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The capability to detect, track and monitor human activities behind building walls 

and other non-line-of-sight environments is an important component of security and 

surveillance operations. Over the years, both ultrawideband and Doppler based radar 

techniques have been researched and developed for tracking humans behind walls. In 

particular, Doppler radars capture some interesting features of the human radar returns 

called microDopplers that arise from the dynamic movements of the different body parts. 

All the current research efforts have focused on building hardware sensors with very 

specific capabilities.   This dissertation focuses on developing a physics based Doppler 

radar simulator to generate the dynamic signatures of complex human motions in non-

line-of-sight environments. The simulation model incorporates dynamic human motion, 

electromagnetic scattering mechanisms, channel propagation effects and radar sensor 

parameters. Detailed, feature-by-feature analyses of the resulting radar signatures are 

carried out to enhance our fundamental understanding of human sensing using radar. 
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First, a methodology for simulating the radar returns from complex human 

motions in free space is presented. For this purpose, computer animation data from 

motion capture technologies are exploited to describe the human movements. Next, a 

fast, simple, primitive-based electromagnetic model is used to simulate the human body. 

The microDopplers of several human motions such as walking, running, crawling and 

jumping are generated by integrating the animation models of humans with the 

electromagnetic model of the human body.  

Next, a methodology for generating the microDoppler radar signatures of humans 

moving behind walls is presented.  This involves combining wall propagation functions 

derived from the finite-difference time-domain (FDTD) simulation with the free space 

radar simulations of humans. The resulting hybrid simulator of the human and wall is 

used to investigate the effects of both homogeneous and inhomogeneous walls on human 

microDopplers.  The results are further corroborated by basic point-scatterer analysis of 

different wall effects. The wall studies are followed by an analysis of the effects of flat 

grounds on human radar signatures. The ground effect is modeled using the method of 

images and a ground reflection coefficient.  

A suitable Doppler radar testbed is developed in the laboratory for simulation 

validation. Measured data of different human activities are collected in both line-of-sight 

and through-wall environments and the resulting microDoppler signatures are compared 

with the simulation results. The human microDopplers are best observed in the joint time-

frequency space. Hence, suitable joint time-frequency transforms are investigated for 

improving the display and the readability of both simulated and measured spectrograms. 

Finally, two new Doppler radar paradigms are considered. First, a scenario is 

considered where multiple, spatially distributed Doppler radars are used to measure the 

microDopplers of a moving human from different viewing angles. The possibility of 
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using these microDoppler data for estimating the positions of different point scatterers on 

the human body is investigated. Second, a scenario is considered where multiple Doppler 

radars are collocated in a two-dimensional (2-D) array configuration. The possibility of 

generating frontal images of human movements using joint Doppler and 2-D spatial 

beamforming is considered. The performance of this concept is compared with that of 

conventional 2-D array processing without Doppler processing. 
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 1 

1. Introduction 

Detection, tracking and monitoring human activities in non-line-of-sight 

environments are important aspects of law enforcement such as hostage rescue, security 

and surveillance operations as well as search and rescue missions. Detailed situational 

information such as the number of people present in an urban area, their location and the 

type of activities they are engaged in can be of critical importance that aid in decision 

making.  For this purpose, different types of sensors have been researched including 

optical, infrared, ultrasound, X ray and radio frequency (RF) sensors [1]-[4]. Each offers 

some unique advantages. While optical and infrared sensors have excellent resolution 

which is useful for imaging targets, they cannot be used in through-wall environments 

since they have poor wall penetration. Also, these sensors cannot operate 24/7 and under 

difficult weather conditions. Ultrasound signals marginally penetrate walls and are useful 

for detecting motion. However, the maximum achievable range from such sensors is quite 

limited. X ray sensors have both wall penetration and high resolution capacities. On the 

other hand, the sensors are expensive and often have safety concerns. Some of the unique 

advantages offered by an RF sensor are the abilities of operating 24-hour, under all 

weather conditions and in through-wall environments. Also, inexpensive radar systems 

capable of detecting and locating moving humans behind walls can be developed from 

off-the-shelf RF components.  As a result, there is an abundance of RF sensor research 

and development for through-wall human sensing.   
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1.1.  RADAR SYSTEMS FOR SENSING HUMANS BEHIND WALLS 

The attenuation of an electromagnetic signal through walls increases rapidly as a 

function of frequency [5]-[7]. Therefore, the RF technologies that are currently being 

researched for sensing humans behind walls typically operate anywhere between UHF 

and X-bands to obtain good wall penetration [8]-[29]. These sensors can be broadly 

grouped into two categories. The first type of sensors utilizes ultrawideband (UWB) 

techniques to obtain good down-range resolutions. The second category utilizes Doppler 

processing to sense moving targets. Some of the UWB and Doppler based sensors that 

have been developed for sensing humans behind walls are described below.  

First, we consider through-wall radar using UWB techniques. It is well known 

that waveforms with wide bandwidth, β, are useful for achieving a high range-resolution 

∆r, as described by the equation:   

β2

c
r =∆           (1.1) 

where c is the speed of light. Different types of waveforms have been used to achieve 

wide bandwidth. For instance, Time Domain Corporation’s Radar Vision and Soldier 

Vision radars [8]-[10] transmit extremely short duration pulses and compute the range of 

a target based on the time delay of the reflected echo from the target. Further, the pulses 

are pseudo-randomly coded so that the transmitted signal resembles noise to ensure 

operational covertness. Other waveforms such as stepped frequency [11]-[13] and linear 

frequency modulated continuous wave (FMCW) [14] have also been researched for 

achieving high bandwidth and correspondingly high down-range resolution.   
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Theoretically, the cross-range resolution is determined by the product of the range 

and the beamwidth θB (in radians) of the radar which is inversely proportional to the 

dimension D, of the antenna aperture:  

D

λ
rθrx c

B
≈=∆          (1.3) 

λc is the wavelength of the system.  Therefore, systems such as Radar Vision obtain the 

bearing information of targets using an array of transmitter and receiver elements [8]-

[10]. Alternately, large antenna apertures have also been generated synthetically. For 

example, Eureka Aerospace’s ImpulseSAR [15],[16] combines impulse techniques with 

synthetic aperture to generate two-dimensional (2-D), i.e., range versus cross-range, 

images of a scene. The ability for generating complete three-dimensional (3-D) 

volumetric images of a scene have also been reported by Cambridge Consultant’s 

Prism200 [17] and Camero’s Xaver800 [18] radars. These radars combine the ranging 

capabilities of UWB technologies with 2-D bearing information that can be obtained 

from 2-D array processing. However, UWB radars do have some limitations. First, 

wideband systems are intrinsically susceptible to noise and very high transmit power is 

required.  Consequently, the cost and complexity of these systems are usually quite high.  

Second, the operations of UWB sensors at certain frequency bands may require a license 

from the Federal Communications Commission (FCC). Also, building wall effects such 

as multipath, transmission delay, diffraction considerably distort the high range-

resolution signatures of targets behind walls [30]. Hence, additional signal processing is 
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often required to deconvolve wall effects from the received signals. This can be quite 

challenging when the wall characteristics are not known.   

Doppler based radar systems offer an alternate approach to UWB for tracking 

humans behind walls. It is well known that a Doppler shift, fD, is introduced in the 

scattered signal from a moving target: 

r
c

D
v

c

f2
f =           (1.3) 

which is proportional to the carrier frequency of the signal, fc, and the radial velocity, vr, 

of the target with respect to the radar. For human movement detection and tracking, 

Doppler sensing is a natural choice since stationary indoor clutters can be suppressed to 

highlight human movements.  Further, since Doppler radar architectures are quite simple, 

low-cost, low-power Doppler sensors can be readily implemented using off-the-shelf 

components.  It is, however, not possible to detect and track stationary humans using the 

Doppler approach.  Moreover, non-human movers and the radar operator are potential 

sources of false alarm. 

An early example of a Doppler based system is the zero-dimensional (0-D) 

motion detector radar developed by Frazier [5]. This radar transmits a low power CW 

signal from a single transmitter unit. The presence of moving targets is detected by using 

a CW phase detector at the receiver to sense the Doppler shift in the scattered signal. 

Later, Grenekar and Geisheimer from Georgia Tech Research Institute (GTRI) developed 

a prototype of an X-band (10.525 GHz) 0-D Doppler radar called the Radar Flashlight to 

detect even very slight body movements such as respiratory motions of humans behind 
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walls [19],[20]. Both these radars were primarily intended for detecting the presence of 

intruders. Information such as the number of moving targets, the type and location are not 

available. Recently, a low-complexity CW radar concept that performs Doppler based 

location tracking of multiple movers was investigated by Lin at University of Texas at 

Austin [21],[22].  Lin’s radar combines the Doppler discrimination offered by human 

movements with 2-D bearing information that can be collected using three antenna 

elements using the principles of interferometry. Further, ranging capability was achieved 

by the incorporation of one additional frequency tone. Thus, full 3-D tracking of multiple 

targets is achieved using a radar architecture with a single transmitting antenna, four 

receivers and three receiver array elements provided the targets have distinct Dopplers.  

Another important advantage of a Doppler radar is that it is capable of capturing a 

unique feature of human movements called microDoppler. MicroDopplers of humans 

were first reported by Geisheimer from GTRI in 2000 [31]. Contrary to rigid targets 

commonly encountered in other radar applications, a human is a complex non-rigid body 

under movement. Hence the radar returns are characterized by time-varying Doppler 

features that are best observed as spectrograms in the joint time-frequency space 

[32],[33]. The Doppler spectrogram is characterized by different microDoppler tracks due 

to the torso return as well as those arising from the swinging arms and legs. These 

features were found to be quite distinct from the microDopplers of mechanical vibration, 

rotation and translation motions of rigid bodies [34],[35]. Since it was first reported, 

significant research efforts have been devoted to utilizing a moving body’s microDoppler 

signature for recognition and classification [35]-[39]. All the classifiers that have been 
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developed so far have been trained by measured data collected in controlled 

environments. The data could be influenced by the parameters of the measurement 

system and environment. Hence it is not yet known whether human microDopplers are 

sufficiently reliable features for target recognition and classification across a broad 

spectrum of environments. Detailed studies are required to determine the relationships 

between the microDoppler features of different human motions and the sensor parameters 

as well as propagation channels. 

1.2. MOTIVATION  

Most of the research efforts in RF sensing of humans up to this point have 

primarily focused on developing radar hardware for very mission-specific goals. As a 

result of this system-specific approach, the theoretical limits of RF sensing of humans 

have not been identified. In order to determine these limits, it is necessary to 

fundamentally examine the how human movements are manifested in radar sensor data. 

In turn, this knowledge will enable the radar community to optimize sensor designs for 

different applications. It is believed that a physics-based radar simulator of the scatterings 

from different human motions, for diverse sensor parameters, and under various 

propagation environments will help address this deficiency in the knowledge base.  

A complete end-to-end radar simulator of humans will allow us to perform 

detailed feature-by-feature analysis of human radar signatures. This will enable us to 

pinpoint cause-and-effect of different sensor parameters as well as propagation channel 

characteristics on human radar signatures. Ultimately, the simulator will enhance our 
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fundamental knowledge of the different phenomena inherent in the RF sensing of 

humans.  A sophisticated simulator will serve as a key enabler for investigating the “art-

of-the-possible” for human sensing in different scenarios.  This in turn will minimize the 

cost, time and effort involved in designing radar hardware with maximum information 

gathering capabilities.  

In the past, electromagnetic simulators that modeled conventional air and ground 

targets have proven to be indispensable for researching and ultimately developing 

sophisticated radar target recognition systems. It is hoped that a radar simulator of 

humans in indoor environments will enable us to generate training databases that could 

lead to the same outcome.  

1.3. SCIENTIFIC OBJECTIVE AND APPROACH 

The objectives of my dissertation are: 

(1) To develop a physics-based simulator of the scattering mechanisms associated 

with different human motions as a function of radar sensor parameters such as 

frequency, bandwidth, dwell time etc.   

(2) To incorporate commonly occurring propagation channels such as building walls 

and grounds into the radar simulation model of humans. 

(3) To validate the results from the simulator with measurement data collection using 

a Doppler radar developed in the laboratory. 

(4) To exploit the radar simulator to investigate some new radar sensor paradigms for 

imaging humans. 
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The following approach is followed to meet the objectives. 

1.3.1 Radar Simulation of Humans  

Previously, van Dorp simulated the radar returns of the human walking motion by 

using a simple electromagnetic primitive based model for the human body [33]. 

However, van Dorp’s work was limited to the simple motion of a human walking at a 

constant velocity described by Thalmann [40]. The Thalmann model is a simple three-

parameter model that cannot be extended to other motions. On the other hand, motion 

capture is a well-established technology that has been used by animation industries to 

provide detailed descriptions of almost any complex human motion such as crawling, 

running and jumping. Hence, we accomplish the first objective of the dissertation, by 

simulating the radar returns from humans by combining computer animation data that 

describe complex human motions with the primitive based electromagnetic model of the 

human body. Different body parts are modeled as basic primitives such as ellipsoids and 

spheres and the total scattering from the human is obtained from the sum of the returns 

from all the body parts. This technique is adopted instead of more rigorous computational 

electromagnetic techniques since it can be easily combined with dynamic human motion 

models to capture most of the essential scattering physics [41],[42].   

1.3.2 Radar Simulation of Channel Propagation Effects 

In order to accomplish the second objective, an approach is developed to simulate 

the frequency transfer function of propagation environments such as building walls and 

incorporate the propagation effect into the human radar simulation model. The wave 
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propagation through the wall is simulated using the finite-difference time-domain 

technique (FDTD) [43]. FDTD is chosen since it is a full-wave electromagnetic approach.  

It can accurately model the physics of even complex inhomogeneous walls such as 

cinderblock walls, which approximate techniques such as high-frequency ray tracing fail 

to model accurately [44]-[47]. 

Similarly, a simulation approach is developed using the method of images and a 

ground reflection coefficient to study the effect of a flat ground on the radar signatures of 

human motions.  

1.3.3 Validation of Human Radar Signatures 

The results from the radar simulation model are validated by comparing them 

with human radar signatures generated from measurement data collected using a Doppler 

radar testbed developed in the laboratory. This testbed is modified from the prototype of 

a radar developed earlier by Lin in 2006 [22]. Data of different human motions are 

collected in both line-of-sight environments and in different through-wall scenarios and 

compared.  

Next, suitable joint time-frequency transforms are investigated for improving the 

display and feature-by-feature analysis of radar microDoppler signatures. In particular, 

two different joint time-frequency transforms are considered. The first is the traditional 

short-time Fourier transform (STFT) and the second is the reassigned transform [48]-[51] 

which was has been extensively used by the acoustic community [49],[50]. They are 
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applied on both simulated and measured human gait data and the resulting microDoppler 

features are studied.  

1.3.4 Exploitation of the Radar Simulation Model 

Next, the radar simulation model is exploited to investigate new Doppler radar 

paradigms for generating visual animations of humans. Two different scenarios are 

considered. First, multiple Doppler radars are assumed to be spatially distributed along 

the perimeter of an area within which the human moves. Previous research efforts have 

demonstrated that it is possible to estimate the position and velocity of a moving target 

based on Doppler measurements by multiple spatially distributed sensors [52],[53]. The 

possibility of exploiting this principle to extract the time-varying position coordinates of 

different point scatterers on the human (such as torso, arms and legs) from the 

microDoppler data obtained from multiple sensors is investigated.  

In the second scenario, the possibility of generating a frontal image of a human 

using a 2-D Doppler sensor array is examined. 3-D beamforming using joint Doppler and 

2-D array processing is first implemented on the time-domain array data. Human radar 

returns are mapped into a 3-D Doppler-azimuth-elevation space. Next, suitable 

algorithms are applied to project the results from the 3-D space into the 2-D azimuth-

elevation space to generate a frontal image of a human.  

1.4. ORGANIZATION 

The dissertation is organized in the following manner. We begin by describing 

some of the background materials in Chapters 2 and 3.  Chapter 2 describes a multi-
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element Doppler radar testbed developed for simulation validation. This radar is used to 

collect human measurement data in both indoor line-of-sight and through-wall scenarios. 

Since the radar uses a limited sized array, the beamforming results are plagued with high 

sidelobe levels. Hence, some algorithms for improving the performance of the limited 

sized array are also investigated.   

Chapter 3 discusses two joint time-frequency transforms, the traditional short-

time Fourier transform (STFT) and the reassigned transform [48]-[51]. A detailed 

description of the reassigned transform is presented. Then both the transforms are tested 

on both simulated and measured human gait data and their performances are compared. 

The development of human signature simulation is presented in Chapters 4 to 6.  

