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The work in this dissertation aims to describe a simple new test for odor-

recognition memory in rats that can be readily performed and results in an easily 

observable and lasting form of memory. This test has allowed for the demonstration of 

ethanol-induced retrograde memory impairments in rats when ethanol is administered 

during both the consolidation and reconsolidation phases of memory encoding. The 

observation that a high-dose of ethanol can cause retrograde memory impairments when 

administered immediately or within hours after learning has taken place is an original 

finding that may have implications for understanding human blackouts. Furthermore, the 

finding that ethanol can disrupt the reconsolidation of a previously consolidated memory 

has not been previously established. It is also demonstrated that caffeine can prevent 

ethanol’s memory impairing effects, a result that contributes a new piece of evidence for 

caffeine’s effects on the learning and memory process. This effect has been further 
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investigated mechanistically and attributed to caffeine’s dual role as a phosphodiesterase 

type 5 inhibitor and adenosine A
2A

 antagonist. Neither of these mechanisms alone appear 

to be sufficient enough to prevent the retrograde memory impairments seen with ethanol. 

It is hoped that this test and our findings will prove useful for future investigations into 

the effects of ethanol on learning and memory and the human phenomenon of alcohol-

induced blackouts. 
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“However, what must be brought to the fore, following Aristotle, is the reference 
to the authority of the “thing” remembered in relation to its present evocation. The 
cognitive dimension of memory, its character of knowing, lies in this reference. It 
is by virtue of this feature that memory can be held to be trustworthy or not and 
that properly cognitive deficiencies are to be accounted for, without our rushing to 
construe them according to a pathological model, under the heading of this or that 
form of amnesia.”    

         Paul Ricouer 
 
  
 Amnesia comes from the Greek word Anamnesis: mnesis meaning memory or to 

remember and ana meaning returning to. This word was developed by Plato as a response 

to the mystery of not recalling events that had previously occurred. Aristotle’s 

explanation of this phenomenon could, with our modern understanding of the brain, be 

referred to simply as failed recollection or the act of forgetting. The quote by Ricouer is 

important because it emphasizes two vital points: 1) that the ability to accurately 

remember events is a fundamental component of human cognition and 2) the importance 

of dissociating normal forgetting from the loss of memory for events that have already 

happened. The work presented in this dissertation will focus on the latter and will attempt 

to provide evidence, in an animal model, for an active loss of memory for events as a 

result of post-learning acute ethanol exposure, a phenomenon that is referred to as 

retrograde amnesia.  

The foundations of modern scientific investigation into retrograde amnesia can be 

found in the work of a clinician named Ribot. His work with patients suffering from 

retrograde amnesia following traumatic brain injury led to his formulation of the “loi de 

regression”, or the law of regression, which states that events experienced immediately 

before brain trauma has occurred are the most likely to be forgotten (Ribot 1881). This 

led to scientific investigations into the theory of consolidation, which in Latin literally 
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means, “to make firm.” Consolidation or Konsoliderung a term first proposed by Muller 

and Pilzecker (1900) is the transfer of memory from a short-term labile state, into a more 

stable long-term state. Pioneering work by McGaugh (1966), based on countless clinical 

observations of amnesia for newly acquired memory after cerebral injury in human 

patients, led to the development of an animal model of retrograde amnesia. Classic 

studies into retrograde amnesia employed the inhibitory avoidance task, a highly 

emotionally charged test, in which an animal learns to pair an otherwise neutral dark 

environment with an aversive component. When electroconvulsive shock (ECS) is 

delivered minutes to hours after learning has occurred (Schneider & Sherman 1968; 

McGaugh 1970) memory is impaired when assessed at 24 to 48-hours post learning 

(Martinez, Jensen & McGaugh 1981; Maki 1985). These studies demonstrated that 

consolidation of a learned avoidance response could be disrupted through the 

administration of ECS. These mice responded in the post-training test as if they had 

received no shock. Their ability to consolidate the memory of the dark chamber being 

paired with shock was impaired, showing that indeed the process of consolidation was 

labile and could be disrupted.  

Ethanol, one of the most widely consumed drugs in the world, has a variety of 

effects on memory depending on when it is given in relation to learning. A review of 

acute alcohol intoxication by Fleming (1935) revealed “the almost infinite diversity of 

symptoms that may ensue from the action of this single toxic agent”. Acute exposure to 

ethanol in high doses, typically during episodes of binge drinking, can cause blackouts, 

defined as periods of amnesia during which a subject participates in mundane or even 

emotionally salient events that they later cannot remember (Goodwin 1995, Hartzler & 
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Fromme 2003, Haltzer and Fromme 2003a; Wixted 2005). The blackout phenomenon is 

not exclusive to alcoholics, but can frequently occur in non-alcoholics, as demonstrated 

in populations of college students (White 2003). In humans it has been shown that the 

consumption of alcohol can impair the acquisition of new information in learning tasks, 

resulting in impaired recall in later tests of memory (Parker & Birnbaum 1976; Birnbaum 

1978; Bruce et al., 1999; Moulton et al., 2005). Nelson et al., 1986 suggested that this 

impairment may be due at least in part to ethanol’s effects on retrieval from long-term 

memory.  

Similarly in animals, acute ethanol administered prior to learning can impair 

performance in follow up tests of memory (MacInnes & Uphouse 1973; Melia 1996, 

Matthews 1999; Acheson, Ross & Swartzwelder 2001; Weitemier 2003; Gonenc et al., 

2005). Chronic ethanol ingestion likewise impairs memory acquisition (Freund 1970; 

Brioni, McGaugh & Izquierdo 1989; Kogan, Frankland & Silva 2000; Mikolajczak et al.,, 

2001; Garcia-Moreno et al., 2002; Carpenter-Hyland, Woodward & Chandler 2004). 

However, it is unclear whether the impairment reflects ethanol’s influence on, for 

example, encoding, storage, retrieval, and/or factors that might more tangentially 

contribute to encoding efficiency such as sensory, motor, emotional, motivational, or 

attentional mechanisms (Ryabinin et al.,  2002).  

One approach to this problem, used in the present series of studies, is to 

administer ethanol immediately after the learning experience, well after short-term 

memory is unambiguously established, so that there is no intoxication during learning. 

Non-memory related factors are ruled out because the animal is not intoxicated during 

learning or when tests of memory are later conducted. In humans (Parker 1980; Mueler, 
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Lisman & Spear 1983; Mann, Young & Vogel-Sprout 1984; Lamberty, Beckwith & 

Petros 1990; Tyson & Schirmuly 1994; Hewitt, Holder & Laird 1996; Bruce & Pihl 

1997) and animals (Alkana 1979; Parker et al., 1981; Colburn, Sharek, Zimmermann 

1986; Babini, Jones & Alkana 1991; Prediger & Takahashi 2003; Prediger et al., 2004; 

Manrique 2005), consumption of ethanol after learning has been shown to enhance recall 

in tests of memory conducted the next day or have no effect (De Carvalho, Vendite & 

Izquierdo 1978).  However these tests may not have been sensitive enough to detect the 

memory loss produced by ethanol and the doses of ethanol used may not have been high 

enough to produce memory deficits.   

In order to address these issues, we have developed a simple and sensitive 

olfactory memory test, described in chapter one, that takes advantage of rats’ natural 

preference for novelty (Carr 1980; Viola et al., 2000; Mumby 2005) and allows us to 

examine the effects of acute ethanol exposure on memory after learning has occurred. 

There has been no systematic examination of the possible retrograde influence of high 

doses of alcohol on relatively neutral memories (e.g., a very common memory for 

minimally salient events and information that do not elicit an extreme emotional 

reaction). We hypothesized that the administration of a high dose and not a low dose of 

ethanol after the learning phase of a task would produce impairments in a follow-up test 

of memory conducted the next day. During the learning phase of our task, rats initially 

show robust exploration of a novel odor in comparison to familiar odors and 

subsequently habituate rapidly to the novel odor (N1). After habituation, we exposed a 

group of rats to pentylenetetrazol, a known amnestic agent (Grossman 1967, Baratti 

1987), and twenty-four hours later tested the animals’ preference for this recently-novel 
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odor N1 in the presence of a brand new novel odor (N2). By comparing exploration of 

N1 and N2 by PTZ and control rats, we were able to establish a behavioral baseline for 

overnight memory loss, which was reflected as no difference in time spent exploring N1 

and novel N2 (as seen in PTZ treated rats) and intact overnight memory retention, in 

which the N2 was preferred over the N1 (as evidenced in control animals). In chapter 

two, we found that rats given a high dose of ethanol also demonstrated a loss of overnight 

memory for N1; i.e., a retrograde memory impairment for that odor.   

Having demonstrated that a high dose of ethanol, given immediately after 

exposure to a novel odor, leads to retrograde memory impairment 24 hr later in a novel 

odor-recognition test, we became interested in whether this memory impairment could be 

prevented with the administration of caffeine, a drug that is widely available and often 

contained in beverages consumed before, during or after alcohol. Caffeine has been 

reported to enhance memory in inhibitory avoidance tasks (Angelucci et al., 1999), 

spatial learning (Prediger et al., 2005) and odor memory tasks specifically (McLean et al., 

2005). In chapter three, we tested whether caffeine, delivered before or one hour after the 

administration of ethanol, might reverse or possibly exaggerate the memory impairment 

seen with ethanol alone. We found that caffeine, delivered prior to or one-hour after 

learning, followed by a high dose of ethanol, prevented the amnestic effects seen with 

ethanol alone. Caffeine serves as both a phosphodiesterase inhibitor and an adenosine 

antagonist (Howell 1997), although multiple mechanisms could be responsible for the 

observed reversal of ethanol’s amnestic effects. We therefore conducted a series of 

experiments to investigate if adenosine antagonism alone, phosphodiesterase inhibition 

alone, or in combination potentially might underlie caffeine’s prevention of ethanol 
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induced retrograde memory impairments. Our findings indicate that neither an adenosine 

A
2A

 antagonist nor a phosphodiesterase-5 inhibitor alone, even at high doses, reversed or 

prevented retrograde amnesia when delivered one hour after ethanol (unlike caffeine, 

which did prevent the amnesia). However, a combination of these two drugs at the 

previously ineffective doses was highly effective at preventing ethanol’s amnestic effects. 

Doubling the dose of the phosphodiesterase inhibitor did not prevent ethanol’s retrograde 

amnestic effects.  

In the fourth chapter we attempt to explore potential sites of action in the brain 

that might be involved in learning during our odor recognition task and the process by 

which consolidation of the odor recognition memory occurs in those structures. Although 

we have demonstrated that ethanol can disrupt memory for previously learned odors 

when delivered after learning has occurred, it is unclear both where in the brain and by 

which of its multiple mechanisms of action ethanol exerts its amnestic effects.  Ethanol at 

high doses is known to interfere with glutamatergic action at NMDA, AMPA and Kainate 

receptor subtypes while it also enhances GABAergic synaptic transmission (Nevo & 

Hamon 1995; Schummers 2001). For new learning to undergo consolidation, (i.e. the 

transfer from a labile to stable state), protein synthesis must occur (Schafe 2000, Kandel 

2001) and there is growing evidence that activation of NMDA receptors is a crucial step 

in this process (Miserndino 1990, Rodrigues 2001, Riedel 2003). Furthermore, it has been 

demonstrated that acute ethanol exposure can inhibit critical steps in protein synthesis, 

possibly through its antagonism of NMDA receptors (Chandler 2005).  

Based on this evidence, we have attempted to produce the retrograde memory 

impairments seen with ethanol by disrupting the consolidation process more specifically 
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through the use of protein synthesis inhibitors, an intervention well established in the 

literature (Flexner 1965; Flexner, Flexner & Stellar 1965; Grollman 1967; Grollman 

1967a; Dunn 1971). Ethanol’s effects are widespread throughout the brain, and it is still 

unclear in which specific brain structures ethanol works to exert its amnestic effects. As 

odors represent highly salient cues for rodents, ethanol’s impairment of retention of an 

odor memory could be due to its deleterious effects on protein synthesis in the amygdala. 

Inactivation of the amygdala has been shown to attenuate memory for emotionally 

motivated tasks (Salinas 1993) and lesions of the medial amygdala specifically have been 

demonstrated to disrupt performance on tasks of odor memory (Petrulis 1999). Thus we 

predicted that administering a protein synthesis inhibitor directly into the medial 

amygdala after habituation to an unfamiliar odor in our task should impair memory for 

that odor in a follow up test. Results indicate that compared to controls, protein synthesis 

inhibition in the medial amygdala disrupts overnight memory for N1, as indicated by an 

equal percent time spent exploring N1 and N2 in the follow-up test.  

In rats (Misanin et al., 1968; Mactutus et al., 1979; Przybyslawski et al., 1997; 

Sara 2000; Nader, Schafe & ledoux 2000; Anagnostaras Schallert & Robinson, 2002; 

Debiec et al., 2002; Artinan et al., 2007) and humans (Rubin et al., 1968), once a memory 

is long established and resistant to amnestic agents, presentation of a cue (memory 

reactivation) may render some memories again vulnerable to disruption for a short time. 

Misanin was instrumental in discovering that not only could memory be disrupted in the 

initial consolidation phase, but also when that consolidated memory was reactivated by a 

learned cue. Using a classical conditioning paradigm, it was discovered that rats re-

exposed to a cue associated with an aversive stimulus, showed no memory of that learned 
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association when the cue was followed by ECS. This effect was re-introduced by 

Przybyslawski, Sara, and Nader and termed reconsolidation. The theory of 

reconsolidation is based on the finding that once a memory becomes consolidated and 

stabilized through protein synthesis, it must undergo a second process of restabilization, a 

process that has been argued to be important for updating memory and may involve de-

novo protein synthesis, once reactivated by a learned cue. It is during this time, when the 

memory is unstable, that interventions such as protein synthesis inhibition or seizures can 

cause memory impairments for the previously consolidated memory (Nader, Schafe & 

Ledoux 2000a). Interestingly, protein synthesis inhibition is a mechanism that is shared 

by ECS (Duncan 1971; Cotman et al., 1971). Using the odor recognition model, we have 

demonstrated that reconsolidation deficits are produced by disrupting protein synthesis 

after cued reactivation of the original memory with a 1-trial reminder of N1. We further 

investigated this effect based on ethanol’s ability to disrupt key components of protein 

synthesis through its inhibition of NMDA receptors, finding that a high-dose of ethanol, 

administered after a 1-trial reminder of N1, was sufficient to disrupt the reconsolidation 

of odor recognition memory.  

In sum, the present series of experiments describes a simple test for assessing 

memory in rats, developed to investigate retrograde amnestic effects of ethanol and their 

prevention by caffeine or related agents. The finding that ethanol can disrupt both 

consolidation and reconsolidation might have substantial ramifications for people who 

abuse alcohol and for those who suffer from unwanted memories. 
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Chapter 1: Developing methods to test amnesia in rodents 
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CHAPTER OVERVIEW 

 

This dissertation introduces an odor-recognition test that can be used to directly 

assess the effects of pharmacological interventions on long-term 24-hour memory in rats. 

