint, have the

option of bidding significantly lower than their true valuation, which leads to low

winning probabilities but high per-click payoffs. Bidding low (and not matching their

comparable h-type advertisers) is a dominant strategy for l-type advertisers until

their valuation-per-click reaches the matching point.

The jump in l-type advertisers’ bidding function at the matching point con-

firms our earlier argument about discontinuity.5 At the matching point, l-type ad-

5Strictly speaking, at the matching point, the l-type advertiser is indifferent between bidding low
and bidding high, and hence could use a mixed strategy. To preserve a pure-strategy equilibrium, in
deriving Proposition 2.5.2, we assume that the h-type advertiser always bids high. This assumption
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vertisers’ bidding strategy changes from not matching h-type advertisers to matching

them. The fact the two strategies require quite different unit-price bids explains the

jump in the equilibrium bids.

Proposition 2.5.2 has several implications. First, minimum bids exclude low-

valuation advertisers and force the participating ones, especially those whose valua-

tion is close to the minimum bids, to bid aggressively. In the above example, h-type

advertisers between 0.1 and 0.13 bid higher than they would in the absence of min-

imum bids (dashed lines indicate their equilibrium scores without minimum bids).

Second, if the minimum scores for two CTR-types are the same (in other words, the

minimum bid for h-type advertisers is w-times of that for l-type advertisers), two ad-

vertisers who would tie without minimum bids remain tying. This is also the reason

we call such minimum bids equally constraining. Third, when minimum bids are not

equally constraining, advertisers who face a less constraining minimum bid may be

better off by choosing not to match their comparable advertisers who face a more-

constraining minimum bid, a strategy leading to lower winning odds but a higher

per-click payoff. However, advertisers whose valuation is far above minimum bids

will choose to match their comparable advertisers, even if the minimum bids are not

equally constraining. This later finding is consistent with Google’s claim that their

differentiated minimum-bids policy only affects a small percentage of advertisers.6

As we have mentioned earlier, the intuition in Proposition 2.5.2 carries over

to other scenarios (h-type advertisers receive a lower weighting factor, and/or the

does not affect the equilibrium outcome because the probability measure for an advertiser to be an
l-type advertiser with valuation-per-click v0 is virtually zero.

6Google stated in its official blog Inside Adwords (http://adwords.blogspot.com/2006/11/landing-
page-quality-update.html) that the introduction of a differentiated minimum-bids policy “will affect
a very small portion of advertisers ... However, those who may be providing a low quality user
experience will see an increase in their minimum bids.”
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minimum bid for l-type advertisers is more constraining). For example, when the

minimum bid for l-type advertisers is more constraining, h-type advertisers will post-

pone matching their comparable l-type advertisers, and the jump will occur in h-type’s

equilibrium bidding function.

2.5.2 Efficient Minimum Bids

We now consider the impact of minimum bids on allocation efficiency. We

call a pair of equally constraining minimum bids a uniform minimum score policy

because they result in identical minimum scores for l- and h-type advertisers. We say

a keyword auction is weakly efficient if it allocates assets in a way that maximizes the

total expected valuation of all participating advertisers. The notion of weak efficiency

we use is similar to one discussed by Mark Armstrong (2000). Weak efficiency is

different from “strong” efficiency in that weak efficiency concerns the total valuation

of participating bidders, whereas strong efficiency concerns the total valuation of

all bidders and the auctioneer. Weak efficiency is a necessary condition for strong

efficiency.

If the auctioneer uses a uniform minimum score policy, all participating l-

type advertisers match their comparable h-type advertisers in equilibrium. Hence,

if the weighting factor is Ql/Qh, the auction is still efficient by the same argument

in Proposition 2.4.3. In fact, such designs are also necessary for the auction to be

weakly efficient.

Proposition 2.5.3. A weighted unit-price auction is weakly efficient if and only if

the auctioneer uses the efficient weighting factor and a uniform minimum score.

Proposition 2.5.3 provides a theoretical justification for using differentiated

minimum bids. A uniform minimum-score rule implies that auctioneers should set
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high minimum unit prices for advertisers with low expected CTRs. This is consistent

in principle with Google’s recently adopted differentiated minimum-bid practices.

Once again, a uniform minimum-score policy is easy to implement because it

does not require knowing the distribution of advertisers’ valuation-per-click. Propo-

sition 2.5.3 shows that weighting advertisers’ unit-price bids by their expected CTRs,

together with a simple uniform minimum-score rule, allows the auctioneer to achieve

efficiency among participating advertisers.

2.5.3 Revenue-Maximizing Minimum Bids

Similar to the derivation of (2.9), we can explicitly evaluate the expected

revenue of the auctioneer with minimum bids

π = n(1− α)Ql

∫ 1

bl

m∑
j=1

δjP
j
l (v)

(
v − 1− Fl(v)

fl(v)

)
fl(v)dv

+nαQh

∫ 1

bh

m∑
j=1

δjP
j
h (v)

(
v − 1− Fh(v)

fh(v)

)
fh(v)dv. (2.17)

A pair of minimum bids is revenue-maximizing if this pair is chosen to maxi-

mize (2.17). In the appendix we characterize the revenue-maximizing minimum bid

policy using a set of first-order conditions. The revenue-maximizing minimum bid pol-

icy can be computed numerically. In general, when choosing the revenue-maximizing

minimum bids, the auctioneer needs to consider both the exclusion effect and the

distortion effect. The exclusion effect is well-known in the auction design literature.

A minimum bid excludes advertisers whose valuation-per-click is lower than the min-

imum bid, and forces the remaining advertisers to bid higher than they would in the

absence of such a minimum bid. The distortion effect is new, however. We have shown

earlier that when the minimum bid for h-type advertisers is more constraining, some

l-type advertisers will bid lower scores than their comparable h-type advertisers.
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The condition for revenue-maximizing minimum bids in our setting is generally

different from the “exclusion principle” in standard auctions. The exclusion principle

requires that the revenue-maximizing minimum bid should be chosen to admit only

the advertisers with positive revenue contribution. In our setting, this would require

the revenue-maximizing minimum bids to satisfy, respectively,

bl −
1− Fl(bl)

fl(bl)
= 0 and bh −

1− Fh(bh)

fh(bh)
= 0. (2.18)

The conditions in (2.18) are not revenue-maximizing in our setting, however. They

ignore the fact that in our setting, minimum bids also cause a distortion effect that

has revenue consequences.

The revenue-maximizing minimum bids generally do not have a uniform score

either. Intuitively, when we restrict to a uniform minimum-score policy, the distortion

effect does not exist. As a result, the revenue-maximizing minimum bid policy should

simply exclude advertisers with a negative revenue contribution, that is, one that

satisfies (2.18). However, the minimum bid pair determined by (2.18) seldom has a

uniform minimum score. For example, if the valuation-per-click distributions for l-

and h-type advertisers are the same, conditions in (2.18) lead to the same minimum

bid for l- and h-type advertisers, implying different minimum scores for l- and h-type

advertisers.

We summarize the above observations in the following remark.

Remark 2.5.2. The revenue-maximizing minimum bid policy is generally not a uni-

form minimum-score policy or one resulting from a traditional exclusion principle (as

determined by (2.18)).

We conclude the above discussion with an example that illustrates how the

revenue-maximizing minimum bids in our setting differ from a uniform minimum-
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Table 2.1: A Comparison of Revenues under Different Minimum Bid Policies
minimum bid policy (bl,bh) total expected revenue

revenue-maximizing uniform score (0.481, 0.385) 0.5211
traditional exclusion principle (0.333, 0.500) 0.5213
revenue-maximizing (0.334, 0.615) 0.5309

score policy and from those recommended by the auction design literature. The

following example also shows that the auctioneer can achieve a higher revenue with

a revenue-maximizing minimum bid policy.

Example 2.5.4. Assume there are five advertisers and one slot. Let α = 0.5, Ql =

0.8, Qh = 1, w = 0.8, Fh(v) = v, and Fl(v) = 2v − v2. We calculate the minimum

bids and expected revenues under three policies: a revenue-maximizing uniform-score

policy, a policy using the exclusion principle, and a revenue-maximizing policy (see

table 2.1).

2.6 A Comparison with Fixed-Payment Auctions

Given the results on the efficient and revenue-maximizing designs, we are now

able to compare weighted unit-price auctions with traditional auction formats where

bidders bid fixed payments. Note that in fixed-payment auctions, winners pay a

fixed payment upfront, whereas in unit-price auctions, winners pay ex-post based

on realized outcomes. In this sense, advertisers bear less risk in unit-price auctions

than in fixed-payment auctions. The risk-sharing feature of unit-price auctions is

considered advantageous, for example, by McAfee and McMillan (1986) in the study

of procurement auctions. Here we move beyond risk-sharing advantage and focus

on comparing weighted unit-price auctions with fixed-payment auctions on allocation

efficiency and revenue.
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To make a fair comparison, we extend the standard fixed-payment auction to a

multi-object setting. We define the generalized first-price auction as one in which (1)

advertisers bid their total willingness-to-pay b for the first slot, (2) slots are assigned

based on the ranking of bids, and (3) if an advertiser wins the j-th slot, he/she will

pay δjb.

Given our model setting, the probability of an advertiser’s expected total val-

uation for the first slot being less than x is

αFh

(
x

Qh

)
+ (1− α)Fl

(
x

Ql

)
. (2.19)

When there is only one slot, the generalized first-price auction reduces to a

standard first-price auction in which advertisers’ valuation for the slot is distributed

according to (2.19). Such a standard auction is known to be efficient. In fact, the

generalized first-price auction is also efficient. This is because, as in standard auctions,

advertisers’ bids are monotonically increasing in their valuation (for the first slot) such

that slots are allocated efficiently.

Recall that in efficient weighted unit-price auctions, an advertiser is assigned

a slot if and only if the advertiser has the highest total valuation for the slot among

those who have not been assigned a slot (Proposition 2.4.3). This implies that efficient

weighted unit-price auctions allocate the same way as generalized first-price auctions

and thus generate the same expected revenue to auctioneers. Thus:

Proposition 2.6.1. The efficient weighted unit-price auction achieves the same effi-

ciency and expected revenue as a generalized first-price auction.

Because the efficient weighted unit-price auction generates the same expected

revenue as the generalized first-price auctions (Proposition 2.6.1) and the revenue-
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maximizing weighted unit-price auction can generate more revenue than the efficient

weighted unit-price auction (Proposition 2.4.4), we immediately have:

Corollary 2.6.2. Revenue-maximizing weighted unit-price auctions generate more

revenue than generalized first-price auctions.

According to the optimal mechanism design literature, the standard auctions

(with an appropriately set reserve price) can achieve the highest revenue among all

mechanisms in assigning a single-object setting. The above corollary indicates, how-

ever, that weighted unit-price auctions can achieve even higher revenue. The reason

lies in that weighted unit-price auctions allow the auctioneer to discriminate advertis-

ers based on information about their expected CTRs, which is not considered in the

standard mechanism design setting. Therefore, this corollary illustrates that ex-ante

information on bidders’ outcome-generating potential can be exploited to enhance

the auctioneer’s revenue.

We shall note that Proposition 2.6.1 and Corollary 2.6.2 are obtained with the

assumption that the auctioneer has the same information on advertisers’ future CTRs

as advertisers themselves do. In keyword auctions, because advertising providers have

full access to advertisers’ CTR history, we expect advertisers’ information advantage

on future CTRs to be small, especially after advertisers have had a long enough history

with the advertising provider. However, in other settings where auctioneers have

substantially less information on bidders’ future outcomes than bidders themselves,

fixed-payment auctions may achieve higher allocation efficiency and revenue than

weighted unit-price auctions.

2.7 Discussion

In this section, we consider relaxing some of the model assumptions.
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The Quality of CTR Information. Given the importance of the infor-

mation on advertisers’ future CTRs, a natural question is how the quality of such

information affects our results, which we attempt to address here by perturbing the

information quality. One way to do this is to assume that under perfect information,

advertisers with high and low expected CTRs can be correctly categorized into h-

types and l-types, whereas under imperfect information some of the advertisers may

be mis-categorized. Such mis-categorization maintains the same overall expected

CTR, but causes the (unbiased) expected CTR for the h-type group to be lower and

for the l-type group to be higher; more so as the information quality worsens. By this

notion of information quality, we can say one information set (τ) is less informative

than another (τ ′) if

Q′
l ≥ Ql and Q′

h ≤ Qh, (2.20)

where superscripts denote parameters under information set τ ′. In the extreme case,

when the CTR signal is completely uninformative, there is no difference between the

expected CTRs of the h-type group and those of the l-type group.

Obviously, our results on equilibrium bidding hold under different information

quality in the above sense. The efficient weighting factor for l-type advertisers is

higher under lower quality information because of a smaller difference between h-

type’s and l-type’s expected CTRs. The mis-categorization may cause the advertising

provider to allocate advertising slots to low valuation advertisers even though higher

valuation ones are available, and thus there is a loss of efficiency. The total expected

revenue is generally lower because of the decrease in the total valuation created. In

sum, deterioration in the quality of information on advertisers’ future CTRs generally

reduces the efficiency and the expected revenue of weighted unit-price auctions. The

following example illustrates such results.
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Table 2.2: Impact of Information Quality
weff total expected valuation w∗ total expected revenue

perfect info 0.50 0.68 0.80 0.44
imperfect info 0.63 0.63 0.85 0.43

Example 2.7.1. Assume there is one slot , n=5, and Fl(v) = Fh(v) = v (uniform

distribution). Let α=0.5, Ql = 0.5, and Qh = 1 under perfect information, and

α=0.45, Ql = 0.591, and Qh = 0.944 under imperfect information (corresponding to

10% of low-CTR advertisers and 20% of high-CTR advertisers being mis-categorized).

Table 2.2 summarizes the changes in efficiency and total expected revenue.

Multiple CTR-types. The basic intuition of our main results holds for

multiple signal types. Suppose there are k CTR-types, indexed by θ = 1, 2, ..., k,

and the weight factor for a CTR-type θ is wθ. We can show, as in Lemma 1, that

an advertiser with a CTR-type θ1 and valuation-per-click v ties with an advertiser

with a CTR-type θ2 and valuation-per-click wθ1v/wθ2 in equilibrium. We can obtain

k equilibrium bidding functions in the same way as in Proposition 1, one for each

type. Analogous to the two-type case, it is still efficient to weight advertisers’ bids by

their expected CTRs and to impose a uniform score across different CTR-types. The

revenue-maximizing weighting scheme and minimum bid policy are more complex in

the multiple CTR-type case because of additional undetermined design parameters;

but the basic intuition follows through. For example, the minimum bid policy remains

different from a uniform-score policy and from a policy implied by the traditional

exclusion principle.
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2.8 Conclusion

Information technology gives us the ability to track online behaviors in un-

precedented detail. For online advertising, this means that advertisers can monitor

how many customers click on their advertisements and how many end up making a

purchase. This ability not only enables new outcome-based pricing (also known as

“pay-for-performance”) models but also allows advertising providers to accumulate

information on advertisers’ outcome-generating potential. Within this context, we

examine how information on advertisers’ CTRs can be used in the design of keyword

auctions. We evaluate two ways of incorporating advertisers’ CTR information into

the keyword auction design: by assigning different weighting factors for advertisers

with different expected CTRs and by imposing different minimum bids for them.

Edelman et al. (2007) and Varian (2007) note that equilibria under rank-by-price

and rank-by-price×CTR rules would be different, but do not address the impact of

different ranking rules on equilibrium outcome. This paper addresses this question,

and also a more general question of how to choose ranking rules and minimum bid

policies to best utilize the ex-ante information on advertisers’ future CTRs. We study

the impact of weighting schemes and differentiated minimum bid policies and how

they should be configured to maximize allocation efficiency or total expected revenue.

Although we use pay-per-click keyword auctions as a specific context for our

discussion, our model framework and implications can be applied to other outcome-

based pricing settings such as pay-per-call and pay-per-purchase advertising auctions.

The success of pay-per-click advertising on search engines has inspired innovations in

other areas. For example, Google introduced keyword-auction-like mechanisms into

TV, online video, and mobile phone advertising. The intuition obtained in this paper

can potentially apply to these application areas as well.
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Managerial Implications. Our analysis has several implications. First,

we gain insight on how weighting schemes and differentiated minimum bids affect

equilibrium bidding. We demonstrate that the weighting scheme determines how ad-

vertisers with different expected CTRs match in equilibrium: a low-CTR advertiser

ties in equilibrium with a high-CTR advertiser when the two have the same weighted

valuation-per-click—that is, valuation-per-click times the weighting factor. For ex-

ample, if low-CTR advertisers receive a weighting factor of w, a low-CTR advertiser

with valuation-per-click 1 matches a high-CTR advertiser with valuation-per-click w

in equilibrium.

As in classic auctions, minimum bids exclude low-valuation advertisers and

force others, especially those whose valuation is near minimum bids, to bid closer

to their true valuation. Minimum bids in our setting have other effects: When

minimum bids are not equally constraining, they distort equilibrium matching be-

tween low- and high-CTR advertisers and cause a jump in the less-constrained type’s

equilibrium bidding. Intuitively, the less-constrained type avoids competing with

the more-constrained type, who bids ultra-aggressively because of minimum bids.

But for advertisers with valuation well-above the minimum bids, the less-constrained

type matches the more-constrained type the same way as the no-minimum-bids case.

The jump reflects a transition from avoiding matching to matching among the less-

constrained advertisers. These insights, together with ones on the weighting schemes,

help advertising providers understand the impact of their auction rules on advertisers.

They also provide guidelines for advertisers on how to bid optimally.

Second, the efficient keyword auction design is remarkably simple. It involves

weighting advertisers’ pay-per-click bids with their expected CTRs, and requires the

same minimum score for all advertisers. The former implies lower weighting factors
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for advertisers with lower expected CTRs. The latter implies higher minimum bids

for advertisers with lower expected CTRs. These appear to be consistent with designs

used in practice. For example, Google has been using historical CTRs as weighting

factors and requiring higher minimum bids for advertisers with low historical CTRs.

As we have argued in section 7, the quality of such estimation affects the level of

efficiency that keyword auctions can achieve, thus, our results draw attention to the

importance of estimating advertisers’ future CTRs. Keyword advertising providers

may improve the quality of such estimation by acquiring additional information on

advertisers’ future CTRs and refining their estimation techniques.

Third, we characterize the revenue-maximizing weighting scheme and minimum-

bid policy. The revenue-maximizing weighting scheme may favor or disfavor low-CTR

advertisers relative to the efficient weighting scheme. If low- and high-CTR adver-

tisers have the same valuation-per-click distribution, advertising providers obtain the

highest expected revenue by favoring low-CTR advertisers—the disadvantaged type.

But if low-CTR advertisers have a less tight valuation distribution than high-CTR

ones, the revenue-maximizing weighting scheme may favor low-CTR advertisers less,

possibly even disfavoring them. Such results suggest that we cannot automatically

assume that low-CTR advertisers should be favored in a revenue-maximizing design.

Relation to Other Research. This research may have implications for

online procurement auctions, which have gained some acceptance in recent years

(Snir and Hitt 2003). One of the challenges for online procurement auction designers

is to incorporate non-price dimensions such as quality, delivery, and services into

auction mechanisms (Beall et al., 2003). Weighted unit-price auctions may provide

a framework to do that. Of course, further research is needed to account for special

features in procurement settings, such as the cost associated with switching suppliers
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and the fact that suppliers may misrepresent their non-price attributes.

Our research may also have implications for posted-schedule pricing of infor-

mation goods and services. A variety of information goods and services such as radio

spectrum, network bandwidth, and Internet cache are resources allocated for exclu-

sive use, the use of which may generate trackable outcomes (e.g., number of packets

transmitted). Information system researchers have proposed several ways to price

these resources (Bapna et al. 2005; Hosanager et al. 2005; Sundararajan 2004). For

example, Sundararajan (2004) suggests a nonlinear price schedule that includes a

fixed fee and a usage-based fee. Our results may add a new direction for pricing these

goods and services, that is, to charge buyers by realized outcomes (such as usage) and

differentiate pricing schedules for buyers with different outcome-generating potential

(such as usage rates). It will be interesting to compare such an approach to existing

ones in the optimal pricing literature.

Limitations and Future Research. This research has certain limitations.

We consider CTRs as endowed attributes while in reality advertisers may manipu-

late their CTRs to gain favorable weighting factors. If the manipulation permanently

improves an advertiser’s CTR (such as by improving the presentation of the advertise-

ment), then our results apply to the post-manipulation periods. Advertising providers

may want to encourage such “manipulation.” On the other hand, manipulation that

temporarily inflates an advertiser’s CTR may be discouraged by a carefully structured

CTR-estimation method. For example, manipulation that lasts one period does not

have much impact on the weighting factor in a weighting system that emphasizes

long-term CTR history. However, coping with various forms of manipulation remains

an open issue in keyword auction designs.

Several other issues may be interesting for future research. First, it is not
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entirely clear whether keyword auctions perform better than alterative mechanisms

such as posted-price. A commonly-accepted argument holds that auctions are more

suitable than posted-price when bidders’ valuation for goods and services is more

uncertain (Pinker et al. 2003). This appears to be a plausible explanation for the

popularity of auctions in selling keyword advertising slots, given sellers’ lack of knowl-

edge on the potential value of keyword advertising slots. Second, an important issue

related to this study is how to estimate advertisers’ future CTRs. Third, it would

be interesting to examine how competition from other keyword advertising providers

affects the efficient and revenue-maximizing designs.
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Chapter 3

Keyword Auctions, Unit-price Contracts, and the

Role of Commitment

3.1 Introduction

Unit-Price Contracts (UPC) are widely used in competitive procurement auc-

tions, such as highway contracting (Stark 1974) and national defense (Samuelson

1983, 1986). In such auctions, bidders submit their bids specifying the unit price for

each of the input factors. The auctioneer then calculates a score for each bidder based

on both the unit prices and the expected quantities needed. The bidder with the low-

est score wins the auction. The final payment to the winner, however, is determined

by the number of units that are finally consumed/needed in realization. Moreover,

many other regular settings, such as the marketing of publishing rights for books

(McAfee and McMillan 1986), can also be interpreted as UPC auctions. In recent

years, various formats of UPC auctions have been adopted by major search engines,

such as Yahoo!, Google, and MSN, to sell keyword-related advertising slots on their

web sites. In these auctions, the advertisers specify their per-click willingness to pay,

and the final payments to the search engine are determined by the actual number of

click-throughs that their advertisement generates.