Chapter 4 describes the methodology used to combine computer animation data with the 

primitive based electromagnetic prediction technique to generate the Doppler 

spectrograms of different complex human motions. The simulated radar signatures are 

validated with radar signatures generated from measured data. The effects of sensor 

frequency and viewing angle are investigated. The methodology is further extended to 

model radar returns from different animal motions described by computer animation data.  

The methodology for hybridizing primitive based modeling of humans and FDTD 

simulations of walls to generate the radar signatures of humans behind walls is presented 

in Chapter 5. The simulation methodology enables the investigation of the effect of 

complex walls on human radar signatures. The simulation results are validated with 

measured data collected in line-of-sight and through-wall scenarios using the Doppler 

radar testbed. The findings are further supplemented with an analytical study of the effect 
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of wall refraction and multipath introduced by wall inhomogeneity on the Dopplers of a 

point target moving behind walls.  

Chapter 6 investigates the effects of ground on the radar signatures of human 

motions. The simulation methodology based on the method of images is described. The 

simulated signatures of different human motions are presented as functions of ground 

reflectivity, radar elevation and type of motions.  

The simulation model is used to investigate two different Doppler radar 

paradigms to image humans in Chapters 7 and 8. First, the concept of using multiple 

spatially distributed Doppler sensors for generating an image of a moving human is 

investigated in Chapter 7. Next, the possibility of generating frontal images of a walking 

human using joint Doppler and 2-D array processing is examined in Chapter 8.  

A detailed conclusion and future avenues of research are presented in Chapter 9. 
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2. Doppler Radar Testbed  

We begin this dissertation with a description of the Doppler radar testbed that will 

be used later for measurement data collection.  This Doppler radar was previously 

developed by Lin for tracking humans. The first generation radar was a 2.4GHz, two-

element Doppler and direction-of-arrival (DDOA) radar. In this chapter, my work 

upgrades this radar to a 4-element array and combines it with software beamforming to 

track multiple humans. 

2.1. INTRODUCTION 

The low-complexity continuous wave (CW) radar of two elements reported by 

Lin in [22] used Doppler discrimination to track multiple movers. The azimuth direction-

of-arrival (DOA) of the targets is estimated using just two antenna elements spaced in the 

horizontal direction. More explicitly, if the time signals received at the two antenna 

elements are x1(t) and x2(t), then after Doppler processing the signals become X1(f) and 

X2(f), respectively.  If the targets of interest generate different Doppler frequencies fi due 

to the difference in their velocities with respect to the radar transceiver, then the DOA θi 

of target i with respect to the array boresight is derived from the phase difference of the 

scattered signal at the two elements as shown in: 











 ∠−∠
= −

)λ/dπ2(

)f(X)f(X
sinθ

c

i2i11
i

       (2.1) 

Here, d is the spacing between the elements. The wavelength of the radar is λc. This 

concept was also extended for two-dimensional azimuth-elevation tracking and three-
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dimensional range-azimuth-elevation tracking [21].  However when the Doppler 

separation among the multiple targets is poor, the DOA error was found to increase 

significantly. To overcome this limitation, we investigate the performance improvement 

by using a multiple element array. Doppler processing is implemented in conjunction 

with spatial beamforming in software to resolve multiple targets in the Doppler and DOA 

space. Monte Carlo simulations are carried out to assess the performance gain of a multi-

element system. To further overcome the broad beamwidth and high sidelobes in a 

limited size array, two different DOA estimation algorithms are implemented. They are 

the CLEAN algorithm [54], and the RELAX algorithm [55]. The performance of the 

different algorithms is studied by simulation and experimentally verified by using a 4-

element receiver array.  Measurements are conducted under line-of-sight and through-

wall scenarios for audio loudspeakers and human targets.  

2.2. RADAR THEORY AND SIMULATION 

Fig.2.1 shows the basic radar architecture under consideration.  A CW signal is 

radiated from a transmitter and a moving target introduces a Doppler shift on the 

scattered signal. The radar receiver consists of a multi-element antenna array, with each 

element connected to a separate receiver channel where the signal is amplified, 

downconverted and digitized before it is fed to a computer for further signal processing. 
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Fig.2.1. Joint Doppler and spatial beamforming radar architecture 

 

Doppler and spatial beamforming are performed on the received signals according 

to equation (2.2): 
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The short-time Fourier transform (STFT) is first applied to the time domain signal, xn(t), 

of receiver element n to capture the instantaneous Doppler, f, of the targets.  h(t) is the 

time window used in the STFT operation. Spatial beamforming is next performed by 

introducing a phase shift that is proportional to the sine of the beam steering angle θ from 

the boresight, to the signals at each of the receiver elements followed by summation of 

the phase shifted signals.  These two steps help resolve the target returns along the 

Doppler and DOA dimensions for each time instant, t. Here, N is the total number of 

elements in the antenna array. 
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2.3. MONTE CARLO SIMULATION 

Monte Carlo simulations are next performed to gauge the performance of the joint 

Doppler-beamforming algorithm towards the successful tracking of multiple targets. The 

following assumptions are made for the simulation. For each realization, a given number 

of targets are randomly placed inside a sectorial region of space bounded in range from 1 

to 10m and DOA from -45° to +45°.  Each target is randomly assigned a velocity of 

magnitude in the range of 0 to 2.5m/s and direction in the range of 0° to 360°. This yields 

Doppler values in the range of -40Hz to +40Hz for an RF wavelength of 12.5cm. The 

ability of the radar to resolve a single target’s returns is assumed to be constrained in the 

DOA dimension by the beamwidth of the linear array, which for an antenna aperture of 

size D is 50°/(D/λc). In the Doppler dimension, the ambiguity is mainly caused by the 

microDoppler components from the arms and legs of the human movement. A 40Hz 

Doppler spread is introduced to simulate the microDoppler spread for each target. With 

these two assumptions, each target is resolvable up to the rectangular ambiguity region in 

the DOA vs. Doppler space as shown in  Fig.2.2a. 

For multiple targets, the chance of overlap between the targets’ ambiguity regions 

is increased. When the ambiguity regions of any two targets overlap by more than 50%, 

the realization is considered to be irresolvable by the radar.  This simulation is performed 

for 500,000 realizations and the results are tallied. 
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Fig.2.2. (a) Detection of targets in the Doppler versus DOA plot, (b) Monte Carlo 

simulation results for probability of successfully resolving multiple targets with an 

antenna array. 

 

Fig.2.2b shows the probability of successfully resolving multiple targets versus 

the number of targets.  Each color represents a different assumed number of array 

elements, and therefore a different size antenna aperture. As expected, as the number of 

targets is increased, the probability of successfully resolving the targets drops.  Using 

more array elements improves the performance, especially in the case of a large number 

of targets, since a narrower beamwidth improves the DOA resolution.  This is done at the 

expense of increased system cost and complexity.  We see that with 4 elements, there is a 

78% probability of successfully resolving 4 targets. 
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2.4. DOA ESTIMATION 

If multiple targets are not well resolved in the Doppler domain, their successful 

DOA determination becomes quite difficult using a small size array, especially when the 

target strengths are very different. This is understood from the following simulation 

performed in a two target scenario where the targets are of the same Doppler. Hence the 

detection of the two targets is entirely determined by spatial beamforming. The 

simulation is conducted for a four-element antenna array and the ratio of the strength of 

the two targets is set to 20dB. The angular position of the strong target is varied from -

45° to +45° while that of the weak target is varied from +45° to -45° as indicated by the 

dashed lines in  Fig.2.3a. For each pair of simulated angular positions of the targets, the 

main lobe and sidelobe patterns arising from the two targets are computed by spatial 

beamforming. The DOA of the targets are estimated to be at the peaks of the beamformer 

pattern and their strengths are represented by the colored intensity as indicated in 

Fig.2.3a.  It is observed that the DOA of the strong target is detected correctly at every 

possible DOA position of the targets. The weaker target however is not detected at all 

because it is buried beneath the sidelobes of the strong target.   This result is 

unsatisfactory.  In order to improve the tracking of weak targets in the presence of strong 

targets, two different algorithms are implemented, namely, CLEAN and RELAX, and 

their performances are evaluated using the same simulation set up. 
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2.4.1. Clean Algorithm 

The CLEAN algorithm is a well-known technique to extract weaker features in 

the presence of strong features, given that the feature response function is known [54].  

Here the algorithm is applied to extract the DOA of multiple targets.  For each Doppler 

bin and at each time instant, the algorithm first identifies the strength, a1, and DOA, θ1, of 

the strongest target from the spatial beamforming pattern, χ:  
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Once the DOA of the strongest target is found, its main lobe and sidelobe features are 

removed from the spatial beamforming pattern as follows:  
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Since the strongest target is removed together with its sidelobe contribution, the weaker 

target becomes better revealed in the residual pattern, χresidual|1.  The next strongest target 

and its DOA are then determined and removed from the residual signal.  This procedure 

is continued in successive steps until the till the residual energy, |χ|
2

residual|M, falls below 

the noise floor. This algorithm is simulated for the two target scenario described earlier 

and the results are presented in Fig.2.3b. It is observed that the weak target is detected in 

the presence of a stronger target as long as their angular separation exceeds the 

beamwidth of the array. The algorithm clearly performs better than the ordinary 

beamforming technique towards detecting multiple targets. However there does appear to 
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be false targets near the strong target due to the influence of the weaker target on the 

strong target.  

2.4.2. Relax Algorithm 

It is known that the DOA estimation using CLEAN is inherently biased due to the 

sidelobe interference between the targets. This error can be further minimized by 

introducing the RELAX procedure at each CLEAN step. The RELAX algorithm is an 

enhanced version of CLEAN that relieves the error propagation tendencies in CLEAN 

[55]. It introduces a relaxation step that iteratively identifies target parameters (strength 

and DOA) until the energy of the residual pattern at each CLEAN step converges. 

Relaxation occurs in the CLEAN algorithm once the second target has been found.  At 

that stage, the second target’s contribution is extracted from the original signal.  The goal 

is to more accurately extract the first and strongest target a second time, without the 

mutual interference effects of the second target.  Assuming that M (greater than 1) targets 

have been detected in a particular CLEAN step, RELAX re-extracts the strength and 

DOA, (ap, θp), of each target, p, after removing the other targets’ (m = 1: M, m ≠ p) 

contributions in the beamformer output: 
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The re-extraction of target parameters is iterated until the residual energy at that step, 

|χ|
2

residual|M, computed using  
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converges.  This procedure is repeated for each CLEAN step.  The relaxation process 

described above, individually adjusts the values of all known targets in the absence of the 

contribution of the others.   

 

                  (a)                                        (b) 

 

              (c) 

 

Fig.2.3. Simulation results when ratio of strength of targets is 20dB for (a) Spatial 

beamforming, (b) CLEAN and (c) RELAX techniques.  
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While this inner relaxation loop makes the algorithm computationally more expensive 

than ordinary beamforming and CLEAN, it allows the accurate determination of the 

number of targets. The results obtained when this algorithm is implemented for the two 

target scenario described earlier are presented in Fig.2.3c. It is observed that angular 

position and the strength of the two targets are detected with better precision. The number 

of erroneous detections or false targets is much smaller than the earlier cases. 

Additionally, successful detection is possible even when their angular separation is within 

the beamwidth of the antenna array.  Thus RELAX enhances the performance of the 

CLEAN algorithm at the price of increased computation time. 

2.5. MEASUREMENT RESULTS 

Lin’s radar testbed is upgraded in order to allow us test the concepts described 

earlier. The testbed consists of a continuous-wave transmitter operating at a frequency of 

2.4 GHz and four receiving microstrip patch antennas fabricated on a 1.6 mm FR-4 

substrate.   

 

Fig.2.4. Photo of 2.4 GHz microstrip receiving array 

The antennas are separated by 0.56λc, to provide the maximum resolution while 

avoiding any grating lobes within the range -45° to 45°. Off-the-shelf quadrature receiver 
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boards (Analog Devices AD8347) are used to downconvert the received signals, which 

are then digitized for software processing.  A photo of the receiving array is shown in 

Fig.2.4. 

2.5.1. Indoor Line-of-Sight 

First, measurements are conducted in indoor line-of-sight (LOS) conditions. 

Audio loudspeakers are used as steady test targets.   

 
 

Fig.2.5. Three loudspeaker targets in indoor LOS resolved in the Doppler–DOA space, in 

decibel scale: (a) Experimental set up. (b) Beamforming result, (c) CLEAN result and (d) 

RELAX result. 

 

1: - 22.5°, 50Hz

2: 37.5 °, 50Hz

3: - 22.5°, 80Hz

  (a)      (b) 

         (c)               (d) 
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The two-element DDOA radar reported in [22] is not capable of resolving targets of 

identical Doppler. To demonstrate that the current radar is capable of resolving targets of 

identical Doppler along the DOA axis, the following measurement is made with three 

loudspeakers as shown in Fig.2.5a. Speakers 1 and 2 are driven at the same audio 

frequency of 50Hz but have different DOAs while speaker 3 is driven at a different audio 

frequency, 80Hz, but has the same DOA as speaker 1.  After Doppler processing and 

spatial beamforming are performed, the three targets are resolved in the Doppler-DOA 

space as shown in Fig.2.5b.  However, the result is plagued by poor resolution and high 

sidelobes in the DOA dimension.  Next, the CLEAN algorithm is tried on the same data.  

The discrete estimates of the DOA positions are obtained from the CLEAN algorithm.  

For display purpose, the extracted DOAs are convolved with a Gaussian point spread 

function of 5° beamwidth and displayed in Fig.2.5c.  The CLEAN algorithm leads to 

improved results over standard beamforming, but a small yet noticeable error exists in the  

DOA estimate of speaker 1 due to the effect of speaker 2 at the same Doppler.  The 

RELAX algorithm is next applied and the result is shown in Fig.2.5d. It is observed that 

the DOAs of the targets are estimated with greater accuracy. The computational time, 

however, is increased by a factor of four when compared to CLEAN. Measurements are 

next performed under the same indoor environment for three human subjects walking at a 

leisure pace. Subjects 1 and 3 approach the radar and have positive Dopplers, while 

subject 2 walks away from the radar and has a negative Doppler as shown in Fig.2.6a. 

Fig.2.6b through Fig.2.6d show respectively the beamforming, CLEAN and RELAX 

results for one captured time instant. In these figures it is observed that additional micro-
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Doppler components populate the Doppler spectrum due to the arm and leg motions of 

each subject.   

 

Fig.2.6. Three human subjects in indoor LOS resolved in the Doppler–DOA space: (a) 

Measurement setup, (b) beamforming result, (c) CLEAN result and (d) RELAX result. 

 

In spite of the Doppler overlap, the targets can be resolved in the Doppler-DOA space. 

The CLEAN results again show much better target separation than standard 

beamforming. The RELAX results, however, do not show any significant improvement 

Radar

        (a)                       (b) 

       (c)          (d) 
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over the CLEAN results. Hence in subsequent processed data, only the CLEAN results 

are shown.   

2.5.2. Through-Wall 

Next, measurements are conducted in a through-wall setup with two human subjects  

(a)         (b) 

Fig.2.7. Two human subjects in a through-wall scenario resolved in the Doppler space: 

(a) Measurement setup and (b) CLEAN result. 

 

separated from the radar by an exterior brick wall of 15” thickness.  The distance between 

the radar and the wall is 3’. The transmit power used in the measurements is 15dBm. 

Fig.2.7 and Fig.2.8 show the results from the CLEAN algorithm for two measurement 

cases. In the first case, two human subjects at distances of 5’ and 15’ from the wall walk 

in opposite directions with respect to the radar as shown in Fig.2.7a. Fig.2.7b shows the 

CLEAN result for a single time instant.  Although there is significant attenuation caused 

by the wall, it is observed that subjects with nearly identical DOAs can be well resolved 

 

15”
exterior
wall

Radar
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using Doppler processing.  In the second case, the two subjects, separated from each 

other in bearing, walk together at the same pace first away from the radar from 5’ to 15’ 

and then turn around and move toward the radar, as shown in Fig.2.8a. Fig.2.8b shows 

the CLEAN result for a single time instant when the subjects approach the radar.  It is 

seen that while the subjects have similar Dopplers, they can be well resolved in the DOA 

domain.  Fig.2.8c shows the time-integrated Doppler-DOA map of the two subjects over 

the entire collection duration.  Two clear tracks that are well resolved in the DOA space 

can be observed.  