Recognition memory is the ability to distinguish between stimuli that have been 

previously encountered and stimuli that are novel (Brennan & Keverne 1997; Steckler, 

1998). The two primary recognition memory animal models are the social odor 

recognition test, developed by Thor and Holloway (1987) and the object recognition test, 

developed by Ennaceur and Delacour (1988). These tests take advantage of a rodent’s 

natural preference for novelty (Griffin & Taylor 1995; Arletti et al., 1997; Gheusi, 

Goodall & Dantzer 1997; Burman & Mendl 2002; Giaqnnaris, Cleland & linster 2002; 

Myskiw et al., 2008), exemplified by an initially robust exploration of unfamiliar cues, 

followed by habituation of exploratory behavior after repeated exposures to the same 

cues (Wirth, 1998). Specifically, our test uses odors, likely carried primarily in the 

urinary proteins (Hurst et al., 2001) obtained from novel odor donors (i.e. from the cages 

of other rats) as the novel cue. Since olfaction represents a highly salient (White, 2004) 

and ethologically relevant (Prediger, 2004) sensory modality used to guide many 

behaviors in rats, they readily explore and habituate to these novel odors without the 

presence of reward, punishment or other experimenter imposed motivational devices that 

are frequently used in learning and memory tests to initiate and sustain exploration and 

guide the learning process. 
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 In this chapter, we present data, based on modifications of the social odor and 

object recognition memory tests, of 24-hour memory for a previously habituated novel 

odor and disruption of that memory with the use of the amnestic agent pentylenetetrazol 

(PTZ). PTZ was one of the first amnestic agents that was widely used to demonstrate 

retrograde amnesia in rodents (Essman 1968; Bookin & Pfeiffer 1977), in various 

memory tasks including inhibitory avoidance (Iuvone et al., 1977), passive avoidance 

(Putney and McCoy 1976), and taste aversion learning (Shaw & Webster 1979). PTZ is a 

convulsant that works as a GABA antagonist to produce seizures (Blake et al., 2004) 

which is the mechanism by which it causes memory impairments, although it is suggested 

that PTZ’s interaction with the norepinephrine system could contribute to observed 

memory impairments (Palfai, Kurtz & Gutman 1974). PTZ was used in the 1940’s to 

treat depression and other psychiatric disorders and has been used for decades in rat 

models of kindling (Pereira & Vasconcelos 1996) which produces an animal model of 

epilepsy (pentylenetetrazol-induced status epilepticus). However, PTZ is also 

administered acutely, after learning, to produce retrograde memory impairments (Palfai 

& Kurtz 1973; Millner & Palfai 1975; Baratti, Deerausquin, Faiman 1990).     

 

ODOR RECOGNITION TEST METHODOLOGY 

 

Subjects. Male Sprague-Dawley and Long-Evans rats (weighing 200-400g) 

obtained from either an on-site animal colony, or from Harlan or Charles River 

Laboratories, were used. Animals were housed three per cage in clear Plexiglas cages 

with wood shavings, maintained under a 12:12 h light:dark cycle, and given access to 
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food and water ad libitum.  One week after arriving in the laboratory animal colony, rats 

were handled and familiarized to the researchers. All animal care and experimental 

procedures were approved by the University of Texas at Austin Institutional Animal Care 

and Use Committee.  

 

Pre-habituation procedures.  Animals were removed from group-housing cages, 

weighed, and re-housed singly in identical cages with sawdust bedding and removable 

wire tops. Once singly housed, animals remained in these test cages for the duration of 

the experiment. During the initial 24-hour familiarization period, four 2.5cm round 

wooden beads with a small hole through the center (www.craftworks.com) were 

introduced into the test cages in order to acquire the odor of the animal and to serve as 

familiar odors for subsequent use in the experiment. Housing the animals in the test cages 

with the beads for 24 hr allowed for familiarization to both the testing environment and 

the presence of the beads. 

Several beads were also introduced into the cages of three previously selected odor-

donor groups (housed three rats per cage), whose cages had not been changed for one 

week to allow for a build-up of animal-specific novel odors. Wood beads incubated in 

these odor-donor cages provided equally-salient novel odors for the upcoming task. The 

hole in the center of the bead enhanced exploration, and because they were round and 

large, little or no gnawing took place during incubation or testing. The cages designated 

to provide donor odor beads were counterbalanced, so that any one odor served as either 

a recently-novel odor (N1) or a brand new novel odor (N2) during memory assessment 

for different experimental rats. 
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Habituation to the  novel odor (N1).  During the habituation phase of the task, after 

24 hr of familiarization to the presence of four beads in the testing environment, the four 

now-familiar beads were removed for one hour. After this one hour-period, a novel-odor 

wood bead (N1), taken from an odor-donor cage, and three familiar beads that had been 

taken from their own cages one hour previously were introduced into the cage.  They 

were exposed to these four beads for three 1-minute trials with 1-minute inter-trial 

intervals during which the beads were removed from the testing enclosure. This 

procedure allows for habituation to N1 and ensures lasting memory for it, while 

minimizing or preventing olfactory adaptation.  

For each 1-minute trial, the three familiar-odor beads and the N1 bead were placed 

in the middle of the testing cage, and the rats were allowed one minute to actively explore 

the beads. The first approach to a bead made during this period initiated the timing of the 

1-minute trial. Exploration time for each of the four beads was recorded.  The spatial 

arrangement of the beads in the middle of the cage was randomly altered between trials.  

Statistical consultants recommended, based on information theory, that to maximize 

sensitivity of the test, one novel (N1) and at least three familiar odor beads should be 

used during habituation trials rather than N1 only, and that during memory retention 

assessment (below) four beads should be used (N1, N2, and two familiar) rather than N1 

and N2 only. Thus, non-memory would yield 25% per bead investigation time rather than 

50%, so fewer animals can be used to detect memory retention optimally. 
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Odor recognition memory assessment.  24 hours after the novel-odor habituation 

phase, the odor recognition test was conducted. For this phase of the task, rats were 

presented with the recently-novel odor N1 (which it had thoroughly explored on the 

previous day) in the presence of one unfamiliar novel odor bead (N2) taken from a 

different odor-donor cage and two familiar (own-cage) odors, following the same 

procedure outlined for the habituation phase. For a graphical representation of the 

experimental procedure for the odor recognition test, see Fig. A2.1.   To dismiss scent 

marking as a confound, the N1 bead was discarded after habituation and replaced by 

another N1 bead taken from the same odor-donor cage for the recognition memory phase.  

Videos demonstrating rat behavior during the habituation and odor recognition test 

phases can be viewed on our website at http://www.schallertlab.org. 

 

STATISTICS 

 

Analysis of N1 salience and habituation. For the habituation phase of the task, rats 

explored a novel odor in the presence of three familiar odors, over three 1-minute trials. 

The focus of our analysis of this phase was 1) to establish habituation to the novel odor, 

expressed behaviorally as a reduction in time spent exploring it over each subsequent 

trial, and 2) to verify that all rats demonstrated a novel odor preference, expressed as a 

substantially longer amount of time spent exploring the novel odor over the familiar 

odors. T-tests were run using SPSS to assess novel odor salience and habituation, with 

odor type (novel vs. familiar) and trial number as within-subjects variables. Significantly 

more exploration of N1 than of familiar odors on the first habituation trial was regarded 
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as evidence for novel odor salience. A significant reduction in N1 exploration time 

between the first and last (third) habituation trials was regarded as reflecting adequate 

habituation to N1 (i.e., learning).  

 

Analysis of memory for recently novel odor N1. On the final day of the task (odor 

recognition test), rats explored the recently-novel odor (N1) in the presence of an 

unfamiliar novel odor (N2) and two familiar odors. The focus was to assess 24-hour 

memory for the recently novel odor.  Memory for the recently-novel odor was indicated 

by significantly more time spent exploring the unfamiliar novel odor (N2) than the 

recently novel odor (N1) on the first trial of the test phase, as determined by t-tests run in 

SPSS.  Cohen’s d was also calculated as a measure of effect size for the difference in 

percent time spent exploring N1 versus N2. 

 

PHARMACOLOGICAL TREATMENTS 

 
Pentylenetetrazol and Saline Controls. 

To demonstrate that retrograde memory impairment could be evaluated using our 

social odor recognition test, rats were treated with the established seizure-producing drug 

and amnestic agent, PTZ (Sigma; dissolved in saline and administered at 25 mg/kg, i.p.) 

immediately following the last habituation trial with N1. PTZ has been used previously to 

cause retrograde amnesia (Baratti 1987). This dose produces a brief, mild seizure within 

minutes of the injection (Hernandez & Schallert 1998). PTZ-treated rats were pooled 

(n=26) from separate experiments carried out either alone or in tandem with experiments 
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examining ethanol’s effects.  A small group of matched controls (n=7) were administered 

equivalent volumes (1 ml/kg, i.p.) of saline vehicle. Assessment of memory for N1 was 

carried out 24 h after PTZ was administered, as outlined above and in Fig. A2.1 and 

A2.3. 

 

RESULTS 

 

Experiment 1: Pentylenetetrazol and Saline Controls 

 
Habituation. Rats showed a significant reduction in the amount of time spent 

exploring N1 between trial 1 and trial 3, suggesting marked habituation as seen in Table 

1.1a.  Initially, of course, N1 was much more salient than the familiar odors.  A 

comparison of individual odor exploration within the first trial revealed that rats spent 

significantly more time exploring N1 than the familiar odor beads, as seen in Table 1.1b. 

These animals persisted in exploring N1 more than the familiar odors across habituation 

trials; however, as seen in Fig. 1.1, there was a dramatic reduction in the mean difference 

between the time spent exploring N1 and the average time spent exploring the 3 familiar 

odors on each subsequent trial. 

 

Recognition Test. The seizure/amnesia inducing drug PTZ appeared, as expected, 

to cause retrograde memory impairment.  Recognition memory test data for the saline- 

versus PTZ-treated rats are shown in Fig 1.2 and Table 1.2a and 1.2b.  Data are expressed 

as mean percent of total exploration time, calculated by dividing the mean time spent 
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exploring each individual odor by the total time spent exploring all odor beads during the 

first one-minute trial.  Absolute mean exploration times are summarized separately in 

Table 4. Control rats spent significantly more time exploring the new novel odor (N2) 

than the recently-novel odor (N1) whereas PTZ treated rats did not show a difference in 

exploration of N1 versus N2 indicating an impairment of overnight memory for N1.
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Figure 1.1 Novel odor preference and habituation to a novel odor across three trials in 
drug naïve rats that will be exposed to PTZ immediately following the third 
habituation trial 

Rats initially show intense interest in a novel odor upon its first presentation but habituate 

to it by the third presentation.  # Indicates significantly more time exploring the novel 

odor than familiar odors within the first trial with p<.01; * Indicates a significant 

reduction in time spent exploring the novel odor between trial 1 and trial 3 with p<.01.  

Data are means ± SEM. 
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Group 

 

N1 Trial 1 N1 Trial 3 
t value P value 

PTZ  11.9±1.0 1.66±.32 11.5 <.0001 

 

Table 1.1a Habituation to N1 (PTZ) 

Data reflect mean exploration time (in seconds) of N1 on the trial indicated, ± SEM. 

 

 

 

 

Group 

 

N1 Familiar 
t value P value 

PTZ  11.9±1.0 1.45±.20 9.8 <.0001 

 

Table 1.1b Novel-odor preference in the habituation phase (PTZ) 

Data reflect mean exploration time (in seconds) of the odor indicated during the first 
habituation trial, ± SEM. 

 
 

 

Odors 

Odors 
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Figure 1.2 PTZ disrupts odor memory 

Recognition of the recently-novel odor on the next day, reflected in reduced exploration 

of the recently-novel odor compared to a brand-new novel odor, is seen only in the saline 

control rats.  PTZ rats explore both odors equally, indicating an impairment of overnight 

memory.  * Indicates significantly more time spent exploring the novel odor than the 

recently novel odor with p<.01.  Data are means ± SEM. 
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Odors 

Group n 
N1 N2 Familiar Familiar 

t 
value 

P value 
Effect 
Size 

PTZ 26 0.35±.03 0.41±.04 0.10±.01 0.12±.01 0.99 .325 0.27 

Control 
(saline) 

7 0.25±.03 0.60±.04 0.02±.007 0.11±.047 5.29 <.0001 2.82 

Table 1.2a  Mean proportion exploration time (± SEM) in the odor recognition test, with 
statistics (PTZ) 

Shaded rows indicate groups where the comparison between N1 and N2 was not 

statistically significant, indicating a loss of overnight memory for N1. 

 

 

 

Odors 

Group 

N1 N2 Familiar Familiar 

PTZ 3.04±.55 3.46±.69 1.0±.18 0.78±.12 

Control (saline) 3.59±.54 9.41±1.5 0.3±.09 1.6±.67 

Table 1.2b Mean absolute exploration times (seconds, ± SEM) in the odor recognition 
test (PTZ) 
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DISCUSSION 

 

The primary goal of this chapter was to validate the odor recognition test as a 

legitimate tool to assess long-lasting recognition memory. This was accomplished first by 

demonstrating a novel-odor preference in all rats, the quintessential component in 

forming a memory for N1. As seen in all of our groups of rats during habituation, N1 was 

explored preferentially over the familiar home cage odors. This signified that the rats had 

no olfactory deficits and were readily capable of distinguishing novelty from familiarity. 

Secondly, it was observed that all rats significantly reduced their exploration of N1 over 

the course of three trials, indicating habituation to the novel odor, or “learning” of that 

odor. 24 hours later, in the follow up recognition test, control rats demonstrated long-term 

overnight memory, as evidenced by their preference for N2 in the presence of the 

previously encountered and habituated N1. Taken together, these results indicate that the 

test serves as a valid test of long-lasting odor recognition memory.  

In the first experiment a behavioral baseline for amnesia in our task was 

established with the acute exposure of the rats to PTZ, administered immediately after 

habituation to N1. This caused a loss of overnight memory for N1 in the follow up test 

the next day. This observation allowed for a definition of retrograde memory impairment 

as the lack of preference for N2 over N1 when the two odors were presented 

simultaneously. These results are consistent with data showing retrograde impairments of 

recognition memory for objects and odors (Ennaceur & Aggleton 1997; Mumby & Glenn 

2000; Mumby et al., 2002; Gaskin et al., 2003; Mumby et al., 2005). 
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Chapter 2: Overnight Memory Disruption With Ethanol 
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CHAPTER OVERVIEW 

 

Acute ethanol exposure before or during learning can cause memory impairments 

in follow up tests of memory. This effect has been demonstrated in both humans and 

animals and can result from acute episodes of binge drinking or the administration of 

high doses of ethanol respectively. Ethanol has multiple mechanisms of action that could 

contribute to memory impairments including inhibition of GABA and NMDA receptors 

(Browning & Hoffer 1992; Nevo & Hamon 1995; Valenzuela 1997; Faingold, 

N’Gouemo & Riaz 1998; Little 1999; Dodd et al 2000; Schummers 2001; Allgaier 2002; 

Arizzi et al., 2003; Costa, Ferreira & Valenzuela 2003; Suvarna et al., 2005) long-term 

potentiation (LTP) (Givens & McMahon 1995) and exerts these effects in multiple areas 

throughout the brain (Pyapali et al., 1999; Givens, Williams & Gill 2000).  At issue is 

whether these observations are due to the effects of ethanol on memory specifically or 

rather result from a combination of other factors, including ethanol’s effects on the ability 

to process information and engage in learning tasks (Ryabinin 2002). The present chapter 

will provide behavioral evidence, in an animal model, of ethanol-induced retrograde 

memory impairment when a high dose of ethanol is administered after learning has 

occurred and thus rules out non-specific attention processing deficits as contributing 

factors to the observed memory impairments. 

 

PHARMACOLOGICAL TREATMENTS 
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Lower dose ethanol. Immediately following the last N1 habituation trial, animals 

(n=13) were given i.p. injections of 20% (w/v) ethanol at a dose of 1.0 g/kg ethanol, with 

matched controls (n=7) receiving equivalent volumes of saline i.p. The next day 

overnight memory for N1 was assessed. As outlined in Fig. A2.1 and A2.4. 