Previous literature in UPC procurement auctions reveals that to promote com-

petition, it is beneficial for the auctioneer to give preferential treatment to those

bidders with lower efficiency/performance level (McAfee and McMillan 1986, Ewer-

hart and Fieseler 2003). In practice, UPC auctions often offer a subsidy to contrac-
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tors with inferior production technologies or lower performance level (Ewerhart and

Fieseler 2003). Preferential government procurement policies also affect several hun-

dred billion dollars’ worth of trade worldwide each year (Graham 1983). For example,

the United Stated Government offers a 50 percent preference for domestic suppliers

for military procurement (McAfee and McMillan 1989). These practices are inter-

preted as either a protectionist devices (Lowinger 1976), or a way to increase bidding

competition (McAfee and McMillan 1986).

There is also a fast growing literature studying the “keyword auctions,” which

is one of the most popular places to apply the UPC auctions on the internet. This

stream of literature usually focuses on the impact of varying auction mechanisms on

the advertisers’ bidding behavior and the auctioneer’s revenue. Feng et al. (2007)

finds that depending on the correlation between advertisers’ willingness to pay and

their relevance, Google’s (without preferential treatment) and Yahoo’s (with pref-

erential treatment) ranking mechanism can out-perform each other under different

conditions. Weber and Zheng (2007) study a search model in which advertisers com-

pete for positions in a search engine, and show that the optimal winning rule should

put non-zero weight on the advertisers’ bids. Liu and Chen (2006) consider a weighted

unit-price auction setting where bidders bid on unit prices, and the winner is deter-

mined by their bids as well as their past performance.

The above literature assumes that bidders’ performance levels are fixed, and

does not consider the possible impact of the auction mechanism on bidders’ perfor-

mance level in the long term. It is not obvious, however, whether the practice of

preferential treatment works when bidders’ performance may change over time for

various reasons. For instance, advertisers may invest in their performance for their

own interest or reacting to the performance-based ranking policy. In general, the pos-
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sible upgrade in performance, and hence the change in the performance distribution,

calls for adjusting the preferential policy accordingly. In addition, preferential treat-

ment may discourage low-performance bidders from investing in their performance

levels, which could negatively impact the auctioneer’s revenue. Moreover, under the

preferential treatment policy, a less efficient bidder beats more efficient ones with

positive probability (Ewerhart and Fieseler 2003). This efficiency loss, especially in

the long term, might be significantly detrimental for an industry that is sensitive to

its consumer response. In the case of keyword advertising, for example, the long-term

user base is a significant basis for search engines’ revenue.

In practice, the performance-based ranking mechanisms adopted by the search

engines are constantly changing over time, which exhibits an experimental process

and may reflect the need to adjust auction policies to dynamic features. For ex-

ample, Yahoo! used to rank advertisers by their willingness-to-pay per click and

has now switched to a new mechanism that also considers click-through rates in its

ranking. Google first introduced a design that ranks advertisers by the product of

per-click prices they bid and their historical click-through rates in 2002, and is also

modifying its “bid × CTR” algorithm.1 Besides, instead of announcing how their

ranking mechanisms exactly incorporate the performance information as they did

earlier, many search engines now keep this ambiguous.

These observations indicate that it is not sufficient to study UPC auctions

in a static setting, where the firms’ performance levels remain unchanged. On the

one hand, the auction mechanism gives bidders with different performance levels

different incentives to improve their performances, and this in turn affects the long

term average industry performance level. On the other, the updated distribution

1https://adwords.google.com/support/bin/answer.py?answer=49174
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of firms’ performance levels gives the auctioneer an incentive to modify his auction

mechanism, so the auctioneer faces a commitment problem. What is the impact

of the preferential ranking rules on bidders’ performance choice? How should the

auctioneer choose the performance-based allocation policy considering advertisers’

possible performance upgrade? Should the auctioneer commit to a certain mechanism

or it is beneficial to modify its auction mechanism in time?

This paper tries to answer the questions above, by capturing the dynamic ef-

fects of bidder performance evolution. We consider a two-period model. In the first

period, the auctioneer announces the performance-based auction mechanism and the

bidders decide whether or not to improve their performance levels. In the second pe-

riod, the auction takes place, but may or may not follow the exact auction mechanism

announced by the auctioneer in the first period. Bidders bid their unit prices and

the winner is chosen based on both their bids and performance levels. This paper re-

lates to literature on investment incentives in procurement auctions (Arozamena and

Cantillon 2004, Tan 1992). Most of these studies concern the revenue equivalence

under different auction formats (e.g., first-price sealed-bid auctions versus second-

price auctions), while our paper focuses on performance-based unit-price format in

the context of keyword auctions. To our knowledge, this setup is mostly related to

Branco (2002), which studies a procurement auction where two firms compete for a

government project and the inefficient firm may improve its technology. However,

in his setting, technology choice is unobservable. Instead, we study the case where

the performance is observable and thus performance-based allocation is feasible, and

obtain different insights.

Under this performance-based unit-price auction framework, we study the bid-

ders’ decisions on performance improvement (in the first period) and bid (in the sec-
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ond period), and then examine the impact of performance-based allocation on overall

bidder performance, the auction efficiency, and the auctioneer’s revenue. We find that

the overall performance level is monotonic in the degree of preferential treatment to

those bidders with low performance: the more the auctioneer discriminates against

low-performance bidders, the higher the overall performance level. The efficient pol-

icy involves weighting bidders’ unit-price bids by their expected performance. This is

consistent with the one in a static case where the performance level is fixed, although

the former concerns both allocative efficiency and investment efficiency whereas the

later considers allocative efficiency only. We also compare the auctioneer’s revenue-

maximizing policies when she is fully committed to the auction rule and when not, and

show that she should give less preferential treatment to low-performance advertisers

when she is fully committed.

This paper is organized as follows. We describe our model in Section 3.2. In

Section 3.3, we investigate bidders’ bidding decisions, as well as their performance

evolution – how bidders with lower performance levels convert to higher performance

by paying some cost. In Section 3.4, we study the impact of performance-based allo-

cation on bidders’ overall performance. We discuss social welfare in Section 3.5, and

explore the revenue-maximizing allocation for an auctioneer in Section 3.6. Section

3.7 concludes the paper.

3.2 Model Setup

We consider an environment where the auctioneer sells a single object to n risk-

neutral bidders, and the bidders have independent and private values for the object

being sold. We capture the long-term interactions between the auction mechanism

and bidders’ overall performance levels through a two-period model. In the first
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period, the auctioneer announces the auction mechanism, and the bidders decide

whether or not to invest in improving their performance levels. In the second period,

the auctioneer either keeps the announced auction rules, or modifies the rules, and

bidders participate in the auction. We refer to the former as a full-commitment case

and the latter as a limited-commitment case.

Assume that each bidder is endowed with a yield level y, which measures one’s

productivity, or efficiency of using the object being auctioned. Denote each bidder’s

unit valuation of y as v. In keyword advertising, yield level measures the expected

number of clicks that an advertiser can generate during a given period of time, and

the unit valuation is the advertiser’s per-click valuation. In this way, each bidder’s

total valuation for the object is determined by his yield from the object, y, times

his unit valuation, v. We assume that bidders’ yield levels are independent of their

unit valuations. Therefore, a bidder with a higher yield level is stochastically more

efficient than a bidder with a lower yield level. For this reason, we also refer to one’s

yield level as his performance level.

For simplicity, we assume that y takes a discrete value yH or yL, and yH > yL.

We call the bidders with yH high type bidders, or H types, and bidders with yL low

type bidders, or L types. Denote θ ∈ {L,H} as a bidder’s type. So a θ-type bidder’s

total valuation of the asset is vyθ. A L type bidder can invest in and improve his

performance level to yH at a cost c. In keyword advertising, for example, advertisers

may engage in extensive marketing research or experiments to improve their web site

design, and thus ultimately increase their click-through rates (Schlosser et al. 2006).

We assume that bidders know their own unit valuation v and performance

levels yθ, but not those of others. The unit valuation v is independent and identically-

distributed in [0, 1] following a distribution F (v). By the convention of distribution
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functions, let F (v) = 1 for v > 1. The corresponding density function is denoted

by f(v), which is positive and differentiable everywhere in the support. A bidder’s

performance level y in the first period is believed to be yH with probability α, and

yL with probability 1 − α. Both F (v) and α are commonly known. Moreover, each

bidder’s performance level is known to, or can be verified by the auctioneer after

the auction takes place in the second period. For example, in keyword auctions, the

number of click-throughs that a certain advertisement generates is not observed by

other advertisers, but can be approximately predicted (based on its past performance)

and accurately recorded by search engines.

The object is sold through a first-price, sealed-bid unit-price auction. The

auctioneer uses a scoring rule to evaluate the bids from bidders with different per-

formance levels. In particular, a weighting factor w ∈ (0, 1] on the low type bidders’

bids is introduced to measure this differential treatment. According to w and bidders’

unit-price bids, a score is calculated for a bidder of type θ according to the following

formula:

s(b, θ) =

{
b if θ = H
wb if θ = L

(3.1)

The bidder with the highest score wins and pays for all the realized yield at his

unit-price bid b. There is no entry fee or reserve price.

We assume that a bidder’s payoff from winning the object is additive in its

total valuation for the object, yv, and its payment, yb. So the expected payoff for a

θ-type bidder with unit valuation v who placed a bid b is

Uθ(v, b) = yθ(v − b)Prob(win|b, θ). (3.2)

By allowing w to take different values, we can accommodate different auction

formats. When w = yL

yH
, the low- and high-type bidders are treated “fairly,” as the

54



winner is chosen based on the ranking of the total revenue created. The Google

auction belongs to this category. When w ∈ [0, yL

yH
), the bid submitted by a low

performance bidder is treated unfavorably. When w ∈ ( yL

yH
, 1], the low-type bidder is

treated favorably. The Yahoo!’s earlier auction format determined the winner solely

by the bidding amount, which is equivalent to the case when w = 1. We denote

the case of w = 1 as a standard unit-price auction, and the case of w < 1 as a

performance-based auction.

The timing is as follows. In the first period, the auctioneer announces the

weighting factor w. Then, bidders’ performance levels and valuations realize, and the

L types decide whether to improve their performance or not. In the second period, all

bidders participate in the auction.2 Each bidder’s score is calculated. The object is

assigned to the bidder with the highest score, and payment is made to the auctioneer.

We are interested in the impacts of the performance-based allocation on bid-

ders’ performance evolution, the resulting social welfare, and the auctioneer’s ex-

pected revenue.

3.3 Bidding Strategy and Performance Conversion

In this section, we focus on the L types’ performance decisions. To derive

the subgame perfect equilibrium, we start with the second period, where bidders

participate in the auction with a given weighting factor w. We conjecture that in

equilibrium, there exists a cutoff value v∗, such that in the first period, all the L

types whose unit valuations are above v∗ will improve their performance levels by

incurring an investment cost c, and all the L types whose unit valuations are below

2In the limited commitment case, the auctioneer modifies the auction rule according to the
updated distribution of bidders’ performances before the auction begins.
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v∗ will remain at the low performance level. This conjecture is intuitive because,

in general, upon winning the object, the L types with higher unit valuations have

higher gains from improving their performance ((yH − yL)v) than those L types with

lower unit valuations. As a result, the L types with higher valuations should be more

likely to invest in their performance. We will verify later that this is an equilibrium

strategy.

3.3.1 Second Period: the Bidding Strategy for a Given w

Denote FL(v) ≡ F (v|θ = L) as the distribution function of L types’ unit

valuation in the second period, and FH(v) ≡ F (v|θ = H) as that of H types’. FL(v)

and FH(v) can be calculated by applying Bayes’ rule. In particular, according to the

conjecture of cutoff v∗ (we use Pr(·) to represent the probability of an event in the

second period),

FL(v) =
Pr(V ≤ v, θ = L)

Pr(θ = L)
=

{
F (v)
F (v∗) if v ≤ v∗

1 if v > v∗
(3.3)

and

FH(v) =
Pr(V ≤ v, θ = H)

Pr(θ = H)
=

{
αF (v)

1−(1−α)F (v∗) if v ≤ v∗
F (v)−(1−α)F (v∗)

1−(1−α)F (v∗) if v > v∗,
(3.4)

This is because, under our conjecture, a bidder is an L type in the second period

only if he is endowed with low performance in the first period (with probability

(1 − α)) and remains at it (if his unit valuation is less than v∗). Therefore, in the

second period, a bidder with probability (1 − α)F (v∗) is an L type, and thus with

probability [1− (1− α)F (v∗)] is an H type. If we simply denote PL ≡ Pr(θ = L) and

PH ≡ Pr(θ = H), that is

PL = (1− α)F (v∗), and PH = 1− (1− α)F (v∗). (3.5)

In addition, in the second period, a bidder is an L type with unit-valuation less than

v only if he is endowed with low performance and with unit valuation less than v,
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which occurs with probability (1 − α)F (v). This accounts for (3.3). Similarly, a

bidder is an H type with unit-valuation less than v (if v ≤ v∗) with probability

αF (v). For the case where v > v∗, we need to take into account that the H types

in the second period also include those converted from L types, which happens with

probability (1− α)(F (v)−F (v∗)). Therefore, the probability of one being H type of

v > v∗ in the second period is αF (v) + (1 − α)(F (v) − F (v∗)) (Equation 3.4). We

denote the corresponding density functions as fL(v) and fH(v) accordingly (specified

in Appendix A).

We consider a symmetric, pure-strategy, Bayesian-Nash equilibrium. By “sym-

metric,” we mean that bidders with the same unit valuations and performance levels

will bid the same amount in equilibrium. Let bH(v) and bL(v) denote the bidding

functions for the H types and L types in the second period, respectively. We con-

jecture that the bidding functions are strictly increasing (we will verify this later).

Using an approach similar to that in Liu and Chen (2006), we obtain the following

result regarding the bidding functions:

Lemma 3.3.1. bH(wv) = wbL(v) for v ∈ [0, v∗].

Lemma 3.3.1 shows that in equilibrium, an H type with unit valuation wv

and an L type with unit valuation v will obtain the same score (recall the scoring

rule (3.1)). The intuition is as follows. Consider an H type with unit valuation wv

who bids wb and an L type with unit valuation v who bids b. By the scoring rule,

the former has the same probability of winning as the latter. Then, the expected

payoff of the former differs from that of the latter only by a scalar according to (3.2).

Because multiplying a payoff function by a scalar does not alter the solution to an

optimization problem, b is the solution to the L type’s optimization problem if and

only if wb is the solution to the H type’s problem.
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By the conjecture of the monotonicity of bidding functions, an L type i with

unit-valuation v can beat a bidder j if and only if j is an L type and has a unit

valuation less than v, or j is an H type and has a unit-valuation less than wv (by

Lemma 3.3.1). So, the probability for an L type with unit-valuation v to beat the

other bidders, or his equilibrium winning probability, can be represented by

ρL(v) ≡ [PHFH(wv) + PLFL(v)]n−1 . (3.6)

Similarly,

ρH(v) ≡
[
PHFH(v) + PLFL(

v

w
)
]n−1

. (3.7)

Lemma 3.3.2 presents the equilibrium bidding functions.

Lemma 3.3.2. For a given w ≤ 1 and the cutoff value v∗, the equilibrium bidding

functions for H types and L types are increasing in v, and can be represented as the

following:

bL(v) = v −
∫ v

0
ρL(t)dt

ρL(v)
, for v ∈ [0, v∗] (3.8)

bH(v) = v −
∫ v

0
ρH(t)dt

ρH(v)
, for v ∈ [0, 1]. (3.9)

It is easy to verify that the above bidding functions are indeed strictly in-

creasing (see the appendix for the proof). Also, as indicated by (3.8) and (3.9), a

bidder’s equilibrium unit-price bid is always less than his true unit valuation, which

is common among first-price auctions.

It can be shown that there are two kinks (wv∗ and v∗) in the H types’ bidding

function. This is due to the kinks in the winning probability ρH(t) (see Appendix

A), as the competition situation faced by the H types is discontinuous. Figure 3.1

illustrates the equilibrium bidding functions and equilibrium scores with w = 0.5 and

v∗ = 0.5. By the scoring rule, H types’ equilibrium scores are their equilibrium bids,

58



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Unit Valuation

E
q
u
ili

b
ri
u
m

 B
id

High performance bidders

Low performance bidders

(a) Equilibrium Bid

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Unit Valuation

E
q
u
ili

b
ri
u
m

 S
c
o
re

High performance bidders

Low performance bidders

(b) Equilibrium Score

Figure 3.1: The Equilibrium Bidding Functions and Equilibrium Scores

and L types’ are their equilibrium bids adjusted by the weighting factor w. The first

kink in the H types’ bidding function is because FL( t
w
) = 1 for all t > 0.25, and the

second is due to the kink of FH(t) at t = 0.5. Intuitively, it is still possible for an H

type with a relatively low unit valuation (v ≤ 0.25) to lose to an L type, even though

an L type’s bid gets discounted by w. However, once the H type’s unit valuation

exceeds a certain value (0.25), he can always beat an L type, because all the L types’

unit valuations are below 0.5. Therefore, there exists a kink at v = 0.25. Similarly,

an H type with an intermediate unit valuation (0.25 < v ≤ 0.5) faces different

competition pressure from an H type with higher valuation (v > 0.5), because an H

type with a high unit valuation (v > 0.5) can be either an original H type or one

converted from an L type. Therefore, the second kink happens at v = 0.5.

Denote Vθ(v) ≡ Uθ(v, bθ(v)) as the equilibrium expected payoff of a bidder

with type θ and unit valuation v. From the payoff function (3.2) and the bidding

functions (3.8) and (3.9),

Vθ(v) = yθ(v − bθ(v))ρθ(v) = yθ

∫ v

0

ρθ(t)dt. (3.10)

by noticing that Prob(win|bθ(v), θ) = ρθ(v) (both representing the equilibrium win-

ning probability).
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3.3.2 First Period: Performance Conversion for a Given w

Given the equilibrium bidding functions in the second period, we now solve

the L types’ decisions on performance upgrades in the first period. We show that

there does exist such a cutoff value v∗ in equilibrium, from which no bidder will

unilaterally deviate. An L type benefits from converting to an H type, because both

his performance level and his winning probability increase. The overall benefit is

represented by the increase in the equilibrium payoffs from changing from an L type

to an H type, that is, VH(v) − VL(v). However, the investment in the performance

incurs a cost c. Given w, whether an L type converts or not depends on this tradeoff.

Proposition 3.3.3. Given w (0 < w ≤ 1) and the investment cost c, there exists a

cutoff value v∗, such that an L type with unit valuation higher than v∗ converts to an

H type, and with valuations lower than v∗ does not, where v∗ is determined as follows.




v∗ = 0 if c = 0
v∗ solves ∆V (v∗) = c if 0 < c < ∆V (1)
v∗ = 1 if c ≥ ∆V (1)

(3.11)

where

∆V (v∗) = yH

∫ v∗

0

ρH(t)dt− yL

∫ v∗

0

ρL(t)dt. (3.12)

When it is costless for the L types to convert, every L type will convert to an

H type (v∗ = 0) for the benefit from both improved productivity and advantageous

position in the scoring rule. Consequently, in the second period, all bidders in the

auction are H types. In such a case, the performance-based auction is identical to

the standard unit-price auction, and the problem becomes straightforward. When

the investment cost is prohibitive (higher than the gain that the L type of the highest

unit valuation can get from the conversion), the gain from improving performance

cannot compensate for the cost, and no L types will convert (v∗ = 1). In this case,

the problem is identical to the case studied by Liu and Chen (2006).
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For the rest of this paper, we focus on the more interesting case where the

investment cost is modest and at least some L types are interested in the conversion.

In general, the conversion decision is based on the tradeoff between the gain

from conversion and the investment cost. Everything else being equal, higher cost

results in fewer L types converting. Moreover, as the cost increases, the L types who

choose to remain at the low performance level instead of converting are those with

relatively low unit-valuations, since those low-valuation L types could benefit less

from conversion than high-valuation ones. Similarly, the difference between the two

performance levels affects the L types’ decisions on the conversion: given yL, a higher

yH , which means more gain from conversion, could induce more L types to convert.

As a summary,

Corollary 3.3.4. For a given w, v∗ increases in the investment cost (c) and decreases

in the high performance level (yH).

3.4 Bidders’ Overall Performance

In this section, we examine the effect of differential treatment (w) on the

winning bidder’s overall performance level. First, we observe that the cutoff value is

closely related to the weighting factor.

Lemma 3.4.1. The cutoff value v∗ is increasing in the weighting factor w.

Intuitively, as w increases, and hence the L types are treated more favorably,3

bidders’ benefit from improving their performance levels reduces. As a result, the

benefit can no longer compensate for the investment cost c for some L types who

3Actually, when w > yL

yH
, L types are given preferential treatment.
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would choose to convert. So, as w increases, fewer bidders have incentive to invest

in their performance levels. In other words, the more the L types are discriminated

against in the auction (the smaller the w), the larger incentive for the L types to

improve their performance levels, because otherwise they have little chance to win.

Next, we explore the impact of the weighting factor on the expected winning

performance level. The expected winning performance level is determined by the

bidders’ performance weighted by their winning probabilities, which can be expressed

as:

yLPL

∫ v∗

0

ρL (v) fL (v) dv + yHPH

∫ 1

0

ρH (v) fH (v) dv. (3.13)

Proposition 3.4.2. The more the L types are discriminated against, the higher the

overall performance level. That is, the expected winning performance level is decreas-

ing in w.

To show this, from Lemma 3.4.1, we know that as w decreases, fewer bidders

remain at the low performance level. Moreover, as w decreases, L types’ equilib-

rium winning probabilities decrease as well. Both factors drive the expected winning

performance level to the same direction: the lower the w, the higher the expected

performance level. As a result, the performance-based auctions with 0 < w < 1, in

general, enhance the expected winning performance level compared to the standard

UPC auctions (where w = 1).

3.5 Auction Efficiency

In this section, we study the efficiency of the UPC auction. The efficiency in

our dynamic setting not only means that the object is assigned to the bidder with

the highest valuation, but also that the L types make proper investment in their

performance levels.
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The efficient weighting factor weff is defined as one that maximizes social wel-

fare, that is, the total expected payoff of the auctioneer and bidders. The efficiency

may be in the auctioneer’s best interest in the long run. In keyword auctions, es-

pecially, the market for keyword advertising is relatively nascent, and search engines

are still at an early stage of the use of the UPC auction mechanism. It is sensible for

the auctioneer (search engine) to choose an efficient design at this stage to maximize

the “total pie.” After all, unless advertisers feel that they get fair treatment in the

auctions and see high returns, they will not return for more business or allocate larger

fractions of their advertising budgets on keyword advertising.