Finally, Doppler-shifted multipath signals can sometimes be observed using the 4-

element array.  In the setup, through-wall measurements are conducted with two 

loudspeakers separated from the radar by the same 15” exterior brick wall as above.  The 

two speakers are driven at different audio frequencies (50Hz and 80Hz) but placed at the 

same DOA (10°) as shown in Fig.2.9a. The results of the measurements are shown in 

Fig.2.9b where the two targets are well resolved in the Doppler space. However, a third 

ghost target is observed at Doppler of 50Hz and a DOA position of -12°. This is most 

likely caused by multipath through the window.  While wall phenomenology can in 

general be very complex, this case shows that spatial beamforming can be used to resolve 

environmental multipaths that would have been problematic for a two-element array. 
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Fig.2.8. Two human subjects in a through-wall scenario resolved in the DOA space: (a) 

Measurement set up, (b) CLEAN result for a single time instant, (c) Time integrated 

CLEAN results. 
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     (c) 
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         (a) (b) 

 

Fig.2.9. Two loudspeaker targets in a through-wall scenario resolved in Doppler in 

decibel scale: (a) Experimental set up and (b) CLEAN result. 

2.6. CONCLUSION 

Using the principles of Doppler processing and spatial beamforming, the 

performance of a radar for tracking multiple humans can be improved by using additional 

receiver elements. The resolution of the target along the DOA axis is limited by the 

beamwidth of the antenna array and the sidelobes give the appearance of false targets   To 

overcome these limitations, two algorithms, CLEAN and RELAX are investigated for use 

in conjunction with software beamforming.  It was found that the CLEAN algorithm 

performed satisfactorily for multiple targets without excessive computational cost.  These 

concepts are demonstrated by conducting measurements on different targets in line-of-

sight and through wall scenarios. This Doppler radar is used to collect measured data to 

validate the results generated from the radar simulator developed in the subsequent 

chapters. 

 

Ghost target

due to multipath
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3. Joint Time-Frequency Transform 

In this chapter, the joint time-frequency transforms used to process and display 

the time-varying microDoppler information are described.  In particular, the reassigned 

joint time-frequency transform is investigated in addition to the traditional short-time 

Fourier transform.  These transforms are applied to both simulated and measured human 

data throughout the rest of the dissertation.   

3.1. INTRODUCTION 

The swinging arms and legs of human movement give rise to interesting features 

termed microDopplers which are quite unique and have been studied  through the use of 

joint time-frequency representations [30]-[33]. The most common joint time-frequency 

representation is generated by the application of the short-time Fourier transform (STFT) 

on the time domain radar signal.  The resulting spectrogram is characterized by time-

varying Doppler tracks due to the torso returns, along with weaker microDoppler features 

arising from the swinging arms and legs. However, a well-known limitation of the STFT 

is that it is not possible to obtain optimal precision or localization of the signal energy in 

the spectrogram.  If the time extent of the window function used in the STFT is σ, the 

“thickness” of the signal feature in the spectrogram is σ in the time domain and 1/σ in the 

frequency domain. This issue becomes a limiting factor for discriminating the 

microDoppler features when the radar operating frequency is lowered to enhance the 

penetration of electromagnetic waves for through-wall applications.  As a result of the 
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lower operating frequency, the Doppler sensitivity is reduced and it becomes increasingly 

difficult to discern the various microDoppler components in the spectrogram. One 

interesting question is whether the Doppler sensitivity problem at a low operating 

frequency can be overcome through the use of joint time-frequency representations other 

than the STFT.  In this chapter, the reassigned joint time-frequency transform is 

investigated for the analysis of radar microDopplers from human gait.   

 

3.2. DERIVATION OF THE REASSIGNED JOINT TIME-FREQUENCY TRANSFORM   

The reassigned spectrogram (also called the time-corrected instantaneous 

frequency spectrogram) was first developed by Kodera et al. [48], and has subsequently 

been adopted in the acoustics community [49]-[50].  The derivatives of the phase of the 

traditional STFT spectrogram are used to derive the instantaneous time, tins, and 

instantaneous frequency, fins, of the signal. Each point in the STFT spectrogram is then 

reassigned to the coordinate positions (tins, fins). This causes the signal energy to be 

localized in the spectrogram to thin lines of high precision and can lead to significantly 

improved readability of the traditional spectrogram.  There are various implementations 

of the reassigned transform. The analytical method for computing the reassigned 

spectrogram proposed in [51] is summarized here. Given a signal x(t), its standard STFT, 

χ(t,f), using a Gaussian window is given by:  
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Also needed is the spectrogram, η(t,f), due to a time-product form of the Gaussian 

window: 
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Then, the instantaneous frequency and the instantaneous time can be computed from χ 

and η as follows: 
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To form the reassigned spectrogram, a two-dimensional grid is created on the (tins, fins) 

plane. Each point in the STFT spectrogram is then reassigned to the coordinate positions 

(tins, fins) and appropriately weighted to ensure that energy is conserved during the 

transformation. This results in the reassigned distribution in the tins - fins plane.  

The reassigned transform is generated for a test signal comprising the sum of 

three signals: a click (δ(t-to)), a ramp (e
jat2

) and white Gaussian noise. The STFT 

spectrogram of the signal is shown in Fig.3.1a.  As expected, the thickness of the signal 

along the time and frequency axes is defined by the time window (0.1 s) and its inverse 

(10Hz). The reassigned transform is then applied to the signal, and the reassigned 

spectrogram is presented in Fig.3.1b.  The click and the ramp in the reassigned 

spectrogram have nearly infinitesimal thickness, being limited mainly by the plotting 

pixel size of the image and not by σ. The white noise likewise transforms to thin veins 
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[51]. It is important to point out that the reassigned transform can resolve two signals 

only if they are farther apart than σ in the time domain and 1/σ in the frequency domain, 

i.e., outside the Fourier uncertainty bounds.  Indeed, some slight distortions can be 

observed at the crossing point between the click and the ramp. 

 
 

Fig.3.1. Spectrogram of a signal comprising a click, a ramp and white Gaussian noise.  

(a) STFT  (b) Reassigned transform. 

3.3. MICRODOPPLER FROM HUMAN GAIT:   

3.3.1. Simulation Data 

Next, the human microDoppler gait data is studied using simulation. The human 

body is modeled as a target with 12 body parts as shown in Fig.3.2a. The Thalmann 

model [40] is used to describe the human gait or the kinematics of the 12 body parts (i.e. 

the position of each body part versus time), as a function of the velocity of the human.  

Here, a human subject is assumed to approach a Doppler radar of 24GHz head-on at a 

velocity of 1.3m/s along a straight line path. The time-varying radar cross-section (RCS) 

of the human target is then obtained by the complex sum of the RCS of the individual 

  (a)   (b) 
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body parts modeled as perfectly conducting spheres, cylinders and ellipsoids.  The radar 

return is obtained using the radar range equation. The STFT of the radar return from the 

simulated human gait data is presented in Fig.3.2b. A time window width σ of 0.25s is 

used in the STFT. Distinct time-varying Doppler tracks due to the motions of each of the 

parts of the body (labeled as 2 - 12) are resolved in the spectrogram. The head which is 

mostly still does not give rise to significantly different Doppler from the torso. The 

strongest returns are from the torso (2) and the highest Doppler frequency arises from the 

motion of the feet (7, 12) followed by the lower legs (6, 11). It is clearly seen that the 

motion of the right arm (3, 4) accompanies the motion of the left leg and foot (5, 6, 7) and 

vice versa. The superior Doppler sensitivity results from the high carrier frequency 

chosen for the simulation. However, signal attenuation through walls at such a high 

frequency is very severe and a much lower frequency is needed for wall penetration.  

Fig.3.2c shows the Doppler spectrogram that is generated when a carrier 

frequency of 2.4 GHz is used in the simulation. Again, a Gaussian time window of 0.25s 

is used. The strongest Doppler return is due to the torso where the center of gravity is 

located. The front and back swings of the arms and legs cause positive and negative 

Doppler spread with respect to the torso return. It is possible to discern the microDoppler 

tracks due to some body parts such as the torso (2) and the feet (7, 12). However, by and 

large, the different tracks appear vague and indistinct. It is now difficult to discern the 

various micro-Doppler components in the spectrogram. Hence there is a tradeoff between 

Doppler sensitivity and signal penetration through walls.   
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Fig.3.2d shows the reassigned spectrogram of the same data. It is observed that 

the precision of the signals in the spectrogram have been greatly improved which makes 

the reassigned spectrogram more readable compared to the STFT spectrogram.  

 

       

Fig.3.2(a) Simulation model of human walking at 1.4 m/s towards a Doppler radar. 

STFT of simulated returns for a carrier frequency of (b) 24 GHz, (c) 2.4 GHz. 

(d) Reassigned JTF of simulated returns for a carrier frequency of 2.4 GHz. 

It is now possible to discern up to 9 distinct microDoppler tracks (labeled as 2, 4, 5, 6, 7, 

9, 10, 11 and 12). The weaker returns due to the upper arms (3, 8) however cannot be 
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distinguished from the stronger torso return (2). This is because the microDoppler 

features of the upper arms fall within the Fourier uncertainty bounds of the torso Doppler. 

3.3.2. Measurement Data 

Next, actual measurements are conducted using the 2.4 GHz Doppler radar 

discussed in Chapter 2. A human subject approaches the radar at the steady speed of 

approximately 1.4m/s. Fig.3.3a and Fig.3.3b show respectively the STFT spectrogram 

and the reassigned spectrogram.  Again, the reassigned spectrogram shows better 

precision and thus improved readability for identifying the various Doppler tracks.  

Distinct microDoppler features from the feet, lower legs, lower arms, upper legs and 

torso are identified.  

 

Fig.3.3. Spectrogram of human gait obtained by processing measured data from a 2.4GHz 

Doppler radar:  (c) STFT.  (d) Reassigned transform. 

 

By comparing Fig.3.2d (simulated) and Fig.3.3b (measured), it is observed that they 

differ somewhat in the detailed Doppler tracks. A possible factor that may contribute to 

this difference is that the simulated motions are derived from the Thalmann model which 
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describes the motion of only 12 human body parts. Also, the model is an “averaged” 

kinematic model. In the subsequent chapters, computer animation data derived from 

motion capture technology are used to model human motions more accurately. 

3.3.3. Analyses of Deviated Walking Motions 

 The unique characteristics of the micro-Doppler features make the human 

Doppler spectrograms potentially useful for identifying and classifying different types of 

movements [35]-[39]. This is illustrated by examining the spectrograms of some deviated 

walking motion data collected using the Doppler radar testbed.  In the first measurement, 

the human subject walks toward the radar head-on from a distance of 10m (Fig.3.4a) and 

then turns around at 4m and walks away from the radar. The reassigned transform is 

applied to the radar data and the resulting spectrogram is shown in Fig.3.4b. It is 

observed that the Doppler track of the torso (2) is first positive, then negative during the 

7s data collection. Some of the micro-Doppler features can be identified in the 

spectrogram such as the feet (7, 12), lower legs (6, 11) and lower arms (4, 9).  

  Next the subject repeats the same motions while carrying a metal corner reflector 

in his right hand (Fig.3.4c). The reassigned Doppler spectrogram of the data is generated 

and presented in Fig.3.4d. It is observed that the Doppler spectrogram in Fig.3.4d is 

almost identical to that in Fig.3.4b, except that the micro-Doppler feature from the right 

hand (4) has been enhanced. In the next measurement, the subject walks the same path 

while carrying a heavy box using both hands as shown in Fig.3.4e. This action causes the 

subject’s walking pattern to change considerably and is reflected in the reassigned 



 38 

spectrogram shown in Fig.3.4f.  The Doppler features of the right leg and foot are altered 

since that leg moves slower than the other one.  The Dopplers of both arms are also 

changed, though more subtly.  In the last measurement, the subject repeats the same path 

while using a long metal pole in his right hand, like a walking stick, as shown in Fig.3.4g. 

In the reassigned spectrogram of the motion shown in Fig.3.4h, a high Doppler 

component is observed slightly ahead of the Dopplers due to the right leg, caused by the 

motion of the pole.  It is clear from these measurements that deviated walking patterns 

give rise to noticeable variations in the reassigned spectrograms.  
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Fig. 3.4. Caption follows 
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Fig.3.4. (a) Case 1: walking human subject, (b) Reassigned spectrogram of case 1 

(c) Case 2: walking human subject holding a light horn reflector in the right hand,  

(d) Reassigned  spectrogram of case 2 

(e) Case 3: walking human subject holding a heavy metal box on his right with both 

hands, (f) Reassigned spectrogram of case 3 

(g) Case 4: walking human subject holding a pole in the right hand,  

(h) Reassigned spectrogram of case 4. 
 

3.4. CONCLUSION   

The reassigned joint time-frequency transform was applied to the Doppler 

spectrogram of a walking human. The results were compared with the standard 

spectrogram. It was demonstrated that this transform enabled the discernment of distinct 

microDoppler features that arise from the motions of specific parts of the body. This 

transform will be used in the subsequent chapters to do detailed analysis of 

microDopplers to better understand the inherent phenomenology in RF sensing of 

humans.   

 

Pole
Pole

  (g)          (h) 
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RADAR SIMULATION MODEL 

4. Radar Simulation of Humans 

The main focus of this dissertation is to develop a radar simulator for complex 

human motions for applications in the RF sensing of humans. The simulator will 

incorporate Doppler based scattering mechanisms of a human mover, the through-wall 

propagation effects and the sensor physics. In this chapter, the methodology for 

generating the Doppler spectrograms of different complex human motions is presented.  

4.1. INTRODUCTION 

To date, the radar returns from the simple motion of a human walking at constant 

velocity has been simulated by van Dorp [33] using the Thalmann model [40]. The 

Thalmann model is a three-parameter model that completely describes the dynamics of 

different body parts as a function of time. However, this model is limited to the walking 

motion and cannot be used to simulate more complex motions such as running, crawling 

etc. On the other hand, MOCAP technologies have been used extensively by animation 

industries, for generating a detailed description of almost any complex human motion. 

Hence, in this dissertation, we develop an approach that exploits animation data available 

from MOCAP with electromagnetic models of the human body to simulate human radar 

returns.   

There has been some research undertaken to characterize the radar signatures of 

humans using computational electromagnetic techniques such as the finite-difference 

time-domain (FDTD) technique [41] and high-frequency ray tracing [42]. FDTD is a full-
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wave electromagnetic solver that yields highly accurate radar signatures of a still human. 

Xpatch, based on the shooting and bouncing ray technique, was also found to be 

satisfactory in generating human signatures. However, neither of these techniques is well 

suited for generating the radar signatures of dynamic human motions. These techniques 

require detailed computer models of humans over multiple poses and are computationally 

very expensive to carry out. Simpler models have also been developed to simulate the 

constant velocity walking motion of a human [30], [33].  In [30], infrared motion capture 

data of the different limbs were combined with a point scatterer model to generate the 

Doppler spectrogram. In [33], van Dorp proposed a simple primitive based prediction 

technique to model constant velocity human gait described by the Thalmann model [40].  

The different parts of the human body are modeled as primitive shapes such as ellipsoids 

and spheres whose radar cross sections (RCS) are well characterized. By using the time-

varying phase centers of the different body parts of a walking human, one can readily 

compute the total RCS of the human at different time instances for different human 

poses. Though the primitive based technique does not model shadowing and multiple 

interactions between the different body parts, it is computationally fast and reasonably 

accurate. Hence, the approach in this dissertation is to integrate the electromagnetic 

model based on the primitive based prediction technique with the MOCAP data to model 

the returns from complex human motions 

The chapter is organized as follows. First, the technique for simulating the human 

radar signatures from MOCAP data is presented. Then MOCAP data and radar 

measurement data of a moving human subject are simultaneously generated in the 
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laboratory using the Doppler radar testbed described in Chapter 2. The results from the 

radar simulation model generated from the MOCAP data are compared with the 

measured data. Next, the microDoppler signatures of some common human motions such 

as walking, running, crawling, jumping etc are generated using the computer animation 

data that are available from the video gaming and animation movie industries. Different 

formats of animation data files are available. Here BioVision's BVH data format and 

Acclaim's ASF/AMC data format are used to simulate different human motions. 

Additional simulation data are presented to show patterns over a long time duration and 

the effect of frequency and viewing angle. Also, the detailed microDoppler analysis of 

some animal motions such as a galloping horse and trotting dog are presented. Finally, 

the microDoppler signatures of some anomalies in the human gait patterns are examined, 

such as walking while holding an object. This is carried out by comparing the anomalous 

gait signatures with that from normal gait.   

4.2. METHODOLOGY 

In this section, the methodology used to simulate Doppler radar returns using 

computer animation data is presented. In the first step, the three-dimensional position of 

each bone of the human body is obtained at each time instant from input animation files. 

In the next step, the time-domain returns of the human mover are generated by computing 

the radar cross-section (RCS) of the human at each time instant using a primitive based 

predictor.  
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Fig.4.1. Animation model of walking human. 