 

Higher dose ethanol. Immediately following the last habituation trial, Long-Evans 

rats (n=25) were given i.p. injections of 20% (w/v) ethanol at a dose of 3.0 g/kg ethanol, 

with matched controls (n=11) receiving equivalent volumes of saline.  Sprague-Dawley 

rats were treated identically in a second experiment to determine whether another strain 

would show retrograde memory impairment with a high dose of ethanol (ethanol group n 

= 13; saline group n = 13). In both strains assessment of memory for N1 was carried out 

24 h after ethanol or saline was administered, as outlined in Fig. A2.1 and A2.5. 

 

48 hour hangover control.  Rats were given i.p. injections of either 20% (w/v) 

ethanol at a dose of 3.0 g/kg (n = 6) or saline (n=6) immediately, after habituation.  48 hr 

after this, all rats were tested for recognition memory.  In this procedure the longer time-

span between ethanol administration and the memory test was sufficient for memory 

consolidation to occur, yet hangover symptoms would presumably be absent during the 

recognition test since it is performed 48 hr after administration of high-dose ethanol. As 

outlined in Fig. A2.7. 
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RESULTS  

Experiment 1: Lower-dose ethanol 

 
Habituation test data are shown in Fig. 2.1 and Tables 2.1a and 2.1b. Rats showed 

a significant reduction in the amount of time spent exploring N1 between trial 1 and trial 

3, suggesting marked habituation. A comparison of individual odor exploration within the 

first trial revealed that rats spent significantly more time exploring N1 than the familiar 

odor beads.  

 

Recognition memory test.  Recognition memory 24 hr after habituation to N1 was 

not detectably affected by administration of the lower dose of ethanol after learning. Data 

for the saline- versus ethanol 1.0 g/kg-treated rats are shown in Fig. 2.2 and Tables 2.2a 

and 2.2b. Both control and ethanol-treated rats spent significantly more time exploring 

N2 than N1, indicating retained memory for N1 in both groups. 
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Figure 2.1 Novel odor preference and habituation to a novel odor across three trials in 
drug naïve rats that will be exposed to ETOH 1.0 g/kg immediately 
following the third habituation trial 

Rats initially show intense interest in a novel odor upon its first presentation but habituate 

to it by the third presentation.  # Indicates significantly more time exploring the novel 

odor than familiar odors within the first trial with p<.01; * Indicates a significant 

reduction in time spent exploring the novel odor between trial 1 and trial 3 with p<.01.  

Data are means ± SEM. 
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Group 

 

N1 Trial 1 N1 Trial 3 
t value P value 

ETOH 1.0  17.67±1.6 1.9±.57 9.569 <.0001 

Table 2.1a  Habituation to N1 (ETOH 1.0) 

Data reflect mean exploration time (in seconds) of N1 on the trial indicated, ± SEM. 

 

 
 

 

Group 

 

N1 Familiar 
t value P value 

ETOH 1.0  17.67±1.6 1.9±.61 8.8 <.0001 

 

Table 2.1b Novel-odor preference in the habituation phase (ETOH 1.0) 

Data reflect mean exploration time (in seconds) of the odor indicated during the first 

habituation trial, ± SEM. 
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Figure 2.2 Lower-dose ethanol does not impair odor memory 

Recognition of the recently-novel odor on the next day is reflected in reduced exploration 

of the recently-novel odor compared to a brand-new novel odor in both groups.  * 

Indicates significantly more time spent exploring the novel odor than the recently novel 

odor with p<.05.  Data are means ± SEM. 
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Odors 

Group n 
N1 N2 Familiar Familiar 

t 
value 

P value 
Effect 
Size 

Low-dose 
ethanol 

13 0.26±.05 0.61±.06 0.08±.03 0.04±.009 4.23 <.0001 1.65 

Control 
(saline) 

7 0.31±.07 0.57±.06 0.02±.007 0.07±.03 2.51 .028 1.34 

Table 2.2a Mean proportion exploration time (± SEM) in the odor recognition test, with 
statistics (ETOH 1.0) 

 

 

 

 

 

Odors 

Group 

N1 N2 Familiar Familiar 

Low-dose ethanol 3.04±.55 3.46±.69 1.0±.18 0.78±.12 

Control (saline) 3.59±.54 9.41±1.5 0.3±.09 1.6±.67 

Table 2.2b Mean absolute exploration times (seconds, ± SEM) in the odor recognition 
test (ETOH 1.0) 
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Experiment 2: Higher-dose ethanol Sprague-Dawley 

 
Habituation test data are shown in Fig. 2.3 and Tables 2.3a and 2.3b. Rats showed 

a significant reduction in the amount of time spent exploring N1 between trial 1 and trial 

3, suggesting marked habituation. A comparison of individual odor exploration within the 

first trial revealed that rats spent significantly more time exploring N1 than the familiar 

odor beads.  

 

Recognition memory test. The higher dose of ethanol led to what might be 

considered severe retrograde memory impairment. Recognition memory was 

undetectable 24 hr after ethanol, which had been delivered immediately after habituation 

to N1.  Data for the saline vs. ethanol 3.0 g/kg-treated Sprague Dawley rats are shown in 

Fig. 2.4, and Tables 2.4a and 2.4b. Control rats explored N2 significantly more than N1 

whereas rats receiving 3.0 g/kg ethanol did not.   
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Figure 2.3 Novel odor preference and habituation to a novel odor across three trials in 
drug naïve Sprague-Dawley rats that will be exposed to ETOH 3.0 g/kg 
immediately following the third habituation trial 

Rats initially show intense interest in a novel odor upon its first presentation but habituate 

to it by the third presentation.  # Indicates significantly more time exploring the novel 

odor than familiar odors within the first trial with p<.01; * Indicates a significant 

reduction in time spent exploring the novel odor between trial 1 and trial 3 with p<.01.  

Data are means ± SEM. 
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Group 

 

N1 Trial 1 N1 Trial 3 
t value P value 

ETOH 3.0 Sprague-Dawley 15.78±1.6 1.5±.86 8.136 <.0001 

Table 2.3a  Habituation to N1 (ETOH 3.0 Sprague-Dawley) 

Data reflect mean exploration time (in seconds) of N1 on the trial indicated, ± SEM. 

 

 

 

 
 

 

Group 

 

N1 Familiar 
t value P value 

ETOH 3.0 Sprague-Dawley 15.78±1.6 0.9±.25 8.868 <.0001 

Table 2.3b  Novel-odor preference in the habituation phase (ETOH 3.0 Sprague-Dawley) 

Data reflect mean exploration time (in seconds) of the odor indicated during the first 

habituation trial, ± SEM. 

Odors 

Odors 
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Figure 2.4 Higher-dose ethanol disrupts odor memory in Sprague-Dawley rats 

Recognition of the recently-novel odor on the next day is reflected in reduced exploration 

of the recently-novel odor compared to a brand-new novel odor only in the saline control 

rats.  Ethanol-treated rats explored both odors equally, indicating an impairment of 

overnight memory.  * Indicates significantly more time spent exploring the novel odor 

than the recently novel odor with p<.01.  Data are means ± SEM.  
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Odors 

Group n 
N1 N2 Familiar Familiar 

t 
value 

P 
value 

Effect 
Size 

High-dose ethanol 
(Sprague-Dawley) 

13 0.45±.08 0.47±.08 0.04±.01 0.02±.006 0.24 .812 0.09 

Control (saline; 
Sprague-Dawley) 

13 0.23±.03 0.63±.04 0.07±.02 0.05±.02 6.97 <.0001 2.7 

Table 2.4a  Mean proportion exploration time (± SEM) in the odor recognition test, with 
statistics (ETOH 3.0 Sprague-Dawley) 

Shaded rows indicate groups where the comparison between N1 and N2 was not 

statistically significant, indicating a loss of overnight memory for N1. 

 

 

Odors 

Group 

N1 N2 Familiar Familiar 

High-dose ethanol 

(Sprague-Dawley) 
5.57±1.3 5.87±1.4 0.37±.13 0.29±.08 

Control (saline; 

Sprague-Dawley) 
2.22±.61 6.65±1.6 0.42±.08 0.29±.08 

Table 2.4b Mean absolute exploration times (seconds, ± SEM) in the odor recognition 
test (ETOH 3.0 Sprague-Dawley) 

 

 



 37 

Experiment 3: Higher-dose ethanol Long-Evans 

 
Habituation test data are shown in Fig. 2.5 and Tables 2.5a and 2.5b. Rats showed 

a significant reduction in the amount of time spent exploring N1 between trial 1 and trial 

3, suggesting marked habituation. A comparison of individual odor exploration within the 

first trial revealed that rats spent significantly more time exploring N1 than the familiar 

odor beads.  

 

Recognition memory test. The higher dose of ethanol led to what might be 

considered severe retrograde memory impairment. Recognition memory was 

undetectable 24 hr after ethanol, which had been delivered immediately after habituation 

to N1.  Data for the saline vs. ethanol 3.0 g/kg-treated Long-Evans rats are shown in Fig. 

2.6, and Tables 2.6a and 2.6b. Control rats explored N2 significantly more than N1 

whereas rats receiving 3.0 g/kg ethanol did not.   
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Figure 2.5 Novel odor preference and habituation to a novel odor across three trials in 
drug naïve Long-Evans rats that will be exposed to ETOH 3.0 g/kg 
immediately following the third habituation trial  

Rats initially show intense interest in a novel odor upon its first presentation but habituate 

to it by the third presentation.  # Indicates significantly more time exploring the novel 

odor than familiar odors within the first trial with p<.01; * Indicates a significant 

reduction in time spent exploring the novel odor between trial 1 and trial 3 with p<.01.  

Data are means ± SEM. 

0

2

4

6

8

10

12

14

16

18

20

Trial 1 Trial 2 Trial 3

M
e
a
n
 e
x
p
lo
ra
ti
o
n
 t
im

e
 (
s
e
c
)

N1

Familiar Odors
# 
* 
 



 39 

 

 

Group 

 

N1 Trial 1 N1 Trial 3 
t value P value 

ETOH 3.0 Long-Evans 16.2±1.2 2.2±.60 11.32 <.0001 

Table 2.5a  Habituation to N1(ETOH 3.0 Long-Evans) 

Data reflect mean exploration time (in seconds) of N1 on the trial indicated, ± SEM. 

 
 

 

 

 

 

Group 

 

N1 Familiar 
t value P value 

ETOH 3.0 Long-Evans 16.2±1.2 1.2±.25 11.82 <.0001 

 

Table 2.5b  Novel-odor preference in the habituation phase (ETOH 3.0 Long-Evans)  

Data reflect mean exploration time (in seconds) of the odor indicated during the first 

habituation trial, ± SEM. 

Odors 

Odors 
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Figure 2.6 Higher-dose ethanol disrupts odor memory in Long-Evans rats 

Recognition of the recently-novel odor on the next day is reflected in reduced exploration 

of the recently-novel odor compared to a brand-new novel odor only in the saline control 

rats.  Ethanol-treated rats explored both odors equally, indicating an impairment of 

overnight memory.  * Indicates significantly more time spent exploring the novel odor 

than the recently novel odor with p<.01.  Data are means ± SEM 
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Odors 

Group n 
N1 N2 Familiar Familiar 

t 
value 

P value 
Effect 
Size 

High-dose ethanol 
(Long-Evans) 

24 0.47±.03 0.45±.03 0.04±.01 0.02±.004 0.24 .809 0.07 

Control (saline; 
Long-Evans) 

11 0.31±.05 0.61±.05 0.05±.01 0.01±.004 4.18 <.0001 1.78 

Table 2.6a  Mean proportion exploration time (± SEM) in the odor recognition test, with 
statistics (ETOH 3.0 Long-Evans) 

Shaded rows indicate groups where the comparison between N1 and N2 was not 

statistically significant, indicating a loss of overnight memory for N1. 

 

 

Odors 
Group 

N1 N2 Familiar Familiar 

High-dose ethanol 

(Long-Evans) 
8.09±.88 9.81±1.8 0.72±.14 0.39±.09 

Control (saline; Long-

Evans) 
5.19±1.2 9.82±1.6 0.85±.33 0.20±.06 

Table 2.6b Mean absolute exploration times (seconds, ± SEM) in the odor recognition 
test (ETOH 3.0 Long-Evans) 
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Experiment 5:  Hangover control 

 
Habituation. Habituation test data are shown in Fig. 2.7 and Tables 2.7a and 2.7b. 

Rats showed a significant reduction in the amount of time spent exploring N1 between 

trial 1 and trial 3, suggesting marked habituation. A comparison of individual odor 

exploration within the first trial revealed that rats spent significantly more time exploring 

N1 than the familiar odor beads.  

 

 Recognition memory test. When habituation was followed 24 hr later (rather than 

immediately) by high-dose ethanol, and recognition was assessed 24 hr after that, both 

control and ethanol-treated rats spent significantly more time exploring the novel odor N2 

than N1 indicating retained memory for N1 as seen in Fig. 2.8 and Tables 2.8a and 2.8b.  

This shows not only that memory for N1 was detectable 48 hr after habituation, but also 

that the residual effects of ethanol administered 24 hr earlier (i.e., “hangover”) did not 

contribute to the disruption of performance in the recognition memory task when ethanol 

was delivered immediately after habituation in the high-dose ethanol experiments.  
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Figure 2.7 Novel odor preference and habituation to a novel odor across three trials in 
drug naïve rats that will be exposed to ETOH 3.0 g/kg immediately 
following the third habituation trial and tested 48 hours later 

Rats initially show intense interest in a novel odor upon its first presentation but habituate 

to it by the third presentation.  # Indicates significantly more time exploring the novel 

odor than familiar odors within the first trial with p<.01; * Indicates a significant 

reduction in time spent exploring the novel odor between trial 1 and trial 3 with p<.01.  

Data are means ± SEM. 

 

 

 

 

 

 

# 
* 
 



 44 

 
 

 

Group 

 

N1 Trial 1 N1 Trial 3 
t value P value 

ETOH 3.0 Hangover control 
20.5±1.9 5.6±1.0 8.02 <.0001 

Table 2.7a  Habituation to N1 (Hangover control) 

Data reflect mean exploration time (in seconds) of N1 on the trial indicated, ± SEM. 

 

 

 

 

 
 

 

Group 

 

N1 Familiar 
t value P value 

ETOH 3.0 Hangover control 
20.5±1.9 2.11±.34 9.255 <.0001 

Table 2.7b Novel-odor preference in the habituation phase (Hangover control) 

Data reflect mean exploration time (in seconds) of the odor indicated during the first 

habituation trial, ± SEM. 

 

 

 

Odors 

Odors 
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Figure 2.8 Higher-dose ethanol delivered immediately after habituation disrupts odor 
memory tested 48-hours later  

Recognition of the recently-novel odor on the next day is reflected in reduced exploration 

of the recently-novel odor compared to a brand-new novel odor only in the vehicle 

control rats.  Rats that received ethanol injections explore both odors equally, indicating a 

loss of overnight memory. 
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N1 N2 Familiar Familiar 
value value Size 

Ethanol 
(Hangover) 

35 0.36±.03 0.46±.037 0.1±.01 0.1±.01 1.9 .06 0.45 

Saline 
controls 

8 0.24±.04 0.62±.07 0.06±.02 0.07±.01 4.24 .001 2.12 

Table 2.8a  Mean proportion exploration time (± SEM) in the odor recognition test, with 
statistics (Hangover control) 

Shaded rows indicate groups where the comparison between N1 and N2 was not 

statistically significant, indicating a loss of overnight memory for N1. 