The total welfare for the auctioneer and bidders is their total expected valua-

tion minus the expected investment cost:

n

[
yLPL

∫ v∗

0

vρL (v) fL (v) dv + yHPH

∫ 1

0

vρH (v) fH (v) dv − (1− α) (1− F (v∗)) c

]
.

(3.14)

So, weff maximizes (3.14).

In a standard static auction, an efficient policy considers allocative efficiency

only. An efficient auction allocates the object to the bidder with the highest total

valuation. In our dynamic setup, the efficiency also refers to the investment efficiency

(whether there exists over-investment or under-investment in performance). As a

result, it is not obvious whether the results in the static setting will hold in our case

when bidders can update their performance levels.

Proposition 3.5.1. The efficient weighting factor weff = yL

yH
.

Proposition 3.5.1 shows that the efficient policy in this two-stage game involves

weighting bidders’ unit-price bids by their expected performance, which is the same

as in the static one (Liu and Chen 2006). This may look surprising, but the intuition
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is as follows. First of all, the weighting factor w = yL

yH
ensures the allocative efficiency

in the second stage. As we mentioned earlier, when w = yL

yH
, the L types and H types

are treated “fairly” in the sense that the winner is chosen based on the ranking of their

total contribution. This is equivalent to the standard first-price auction where bidders

submit their total payments for the object, so the allocative efficiency is guaranteed.

Second, the weighting factor w = yL

yH
also leads to an efficient conversion. In

general, whether an investment is efficient or not depends on the tradeoff between the

social gain (increase in the expected social welfare) and the investment cost. From

the previous discussion, the performance-based auction with w = yL

yH
is equivalent to

a first-price auction, and hence equivalent to a second-price auction by the Revenue

Equivalence Theorem (Myerson 1981). Notice that a second-price auction is a special

case of the Vickrey-Clarke-Groves (VCG) mechanism (Vickrey 1961, Clarke 1971,

Groves 1973), in which one’s expected payoff equals the externality that he imposes

on the other bidders, or, the improvement of the social welfare that he brings in.

Therefore, the social gain from one’s conversion equals the increase of his payoff

[VH(v)− VL(v)]. For the marginal bidder, i.e., the L type with unit valuation v∗, the

increase of his payoff ∆V (v∗) is equal to the investment cost c by Eq. (3.11), which

implies that the social gain from the marginal bidder’s conversion breaks even with

the investment cost.For the L types with a higher unit valuation (v > v∗), the social

gain from conversion is greater than the investment cost. Therefore, it is efficient for

them to convert. Similarly, it is efficient for the L types with a lower unit valuation

(v < v∗) not to convert. So w = yL

yH
leads to investment efficiency.

For these reasons, we define the performance-based auction with w = yL

yH
as

an efficient performance-based auction.

It is worth noting that the above efficiency result is independent of whether
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the auctioneer can fully commit to the pre-announced auction rule or not. This

is because, in the second stage, it is always efficient to choose w = yL

yH
regardless

of bidders’ conversion patterns (as argued in the above). As a result, whether the

auctioneer can fully commit or not does not influence L types’ conversion decision in

the first period.

3.6 The Revenue-Maximizing w

In this section, we focus on the weighting factor that maximizes the auction-

eer’s expected revenue and compare the results in the full commitment case to those

in the limited commitment case. We denote wL
opt and wF

opt as the revenue-maximizing

weighting factors for the former and the latter case, respectively.

Based on bidders’ bidding strategy in the second period, and the L types’ deci-

sions of their performance conversion in the first period, for a given w, the auctioneer’s

expected revenue can be expressed as (see the appendix for the derivation)

π = nyLPL

∫ v∗

0

ρL(v)

(
v − 1− FL(v)

fL(v)

)
fL(v)dv

+nyHPH

∫ 1

0

ρH(v)

(
v − 1− FH(v)

fH(v)

)
fH(v)dv. (3.15)

Basically, the first term is the expected revenue from the L types in the second

period (the “ex post” L types), and the second term is that from the “ex post” H

types. Denote Jθ(v) ≡
[
v − 1−Fθ(v)

fθ(v)

]
, θ ∈ {H,L}. In the standard auction litera-

ture, Jθ(v) is called virtual value (Myerson 1981) or marginal revenue (Bulow and

Roberts 1989), which represents the expected revenue a certain bidder can bring to

the auctioneer if he wins.

65



3.6.1 Auctioneer with Limited Commitment

Since some higher-valued, low-performance bidders improve their performance

levels in the first period, the distribution of the H types and L types changes at the

beginning of the second period. As a result, the original w, which is pre-announced

at the beginning of the first period, may no longer be optimal, and the auctioneer

has incentive to host the auction following a different rule. In practice, both Yahoo!

and Google experience a migration of their ranking mechanisms over time. Moreover,

neither of them announce the exact w that they are using now, which gives them

more flexibility in altering their ranking mechanism. This corresponds to the case

where the auctioneer has limited commitment to her pre-announced policy, and the

actual auction rule could differ from an earlier announcement (before the L types

make their conversion decision).4

When the auctioneer has limited commitment, the L types make their conver-

sion decisions based on their anticipation of the weighting factor that the auctioneer

will choose in the second period. With this anticipation, the break-even condition

(3.11) holds. The auctioneer chooses an revenue-maximizing weighting factor based

on her belief about the L types’ conversion decisions. In equilibrium, the beliefs are

consistent with the equilibrium choice of v∗ and wL
opt. The equilibrium outcome is

thus identical to a simultaneous move game where the auctioneer and bidders act at

the same time. The revenue-maximizing weighting factor and the cutoff value are

determined by the equation system below.

∆V (v∗) = c and
∂π

∂w
= 0, (3.16)

where the first equation is the break-even condition for the L types, and the second

4Or from auction to auction, if considering the case where auctions are held repeatedly.
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equation comes from the first-order condition of the expected revenue (3.15) with

respect to w. Specifically,

∂π

∂w
= n(1−α)yL

∫ v∗

0

dρL (v)

dw
JL(v)f(v)dv+nαyH

∫ wv∗

0

dρH (v)

dw
JH(v)f(v)dv. (3.17)

Proposition 3.6.1 discusses the revenue-maximizing w.

We say a cumulative distribution function F (v) is increasing-hazard-rate (IHR)

if its hazard rate f(v)
1−F (v)

increases in v within the support. Many distributions, in-

cluding uniform, normal, and exponential, satisfy the condition of increasing hazard

rate.

Proposition 3.6.1. In the limited commitment case, the revenue-maximizing weight-

ing factor wL
opt is determined by (3.16). Moreover, if F (v) is IHR, this revenue-

maximizing weighting factor is greater than the efficient weighting factor, that is,

wL
opt > yL

yH
.

Proposition 3.6.1 shows that it is beneficial for the auctioneer to give more

preferential treatment to the L type bidders than the efficient level. It indicates that

the recommendation of preferential treatment to the L types in a static setting also

applies to the dynamic setting, though with a different magnitude. This is because, in

the absence of commitment, the auctioneer chooses the revenue-maximizing weighting

factor based on the ex post (after conversion) type distribution in the second period

only, which is exactly as making the choice in a static case. Favoring L type bidders

raises L type bidders’ winning probabilities, which in turn increases the competitive

pressure on H type bidders and thus force them to bid more aggressively. The for-

mer effect tends to lower the auctioneer’s expected revenue, but the latter tends to

enhance the auctioneer’s expected revenue. The resolution of such a tradeoff involves
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some preferential treatment to L type bidders. Such a result holds regardless of the

distribution of types (α) and the exact performance levels (yH and yL).

The revenue-maximizing weighting factor, however, is different from that in a

static case, which corresponds to a special case of v∗ = 1 in our setting.5 Proposition

3.6.2 compares the revenue-maximizing w in the limited commitment case to that in

the static case.

Proposition 3.6.2. When v ∼ U [0, 1], the auctioneer should give more preferential

treatment to the L types when they are able to improve their performance levels than

when their performance levels are fixed.

This is because, after the conversion of some higher-valued, low-performance

bidders, the remaining L types are in a more disadvantaged situation. So, the auc-

tioneer should give them more preferential treatment to promote competition.

How does the revenue-maximizing weighting factor impact the equilibrium

performance level compared to an efficient weighting factor? Recall that Proposi-

tion 3.4.2 indicates that a higher weighting factor leads to lower expected winning

performance. So we have,

Corollary 3.6.3. If F (v) is IHR, the revenue-maximizing weighting factor results in

a lower expected winning performance level than the efficient weighting factor does.

In some instances, the expected winning performance is an important factor

for the auctioneer to consider. For example, the performance in keyword auctions

measures the relevance of the advertisements to consumers, which could impact con-

sumers’ search costs for the information of interest and hence affect the long-term

5Fixing v∗ = 1 and solving the second equation in (3.16) give us the revenue-maximizing weighting
factor in the static case.
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user base. In this case, subsidizing the lower types is not only at the cost of efficiency,

as discussed earlier, but also at the cost of lowering the performance, and therefore

is even more costly.

3.6.2 Auctioneer with Full Commitment

When fully committed to the pre-announced auction rules, the auctioneer’s

decision on w directly affects the L types’ performance choices. So the auctioneer

has to consider the effect of w on the L types’ conversion patterns, as well as on the

intensity of competition. The effect on competition is similar to that in the limited

commitment case. The effect on the L types’ conversion patterns is reflected by the

term of dv∗
dw

in the first-order condition below.

n

[
(1− α) [(yLρL(v∗)− yHρH(v∗)) v∗ + c] f(v∗) + αyH

∫ v∗

wv∗

dρH (v)

dv∗
JH(v)f(v)dv

]

×dv∗(w)

dw
+

∂π

∂w
= 0 .(3.18)

where ∂π
∂w

is defined as in (3.17).

Lemma 3.6.4. The revenue-maximizing weighting factor wF
opt is jointly determined

by Equation (3.11) and (3.18).

Considering the ex post (after conversion) competition in the second period,

the auctioneer has incentive to subsidize the L types (by setting w > yL

yH
), which

forces the H types to bid more aggressively. We call this effect the competition effect,

which is captured by the term ∂π
∂w

in (3.18). However, lower w, or less subsidy to

the L types, makes more L types convert, and this could presumably enhance the

auctioneer’s revenue. We call this effect the conversion effect, which is captured by

the term in the first square bracket in (3.18). In general, the revenue-maximizing

weighting factor is determined by the balance between the competition effect and the
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conversion effect, which depends on the proportion of H types and L types in the

distribution.

How does the equilibrium differ in the full-commitment case from that in the

limited-commitment case?

Proposition 3.6.5. If the expected revenue in (3.15) is concave with respect to w

(i.e., ∂2π/∂w2 < 0) and F (v) is IHR, wF
opt < wL

opt.

Proposition 3.6.5 shows that an auctioneer who can commit to the auction rule

should give less preferential treatment to the low performance bidders than she does

when she cannot fully commit. The intuition is as follows. In the full-commitment

case, the preferential treatment not only affects the competition in the second period

(as in the limited-commitment case), but also impacts L types’ conversion decisions.

A less preferential treatment to L types gives them more incentive to improve their

performance levels, which is beneficial for the auctioneer. However, this objective

is not achievable when the auctioneer cannot commit to an auction rule. This is

because as any announcement that the auctioneer makes before the second period is

not credible, bidders make their performance upgrade decisions based on their own

expectations.

The concavity condition per se does not drive the result in Proposition 3.6.5;

rather, it ensures that the optimization problem in the limited commitment case is well

behaved. In fact, as long as ∂π/∂w = 0 (the second equation in (3.16)) has a unique

solution, the result in Proposition 3.6.5 holds (see this in the proof of Proposition

3.6.5). Also, we can show that the assumption of concavity of the revenue function

can be relaxed to a weaker notion of quasiconcave functions. The concavity condition

is satisfied by many common distributions, for instance, uniform distribution. The

following is one numerical example.
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Example 3.6.6. Let F (v) = v (uniform distribution at [0, 1]), n = 5, α = 0.5,

yH = 1, and yL change from 0.1 to 0.9. We can derive the revenue-maximizing

weighting factors and the maximum revenue with the changes in the yL in the limited-

commitment case and the full-commitment case, respectively.
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Figure 3.2: A Comparison of the Cases with Different Commitments

Figure 3.2(a) says that wopt in the full-commitment case is less than that in

the limited-commitment case. Also, Figure 3.2(b) shows that a fully committed auc-

tioneer makes more expected revenue than an auctioneer with limited commitment.

In fact, whether an auctioneer can fully commit or not has a general impact on her

expected revenue, as summarized in the following corollary.

Corollary 3.6.7. A fully committed auctioneer makes more revenue than an auc-

tioneer with limited commitment.

This is because with full commitment, the auctioneer can always commit to

the revenue-maximizing weighting factor chosen in the limited commitment case and

achieve at least the same revenue as in the limited commitment case. But the reverse

is not true.
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3.7 Conclusion

We study a performance-based unit-price auction model where the low per-

formance bidders can improve their performance level at a cost. We find that there

exists a cutoff value in bidders’ unit valuations, such that all low-type bidders with

unit valuations greater than the cutoff value convert to a high performance level. The

efficient allocation in the static case carries on to our dynamic case. The revenue-

maximizing weighting factor, however, is different from that in the static case. In

addition, whether or not the auctioneer can commit to an auction policy also impacts

the revenue-maximizing factor. In the limited-commitment case, the auctioneer has

more incentive to subsidize lower performance bidders to promote competition than

in the static case where bidders performance levels remain unchanged. Moreover, the

revenue-maximizing weighting factor in the full-commitment case is less than that

in the limited-commitment case, which indicates that the auctioneer should give less

preferential treatment to the low-type bidders to encourage them to improve their

performance levels.

Our research generates several managerial implications. First, allocation poli-

cies critically affect bidders’ performance choices, and auctioneers should handicap

low-performance bidders for better overall performance. Improving overall perfor-

mance should be an important concern for such markets as two-sided networks. For

example, in keyword auctions hosted by the search engines, both user traffic and ad-

vertising revenue are important for the search engine, and the performance/relevance

of the advertisement affect the search engine’s long-term user base.

To achieve long-run allocation efficiency, which is probably more important

for a start-up company which wishes to establish a good reputation, it is sufficient to

follow the efficient policy developed in a static setting. In particular, the auctioneer
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needs to estimate the performance levels of the bidders and adjust their unit-price

bids by the estimated performance in allocating objects.

If the improvement of performance takes a long time, and the short-run profit

is also important for the auctioneer, it is beneficial for the auctioneer to bias toward

disadvantaged bidders to promote overall competition. Taking into account bidders’

possible upgrade in their performance, auctioneers with limited commitment should

bias even more than suggested in a static case. It is important to note that the

benefit of preferential treatment to low-performance bidders is at the cost of lower

efficiency and the market’s overall performance. Moreover, auctioneers may be better

off if they can fully commit to a pre-announced revenue-maximizing policy. The

lack of commitment in keyword auctions may be due to the fact that the market

for keyword advertising is still nascent, and both search engines and advertisers are

learning from practice. In a well understood market, it is better for an auctioneer to

credibly communicate its commitment, e.g., explicitly announce the weighting factor.

In doing so, the auctioneer should bias less for low-performance bidders to encourage

them to improve performance.

Future extension of this research includes introducing competition among mul-

tiple auctioneers. In the traditional procurement setting, it is natural to assume that

auctioneers are monopolists, since the objects requested differ from one another. In

keyword auctions, however, the competition among keyword advertising providers

(mainly, Google, Yahoo!, and Microsoft) is commonly observed and has become an

important feature. Open questions remain: How do bidders make the performance

choice with an outside option; and how is the revenue-maximizing weighting factor

determined in competing auctions?
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Chapter 4

How to Slice the Pie? Optimal Share Structure

Design in Keyword Auctions

4.1 Introduction

Unlike conventional advertising, keyword advertising providers, such as Google,

Yahoo!, and MSN, use auctions to sell keyword advertising resources. A typical key-

word auction runs like this: for each keyword, keyword advertising providers offer

several advertising slots at the same time. Advertisers compete for these slots by bid-

ding on their willingness-to-pay per impression (pay-per-impression) or willingness-to-

pay per click (pay-per-click). In pay-per-impression auctions, a keyword advertising

provider ranks advertisers by their pay-per-impressions and, in pay-per-click auctions,

by the product of pay-per-clicks and click-through-rates, which are defined as the num-

ber of clicks per thousand page impressions. The keyword advertising provider then

fills keyword advertising slots such that the highest ranked advertiser goes to the first

slot, the second highest ranked advertiser goes to the second slot, and so on. If we

view slots as resources of various sizes, keyword auctions can also be viewed as share

auctions in which the auctioneer packages the total resources into various shares and

simultaneously sells them to bidders. We study a “share structure” problem arising

from such an auction setting, that is, how much resources should keyword advertising

providers set aside for the highest bidder, for the second highest bidder, and so on.

We consider resources in the keyword advertising setting to be “effective im-

pressions,” or impressions adjusted for effectiveness. This is to account for the fact
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that different slots on the same page may get different amount of users’ attention.

By this notion of resources, a top slot offers more effective impressions than than a

bottom one. Similarly, a slot on website optimized for advertising offers more effective

impressions than one on a website that is not optimized for advertising, for the same

number of raw impressions.1

An important premise of our study is that keyword advertising providers can

choose the share structure, that is, keyword advertising providers can choose the

fractions of total available resources assigned to the highest advertiser, the second

highest advertiser, and so on. Such flexible shares can be implemented with existing

infrastructures. For example, keyword advertising providers can tailor the amount of

effective impressions allocated to k-th highest bidder by randomizing between different

slots and by controlling the number of websites on which the advertisement is shown.

In the end, advertisers do not get fixed slots, but receive certain amount of effective

impressions that may come from multiple slots.2

There are several reasons for keyword advertising providers to choose share

structures rather than take them for granted. First, assigning the jth slot to the jth

highest bidder may be a natural choice when there is a single website. However, with

the advent of “AdSense,” many websites become available for advertisers. Simply

assigning jth slots on every website to the j-th highest advertiser may not always

make sense because, for one, first slots on all websites may be too much resources

for any single advertiser. Second, there are cases where the number of available

1In practice, the effectiveness of slots can be inferred from natural experiments that involve
identical advertisements being displayed on different slots. keyword advertising providers may also
conduct such experiments.

2In fact, even in the current system, advertisers are not guaranteed a particular slot. Google
provides advertisers an estimation of expected number of impressions and clicks, along with their
expected slots, in its Traffic Estimator software.
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slots on any single website may be too few to satisfy many advertisers at the same

time. As a result, keyword advertising providers may want to allocate a “fraction”

of a slot to an advertiser (e.g., by time-sharing with other advertisers). Third, how

advertising slots are located on a page is often up to the publishers. There may be no

meaningful ranking among slots (e.g., horizontally-arranged slots may have roughly

the same value to advertisers). In sum, as more and more advertisers and publishers

participating in keyword auctions,3 it is imperative for keyword advertising providers

to optimize on the way advertising resources are allocated among winning bidders.

This requires keyword advertising providers to choose share structures, rather than

letting them dictated by the (natural) distribution of slots on and across pages.

To our knowledge, this is the first paper to investigate the optimal share

structure problem associated with keyword auctions. We address the optimal share-

structure problem in the following setting. The auctioneer has a fixed amount of

resources and divides them into multiple shares. Bidders’ valuation for a share is

determined by the size of the share and a private signal (we shall call it the bidder’s

type). Bidders are invited to bid their willingness-to-pay for per unit resource (or

unit price). The auctioneer allocates shares to bidders in a way such that the bid-

der who offers to pay the highest unit price gets the largest share, the bidder who

offers to pay the second highest unit price gets the second largest share, and so on.

In this setting, we first characterize the optimal share structure that maximizes the

auctioneer’s expected revenue. We then examine how the optimal share structure is

3keyword advertising providers are also actively seeking expansion of their keyword advertising
services to other media, including mobile devices, radio, online video, and print advertising. For
example, in February 2006, Google announced a deal with global operator Vodafone to include
its search engine on Vodafone Live! mobile internet service. Google experimented with classified
advertising in the Chicago Sun-Times in fall 2005. On January 17, 2006, Google agreed to acquire
dMarc Broadcasting, an automated booking and scheduling service for radio advertisements. In
August 2007, Google began a new type of video advertisement on popular video site YouTube.
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affected by various factors, including bidders’ price elasticity of demand (defined as

the percentage change in demand due to one percent change in price), the distribution

of bidders’ type, total resources available, and whether a minimum bid is used.

Our analysis generate several insights on designing optimal share structures

in keyword auctions. First, we characterize the optimal share structure under our

model setting. We conclude that when advertisers’ valuation is linear or convex in

share sizes, a single grand share, or winner-take-all, is optimal. When advertisers’

valuation is sufficiently concave, multiple shares may become optimal. The optimal

share structure generally consists of a series of what we call “plateaus,” or consecutive

shares with identical size. The starting and ending ranks of plateaus are determined

mainly by the distribution of bidders’ type. For a special group of single-peaked

type distributions (such as uniform, normal, or exponential distributions), plateaus

degenerate to single shares so that the optimal share structure consists of a series of

strictly decreasing shares.

We also offer several insights on how the optimal share structures should

change when the underlying demand or supply factors change. We say a share struc-

ture is steeper if it has larger high-ranked shares and smaller low-ranked ones. First, as

bidders’ demands for advertising resources become less elastic, the auctioneer should

use a less steep share structure. When bidders have near-perfect or perfect elastic

demand (the valuation function is close to linear), the auctioneer should allocate as

much resources as possible to the highest advertisers. Second, a change in the type

distribution affects the optimal share structure in the following way. The optimal

share structure should remain the same in the case of “scaling” (i.e., multiplying

each advertiser’s type by a common factor), and less steep when the type distribu-

tion is “shifted” to the right (i.e., increasing each advertiser’s type by a common
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factor). Third, when total resource increases, the absolute share sizes increase. But

changes in percentage values of shares depend on how advertisers’ price elasticity

of demand changes in total resources assigned to them: high-ranked shares should

increase by a larger percentage when bidders’ price elasticity of demand increases

in the amount of resources allocated, and the converse is true when bidders’ price

elasticity decreases. This result reinforces our previous intuition that a more elastic

demand should be associated with a steeper share structure. Finally, we show that

the auctioneer should use a less steep share structure when imposing an optimally

set minimum bid (and a steeper share structure when not). Together the above re-

sults provide useful guidelines for keyword advertising providers on how to fit share

structures to the micro-market conditions for each keyword.