 

There are several standard formats for computer animation files, such as BVH, 

ASF/AMC, etc which share a common format. The files are usually divided into two 

parts. The first part specifies the initial pose of the human. This section is under the 

header 'skeleton' in the BVH data files and is a separate file with the file extension '.asf' in 

the ASF/AMC data format. A hierarchical distribution of the bones in the human body is 

described in this part as shown in Fig.4.1. Each bone is connected to a parent bone 

through a joint. Bones that are not connected to child bones are terminated with end-

effectors instead of joints. The relative length and orientation of each bone are specified 

by the vector defined between the three-dimensional positions of the two joints (or end-

effector) connected to them. The center of gravity of the human lies at the hip (root) joint. 
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The root joint is subject to 6 degrees of freedom (DOF) with respect to the initial pose. 

This includes translation of the position vector of the root along the X, Y and Z axes as 

well as Euler rotation angles (α, β, γ) about the X, Y and Z axes respectively. All the other 

joints are subject to 3 DOF which are the Euler rotation angles. The changes in the DOF 

data of the joints over time give rise to animation motion of the human. These changes 

are specified for each frame of the animation under the header 'motion' in BVH data files 

and in a separate file with the file extension '.amc' in the ASF/AMC data files.  

The global three-dimensional position vector of each bone is derived using the 

matrix operations discussed in [56]. First, a local transformation matrix (Mbone) is created 

for each bone from the local translation (T) and rotation information of that bone. For any 

bone, the translation information is the offset of the bone from its parent which is 

specified in the skeleton section. For the root joint, the translation data is obtained from 

the motion section of the data file. Based on the DOF data specified for each joint by the 

motion section, a rotation matrix (R) is computed by multiplying 3 separate rotation 

matrices (Rx, Ry, Rz), one for each axis of rotation:  

R  =  Rx Ry Rz            (4.1) 

The order of multiplication of the three rotation matrices Rx, Ry and Rz is specified in the 

data files. The position of each bone is obtained from the transformation matrix (M) 

computed by concatenating the local transformation matrix of the bone with the local 

transformation of its parent, then its grandparent, and so on: 

M = Mbone Mparent Mgrandparent …                             (4.2) 
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In order to compute the RCS of the human, the primitive based model is used. An 

electric field incident on the moving human in free space is given by:  
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where fc is the transmitter frequency, A is a constant related to the gain of the antenna, 

and r is the distance from the transmitter to the human. If there are no interactions 

between the different human body parts and a monostatic radar configuration is assumed, 

the scattered field from the human, Es(t), can be generated by the complex sum of the 

RCS, σb, of all N body parts as follows: 
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In the above sum, the distance from the phase center of each part to the radar rb(t)  is used 

to account for the different phase delays from the body parts. The human head is modeled 

as a sphere and the rest of the body parts associated with the other bones in the skeleton 

structure as ellipsoids, whose RCS is given in closed form by [57]:  
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Here Re and He correspond to the radius and length of the ellipsoid with a circular cross-

section and θe is the angle between the incident wave and the length axis of the ellipsoid. 

The phase center location, rb(t), of an ellipsoid for a monostatic radar can be fairly well 
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approximated by the point on the surface of the ellipsoid nearest to the radar. Since the 

human is not perfectly metallic, the relative permittivity of human flesh is incorporated 

into the calculation of the approximate value of the Fresnel reflection coefficient, Г, of 

the wave reflected by the primitive. For Г, the Fresnel reflection coefficient at normal 

incidence [58] is used: 
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Here, µo and ξo are the permeability and permittivity of free space. The conductivity σ, 

and the dielectric constant εr, of human body tissue are approximately 2 and 80 

respectively [59]. As a result of combining equation (4.5) and the motion information in 

the animation data, we can readily simulate the time-varying radar returns from the 

human in free space. Note that shadowing and multiple interactions between the different 

parts are not incorporated in this model. 

Once the return signal is simulated, the Doppler spectrogram, χ(t,f) of the motion 

from the short-time Fourier transform of x(t) according to equation (3.1). It is important 

to note that the animation data is provided at a fixed frame rate usually ranging from 60 

frames per second to 240 frames per second.  The data need to be interpolated to provide 

sufficient Doppler bandwidth to avoid aliasing effects. This is particularly important at 

higher radar operating frequencies, since the Doppler bandwidth is directly proportional 

to the radar frequency.  The interpolation is implemented by introducing spline 
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interpolation to the rotational angle and translational position data obtained from the 

animation files.  However, the resultant interpolated data do not always correctly model 

the kinematics of rotating objects. A better way to interpolate the data, called the 

spherical linear interpolation (SLERP), has been widely adopted in the animation 

community [60].  It is based on describing the translation and Euler rotations of every 

joint using a four-coordinate system called a quaternion.  Linear interpolation of data is 

carried out along the surface of the quaternion unit sphere. In this dissertation, this latter 

approach is used to interpolate the animation data.  

4.3. VERIFICATION OF SIMULATION METHODOLOGY WITH JOINT COLLECTION OF 

MOCAP AND RADAR MEASUREMENT DATA 

In this section, the simulation methodology described in the previous section is 

validated in the following manner. Motion captured data and radar measurement data of a 

moving human subject are simultaneously collected using the MOCAP system at the 

University of Texas Virtual Reality Laboratory and the Doppler radar testbed described 

in Chapter 2. Using the techniques described above, the Doppler radar spectrograms of 

the human motions are simulated from the MOCAP data and are validated with the 

spectrograms generated from actual radar measured data.  

The MOCAP system consists of 16 infrared cameras that are used to locate the 

three-dimensional positions of 48 sensors attached at different joints on the human 

subject as shown in Fig.4.2a. Simultaneously, Doppler radar data are collected using the 

2.4GHz Doppler radar testbed. As the human subject moves, the Doppler shifted radar 



 49 

returns are collected and processed by STFT to generate the Doppler spectrogram of the 

human subject as shown in Fig.4.2b. Over the 18 seconds collection interval, the subject 

undergoes a variety of movements. The Doppler of the human is positive with the subject 

moving towards the radar and negative with the subject moving away from the radar. The 

motions of the arms and legs modulate the received signal and result in the microDoppler 

features that are observed in the Doppler spectrogram. The largest microDopplers come 

from the feet and legs. Fig.4.2c shows the resulting spectrogram from the simulated data. 

It is observed that the Doppler features in the spectrograms generated from measured and 

simulated data look very similar. This is particularly discernible in the fine Doppler 

features arising from the motions of the human subject’s legs (for example: 6 – 10s in the 

Doppler spectrograms).  However, there are some differences in the two spectrograms. In 

Fig.4.2b, some radio frequency interference at ± 60Hz and ± 80Hz are observed due to 

the collection environment inside an office. Secondly, the simulation model appears to 

over estimate the RCS of the limbs in Fig.4.2c. Also some of the highest Dopplers in 

Fig.4.2b do not appear in Fig.4.2c due to the fact that infrared sensors were not placed on 

the feet of the human subject during motion capture. Hence the 3D position data of the 

feet were not captured. Despite these differences, it appears that the primitive based 

model of humans is reasonably accurate in capturing the key radar features of a human. 
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Fig.4.2. Caption follows. 

Infrared 
cameras 

Doppler 
radar 

Tim e  (se cs)

F
re

q
u

e
n

c
y
 (

H
z
)

2 4 6 8 10 12 14 16
-100

-80

-60

-40

-20

0

20

40

60

80

100

-80

-70

-60

-50

-40

-30

T im e  (se c )

F
re

q
u

e
n

c
y
 (

H
z
)

2 4 6 8 10 12 14 16
-100

-80

-60

-40

-20

0

20

40

60

80

100

-100

-90

-80

-70

-60

-50

 (b) 

           (c) 

 (a) 



 51 

Fig.4.2. (a) Generation of infrared motion capture data and Doppler radar data of a 

moving human object. Doppler spectrogram of human motions at 2.4 GHz generated 

from (b) motion capture data and (c) measurement data. 

4.4. SIMULATION RESULTS  

4.4.1. Motion Diversity 

Using the techniques discussed above, the microDoppler signatures of some 

common human motions are simulated and examined in this section. The animation 

motions are further replicated in the laboratory by a human subject and measurement data 

are collected using the Doppler radar testbed. The simulated and measured spectrograms 

are compared. 

a. Walking 

 First, human walking motion data from Sony Computer Entertainment America 

are considered. The animation data specify the motion of 28 bones in the human body at 

a frame rate of 120 frames per second. This data is interpolated to a sampling frequency 

of 200Hz. The radar is assumed to be placed at the 3-D coordinate position (-5, 1, 0) m as 

shown in Fig.4.3a. The carrier frequency is set at 2.4GHz. The animated human walks 

towards the radar for 4s and then turns around and walks away from the radar. The time-

domain radar returns are computed and the Doppler spectrogram is generated and shown 

in Fig.4.3b. The strongest Doppler return is from the torso, which is positive when the 

mover approaches the radar and negative when the mover moves away from the radar. 

The motion of the feet and lower legs give rise to the highest Doppler returns. The 
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motion shows periodicity that corresponds to the uniform stride motion of the human. 

This motion is replicated by a human subject before the Doppler radar testbed. Fig.4.3c 

shows the spectrogram resulting from the measured data. It is observed that the 

spectrogram shows good correspondence to the spectrogram generated by the simulated 

walking pattern shown in Fig.4.3b.  The Doppler components from the torso and the 

lower legs and feet are easily discerned.   

b. Running 

The procedure is next repeated for tunning motion. In this case, the human runs 

around a circular path as shown in Fig.4.4a. The Doppler spectrogram of this motion is 

shown in Fig.4.4b.  It is observed that the Doppler return of the torso is much higher than 

the torso Doppler while walking  due to the increased speed of the body motion. The 

microDoppler spread is also much higher arising from the motions of the different limbs. 

In particular, it is now possible to observe both the front and back swing of the lower legs 

and feet. At the 3.5s time instant, the Doppler track shows a steep change from the 

positive to negative Dopplers. This corresponds to the position of closest approach to the 

radar as shown in Fig.4.4a. Next, the measurement is made for running motion over a 

circular track and the resulting spectrogram is shown in Fig.4.4c. Again, the result is 

similar to the simulation results shown in  Fig.4.4c.  Considerably high Dopplers from the 

torso and the lower legs are observed. Also the backswing from the legs and feet are 

more persistent. The DC line in the spectrogram comes from the residual clutter after the 

low pass filter  in the radar. 
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c. Crawling 

Next, the human crawling motion is simulated using ASF/AMC data obtained 

from the CMU Graphics Lab Motion Capture Database shown in Fig.4.5a. The radar is 

assumed to be situated at the coordinate position (5, 1, 0) m. The Doppler spectrogram of 

the motion, (shown in Fig.4.5b) shows considerable deviation from the spectrograms 

obtained from the walking and running motions. First, the torso Doppler is much lower 

(nearly zero) in this case. Also, the microDoppler arising from the legs are lowered and 

are now comparable with the microDoppler from the arms. From a detailed analysis of 

the simulated spectrogram, it is possible to infer that the microDoppler of the left / right 

arm is slightly ahead of the microDoppler of the right / left leg.  Next, measurements are 

performed for the crawling motion of the human subject. The Doppler spectrogram is 

shown in Fig.4.5c which shows good agreement with the simulated spectrogram shown in 

Fig.4.5b. The spectrogram shows considerable deviations in the microDoppler features 

when compared to the spectrogram of a regular walking pattern in Fig.4.5b.  

d. Walk-Jump-Walk 

Fig.4.6a shows an animated human that walks at a fairly uniform speed and then 

jumps forward using both legs and then resumes walking towards the radar. This data is 

obtained from ACCAD Motion Capture Lab from Ohio State University. The 

microDoppler signature of this motion is presented in Fig.4.6b. In the first three seconds, 

the microDoppler pattern shows the uniform human walking signature. The motions of 

the right and left limbs alternate. In each stride, the highest Doppler arises from the 
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motion of the legs. There is a noticeable variation in the Doppler pattern when the human 

jumps forward. The Dopplers from this motion are much higher. Also, the time between 

the motions of the right and left legs differ from the steady transition time during the 

uniform walking motion. Once the human has landed from the jump, the regular walking 

motion is resumed which is clearly reflected in the Doppler spectrogram in the final 

second. Next, this animation motion is replicated by a human subject in the laboratory. 

The spectrogram generated from the measured data is presented in Fig.4.6c. From the 

figure, it is apparent that there is general similarity in the measured and simulated 

spectrograms. The steady stride motion is observed from 0 to 3s which is followed by the 

jump motion, after which the walking motion is resumed.  

The key differences observed in the measured and simulated spectrograms are 

caused by the difficulty in replicating the exact animation motion during measurement 

data collection.  In addition, the negative Dopplers that are observed in the measured 

spectrograms arise from the IQ imbalance in the quadrature receiver of the Doppler radar.  
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Fig.4.3.(a) Animation model of human walking motion from Sony Computer 

Entertainment America. Doppler spectrogram of human walking motion at 2.4 GHz 

generated from (b) simulation data, (c) measurement data. 
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Fig.4.4.(a) Animation model of human running motion from Sony Computer 

Entertainment America. Doppler spectrogram of human running motion at 2.4 GHz 

generated from (b) simulation data, (c) measurement data. 
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Fig.4.5.(a) Animation model of human crawling motion from CMU Graphics Lab Motion 

Capture Database. Doppler spectrogram of human crawling motion at 2.4 GHz generated 

from (b) simulation data, (c) measurement data. 
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Fig.4.6.(a) Animation model of human walk-jump-walk motion from ACCAD Motion 

Capture Lab. Doppler spectrogram of human walk-jump-walk motion at 2.4GHz 

generated from (b) simulation data, c) measurement data. 
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4.4.2. Effect of Viewing Angle 

The Doppler spectrogram of the human motion is also dependent on the 

orientation of the mover with respect to the radar. To illustrate this effect, the simulation 

of the radar returns from the walking motion are repeated for a different position of the 

radar sensor at (0, 1, 5) m as shown in Fig.4.7a. The resulting Doppler spectrogram is 

shown in Fig.4.7b. It is observed that the microDoppler returns are much lower in this 

case due to the low radial components of the velocity vectors. Thus, the effect of 

transceiver location on the microDoppler signature can be easily studied using the radar 

simulator.  A concept that exploits the multi-view microDoppler information through a 

network of spatially diverse Doppler sensors for estimating the position and velocity of 

different point scatterers on the human will be investigated in Chapter 7.    

 

Fig.4.7. (a) Animation model of human walking motion across the radar’s field of view. 

(b) Doppler spectrogram of walking motion at 2.4GHz carrier frequency. 

   (a)            (b) 
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4.4.3. Effect of Carrier Frequency 

The simulator can also be used to generate the radar returns of the humans for 

different carrier frequencies. The simulation of the radar returns from the walking motion 

is repeated at 12 GHz and a 600Hz sampling frequency. The resulting spectrogram is 

shown in Fig.4.8. Only a short span (3 seconds) of the spectrogram is shown in the figure. 

It is observed that due to the higher Doppler sensitivity at 12 GHz, it is possible to 

discern distinct microDoppler tracks of the different body parts such as the torso, lower 

arms, lower legs and feet. This spectrogram contrasts with the result at 2.4 GHz shown in 

Fig.4.3b. The high frequency Doppler radar is thus useful for performing detailed 

analysis of the human gait. 

 

 

 

 

 

 

 

 

Fig.4.8. Simulated Doppler spectrogram of walking motion at 12GHz 

4.4.4. Long Duration Data 

The results from Section 4.4.1 indicate that the microDoppler signatures of human 

motions may be useful for identifying different types of motions. Fig.4.9 shows the 
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simulated Doppler spectrogram from a one-minute duration BVH file.  The specific time 

intervals from different motions such as accelerated walking, running and slowing down 

to a halt are marked in the spectrogram. Such data may be analyzed to study motion 

patterns for use in human activity monitoring over long durations.  

 

Fig.4.9.Simulated Doppler signatures of human motions over a one-minute duration. 

4.4.5. Animal MicroDopplers 

The human microDoppler features can be exploited for security monitoring 

applications such as perimeter control and through-wall tracking. However, one of the 

key issues is the capability to distinguish humans from other moving bodies particularly 

animals. It has been reported that the microDoppler signature of a dog differs 

considerably from that of a walking human [35]. The difference mainly arises due to the 

difference between the animal quadruped motion and the human biped motion. However, 
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a detailed analysis of the animal microDoppler has not been carried out. The difficulties 

lie in procuring animal microDoppler data from radar measurements. However, the radar 

simulation model described in this section can be easily extended to animals provided 

animation data of animal motions are available. In this section, the microDoppler 

spectrograms of a galloping horse and different dog motions such as trotting, running etc 

are generated from computer animation data and examined. 

a. Galloping Horse 

First, the simulation procedure is carried out for the animated galloping horse 

motion obtained from Forge Studios Ltd. The horse gallops at 30mph towards the radar. 