 

 

Odors 

Group 

N1 N2 Familiar Familiar 

Ethanol 

(Hangover) 
6.54±1.15 8.8±1.56 0.85±0.10 1.22±0.1 

Saline control 3.9±0.68 15.0±4.8 0.76±0.31 1.22±0.31 

Table 2.8b Mean absolute exploration times (seconds, ± SEM) in the odor recognition 
test (Hangover control) 
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DISCUSSION 

 

Chapter 2 demonstrates that rats given a high dose and not a low dose of ethanol 

demonstrate the same retrograde memory impairment that is observed with the 

administration of PTZ in the follow up test of memory. Rats given a high, but not a low, 

dose of ethanol delivered immediately after repeated exposure to a N1 showed a loss of 

memory 24 hr later, in that they explored both N1 and a new odor N2 for an equivalent 

amount of time, whereas Control animals overwhelmingly explored N2 more than N1. 

These impairments cannot be attributed to the rat’s inability to perform the task as 

ethanol was administered after learning had occurred. Secondly, as control and low-dose 

ethanol animals demonstrate long-term 24-hour overnight memory for the previously 

encountered odor, the memory impairments cannot be attributed to the inability of the 

animals to form a lasting memory for the odor. Third, the argument cannot be made that 

the observed loss of overnight memory for the recently-novel odor (i.e.: the even split in 

time between the two odors) is the result of reinforcement of the recently-novel odor by 

ethanol as opposed to a retrograde memory impairment for that odor, as rats given a low, 

but still substantial dose of ethanol (as in Manrique, 2005) show no such effect.  Finally, 

as the odors were removed for one minute in between each of the three habituation trials, 

it cannot be argued that sensory adaptation to the novel odor (Best et al., 2005), which 

could potentially result in the observed impairments, occurred as opposed to true 

habituation. 
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 The argument could be made that the observed retrograde memory impairments 

are not due to ethanol’s effect on memory itself, but rather result from a “hangover” 

effect. Potentially, the administration of such a high dose of ethanol the previous day 

would produce an aversive state in the rat, which would in turn affect the rat’s ability to 

explore the odors in the follow up test of memory and cause the observed impairment. 

However, a close inspection of the total mean exploration times of control and reveals no 

substantial differences between groups. Had this dose of ethanol truly caused a hangover 

effect, thus impacting odor exploration ability, this effect would have revealed itself in 

the total time spent exploring the odors.  

It will be important to extend these studies by varying the delay of ethanol, 

varying the dose of ethanol, varying the level of experience with ethanol (most human 

consumption is not in alcohol-naïve individuals) and testing whether self-administered 

and experimenter administered lower doses of alcohol might lead to retrograde memory 

impairment if retention interval is delayed (in humans, simple information that is retained 

at 24 hrs is often lost after several days). It is important also to establish whether ethanol 

might can disrupt memory for flashbulb type memories such as that found in fear 

conditioning or spatial learning in a water maze, which is stressful. Human studies 

indicate that fragmentary blackouts are the most common memory impairment with 

ethanol. That is, major events occurring under the influence (and, based on our data, 

events just prior to alcohol consumption) may be recalled if they are extraordinarily 

salient, but modestly or minimally salient memories are lost, especially with some 

amount of time passed. 
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Chapter 3: Prevention of ethanol’s amnestic effects with caffeine and 

related drugs 
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CHAPTER OVERVIEW 

 

 The third objective was to investigate whether the retrograde memory 

impairments observed with ethanol could be reversed or prevented with the 

administration of caffeine. Caffeine is often consumed before, during or shortly after 

ethanol and without ethanol has been demonstrated to improve cognition and mental 

performance on tasks of learning and memory in humans (Battig et al., 1984; Erikson et 

al., 1985; Lieberman et al., 1987; Jarvis 1993; David & Warburton 1995). Caffeine at 

moderate doses has also been shown to facilitate memory acquisition and retention in 

animals on various learning tasks (Izquierdo et al., 1979; Furusawa 1991; Buffalo et al., 

1993; Molinengo, Scordo & Pastorello 1994; Molinengo et al., 1995; Martin & Garfield 

2006) including recognition memory (Costa 2008). However, at high doses, caffeine can 

disrupt memory acquisition (Corodimas, Pruitt & Steig 2000). There is a paucity of 

literature on the effects of caffeine and ethanol combinations on memory however, with 

studies focusing primarily on caffeine’s influence on the depressor effects of alcohol 

(Ferreira et al., 2004; Ferriera et al., 2004a; Ferriera et al., 2006). 

Caffeine is both a phosphodiesterase inhibitor and an adenosine antagonist 

(Nehlig, Daval & Debry 1992; Howell et al., 1997; Fredholm et al., 1999). As an 

adenosine antagonist, caffeine has equal affinity for A
1
 and A

2A
 subtypes of adenosine 

receptors (Prediger 2005a) with the behavioral activating effects of caffeine associated 

with antagonism of A
2A

 receptors (Svenningsson et al., 1997, Sveningsson et al., 1997a). 

It has been shown that antagonists specific to the A
2A

 subtype (ZM241385) (Yang et al., 
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2007), at doses of 1.0mg/kg and not antagonists specific to the A
1 
subtype of adenosine 

can improve memory in social odor recognition tasks (Prediger 2005b). Similarly, it has 

been demonstrated that antagonists specific to the A1 subtype can affect memory in tasks 

with a strong emotional component, such as inhibitory avoidance (Normile & Barraco 

1991; Normile, et al., 1994; Zarrindast & Shafagi 1994). Furthermore, as a 

phosphodiesterase inhibitor, caffeine is non-selective for multiple subtypes of 

phosphodiesterase. Inhibition of two of these subtypes, PDE4 and PDE5 lead to increases 

in intracellular cAMP and cGMP respectively. Zaprinast, a potent inhibitor of the PDE5 

subtype has been shown to improve memory consolidation in an object recognition task 

and only at a dose of 10 mg/kg (Prickaerts et al., 1997; Prickaerts et al., 2004; Blokland 

et al., 2006). Based on this literature, we used each of these drugs, Zaprinast and 

ZM241385 separately and in unison, in an attempt to prevent ethanol-induced retrograde 

memory impairments. 

 

 

PHARMACOLOGICAL TREATMENTS 

 

Caffeine post-ethanol.  Rats (n=9) were given injections of 3.0 g/kg ethanol, with 

matched saline-injected controls (n=9), immediately following the last N1 habituation 

trial. Then, after a one-hour delay, these rats (all 18) received i.p. injections of 5 mg/kg 

caffeine dissolved in saline.  They were then left alone until odor recognition testing the 

following day. As outlined in Fig. A2.8. 
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Caffeine pre-ethanol.   Twenty minutes before the first novel-odor habituation 

trial, rats were given intraperitoneal injections of 5 mg/kg caffeine (MP Biomedicals, 

dissolved at 5 mg/ml in saline).  Then, following the last N1 habituation trial, subgroups 

of these caffeine-treated animals were given either 20% (w/v) ethanol at a dose of 3.0 

g/kg i.p. (n=23) or equivalent volumes of saline (n=20). Assessment of memory for N1 

was carried out 24 h after ethanol was administered. As outlined in Fig. A2.9. 

 

PDE5 inhibitor post-ethanol.  Rats (n=10) were given injections of 3.0 g/kg 

ethanol, with matched saline-injected controls (n=4), immediately following the last N1 

habituation trial. Then, after a one-hour delay, all of these rats received i.p. injections of 

the PDE5 inhibitor zaprinast (Tocris Bioscience, dissolved in 100% DMSO; 10 mg/0.1 

ml/kg).   They were then left alone until odor recognition testing the following day.  In a 

follow-up test, 6 additional rats received a 2X dose of Zaprinast (20 mg/kg) one hour 

after habituation to N1 and ethanol and were tested the next day for recognition memory. 

As outlined in Fig. A2.10. 

 

A
2A

 antagonist post-ethanol.    Rats (n=11) were given injections of 3.0 g/kg 

ethanol, with matched saline-injected controls (n=6), immediately following the last N1 

habituation trial. Then, after a one-hour delay, these rats (all 17) received i.p. injections 

of 1 mg/0.1 ml/kg ZM241385 (Tocris Bioscience, dissolved in 100% DMSO).  They 

were then left alone until odor recognition testing the following day. As outlined in Fig. 

A2.11. 
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Combination PDE5 inhibitor and A
2A

 antagonist post-ethanol. Immediately 

following the last trial of habituation to N1, rats (n=8) were given injections of 3.0 g/kg 

ethanol, with matched saline-injected controls (n=7), Then, after a one-hour delay, these 

rats (all 15) received i.p. injections of both 10 mg/kg Zaprinast and 1 mg/kg ZM241385.  

They were then left alone until odor recognition testing the following day. As outlined in 

Fig. A2.12. 

 

 

 

 

 

 

 

 

 

 

 

RESULTS 

Experiment 1: Caffeine post-ethanol 

 
Habituation test data are shown in Fig. 3.1 and Tables 3.1a and 3.1b. Rats showed 

a significant reduction in the amount of time spent exploring N1 between trial 1 and trial 
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3, suggesting marked habituation. A comparison of individual odor exploration within the 

first trial revealed that rats spent significantly more time exploring N1 than the familiar 

odor beads.  

 

Recognition memory test. Caffeine delivered one hour after exposure to N1 

prevented retrograde recognition memory disruption by the higher dose of ethanol (Fig. 

3.2 and Tables 3.2a and 3.2b). Both control and ethanol 3.0 g/kg treated rats spent 

significantly more percent time exploring the novel odor than the recently-novel odor.  
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Figure 3.1 Novel odor preference and habituation to a novel odor across three trials in 
drug naïve rats that will be exposed to ETOH 3.0 g/kg and caffeine 5 mg/kg 
immediately following the third habituation trial  

Rats initially show intense interest in a novel odor upon its first presentation but habituate 

to it by the third presentation.  # Indicates significantly more time exploring the novel 

odor than familiar odors within the first trial with p<.01; * Indicates a significant 

reduction in time spent exploring the novel odor between trial 1 and trial 3 with p<.01.  

Data are means ± SEM. 
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Group 

 

N1 Trial 1 N1 Trial 3 
t value P value 

Caffeine Post Ethanol 18.1±1.9 3.2±.97 8.027 <.0001 

Table 3.1a  Habituation to N1 (Caffeine post ethanol) 

Data reflect mean exploration time (in seconds) of N1 on the trial indicated, ± SEM. 

 

 

 
 

 

Group 

 

N1 Familiar 
t value P value 

Caffeine Post Ethanol 18.1±1.9 1.1±.42 8.715 <.0001 

Table 3.1b  Novel-odor preference in the habituation phase (caffeine post ethanol) 

Data reflect mean exploration time (in seconds) of the odor indicated during the first 

habituation trial, ± SEM. 

 

Odors 

Odors 
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Figure 3.2 Caffeine administered after a post-learning high-dose of ethanol also, as pre-
learning caffeine, prevents memory disruption 

Recognition of the recently-novel odor on the next day is reflected in reduced exploration 

of the recently-novel odor compared to a brand-new novel odor in both groups.  * 

Indicates significantly more time spent exploring the novel odor than the recently novel 

odor with p<.05.  Data are means ± SEM. 
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Odors 

Group n 
N1 N2 Familiar Familiar 

t 
value 

P value 
Effect 
Size 

Ethanol + 
caffeine one 
hour after 

9 0.26±.04 0.62±.05 0.03±.007 0.07±.01 4.87 <.0001 2.29 

Control 
(saline + 
caffeine) 

9 0.31±.07 0.58±.06 0.03±.01 0.05±.01 2.78 .015 1.39 

Table 3.2a  Mean proportion exploration time (± SEM) in the odor recognition test, with 
statistics (Caffeine post ethanol) 

 

 

 

Odors 
Group 

N1 N2 Familiar Familiar 

Ethanol + caffeine one 

hour after 
4.67±1.5 11.4±2.3 1.15±.34 0.47±.13 

Control (saline + 

caffeine) 
4.94±1.3 9.18±2.5 0.61±.21 0.5±.17 

Table 3.2b Mean absolute exploration times (seconds, ± SEM) in the odor recognition 
test (Caffeine post ethanol) 
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Experiment 2: Caffeine pre-ethanol 

 
Habituation test data are shown in Fig. 3.3 and Tables 3.3a and 3.3b. Caffeine 

administered prior to habituation trials did not affect habituation to N1 or absolute bead 

exploration times. Rats showed a significant reduction in the amount of time spent 

exploring N1 between trial 1 and trial 3, suggesting marked habituation. A comparison of 

individual odor exploration within the first trial revealed that rats spent significantly more 

time exploring N1 than the familiar odor beads.  

 

Recognition Memory Test.   Caffeine delivered 20 min before the first exposure to 

N1 prevented retrograde recognition memory disruption by a subsequent high dose of 

ethanol. Recognition of N1 appeared to be intact the next day despite administration of 

3.0 g/kg ethanol following habituation. The behavior of rats that received caffeine 20 

minutes prior to habituation is shown in Fig. 3.4 and Tables 3.4a and 3.4b.  Both control- 

and ethanol 3.0 g/kg-treated rats pre-exposed to caffeine spent significantly more time 

exploring N2 than N1.  
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Figure 3.3 Novel odor preference and habituation to a novel odor across three trials is 
maintained in rats pretreated with caffeine  

Rats initially show intense interest in a novel odor upon its first presentation but habituate 

to it by the third presentation.  # Indicates significantly more time exploring the novel 

odor than familiar odors within the first trial with p<.01; * Indicates a significant 

reduction in time spent exploring the novel odor between trial 1 and trial 3 with p<.01. 
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Group 

 

N1 Trial 1 N1 Trial 3 
t value P value 

Pre-Caffeine 13.3±1.3 3.6±.66
 

7.4 <.0001 

Table 3.3a Habituation to N1 (Caffeine pre ethanol) 

Data reflect mean exploration time (in seconds) of N1 on the trial indicated, ± SEM. 

 

 

 
 

 

Group 

 

N1 Familiar 
t value P value 

Pre-Caffeine  13.3±1.3 .72±.1 9.5 <.0001 

Table 3.3b  Novel-odor preference in the habituation phase (Caffeine pre ethanol) 

Data reflect mean exploration time (in seconds) of the odor indicated during the first 

habituation trial, ± SEM. 

Odors 

Odors 



 62 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Caffeine administered before learning prevents the disruption of odor memory 
by a very high-dose of ethanol administered post-learning  

Recognition of the recently-novel odor on the next day is reflected in reduced exploration 

of the recently-novel odor compared to a brand-new novel odor in both groups.  * 

Indicates significantly more time spent exploring the novel odor than the recently novel 

odor with p<.05.  Data are means ± SEM. 
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Odors 

Group n 
N1 N2 Familiar Familiar 

t 
value 

P value 
Effect 
Size 

Caffeine 
before 

habituation + 
ethanol 

23 0.27±.04 0.56±.04 0.06±.009 0.09±.02 4.75 <.0001 1.4 

Control 
(caffeine + 

saline) 
20 0.33±.05 0.53±.05 0.06±.01 0.06±.01 2.55 .015 0.8 

Table 3.4a  Mean proportion exploration time (± SEM) in the odor recognition test, with 
statistics (Caffeine pre ethanol) 

 

 

 

Odors 
Group 

N1 N2 Familiar Familiar 

Caffeine before 

habituation + ethanol 
2.75±.52 5.76±.87 0.68±.09 0.56±.07 

Control (caffeine + 

saline) 
4.7±.81 8.8±1.5 0.85±.16 0.79±.14 

Table 3.4b Mean absolute exploration times (seconds, ± SEM) in the odor recognition 
test (Caffeine pre ethanol) 
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Experiment 3: PDE5 inhibitor post-ethanol 

 
Habituation test data are shown in Fig. 3.5 and Tables 3.5a and 3.5b. Rats showed 

a significant reduction in the amount of time spent exploring N1 between trial 1 and trial 

3, suggesting marked habituation. A comparison of individual odor exploration within the 

first trial revealed that rats spent significantly more time exploring N1 than the familiar 

odor beads.  