The rest of the paper is organized as follows. In Section 4.2 we discuss the

related literature. We set forth our model in Section 4.3. In Section 4.4, we derive

general results on optimal share structures. Section 4.5 discusses how the optimal

share structure is affected by the underlying supply and demand factors. In Section

4.6, we extend our analysis to a case with minimum bids. Section 4.7 concludes the

paper.

4.2 Literature Review

Our research problem bears some connections to the prize-allocation problem

in contests (Glazer and Hassin 1988, Moldovanu and Sela 2001, Liu et al. 2007).

As in keyword auctions, prizes are allocated by the rank of contestants. Contests

are often viewed as all-pay-auctions (all-pay auctions are auctions in which bidders

forfeit their bids whether they win or not). Glazer and Hassin (1988) are the first to

study the prize-allocation problem using the all-pay auction framework. One of their
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findings is that winner-take-all is optimal when contestants’ cost is a linear function of

their effort and skill is uniformly distributed. Moldovanu and Sela (2001) generalize

Glazer and Hassin (1988)’s result by showing that winner-take-all is always optimal

for general distributions as long as the disutility function is linear; on the other hand,

when the disutility function is convex, multiple prizes may be optimal. Our winner-

take-all result under the linear valuation setting echoes the finding of Moldovanu

and Sela (2001) under the contest setting. However, there are noticeable differences

between this study and Moldovanu and Sela’s. Moldovanu and Sela (2001) model

all-pay auctions whereas we study keyword auctions in which only winners pay. We

characterize the optimal share structure for n-shares whereas Moldovanu and Sela’s

analysis is limited to two prizes (generalizing their results to more than two prizes is

nontrivial). Our findings on the existence of plateaus in the optimal share structures

and its relationship to the underlying type distribution are novel. Moreover, we

offer several managerial insights that are nonexistent in Moldovanu and Sela (2001),

including how bidders’ type distribution and total resources available affect optimal

share structures. Liu et al. (2007) also study how type distributions affect allocation

of total prize sum, but they do so in a consumer contest setting in which the contest

designer has a different objective than ours.

Prior research have examined keyword auctions from several other perspec-

tives. A few authors study Google’s novel way of ranking advertisers, that is, by

weighting advertisers’ pay-per-click bids by their historical click-through-rates (We-

ber and Zheng 2007, Liu and Chen 2006, Lahaie 2007). They found that such Google’s

ranking rule achieves efficiency in a unit-price auction setting (Liu and Chen 2006,

Lahaie 2007). Edelman et al. (2007) and Varian (2007) both study the “second-

price-like” feature of keyword auctions, that is, an advertiser pays not his or her own

79



pay-per-click but the next highest one. Edelman et al. (2007) show that such an

auction mechanism does not have a dominant-strategy equilibrium and truth-telling

is not an equilibrium. All of the above studies treat share structures as exogenously

given. This paper complements the above studies by exposing the share structure

decisions facing keyword advertising providers.

Keyword auctions depart from traditional auctions for divisible goods known

as “share auctions.” The earliest paper to study share auctions is dated back to Wil-

son (1979). Share auctions have been used in selling important economic resources,

such as electricity, pollution permits, and treasury notes (Wang and Zender 2002).

In share auctions, auctioneers ask each buyer to report both a price and a share of

the total resources that the buyer desires at this price. Auctioneers subsequently

solve the market-clearance problem based on buyers’ price/share quotes. Whereas in

keyword auctions, auctioneers “pre-package” resources into shares, and bidders only

bid on prices. Our research on keyword auctions contributes to the literature on

divisible-goods auctions by studying a novel auction format.

4.3 Research Model

A risk-neutral auctioneer has an exogenous amount of divisible resources, with

normalized size 1. The auctioneer auctions the resources in prepackaged shares to n

risk-neutral bidders (advertisers), indexed by i = 1, 2, ..., n. The total resources are

packaged in as many as n shares (i.e., the number of shares is no more than the

number of bidders). Denote sj as the size of the jth largest share (jth share for

short). We term vector s = (s1, s2, ..., sn) as a share structure. We denote S as the
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set of feasible share structures, that is, those satisfying the following two conditions:

s1 ≥ s2 ≥ ... ≥ sn ≥ 0 and
n∑

j=1

sj ≤ 1. (4.1)

The first condition comes from the definition of sj’s. The second condition requires

that the sum of all shares does not exceed available resources.

The auctioneer uses a unit-price auction to allocate all shares simultaneously.

In particular, the auctioneer invites bidders to bid on their willingness-to-pay for

per-unit resource, or the unit prices, and assigns the largest share s1 to the highest

bidder, the second largest share s2 to the second highest bidder, and so on. Bidders

pay for their assigned shares at the unit prices they bid.4

Our assumption that advertisers are ranked by their unit-price bids is consis-

tent with prevailing ways of allocating advertising resources. As we have mentioned

earlier, one approach is to rank advertisers by their willingness-to-pay per impression,

which corresponds directly to our assumption. Another approach is to rank adver-

tisers by the product of their pay-per-clicks and historical click-through-rates. If an

advertiser’s historical click-through-rate is an unbiased estimator for the advertiser’s

future click-through-rates, then this approach essentially ranks advertisers by their

expected pay-per-impressions, thus largely consistent with our model assumption. In

fact, our model can also be applied in pay-per-action advertising (i.e., advertisers

pay only when a user performs a designated action, such as purchase or registra-

tion), as long as keyword advertising providers rank advertisers by the product of

pay-per-action and action rates (corresponds to click-through-rates in pay-per-click

advertising).

4The results on share structures hold also in the case where bidders pay the next highest unit
price. This is because the problem of optimal share structure is fully determined by the auctioneer’s
expected revenue and the auctioneer’s expected revenue is the same under two specifications. The
proof of the latter is analogous to a proof of the revenue equivalence theorem (Myerson 1981).
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We assume that bidder i’s valuation of a share is a function of a parameter vi,

termed as bidder i’s type, and the size of the share. Specifically, bidder i’s valuation

for the jth share takes the following form,

u (vi, sj) = viQ (sj) , (4.2)

where Q(0) = 0 and Q′ (·) > 0. Type v captures the difference in bidders’ valuation

for resources. Q (·) captures how bidders’ valuation changes in share sizes.

We assume that each bidder’s type is drawn from a common distribution F (v),

v ∈ [v, v̄]. Each bidder’s type is private information, but the distribution F (v) is

common knowledge. We assume F (v) is twice-differentiable, and its density function,

f(v), is positive anywhere on [v, v̄]. In the keyword advertising setting, advertisers

have different valuation for effective impressions for several reasons. First, everything

else being equal, users may tend to click on one advertisement over another. Second,

even when users tend to click on two advertisements equally, advertisements may

differ in their power to generate follow-up activities such as purchasing or signing up.

Each bidder’s expected payoff is the expected valuation minus expected pay-

ment to the auctioneer. In particular, if we denote pj(b) as the probability of winning

the jth share by placing bid b, the expected payoff of a bidder of type v is

U(v, b) =
n∑

j=1

pj(b) (vQ(sj)− bsj) (4.3)

The auctioneer’s revenue is the sum of payments from all bidders. Because

the auctioneer does not know bidders’ types or their bids ex ante, the auctioneer’s

expected revenue is the expected payment from all bidders:

π = nE

[
b

n∑
j=1

pj(b)sj

]
(4.4)
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In sum, the game proceeds as follows. First, the auctioneer announces a share

structure (s1, s2, ..., sn). All bidders learn their types and compete for shares by

bidding their unit prices. The auctioneer then allocates the shares based on the

ranking of the bids. A bidder’s problem is to maximize, for any announced share

structure, the expected payoff (4.3) by choosing a unit price b. The auctioneer’s

problem is to maximize the expected revenue (4.4) by choosing a share structure

s ∈ S. How to design the share structure from the auctioneer’s perspective is the

focus of this paper.

Notice that given the valuation function (4.2), we can define an induced de-

mand function of bidder i for a fixed-price setting

Di(p) = arg max
s
{viQ (s)− ps} (4.5)

Correspondingly, we can calculate the (price) elasticity of demand as− Q′(s)
Q′′(s)s . Clearly,

Q (·) determines the elasticity of bidders’ demand. Specifically, a bidder’s demand

is perfectly elastic if Q (·) is linear, and the elasticity of demand decreases as Q (·)
becomes more concave.

4.4 General Results on the Optimal Share Structure

In this section, we study the keyword advertising provider’s problem of choos-

ing an optimal share structure. We assume there is no minimum bid to focus on

the impact of underlying supply and demand factors. We examine the interaction

between the optimal share structure and the minimum bid policy in Section 4.6. In

the following, we first derive some basic concepts and results under a relatively sim-

ple linear-valuation setting. We then use these concepts and results to examine the

optimal share structures under more general valuation functions.
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4.4.1 Equilibrium Bidding Function and Revenue

Using methods outlined in the auction literature (e.g., McAfee and McMillan

1987), we can derive bidders’ bidding function (see the appendix for details) as

β (v) = v

n∑
j=1

Pj(v)Q(sj)

n∑
j=1

Pj(v)sj

−

n∑
j=1

Q (sj)
∫ v

v
Pj(x)dx

n∑
j=1

Pj(v)sj

, v ∈ [v, v̄] (4.6)

where

Pj(v) ≡
(

n− 1

n− j

)
F (v)n−j (1− F (v))j−1 (4.7)

is the equilibrium probability for a bidder of type v to win the jth share .

The auctioneer’s expected revenue is the sum of expected payments from all

bidders, which can be written as (see the appendix for details)

π = n

n∑
j=1

Q(sj)

∫ v̄

v

Pj(v)

[
v − 1− F (v)

f(v)

]
f(v)dv (4.8)

We denote

J (v) ≡ v − 1− F (v)

f(v)
, (4.9)

and term J(v) the marginal revenue of type v.5 The term Q (sj) J (v) represents

a bidder’s contribution to the auctioneer’s revenue if the bidder’s type is v and is

assigned the jth share. It is clear from (4.9) that the marginal revenue from a bidder

is less than the bidder’s true type v (except for bidders with v = v̄ ). The difference

reflects the bidder’s informational rent.

We further denote

αj ≡ n

∫ v̄

v

Pj(v)J (v) f(v)dv, j = 1, 2, ..., n (4.10)

5The term “marginal revenue” is also used by Bulow and Roberts (1989) and Klemperer (1999)
under a single-object auction setting.
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and term αj the return factor for the jth share. Noting that Pj(v) is the equilibrium

probability of winning the jth share, the return factor is the expected marginal rev-

enue generated by winners of the jth share. By this definition, the expected revenue

(4.8) can be written as

π =
n∑

j=1

αjQ(sj) (4.11)

Intuitively, a share with a high return factor yields higher revenue for the auctioneer

than a same-sized share with a low return factor. The auctioneer’s problem is to

maximize (4.11) subject to conditions in (4.1).

The relative magnitude of the return factors holds special importance in the

optimal share structure problem. The return factor of a share is generally determined

by the distribution of types and the number of bidders, but is independent of the share

structure s or the valuation function Q (·). The following lemma provides some insight

on the ranking of αj’s.

We say a distribution satisfies the monotone-hazard-rate (MHR) condition if

its hazard rate, f(v)
1−F (v)

, is monotonically increasing within its support. The MHR

property is satisfied by most commonly used single-peaked distributions, such as

uniform, normal, and logistic.

Lemma 4.4.1. (a) α1 > αj, for all j > 1, and α1 > 0. (b) Under the MHR condition,

α1 > α2 > ... > αn.

Lemma 4.4.1 (a) shows that the first share is superior than any other share in

terms of return factors, regardless of the number of bidders or the type distribution.

The intuition for this result is as follows. According to (4.10), the return factor of

the jth largest share is the expected marginal revenue of the winner of the jth largest

share. Notice that the marginal revenue is the highest at v̄ regardless of the type
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distribution. This implies that the marginal revenue at the neighborhood of v̄ is

higher than other values of v (due to the continuity). Meanwhile, the bidders at that

neighborhood of v̄ are more likely to win the first share. Therefore, the first share

has an advantage of getting the bidders with the highest marginal-revenue, therefore

generating the highest return.

The intuition for (b) is as follows. In general, a high-type bidder is more likely

to win a high-ranked share than a low-ranked share, and the reverse is true for a

low-type bidder. The MHR condition, which implies that a high-type bidder has

higher marginal revenue than a low-type bidder, reinforces the advantage of offering

a high-ranked share (in terms of the revenue generated), thus ensuring the decreasing

order among return factors.

Lemma 4.4.1 has immediate implications for the linear-valuation case. With

linear valuation Q (s) = s, an advertiser’s valuation of a share becomes u (v, s) = vs.

So v can be interpreted as advertisers’ marginal valuation. The problem of choosing

an optimal share structure (4.11) becomes the following constrained linear program:

max
s1,s2,...,sn

n∑
j=1

αjsj, subject to (4.1) (4.12)

Since α1 is the largest among all the return factors by Lemma 4.4.1, the auctioneer

should allocate all the resources to the first share, leading to a winner-take-all share

structure. Under the MHR condition, return factors decrease. The winner-take-all

result can be strengthened to a greedy allocation, that is, to fill up the jth share

before the (j +1)th share. The strengthened result is useful when, say, the first share

must be less than 1. The following proposition summarizes the above intuition.

Proposition 4.4.2. If advertisers’ valuation is linear in share size, (a) it is optimal

to provide one grand share of size 1 (whenever possible). (b) When the MHR condition
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holds, the auctioneer should allocate the resources in a greedy way, that is, to fill up

jth share before moving on to (j + 1)th share.

Proof. omitted.

Recall that linear valuation corresponds to the setting in which advertisers’

demand for effective impressions is perfectly elastic. This setting may hold approx-

imately when supply of advertising resources is small compared with the demand –

if we believe advertisers’ marginal valuation starts to decline beyond a certain point.

Proposition 4.4.2 suggests that when advertisers’ valuation is perfectly elastic (supply

is relatively small), it is optimal to use a winner-take-all share structure.

Our analysis shows that a high-ranked share promotes higher bids from high-

type bidders than a low-ranked share, provided that two shares have the same size.

The opposite is true for low-type bidders. So the optimal choice of share structure

generally involves trading off between best motivating high-type bidders and best

motivating low-type ones. One would naturally think it depends on how bidders’ type

is distributed. Surprisingly, the above proposition shows that it is always optimal to

best-motivate the high-type ones, regardless of the distribution of bidder types or the

number of bidders.

It is also worth pointing out that when the MHR condition is violated, return

factors may not follow a descending order, and therefore the greedy allocation specified

in (b) may not be optimal, as proved by the following example.

Example 4.4.3. Let F (v) = (v−1)1/4, v ∈ [1, 2], and n = 3. Assume that share sizes

cannot exceed 0.5. Calculation shows that the return factors are 1.14, 0.91, and 0.94,

respectively. A greedy allocation, (0.5, 0.5, 0), generates an expected revenue of 1.029
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whereas the optimal share structure, (0.5, 0.25, 0.25), generates an expected revenue

of 1.036.

4.4.2 Concave Valuation

Proposition 4.4.2 suggests that the auctioneer should allocate all the resources

to the largest share. In the keyword advertising setting, this would require one adver-

tisement to appear at all available advertising slots for a particular keyword. However,

we seldom see this. One explanation could be that advertisers’ valuation is nonlinear

in share sizes. We address the nonlinear valuation case in this section.

When Q(·) is convex, bidders’ marginal valuation, vQ′(s), increases with the

share size. Hence, the auctioneer has stronger incentive to create a larger share than

in the linear valuation case. Consequently, the results in proposition 4.4.2 continue

to hold. Thus, we will focus on the case of concave Q(·).

In keyword advertising, Q(·) might be concave for a few reasons. First, con-

sumers’ attention devoted to an advertisement may be less than twice as much if we

double the amount of time it is shown. Second, the unit cost to fulfill consumers’

requests may rise because of limited production/service capacity. Thus, advertisers’

marginal valuation for effective impression may decrease as the total effective im-

pressions increase. Casual observation shows that smaller e-commerce websites start

losing some customers because of the congestion problem as the traffic to their website

becomes very high.

In the case of concave valuation, bidders’ unit valuation decreases with share

size, and so does the unit price they are willing to pay. As a result, the auctioneer has

additional incentive to offer the advertising resources in smaller shares. The following

example illustrates an optimal share structure with multiple shares. The optimal
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share structure consists of several groups of same-sized shares. We call each such

group a plateau (a plateau is nontrivial if it consists of more than one share).

Example 4.4.4. Let F (v) = (v−1)1/4, v ∈ [1, 2], n = 3, and Q(s) =
√

s. Under this

specification, the optimal share structure is (0.4311, 0.2845, 0.2845), where the first

plateau consists of the first share, and the second plateau consists of the second and

the third shares.

When do nontrivial plateaus occur in optimal share structures? What deter-

mines the boundaries of plateaus (i.e., their starting and ending ranks)? The following

lemma shows that the boundaries are intimately related to return factors.

We let j0 = 0 and define index jk as one that maximizes the average return

factor of shares starting from (jk−1 + 1).6 Formally, let

jk = arg max
j∈{jk−1+1,...,n}





1

j − jk−1

j∑

l=jk−1+1

αl



 (4.13)

Lemma 4.4.5. Under an arbitrary concave function Q(·), (jk+1)th to (jk+1)th shares

must be equal in size in the optimal share structure.

Lemma 4.4.5 says that the optimal share structure is segmented into a series

of plateaus with jk being their ending ranks. Denote the average return factor for the

k-th plateau as

ᾱk ≡ 1

jk − jk−1

jk∑
j=jk−1+1

αj (4.14)

By definition of jk’s, the ᾱk’s must strictly decrease; otherwise, ᾱk is less than or equal

to ᾱk+1, and jk cannot be the maximizer for the average return factor starting from

6If there are multiple maximums, we define jk as the largest one.
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jk−1 +1. Moreover, for a similar reason, the average return factor of the first l shares

within a plateau is no greater than that of the remaining shares in that plateau.

The rationale behind this lemma is as follows. Suppose (jk + l)-th and (jk + l+

1)-th shares are both in a same plateau and the former is assigned more resources than

the latter. The auctioneer can always profitably shift a small amount of resource from

each of the first l shares and spread equally among remaining shares in the plateau.

This is because our definition of jk’s guarantees the average return factor of the first

l shares in a plateau to be lower than that of the remaining ones in the same plateau.

This process can continue till all shares within the plateau are equal in size.

Note that from Lemma 4.4.1, the return factor of the first share is higher than

that of any other share. Hence the return factor of the first share is higher than any

average return factors starting from the first share. This implies the first plateau

must end at rank 1. In other words, the first plateau must consist of the first share

only.

Example 4.4.6. Continue with the previous example. Calculation shows that α1 =

1.14, α2 = 0.91, and α3 = 0.94. By definition of jk’s (4.13), j1 = 1 and j2 = 3.

Thus, the first plateau consists of the first share, and the second plateau consists of

the second and the third shares, confirming the previous example.

Based on the result in Lemma 4.4.5, we characterize the optimal share struc-

ture in the following proposition.

Proposition 4.4.7. Given an arbitrary concave function Q(·) and jk’s and ᾱk’s as

defined in (4.13) and (4.14), respectively, the optimal share structure is given by

s∗ = (z1 , z2, ..., z2︸ ︷︷ ︸
j2−j1

, z3, ..., z3︸ ︷︷ ︸
j3−j2

, ... , zk, ..., zk︸ ︷︷ ︸
jk∗−jk∗−1

, 0, ..., 0︸ ︷︷ ︸
n−jk∗

) (4.15)
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where the number of positive plateaus k∗ and their sizes z1, ..., zk∗ are determined by

ᾱ1Q
′ (z1) = ᾱ2Q

′ (z2) = ... = ᾱk∗Q
′ (zk∗) ≥ ᾱk∗+1Q

′ (0) (4.16)

and
∑k∗

k=1 (jk − jk−1) zk = 1. Furthermore, z1 > z2 > ... > zk∗ > 0.

Proposition 4.4.7 shows that the optimal share structure consists of a series of

decreasing plateaus. This is a result of decreasing average return factors associated

with these plateaus. The beginning and ending ranks of each plateau are determined

only by the return factors (and thus by the type distribution and the number of

bidders), whereas the number of plateaus and the share sizes within plateaus are

jointly determined by the return factors and the shape of the valuation function.

Under the MHR condition, the return factors monotonically decrease. As a

result, the ᾱk’s are identical to αj’s, and each plateau consists of a single share. Hence,

we have the following corollary.

Corollary 4.4.8. If the MHR condition holds, the optimal share structure s∗, together

with the optimal number of positive shares, k∗, is determined by

α1Q
′(s1) = α2Q

′(s2) = ... = αk∗Q
′(sk∗) ≥ αk∗+1Q

′ (0) . (4.17)

and
∑k∗

k=1 sk = 1. Furthermore, s1 > s2 > ... > sk∗ > 0.

Proposition 4.4.7 and Corollary 4.4.8 indicate that the average marginal re-

turns (αkQ
′(sk)) should be equal across plateaus. This is because otherwise the auc-

tioneer can always profitably shift the resources from a plateau with a low average

return to ones with high average returns. Plateaus will degenerate to single shares

if the MHR condition holds (Corollary 4.4.8). Otherwise, an optimal share structure

may contain plateaus of at least two shares wherever the underlying average returns

is non-monotonic. It is worth noting that the optimal share structure characterized

in Proposition 4.4.7 holds for general concave valuations and type distributions.
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4.5 The Relationship between Optimal Share Structures and
Underlying Supply and Demand Factors

In this section, we carry out a series of comparative-static analysis on the

optimal share structure. The optimal share structure may be affected by several

factors, including the shape of the bidders’ valuation function Q(·), the distribution

of type v, and the total resources available. A comparative-static analysis on these

underlying factors provides rich managerial implications on how to set different share

structures for different market settings.

To carry out the comparative-static analysis, we need a way of comparing

share structures. We propose a “steepness” order defined as follows.

Definition 4.5.1 (Steepness Order). Let s = (s1, ..., sn) and ŝ = (ŝ1, ..., ŝn) be two

feasible share structures with
∑n

j=1 sj =
∑n

j=1 ŝj. We say ŝ is less steep (or flatter)

than s if there exists c, c ∈ {1, 2, ..., n}, such that

ŝj < sj, ∀j < c and ŝj ≥ sj, ∀j ≥ c. (4.18)

We say ŝ is strictly less steep (or strictly flatter) than s if c > 1.7

Intuitively, a steeper share structure has larger high-ranked shares and smaller

low-ranked shares. By the definition of the steepness order, the steepest share struc-

ture is one grand share, or winner-take-all, and the least steep one is n equal shares.