The data specify the motions of 29 bones in the body of a horse as shown in Fig.4.10a. 

The horse microDopplers are simulated at a carrier frequency of 2.4GHz, a sampling 

frequency of 1200 Hz and a dwell time of 0.05s. The resulting spectrogram is shown in 

Fig.4.10b. Due to the high speed of the horse motion, the Dopplers are much higher than 

the human walking motion. The RCS of the horse is also significantly higher due to its 

large size. Also, the Doppler spectrogram of a galloping horse is considerably different 

from the regular walking motion of a human in Fig.4.3b since the horse’s quadruped 

motion differs significantly from the human biped motion. In order to enhance our 

understanding of the microDoppler spectrogram of the horse, the different body parts of 

the horse are studied in isolation in Fig.4.10c through Fig.4.10f. From Fig.4.10c and 

Fig.4.10d, it is observed that in the galloping motion, the forelegs and rear legs alternate  
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Fig.4.10.(a) Computer animated galloping horse.  Doppler spectrogram at 2.4GHz of the 

motion of:  (b) galloping horse, (c)  horse’s forelegs, (d) horse’s rear legs, (e) horse’s 

torso and head and (f) horse’s tail. 
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with each other. Also, the Dopplers of the right legs slightly precede the left legs. The 

Dopplers from the torso and the head are strong but they show only slight bobbing 

variation. An additional microDoppler from the tail is also observed. 

b. Dog 

Next the microDopplers from the motions of a dog are examined The animation 

data are obtained from Credo Interactive and shown in Fig.4.11a. The data however do 

not describe the translation motion of the dog i.e the root joint remains fixed in space.  

The walking motion of the dog is much slower than the motions of the man and horse. 

Hence the microDopplers are generated at a carrier frequency of 8 Ghz to obtain 

improved Doppler resolution in the spectrogram shown in Fig.4.11b. The RCS of the dog 

is weaker due to its small size compared to the man and horse. The Doppler from the 

torso is zero since the translation motion of dog was suppressed in the data. In Fig.4.11c 

and Fig.4.11d, the microDopplers of the forelimbs and rear limbs are shown. It is clearly 

seen that the Dopplers from the right and left limbs alternate with each other. Also, the 

microDopplers from the forelimbs appear to be higher than the rear limbs.  

Next computer animation data of the motion of the dog transitioning from a run to 

walk to halt are considered. The corresponding spectrogram is shown in Fig.4.12. The 

microDopplers over the first 0.5s interval corresponds to the run. Subsequently, from 0.5s 

to 1s, the microDopplers correspond to walk and finally the dog slows down to a halt ant 

the Dopplers reduce to zero. It is observed that as the motion becomes slower, the 

Dopplers decrease. Also during the ‘run’ motion, the   
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Fig.4.11. (a) Computer animated walking dog.  Doppler spectrogram at 8 GHz of the 

motion of:  (b) walking dog, (c) dog’s forelegs, (d) dog’s rear legs, (e) dog’s tail. 
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Fig.4.12.Doppler spectrogram of a dog motion transition from  

“run to walk to halt” generated for 8GHz 

 

the forelimbs and rear limbs of the dog alternate with each other. Thus, quadruped animal 

spectrograms show distinct microDoppler spectrograms while “walking” (when the right 

and left limbs alternate with each other similar to human walking motion) and while 

“running” (when the forelimbs and rear limbs alternate with each other). 

The Doppler spectrograms of different animal motions thus show significantly 

variant microDoppler features and RCS. These spectrograms might potentially be useful 

as training data for target identification and classification. 

4.5. MICRODOPPLER SIGNATURES OF ANOMALOUS HUMAN GAIT 

4.5.1. Simulated Spectrograms of Regular and Anomalous Human Gait Patterns 

First, the Doppler spectrogram of a normal human gait pattern is simulated using 

animation data obtained from ACCAD Motion Capture Lab from Ohio State University. 

run haltwalkrun haltwalk
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The human walks from (-7,1,7)m to (-3,1,3)m over a duration of 3s and the radar is 

assumed to be located at (0,1,0)m. The Doppler returns are simulated for a carrier 

frequency of 12GHz and processed with STFT with a dwell time of 0.1s. The resulting 

spectrogram, χr(t,f), is shown in Fig.4.13a. Here, the returns from the torso (at 120Hz) 

and the legs (highest Dopplers) and arms (second highest Dopplers) are observed. 

Fig.4.13b, shows the Doppler spectrogram, χa1(t,f), of a human walking without swinging 

his arms. All the microDoppler features observed in Fig.4.13a are again observed in this 

figure except for the microDoppler from the arms. Fig.4.13c, shows the Doppler 

spectrogram, χa2(t,f), of a man carrying a 1.1m long stick in his left hand (Fig.4.13d). The 

stick is modeled as a metal cylinder, whose RCS is again well characterized [61].  

A simple way to deduce the presence of anomalies in the human gait is to 

compare the spectrograms of the anomalous human gaits χa1,2(t,f) with the regular human 

gait, χr(t,f), spectrogram. This is carried out by generating two types of difference maps: 

(1): χr(t,f) - χa1(t,f) and (2): χa2(t,f) - χr(t,f). The first map is generated by subtracting the 

spectrogram in Fig.4.13b from Fig.4.13a in the decibel scale. The resulting spectrogram 

in Fig.4.13e indicates that the microDoppler features corresponding to the movements of 

the arms are absent in χa1(t,f). The second map, Fig.4.13f, is generated by subtracting the 

spectrogram in Fig.4.13a from Fig.4.13c.  It shows the additional microDoppler feature 

present in χa2(t,f), which arises from the motion of the metal stick. Thus microDoppler 

features arising from anomalies in the human gait are identified in the Doppler 

spectrograms. Next, this concept is verified using measurement data. 
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Fig.4.13. Caption follows. 
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Fig.4.13. Simulated spectrogram at 12GHz of (a) regular human gait, χr(t,f). (b) human 

walking without swinging the arms, χa1(t,f), (c) human walking while carrying a 1.1m 

metal stick in the left arm, χa2(t,f). (d) Computer animation data of the human carrying the 

stick used to simulate Fig.4.13(c). (e) χr(t,f) - χa1(t,f) shows the missing microDoppler 

features in Fig.4.13(b) due to human arm motions. (f) χa2(t,f) - χr(t,f) shows the additional 

microDoppler feature in Fig.4.13(c) due to the metal stick.  

4.5.2. Measured Spectrograms of Regular and Anomalous Human Gait Patterns 

In Chapter 3, Section 3.3.4,  the reassigned spectrograms of some deviated human 

gait generated from measurement data collected using the Doppler radar testbed were 

examined. In this section, the STFT spectrograms of the same measurement data are 

considered over a 6s duration. In the first case, the human subject undergoes a regular 

walking motion. The spectrogram, χr(t,f), is shown in Fig.4.14a. wherein the 

microDopplers from the movements of the torso, arms and legs are visible. In the second 

case, the human subject walks while carrying a heavy metal box in his left hand. This 

results in the left arm and leg not swinging as freely as the right arm and leg. This 

situation is reflected in the Doppler spectrogram, χa1(t,f), shown in Fig.4.14b. Next, the 

human subject repeats the walking motion while carrying a long metallic pole in his left 

hand. The motion of the human subject carrying this long pole differs significantly from 

the computer animated motion of the human carrying a metal stick in the previous 

section. Here, the pole is used like a walking stick. The resulting spectrogram, χa2(t,f), is  
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Fig. 4.14. Caption follows. 
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Fig.4.14. Measured spectrogram at 2.4GHz of (a) regular human walking gait,  χr(t,f), (b) 

human walking while carrying a heavy tool box in the left hand, χa1(t,f), (c) human 

walking with a long metal pole in the left hand, χa2(t,f). (d) χr(t,f) - χa1(t,f) shows the 

missing microDoppler features in Fig.4.13(b) due to motions of the left arm and leg. (e) 

χa2(t,f) – χr(t,f) shows the additional microDoppler feature in Fig.4.13 (c) from the metal 

pole. (f) χr(t,f) – χa2(t,f) shows the missing microDoppler features in Fig.4.13(c) due 

possibly to shadowing by the metal pole. 

 

shown in Fig.4.14c. A difference map is generated from χr(t,f) - χa1(t,f) and shown in 

Fig.4.14d. The figure focuses on the first 3s of data where the spectrograms in Fig.4.14a 

and Fig.4.14b are well aligned along the time axis. Here, some microDoppler features are 

observed at time instants (0.2 – 0.6)s, (1.2 – 1.7)s and (2.4 – 2.7)s corresponding to the 

movements of the left arm and leg. The figure clearly indicates the missing microDoppler 

features from the limited motion of the left limbs in the second measurement case. Next, 

Fig.4.14e is generated from χa2(t,f) – χr(t,f). Here, the microDoppler feature from the pole 

is clearly observed at time instants (0.2 – 0.5)s, (1.4 – 1.5)s and (2.7 – 3)s.  The results 

from Fig.4.14d and Fig.4.14e are qualitatively similar to the findings from the simulation 

data.  Additionally, a difference map is generated from χr(t,f) - χa2(t,f). The non-negligible 

energy observed in Fig.4.14f indicates that there are also some missing features in the 

walking-with-pole data from the normal gait data.  This could be due to the shadowing of 

human body parts by the metal pole.  This phenomenon was not observed in the 

simulation data since the simulation ignored mutual shadowing between body parts. 

The spectrograms generated from simulation and measurement data indicate that 

some anomalies in the human gait can be discerned from the Doppler spectrograms of 
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human gait.  Features extracted from the data may be useful for identifying various 

anomalies.    

4.6. CONCLUSION 

A Doppler radar simulator of complex human motions is implemented using a 

primitive based electromagnetic predictor in conjunction with computer animation data. 

The primitive based modeling of humans is validated by simultaneously generating radar 

data and MOCAP data of complex human motions.  Then spectrograms of different 

human motions such as walking, running, crawling and jumping are generated using 

virtual reality data and are compared against measured data obtained in the laboratory. 

Additional simulation data are generated to study the effect of frequency and viewing 

angle. In the subsequent chapter, the simulator will be combined with a model of 

through-wall wave propagation to provide us with the capability to study detailed the 

detailed phenomenology of human radar returns. 
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5.  Simulation of Wall Effects on Human Signatures  

5.1. INTRODUCTION 

In the previous chapter, a technique for simulating the radar returns from humans 

moving in free space was presented. However, in reality, the propagation environment 

between the human and radar may be quite complex and may introduce significant 

distortions to the radar returns. Walls, in particular, are very complex media for wave 

propagation that introduce considerable distortions such as attenuation, delay and 

multipath to the radar returns [30].  The effect of walls on the dynamic human radar 

returns (in particular Doppler radar returns) have not been adequately studied by the radar 

community. The main reason is the lack of a simulation model that combined human 

motion scattering mechanisms with through-wall wave propagation physics.  

In this chapter, a technique for simulating time-varying narrowband and wideband 

radar returns of human motions behind both homogeneous and inhomogeneous walls is 

devised. This technique combines primitive based modeling of humans described in the 

last chapter with wall simulation models generated using the finite-difference time-

domain (FDTD) technique. Both the human microDoppler signatures and the high range-

resolution profiles can be readily generated of a moving human behind a wall using this 

approach.  The simulation results enable the investigation of the effects of complex walls 

on human microDopplers and range profiles. The narrowband results are validated with 

the measured data collected in line-of-sight and through-wall scenarios using the Doppler 
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radar testbed.  The findings are further supplemented with an analytical study of the 

effect of wall refraction and multipath introduced by wall inhomogeneity on the Dopplers 

of a point target moving behind walls.  

5.2. FDTD SIMULATIONS OF DIFFERENT WALLS 

In [30],[44]-[47], simple homogeneous walls made of concrete, wood or adobe 

were characterized using ray optical techniques. However, their utility for modeling 

highly inhomogeneous walls such as reinforced concrete walls and cinderblock walls is 

suspect [47]. A full wave electromagnetic solver is required to accurately model the wave 

propagation through such complex walls.  Hence, independent of the human simulation 

model described in the last chapter, the through-wall wave propagation phenomenology 

is simulated using a finite-difference time-domain technique (FDTD) [43]. FDTD is a 

computational electromagnetic technique where time-dependent Maxwell’s equations are 

solved by replacing them with finite difference equations. Once the time domain data are 

simulated, the frequency transfer function can be obtained by the Fourier transform.  The 

transfer functions are generated for free space and for three different walls. The three 

walls are: 

(1) a homogeneous concrete wall with a dielectric constant of 7 and conductivity 

0.0498 S/m,  

(2) a reinforced concrete wall, with a dielectric constant of 7 and conductivity 0.0498 

S/m, reinforced by square metal conductors that are 2.25cm thick and 19.75cm 

apart and  
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(3) an inhomogeneous cinderblock wall with air holes as shown in Fig.5.1.   

The dimensions of each wall is 1m x 19.5cm (X: -0.5m to 0.5m, Y: 0.3m to 0.495m).  To 

reduce the computational cost of the problem, the simulation is limited to two-dimensions 

(i.e., assuming the problem is Z-invariant). The area of the simulation is a 1.0m x 1.5m 

space (X: -0.5m to 0.5m, Y: 0m to 1.5m) bounded by a perfectly matched layer (PML). A 

pulse source of 0.23ns duration and vertically polarized in the Z-direction is placed at the 

position (0m, 0.1m), 0.2m behind the wall which is 1m wide in X and 19.5cm thick along 

Y. The simulator is run long enough to allow the wave fronts from the multiple bounces 

within the wall to reach the end of the simulation space.  The time-domain electric field 

at every point ρ in the FDTD grid space is then fast Fourier transformed to derive the 

wall transmission response, Hwall(fc, ρ), as a function of frequency and observation 

position.  

 

Fig.5.1. Models of 3 different types of walls for FDTD simulations: (a) homogeneous 

wall, (b) reinforced concrete wall and (c) cinderblock wall. 
 

The magnitude responses for the three walls at 2.4GHz are shown in Fig.5.2a 

through Fig.5.2d. Fig.5.2a shows the magnitude response for free space (without the  
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Fig.5.2. Results from FDTD simulations: Magnitude response at 2.4GHz for (a) free 

space, (b) homogeneous concrete wall, (c) reinforced concrete wall and (d) cinderblock 

wall.  
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wall) for a carrier frequency of 2.4GHz. The magnitude response shows the electric field 

strength decaying as the distance from the source increases. Fig.5.2b shows the 

magnitude response for the simulation space with the presence of a homogeneous  

 

 

Fig.5.3. Results from FDTD simulations: Phase response at 2.4GHz for (a) free space, (b) 

homogeneous concrete wall, (c) reinforced concrete wall and (d) cinderblock wall.  
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concrete wall. The strength of the electric field again decays as the distance from the 

pulse source increases. The wall, however, introduces an attenuation of approximately 

15dB when compared to free space. Also, the magnitude response shows some 

directionality due to the angle dependent transmission. In the magnitude response of the 

reinforced concrete wall case in Fig.5.2c, the wall introduces significant attenuation of 

the order of 2-10 dB. Also, the multiple scattering introduced by the metal reinforcements 

inside the wall interfere destructively in some regions. Fig.5.2d shows the magnitude 

response for the cinderblock wall. Again, the wall introduces significant attenuation on 

the transmitted signal. Moreover, the interior wall inhomogeneity introduces multipath 

components that interfere severely in certain regions (for instance, at azimuth angles of 

55° and 83°).  

Fig.5.3a through Fig.5.3d show the phase responses for free space and the three 

walls at 2.4GHz. In Fig.5.3a, for the free space case, the phase response shows a regular 

circular spread. In Fig.5.3b, it is observed that beyond the homogeneous wall (Y: 0.5m to 

1.5m), the transmitted wave front remains a well behaved circular wave front throughout 

the simulation space. This is very similar to the phase response that appears for a wave 

propagating in free space. However, when the reinforced concrete wall and the 

cinderblock walls are considered in Fig.5.3c and Fig.5.3d respectively, the complex wave 

fronts from the multiple reverberations within the wall give rise to significant phase 

distortions. These are especially severe near the wall.  
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5.3. HYBRID MODEL OF HUMAN AND WALL SIMULATIONS 

Next, the wall transfer function derived from FDTD is combined with the human 

scattering returns simulated from the animation models. If any higher order interactions 

between the human and the wall are ignored, this hybridization is quite simple.  In 

principle, it is carried out by substituting the two-way free-space propagation factor 

between the radar and the phase center of each human body primitive, )re(
2

b

r2
c

f2
j b

cπ
−

, 

by the square of the complex wall transfer function, {Hwall[fc, rb]}
2
. Though the operation 

appears straightforward, the following steps are followed to effectively hybridize the 

human and wall simulation models. 