 

Recognition Memory Test.    Neither dose of the PDE5 inhibitor, delivered one hour 

after exposure to N1, prevented ethanol-induced retrograde recognition memory 

disruption (Fig. 3.6, Tables 3.6a and 3.6b). There were no differences between the 

ethanol 3.0 g/kg- treated rats that received 10 or 20 mg/kg  zaprinast; therefore, these 

groups were combined for analysis. Ethanol treated rats showed no difference in percent 

time exploring N1 versus N2, whereas control rats spent significantly more time 

exploring N2 than N1.  
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Figure 3.5 Novel odor preference and habituation to a novel odor across three trials in 
drug naïve rats that will be exposed to ETOH 3.0 g/kg and a PDE5 inhibitor 
immediately following the third habituation trial  

Rats initially show intense interest in a novel odor upon its first presentation but habituate 

to it by the third presentation.  # Indicates significantly more time exploring the novel 

odor than familiar odors within the first trial with p<.01; * Indicates a significant 

reduction in time spent exploring the novel odor between trial 1 and trial 3 with p<.01.  

Data are means ± SEM. 
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Group 

 

N1 Trial 1 N1 Trial 3 
t value P value 

PDE5 Inhibitor 25.7±1.5 7.4±1.3 9.878 <.0001 

Table 3.5a  Habituation to N1 (PDE5) 

Data reflect mean exploration time (in seconds) of N1 on the trial indicated, ± SEM. 

 

 

 
 

 

Group 

 

N1 Familiar 
t value P value 

PDE5 Inhibitor 25.7±1.5 1.24±.29 15.927 <.0001 

Table 3.5b  Novel-odor preference in the habituation phase (PDE5) 

Data reflect mean exploration time (in seconds) of the odor indicated during the first 

habituation trial, ± SEM. 

Odors 

Odors 



 67 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 A PDE5 inhibitor administered one hour after a post-learning high-dose of 
ethanol does not prevent memory disruption  

Recognition of the recently-novel odor on the next day is reflected in reduced exploration 

of the recently-novel odor compared to a brand-new novel odor in saline controls. 

Ethanol-treated rats explore both odors equally, indicating an impairment of overnight 

memory. * Indicates significantly more time spent exploring the novel odor than the 

recently novel odor with p<.05.  Data are means ± SEM 

 

0%

20%

40%

60%

80%

100%

Saline+PDE5 inhibitor Ethanol+PDE5 inhibitor

M
e
a
n
 p
e
rc
e
n
ta
g
e
 e
x
p
lo
ra
ti
o
n
 t
im

e N1

N2

Familiar odors
* 



 68 

 

Odors 

Group n 
N1 N2 Familiar Familiar 

t 
value 

P value 
Effect 
Size 

Ethanol +  
PDE5 

inhibitor 
10 0.46±.11 0.49±.12 0.01±.01 0.02±.01 0.41 .686 0.18 

Control 
(saline + 

PDE5 
inhibitor) 

4 0.18±.04 0.77±.04 0.01±.006 0.02±.008 8.76 <.0001 6.19 

Table 3.6a  Mean proportion exploration time (± SEM) in the odor recognition test, with 
statistics (PDE5) 

Shaded rows indicate groups where the comparison between N1 and N2 was not 

statistically significant, indicating a loss of overnight memory for N1. 

 

 

Odors 
Group 

N1 N2 Familiar Familiar 

Ethanol +  PDE5 

inhibitor 
8.66±1.6 10.2±1.9 0.25±.09 0.52±.21 

Control (saline + PDE5 

inhibitor) 
3.95±2.5 12.1±4 0.18±.08 0.5±.25 

Table 3.6b Mean absolute exploration times (seconds, ± SEM) in the odor recognition 
test (PDE5) 
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Experiment 4: A
2A

 antagonist post-ethanol 

 
Habituation test data are shown in Fig. 3.7 and Tables 3.7a and 3.7b. Rats showed 

a significant reduction in the amount of time spent exploring N1 between trial 1 and trial 

3, suggesting marked habituation. A comparison of individual odor exploration within the 

first trial revealed that rats spent significantly more time exploring N1 than the familiar 

odor beads.  

 

Recognition Memory Test. The A
2A

 antagonist, ZM241385, by itself did not negate 

ethanol-induced retrograde memory impairment.  Fig. 3.8 and Tables 3.8a and 3.8b show 

that rats receiving this drug one hour after habituation to N1 and subsequent exposure to 

a high dose of ethanol did not preferentially explore either N1 or N2 when tested for 

recognition memory 24 hr later, in contrast to control rats which significantly preferred 

N2. 
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Figure 3.7 Novel odor preference and habituation to a novel odor across three trials in 
drug naïve rats that will be exposed to ETOH 3.0 g/kg and an A2A antagonist 
immediately following the third habituation trial 

Rats initially show intense interest in a novel odor upon its first presentation but habituate 

to it by the third presentation.  # Indicates significantly more time exploring the novel 

odor than familiar odors within the first trial with p<.01; * Indicates a significant 

reduction in time spent exploring the novel odor between trial 1 and trial 3 with p<.01.  

Data are means ± SEM. 
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Group 

 

N1 Trial 1 N1 Trial 3 
t value P value 

A2A Antagonist 26.4±2.1 4.1±1.3 9.569 <.0001 

Table 3.7a Habituation to N1 (A2A) 

Data reflect mean exploration time (in seconds) of N1 on the trial indicated, ± SEM. 

 

 

 
 

 

Group 

 

N1 Familiar 
t value P value 

A2A Antagonist 26.4±2.1 0.86±.23 12.225 <.0001 

Table 3.7b  Novel-odor preference in the habituation phase (A2A) 

Data reflect mean exploration time (in seconds) of the odor indicated during the first 

habituation trial, ± SEM. 

Odors 

Odors 
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Figure 3.8 An Adenosine A2A antagonist administered after a post-learning high-dose of 
ethanol does not prevent memory disruption 

Recognition of the recently-novel odor on the next day is reflected in reduced exploration 

of the recently-novel odor compared to a brand-new novel odor in saline controls. 

Ethanol-treated rats explore both odors equally, indicating an impairment of overnight 

memory. * Indicates significantly more time spent exploring the novel odor than the 

recently novel odor with p<.05.  Data are means ± SEM. 
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Odors 

Group n 
N1 N2 Familiar Familiar 

t 
value 

P value 
Effect 
Size 

Ethanol + 

A2A 
antagonist  

11 0.39±.07 0.49±.07 0.05±.01 0.04±.01 0.98 .338 0.41 

Control 
(saline + 

A2A 
antagonist) 

6 0.28±.11 0.64±.09 0.03±.01 0.03±.01 2.40 .037 1.38 

Table 3.8a  Mean proportion exploration time (± SEM) in the odor recognition test, with 
statistics (A2A) 

Shaded rows indicate groups where the comparison between N1 and N2 was not 

statistically significant, indicating a loss of overnight memory for N1. 

 

 

Odors 
Group 

N1 N2 Familiar Familiar 

Ethanol + A2A 

antagonist  
7.24±2.5 7.38±1.9 0.64±.25 0.49±.10 

Control (saline + A2A 

antagonist) 
5.5±2.3 9.4±3.1 0.35±.04 0.38±.05 

Table 3.8b Mean absolute exploration times (seconds, ± SEM) in the odor recognition 
test (A2A) 
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Experiment 5: Combination PDE5 inhibitor and A2A antagonist post-ethanol 

 
Habituation test data are shown in Fig. 3.9 and Tables 3.9a and 3.9b. Rats showed 

a significant reduction in the amount of time spent exploring N1 between trial 1 and trial 

3, suggesting marked habituation. A comparison of individual odor exploration within the 

first trial revealed that rats spent significantly more time exploring N1 than the familiar 

odor beads.  

 

Recognition Memory Test.   A combination of the PDE5 inhibitor (10 mg/kg 

Zaprinast) and the adenosine A
2A

 antagonist (1 mg/kg ZM241385) administered one hour 

following the higher dose of ethanol prevented ethanol-induced retrograde memory 

impairment (Fig. 3.10 and Tables 3.10a and 3.10b). Both control and ethanol 3.0 g/kg 

treated rats spent significantly more time exploring N2 than N1, indicating retained 

overnight memory for N1. It should be noted that animals in the 3g/kg ethanol groups 

indeed lost the righting reflex and appeared behaviorally to be asleep.  When injected 

with caffeine or the combination of the PDE5 inhibitor and A
2A

 antagonist, the animals 

did not regain the righting reflex and showed no overt sign of rescue from “sleep” 
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Figure 3.9 Novel odor preference and habituation to a novel odor across three trials in 
drug naïve rats that will be exposed to ETOH 3.0 g/kg and a combination 
PDE5 inhibitor/ A2A antagonist immediately following the third habituation 
trial  

Rats initially show intense interest in a novel odor upon its first presentation but habituate 

to it by the third presentation.  # Indicates significantly more time exploring the novel 

odor than familiar odors within the first trial with p<.01; * Indicates a significant 

reduction in time spent exploring the novel odor between trial 1 and trial 3 with p<.01.  

Data are means ± SEM. 
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Group 

 

N1 Trial 1 N1 Trial 3 
t value P value 

A2A /PDE5 Combination 34.0±2.5 9.2±2.4 9.024 <.0001 

Table 3.9a  Habituation to N1 (PDE5/ A2A) 

Data reflect mean exploration time (in seconds) of N1 on the trial indicated, ± SEM. 

 

 
 

 

Group 

 

N1 Familiar 
t value P value 

A2A /PDE5 Combination 34.0±2.5 1.76±.64 12.340 <.0001 

Table 3.9b  Novel-odor preference in the habituation phase (PDE5/ A2A) 

Data reflect mean exploration time (in seconds) of the odor indicated during the first 

habituation trial, ± SEM. 

 

Odors 

Odors 
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Figure 3.10 The combination of a PDE5 inhibitor and an adenosine A2A  antagonist 
administered after a post-learning high-dose of ethanol prevents disruption 
of odor memory 

Recognition of the recently-novel odor on the next day is reflected in reduced exploration 

of the recently-novel odor compared to a brand-new novel odor in both groups.  * 

Indicates significantly more time spent exploring the novel odor than the recently novel 

odor with p<.05.  Data are means ± SEM. 
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Odors 

Group n 
N1 N2 Familiar Familiar 

t 
value 

P value 
Effect 
Size 

Ethanol + 
PDE5 

inhibitor + 

A2A 
antagonist 

8 0.27±.07 0.64±.07 0.02±.006 0.05±.01 3.63 .003 1.81 

Control 
(saline + both 

drugs) 
7 0.21±.04 0.65±.04 0.08±.03 0.04±.009 6.19 <.0001 3.31 

Table 3.10a Mean proportion exploration time (± SEM) in the odor recognition test, with 
statistics (PDE5/ A2A) 

 

 

 

 

Odors 
Group 

N1 N2 Familiar Familiar 

Ethanol + PDE5 

inhibitor + A2A 

antagonist 

3.675±.97 9.85±2.5 0.35±.08 0.8±.17 

Control (saline + both 

drugs) 
4.74±1.1 15.6±3.7 1.6±.68 1.04±.21 

Table 3.10b Mean absolute exploration times (seconds, ± SEM) in the odor recognition 
test (PDE5/ A2A) 
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DISCUSSION 

  

The goal of this chapter was to assess the effects of caffeine and related drugs on 

retrograde memory impairments observed with a high dose of ethanol. A high dose of 

ethanol, administered after learning, causes retrograde memory impairment 24-hours later 

during the recognition test. This memory impairment could be prevented with the 

administration of caffeine, a drug often contained in beverages consumed before, during 

or after alcohol.  Caffeine somehow prevented the ethanol-induced retrograde amnesia, 

not only when delivered just prior to learning and exposure to ethanol, but remarkably 

also even when delivered one hour after ethanol, ruling out caffeine effects on brain 

levels of ethanol and indicating that the effects of ethanol on memory consolidation 

require disruption of neural events that are not short-term.   

It was also found that neither an adenosine A2A antagonist nor a phosphodiesterase-5 

inhibitor alone prevented retrograde amnesia when delivered one hour after ethanol 

(unlike caffeine, which did prevent the amnesia).  However, a combination of these two 

drugs was highly effective at the previously ineffective doses, which were selected on the 

basis of the dose of caffeine.  Thus, it appears that mimicking two of caffeine’s key 

mechanisms of action simultaneously with a PDE5 inhibitor and an A2A antagonist is at 

least sufficient, if not necessarily required, for prevention of retrograde amnesia by 

ethanol. 
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Chapter 4: Consolidation and Reconsolidation disruption through 

protein synthesis inhibition and ethanol. 
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CHAPTER OVERVIEW 

 

In chapter 3, it was demonstrated that an acute high dose of ethanol can cause 

retrograde memory impairments when delivered after learning has occurred. Ethanol 

might exert these deleterious effects by disrupting memory consolidation through 

inhibition of receptors vital to protein synthesis. In this final series of experiments, we  

attempted to disrupt the consolidation process more directly through the use of protein 

synthesis inhibition. We also attempted to shed light on the phenomenon of 

reconsolidation. It is well documented in fear conditioning paradigms that anisomycin, a 

protein synthesis inhibitor, delivered after learning and memory reactivation can disrupt 

consolidation and reconsolidation respectively and cause retrograde memory impairments 

in follow-up tests of memory (Nader 2003; Artinian et al., 2007, Wang et al., 2005; 

Przybylaski & Sara 1997, Przybyslawski, Roullet & Sara 1999; Miller & Matzel 2000).  

The process of reconsolidation has been proposed to require four main 

components: 1) After the consolidation of a memory, the presentation of the learned cue 

reactivates the consolidated memory, returning it to a labile state that renders it 

vulnerable to disruption. That reactivated memory must go through a second protein-

synthesis dependent consolidation process, re-consolidation, the disruption of which, 

through the use of a protein-synthesis inhibitor, disrupts the learning that has taken place. 

The absence of the CS reminder cue leaves the consolidated memory untouched, thus 

protein-synthesis independent, as a protein-synthesis inhibitor has no effect on a memory 

that has not been reactivated. 2) The process of protein-synthesis dependent re-
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consolidation has a temporal component that returns the labile reactivated memory to a 

more stable protein-synthesis independent state after enough time has passed. 3) The 

length of time that a memory consolidation has to take place has no effect on the ability 

of that memory to be disrupted if it is reactivated. Once reactivated via the CS reminder 

cue, protein synthesis must take place in order for the memory to be reconsolidated. 

Thus, it is labile and vulnerable to disruption during this period of reactivation. 4) 

Reactivated short-term memory is subserved by a different function than reactivated long 

term memory. As a result, while short-term memory can remain robust over a short 

period of time, the long-term re-consolidation of that memory is subserved by different 

intracellular processes and therefore can be disrupted. Having identified the medial 

amygdala as our target for protein synthesis inhibition, we delivered anisomycin into the 

medial amygdala after habituation to a novel odor or reactivation of that learned cue, (i.e. 

a one-trial re-introduction of the habituated odor). Findings suggest that inhibition of 

protein synthesis during either consolidation or reconsolidation impairs memory the 

following day in a follow-up odor recognition test. 