The steepness order can be measured by the widely used Herfindahl index,

defined as the sum of squares of shares. We can easily verify that the steeper the

share structure the higher the Herfindahl index, but the converse is not necessarily

7When c = 1, ŝj ≥ sj for any j, implying ŝ = s because the total allocated resources are the
same.
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Figure 4.1: Optimal Share Structure as a Function of γ, Q(s) = sγ

true. For example, (0.6, 0.2, 0.2) has a higher Herfindahl index than (0.5, 0.35, 0.15),

but the former is neither steeper nor flatter than the latter.

4.5.1 Concavity of the Valuation Function

We next consider the impact of the concavity of the valuation function on the

optimal share structure, starting with an example.

Example 4.5.1. Let v be uniformly distributed on [1, 2], n = 3, and Q(sj) = sγ
j .

Figure 4.1 shows the optimal sizes of the first, the second, and the third shares as

functions of γ.

Example 4.5.1 shows that as the concavity increases (γ decreases), the optimal

share structure moves away from winner-take-all toward a more egalitarian share

structure. Specifically, this involves a gradual shift of resources away from the first

share to the second and the third shares. Can this example be generalized to a broader

setting? Below we show that the answer is yes.
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We adopt a typical concavity measure using the concave transformation (Mas-

Colell et al. 1995). Let Q(·) and Q̂(·) be strictly increasing and concave functions

defined on X ⊆ R+. We say Q̂(·) is more concave than Q(·) if there exists an

increasing concave function ψ(·) such that Q̂(x) = ψ(Q(x)) for every x.

Proposition 4.5.2. The optimal share structure becomes less steep as the concavity of

Q (·) increases. Furthermore, if the optimal share structure under Q (·) is not winner-

take-all, the optimal share structure becomes strictly less steep as the concavity of Q (·)
increases.

By Proposition 4.5.2, as the valuation function becomes more concave, the

optimal share structure moves away from winner-take-all toward n equal shares. It

is worth noting that the result in Proposition 4.5.2 holds regardless of the type dis-

tribution.

The process prescribed by Proposition 4.5.2 has a few properties. First, as

the concavity of valuation function increases, the number of shares weakly increases.

This is because if ŝ is flatter than s, the number of (positive) shares in ŝ is no less

than those in s. Second, the new optimal share structure, provided it is different

from the previous one, always has a smaller first share. Otherwise, the steepness

order implies the remaining shares would be at least as large as those in the previous

optimal share structure, which is unlikely except when the two share structures are

exactly the same. Third, the low-ranked shares will not become smaller as valuation

functions become more concave. For example, if the current optimal share structure

is (0.5, 0.25, 0.25), (0.45, 0.35, 0.2) must not be optimal for more concave valuation

functions.

We are the first, to our knowledge, to establish the relationship between the

concavity of bidders’ valuation (which can also be interpreted as the price elasticity
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of their demands) and the steepness of optimal share structure. Moldovanu and

Sela (2001) suggested that it may become optimal to award multiple prizes when

contestants’ disutility functions become concave. But they have not gone further to

show how a multiple-prize structure should evolve as the disutility functions become

more concave. We show that share structures become less steep as the valuation

function becomes more concave for a general type distribution. One must note that

it is not entirely clear whether similar results hold under the contest setting because

of differences in the problem structures.

The implication of Proposition 4.5.2 is highly actionable. Keyword advertising

providers can estimate the elasticity of advertisers’ demands for a particular keyword,

which is possible given the bidding history of advertisers and the experimentation

opportunities in keyword auctions. Then, based on whether the elasticity is high or

low, keyword advertising providers decide whether to provide steep share structures

(e.g., via featured listings) or flat ones (e.g., via randomizing in slot assignment).

4.5.2 Type Distribution

The distribution of types varies across different keywords. Some keywords

(e.g., “mortgage”) are more expensive than others (e.g., “CD”). The distribution of

willingness-to-pay per impression may also differ from one keyword to another. For

example, keywords with generic appeal may attract advertisers from different indus-

tries with wildly different willingness-to-pay; whereas more specific ones may attract

advertisers of the same narrowly defined industry with nearly identical willingness-

to-pay. The question is how the keyword advertising providers should tailor the share

structure offerings from different type distributions.

The type distribution affects the optimal share structure via the return factors.
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To study the effect of the type distribution, we first must understand how the return

factors impact steepness of the optimal share structure. The next lemma associates

the steepness with return factors.

Lemma 4.5.3. Let Q(·) be an arbitrary concave function and denote s and ŝ as

the optimal share structures under return factor vectors α = (α1, ..., αn) and α̂ =

(α̂1, ..., α̂n), respectively. Suppose that the plateau boundaries under α and α̂ are the

same.8 ŝ is less steep than s if

ˆ̄αk+1

ˆ̄αk

≥ ᾱk+1

ᾱk

, for any k such that zk+1 > 0. (4.19)

ŝ is strictly less steep than s if at least one strict inequality holds in (4.19).

Lemma 4.5.3 shows that if ˆ̄αk+1/ ˆ̄αk is closer to 1 or, in other words, the

average return factors are more equal among different plateaus, then the optimal

share structure is flatter.

We say the type distribution is “scaled” if each bidder’s type parameter is

multiplied by w, w > 0. We say bidders’ type distribution is “shifted” to the right

if each bidder’s type parameter increases by w, w > 0. The following proposition

summarizes the impact of scaling, shifting, and a change in the underlying type

distribution termed as marginal-revenue-ratio compression.

8This result can be extended to share structures with different plateau boundaries. To do so, we
can “iron out” the peaks in the return factors in each share structure by defining a normalized return
factor vector β ≡ (β1, ..., βn) such that βjk−1+1 = ... = βjk

= ᾱk, for each k. The normalized return
factor vector retains the original plateau boundaries and average return factors, and is nonincreasing.
The optimal share structure under the normalized return factor vector is the same as under the
original one, because by Proposition 4.4.7, all that matters to the optimal share structure problem
is the average return factors. We can then compare two share structures based on normalized return
factors using the following result: ŝ is less steep than s if β̂j+1

β̂j
≥ βj+1

βj
, for any j such that sj+1 > 0

(the proof is similar to the proof of Lemma 4.5.3).
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Proposition 4.5.4. We use αj and α̂j to denote the return factors under type dis-

tributions F and F̂ , respectively.

(a) (scaling) When F̂ is F scaled by a factor w, the return factors α̂j = wαj, and

the optimal share structure remains the same.

(b) (shifting) When F̂ is F shifted to the right by w, the return factors α̂j = αj +w,

and the optimal share structure becomes less steep.

(c) (marginal-revenue-ratio compression) Assume both type distributions are regular

and have positive marginal revenues. When the ratio of marginal revenues at

percentile y and percentile x (y > x) under F̂ is smaller than that under F , that

is,

Ĵ(F̂−1 (y))

Ĵ(F̂−1 (x))
≤ J (F−1 (y))

J (F−1 (x))
, 0 ≤ x < y ≤ 1, (4.20)

ŝ is less steeper than s (strictly steeper if the above holds in strict inequality).

Proof. (a) See Appendix for a proof for α̂j = wαj. Given α̂j = wαj, the jk sequence

remains the same as before by definition, suggesting the boundaries of plateaus will

be the same. In addition, the optimal solution to (4.16) is invariant to a scaling of

α̂j’s, suggesting the optimal share size for each plateau is also the same.

(b) See Appendix for a proof for α̂j = w + αj. Given α̂j = w + αj, the

jk sequence remains the same as before by definition, suggesting the boundaries of

plateaus will be the same. However, the ratio of average return factors decreases

because for given w > 0, ᾱk+1

ᾱk
< ᾱk+1+w

ᾱk+w
. Therefore, the optimal share structure

becomes less steep (Lemma 4.5.3).

(c) See the appendix for a proof.
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The intuition for Proposition 4.5.4(a) is as follows. When all bidders’ valuation

is scaled by factor w, their equilibrium bids are scaled by the same factor, but their

probabilities of winning each share remain the same. As a result, all the return factors

are scaled by the same factor. Because what matters to the optimal share structure

are the relative sizes of return factors, the optimal share structure should remain the

same.

Proposition 4.5.4(b) suggests shifting to the right causes a flatter optimal

share structure. Again, shifting does not change bidders’ winning probabilities. But

it causes all bidders’ to increase their bids. The increase in low-type bidders’ bids is

more significant as their type v has increased by a larger proportion. This in turn

reduces the ratios between return factors of high-ranked shares and those of low,

because the low-ranked shares are more likely assigned to low-type bidders. As the

return factors for low-ranked shares increase relative to those for high-ranked shares,

the optimal share structure should be less steep (Lemma 4.5.3).

J (F−1 (x)) measures the marginal revenue at percentile x. Proposition 4.5.4

(c) suggests that the optimal share structure should be less steep if marginal revenue

ratios between any two percentiles are compressed. This result highlights that the

optimal share structure is particularly associated with marginal revenues, and what

matters is the ratios of marginal revenues at different percentiles rather than the

absolute marginal revenues.

Returning to the questions we raised at the beginning of the section, we can

now say that the optimal share structure for expensive keywords may be steeper or

flatter than less expensive ones. If the type distribution (approximately interpreted as

willingness-to-pay) for more expensive keywords is simply a rescaling of that for the

less expensive ones, such as from a uniform distribution on [1, 2] to a uniform distri-

98



bution on [2, 4], keyword advertising providers should apply the same share structure

for these keywords. If the type distribution shifts from [1, 2] to [4, 5], the marginal rev-

enue ratio between two percentiles is compressed, and keyword advertising providers

should use a flatter share structure (Proposition 4.5.4 (b) and (c)).

4.5.3 Total Resources

So far we have assumed the total resource is fixed and normalized to 1. In this

subsection, we allow the total resources to change and examine its impact on optimal

share structures.

The total resources available to advertisers change with the number of searches

conducted (in search-based advertising) and the number of page views (in contextual

advertising). The total resources may change over time for many reasons, including

a change in the popularity of the websites, increased searches on particular keywords

because of special events, or new additions to the advertising networks. For exam-

ple, when Google signed a contract with AOL.com to serve online advertisements

on AOL.com, Google’s keyword advertising resources surged. How should keyword

advertising providers adjust their share offerings according to the total resources

available? We address this question below.

First, note that our characterization of the optimal share structures in Propo-

sitions 4.4.2 and 4.4.7 still holds except that total available resources are no longer

1. Moreover, when total resource is the only changing factor, the return factors are

the same, and therefore the boundaries of plateaus should remain the same (Lemma

4.4.5). Therefore, we can concentrate on how the total resources are allocated among

different plateaus. We observe the following trend in the sizes and the number of

shares in the optimal structure.
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Lemma 4.5.5. Under a concave Q(·), as the total resources increase, the size of each

positive share increases and the number of positive shares weakly increases.

In general, the marginal return of resource decreases in the amount of resources

allocated because of the concave valuation function. The size of each share must

increase because otherwise it will generate higher marginal return than previously,

contradicting the optimal condition.

From the above analysis we know that all shares will increase. But how about

the proportions of shares? When all shares increase by the same percentage, the

proportions of all shares (relative to the total resources) should remain constant.

When high-ranked shares increase by a larger (smaller) percentage than low-ranked

shares, the proportion of high-ranked share should increase (decrease). The following

examples show that the proportions of shares may or may not be the same.

Example 4.5.6. Assume there are two bidders. Let Q (s) =
√

s and assume α1 >

α2 > 0. According to (4.17), the optimal size of the first share s∗1 must satisfy

−1
2
(s∗1)

−0.5α1 = −1
2
(s∗2)

−0.5 α2, which implies that the proportion of share 1,
s∗1

s∗1+s∗2
=

α2
1

α2
1+α2

2
, is a constant.

Example 4.5.7. Continue with the previous example. Let Q(s) = ln(s + 1) instead

and assume α1 < 2α2 (to rule out the winner-take-all case). By (4.17), we have

s∗1+1

s∗2+1
= α1

α2
. Using simple algebra we can conclude that the proportion of the first share

(
s∗1

s∗1+s∗2
) decreases as the total resources increase.

The following proposition suggests that whether some shares will increase rel-

atively faster than others depends on how bidders’ price elasticities change with the

resources allocated to them.
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Proposition 4.5.8. As the total resources increase, a high-ranked share will increase

by a smaller (bigger, or the same) percentage than a low-ranked one, if bidders’ price

elasticity decreases (increases, or remains constant) in the amount of resources allo-

cated to them.

The above result has an intuitive explanation. When bidders have a decreas-

ing price elasticity, their demand becomes less elastic as shares become larger. Thus,

when the total resources increase, the auctioneer should increase high-ranked shares

by a smaller percentage. Conversely, when bidders have increasing (constant) price

elasticity, the auctioneer should increase high-ranked shares by a larger (equal) per-

centage.

To compare share structures by their proportions, we can normalize the total

resources available to one by dividing each share by
∑n

j=1 sj. After such a normaliza-

tion, the above proposition effectively says that as the total resources increase, the

optimal (normalized) share structure becomes flatter (becomes steeper, or remains

constant), if bidders’ price elasticity decreases (increases, or remains constant) in

the amount of resources allocated to them. This result reveals a clear connection

between the steepness of optimal share structures and bidders’ demand elasticities

through changes in total resources and their impact on bidders’ demand elasticities.

In example 4.5.6, it can be easily verified that we have constant elasticity of demand,

which accounts for the same increase speeds for shares or the same steepness as the

total resource increases.
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4.6 The Interaction between Optimal Share Structures and
Minimum Bids

In this section, we extend our model to the case where minimum bids are

imposed. Most of keyword advertising providers use a minimum bid policy to screen

advertisers. This is consistent with the general result in the optimal auction design

literature that an optimally set minimum bid can help auctioneers to achieve higher

revenue. In the following, we focus on how the introduction of minimum bids affects

the optimal share structure. We start by examining the optimal minimum bid policy

under our model setting.

We assume the auctioneer imposes a minimum bid r. As a result, some low-

type bidders may no longer participate in the auction, because bidding higher than

r would result in negative payoffs for them. Therefore, there exists a corresponding

marginal type, v0, who is indifferent between participating and not participating.

Using a similar approach as in section 4.4.1, we can derive the equilibrium

bidding function for bidders and the expected revenue for the auctioneer under a

minimum bid r, as follows.

β (v) = v

∑n
j=1 Pj(v)Q(sj)∑n

j=1 Pj(v)sj

−
∑n

j=1 Q (sj)
∫ v

v0
Pj(x)dx∑n

j=1 Pj(v)sj

, v ∈ [v0, v̄] (4.21)

π = n

n∑
j=1

Q(sj)

∫ v̄

v0

Pj(v)J(v)f(v)dv (4.22)

where the marginal type v0 is determined by

r = v0

∑n
j=1 Pj(v0)Q(sj)∑n

j=1 Pj(v0)sj

. (4.23)

The bidding function and the auctioneer’s revenue are similar to those without min-

imum bids, except that the lower bound of integral changes from v to the marginal

type v0.

102



The auctioneer should choose the optimal marginal type v∗0 to maximize the

total expected revenue (see the proof of Proposition 4.6.1 for the derivation of v∗0).
9

We assume v∗0 > v to avoid the trivial case. It is worth noting that although the

optimal marginal type does not depend on the share structure, the corresponding

minimum bid does, as seen from (4.23).

We redefine the return factors as

αj (v0) ≡ n

∫ v̄

v0

Pj(v)J(v)f(v)dv, (4.24)

which are the same as before except that they are now functions of the marginal type.

We show in the appendix (in Lemma C.0.1) that Lemma 4.4.1 (b) carries over to this

case; that is, under the MHR condition, the return factors decrease in rank. This is

because excluding low-type bidders reinforces the advantages of high ranked shares

in generating returns. Immediately, it follows that Proposition 4.4.2 (b) carries over

too; that is, when the MHR condition holds and the valuation is linear, the auctioneer

should use a greedy allocation among shares.

Given any marginal type, the characterizations of optimal share structures

in Proposition 4.4.7 and Corollary 4.4.8 continue to hold. So do the results on the

impact of concavity of valuation function (Proposition 4.5.2) and of total resources

(Proposition 4.5.8) on optimal share structures. In addition, the impact of scaling

and shifting of type distribution in Proposition 4.5.4 continues to hold as long as the

marginal type is adjusted accordingly (multiplied by w in scaling case and increased

by w in shifting case).

9Under reasonable conditions, v∗0 is unique and is invariant to the share structure. For example,
under the MHR condition, the marginal revenue function J(v) crosses zero (from below) at most
once, and thus it is optimal to set the optimal marginal type to the crossing point or v, whichever is
higher. When the MHR condition is not satisfied, J(v) may cross zero multiple times. But in many
cases, the optimal marginal type is the same crossing point across different share structures.
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We next examine the impact of minimum bids on optimal share structures.

Properly set minimum bids will exclude low-type bidders with negative marginal

revenue, and thus improve the return factors of all shares. However, the improvements

may differ across shares. Therefore, the optimal share structure may change as a result

of imposing minimum bids, as suggested by the following proposition.

Proposition 4.6.1. If the MHR condition holds, the optimal share structure under

the optimal minimum bid r∗ is flatter than under no minimum bid.

Intuitively, minimum bids exclude low-type bidders who have negative marginal

revenues, and thus increase the total expected revenue. These bidders, if permitted

in the auction, would be more likely to win low ranked shares than high ranked ones.

Therefore, excluding them results in relatively larger improvements on the marginal

returns of low ranked shares than those of high ranked ones. This implies that re-

sources should be shifted toward low ranked shares, and the optimal share structure

should be flatter.

In sum, the optimal share structure interacts with the optimal minimum bid

policy. On one hand, changes in the share structures call for adjustments of the

optimal minimum bids. On the other hand, the introduction of minimum bids requires

a flatter optimal share structure.

4.7 Conclusion

The innovative use of auctions in the development of e-commerce challenges

our understanding. Much research has been done on auctions used in business-to-

consumer environments such as eBay auctions (Bapna et al. 2003) or in business-

to-business environments (Jap 2007). In comparison, less has been done on another

104



major application of auctions in electronic commerce, namely keyword advertising

auctions. This paper aims to address a novel problem in keyword advertising auction

settings: how an auctioneer should choose the optimal share structure to maximize

revenue.

The above issue is important because keyword advertising providers face the

issue of optimal share structure design routinely. The demand and supply of keyword

advertising resources are highly dynamic. On one hand, the supply of advertising

resources fluctuate as new websites join keyword advertising providers’ advertising

network and existing websites may lose their draw of online users. On the other hand,

the demand for advertising on particular keywords shifts constantly in response to

changes in underlying market trends. Therefore, keyword advertising providers must

constantly manage their share offerings to best respond to the changes in demand and

supply. To do so, keyword advertising providers need a good understanding of how

the optimal share structures are affected by changes in demand and supply factors.

We study the optimal share structure problem in a setting where bidders’

valuation for a share is jointly determined by their private value for effective impres-

sions (their type) and a common valuation function that captures their elasticity of

demand. The auctioneer prepackages resources into shares and allocates the shares

using a unit-price auction. Using this framework, we characterize the optimal share

structures and investigate how the optimal share structures change with several un-

derlying primitives.

While we use keyword auctions as the setting of our discussion, the unit-price

auctions with prepackaged shares may be used for other divisible goods, such as

network bandwidth and grid-computing power. In fact, Google filed a proposal on

May 21, 2007, to the Federal Communications Commission calling on using keyword-
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auction-like mechanisms to allocate radio spectrum.

4.7.1 Implications for Managers

Our characterization of the optimal share structure, together with the compar-

ative static analysis of the underlying demand and supply factors, generates several

insights for keyword advertising providers on share structure designs.

First, one key determinant of the sharing structure is advertisers’ price elastic-

ities. In our setting, advertisers’ price elasticity is defined as the percentage change

in their demand for effective impressions due to one percent change in price per unit

effective impression. When facing a perfect or near-perfect elastic demand, keyword

advertising providers should allocate as much exposure as possible to the highest-

paying advertisers. As advertisers’ demand for exposure becomes less elastic, keyword

advertising providers should use flatter share structures – meaning that they should

move advertising resources away from highest bidders to lower-ranked bidders.

Another important determinant is return factors of shares. Return factors

reflect the difference in returns from different shares for the same amount of resource

allocated. Return factors are determined mainly by the distribution of bidders’ types.

When return factors strictly decrease (such as under uniform, normal, or exponential

distributions), the optimal share structure should strictly decrease. Otherwise, the

optimal share structures may have plateaus.

Because return factors are determined by the distribution of valuation, changes

in the underlying valuation distribution may lead to different optimal share structures.

The rule of thumb is that the ratio of return factors rather than absolute values

determine the optimal share structure. For example, when the valuation distribution

is scaled by a common factor, all return factors are also scaled by the same factor, and
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the optimal share structure remains the same. When the valuation distribution shifts

(to the right) by a common factor, return factors for low-ranked shares increase by a

higher percentage than those for high-ranked shares, and the optimal share structure

should be flatter. In other words, it is not the absolute difference in advertisers’

valuation for keywords but the relative difference in their valuations that affects the

optimal share structures. Keyword advertising providers may estimate return factors

for different ranks by conducting controlled experiments (e.g., systematically varying

the amount of resources allocated to each share rank).

Third, keyword advertising providers should react to changes in total adver-

tising resources based on bidders’ price elasticity. Specifically, keyword advertising

providers should allocate proportionally less resources to high-ranked shares when

bidders’ price elasticities decreases with exposure levels; and keyword advertising

providers should allocate proportionally more to high-ranked shares when bidders’

price elasticities increase. Keyword advertising providers may estimate advertisers’

price elasticities by examining the accumulated data on advertisers’ willingness-to-pay

and their budgets or by conducting market research with a sample of advertisers.

Finally, keyword advertising providers should coordinate between the mini-

mum bids and the optimal share structures. In general, keyword advertising providers

should use flatter share structures when they use minimal bids than when they do not.

If keyword advertising providers decide to raise minimum bids, they should generally

offer flatter structures at the same time.