First, since the animation data are is available at a frame rate of 120 Hz, the data 

must be suitably interpolated in time to prevent aliasing in the Doppler domain, 

especially if a high carrier frequency is used since the Doppler frequency is directly 

proportional to the carrier. In this work, the data are interpolated using spherical linear 

interpolation techniques.  

Next, the wall transfer functions from the two-dimensional FDTD simulation 

must be rescaled so as to correspond to the desired 3-D modeling. First, it is noted that 

the 2-D incident field due to a line source in free space is given by: 

ρ
π

ρ
ρ c

f2
j

i

c

e
'A

)(E
−

=          (5.1) 



 80 

where A’ is a constant proportional to the current excitation used to drive the FDTD. 

Therefore, to translate the 2-D FDTD modeling into three dimensions, the wall transfer 

function, Hwall [fc, ρ], from the FDTD  is rescaled by the factor  

)ρr(
c

fπ2
j

D3D2

c

e)
'A

1
)(

r

ρ
(C

−−

→
=       (5.2). 

The rescaling is derived from free-space considerations, but is carried out for the wall 

transfer function at every point ρ.  Third, it is also noted that the FDTD simulation 

generates the wall transfer coefficients only at the FDTD grid positions. Hence, a bilinear 

interpolation is carried out to compute, Hwall[fc, ρb] more accurately where ρb(t) is the 

time-varying position coordinate of the bone primitive, rb(t), projected onto the two-

dimensional FDTD simulation space.  

Finally, the scattered returns of the human behind the wall are generated using, 

∑
=

→
=

N

1b

2
bcwallD3D2bs

)]}t(ρ,f[HC{)t(σ
π4

A
)t(E    (5.3) 

To summarize, a hybrid methodology is presented to combine the dynamic human 

signature predicted from a primitive model with the wall propagation effects computed 

from FDTD simulations.  

5.4. MICRODOPPLERS FROM A HUMAN WALKING BEHIND A WALL 

Using the methodology describe in the previous section, both narrowband, Es(t, 

fco) and wideband, Es(t, fc), scattered returns from a human moving behind a wall can be 
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generated. In this section, the effects of walls on human microDopplers generated from 

the narrowband returns are investigated.   

5.4.1. Simulation Results 

A human walking motion from the Sony Computer Entertainment America’s 

animation database is used.  The animation data provided at a fixed frame rate of 120Hz.   

 
Fig.5.4. Results of simulations of human and wall: Reassigned Doppler spectrogram of 

walking human at 2.4GHz for (a) free space, (b) homogeneous wall, (c) reinforced 

concrete wall and (d) cinderblock wall.  
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are interpolated to 200Hz to provide sufficient Doppler bandwidth to avoid aliasing 

effects.  In order to ensure that the human motion is confined to the FDTD simulation 

space, the translation movement of the human is removed from the model by fixing the 

human hip joint at the position (0m,1m,1m). The time domain radar returns are simulated 

for a carrier frequency of 2.4GHz. Instead of generating the Doppler spectrogram by the 

application of the STFT on the time-domain radar returns, the reassigned transform 

described in Chapter 3 is used to obtain improved signal localization in the spectrogram.  

Fig.5.4a through Fig.5.4d show the reassigned Doppler spectrograms that are 

generated when the human motion model is combined with the FDTD results for free 

space and the three wall cases. The free-space result in Fig.5.4a is first checked against a 

theoretical result obtained using equation (5.2) and the two spectrograms match very 

well.  In Fig.5.4a, the Doppler of the torso is observed to be zero because of the zero 

translation motion of the human. The periodic features in the spectrogram arise due to the 

alternating motions of the left and right limbs. The feet returns have the highest Dopplers 

followed by the lower legs and lower arms. The vertical streaks observed in the 

spectrogram are caused by short, jerky movements in the computer animated human.  

Fig.5.4b shows the reassigned Doppler spectrogram that results when the human moves 

behind the homogeneous concrete wall. Except for a 15dB attenuation introduced by the 

wall at 2.4GHz, there appears very little distortion in the Doppler spectrogram when 

compared with that of free space. Next the reinforced concrete wall case is considered in 

Fig.5.4c. Besides attenuation caused by the wall, the metal reinforcements introduce 

considerable multipath in the propagation channel. The interference between these 
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multipath components results in fades and peaks in the area of simulation. This causes the 

strength of some of the microDopplers to change. However, the actual values of the 

microDoppler frequencies appear to remain unchanged. The inhomogeneous cinderblock 

wall case is considered in Fig.5.4d.  Some of the microDoppler features are now faded 

due to the severe attenuation introduced in some regions of space by the interfering 

multipath components. However, the actual values of the microDoppler frequencies 

appear to remain unchanged.  

5.4.2. Measurement Results  

The simulation results showed that the magnitude response of a wall was 

responsible for the key differences observed between the Doppler spectrograms of the 

free-space and through-wall cases. The actual microDoppler frequencies did not 

significantly change even in the presence of a complex, inhomogeneous wall. To 

corroborate the simulation results, measurement data is collected using the 2.4 GHz 

Doppler radar. First, the measurement is carried out under an indoor, line-of-sight 

condition where the human subject walks towards the radar from 10m to 4m and then 

turns around and walks away from the radar. Due to measurement noise, the reassigned 

spectrogram is not as effective in dealing with measured data, and the standard STFT is 

again used to display the data. The Doppler spectrogram is shown in Fig.5.5a. The 

spectrogram shows the same features observed previously in the simulated reassigned 

spectrogram in Fig.5.4a, such as the periodic features that arise due to alternating motions  
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Fig. 5.5. Caption follows. 
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Fig.5.5. Doppler spectrogram generated from measurement data collected using the 

Doppler radar testbed at 2.4GHz for (a) indoor line of sight, (b) through exterior 15” 

brick wall and (c) 12” cinderblock wall.  
 

of the limbs. In the measurement case though, the Doppler of the torso is not zero, unlike 

the simulation case where the translational motion was suppressed. Next, the 

measurement is repeated with the human subject behind an exterior brick wall 

(Fig.5.5b.i) of 15” thickness. From Fig.5.5b.ii, it is observed that the Doppler features are 

still preserved in this case, in spite of the lowered signal strength caused by the wall 

attenuation. In the third case, the measurement is conducted with the subject behind a 

cinderblock wall of 12” thickness (Fig.5.5c.i). The resulting Doppler spectrogram is 

shown in Fig.5.5c.ii. In both of the through-wall cases the subject walks from 6.8m to 

1.8m behind the wall and the radar is placed 0.1m in front of the wall. From the 

observations of the measurement results, it seems safe to suggest that walls do not seem 

to significantly alter the microDoppler frequencies of humans. To quantitatively 

substantiate this observation, the effects of walls on the Doppler of a single point 

scatterer are examined in greater detail from an analysis viewpoint next. 

5.5. QUANTITATIVE ANALYSIS OF WALL EFFECTS  

A theoretical study of the effect of a wall on the Doppler return of a single point 

scatterer is carried out.  First, the effect of wave refraction caused by the wall is 

examined.  Next, the effect of multipaths introduced by more complex walls is 

investigated using FDTD simulation. 
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5.5.1. Refraction 

A homogeneous wall of thickness d and a monostatic radar setup is assumed as 

shown in Fig.5.6a. The point scatterer, at a position (x, y) with respect to the radar, moves 

with a velocity vr, along the radial direction towards the radar. In the absence of a wall, 

the Doppler frequency of the point scatterer is )c/v(f2 rc . When a wall of high 

permittivity is present, the wave gets refracted as shown in the figure (where the angle of 

refraction approaches zero under the high permittivity assumption). If the multiple 

bounces of the wave within the wall are ignored, the Doppler of the point scatterer is 

θcos)c/v(f2 rc  where θ is the angle between the direct wave and the refracted wave 

Thus the difference in Dopplers in the two cases is directly proportional to (cos θ - 1) 

where  
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      (5.4) 

Assuming that the simulation space extends from X: 0m to 3m and Y: 0.5m to 3m 

and that the wall is 19.5cm thick, the resulting cosine plot is shown in Fig.5.6b. It is 

observed that for most of the space, cos θ is very close to 1 except for the small region in 

blue where the change is still less than 5.5%.  If the point scatterer moves tangentially 

with respect to the radar with a velocity vt, the Doppler of the point scatterer behind the 

wall becomes θsin)c/v(f2 tc  instead of 0. Though the plot is not shown, sin θ was 

found to be very close to 0 for most of the simulation space (less than 0.06). The results 
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of this study illustrates that the Doppler frequency does not change significantly due to 

wall refraction. 

 

Fig.5.6. Derivation of effect of wall refraction on the Doppler of a point scatterer (a) 

Simulation set up (b) cos θ. 
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5.5.2. Multiple Bounces 

Next, the effect of all the multiple bounces within a wall on the Doppler of a 

single point scatterer is considered. A point scatterer is assumed to be at a position (x, y) 

in the FDTD grid space moving with a radial velocity, vr, towards the radar. Then the 

instantaneous Doppler at every point (i,j) in the grid can be derived from the rate of 

change of phase, φ, by the finite-difference formula 

]αsin
y2

φφ
αcos

x2

φφ
[

π

v
f

j,i

1j,i1j,i

j,i

j,1ij,1ir
j,i ∆

−
+

∆

−
=

−+++
   (5.5) 

where αi,j is the angle between the velocity vector of the point scatterer and the X axis. A 

purely radial motion is assumed for the point scatterer where the magnitude of the 

velocity is 2m/s and the grid spacings are ∆x = ∆y = 0.5cm.  The instantaneous Dopplers 

for the 4 FDTD simulation cases (free space and the 3 walls) are shown in Fig.5.7a 

through Fig.5.7d. Ideally for free space, the instantaneous Doppler at every point in the 

simulation space is 32Hz at the frequency of 2.4GHz. In Fig.5.7a through Fig.5.7d, it is 

observed that the Doppler in most of the space is equal to 32Hz. The small deviation 

(with an RMS value of 0.1Hz) that is detected in Fig.5.7a is due to the FDTD numerical 

noise and finite-differencing error associated with equation (5.5). Fig.5.7b shows the 

Doppler map for the homogeneous wall. A slightly higher deviation of 1Hz is observed in 

the region very close to the wall.  As seen earlier in Fig.5.6b, this effect is mostly a result 

of the significant wall refraction in this region. In the case of the reinforced concrete wall 

in Fig.5.7c, higher deviation error of approximately 1.6Hz to 2Hz is observed due to the 

phase distortions introduced by the wall inhomogeneity. In the final case of the 



 89 

cinderblock wall in Fig.5.7c, there are some regions where the wall reverberation 

interferes destructively, thus resulting in very faded amplitudes.   

 

Fig.5.7. Doppler map for radial path motion of point scatterer at 2.4GHz for (a) free 

space, (b) homogeneous wall, (c) reinforced concrete wall and (d) cinderblock wall.  
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Fig.5.8.  Doppler map for tangential path motion of point scatterer at 2.4GHz for (e) free 

space, (f) homogeneous wall, (g) reinforced concrete wall and (h) cinderblock wall. 
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Next, the point scatterer is assumed to be at position (x, y) and move in a 

tangential path with respect to the radar. The Doppler is computed for every point in the 

grid space for each of the four cases using equation (5.5).  This time α is the angle 

between the tangential velocity vector, vt, and the X axis. The results are presented in 

Fig.5.8a through Fig.5.8d. The instantaneous Doppler for every point in the simulation 

space for free space is zero as observed in Fig.5.8a (numerical noise results in an RMS 

deviation of 0.1Hz). However, higher Doppler deviations are observed in the through-

wall cases. Wall refraction and multipath gives rise to non-zero Dopplers in the 

homogeneous wall, reinforced concrete wall and cinderblock wall cases as seen in 

Fig.5.8b through Fig.5.8d. The RMS Doppler deviation for the homogeneous wall case is 

1.3Hz and the reinforced concrete wall case is 2Hz. In the cinderblock wall case, some 

regions in Fig.5.8d show very high Doppler deviation due to the ill-defined phase caused 

by amplitude fades. The RMS Doppler error for the rest of the region is approximately 

2Hz. From this analysis, it is seen that the effect of walls on the Doppler frequencies of a 

point scatterer is quite minor.  This finding is consistent with the conclusions drawn from 

both the simulation and measurement results reported earlier in Section 5.4.   

5.6. FURTHER INVESTIGATIONS 

Some additional complex through-wall cases are investigated next. First, the 

effect of walls on human Dopplers when the human is oblique to the radar is analyzed. 

Next, a case where the human is between two walls is considered. This situation results in 

considerable interference between the waves bouncing off the two walls.  
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5.5.1. Effect of Obliquely Incident Wave 

In Section 5.5.1, the effect of wall refraction on the Doppler of a moving point 

scatterer was analyzed. The maximum Doppler deviation was observed when the point 

scatterer was oblique with respect to the radar. This deviation was caused by the 

 

 

Fig.5.9. Results of simulations of human and wall: Doppler spectrogram of walking 

human (human is oblique wrt radar) at 2.4GHz for (a) free space and (b) homogeneous 

concrete wall, (c) reinforced concrete wall and (d) cinderblock wall.  
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significant wall refraction that is introduced at oblique angles. Therefore, the hybrid 

simulator described in Section 5.3 is used to generate the Doppler spectrograms of a 

human walking at an oblique angle with respect to the wall. The transmission response is 

generated for the through-wall case for a simulation space that spans 1.5m x 1.5m (X: 0 

to 1.5m, Y: 0 to 1.5m) assuming that the pulse source is located at (0m, 0.1m). The wall 

spans (X: 0 to 1.5m, Y: 0.3m to 0.495m). The translation motion of the human is 

suppressed again by fixing the human hip joint at (1m, 1m, 1m). Fig.5.9a through 

Fig.5.9d show the resulting Doppler spectrograms for the free space and three wall cases. 

The reassigned transform is used on the time-domain radar returns. The human motion is 

no longer radial with respect to the radar and hence the spectrogram shows lower 

Dopplers than Fig.5.4a. Also, the Dopplers from the left and right limbs are no longer 

equal since their positions are asymmetric with respect to the radar. When a wall is 

placed between the human and the radar, both wall refraction and multiple bounces are 

introduced. However, the Dopplers do not change significantly compared to the free 

space case as observed in Fig.5.9b through Fig.5.9d. 

5.5.2. Effect of multiple walls 

Next, the case when the human is situated between two walls is considered. The 

FDTD simulation space spans 1.0m x 2.0m (X: -0.5m to 0.5m, Y: 0m to 2m). Two 

identical walls, 19.5 cm thick, span the X axis and are located 0.2m and 1.67m from the 

source, (0m, 0.1m), along the Y axis. The human animation model is constrained within 

the two walls by fixing the position of the hip joint at (0m, 1.2m, 1m). Fig.5.10a and 
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Fig.5.10b show the magnitude and phase of the transmitted field at 2.4GHz within the 

area where the human motion is constrained to occur between two cinderblock walls. Due 

to reverberations between the two opposite walls, a standing wave pattern is observed in 

the magnitude response. The phase response of the two-wall case in Fig.5.10b is not 

considerably different from the single-wall case shown in Fig.5.3d. The resulting 

spectrograms for the three wall cases are shown in Fig.5.10c through Fig.5.10d.  

Compared to the results shown in Fig.5.4a, it is observed that the values of 

microDopplers of the body parts have not significantly changed from the free space case 

even under the two-wall scenario despite the phase distortion. However, in the 

cinderblock wall case in Fig.5.10e, the microDopplers from some of the body parts are 

not visible at all due to the poor magnitude response. 

 

Fig. 5.10. 
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Fig.5.10.  Results of simulations of human between 2 cinderblock walls at 2.4GHz: (a) 

magnitude response and (b) phase response. Doppler spectrogram of human between two 

(c) homogeneous walls, (d) reinforced concrete walls and (e) cinderblock walls. 
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the high range-resolution profile of a walking human generated from wideband radar data 

is studied. 

The SONY human walking animation data are considered again with the position 

of the human hip joint fixed at joint at (X: 0m, Y: 1m). A radar of 2GHz (1.4GHz to 3.4 

GHz) bandwidth is assumed to be located at (X: 0m, Y: 0.1m).  