 
 
Surgery and histology 
 

 Prior to surgeries, animals are tamed by frequent handling to minimize stress 

associated with injections and behavioral measurements. On the day of surgery, rats are 

deeply anesthetized with a mixture of ketamine 100 mg/kg and xylezine 20 mg/kg. When 

fully anesthetized, as verified by lack of tail pinch and corneal responses, the animals are 

placed in a stereotaxic apparatus and the scalp is shaved and swabbed with betadine. A 

midline incision is made to expose bregma and the skull is leveled along the dorsal-
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ventral plane. Two small burr holes are made and rats are bilaterally implanted with 22-

gauge stainless steel cannulas into the medial amygdala. Coordinates for the medial 

amygdala, derived from Paxinos and Watson (1998) are 2.3mm posterior to bregma, 

3.4mm lateral to the midline and 8.0mm ventral from the skull surface. No supportive 

care is typically required during this type of surgery, but body temperature, breathing and 

the plane of anesthetization are continuously monitored.  Placement on a heating pad and 

supplemental injections of the anesthetic are performed as needed. Rats are given at least 

7 days to recover from surgery before they are used in the odor-recognition task. 

Following the experiment, rats are transcardially perfused with a 4% formaldehyde 

solution and their brains removed. These brains are sectioned at 50microns thickness and 

stained with cresyl violet in order to verify bilateral cannula implantation into the medial 

amygdala. Rats without bilateral cannulae in their medial amygdalae are excluded from 

subsequent statistical analysis. 

 

RECONSOLIDATION METHODOLOGY 

 

 For the reconsolidation experiments, rats habituate to the novel odor and 24 hours 

later are presented with the habituated novel-odor for 1-minute as a “reminder” cue in 

order to reactivate the consolidated memory. Immediately following this reactivation 

trial, anisomycin is infused into the medial amygdala. 24 hours later, the odor-recognition 

test is performed. For a graphical representation of the reconsolidation method, please see 

Fig. A2.2. 
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PHARMACOLOGICAL TREATMENTS 

 
Intra-Medial Amygdala Anisomycin Infusions (Consolidation group) 

 Immediately following habituation in the consolidation procedure outlined in Fig. 

A2.1 and followed in all of the previous experiments, 62.5ug of anisomycin (Sigma) 

dissolved in 0.5ul of ACSF is infused via infusion pump into each medial amygdala at 

0.25ul per min for two minutes in (n=9) rats with (n=10) vehicle controls. Injectors are 

left in place for one minute following infusion to allow for diffusion from the tip. 

Anisomycin is dissolved in HCl, diluted with ACSF and adjusted to a pH of 7.4 using 

NaOH. This dose of anisomycin was chosen based on previous studies showing that it 

was the minimum dose needed to effectively inhibit protein synthesis and thus 

consolidation (Ben-Mamou 2006). As outlined in Fig. A2.1 and A2.13.  

 

Intra-Medial Amygdala Anisomycin Infusions (Reconsolidation group) 

 24-hours after habituation, a 1-minute, 1-trial reminder of N1 (reactivation trial) was 

run. Immediately following this reactivation trial in the reconsolidation procedure, 62.5ug 

of anisomycin (Sigma) dissolved in 0.5ul of ACSF is infused via infusion pump into each 

medial amygdala at 0.25ul per min for two minutes in (n=8) rats with (n=5) vehicle 

controls. Injectors are left in place for one minute following infusion to allow for 

diffusion from the tip. Anisomycin is dissolved in HCl, diluted with ACSF and adjusted 

to a pH of 7.4 using NaOH. As outlined in Fig. A2.2 and A2.14. 

 

Ethanol Reconsolidation 
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 24-hours after habituation, a 1-minute, 1-trial reminder of N1 (reactivation trial) was 

run. Immediately following this reactivation trial in the reconsolidation procedure, Long-

Evans rats (n=9) were given i.p. injections of 20% (w/v) ethanol at a dose of 3.0 g/kg 

ethanol, with matched controls (n=6) receiving equivalent volumes of saline. The 

recognition memory test was performed 24 hours following ethanol injections. As 

outlined in Fig. A2.2 and A2.15.  

 

Non-reactivated Control 

Rats were given i.p. injections of either 20% (w/v) ethanol at a dose of 3.0 g/kg (n 

= 6) or saline (n=6) at 24 hours, rather than immediately, after habituation.  24 hr after 

this, all rats were tested for recognition memory.  In this procedure the longer time-span 

between learning and ethanol administration was sufficient for memory consolidation to 

occur, yet hangover symptoms would presumably still be present during the recognition 

test since it is still performed 24 hr after administration of high-dose ethanol, as in the 

other experiments and outlined in Fig.  A2.6. 

 

 

 

Ethanol Reconsolidation hangover control 

 24-hours after habituation, a 1-minute, 1-trial reminder of N1 (reactivation trial) 

was run. Immediately following this reactivation trial in the reconsolidation procedure, 

Long-Evans rats (n=8) were given i.p. injections of 20% (w/v) ethanol at a dose of 3.0 

g/kg ethanol, with matched controls (n=7) receiving equivalent volumes of saline. 48 
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hours following ethanol injections the recognition memory test was performed, as 

outlined in Fig. A2.16. A small group of rats were run concurrently and are identified as 

72-hour controls. These rats received an equivalent volume of saline immediately 

following habituation and were tested 72 hours later to ensure that memory was intact as 

outlined in Fig. A 2.17.  

 

 

 

 

 

 

 

 

 

 

 

 

RESULTS 

 

Experiment 1: Intra-Medial Amygdala Anisomycin Infusions (Consolidation group) 

 
Habituation test data are shown in Fig. 4.1 and Tables 4.1a and 4.1b. Rats showed 

a significant reduction in the amount of time spent exploring N1 between trial 1 and trial 

3, suggesting marked habituation. A comparison of individual odor exploration within the 
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first trial revealed that rats spent significantly more time exploring N1 than the familiar 

odor beads.  This suggests that neither surgery, nor implanted cannulae had any 

demonstrable effect on the ability to habituate to a novel odor or novel odor preference. 

 

Recognition Memory Test. Recognition memory test data for the ACSF and 

Anisomycin treated rats are shown in Fig. 4.2 and Tables 4.2a and 4.2b. Anisomcin 

treated rats showed no difference in percent time exploring N1 versus N2, suggesting an 

impairment of consolidation for the memory of N1. Control rats spent significantly more 

time exploring N2 than N1. 
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Figure 4.1 Novel odor preference and habituation to a novel odor across three trials in 
drug naïve cannulated rats that will be receive Anisomycin infusions 
immediately following the third habituation trial  

Rats initially show intense interest in a novel odor upon its first presentation but habituate 

to it by the third presentation.  # Indicates significantly more time exploring the novel 

odor than familiar odors within the first trial with p<.01; * Indicates a significant 

reduction in time spent exploring the novel odor between trial 1 and trial 3 with p<.01.  

Data are means ± SEM. 
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Group 

 

N1 Trial 1 N1 Trial 3 
t value P value 

Anisomycin Consolidation 10.8±1.3 0.28±.24 8.212 <.0001 

Table 4.1a  Habituation to N1 (Anisomycin consolidation) 

Data reflect mean exploration time (in seconds) of N1 on the trial indicated, ± SEM. 

 

 

 
 

 

Group 

 

N1 Familiar 
t value P value 

Anisomycin Consolidation 10.8±1.3 0.14±.06 8.393 <.0001 

Table 4.1b  Novel-odor preference in the habituation phase (Anisomycin consolidation) 

Data reflect mean exploration time (in seconds) of the odor indicated during the first 

habituation trial, ± SEM. 

Odors 

Odors 
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Figure 4.2 Anisomycin disrupts odor recognition memory 

Recognition of the recently-novel odor on the next day is reflected in reduced exploration 

of the recently-novel odor compared to a brand-new novel odor only in the vehicle 

control rats.  Rats that received Anisomycin infusions explore both odors equally, 

indicating a loss of overnight memory. * Indicates significantly more time spent 

exploring the novel odor than the recently novel odor with p<.05.  Data are means ± 

SEM. 
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Odors 

Group n 
N1 N2 Familiar Familiar 

t 
value 

P 
value 

Effect 
Size 

Anisomycin 
consolidation 

9 0.48±.08 0.46±.08 0.03±.01 0.03±.01 0.17 .868 0.079 

Vehicle  
control 

10 0.32±.07 0.62±.08 0.03±.01 0.02±.01 2.65 .016 1.18 

Table 4.2a Mean proportion exploration time (± SEM) in the odor recognition test, with 
statistics (Anisomycin consolidation) 

Shaded rows indicate groups where the comparison between N1 and N2 was not 

statistically significant, indicating a loss of overnight memory for N1. 

 

 

 

Odors 
Group 

N1 N2 Familiar Familiar 

Anisomycin  

consolidation 
5.527±1.18 5.75±1.33 0.29±0.09 0.29±0.09 

Vehicle Control 7.74±2.57 3.68±1.4 0.18±0.05 0.39±0.15 

Table 4.2b Mean absolute exploration times (seconds, ± SEM) in the odor recognition 
test (Anisomycin consolidation) 
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Experiment 2: Intra-Medial Amygdala Anisomycin Infusions (reconsolidation 

group) 

 
Habituation test data are shown in Fig. 4.3 and Tables 4.3a and 4.3b. Rats showed 

a significant reduction in the amount of time spent exploring N1 between trial 1 and trial 

3, suggesting marked habituation. A comparison of individual odor exploration within the 

first trial revealed that rats spent significantly more time exploring N1 than the familiar 

odor beads.  

 

Recognition Memory Test, 24 Hours Following Reactivation. Recognition memory 

test data for the ACSF and Anisomycin treated rats are shown in Fig. 4.4 and Tables 4.4a 

and 4.4b. Anisomcin treated rats showed no difference in percent time exploring N1 

versus N2, suggesting an impairment of reconsolidation for the memory of N1. Control 

rats spent significantly more time exploring N2 than N1.  
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Figure 4.3 Novel odor preference and habituation to a novel odor across three trials in 
drug naïve cannulated rats that will receive Anisomycin infusions 24-hours 
following the third habituation trial, after a 1-trial reminder of N1 

 
Rats initially show intense interest in a novel odor upon its first presentation but habituate 

to it by the third presentation.  # Indicates significantly more time exploring the novel 

odor than familiar odors within the first trial with p<.01; * Indicates a significant 

reduction in time spent exploring the novel odor between trial 1 and trial 3 with p<.01.  

Data are means ± SEM. 
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Group 

 

N1 Trial 1 N1 Trial 3 
t value P value 

Anisomycin Reconsolidation 9.8±1.6 0.08±.05 6.512 <.0001 

Table 4.3a  Habituation to N1 (Anisomycin reconsolidation) 

Data reflect mean exploration time (in seconds) of N1 on the trial indicated, ± SEM. 

 

 

 

 
 

 

Group 

 

N1 Familiar 
t value P value 

Anisomycin Reconsolidation 9.8±1.6 0.25±.07 6.369 <.0001 

Table 4.3b  Novel-odor preference in the habituation phase (Anisomycin 
reconsolidation) 

Data reflect mean exploration time (in seconds) of the odor indicated during the first 

habituation trial, ± SEM. 
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Odors 
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Figure 4.4 Anisomycin disrupts reconsolidation of odor recognition memory 

Recognition of the recently-novel odor on the next day is reflected in reduced exploration 

of the recently-novel odor compared to a brand-new novel odor only in the vehicle 

control rats.  Rats that received Anisomycin infusions explore both odors equally, 

indicating a loss of overnight memory. * Indicates significantly more time spent 

exploring the novel odor than the recently novel odor with p<.05.  Data are means ± 

SEM. 
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Odors 

Group n 
N1 N2 Familiar Familiar 

t 
value 

P 
value 

Effect 
Size 

Anisomycin 
reconsolidation 

8 0.52±.08 0.40±.08 0.03±.01 0.03±.01 0.983 .342 0.49 

Vehicle  
control 

5 0.21±.09 0.73±.08 0.03±.02 0.01±.01 3.84 .005 2.42 

Table 4.4a  Mean proportion exploration time (± SEM) in the odor recognition test, with 
statistics (Anisomycin reconsolidation) 

Shaded rows indicate groups where the comparison between N1 and N2 was not 

statistically significant, indicating a loss of overnight memory for N1. 

 

 

Odors 
Group 

N1 N2 Familiar Familiar 

Anisomycin  

reconsolidation 
5.335±1.93 3.46±1.04 0.15±0.05 0.275±0.11 

Vehicle Control 1.6±0.81 5.25±2.34 0.12±0.05 0.44±0.39 

Table 4.4b Mean absolute exploration times (seconds, ± SEM) in the odor recognition 
test (Anisomycin reconsolidation) 
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Experiment 3: Ethanol Reconsolidation 

 
Habituation test data are shown in Fig. 4.5 and Tables 4.5a and 4.5b. Rats showed 

a significant reduction in the amount of time spent exploring N1 between trial 1 and trial 

3, suggesting marked habituation. A comparison of individual odor exploration within the 

first trial revealed that rats spent significantly more time exploring N1 than the familiar 

odor beads.  

 

Recognition Memory Test, 24 Hours Following Reactivation. Recognition memory 

test data for the ethanol and control rats are shown in Fig. 4.6 and Tables 4.6a and 4.6b. 

Ethanol treated rats showed no difference in percent time exploring N1 versus N2, 

suggesting an impairment of reconsolidation for the memory of N1. Control rats spent 

significantly more time exploring N2 than N1.  
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Figure 4.5 Novel odor preference and habituation to a novel odor across three trials in 
drug naïve rats that will be exposed to ETOH 3.0 g/kg  24-hours following 
the third habituation trial, after a 1-trial reminder of N1 

Rats initially show intense interest in a novel odor upon its first presentation but habituate 

to it by the third presentation.  # Indicates significantly more time exploring the novel 

odor than familiar odors within the first trial with p<.01; * Indicates a significant 

reduction in time spent exploring the novel odor between trial 1 and trial 3 with p<.01.  

Data are means ± SEM. 
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Group 

 

N1 Trial 1 N1 Trial 3 
t value P value 

Ethanol Reconsolidation 19.0±1.76 3.8±.87 8.303 <.0001 

Table 4.5a  Habituation to N1 (ETOH reconsolidation) 

Data reflect mean exploration time (in seconds) of N1 on the trial indicated, ± SEM. 

 

 

 
 

 

Group 

 

N1 Familiar 
t value P value 

Ethanol Reconsolidation 19.0±1.76 1.9±.43 9.424 <.0001 

Table 4.5b  Novel-odor preference in the habituation phase (ETOH reconsolidation) 

Data reflect mean exploration time (in seconds) of the odor indicated during the first 

habituation trial, ± SEM. 

Odors 

Odors 
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Figure 4.6 Ethanol disrupts reconsolidation of odor recognition memory 

Recognition of the recently-novel odor on the next day is reflected in reduced exploration 

of the recently-novel odor compared to a brand-new novel odor only in the saline control 

rats.  Rats that received ETOH 3.0 g/kg explore both odors equally, indicating a loss of 

overnight memory. * Indicates significantly more time spent exploring the novel odor 

than the recently novel odor with p<.05.  Data are means ± SEM. 
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Odors 

Group n 
N1 N2 Familiar Familiar 

t 
value 

P 
value 

Effect 
Size 

Ethanol 
reconsolidation 

9 0.38±.05 0.49±.05 0.05±.01 0.06±.01 1.524 .147 0.72 

Saline 
controls 

6 0.22±.08 0.69±.08 0.05±.01 0.03±.01 4.085 .002 2.358 

Table 4.6a  Mean proportion exploration time (± SEM) in the odor recognition test, with 
statistics (ETOH reconsolidation) 

Shaded rows indicate groups where the comparison between N1 and N2 was not 

statistically significant, indicating a loss of overnight memory for N1. 