4.7.2 Implications for Future Research

We have abstracted away some of the details in keyword auctions as we focus

on factors that are most relevant to the share structure problem. Some of these details
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may deserve their own attention in future studies. For example, we have assumed that

bidders’ valuation for a slot can be captured by a one-dimensional variable “effective

impression.” It is conceivable that there are cases where participants of the same

auction may have “horizontally differentiated” tastes for slots. It would be interesting

to look at how keyword advertising providers should package their resources in this

heterogenous setting.

This paper focuses on the issue of optimal share structure design, assuming

the auctioneer has decided to use the keyword auction. Why keyword auctions have

become the mechanism of choice is interesting in itself. There may be a few reasons

for such auctions to become mainstream in online advertising markets. Keyword auc-

tions are simpler than conventional divisible good auctions. Given that the online

advertising is designed to facilitate participation of thousands of small advertisers,

keeping the auction mechanism simple and easy to understand is essential. Winner

determination in the keyword auction is straightforward, making it for real-time en-

vironments. Nevertheless, it remains interesting to compare keyword auctions with

alternative mechanisms for divisible goods such as the conventional discriminatory-

price and uniform-price auctions (Wilson 1979; Wang and Zender 2002). Our paper

facilitates such comparison because one would need to pick an optimal share structure

for keyword auctions to make a meaningful comparison.
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Appendix A

Proofs of the Results in Chapter 2

Throughout the appendix, we denote

ρθ(v) ≡
m∑

j=1

P j
θ (v)δj (A.1)

Proof of Lemma 2.4.1.

Consider an h-type advertiser with valuation-per-click wv who bids wb and a

lower-CTR advertiser with v who bids b. Both advertisers get a score wb, and their

payoff functions are

Ul(v, b) = Ql(v − b)
∑m

j=1
δjPr(wb ranks jth) (A.2)

Uh(wv,wb) = Qh(wv − wb)
∑m

j=1
δjPr(wb ranks jth) (A.3)

It is easy to establish that

Uh (wv, wb) =
wQh

Ql

Ul(v, b). (A.4)

For bl(v) and bh(v) to be equilibrium bidding functions, at any v, bl(v) must

maximize Ul(v, b) and bh(v) must maximize Uh(v, b). So, (A.4) suggests that if bidding

b is the best for an l-type advertiser with valuation-per-click v, bidding wb must be

the best for an h-type advertiser with valuation-per-click wv, which implies bh(wv)

equals wbl(v).

Proof of the Revenue Equivalence between First- and Second-Score Weighted

Unit-price Auctions.
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First, we show that the same relationship as in (2.3) holds between l- and

h-type advertisers’ bidding functions under the second-score setting. To see, we de-

note sj:n−1 as the random variable for jth highest score among n − 1 advertisers in

equilibrium. Consider an h-type advertiser with valuation-per-click wv bidding wb

and an l-type advertiser with valuation-per-click v bidding b. So both advertisers get

a score s = wb.

Uh (wv,wb) = Qh

[
m∑

j=1

δjPr(wb ranks jth) (wv − E [sj:n−1|sj:n−1 ≤ s < sj−1:n−1])

]

Ul (v, b) = Ql

[
m∑

j=1

δjPr(wb ranks jth)(v − 1

w
E [sj:n−1|sj:n−1 ≤ s < sj−1:n−1])

]

Similar to the proof of Lemma 1, we have Uh (wv, wb) = wQh

Ql
Ul(v, b) and bh (wv) =

wbl (v). bh (wv) = wbl (v) implies the l-type advertiser with valuation-per-click v and

the h-type advertiser with wv will tie in both first- and second-score weighted unit-

price auctions. Therefore, first- and second-score weighted unit-price auctions allocate

the slots in the same way. By the revenue equivalence theorem (e.g., Proposition 14.1

in Krishna 2002), the two formats must generate the same amount of revenue.

Proof of Proposition 2.4.2.

Denote the inverse bidding functions as b−1
l (b) and b−1

h (b), respectively, which

are strictly increasing given the monotonicity of the bidding functions. Lemma 1

implies that b−1
h (wb) = wb−1

l (b) for b ∈ [0, bl (1)]. Substituting this into (A.2) and

(A.3), we can uniformly write the payoff functions as

Uθ(v, b) = Qθ(v − b)ρθ

(
b−1
θ (b)

)
(A.5)

where ρθ(v) is defined in (A.1).

We denote

Vθ(v) ≡ Uθ(v, bθ(v)) = Qθ(v − bθ(v))ρθ

(
b−1
θ (bθ(v))

)
(A.6)
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as the equilibrium payoff of an advertiser with valuation-per-click v.

dVθ(v)

dv
=

∂Uθ (v, bθ(v))

∂v
+

∂Uθ (v, bθ(v))

∂b

dbθ(v)

dv

=
∂Uθ (v, bθ(v))

∂v
= Qθρθ(v)

where the second equality is due to ∂Uθ(v,bθ(v))
∂b

= 0 (the first-order condition). Apply-

ing the boundary condition Vθ(0) = 0, we get

Vθ(v) = Qθ

∫ v

0

ρθ(t)dt (A.7)

Combining (A.6) (note b−1
θ (bθ(v)) = v) and (A.7), we can solve the equilibrium

bidding function as

bθ(v) = v −
∫ v

0
ρθ(t)dt

ρθ(v)
(A.8)

Now we show that dbθ(v)
dv

> 0.

dbθ(v)

dv
=

ρ′θ(v)
∫ v

0
ρθ(t)dt

ρ2
θ(v)

(A.9)

The sign of the above first-order derivative is solely determined by that of ρ′θ(v). It

is sufficient to show ρ′θ(v) > 0, or
∑m

j=1 δjP
j′
θ (v) > 0.

P j′
θ (v) = (n−1

n−j)Gθ(v)n−j−1 (1−Gθ(v))j−2 [(n− j)− (n− 1)Gθ(v)] G′
θ (v) (A.10)

Notice that P 1′
θ (v) ≥ 0 and P n′

θ (v) ≤ 0 for all v; P j′
θ (v) (1 < j < n) crosses zero

only once from positive to negative on (0, 1). The crossing point, vc
j , is the solution

to Gθ(v
c
j) =

n− j

n− 1
. It is clear that 0 < vc

n−1 < ... < vc
3 < vc

2 < 1. Thus, for a given

v ∈ (0, 1), there exists jv ∈ {1, 2, ..., n− 1} such that

P j′
θ (v) > 0, for j = 1, ..., jv, and P j′

θ (v) ≤ 0, for j = jv + 1, ..., n. (A.11)

Let δm+1 = δm+2 = ... = δn = 0. We have

m∑
j=1

δjP
j′
θ (v) =

n∑
j=1

δjP
j′
θ (v) > δjv

n∑
j=1

P j′
θ (v) = 0 (A.12)
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where the inequality is due to δ1 ≥ δ2 ≥ ... ≥ δn and (A.11), and the last equality is

due to the fact that
∑n

j=1 P j
θ (v) = (Gθ(v) + 1−Gθ(v))n−1 = 1.

Proof of Proposition 2.4.3.

First note that Gh(wv) = Gl(v) and dGh(v)
dw

|wv = −1−α
αw

fl(v)
fh(wv)

dGl(v)
dw

. We can

establish

dρh (v)

dw
|wv = −1− α

αw

fl (v)

fh (wv)

dρl (v)

dw
. (A.13)

Using the same technique in Proof of Proposition 1, we can show

dρl(v)

dw
> 0 (A.14)

Taking the first-order derivative of (2.8) with respect to w yields

(1− α) Ql

∫ 1

0

v
dρl (v)

dw
fl (v) dv + αQh

∫ 1

0

v
dρh (v)

dw
fh (v) dv (A.15)

If w ≤ 1, noting dρh(v)
dw

= 0 for v > w, we can re-organize (A.15) as

(1− α) Ql

∫ 1

0

v
dρl (v)

dw
fl (v) dv + αQh

∫ w

0

v
dρh (v)

dw
fh (v) dv

= (1− α) Ql

∫ 1

0

v
dρl (v)

dw
fl (v) dv − (1− α) wQh

∫ 1

0

v
dρl (v)

dw
fl (v) dv

= (1− α) (Ql − wQh)

∫ 1

0

v
dρl (v)

dw
fl (v) dv (A.16)

where the second equality is due to integration by substitution and (A.13). Because

dρl(v)
dw

> 0 by (A.14), the above first order derivative is positive if w < Ql

Qh
and negative

if w > Ql

Qh
. So w = Ql

Qh
maximizes the social welfare among all w ∈ [0, 1].

Using a similar logic, we can verify w > 1 cannot maximize the social welfare.

So, weff = Ql

Qh
.

The Derivation of Expected Revenue.
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The expected payment from an advertiser is equal to the advertiser’s total

expected valuation upon winning minus the advertiser’s expected payoff.

Qθvρθ(v)− Vθ(v) = Qθ

[
vρθ(v)−

∫ v

0

ρθ(t)dt

]
(A.17)

where the equality is due to (A.7).

The expected payment from one advertiser (with probability α being h-type

and with probability (1− α) being l-type) is

αE [Qhvρh(v)− Vh(v)] + (1− α)E [Qlvρl(v)− Vl(v)]

= αQh

∫ 1

0

[
vρh(v)−

∫ v

0

ρh(t)dt

]
fh(v)dv

+(1− α)Ql

∫ 1

0

[
vρl(v)−

∫ v

0

ρl(t)dt

]
fl(v)dv

= αQh

∫ 1

0

ρh(v)

[
v − 1− Fh(v)

fh(v)

]
fh(v)dv

+(1− α)Ql

∫ 1

0

ρl(v)

[
v − 1− Fl(v)

fl(v)

]
fl(v)dv (A.18)

The total expected revenue from all advertisers is n times the above.

Proof of Proposition 2.4.4.

Taking the first order derivative of the expected revenue (2.9) with respect to

w yields

dπ

dw
= (1− α) Ql

∫ 1

0

dρl (v)

dw

(
v − 1− Fl(v)

fl(v)

)
fl(v)dv

+αQh

∫ 1

0

dρh (v)

dw

(
v − 1− Fh(v)

fh(v)

)
fh (v) dv (A.19)
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We only need to check the sign of dπ
dw

for 0 < w ≤ Ql

Qh
. For 0 < w ≤ Ql

Qh
,

dπ

dw
= (1− α) Ql

∫ 1

0

dρl (v)

dw

(
v − 1− Fl(v)

fl(v)

)
fl(v)dv

+αQh

∫ w

0

dρh (v)

dw

(
v − 1− Fh(v)

fh(v)

)
fh (v) dv

= (1− α) Ql

∫ 1

0

dρl (v)

dw

(
v − 1− Fl(v)

fl(v)

)
fl(v)dv

− (1− α) Qh

∫ 1

0

dρl (v)

dw

(
wv − 1− Fh(wv)

fh(wv)

)
fl(v)dv

= (1− α)

∫ 1

0

dρl (v)

dw
fl(v)

[
Ql

(
v − 1− Fl(v)

fl(v)

)
−Qh

(
wv − 1− Fh(wv)

fh(wv)

)]
dv

= (1− α)

×
∫ 1

0

dρl (v)

dw
fl(v)

[
v (Ql −Qhw) + Qh

1− Fh(wv)

fh(wv)
−Ql

1− Fl(v)

fl(v)

]
dv (A.20)

where the first equality is because for v > w, dρh(v)
dw

= 0 and the second equality is

due to (A.13).

Note that dρl(v)
dw

> 0 by (A.14). Clearly, for 0 < w ≤ Ql

Qh
, v (Ql −Qhw) ≥ 0.

By the IHR property (note that Fl(·) = Fh(·) = F (·)),

Qh
1− Fh(wv)

fh(wv)
−Ql

1− Fl(v)

fl(v)
> 0, (A.21)

So, (A.20) is greater than 0, which implies w∗ > Ql

Qh
.

Proof of the Strict Monotonicity of Bidding Functions.

Take l-type advertisers as an example. The incentive compatibility conditions

requires that for any v′′ > v′.

[v′ − bl (v
′)] ρl (v

′) ≥ [v′ − bl (v
′′)] ρl (v

′′) (A.22)

[v′′ − bl (v
′′)] ρl (v

′′) ≥ [v′′ − ρl (v
′)] ρl (v

′) (A.23)

Combining (A.22) and (A.23), we get ρl (v
′′) ≥ ρl (v

′), which implies bl (v
′′) ≥ bl (v

′).

Next we show bl (v
′) 6= bl (v

′′). Actually, if bl (v
′) = bl (v

′′) ≡ b, then bl(v) = b for all
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v ∈ [v′, v′′]. an l-type advertiser with valuation-per-click v′′ is better off by bidding

b + ε (ε is an infinitesimal positive number) since the advertiser loses only ε for per-

unit resource awarded, yet improves its probability of beating another advertiser by a

significant amount. This contradicts the equilibrium condition. Therefore bl (v) must

be strictly increasing.

Proof for Lemma 2.5.1.

We suppose there exists a mapping Λ : (v0, 1] → [bh, 1] such that wbl (v) =

bh (Λ (v)). That is, an l-type advertiser with v will tie with an h-type advertiser

Λ(v) in equilibrium. Similarly, we define P j
θ (v) ≡ (n−1

n−j) [Gθ(v)]n−j [1−Gθ(v)]j−1 and

ρθ(v) ≡ ∑m
j=1 P j

θ (v) δj, θ ∈ {l, h}, where

Gl (v) = [(1− α) Fl (v) + αFh (Λ (v))] , for all 1 ≥ v > v0

Gh (v) =
[
(1− α) Fl

(
Λ−1 (v)

)
+ αFh (v)

]
, for all Λ(1) ≥ v > Λ(v0)

We can then solve the equilibrium bidding for each advertiser type as

bl (v) = v − U0
l /Ql +

∫ v

v0
ρl (t) dt

ρl (v)
(A.24)

bh (v) = v −
U0

h/Qh +
∫ v

Λ(v0)
ρh (t) dt

ρh (v)
(A.25)

where U0
l and U0

h are equilibrium payoff of an l-type advertiser with valuation-per-

click v0 and equilibrium payoff of an h-type advertiser with valuation-per-click Λ (v0),

respectively. By wbl(v) = bh(Λ(v)),

w

[
v − U0

l /Ql +
∫ v

v0
ρl (t) dt

ρl (v)

]
= Λ (v)−

U0
h/Qh +

∫ Λ(v)

Λ(v0)
ρh (t) dt

ρh (Λ (v))

= Λ (v)− U0
h/Qh +

∫ v

v0
ρl (t) Λ′ (t) dt

ρl (v)
(A.26)
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where the second step is due to ρl (v) = ρh (Λ (v)). We multiply both sides of (A.26)

by ρl (v) and take the first-order derivative with respect to v,

w [vρ′l + ρl − ρl] = Λ′ρl + ρ′lΛ− ρlΛ
′ (A.27)

so we get Λ (v) = wv.

Proof of Proposition 2.5.2.

Our analysis in section 2.5.1 implies that an l-type advertiser with v ∈ [bh, v0)

participates but cannot compete with any participating h-type advertisers. The

probability for such an l-type advertiser to beat any other advertiser is Gl(v) =

αFh (bh)+(1− α) Fl (v). For an l-type advertiser with v ∈ [v0, 1] (who competes with

both l-type advertisers and h-type advertisers), Gl(v) = αFh (wv) + (1− α) Fl (v).

Similarly, we can obtain the probability of beating any other advertiser for h-type

advertisers with valuation-per-click in [bh, wv0] (who beat any l-type advertisers in

[bh, v0) but none of the l-type advertisers in [v0, 1]), in [wv0, w] (who compete both

with h-type advertisers and l-type advertisers), and in (w, 1] (who beat any l-type

advertisers). The equilibrium winning and the equilibrium bidding functions follow

naturally. The only undetermined variable is v0. Notice that Lemma 2.5.1 implies

for any v ∈ [v0, 1],

Vh(wv) = Qh(wv − bh(wv))ρh(wv) = Qhw(v − bl(v))ρl(v) =
wQh

Ql

Vl(v) (A.28)

Meanwhile, we have (by a similar process in the proof of Proposition 2.4.2)

Vl(v0) = Ql

∫ v0

bl

ρl(t)dt and Vh(wv0) = Qh

∫ wv0

bh

ρh(t)dt. (A.29)

Evaluating (A.28) at v = v0 and substituting the above, we immediately have w
∫ v0

bl
ρl(t)dt =

∫ wv0

bh
ρh(t)dt, which determines v0. We can verify that the bidding strategies obtained

in the above process constitute an equilibrium.
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Proof of Proposition 2.5.3.

In the following proof, we only consider the non-trivial case in which at least

some participating l-type advertisers can match h-type ones in valuation; i.e., bh <

Ql/Qh.

(Only-if part) We first show that a weighted unit-price auction with unequally

constraining minimum bids is inefficient. When the minimum bid for h-type advertis-

ers is more constraining, any weighting factor that results in a matching point being

1 for l-type advertisers is not efficient, since an l-type advertiser with valuation-per-

click 1 would lose to an h-type advertiser with valuation-per-click bh despite having

higher expected valuation. If the matching point is less than 1, by Lemma 2.5.1,

an l-type advertiser with valuation-per-click v > v0 will tie with an h-type advertiser

with valuation-per-click wv (provided that wv < 1). By the same argument in Propo-

sition 2.4.3, the allocation among these advertisers is efficient only if the weighting

factor is Ql/Qh. However, if the weighting factor is Ql/Qh and the minimum bid for

h-type advertisers is more constraining, by Proposition 2.5.2, h-type advertisers with

valuation-per-click between bh and wv0 are unmatched by any l-type advertisers, im-

plying that the h-type advertisers are inefficiently favored under the current minimum

bids. So, it is not possible to achieve allocation efficiency with a more constraining

minimum bid for h-type advertisers. By a similar argument, we can show that nor is

it possible with a less constraining minimum bid for h-type advertisers.

One cannot achieve efficiency with equally-constraining minimum bids but an

inefficient weighting factor either. If minimum bids are equally constraining, an l-

type advertiser with valuation-per-click v always ties with an h-type advertiser with

valuation-per-click wv. By the argument in Proposition 2.4.3, one can achieve effi-

ciency only by setting the weighting factor to Ql/Qh. In sum, a weighted unit-price
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auction is weakly efficient only if the weighting factor is efficient and minimum bids

are equally constraining.

The Derivation of Revenue-maximizing Minimum Bids.

Define Jθ(v) = v − 1−Fθ(v)
fθ(v)

and ρl

(
v−0

) ≡ limv→v−0
ρl(v) = ρh (bh). Taking the

partial derivative of of (2.17) with respect to bh and bl, respectively, we obtain the

first-order conditions (note that v0 is a function of bh and bl)

(1− α) Qlρl

(
v−0

)
Jl (v0) fl (v0)

∂v0

∂bh

+ (1− α) Ql

∫ v0

bl

dρl(v)

dbh

Jl (v) fl (v) dv

− (1− α) Qlρl (v0) Jl (v0) fl (v0)
∂v0

∂bh

− αQhρh (bh) Jh (bh) fh (bh)

+αQh

∫ wv0

bh

dρh (v)

dv0

∂v0

∂bh

Jh (v) fh (v) dv = 0 (A.30)

− (1− α) Qlρl (bl) Jl (bl) fl (bl) + (1− α) Qlρl

(
v−0

)
Jl (v0) fl (v0)

∂v0

∂bl

− (1− α) Qlρl (v0) Jl (v0) fl (v0)
∂v0

∂bl

+αQh
∂v0

∂bl

∫ wv0

bh

dρh (v)

dv0

Jh (v) fh (v) dv = 0 (A.31)

where ∂v0

∂bh
and ∂v0

∂bl
can be derived from the partial derivatives of both sides of equation

(2.16) with respect to bh and bl, respectively:

wρl

(
v−0

) ∂v0

∂bh

+ w

∫ v0

bl

dρl(t)

dbh

dt = wρh (wv0)
∂v0

∂bh

− ρh (bh) +
∂v0

bh

∫ wv0

bh

dρh (t)

dv0

dt

−wρl (bl) + wρl

(
v−0

) ∂v0

∂bl

= wρh (wv0)
∂v0

∂bl

+
∂v0

∂bl

∫ wv0

bh

dρh (v)

dv0

dv

The system of equations above allows us to solve the revenue-maximizing min-

imum bids for l-type advertisers (b∗l ) and h-type advertisers (b∗h). For example, solving

(A.30) we can get bh = b∗h (bl). Substituting b∗h (bl) into (A.31), we can derive b∗l .

Proof of Proposition 2.6.1.
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Denote H(x) ≡ αFh

(
x

Qh

)
+ (1 − α)Fl

(
x
Ql

)
. Using the similar approach as

in Proof for Proposition 1, we can derive the equilibrium bidding function for the

generalized first-price auction as

b (x) = x−
∑m

j=1 δj

∫ x

0
(n−1
n−j)H(t)n−j [1−H(t)]j−1 dt

∑m
j=1 δj(

n−1
n−j)H(x)n−j [1−H(x)]j−1

If this bid is from an l-type advertiser, let v = x/Ql. Noting that H(Qlv) =

αFh

(
Ql

Qh
v
)

+ (1− α) Fl (v) = αFh (weffv) + (1− α) Fl (v) = Gl(v), we have

b (x) = Qlv −
∑m

j=1 δj

∫ Qlv

0
(n−1
n−j)H(t)n−j [1−H(t)]j−1 dt

∑m
j=1 δj(

n−1
n−j)H(Qlv)n−j [1−H(Qlv)]j−1

= Qlv −Ql

∫ v

0
ρl(t)dt

ρl(v)
= Qlbl(v)

which means the total payment the advertiser bids is exactly the unit price he/she

would bid under efficient weighted unit-price auctions times his/her expected CTR.

Similar argument holds if the bid is from an h-type advertiser. Therefore, efficient

weighted unit-price auctions are revenue-equivalent to generalized first-price auctions.
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Appendix B

Proofs of the Results in Chapter 3

We can specify fθ(v) as follows.

fL(v) =
f(v)

F (v∗)
, if v ∈ [0, v∗] . (B.1)

fH(v) =

{
αf(v)

1−(1−α)F (v∗) , if v ∈ [0, v∗] ,
f(v)

1−(1−α)F (v∗) , if v ∈ (v∗, 1] .
(B.2)

Substituting (3.3), (3.4), and (3.5) into (3.6) and (3.7), respectively, we have

ρL(v) = [αF (wv) + (1− α)F (v)]n−1 , for v ∈ [0, v∗] , (B.3)

and

ρH(v) =





[
αF (v) + (1− α)F

(
v
w

)]n−1
, for v ∈ [0, wv∗] ,

[αF (v) + (1− α)F (v∗)]n−1 , for v ∈ (wv∗, v∗] ,
[F (v)]n−1 , for v ∈ (v∗, 1] .