 

 

Fig.5.11.  Results of simulations of human and wall: Range profile of walking human 

obtained from UWB waveform of 2GHz (1.4 – 3.4 GHz) for (a) free space, (b) 

homogeneous wall, (c) reinforced concrete wall and (d) cinderblock wall.  
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The RCS of the human in free space is calculated for each frequency, fc, within the radar 

bandwidth using the primitive based prediction technique described in Chapter 2. Using 

the FDTD simulation described in Section 5.2, the wall transfer function is computed for 

every point in the simulation space for every fc. Then the wall and human simulation 

results are hybridized at every fc using the technique described in Section 5.3 to calculate 

the wideband radar returns, y(t, fc), from the human. The time-varying radar range profile, 

Y(t, R) is generated by inverse Fourier transforming y(t , fc) along the fc dimension:  

∫
+

=
c

R2
c

fπ2
j

c
dfe)f,t(y)R,t(Y

c

        (5.6) 

Fig.5.11a through Fig.5.11d show the time-varying range profiles of a walking human, at 

bore sight with respect to the radar, for both the free space case and when the human is 

behind the three different types of walls. Since the radar bandwidth, β, is 2GHz, the range 

resolution is c/2β which is 7.5cm. Since the translation motion is suppressed, the range of 

the human torso remains fixed at 0.9m for free space as seen in Fig.5.11a. Due to the 

periodic motion of the limbs, the ranges of the limbs fluctuate between 0.4m to 1.2m. The 

feet undergo the maximum displacement. In Fig.5.11b, the homogeneous wall case, the 

signal strength is attenuated by about 10dB. Also, the wall introduces a delay in the 

transmission response. Hence the range of the torso appears to shift to 1.2m. Similarly, 

the ranges of all the other body parts are also shifted by approximately 0.3m. The 

multiple bounces of the wave within the wall, give rise to late-time ringing in the range 

profiles. The effects of attenuation, transmission delay and late-time ringing are also 

observed in the range profiles of a human walking behind a reinforced concrete wall or a 
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cinderblock wall cases as seen in Fig.5.11c and Fig.5.11d respectively. In fact, the effect 

of late-time ringing due to the wall reverberation is so severe in the cinderblock wall 

case, that some of the late-time returns have aliased over into the early-time region of the 

range profile. Thus the presence of interior multipaths within the wall appears to 

introduce considerable distortion on the range profiles of the human motion.  

5.8. CONCLUSION 

A simulation methodology has been developed for generating the microDoppler 

radar signatures of humans moving behind walls.  The human modeling was combined 

with independent wall-transmission data generated using the FDTD technique. The 

hybrid was carried out by substituting the free-space propagation delay of each human 

part by the corresponding through-wall transfer function generated from FDTD.  The 

resulting simulator was used to analyze the effects of different types of walls on human 

microDopplers. It was found that while through-wall propagation affected the magnitude 

response of the Doppler spectrogram in the form of attenuation and fading, it only 

introduced very minor distortions on the actual Doppler frequencies from the body parts.  

This conclusion was supported by measurement data collected using a Doppler radar 

testbed and theoretical analyses of wall refraction and multipaths.  

In this work, only a two-dimensional FDTD simulation was used. A full three-

dimensional FDTD analysis would provide a more accurate result at the expense of much 

higher computational resources.  However, it is believed that the conclusions reached 

here will not be significantly altered in the case of the full three-dimensional simulation.     
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The same methodology introduced here was also used to simulate the high range-

resolution profiles of humans behind walls from wideband radar.  It is interesting to note 

that the degradation in the range returns caused by the wall was quite severe.  Therefore, 

significant processing will be needed to properly deconvolve the wall effects.  In contrast, 

the Doppler information is little affected by through-wall propagation.   
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 6.  Simulation of Floor Effects on Human Signatures  

6.1. INTRODUCTION 

The non-rigid motions of the different human body parts are manifested either as 

time-varying range profiles for wideband radars or time-varying microDoppler returns for 

Doppler radars. It is of interest to study if the propagation environment between the 

human and radar can significantly distort the human radar signatures. In the previous 

chapter, the effects of transmission through walls on the microDoppler signatures and 

high range-resolution profiles of humans were studied.  Another problem that is of 

interest is the effect of ground on human signatures.  It is well known that target-ground 

interactions can significantly alter the radar signatures of ground vehicles as seen from 

aerial sensors. In particular the corner reflector created by the base of a ground vehicle 

and the ground tends to create a strong feature seen in the synthetic aperture radar (SAR) 

imagery. However, the effect of ground on human signatures has not been addressed to 

date.  In this chapter, the effect of a flat ground on the radar signatures of human motions 

is simulated. This is carried out by modeling the interaction between the human and the 

ground using the method of images and a ground reflection coefficient. The simulated 

signatures of human motions are presented as functions of ground reflectivity, radar 

elevation and type of motion.  
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6.2. METHODOLOGY 

Fig.6.1 illustrates the methodology used to compute the radar returns of the 

humans in the presence of the ground. A vertically polarized, monostatic radar is 

assumed to be located at a height, h1, from a flat ground of dielectric constant ε2.  The 

dielectric constant of the medium of the incident wave is ε1 which is assumed to be 1 

(air). The RCS of the human is computed using the primitive based method described in 

Chapter 4, with computer animation data of the human as the input.  Each bone of the 

human body is modeled as a simple primitive ellipsoid, whose RCS, is σ. Multiple 

interactions between the different body parts and shadowing are ignored in this construct. 

Next, the human interaction with the ground is incorporated by the method of images 

[58]. The propagation from the radar to each body part is described by two mechanisms: 

the direct path and the ground-reflected path from the radar to the phase center of the 

body part. To simplify the analysis, the phase center of the body part is assumed to be the 

same for both the direct path and ground-reflected path. At time instant t, the phase center 

of a body part is assumed to be at a height h2, from the ground. The direct path length and 

the ground-reflected path length are r and r1+r2 respectively and θ is the angle of 

incidence at the specular reflection point on the ground. Assuming a vertically polarized 

wave of frequency fc, the radar returns from the body part at time instant t is given by 
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where ГV  is the Fresnel reflection coefficient for the vertical polarization given by [58]: 
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Note that in the two-way path between the radar and each body part on the human, 3 

distinct mechanisms are generated:   

(1) the direct-direct path,  

(2) the reflected-reflected path,  

(3) and the direct-reflected path (or the reflected-direct path).  

The radar returns of the human are computed from the complex sum of the radar returns 

from all the body parts.  
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Fig.6.1. Simulation methodology 
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motion, which is shown in Fig.6.2a. The range of the human torso decreases from 6m to 

2m as the human approaches the radar. The swinging movements of the arms and legs 

give rise to fluctuating features in the range profile. The inset in the figure shows the 

range of the right foot over a 0.5s duration. Next the radar range profile of the same 

h1

r1

h2

r2

r

θ

h1

h1

r1

h2

r2

r

θ

h1

ε2 

ε1 



 104 

motion is generated while assuming first, that the ground is smooth with a dielectric 

constant of 5 (Fig.6.2b) and second, that the ground is perfectly conducting, PEC 

(Fig.6.2c).  

 

 
 

Fig.6.2. High range-resolution signature of human walking towards a radar 1m high, 

(Inset figures are of the right foot), (a) without floor, (b) smooth floor with εr=5 and (c) 

PEC floor. 
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of the right foot in the inset of the figure, corresponding to the direct-direct path, direct-

reflected path and reflected-reflected path. In the case of the PEC floor, again the 

additional range features are observed in the range profile. However, the strength of these 

features are higher due to the high reflection coefficient from the PEC floor (ГV =-1) for 

all angles of incidence. 

 
 

Fig.6.3. Doppler spectrogram of human walking towards a radar 1m high at 2.4 GHz, 

(Inset figures are of the right foot), (a) without floor, (b) smooth floor with εr=5 and (c) 

PEC floor. 
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Next, the microDoppler signature of the human walking motion is generated by applying 

the reassigned joint time-frequency transform on the time-varying radar returns of the 

human computed for a carrier frequency of 2.4GHz. The spectrogram in Fig.6.3a, is 

generated while assuming that the ground is absent. The figure shows the time-varying 

microDoppler features due to the movement of the human torso, arms and legs. The inset  

in the figure examines more closely the highest Doppler arising from the motion of the 

right foot over a 0.8s duration. The spectrograms in Fig.6.3b and Fig.6.3c, are generated 

under the assumption that the ground is dielectric and PEC respectively. The 

microDopplers of the body parts do not show significant changes from those in Fig.6.3a. 

The effect of both types of ground on the human microDopplers for low radar elevation 

of 1m appears minimal. 

Next, the radar is raised to an elevation of 20m. The radar range profiles are 

generated for the right foot for three cases: no ground, dielectric ground and PEC ground 

as shown in Fig.6.4a through Fig.6.4c. Again, three distinct range features are observed 

in Fig.6.4b and Fig.6.4c arising from respectively the direct-direct, direct-reflected and 

reflected-reflected paths. Fig.6.5a through Fig.6.5c are the microDoppler signatures of 

the right foot when the radar is at 20m elevation. In comparison with the no-ground case 

(Fig.6.5a), the microDoppler tracks in Fig.6.5b and Fig.6.5c shows noticeable blurring. 

This is caused by the different incident and observation angles of the three propagation 

paths between the radar and the foot. It is particularly severe for the PEC floor case. 
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Fig.6.4. High range-resolution signature of right human foot when human is walking 

towards a radar 20m high, (a) without floor, (b) smooth floor with εr=5 and (c) PEC floor. 
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Fig.6.5. Doppler spectrogram of right human foot when radar is 20m at 2.4GHz, (a) 

without floor, (b) smooth floor with εr=5 and (c) PEC floor. 
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Fig.6.6. High range-resolution signature of human crawling towards a radar 1m high, (a) 

without floor, (b) smooth floor with εr=5 and (c) PEC floor. 
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 Fig.6.7. Doppler spectrogram of human crawling towards a radar 1m high, (a) without 

floor, (b) smooth floor with εr=5 and (c) PEC floor. 
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the radar range resolution of 7.5cm. Hence the distinct tracks caused by ground reflection 

cannot be identified in the viewgraph. Also, in the case of the dielectric floor, the 

reflection coefficient for the vertical polarization is low due to Brewster’s phenomenon 

[58]. This makes the ground reflected returns quite weak in Fig. 6.6(b). The radar returns 

that reflect off the PEC floor are however higher as seen in Fig.6.6(c). Next, the Doppler 

spectrograms are generated for the same motion and same radar position. The results are 

shown in Fig.6.7a through Fig.6.7c. Since the angles of the direct and reflected paths are 

very close to each other due to the low elevation of the body parts and the radar the 

microDopplers from the body parts in the ground cases do not significantly differ from 

the no ground case. 

6.4. CONCLUSION 

A technique for simulating the high range-resolution and microDoppler signatures 

of a human moving on the ground has been presented. The direct path and the ground 

reflected path from the radar to the human give rise to three distinct two-way propagation 

paths between the radar and the human. The effect of ground on human microDopplers is 

only noticeable at high elevation angles from the radar to the human.  
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EXPLOITATION OF THE RADAR SIMULATION MODEL 

7:  Distributed Doppler Sensors 

Radar offers some distinct advantages over other types of sensors for monitoring 

and tracking humans. They are capable of operating 24/7, under all weather conditions 

and in non-line-of-sight environments. However, one of the limitations of radar sensors 

when compared to optical sensors is that human movements cannot be directly visualized 

from the radar signatures. Hence, there is interest in developing techniques that will 

convert radar data to a visual animation of the human undergoing activities.  This is one 

of the most challenging goals in through-wall radar imaging.  In the following two 

chapters, the radar simulation model of human signatures developed in the previous 

chapters is exploited to investigate and evaluate two sensor concepts that set out to 

generate such a radar image of a moving human..   

7.1. INTRODUCTION 

From the discussions in Chapter 3, it is clear that the microDoppler phenomenon 

provides a wealth of information on human movements.  However, to translate the 

measured microDoppler data into a geometrical image of a human is a very challenging 

task.  In [33],[62] human walking motion parameters were extracted from the 

microDoppler data from a single Doppler radar.  The resulting parameters were then  

used to animate the Thalmann model for human gait [40]. In this chapter, we explore an 

alternate approach to visualize the human motion by collecting microDoppler data from a 

spatially distributed set of Doppler radars. We are motivated by several previous works 
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that have shown it is possible to estimate the location and velocity of a single point 

scatterer (such as a baseball or the human torso) from the Doppler-only data collected 

from multiple sensors [52],[53]. As an extension of these works, we try to estimate the 

time-varying position and velocity coordinates of the different point scatterers on the 

human body (torso, two arms and two feet), and as a result, generate an articulated 

“image” of a human.  The major challenge in this process is the accuracy needed to 

resolve the very close-by scattering points on the human.  To test this concept, we utilize 

the radar simulation model to generate the human microDoppler spectrograms.  Feature 

extraction of the microDoppler spectrogram is first performed to isolate the Dopplers 

from different body parts.  Estimation of the velocity and position is then performed 

using a local search.  Finally, Kalman filtering [63] is performed to denoise the resulting 

data.   

7.2. METHODOLOGY 

The following radar geometry is considered: 16 monostatic Doppler radars (i = 1:16) 

operating at 2.4GHz symmetrically span the perimeter of a 8m x 8m space (X, Y) with 4 

sensors on each side of the square. The sensors are spaced 0.13m apart along the height 

dimension Z to span a 2m elevation as shown in Fig.7.1.  Computer animation data are 

used to describe a 3-second duration walking motion of a human within this space. The 

human radar returns are simulated and the Doppler spectrogram at each radar is generated 

by applying the STFT with a dwell time of 0.25s.   
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Fig.7.1. Distributed Doppler sensors 

7.2.1. Feature extraction from the Doppler data and correspondence across sensors 
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one foot always moves with the highest speed of all the body parts, while the other foot 

remains almost still. 

 

Fig.7.2. Doppler spectrogram of walking human generated for 7.2GHz from sensor  

located at (-4,-3,2)m. 

 

 

Fig.7.3. Extracted features from the Doppler spectrogram in Fig.7.2. 
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important to note that if the torso is moving away from the radar, that is if fi
torso

 < 0, then 

fi
foot1

 < 0. Next, the second highest and second lowest absolute Dopplers, |fi
arm1 

| and |
 

fi
arm2

|, are identified to arise from the motion of the arms.  

7.2.2. Inversion of Doppler data to obtain position and velocity 

The Doppler of any of the 5 body parts, fi
b
(t), extracted from the spectrogram of 

radar i, is a function of the time-varying position r
b
(t) and velocity v

b
(t) of the body part, 

and the position of the radar ri, as shown in: 

     

      (7.1) 

 

In [53], the position re
b
, and velocity ve

b
, of the torso were estimated by using an artificial 

neural network.  Here, the fminsearch routine in MATLAB is used to minimize the mean 

square error between the extracted and estimated Dopplers from all the sensors:  
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parts. However if there are input errors from feature extraction, the estimation error in 

this step is affected by the input errors. This inversion procedure is carried out for all the 

five body parts: torso, two feet and two arms. 

7.2.3. Post processing of the position and velocity estimates of the body parts 

Next, some model-based post processing is carried out to distinguish the right and 

left limbs. The human walking motion is characterized by periodic swinging motion of 

the arms and legs. If T is the time interval of one human stride, then the highest Doppler 

extracted, fi
foot1

, corresponds to the Doppler of the right foot over (t : t+T/2) and to the 

left foot over (t+T/2 : t+T). Similarly, the other extracted Dopplers (fi
foot2

,
 
fi

arm1 
and 

 
fi

arm2
) 

also alternate between the right and left limbs. Hence the positions and velocity estimates 

of the two limbs are switched every T/2 to correctly account for the trajectory of the right 

or left limb. Finally, a second-order linear Kalman filter [63], is implemented on the 

time-domain position and velocity results of each body part. The Kalman filter models 

the state of the motion of the body part accurately by incorporating both the position and 

velocity data of each body part to reduce the error in the position estimates.  

7.3. RESULTS 

Based on the methodology described in the previous section, the time-varying 

position and velocity of the 5 body parts (torso, two feet and two arms) are estimated. 

The error of the position and velocity along the Z coordinate vz was found to be high. 

This is likely due to the limited elevation extent of the sensors along the Z dimension, 

which is only 2m. Any increase in the aperture extent along the Z dimension would, 
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however, result in a more challenging correspondence problem across sensors since at 

higher elevations, the Dopplers of the arms are higher than the Dopplers of the feet. Also, 

the velocity of the body parts along the X and Y dimensions vx and vy, are much higher 

than vz. Hence, the extracted Dopplers in equation (7.1) are dominated by vx and vy.  

 

Fig.7.4. (a) Truth values of vx (m/s) of 5 human body parts, (b) estimated values of vx 

(m/s). (c) Truth values of vy (m/s) and (d) estimated values of vy (m/s). 
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The true and estimated values of vx and vy  for all 5 body parts are shown in Fig.7.4a 

through Fig.7.4d. From the figures, it is observed that the error is lowest in the estimation 

of the velocity of the torso. The error in the estimation of the velocities of the arms is 

highest because of the high feature extraction error. Fig.7.5a shows the true and estimated 

position of the human torso corresponding to the top view of the human motion. Fig.7.5b 

and Fig.7.5c show the true and estimated positions of the left and right feet respectively. 