 

 

 

Odors 
Group 

N1 N2 Familiar Familiar 

Ethanol 

reconsolidation 
5.15±1.05 7.07±1.64 0.7±0.17 0.77±0.17 

Saline control 4.26±1.05 15.78±3.53 0.92±0.25 0.65±0.16 

Table 4.6b Mean absolute exploration times (seconds, ± SEM) in the odor recognition 
test (ETOH reconsolidation) 
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Experiment 4: Non-Reactivated Control 

 

 
Habituation test data are shown in Fig. 4.7 and Tables 4.7a and 4.7b. Rats showed 

a significant reduction in the amount of time spent exploring N1 between trial 1 and trial 

3, suggesting marked habituation. A comparison of individual odor exploration within the 

first trial revealed that rats spent significantly more time exploring N1 than the familiar 

odor beads.  

 

 Recognition memory test. When habituation was followed 24 hr later (rather than 

immediately) by high-dose ethanol, and recognition was assessed 24 hr after that, both 

control and ethanol-treated rats spent significantly more time exploring the novel odor N2 

than N1 indicating retained memory for N1 as seen in Fig. 4.8 and Tables 4.8a and 4.8b.  

This shows not only that memory for N1 was detectable 48 hr after habituation, but also 

that without a 1-trial reminder of N1, the memory for that odor does not get reactivated 

and thus is not vulnerable to ethanol.  
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Figure 4.7 Novel odor preference and habituation to a novel odor across three trials in 
drug naïve rats that will be exposed to ETOH 3.0 g/kg 24-hours following 
the third habituation trial 

Rats initially show intense interest in a novel odor upon its first presentation but habituate 

to it by the third presentation.  # Indicates significantly more time exploring the novel 

odor than familiar odors within the first trial with p<.01; * Indicates a significant 

reduction in time spent exploring the novel odor between trial 1 and trial 3 with p<.01.  

Data are means ± SEM. 
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Group 

 

N1 Trial 1 N1 Trial 3 
t value P value 

ETOH 3.0 Non-Reactivated 
22.0±2.9 5.9±1.0 4.907 <.0001 

Table 4.7a  Habituation to N1 (Non-Reactivated control) 

Data reflect mean exploration time (in seconds) of N1 on the trial indicated, ± SEM. 

 

 

 

 

 
 

 

Group 

 

N1 Familiar 
t value P value 

ETOH 3.0 Non-Reactivated 
22.0±2.9 2.3±.59 6.616 <.0001 

Table 4.7b Novel-odor preference in the habituation phase (Non-Reactivated control) 

Data reflect mean exploration time (in seconds) of the odor indicated during the first 

habituation trial, ± SEM. 

Odors 

Odors 
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Figure 4.8. Higher-dose ethanol delivered 24-hours after habituation does not disrupt 
odor memory  

Recognition of the recently-novel odor on the next day is reflected in reduced exploration 

of the recently-novel odor compared to a brand-new novel odor only in the vehicle 

control rats.  Rats that received ethanol injections explore N2 preferientially over N1, 

indicating no loss of overnight memory. 
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Odors 

Group n 
N1 N2 Familiar Familiar 

t 
value 

P 
value 

Effect 
Size 

Ethanol 
Non-

Reactivated 
6 0.27±.05 0.68±.05 0.01±.01 0.02±.01 5.23 .0001 3.02 

Saline 
controls 

6 0.29±.06 0.62±.07 0.03±.01 0.04±.01 3.43 .006 1.98 

Table 4.8a  Mean proportion exploration time (± SEM) in the odor recognition test, with 
statistics (Non-Reactivated control) 

 

 

 

Odors 

Group 

N1 N2 Familiar Familiar 

Ethanol 

Non-Reactivated 
7.13±1.8 17.65±3.32 0.33±0.16 0.47±0.1 

Saline control 6.4±1.87 13.68±3.35 0.72±0.36 0.87±0.47 

Table 4.8b Mean absolute exploration times (seconds, ± SEM) in the odor recognition 
test (Non-Reactivated control) 
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Experiment 5: Ethanol Reconsolidation hangover control 

 
Habituation test data are shown in Fig. 4.9 and Tables 4.9a and 4.9b. Rats showed 

a significant reduction in the amount of time spent exploring N1 between trial 1 and trial 

3, suggesting marked habituation. A comparison of individual odor exploration within the 

first trial revealed that rats spent significantly more time exploring N1 than the familiar 

odor beads.  

 

Recognition Memory Test, 48 Hours Following Reactivation. Recognition memory 

test data for the ethanol and control rats are shown in Fig. 4.10 and Tables 4.10a and 

4.10b. Ethanol and saline treated rats showed no difference in percent time exploring N1 

versus N2, suggesting an impairment of memory for N1 at the 72 hour timepoint. 72 hour 

control rats also showed no preference for N1 over N2, suggesting that 72 hours may be 

the upper-limit duration of recognition memory in the odor task.  
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Figure 4.10 Novel odor preference and habituation to a novel odor across three trials in 
drug naïve rats that will be exposed to ETOH 3.0 g/kg or saline   
immediately following the third habituation trial, after a 1-trial reminder of 
N1 and tested 48-hrs later 

Rats initially show intense interest in a novel odor upon its first presentation but habituate 

to it by the third presentation.  # Indicates significantly more time exploring the novel 

odor than familiar odors within the first trial with p<.01; * Indicates a significant 

reduction in time spent exploring the novel odor between trial 1 and trial 3 with p<.01.  

Data are means ± SEM. 
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Group 

 

N1 Trial 1 N1 Trial 3 
t value P value 

Ethanol reconsolidation 
hangover control 

15.9±1.49 4.34±.89 8.013 <.0001 

Table 4.10a  Habituation to N1 (Ethanol reconsolidation hangover control) 

Data reflect mean exploration time (in seconds) of N1 on the trial indicated, ± SEM. 

 

 

 
 

 

Group 

 

N1 Familiar 
t value P value 

Ethanol reconsolidation 
hangover control 

15.9±1.49 1.98±.47 8.902 <.0001 

Table 4.10b  Novel-odor preference in the habituation phase (Ethanol reconsolidation 
hangover control) 

Data reflect mean exploration time (in seconds) of the odor indicated during the first 

habituation trial, ± SEM. 

 

 

 

Odors 

Odors 
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Figure 4.10 72-hours is the upper-limit for detection of odor memory in the recognition 
test 

Recognition of the recently-novel odor on the next day is reflected in reduced exploration 

of the recently-novel odor compared to a brand-new novel odor only in the saline control 

rats.  Rats that received ETOH 3.0 g/kg or saline explore both odors equally, indicating a 

loss of memory. Similarly, rats administered saline immediately following habituation 

and tested 72-hours later show no detectable memory for N1. It is possible that the delay 

allowed for a renewal of salience for N1. Data are means ± SEM. 
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Odors 

Group n 
N1 N2 Familiar Familiar 

t 
value 

P 
value 

Effect 
Size 

Ethanol 
reconsolidation 

hangover 
control 

8 0.33±.05 0.50±.08 0.07±.02 0.08±.03 1.771 .101 0.885 

Saline 
controls 

7 0.42±.07 0.48±.07 0.03±.01 0.05±.01 0.574 .577 0.306 

72-hr controls 5 0.34±.07 0.39±.05 0.14±.03 0.10±.03 0.485 .640 0.307 

Table 4.10a  Mean proportion exploration time (± SEM) in the odor recognition test, 
with statistics (Ethanol reconsolidation hangover control) 

Shaded rows indicate groups where the comparison between N1 and N2 was not 

statistically significant, indicating a loss of overnight memory for N1. 

 

 

Odors 
Group 

N1 N2 Familiar Familiar 

Ethanol 

reconsolidation 
4.03±0.83 8.6±2.82 0.7±0.22 1±0.23 

Saline control 6.8±2.3 7.7±2.3 0.48±0.15 0.68±0.16 

72-hr controls 3.1±0.6 3.7±0.7 1.4±0.4 0.94±0.27 

Table 4.10b Mean absolute exploration times (seconds, ± SEM) in the odor recognition 
test (Ethanol reconsolidation hangover control) 
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DISCUSSION 

 

In chapter 4, it was demonstrated that odor recognition memory can be impaired by 

disrupting functionality of the medial amygdala through protein synthesis inhibition. 

However, one cannot conclude that the medial amygdala is the only structure involved in 

memory for our task. It has been suggested that the hippocampus and surrounding 

structures such as the entorhinal cortex (Brown & Aggleton 2001; Kurt, Bunsey & Riccio 

2003; Fortin, Wright & Eichenbaum 2004; Mayeaux & Johnston 2004; Petrulis, Alvarez 

& Eichenbaum 2005) and the orbitofrontal cortex (Ramus & Eichenbaum 2000) are at 

least partially responsible for memory in recognition tasks. Dudai (2004) suggests that at 

the systems level, information may first be encoded by the hippocampus (Kapur 1999; 

Jarrard 2001; Murray & Bussey 2001; Sutherland et al., 2001; Wincour, McDonald & 

Moscovitch 2001) and subsequently passed to other systems such as the amygdala and 

frontal cortex. The particular task that is employed to investigate the roles of these 

various structures is inextricably linked to the results obtained. The version of the social 

odor recognition task employed by Eichenbaum (2004, 2005) requires the rat to 

remember an odor associated with a particular place and context, both of which might 

add a hippocampal component to an odor recognition task. Regardless, it is possible that 

all of these structures are involved in odor recognition at various points during the 

process of consolidation and further investigation is warranted.  

The finding that that an established memory can be disrupted by delivery of a 

high dose of ethanol after cued reactivation of the original memory, but only if the 
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memory is cued, is a new finding that has not been demonstrated elsewhere. However, 

this result as well as our demonstration of reconsolidation deficits with anisomycin 

corresponds with similar results from the large body of reconsolidation literature. 

Essential to a demonstration of reconsolidation deficits are the effects of the proposed 

amnestic treatment, in this case ethanol, on a non-reactivated memory. Our non-

reactivated control group demonstrates this effect. These rats are given 24-hours to 

consolidate the memory for N1, then they are administered a high dose of ethanol and 

tested 24-hours later. When the ethanol is administered, the rats do not receive a 

“reminder cue” (one-minute trial with N1) before ethanol intoxication, and as a result 

express memory for N1 in the recognition test by exploring N2 preferentially. This is in 

contrast to the ethanol group that were given the N1 reminder before ethanol and 

subsequently showed memory impairment for N1, suggesting a reconsolidation deficit. 
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GENERAL DISCUSSION 
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Binge consumption of alcohol can cause memory impairments, but surprisingly little 

is known about these impairments even though they are common, potentially dangerous, 

socially and economically costly, and linked to alcohol abuse (Sweeney 1989; Anthenelli 

et al., 1994; Jennison & Johnson, 1994; Buelow & Koeppel, 1995; Buelow & Harbin, 

1996; Hartzler & Fromme 2003; Silvers et al., 2003; Matthews & Silvers 2004).  To our 

knowledge there are no studies in the literature indicating that these memory impairments 

might include retrograde mechanisms or that they might be preventable or their 

occurrence limited. 

In the present series of experiments, it was found that a very high dose of ethanol, 

given immediately after exposure to a novel odor, led to retrograde memory impairment 

in a memory recall test conducted 24 hr later. This memory impairment could be 

prevented with the administration of caffeine, a drug often contained in beverages 

consumed before, during or after alcohol.  Caffeine somehow prevented the ethanol-

induced retrograde amnesia, not only when delivered just prior to learning and exposure 

to ethanol, but also even when delivered one hour after ethanol. Multiple mechanisms 

could be responsible for the observed reversal of ethanol’s amnestic effects, including an 

undetectable reduction in the hypnotic effects of ethanol through adenosine A
2A 

receptor 

blockade (Yacoubi et al., 2003).    

Neither an adenosine A
2A

 antagonist nor a phosphodiesterase-5 inhibitor alone 

prevented retrograde amnesia when delivered one hour after ethanol (unlike caffeine, 

which did prevent the amnesia).  However, a combination of these two drugs was highly 

effective at the previously ineffective doses, which were selected to on the basis of the 
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dose of caffeine.  Thus, it appears that mimicking two of caffeine’s key mechanisms of 

action simultaneously with a PDE5 inhibitor and an A
2A

 antagonist is at least sufficient, if 

not necessarily required, for prevention of retrograde amnesia by ethanol. It must be 

noted however, that a double dose of the adenosine A
2A

 antagonist was not administered 

to the rats after habituation. It is suggested by (Rebola et al., 2008) that adenosine A
2A

 

receptors are critical for long term potentiation at NMDA synapses. Adenosine A
2A

 

receptors are found throughout the olfactory bulb in high densities (Kaeling-Lang, 

Lauterburg & Burgunder 1999; Dluzen et al., 2000; Cunhan 2001; Ribiero, Sebastiao & 

Mendoca 2003) and (Dorhman & Diamond 1997; Schummers, Bentz & Browning 1997) 

suggest some of ethanol’s deleterious effects may be mediated by action at adenosine 

receptors. In fact, (Arolfo et al., 2004) demonstrated that ethanol self-administration is 

attenuated by blockade of A
2A

 receptor sites with the antagonist DMPX. As our task uses 

odor as the primary stimulus, it might be possible that a 2X dose of ZM241385 could 

prevent ethanol induced retrograde memory impairments through negating ethanol’s 

action at the adenosine receptor sites found in the olfactory bulb. 

While our experimental design requires the administration of ethanol immediately 

after habituation to address memory impairments, this is not an accurate model of how a 

binge drinking episode takes place in humans. On the contrary, a binge episode will 

include a large volume of alcohol consumed over a period of hours, not delivered all at 

once as in our ethanol groups. A more accurate parallel to human consumption would be 

to deliver a lower-dose (1.0 g/kg) every 20 minutes for one hour, to achieve the same 

dose of 3.0 over a slower period of time. It remains possible that caffeine and related 

agents would not have negated memory impairments had the ethanol been administered 
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during learning.  However, to rule out nonspecific factors such as attention and 

sensorimotor function impairments that might influence how well, or even whether, a 

memory is laid down, the present study was designed to ensure that memory for N1 was 

established in a completely sober state.  Binge-alcohol induced blackouts in people may 

be primarily anterograde; however, the present study raises the possibility that at least 

some memory impairment could be retrograde, reflecting a degradation of memories laid 

down just prior to exposure to very high levels of alcohol.  It is also possible that 

emotionally charged, extremely salient memories would be more resistant to disruption 

by ethanol. 

Although we have gathered data that make it quite reasonable to refer to this 

deficit as “retrograde amnesia”, we cannot assume that the memory was totally “lost”. It 

is unknown whether the ethanol-induced retrograde memory impairment was a 

consolidation deficit, a retrieval (memory accessibility) deficit, or both. The greatest 

controversy surrounding research into retrograde amnesia is whether retrograde memory 

impairments observed in animal models are due to a retrieval failure or a failure to 

consolidate (Miller & Matzel 2006). A deficit in consolidation represents a disruption of 

the storage of information evidenced by impaired performance on tests of memory while 

a retrieval deficit represents successful storage of information with an inability to access 

that information at the time of testing (for review see Dudai & Morris 2000; Miller & 

Matzel 2006; Miller & Sweatt 2006; Squire 2006; Sara & Hars 2006; Nader & Wang 

2006; Nader 2006; Riccio 2006). Those who take the retrieval view,  point to the ability 

of a “reminder” cue, given at some point after learning and amnestic treatment, to allow 

for memory to be expressed (Springer & Miller 1972; DeVietti & Bucy 1975). However, 
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when this memory is retrieved, it is not restored to full capacity, on the contrary, it is 

returned in a diminished state, which serves as an argument for a deficit in storage 

(Squire 2006). Regardless, these data suggest that pharmacological manipulations might 

begin to shed new light on potential mechanisms of suppression and reversal of memory 

access.  