(B.4)

For v ∈ [0, v∗], it is easy to establish

ρL(v) = ρH(wv), (B.5)

and

dρL (v)

dw
= −w

α

1− α

f (wv)

f (v)

dρH (v)

dw
|wv. (B.6)

Proof of Lemma 3.3.1.

Consider an L type with v who bids b and an H type with unit-valuation wv

who bids wb. Both bidders get a score wb, and their payoff functions are

UL(v, b) = yL(v − b)Pr(wb is the highest score) (B.7)

121



and

UH(wv, wb) = yH(wv − wb)Pr(wb is the highest score). (B.8)

It is easy to establish that

UH (wv, wb) =
wyH

yL

UL(v, b). (B.9)

For bL(v) and bH(v) to be equilibrium bidding functions, at any v, b = bL(v) must

maximize UL(v, b) and b = bH(v) must maximize UH(v, b). So, (B.9) suggests that if

bidding b is the best choice for an L type with unit-valuation v, bidding wb must be

the best choice for an H type with unit-valuation wv, which implies bH(wv) = wbL(v).

Proof of Lemma 3.3.2.

We denote Vθ(v) ≡ Uθ(v, bθ(v)) as the equilibrium expected payoff of a bidder

with type θ and unit valuation v. By (3.2),

Vθ(v) ≡ Uθ(v, bθ(v)) = yθ(v − bθ(v))Prob(win|bθ(v), θ). (B.10)

By the Envelope Theorem (see, e.g., Mas-Colell et al. 1995, p. 965), dVθ(v)
dv

=

∂Uθ(v,bθ(v))
∂v

. So

dVθ(v)

dv
= yθ × Prob(win|bθ(v), θ) = yθρθ(v), (B.11)

where the last step is due to Prob(win|bθ(v), θ) = ρθ(v) (both representing one’s

equilibrium winning probability). Applying the boundary condition Vθ(0) = 0 (i.e.,

the bidder with the lowest valuation gets zero payoff), we get

Vθ(v) = yθ

∫ v

0

ρθ(t)dt. (B.12)

Combining (B.12) and (B.10) (noting Prob(win|bθ(v), θ) = ρθ(v)), we can solve the

bidding function as

bθ(v) = v −
∫ v

0
ρθ(t)dt

ρθ(v)
. (B.13)
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It is easy to see that bθ(v) is indeed monotonically increasing, since

dbθ(v)

dv
= 1− 1 +

ρ′θ(v)
∫ v

0
ρθ(t)dt

ρ2
θ(v)

> 0, (B.14)

where the inequality is due to ρ′θ(v) > 0.

Proof of Proposition 3.3.3.

For a given v∗ and any v < v∗, by (3.10) and (3.12),

∆V (v∗)− [VH(v)− VL(v)] = yH

∫ v∗

v

ρH(t)dt− yL

∫ v∗

v

ρL(t)dt. (B.15)

Because yH > yL and ρH(t) ≥ ρL(t) for all t ∈ [v, v∗], the above in (B.15) must be

positive. Therefore, by substituting ∆V (v∗) = c in (B.15),

VH(v)− VL(v) < c. (B.16)

If c = 0, all L types convert to H types for the benefit from the performance

increase and the scoring rule (3.1), and hence v∗ = 0. If ∆V (1) ≤ c, then v∗ = 1 must

be an equilibrium because (B.16) implies that the benefit from deviating to convert

cannot compensate for the investment cost for any L type with v ∈ [0, 1).

If 0 < c < ∆V (1), there is an unique solution to ∆V (v∗) = c, since ∆V (v∗) is

continuous and monotonically increasing in v∗ (by checking the first order derivative).

And, v∗ determined by ∆V (v∗) = c must be an equilibrium for the following reasons.

First, for an L type with unit valuation v ∈ [0, v∗), it is unprofitable to deviate

to convert due to (B.16). Second, for an L type with valuation v ∈ (v∗, 1], if he

remained at the low performance (instead of conversion), his best bidding strategy in

the second period was to bid bH(wv)/w by a similar argument to the one for Lemma

3.3.1. Therefore, by (B.9), his maximum expected payoff could be

UL(v, bH(wv)/w) =
yL

wyH

UH (wv, bH(wv)) =
yL

wyH

VH (wv) , (B.17)
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which can be shown to be less than VH(v) − c, the net equilibrium payoff. In fact,

[VH(v)− yL

wyH
VH (wv)] increases in v (by checking the first-order derivative), and

c = ∆V (v∗) = VH(v∗)− VL(v∗) = VH(v∗)− yL

wyH

VH (wv∗) , (B.18)

where the last step is due to the mapping in (B.9) at equilibrium (recall Uθ(v, bθ(v)) ≡
Vθ(v)). Therefore, VH(v) − c > yL

wyH
VH (wv) for any v ∈ (v∗, 1], implying that it is

unprofitable for an L type of this v to deviate.

Proof of Corollary 3.3.4.

In the equilibrium, we have

∆V (v∗) = yH

∫ v∗

0

ρH(t)dt− yL

∫ v∗

0

ρL(t)dt = c, (B.19)

where v∗ can be regarded as a function of the related parameters. Applying the

Implicit Function Theory (see, e.g., Mas-Colell et al. 1995, p. 940) to (B.19) with

respect to c and noticing ρH(t) is a function of v∗ from (B.4), we have

[
yHρH(v∗)− yLρL(v∗) + yH

∫ v∗

wv∗

dρH(t)

dv∗
dt

]
v∗′(c) = 1, (B.20)

Since the coefficient of v∗′(c) in the above is positive, v∗′(c) > 0.

Similar argument leads to that v∗ decreases in yH .

Proof of Lemma 3.4.1.

Applying the Implicit Function Theory to (B.19) with respect of w and noticing

ρθ(v) is a function of w from (B.3) and (B.4), we have

[
yHρH (v∗)− yLρL (v∗) + yH

∫ v∗

wv∗

dρH(t)

dv∗
dt

]
dv∗(w)

dw

= yL

∫ v∗

0

dρL(t)

dw
dt− yH

∫ wv∗

0

dρH(t)

dw
dt.
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Since the right hand side is positive (due to dρL(t)
dw

> 0 and dρH(t)
dw

< 0) and the

coefficient of dv∗(w)
dw

is positive, dv∗(w)
dw

> 0.

Proof of Proposition 3.4.2.

Substituting in (3.5), (B.1), and (B.2), we can re-organize (3.13) as

(1− α) yL

∫ v∗

0

ρL (v) f (v) dv + αyH

∫ v∗

0

ρH (v) f (v) dv + yH

∫ 1

v∗
ρH (v) f (v) dv.

(B.21)

Taking the first order derivative of the above with respect to w, we have (recall

ρH(v) is a step function as specified in (B.4))

(1− α) [yLρL(v∗)− yHρH(v∗)] f (v∗)
dv∗(w)

dw
+ (1− α) yL

∫ v∗

0

dρL (v)

dw
f (v) dv

+αyH

∫ wv∗

0

dρH (v)

dw
f (v) dv + αyH

dv∗(w)

dw

∫ v∗

wv∗

dρH (v)

dv∗
f (v) dv.

By integration by substitution and then applying (B.6),
∫ wv∗

0

dρH (v)

dw
f (v) dv =

∫ v∗

0

dρH (v)

dw
|wzf (wz) wdz = −1− α

α

∫ v∗

0

dρL (v)

dw
f (v) dv.

(B.22)

Substituting in (B.22) and integrating
∫ v∗

wv∗
dρH(v)

dv∗ f (v) dv , we can re-write the above

first-order derivative as

(1− α) [yLρL (v∗)− yHρH (v∗)] f (v∗)
dv∗(w)

dw
+ (1− α) yL

∫ v∗

0

dρL (v)

dw
f (v) dv

− (1− α) yH

∫ v∗

0

dρL (v)

dw
f (v) dv + (1− α) yH (ρH (v∗)− ρH (wv∗)) f (v∗)

dv∗(w)

dw

= (1− α) (yL − yH) ρL (v∗) f (v∗)
dv∗(w)

dw

+ (1− α) (yL − yH)

∫ v∗

0

dρL (v)

dw
f (v) dv, (B.23)

where the equality is due to ρH(wv∗) = ρL(v∗) from (B.5). Since dv∗(w)
dw

> 0 (by

Lemma 3.4.1) and dρL(v)
dw

> 0, the first order derivative is negative, which implies that

the expected performance decreases in w.
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Proof of Proposition 3.5.1.

Substituting in (3.5), (B.1), and (B.2), we can re-organize (3.14) as

n

[
(1− α) yL

∫ v∗

0

vρL (v) f (v) dv

+αyH

∫ v∗

0

vρH (v) f (v) dv + yH

∫ 1

v∗
vρH (v) f (v) dv

]

−n (1− α) (1− F (v∗)) c. (B.24)

Taking the first order derivative of (B.24) with respect to w (and removing

the constant n),

(1− α) [yLρL (v∗)− yHρH (v∗)] v∗f (v∗)
dv∗(w)

dw
+ (1− α) f (v∗)

dv∗(w)

dw
c

+ (1− α) yL

∫ v∗

0

v
dρL (v)

dw
f (v) dv

+αyH

∫ wv∗

0

v
dρH (v)

dw
f (v) dv + αyH

dv∗(w)

dw

∫ v∗

wv∗
v
dρH (v)

dv∗
f (v) dv. (B.25)

By integration by parts,

αyH

∫ v∗

wv∗
v
dρH (v)

dv∗
f (v) dv = (1− α) yHf (v∗)

(
ρH (v) v|v∗wv∗ −

∫ v∗

wv∗
ρH (v) dv

)
.

(B.26)

Also, notice ρH(wv∗) = ρL(v∗) from (B.5). By substituting in (B.26) and applying

integration by substitution similar to the one in (B.22), (B.25) can re-organized as

(1− α) (yL − wyH)

∫ v∗

0

v
dρL (v)

dw
f (v) dv

+ (1− α) (yL − wyH) ρL (v∗) v∗f (v∗)
dv∗(w)

dw

+ (1− α) f (v∗)
dv∗(w)

dw
[c− yH

∫ v∗

wv∗
ρH (v) dv], (B.27)

Using ρH(wv) = ρL(v) by (B.5), we can re-write the equilibrium condition (B.19) as

(yHw − yL)

∫ v∗

0

ρL (x) dx + yH

∫ v∗

wv∗
ρH (x) dx = c (B.28)
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By substituting into (B.28), the first-order derivative (B.27) can be re-organized as

(1− α)

[
f (v∗)

dv∗(w)

dw
(v∗ρL (v∗)−

∫ v∗

0

ρL (v) dv) +

∫ v∗

0

v
dρL (v)

dw
f (v) dv

]
(yL − wyH) .

(B.29)

Since the coefficient of (yL − wyH) is positive, w = yL

yH
is the only solution making

(B.29) zero. Therefore, w∗ = yL

yH
.

Derivation of the Expected Revenue.

The expected payment from a θ-type bidder of unit valuation v is the difference

between his expected valuation and his expected payoff; that is

yθvρθ(v)− Vθ(v) = yθ

[
vρθ(v)−

∫ v

0

ρθ(t)dt

]
. (B.30)

The expected payment from one bidder (with probability PH being an H type

and with probability PL being an L type) is

PLE [yLvρL(v)− VL(v)] + PHE [yHvρH(v)− VH(v)]

= yLPL

∫ v∗

0

[
vρL(v)−

∫ v

0

ρL(t)dt

]
fL(v)dv + yHPH

∫ 1

0

[
vρH(v)−

∫ v

0

ρH(t)dt

]
fH(v)dv

= yLPL

∫ v∗

0

ρL(v)

[
v − 1− FL(v)

fL(v)

]
fL(v)dv + yHPH

∫ 1

0

ρH(v)

[
v − 1− FH(v)

fH(v)

]
fH(v)dv.

The expected revenue from all bidders is n times the above.

Proof of Proposition 3.6.1.

Given v∗, the first-order derivative of π in (3.15) with respect to w can be

organized as (substituting in (3.5), (B.1), and (B.2))

∂π

∂w
= n(1− α)yL

∫ v∗

0

dρL (v)

dw
JL(v)f(v)dv + nαyH

∫ wv∗

0

dρH (v)

dw
JH(v)f(v)dv (B.31)

= n(1− α)yL

∫ v∗

0

dρL (v)

dw
JL(v)f(v)dv − n(1− α)yH

∫ v∗

0

dρL (v)

dw
JH(wv)f(v)dv,
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where the second step is by applying integration by substitution similar to the one in

(B.22). Substituting in Jθ(v), we have

∂π

∂w
= n(1−α)

∫ v∗

0

dρL (v)

dw

[
(yL − yHw) v +

(
yH

1− FH(wv)

fH (wv)
− yL

1− FL(v)

fL (v)

)]
f(v)dv.

(B.32)

Notice that

1− FL(v)

fL (v)
=

F (v∗)− F (v)

f(v)
≤ 1− F (v)

f(v)

and

1− F (wv)

f(wv)
≤

1−(1−α)F (v∗)
α

− F (wv)

f(wv)
=

1− FH(wv)

fH (wv)
.

If f(v)
1−F (v)

is increasing in v, then 1−F (v)
f(v)

≤ 1−F (wv)
f(wv)

and thus 1−FL(v)
fL(v)

≤ 1−FH(wv)
fH(wv)

.

Therefore, for all w ∈ [0, yL

yH
], we have ∂π

∂w
> 0, implying wL

opt > yL

yH
.

Proof of Proposition 3.6.2.

Substituting F (v) = v and f (v) = 1 into (B.32),

∂π

∂w
= n(1− α)(n− 1)(αw + 1− α)n−2α

×
∫ v∗

0

vn−1

[
2 (yL − wyH) v +

(
1− (1− α)v∗

α
yH − v∗yL

)]
dv. (B.33)

By integration, we can obtain the solution to ∂π/∂w = 0:

wL
opt =

(n + 1) yH
1−(1−α)v∗

α
+ (n− 1) yLv∗

2nyHv∗
.

It is easy to see that wL
opt decreases in v∗. Notice that in the static case v∗ = 1 and

in our dynamic (nontrivial) case with limited commitment v∗ < 1. So the revenue-

maximizing weighting factor in a dynamic limited-commitment case is greater than

in a static case.

Proof of Lemma 3.6.4.
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In the full commitment case, we have

dπ

dw
=

∂π

∂w
+

∂π

∂v∗
dv∗(w)

dw
, (B.34)

where ∂π/∂w is the same as specified in (B.31). To get ∂π/∂v∗, we re-organize the

expected revenue π in (3.15) as below by substituting in Pθ, fθ(v), and Fθ(v) (specified

in (3.5), (B.1), (B.2), (3.3), and (3.4)).

n (1− α) yL

∫ v∗

0

ρL (v) JL (v) f (v) dv

+nyH

[∫ v∗

0

ρH (v) JH (v) αf (v) dv +

∫ 1

v∗
ρH (v) JH (v) f (v) dv

]

= n (1− α) yL

∫ v∗

0

ρL (v) [vf (v)− (F (v∗)− F (v))] dv

+nyH

[∫ v∗

0

ρH (v) [αvf (v)− (1− (1− α) F (v∗)) + αF (v)] dv

+

∫ 1

v∗
ρH (v) [vf (v)− (1− F (v))] dv

]

Then, we have

∂π

∂v∗
= n (1− α) [yLρL (v∗)− yHρH (v∗)] v∗f (v∗)− n (1− α) f (v∗) yL

∫ v∗

0

ρL (v) dv

+n (1− α) f (v∗) yH

∫ v∗

0

ρH (v) dv + nyH

∫ v∗

wv∗

dρH (v)

dv∗
JH (v) αf (v) dv(B.35)

which leads to (3.18) by noticing that yH

∫ v∗

0
ρH (v) dv − yL

∫ v∗

0
ρL (v) dv = c.

Proof of Proposition 3.6.5.

Notice that JH(v)αf(v) = [αvf (v)− (1− (1− α) F (v∗)) + αF (v)] for v ∈
[wv∗, v∗]. By substituting (B.26) in (B.35),

∂π

∂v∗
= n (1− α) f(v∗)

[
(yLρL(v∗)− wyHρH(wv∗)) v∗ + yH

∫ wv∗

0

ρH(v)dv − yL

∫ v∗

0

ρL(v)dv

]

+n

[
−yH

∫ v∗

wv∗

dρH (v)

dv∗
(1− (1− α)F (v∗)− αF (v)) dv

]
.
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Notice that the term in the second square bracket is negative. The term in the

first square bracket, by integration by substitution for
∫ wv∗

0
ρH(v)dv and applying

ρH(wv) = ρL(v) from (B.5), can be simplified to
[
(yL − wyH)

(
ρL (v∗) v∗ − ∫ v∗

0
ρL (v) dv

)]
,

which is negative for w > yL/yH . Therefore, ∂π/∂v∗ < 0 for all w ≥ yL/yH .

Notice that dv∗(w)
dw

> 0 by Lemma 3.4.1. Therefore, for a certain w̃ ≥ yL/yH ,

we have dπ
dw
|w̃ < 0 by (B.34) as long as ∂π

∂w
|w̃ ≤ 0. In particular, if F (v) is IHR,

wL
opt > yL/yH ; if ∂2π

∂w2 < 0, ∂π
∂w
|wL

opt
= 0 leads to ∂π

∂w
< 0 for w ∈ (wL

opt, 1]. So we have

dπ
dw

< 0 for for w ∈ (wL
opt, 1], implying wF

opt < wL
opt.
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Appendix C

Proofs of the Results in Chapter 4

Proof of Lemma 4.4.1.

(a) For j = 1, 2, ..., n− 1,

αj = n

∫ v̄

v

Pj (v) [vf (v)− (1− F (v))] dv = n

∫ v̄

v

Pj (v) d [−v (1− F (v))]

= n

∫ v̄

v

v (1− F (v)) dPj (v)

= n

∫ v̄

v

(
n− 1

n− j

)
F (v)n−j−1 (1− F (v))j−1 [(n− j)− (n− 1) F (v)] vf (v) dv

where the third step is due to integration by parts. We can easily verify α1 > 0.

For j = 2, 3, ..., n− 1,

α1 − αj = n

∫ v̄

v

{(n− 1) F (v)n−2 (1− F (v))−
(

n− 1

n− j

)
F (v)n−j−1 (1− F (v))j−1 [(n− j)− (n− 1) F (v)]}vf (v) dv(C.1)

Denoting A (v) ≡ (n− 1) F (v)j−1 − (
n−1
n−j

)
(1− F (v))j−2 [(n− j)− (n− 1) F (v)], we

can rewrite (C.1) as α1 − αj = n
∫ v̄

v
[1− F (v)] F (v)n−j−1 A (v) vf (v) dv. We argue

that A(v) single-crosses zero from below on [v, v̄]. To see, let v0 be the solution to

(n− j) − (n− 1) F (v) = 0. We can verify that A (v) < 0, A (v) increases in v for

v ≤ v0, and A (v) is positive for all v > v0. Thus A (v) crosses zero only once from

below, implying [1− F (v)] F (v)n−j−1 A (v) f (v) also single-crosses zero from below
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on (v, v̄). Denoting the crossing point of the latter as vc, we have

α1 − αj = n

∫ v̄

v

(1− F (v)) F (v)n−j−1 A (v) f (v) vdv

> nvc

∫ v̄

v

(1− F (v)) F (v)n−j−1 A (v) f (v) dv

= nvc

∫ v̄

v

[P2 (v)− jPj+1 (v) + (j − 1) Pj (v)] f (v) dv (C.2)

where the last equality results from substituting the definition of A (v) and rearranging

terms. The right side of (C.2) is zero because for j = 1, ..., n,

∫ v̄

v

Pj (v) f (v) dv =

(
n− 1

n− j

) ∫ v̄

v

F (v)n−j [1− F (v)]j−1 dF (v)

=

(
n− 1

n− j

) ∫ 1

0

xn−j (1− x)j−1 dx

=

(
n− 1

n− j

)(
n− 1

n− j

)−1
1

n
=

1

n
(C.3)

where the second step is due to integration by substitution and the third step is due

to repeated integration by parts. Therefore, α1 − αj > 0 for j = 2, 3, ..., n− 1.

We next show that α1 − αn > 0.

α1 − αn = n

∫ v̄

v

{
F (v)n−1 − [1− F (v)]n−1} d [−v (1− F (v))]

= −nv + n

∫ v̄

v

v [1− F (v)] (n− 1)
[
F (v)n−2 + (1− F (v))n−2] f(v)dv

> −nv + nv

∫ v̄

v

[1− F (v)] (n− 1)
[
F (v)n−2 + (1− F (v))n−2] f(v)dv

= −nv + nv

(
1

n
+

n− 1

n

)
= 0

where the second step is due to integration by parts and the fourth step is due to

(C.3).

(b) Denote hj (x) ≡ nPj (x) f (x). By (C.3),
∫ v̄

v
hj (x) dx = 1. Thus we can

regard hj (x) as a probability density function. We next show that for j = 1, 2, ..., n−1,
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hj (x) first-order stochastically dominates hj+1 (x).

hj (x)− hj+1 (x)

= nf (x)

{(
n− 1

n− j

)
F (x)n−j [1− F (x)]j−1 −

(
n− 1

n− j − 1

)
F (x)n−j−1 [1− F (x)]j

}

=

(
n

j

)
f (x) F (x)n−j−1 [1− F (x)]j−1 [nF (x)− (n− j)]

Denote vc
j as the solution to nF (x) − (n− j) = 0. Because hj (x) < hj+1 (x)

for any x ∈ (
v, vc

j

)
,

∫ v

v
hj (x) dx <

∫ v

v
hj+1 (x) dx for v ∈ (

v, vc
j

)
. Because hj (x) >

hj+1 (x) for any x ∈ (
vc

j , v̄
)
,
∫ v̄

v
hj (x) dx >

∫ v̄

v
hj+1 (x) dx for v ∈ (

vc
j , v̄

)
, which implies

∫ v

v
hj (x) dx <

∫ v

v
hj+1 (x) dx for v ∈ (

vc
j , v̄

)
(note that

∫ v

v
hj (x) dx = 1−∫ v̄

v
hj (x) dx).

In all, we have
∫ v

v
hj (x) dx <

∫ v

v
hj+1 (x) dx for any v ∈ (v, v̄), implying that hj (x)

first-order stochastically dominates hj+1 (x). According to the property of first-order

stochastic dominance (e.g., Proposition 6.D.1 at page 195 of Mas-Colell et al. (1995)),

if J (x) is an increasing function of x,
∫ v̄

v
hj (x) J (x) dx >

∫ v̄

v
hj+1 (x) J (x) dx. There-

fore αj > αj+1.

Proof of Lemma 4.4.5.

Assume the optimal share structure is (s∗1, s
∗
2, ..., s

∗
n). Denote

∑jk+1

j=jk+1 s∗j ≡ σ

and notice that s∗jk
≥ 1

jk+1−jk
σ ≥ s∗jk+1+1 ≥ 0 because of the size-order constraint.

(s∗jk+1, s
∗
jk+2, ..., s

∗
jk+1

) must be the solution to the following maximization problem:

max

jk+1∑
j=jk+1

αjQ (sj) , subject to: sjk+1 ≥ ... ≥ sjk+1
and

jk+1∑
j=jk+1

sj ≤ σ (C.4)

s∗jk
≥ sjk+1 and sjk+1

≥ s∗jk+1+1 (C.5)

We will work on the related maximization problem without constraint (C.5)

and check (C.5) later. The Lagrangian function then can be written as

L =

jk+1∑
j=jk+1

αjQ (sj) + µ

(
σ −

jk+1∑
j=jk+1

sj

)
+

jk+1−1∑
j=jk+1

γj (sj − sj+1)
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where µ and γj are Lagrange multipliers. Hence, the Kuhn-Tucher conditions are (let

γjk
≡ 0, γjk+1

≡ 0)

αjQ
′ (sj)− µ + γj − γj−1 = 0, for j = jk + 1, ..., jk+1 (C.6)

Averaging (C.6) for the first l shares and the remaining shares, respectively, we have

1

l

(∑jk+l

j=jk+1
αjQ

′ (sj) + γjk+l

)
=

1

jk+1 − jk − l

(∑jk+1

j=jk+l+1
αjQ

′ (sj)− γjk+l

)
.

(C.7)

By definition, jk+1 is the maximizer for the average return factor starting from jk +1,

so

1

l

∑jk+l

j=jk+1
αj ≤ 1

jk+1 − jk − l

∑jk+1

j=jk+l+1
αj (C.8)

Also note that Q′(sj) is nondecreasing in j. Therefore, we have 1
l

∑jk+l
j=jk+1 αjQ

′ (sj) ≤
1

jk+1−jk−l

∑jk+1

j=jk+l+1 αjQ
′ (sj). If γjk+l = 0, (C.7) can hold only if (C.8) holds in

equality and sjk+1 = ... = sjk+1
. In other words, if any γj = 0 (jk < j < jk+1), we

must have sjk+1 = ... = sjk+1
. Otherwise, we have γj > 0 for all jk < j < jk+1, which

implies sjk+1 = ... = sjk+1
by the Kuhn-Tucker condition. So, regardless, we have

sjk+1 = ... = sjk+1
= 1

jk+1−jk
σ, which naturally satisfies constraint (C.5).

Proof of Proposition 4.4.7.

Suppose that we have m plateaus. By Lemma 4.4.5, shares are equal in size

within a plateau. Denote nk ≡ jk − jk−1 as the number of shares in plateau k and

zk as the size of a share in that plateau. Recall that ᾱk decreases in k. Without loss

of generality, we assume there exists k0 ∈ {1, 2, ..., m} such that ᾱk0 > 0 ≥ ᾱk0+1.

Clearly, it is never optimal to allocate resources to plateaus with non-positive average

return factors. Therefore, zk0+1 = ... = zm = 0 in the optimal share structure. The

optimal share structure problem becomes

max
{z1,...,zk0

}

k0∑

k=1

nkᾱkQ (zk) , subject to: z1 ≥ ... ≥ zk0 ≥ 0 and

k0∑

k=1

nkzk ≤ 1 (C.9)
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The Lagrangian function for the above is (notice that zk0+1 = 0)

L (s, µ, λ) =

k0∑

k=1

nkᾱkQ(zk) + µ

(
1−

k0∑

k=1

nkzk

)
+

k0∑

k=1

λk (zk − zk+1) (C.10)

where µ and λk are Lagrange multipliers. Hence, the Kuhn-Tucker conditions are

(define λ0 ≡ 0)

nkᾱkQ
′ (zk)− nkµ + λk − λk−1 = 0, for k = 1, 2, ..., k0 (C.11)

If λ1 = ... = λk0 = 0, we immediately have, by (C.11), that ᾱ1Q
′ (z1) = ... =

ᾱk0Q
′ (zk0) ≥ ᾱk0+1Q

′ (0). Otherwise, there must exist k (k < k0) such that λ0 =

... = λk = 0 and λk+1 > 0. From (C.11),

ᾱk+1Q
′ (zk+1)− µ +

λk+1 − λk

nk+1

= ᾱk+2Q
′ (zk+2)− µ +

λk+2 − λk+1

nk+2

. (C.12)

Note that ᾱk+1 > ᾱk+2 > 0 and zk+1 = zk+2 (because λk+1 > 0). (C.12) requires

λk+2 > λk+1 > 0. Using the similar logic repeatedly, we can get λk0 > ... > λk+2 >

λk+1 > 0, which implies zk0+1 = zk0 = ... = zk+1 = 0 (because zk0+1 = 0). Substitut-

ing the λ-sequence into (C.10), we have

ᾱ1Q
′ (z1) = ᾱ2Q

′ (z2) = ... = ᾱkQ
′ (zk) ≥ ᾱk+1Q

′ (0) , (C.13)

which implies z1 > z2 > ... > zk (because ᾱk decreases and Q (·) is concave).

In addition, we have µ > 0 from (C.11) when k = 1, which implies
∑k0

k=1 nkzk =

1, that is, all the resources are offered in the optimal share structure.

Proof of Proposition 4.5.2.

Assume that Q̂(·) is more concave than Q(·); that is, there exists a concave

function ψ(·) such that Q̂(·) = ψ (Q(·)). Notice that Q̂′(x)
Q′(x)

= ψ′ (Q(x)), which de-

creases in x. Therefore, for any x1 and x2 (x1 < x2),

Q̂′ (x1)

Q̂′ (x2)
>

Q′ (x1)

Q′ (x2)
(C.14)
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Denote s and ŝ as the optimal share structures under Q(·) and Q̂(·), respectively. To

show ŝ is less steep than s, it is sufficient to show that

ŝj ≥ sj ⇒ ŝj+1 ≥ sj+1, ∀j (C.15)

First, note that s and ŝ have identical plateau boundaries by Lemma 4.4.5. If

j and j + 1 are located in the same plateau, sj = sj+1 and ŝj = ŝj+1, and ŝj+1 ≥ sj+1

holds trivially. Otherwise, we assume j and j + 1 are located in plateau k and k + 1,

respectively. We focus the nontrivial case sj+1 > 0. By Proposition 4.4.7, we have

ᾱkQ̂
′(ŝj) ≥ ᾱk+1Q̂

′(ŝj+1) and ᾱkQ
′(sj) = ᾱk+1Q

′(sj+1), and hence

Q̂′(ŝj+1)

Q̂′(ŝj)
≤ Q′(sj+1)

Q′(sj)
(C.16)

Combining (C.16) with that
Q̂′(ŝj+1)

Q̂′(sj)
≤ Q̂′(ŝj+1)

Q̂′(ŝj)
(because of the concavity of Q̂(·)) and

Q′(sj+1)

Q′(sj)
<

Q̂′(sj+1)

Q̂′(sj)
(because of (C.14)), we have

Q̂′(ŝj+1)

Q̂′(sj)
<

Q̂′(sj+1)

Q̂′(sj)
, which implies that

ŝj+1 > sj+1.

We now show ŝ1 < s1, if s2 > 0. If ŝ1 ≥ s1, we know from the above proof

that ŝ2 > s2 (note that s1 and s2 are not in the same plateau by Proposition 4.4.7)

and ŝj ≥ sj for j > 2, which contradicts that
∑n

j=1 sj =
∑n

j=1 ŝj.

Proof of Lemma 4.5.3.

It is sufficient to show that if ŝj ≥ sj then ŝj+1 ≥ sj+1, for any j. If j and

j + 1 are located in the same plateau, ŝj = ŝj+1 and sj = sj+1, and ŝj+1 ≥ sj+1 holds

trivially. So we assume j and j +1 are located in plateau k and k +1, respectively. If

sj+1 = 0, the result holds trivially. Suppose sj+1 > 0 (so that ŝj ≥ sj > sj+1 > 0). By

Proposition 4.4.7, we have ˆ̄αkQ
′ (ŝj) ≥ ˆ̄αk+1Q

′ (ŝj+1) and ᾱkQ
′ (sj) = ᾱk+1Q

′ (sj+1).

Together with condition (4.19), we have

Q′ (ŝj)

Q′ (ŝj+1)
≥ ˆ̄αk+1

ˆ̄αk

≥ ᾱk+1

ᾱk

=
Q′ (sj)

Q′ (sj+1)
(C.17)
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which implies
Q′(ŝj)

Q′(sj)
≥ Q′(ŝj+1)

Q′(sj+1)
. Note that

Q′(ŝj)

Q′(sj)
≤ 1 by concavity of Q(·) and ŝj ≥ sj.

So we have
Q′(ŝj+1)

Q′(sj+1)
≤ 1, which implies ŝj+1 ≥ sj+1.

Proof of Proposition 4.5.4.

(a) Denote F̂ (wv) as the distribution function after scaling. Clearly, F̂ (wv) =

F (v), and hence P̂j(wv) = Pj (v). It is easy to verify f̂(wv) = f(v)
w

and Ĵ(wv) =

wJ (v). Based on these relationships, we have

α̂j = n

∫ wv̄

wv

P̂j(x)Ĵ(x)f̂(x)dx = n

∫ wv̄

wv

Pj(
x

w
)J(

x

w
)f

( x

w

)
dx = wn

∫ v̄

v

Pj(v)J(v)f(v)dv

where the third step is due to integration by substitution.

(b) Denote F̂ (v +w) as the distribution function after shifting. Clearly, F̂ (v +

w) = F (v), and hence P̂j(v + w) = Pj (v). It is easy to verify f̂(v + w) = f(v) and

Ĵ(v + w) = J(v) + w. Based on these relationships, we have

α̂j = n

∫ v̄+w

v+w

P̂j(x)Ĵ(x)f̂(x)dx = n

∫ v̄+w

v+w

Pj(x− w) (J(x− w) + w) f(x− w)dx

= wn

∫ v̄

v

Pj(v)f(v)dv + n

∫ v̄

v

Pj(v)J(v)f(v)dv = w + αj (C.18)

where the third step is due to integration by substitution and the last step is due to

(C.3).

(c) Under the regular condition, ᾱj sequence coincides with αj sequence. So,

by Lemma 4.5.3, a sufficient condition for ŝ to be less steeper than s is

α̂j+1

α̂j

≥ αj+1

αj

, whenever sj+1 > 0 (C.19)

Denote P n
j (x) ≡ (n−1

n−j)x
n−j (1− x)j−1 and J (x) = J (F−1 (x)). We can write that

αj = n
∫ 1

0
P n

j (F (v)) J (v) f(v)dv = n
∫ 1

0
P n

j (x) J (x) dx. Noting that α̂j+1 > 0 and

αj+1 > 0 (from Ĵ(x) > 0 and J(x) > 0), we can rewrite (C.19) as

∫ 1

0

P n
j+1 (x) J (x) dx

∫ 1

0

P n
j (x) Ĵ (x) dx ≤

∫ 1

0

P n
j (x) J (x) dx

∫ 1

0

P n
j+1 (x) Ĵ (x) dx
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By Athey (2000), the above holds if the following two conditions are satisfied:

P n
j+1 (x) J (x) · P n

j (y) Ĵ (y) ≤ P n
j (y) J (y) · P n

j+1 (x) Ĵ (x) , ∀ x < y (C.20)

P n
j+1 (x) J (x) · P n

j (y) Ĵ (y) ≤ P n
j (x) J (x) · P n

j+1 (y) Ĵ (y) , ∀ x > y (C.21)

(C.21) simplifies to P n
j+1 (x) P n

j (y) ≤ P n
j (x) P n

j+1 (y), which holds naturally for x > y.

(C.20) can be written as

Ĵ (y)

Ĵ (x)
≤ J (y)

J (x)
,∀x < y. (C.22)

If (C.22) holds in strict inequality, so does (C.19), suggesting ŝ is strictly less steeper

than s.

Proof of Lemma 4.5.5.

We prove by contradiction. Suppose that we have m plateaus. Let ŝ denote

the new optimal share structure after increasing the total resources. Notice that

ᾱj’s remain the same. Assume ẑl ≤ zl for some l ∈ {1, 2, ..., k∗}. Then it must be

that ẑk ≤ zk, for all k ∈ {1, 2, ..., m}. Otherwise, assume ẑj > zj ≥ 0 for some

j ∈ {1, 2, ..., m}. Because ẑj > 0 and zl > 0, by the first order condition (4.16),

ᾱjQ
′(ẑj) ≥ ᾱlQ

′(ẑl) and ᾱlQ
′(zl) ≥ ᾱjQ

′(zj). Since ᾱlQ
′ (ẑl) ≥ ᾱlQ

′ (zl), we thus

have ᾱjQ
′(ẑj) ≥ ᾱjQ

′(zj), which contradicts with ẑj > zj. But if ẑk ≤ zk for all k,

the available resources are not fully allocated, which cannot be optimal. So all shares

with positive sizes must increase with the total resources. As a result, the number of

positive shares weakly increases.

Proof of Proposition 4.5.8.

Let s and ŝ denote the share structure before and after increasing the total

resources, respectively. Consider zk+1 > 0 (so that ẑk+1 > 0 by Lemma 4.5.5). By the

optimal condition (4.16), Q′(zk)
Q′(zk+1)

= ᾱk+1

ᾱk
= Q′(ẑk)

Q′(ẑk+1)
. Noting that

∫ b

a
Q′′(x)
Q′(x)

dx = ln Q′(b)
Q′(a)

,
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we have, ∫ zk

zk+1

Q′′ (x)

Q′ (x)
dx =

∫ ẑk

ẑk+1

Q′′ (x)

Q′ (x)
dx. (C.23)

Denote r (x) ≡ − Q′(x)
Q′′(x)x

. Note that

∫ b

a

Q′′ (x)

Q′ (x)
dx = −

∫ b

a

1

r (x) x
dx = − 1

r (ξ)

∫ b

a

1

x
dx = − 1

r (ξ)
ln

b

a
, for some ξ ∈ (a, b) .

(C.24)

From Lemma 4.5.5, we know zk+1 < ẑk+1 and zk < ẑk. Suppose zk ≤ ẑk+1. Substi-

tuting (C.24) into both sides of (C.23), we have

1

r (ξ)
ln

zk

zk+1

=
1

r(ξ̂)
ln

ẑk

ẑk+1

, where zk+1 < ξ < zk ≤ ẑk+1 < ξ̂ < ẑk.

It is straightforward that r′ (·) > (<, =) 0 implies zk

zk+1
< (>, =) ẑk

ẑk+1
, or ẑk+1

zk+1
<

(>, =) ẑk

zk
. If ẑk+1 < zk, (C.23) can be rewritten as,

∫ ẑk

zk

Q′′ (x)

Q′ (x)
dx =

∫ ẑk+1

zk+1

Q′′ (x)

Q′ (x)
dx

By the same logic, r′ (·) > (<, =) 0 implies ẑk+1

zk+1
< (>, =) ẑk

zk
.

Lemma C.0.1 (Ranking of αj (v0)). Under the MHR condition, for any marginal

type v0 ∈ (v, v̄), if αj (v0) > 0, αj (v0) > αj+1 (v0); if αj (v0) ≤ 0, αj+1 (v0) < 0.

Proof. For the case v0 ∈ (v, v̄), define hj (x|x ≥ v0) ≡ hj(x)∫ v̄
v0

hj(t)dt
. Following steps in

the proof of Lemma 4.4.1 (b), we can similarly show that hi (x|x ≥ v0) first-order

stochastically dominates hi+1 (x|x ≥ v0). Thus,
∫ v̄

v0

hj (x|x ≥ v0) J (x) dx >

∫ v̄

v0

hj+1 (x|x ≥ v0) J (x) dx, for j = 1, 2, ..., n− 1.

(C.25)

Substituting hj (x|x ≥ v0) with
hj(x)∫ v̄

v0
hj(t)dt

and rearranging, we have

αj(v0) =

∫ v̄

v0

hj (x) J (x) dx >

∫ v̄

v0
hj (t) dt∫ v̄

v0
hj+1 (t) dt

∫ v̄

v0

hj+1 (x) J (x) dx =

∫ v̄

v0
hj (t) dt∫ v̄

v0
hj+1 (t) dt

αj+1(v0).

(C.26)
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Suppose αj(v0) > 0. If αj+1(v0) ≥ 0, from
∫ v̄

v0
hj (t) dt >

∫ v̄

v0
hj+1 (t) dt > 0 (be-

cause hj (t) first-order stochastically dominates hj+1 (t)), we have αj(v0) > αj+1(v0).

If αj+1(v0) < 0, it is easy to see αj(v0) > αj+1(v0).

If αj(v0) ≤ 0, (C.26) implies αj+1(v0) < 0.

Proof of Proposition 4.6.1.

First, we derive v∗0. The first-order derivative of the expected revenue (4.22)

with respect to the marginal type (v0) is −n
n∑

j=1

Q(sj)Pj(v0)J(v0)f(v0). The optimal

marginal type is either an interior solution of J (v) = 0 or one of the two corner solu-

tions (v or v̄). Notice that v̄ cannot be optimal since the expected revenue decreases

at the neighborhood of v = v̄, implied by J (v̄) > 0. Under the regular condition, v∗0

is either the solution to J(v0) = 0 or v, whichever is higher.

We prove Proposition 4.6.1 for any v0 ∈ (v, v∗0]. First note that αj(v0) =

αj (v) − ∫ v0

v
hj (v) J (v) dv. According to Lemma 4.5.3, a sufficient condition is that

for any j such that s∗j+1 > 0 (s∗j+1 denotes the (j + 1)-th share in the optimal share

structure under no minimum bid),

αj+1 (v0)

αj (v0)
=

αj+1 (v)− ∫ v0

v
hj+1 (v) J (v) dv

αj (v)− ∫ v0

v
hj (v) J (v) dv

>
αj+1 (v)

αj (v)
(C.27)

Following steps in the proof of Lemma 4.4.1 (b), we can similarly show that
∫ v0

v
hj (v) dv <

∫ v0

v
hj+1 (v) dv and hj (v) /

∫ v0

v
hj (v) dv first-order stochastically dom-

inates hj+1 (v) /
∫ v0

v
hj+1 (v) dv. Therefore,

∫ v0

v
hj (v) J (v) dv∫ v0

v
hj (v) dv

>

∫ v0

v
hj+1 (v) J (v) dv∫ v0

v
hj+1 (v) dv

(C.28)
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By the MHR condition, J(v) ≤ 0 for v ≤ v∗0, so we have

0 >

∫ v0

v

hj (v) J (v) dv >

∫ v0

v
hj (v) dv∫ v0

v
hj+1 (v) dv

∫ v0

v

hj+1 (v) J (v) dv >

∫ v0

v

hj+1 (v) J (v) dv

(C.29)

where the last inequality is due to 0 <
∫ v0

v
hj (v) dv <

∫ v0

v
hj+1 (v) dv.

Given s∗j+1 > 0, we have αj+1(v) > 0. The result (C.27) follows from the

fact that αj(v) > αj+1(v) > 0 (Lemma 4.4.1) and that 0 >
∫ v0

v
hj (v) J (v) dv >

∫ v0

v
hj+1 (v) J (v) dv (by (C.29)).

Derivation of the Bidding Function.

Let β (v) denote bidders’ bidding function. We consider the case with a strictly

increasing bidding function, and thus the inverse bidding function, β−1 (b), exists and

is strictly increasing.

If a bidder’s rivals bid according to β (v), the bidder’s probability of winning

jth share by placing bid b is pj(b) ≡
(

n−1
n−j

)
F (β−1 (b))

n−j
(1− F (β−1 (b)))

j−1
. Since

in equilibrium the bidder bids b = β (v), the equilibrium probability of winning jth

share is Pj (v) ≡ pj (β(v)) =
(

n−1
n−j

)
F (v)n−j (1− F (v))j−1.

Denote V (v) ≡ U (v, β (v)) as the equilibrium payoff of a bidder of type v.

V (v) = U (v, β(v)) =
n∑

j=1

pj(β (v)) (vQ(sj)− β(v)sj) (C.30)

We have dV (v)
dv

= ∂U(v,β(v))
∂v

+ ∂U(v,β(v))
∂b

dβ(v)
dv

. According to the first-order condi-

tion, ∂U(v,β(v))
∂b

= 0. So

dV (v)

dv
=

∂U (v, β (v))

∂v
=

n∑
j=1

pj(β (v))Q(sj) =
n∑

j=1

Pj(v)Q(sj) (C.31)

Moving dv to the right hand side, integrating both sides from v to v, and
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assuming V (v) = 0 (the lowest type gets zero payoff),we get

V (v) =
n∑

j=1

Q(sj)

∫ v

v

Pj(x)dx, for v ∈ [v, v̄] . (C.32)

Combining (C.30) and (C.32), we can solve the equilibrium bidding function as

β (v) = v

n∑
j=1

Pj(v)Q(sj)

n∑
j=1

Pj(v)sj

−

n∑
j=1

Q (sj)
∫ v

v
Pj(x)dx

n∑
j=1

Pj(v)sj

, v ∈ [v, v̄] (C.33)

Derivation of the Expected Revenue.

The expected payment from a bidder of type v is β (v)
n∑

j=1

sjPj(v). The ex-

pected payment from one bidder is

E

[
β (v)

n∑
j=1

sjPj(v)

]
=

∫ v̄

v

[
β (v)

n∑
j=1

sjPj(v)

]
f(v)dv

=

∫ v̄

v

[
v

n∑
j=1

Q(sj)Pj(v)−
n∑

j=1

Q(sj)

∫ v

v

Pj(t)dt

]
f(v)dv

=

∫ v̄

v

[
v

n∑
j=1

Q(sj)Pj(v)f(v)− (1− F (v))
n∑

j=1

Q(sj)Pj(v)

]
dv

=
n∑

j=1

Q(sj)

∫ v̄

v

Pj(v)

(
v − 1− F (v)

f(v)

)
f(v)dv (C.34)

The total expected revenue from all bidders is n times the above.
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