It is unlikely that the effect of the higher dose of ethanol was related to 

reinforcement associated with its pairing with N1 because the lower dose of ethanol 

(which is still a substantial dose) did not enhance the salience of N1, in that 24 hr later 

N1 was explored significantly less than N2 (indicating intact memory and no increase in 

interest in N1 relative to controls. Furthermore, during the odor recognition task, the 

presentation of N1 serves as a reminder cue in the presence of N2. Regardless, rats 

treated with PTZ and a high-dose of ethanol show no preference for N2, suggesting that 

the presence of a “reminder” cue is not enough to restore the memory for N1. Finally, the 

48-hour hangover control provides evidence that 48-hours post ethanol, the memory for 

N1 is not present. It cannot be argued that at this time-point ethanol has not been fully 

metabolized. If these rats were to express memory for N1 at 48 hours and not 24 hours, 

then a strong argument could be made for ethanol affecting the ability of the rats to 

retrieve memory for N1, as it does not, it is likely that this 48-hour hangover control 

provides evidence for a deficit in storage of memory for N1 and not retrieval. 

It is also unlikely that the effect of the high dose of ethanol was due to lingering 

(“hangover”) effects that might influence performance, for several reasons.  First, the 

total mean exploration times (combining N1 and N2) of the control and 3.0 g/kg ethanol 

treated Long-Evans rats were not very different between groups: control (11.94 sec) and 
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3.0 g/kg ethanol (14.67 sec). Rats exposed to the higher dose of ethanol 24 hr earlier did 

not reduce exploration. Secondly, the 3.0g/kg dose of ethanol would be metabolized by 

the time the recognition test was performed 24-hours after habituation. Third, a separate 

group of rats administered 3.0 g/kg ethanol 24 hr after habituation, well past the time 

when memory consolidation should have been established and therefore should be 

resistant to disruption, showed apparently normal memory for the recently-novel odor the 

following day, when the “hangover” effects would be assumed to be taking place.  That 

is, on the day following the higher dose of ethanol, these rats had no problem 

distinguishing between N1 and N2, showing the greatest preference for N2 (the most 

novel of the two odors), while maintaining a preference for N1 relative to familiar home 

cage odors.   Also, rats treated with caffeine or the combination of the PDE5 inhibitor and 

the A2A antagonist one hour after exposure to the higher dose of ethanol behaved 

similarly to control animals, including no impairment in memory retrieval. Because these 

rats showed normal memory and no ill-effects of the ethanol 23 hr later, together these 

data suggest that the retrograde memory impairment observed with the higher dose of 

ethanol in the absence of caffeine or the combination of the PDE5 inhibitor and A2A 

antagonist was not likely due to veisalgia (“hangover” effects on some aspect of 

performance). However, it must be noted that all of the ethanol was delivered acutely via 

i.p. injection. This delivery method, as well as repeated intermittent doses of ethanol have 

been demonstrated to cause stress in rats (Zhang et al., 2007). Based on our experimental 

design this outcome is unavoidable as voluntary-self administration of ethanol does not 

provide the control necessary to directly assess the effects of an acute high dose of 
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ethanol retrogradely on memory.  However, the acute injection of the low dose of ethanol 

perhaps would have produced a comparable level of stress. 

Ethanol also has many different mechanisms of action. For example, ethanol at high 

doses is known to interfere with glutamatergic action at NMDA, AMPA and kainate 

receptors while it also enhances GABAergic synaptic transmission with a surprising 

degree of specificity in memory related areas of the brain such as the hippocampus 

(White et al., 2000). It has also been suggested that both acute and chronic ethanol 

exposure increases extracellular levels of adenosine (Dorhman & Diamond 1997). 

Furthermore, it has been argued that for new learning to undergo consolidation (i.e., the 

transfer from a labile to stable state), protein synthesis may be critically involved 

(Flexner & Stellar, 1965; Schafe & LeDoux 2000; Kandel 2001) and there is growing 

evidence that activation of NMDA receptors is a crucial step in this process (Miserendino 

et al., 1990; Rodrigues et al., 2001; Riedel et al., 2003). It has been demonstrated that 

acute ethanol exposure can inhibit critical steps in at least some protein synthesis 

pathways, possibly through its antagonism of NMDA receptors (Chandler & Sutton 

2005).  

Ethanol’s effects are widespread throughout the brain, and it will be difficult to learn 

which specific brain structures and mechanisms of action are necessary or sufficient to 

cause retrograde amnesia. However, Matthews & Silvers (2004) reviewed their own work 

and that of others and argue that ethanol’s effects on memory may have remarkably 

specific action in the hippocampus, particularly by enhancing GABAergic potency at 

GABA
A
 receptors and by interfering with glutamate at NMDA receptors, to affect spatial 

memory. Memory-impairing effects of ethanol may influence GABAergic activity by 



 121 

increasing levels of allopregnanolone in the hippocampus. Indeed, finasteride (which 

reduces ethanol-induced allopregnanolone levels by almost 50%), when combined with 

ethanol, blocked ethanol-induced inhibition of hippocampal pyramidal neurons and 

spatial memory deficits.  These investigators go on to suggest that ethanol’s potentiation 

of GABA
A
 receptor activity in the hippocampus may reduce hippocampal levels of 

acetycholine. Anticholinergic drugs, like injury to the hippocampus directly or indirectly 

via traumatic brain injury or stroke, are known to interfere with hippocampal dependent 

memory, particularly when the learning procedure requires memory for strategy 

switching for optimal spatial performance (e.g., Lindner & Schallert, 1988; Day & 

Schallert, 1996; Choi et al., 2006). 

The recent use of topiramate to prevent alcohol relapse in abstinent individuals (in 

addition to its use to treat acute withdrawal effects) might be of significance because this 

drug, like ethanol, is a kainate glutamate antagonist and to a lesser extent an AMPA 

antagonist, and it may reduce glutamate release via inhibition of glutamine synthetase 

activity and blocking of sodium channels (see Krupitsky et al., 2007 for review).  

Topiramate might interfere with memory when taken during learning (Martins de Lima et 

al., 2007) and could conceivably cause retrograde memory impairment effects when 

administered just after new learning (during consolidation).  This would have 

considerable implications for its use in people, and the memory evaluating techniques 

presented in this paper may be useful in assessing this possibility. 

Memantine, an NMDA antagonist used to slow the progression of Alzheimer’s 

disease, does not appear to interfere with acquisition of new spatial or other learning, but 

at doses that are high enough to reduce neural degeneration it may disrupt overnight 
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memory (Creeley et al., 2006). Whether it can induce retrograde memory impairment, 

either alone or in combination with very low doses of ethanol, is a question that has never 

been addressed. The NMDA antagonist MK-801 has been shown to cause retrograde 

amnesia (e.g., Packard & Teather, 1997; but see Nilsson et al., 2007), whereas the non-

NMDA glutamate receptor antagonist NBQX does not appear to affect recognition 

memory (Pitsikas et al., 2002). 

Attempting to shed light on the mechanisms underlying consolidation of memory 

and the disruption of memory through ECS, Kandel (2001) began work that would 

eventually lead to the modern theory of LTP and the necessary mechanism for LTP; 

protein synthesis. In order to understand mechanisms for consolidation, Kandel utilized a 

simple organism (Aplysia Californica) and classical conditioning. The nervous system of 

the Aplysia contains a defined number of neurons that are in fact labeled and numbered 

universally. As a result, it was possible to condition the animal and observe the animal’s 

learning of the conditioned behavior, while at the same time, record activity from a 

distinct number of neurons involved in that learning. Aplysia have a moderate gill 

withdrawal reflex that occurs when the mantle shelf or the siphon of the gill is touched. 

In a classical conditioning paradigm, the touching of either mantle or siphon (CS) is 

paired with a tail shock (US), eliciting an enhanced gill withdrawal reflex. Once this 

conditioning has taken place, the CS alone will produce the enhanced gill withdrawal. At 

the cellular level, if the number of pairings is increased, the sensitization becomes long-

term. This occurs as a result of changes to the structure of the neuron itself, and is 

referred to as LTP (long-term potentiation of a pathway, resulting in a subsequent 

potentiation of the learned response. The processes of consolidation and re-consolidation 
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themselves are forms of long-lasting LTP, as they serve to encode experience from short-

term to longer-lasting forms (Schafe, Nader & LeDoux 2001; Dudai 2002) 

  Amongst reconsolidation theorists, the general consensus is that the necessary 

step in eliciting LTP through consolidation/re-consolidation is protein synthesis (Judge 

1982; Litvin 2000; Nader 2000; Taubenfeld 2001; Debiec, Ledoux & Nader 2002; 

Milekic & Alberini 2002) although there is much debate about this requirement (for the 

most recent reviews, see: Gold 2008; Radulovic & Tronson 2008; Rudy 2008; 

Routtenberg; Alberini 2008; Klann & Sweatt 2008; Abraham & Williams 2008; Miyahita 

et al., 2008; Won & Silva 2008; Hernandez & Abel 2008; Lu, Christian & Lu 2008; 

Helmstetter, Parsons & Gafford 2008; Rodriguez-Ortiz 2008). Protein synthesis is a 

process that involves the stimulation of a G-protein coupled receptor and the initiation of 

intracellular mechanisms that culminate in the production of new proteins, growth of new 

synapses and long-term changes in the structure of the synapse. This takes place in three 

phases: 1) in the short term, such as with 1 trial learning, these intracellular mechanisms 

lead to an increase in neurotransmitter firing, due to increases in intracellular levels of 

CA2+, 2) in the intermediate, across a few more trials, the intracellular protein cascade 

begins a loop that eventually feeds back on itself, perpetually elevating levels of CA2+ 

and causing elevated neurotransmitter release, 3) in the long-term, many trials over a 

number of days, the changes in the structure and function of the neuron itself are 

initiated. This long-term step in protein synthesis is what is referred to as long-term 

potentiation. As consolidation is a process involving long-term LTP, it too should be 

disrupted if protein synthesis (Grollman 1967; Grollman 1967a) is disrupted (Flexner, 

Flexner & Stellar 1965; Dunn 1971). 
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There are many investigators whose research has driven them to the conclusion that 

reconsolidation is the process by which a memory is updated. Reconsolidation disruption 

is classically demonstrated in fear conditioning paradigms, in which a rodent learns to 

pair a cue such as a tone, with an aversive stimulus, such as a footshock. When this cue is 

presented enough with the footshock, the animals freeze to the tone alone as it is a signal 

for upcoming footshock (Fendt & Faneslow 1999). The theory of reconsolidation posits 

that when an animal learns a new rule for a previously learned rule-set, a single memory 

trace is updated with new information, thus suppressing or perhaps even “erasing” the old 

information contained in that memory trace (Judge and Quartermanin 1982; Schafe et al., 

2001; Duvarci & Nader 2004; Nader, Hardt, Wong 2005). Behaviorally, this is evidenced 

by less freezing to the tone in follow-up tests of memory, only after that tone has been 

played to reactivate the memory trace and followed by protein synthesis inhibition. 

However, there are also those who believe that this explanation of memory disruption is 

far too simple for such a dynamic process as memory (Miller & Matzel 2000). In 

opposition to reconsolidation theory is the theory of extinction, also demonstrated in fear 

conditioning paradigms (Milad & Quirk 2002; Fisher et al., 2004; Ouyang & Thomas 

2005). Extinction theorists posit that when an animal learns a new behavior, this learning 

is consolidated and a new memory trace is formed. If this new behavior is reinforced 

enough, then the old memory trace will become suppressed, but will still actively exist in 

the brain. Evidence for this theory comes from that fact that often when rats are presented 

with a learned cue, such as in a fear conditioning paradigm, long after the extinction of 

the memory association with an aversive component, they will nonetheless spontaneously 
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recover that old information and behave fearfully by freezing (Power, Berlau & 

McGaugh 2006).  

There is a wide degree of variability within the literature in regards to utilizing the 

most advantageous behavioral assays and drug administration doses to assess 

reconsolidation disruption or extinction (Myers & Davis 2003) although Inda, Delgado-

Garcia & Carrion (2005) demonstrate that protein synthesis may underlie both 

reconsolidation and extinction. It is suggested that research into consolidation and 

reconsolidation, which has been growing exponentially over the years, be tempered by 

the lessons learned from the long history of memory research: “the need to carefully 

attend to the learning/performance distinction, to rely equally on synthetic as well as 

reductionistic, and to avoid the seduction of simplicity” by (Cahill & McGaugh 2001). 

Regardless of these differences, there is an underlying concept that unifies the studies in 

consolidation and reconsolidation of memory: the concept that memory is a dynamic 

process, that requires any organism to constantly reorganize its behavior as a result of 

ongoing experiences in their environment, as in Przybyslawski & Sara (1997). In other 

words, if memory were a stable and unchanging entity, then how would it be possible to 

update behavior in a way that was advantageous to a given situation?  For an animal 

living in a changing environment, this is especially important in terms of emotionally 

charged experiences that require the utilization of many different pieces of learned 

information; food, shelter, predators, copulation etc. On the other hand, some memories 

are undesirable and not advantageous to human beings: traumatic experiences that lead to 

depression, obsession (Rubin, Fried & Franks 1968), PTSD (as in Przybyslawski & Sara 

1999) and drug seeking behavior that is brought on by contextual cues and conditioned 
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stimuli, as in Sara (2000). Perhaps a lesson can be taken from Gold (2006) who proposes 

the use of the term “memory modulation and re-modulation” as opposed to consolidation 

and reconsolidation as most researchers would agree that memories are constantly being 

modulated and updated in some form via multiple mechanisms. 

In summary, we have developed a test for odor-recognition memory that can be 

carried out in the home cage, that rats can readily perform, and that results in an easily 

observable and lasting form of memory that avoids some of the problems associated with 

standard memory assessment models.  Conspecific social odor memory was confirmed to 

be established in a sober state but was disrupted by subsequent heavy ethanol 

intoxication.  That is, ethanol appeared to cause impairment either of the capacity to 

adequately store a modestly-salient memory or the ability to retrieve that memory, 

whereas caffeine and related agents appeared to prevent the memory impairment. It is 

hoped that these data will be useful for understanding how binge ethanol consumption 

can cause memory impairments in humans and how caffeine or other agents might 

ameliorate these impairments. Furthermore, it is expected that the original finding that 

ethanol can disrupt both consolidation and reconsolidation will have substantial 

ramifications for people who abuse alcohol and for those whose trauma causes suffering 

from unwanted memories.  
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Appendix 1: Abbreviations Index 

A2A  Adenosine A2A subtype 

cGMP             cyclic guanosine monophosphate   

ECS  electroconvulsive shock 

ETOH  ethanol 

F  Familiar odor  

GABA  gamma-amino butyric acid 

N1  Novel odor 1 

N2  Novel odor 2 

NMDA N-methyl-D-aspartic acid 

PDE5  Phosphodiesterase type 5  

PTZ  pentylenetetrazol  
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Figure A2.1 Graphical representation of the experimental procedure for the odor     
recognition task   

For the habituation phase, three 1-minute trials with 1-minute inter-trial intervals were 

used for each animal. For the recognition test phase, one 1-minute trial with a 1-minute 

inter-trial interval was used. 
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Figure A2.2 Graphical representation of the experimental procedure for the 
reconsolidation experiments 

For the habituation phase, three 1-minute trials with 1-minute inter-trial intervals were 

used for each animal. The reactivation trial and recognition test phases each consisted of 

one 1-minute trial with a 1-minute inter-trial interval. 
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