It is observed that the error is slightly higher in this case when compared to the torso 

results. This is because while walking, each human foot remains still for approximately 

half the time period of the motion. Hence, the foot Doppler is near zero, which makes it 

impossible to accurately estimate its position. Fig.7.5d and Fig.7.5e show the true and 

estimated positions of the left and right arms respectively. Here, the error is even higher 

than that of the feet. This error is mostly caused by the poor feature extraction as the 

Dopplers from the arms coincide closely with the Dopplers of the lower legs.   

 

Fig. 7.5. Caption follows. 

-5 0 5
-5

0

5

X (m)

Y
 (
m

)

truth

estimate

   (a) 



 120 

 

 
Fig.7.5. True and estimated positions of (a) torso, (b) left arm, (c) right arm, (d) left leg 

and (e) right leg.  
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method is potentially applicable for visualizing more complex human motions, provided 

the correspondence issue of extracted Doppler features across multiple sensors could be 

properly addressed. 

Overall, the distributed sensor approach could be logistically difficult to deploy, 

as it would require proper relaying of data to a central location before they can be 

processed.  Also, the locations of all the sensors must be accurately known.  Finally, the 

issue of mutual jamming among monostatic sensors must be addressed.  Therefore, such 

a setup would only be possible in a well-controlled environment, such as those found in 

perimeter monitoring applications.  In the next chapter, we consider the case where all the 

sensors are co-located and operate together as an array. 
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8:  Doppler Sensor Array  

8.1. INTRODUCTION 

In the previous chapter, the concept of using distributed Doppler sensors for 

imaging the point scatterers on the human body (torso, two arms and two legs) was 

investigated. In this chapter, we investigate the possibility of using Doppler sensors 

collocated in an array configuration to address the challenging problem of generating he 

frontal images of a human undergoing activities. Conventionally, the frontal image of a 

radar target must be generated using a two-dimensional (2-D) physical array or 2-D 

synthetic aperture radar (SAR). However both techniques have limitations when humans 

are considered. For example, if 2-D array processing using Fourier principles is 

considered at 2.4GHz (12.5cm wavelength), an angular resolution of better than 5 

degrees is needed to resolve the head from the feet of a human at a distance of 10m from 

the radar.  This translates into an aperture size of more than 1.5m in both width and 

height, which is extremely bulky.  In the azimuth dimension, the requirement could be 

even more stringent in order to resolve the left hand from the right hand.  Alternately, if 

the synthetic aperture concept is used to generate large aperture data, the entire collection 

must be completed before any significant movements from the human. However the 

human is rarely still and human motions could introduce significant distortions in the 

image generated from SAR data. A more innovative approach is needed to make frontal 

imaging practical. 
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In [64], Lin investigated a third technique, a low complexity radar concept to 

generate a frontal image of a moving human. He implemented a three-element Doppler 

and DOA radar wherein different body parts of the human were first resolved based on 

their microDopplers. He then used the three receivers to simultaneously generate the 

azimuth DOA and elevation DOA locations of the different body parts. This radar is 

successful in generating the frontal image of a human provided the different body 

microDopplers are well resolved. However, this assumption is rarely satisfied in practice 

even for very high carrier frequencies. Hence to make the system more robust, the 

concept of using three-dimensional (3-D) beamforming is investigated in this chapter.  

This technique uses a real array aperture in conjunction with Doppler processing 

to image a human. The additional Doppler dimension allows the use of a smaller aperture 

array (number of array elements) than that used in conventional array processing. The 

methodology for carrying out 3-D beamforming is first presented. Then the concept is 

tested on a theoretical data model as well as on simulated human signatures. Finally, the 

smallest aperture size and the lowest carrier frequency required to satisfactorily image a 

human at a specific stand off distance is investigated and the results are presented. 

8.2. METHODOLOGY 

8.2.1. Three-Dimensional Beamforming Using Doppler and Array Processing 

Consider a 2-D M x N array (in the Y-Z plane) of Doppler radar transceivers used 

to image a moving human as shown in Fig.8.1. The array elements are uniformly spaced 

apart by length d. The different parts of the human body are located at (rb, θb, φb) where 
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rb is the distance of the body part and θb and φb are the DOA elevation and azimuth 

positions respectively with respect to the radar. If each body part moves with a radial 

velocity vb with respect to the radar, then the time domain returns at each element (m, n) 

of the array at time instant t is given by: 

N:1n

M:1m
ea)t,n,m(e

b

]tvφsinθcosd)1n(θsind)1m(r[2
c

fπ2
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b

bbbbb
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=

=
=∑

−−−−−−
     (8.1) 

where ab is the scattering strength of the body part at time t. 

The first step towards generating a frontal image of the human is to implement 3-

D Fourier beamforming to resolve the human body parts along Doppler, azimuth and 

elevation dimensions. First, STFT is carried out on the time-domain array data to retrieve 

the instantaneous Dopplers of the different body parts.  

∫ −−= τde)τt(h)t,n,m(e)f,n,m(e τfπ2j
1

           (8.2) 

Here, h1 is a sliding Hamming window function. Therefore, the resulting function is a 

function of time t also. This is followed by 2-D spatial beamforming as shown by: 
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     (8.3)  

Here h2(m, n) is a 2-D Hamming window function which is used to reduce the sidelobes 

in the resulting image. H, which is the Fourier transform of the product h1.h2, is the point 

spread response of each scatterer in the 3-D space provided the data model in equation 
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(8.1) is satisfied. The width of H is inversely proportional to the window size used in the 

STFT operation along the Doppler dimension and the array size along the azimuth and 

elevation dimensions. 

 

Fig.8.1. Methodology 
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8.2.2.Projection of Three-Dimensional Results into a Two-Dimensional Frontal 

Image  

Next, the 3-D image is properly processed so as to project the view onto a 2-D 

frontal image (in the azimuth-elevation space) of the human, which is the view that most 

closely resembles what the human eyes see optically. The following methods of 

projection are investigated. 

a. One Dimensional Peak Detection 

In this technique, the azimuth φp, and elevation θp, positions corresponding to the 

peak strength ap, of E(θ, φ, f) at every Doppler are computed: 

)f,φ,θ(Emax)f(a
pp
φ,θp

=         (8.4) 

For display purposes, the extracted parameters {ap(f),θp(f),φp(f)} for every Doppler are 

convolved with a point spread response, Hsmall(θ, φ),  in the 2-D array space to generate 

an image of the human. Note that Hsmall(θ, φ) is a theoretical point spread function which 

is chosen to be of much smaller width in the 2-D space compared to H(θ, φ).  

b. Three Dimensional Peak Detection 

Alternately, a 3-D peak detection algorithm can be implemented. Here, the local 

peaks ap in the 3-D E(θ, φ, f) space are computed along with the corresponding azimuth 

φp, elevation θp, and Doppler fp, positions: 

)f,φ,θ(Emaxlocala
ppp

f,φ,θp
=        (8.5) 
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Then, similar to the previous technique, the extracted parameters {ap, θp, φp} are 

convolved with Hsmall(θ, φ)and displayed in the 2-D (azimuth-elevation) space. 

It is worthwhile to point out here that algorithms such as CLEAN and RELAX  

are not useful for estimating the parameters { ab, θb, φb } corresponding to the different 

point scatterers on the human body.  These techniques require the point spread function H 

to be well defined. However, as mentioned before, the human radar data significantly 

deviates from the data model in equation (8.1). These deviations introduce distortions in 

H and subsequently the CLEAN and RELAX algorithm results. 

8.3. RESULTS 

8.3.1. Ideal Data Model of 5 Moving Point Scatterers 

First, an ideal data model consisting of 5 moving point scatterers based on 

equation (8.1) is considered. The strength, radial velocity, azimuth and elevation 

parameters of the 5 scatterers are given in Table 8.1.  

 

# STRENGTH (v) VELOCITY (M/S) AZIMUTH (º) ELEVATION (º) 

1 100 2 0 5 

2 50 4 2.5 0 

3 20 1 -2.5 0 

4 50 6 1 -5 

5 20 0 -1 -5 

Table 8.1. Parameters of 5 ideal point scatterers. 
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A 4 x 4 array of 2.4GHz Doppler radar sensors spaced half-wavelength (6.25cm) apart is 

considered for imaging these 5 point scatterers. Fig.8.2a shows the true frontal image of 

the 5 point scatterers. Note that the image is actually a function of sin θ and cos θ sin φ 

based on equation (8.3). Since the point scatterers are assumed to be close to bore sight, 

cos θ is close to 1. Also, since the radar sensors are assumed to be transceivers 

(transmitters cum receivers), there is an additional factor of 2 in the phase terms in 

equation (8.1). Hence the beam of the radar scans only from -30º to +30º along both the 

azimuth and elevation dimensions. First, conventional 2-D array processing using Fourier 

principles is carried out on the data and the resulting image is shown in Fig.8.2b. Due to 

the limited sized array, the beamwidth of the radar is approximately 20º along both the 

azimuth and elevation dimensions. Hence, it is not possible to infer the presence of 5 

point scatterers from Fig.8.2b.  

Next, Doppler processing is implemented in conjunction with array processing 

based on the methodology discussed in the previous section. It is assumed that the 

parameters of the scatterers remain constant during the dwell time duration of 0.25s. One 

dimensional (1-D) peak detection technique is implemented to project the 3-D Doppler-

azimuth-elevation space onto the 2-D azimuth-elevation space. The resulting image is 

shown in Fig.8.2c. The 5 point scatterers are clearly observed in the 2-D image. 

However, some additional false scatterers are also observed. These arise due to the 

interference between the Doppler sidelobes of the multiple scatterers.  
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The exact procedure is next repeated assuming a 4 x 4 array of 7.5 GHz Doppler 

radar sensors. Again, the array elements are assumed to be spaced half-wavelength (2cm) 

apart. 3-D Fourier transform is carried out to resolve the scatterers along the Doppler-

azimuth-elevation space which is subsequently projected onto the 2-D space. The dwell 

time is assumed to be 0.18s. The resulting image is shown in Fig.8.2d. Here, the 5 point 

scatterers are again observed at the correct azimuth and elevation positions. Also since 

the Dopplers of the different scatterers are now well resolved due to the higher carrier 

frequency, the mutual interference between them has greatly reduced. This has resulted in 

fewer false alarms in the image. The study with the ideal data model of 5 point scatterers 

clearly indicates the advantages of using Doppler processing in conjunction with 

conventional array processing. However, the human radar data significantly deviates 

from the ideal data model and is next investigated.     
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Fig.8.2. 5 ideal point scatterers, (a) True frontal image, Images generated from (b) 4 X 4 

array processing, (c) 4 x 4 array processing and Doppler processing at fc = 2.4 GHz, (d) 4 

x 4 array processing and Doppler processing at fc = 7.5 GHz. 
 

8.3.2. Human Data Model Using Animation Data 

Human walking animation data from Sony Computer Entertainment America are 

next considered. The human is assumed to walk towards the radar array at bore sight. The 

returns from the human at each of the radar sensors are simulated, processed using joint 

Doppler and array processing and projected onto the 2-D space. As the human comes 

closer to the radar array, the image of the human becomes larger. First, a 5 point scatterer 
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model of the human consisting of the torso, two hands and two feet is considered. The 

two different projection algorithms described in Section are tested on the data. Next, the 

complete human walking model (with 28 point scatterers) is considered. The effect of 

aperture array size and carrier frequency on satisfactorily imaging the human is 

investigated. 

a. 5 Point Scatterers 

In Section 8.3.1, it was observed that the 7.5GHz 4 x 4 array was successful in 

imaging 5 point scatterers using joint Doppler and array processing. Now, a human 

walking model with 5 point scatterers is considered. The true frontal image of the human 

at a standoff distance of 8m is shown in Fig.8.3a. The image of the human is first 

generated using conventional 2-D array processing and shown in Fig.8.3b. It is observed 

that the array size is much too small to successfully resolve the multiple point scatterers 

in the 2-D space. Next, 3-D Fourier beamforming is carried out and the results are 

projected onto the 2-D space using the 1-D peak detection technique (Fig.8.3c) and the 3-

D peak detection technique (Fig.8.3d). Fig.8.3c shows that the 5 point scatterers are  
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Fig.8.3. 5 point scatterers on human body (torso, two hands and two feet), (a) True frontal 

image. Images generated from (b) 4 x 4 array processing, (c) 4 x 4 array processing and 

Doppler processing at fc = 7.5 GHz, (1-D peak detection projection) (d) 4 x 4 array 

processing and Doppler processing at fc = 7.5 GHz (3-D peak detection projection). 
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between the multiple scatterers. Interference between the overlapping response functions 

distorts the image.      

In Fig.8.3d, the 5 point scatterers of the human body are imaged using the 3-D 

peak detection technique. This technique succeeds in estimating the approximate center 

of the point spread response function of each scatterer. Hence, the 5 point scatterers on 

the human are nicely captured in the image. However, the sidelobes in the 3-D space 

(along the Doppler and DOA dimensions) are also projected onto the 2-D space. This 

problem becomes extremely severe when a large aperture array is used. Hence, in the 

subsequent simulations, 1-D peak detection is used instead of 3-D peak detection. 

b. Full Body 

Next the complete human walking model with 28 point scatterers is considered. 

The true frontal image of the human at a stand off distance of 8m is shown in Fig.8.4a. 

The radar returns from the human are simulated for a 2.4 GHz 4 x 4 array, 10 x 10 array 

and 20 x 20 array where the array elements are half-wavelength apart. The returns are 

processed first using array processing and the results are shown in Fig.8.4b through 

Fig.8.4d. As the array size becomes larger, the beam width of the array narrows which 

improves the resolution of the image. However, even with a 20 x 20 array, the human 

image cannot be discerned in Fig.8.4d.  

Fig.8.5a, Fig.8.5b and Fig.8.5c use Doppler processing with a 4 x 4 array, 10 x 10 

array and 20 x 20 array processing respectively. The additional Doppler dimension 

enables some point scatterers on the human body to be successfully imaged. The 
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increased aperture size also results in slight improvement in the images from Fig.8.5a 

through Fig.8.5c. However, the human microDopplers are still not well resolved at such a 

low carrier frequency. Hence, even with the 20 x 20 array, a clear image of the human is 

not obtained.   

 
 

Fig.8.4. Complete human body (28 point scatters), (a) True frontal image. Images 

generated from (b) 4 X 4 array processing, (c) 10 x 10 array processing and (d) 20 x 20 

array processing. 
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Next, the procedure is repeated with a 7.5GHz array of 4 x 4 elements, 10 x 10 

elements and 20 x 20 elements. The results are presented in Fig.8.6a through Fig.8.6c. 

The resolution of the human microDopplers is improved at the higher carrier frequency.   

When the array size is small (Fig.8.6a), the poor resolutions in the DOA dimensions  

 

Fig.8.5. Complete human body (28 point scatters): Images generated from Doppler 

processing with fc = 2.4 GHz and  (a) 4 x 4 array processing, (b) 10 x 10 array processing 

and (c) 20 x 20 array processing. 
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result in poor imaging. However for the larger array size (Fig.8.6b and Fig.8.6c), the 

improvement in the human imaging is quite significant. In fact, the human is imaged 

quite satisfactorily in Fig.8.6c where the head, two arms and two legs are clearly 

discerned. Thus a combination of Doppler and array processing is successful in 

generating a frontal image of a walking human. 

 

 

Fig.8.6. Complete human body (28 point scatters): Images generated from Doppler 

processing with fc = 7.5 GHz and  (a) 4 x 4 array processing, (c) 10 x 10 array processing 

and (c) 20 x 20 array processing. 
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8.4. CONCLUSION 

The concept of generating frontal images of moving humans using joint Doppler 

and array processing was investigated. Multiple point scatterers of the human body are 

resolved along the Doppler and DOA dimensions. Then the 3-D Doppler-Azimuth-

Elevation space results are projected onto the 2-D space. The aperture size and carrier 

frequency required for satisfactorily imaging a human at a specific standoff distance from 

the radar was determined. This preliminary study demonstrates the utility of the 

simulation capability in easily generating different scenarios (frequency, sensor number, 

types of motion) for sensor optimization.  Additional studies are needed to assess 

propagation and noise effects, and to explore methods to reduce the required number of 

sensor elements.  
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9. Conclusions 

The scientific objectives of this dissertation are recapitulated below: 

(1) To develop a physics-based simulator of the scattering mechanisms associated 

with different human motions as a function of radar sensor parameters such as 

frequency, bandwidth, dwell time etc.   

(2) To incorporate commonly occurring propagation channels such as building walls 

and grounds into the radar simulation model of humans. 

(3) To validate the results from the simulator with measurement data collection using 

a Doppler radar developed in the laboratory. 

(4) To exploit the radar simulator to investigate some new radar sensor paradigms for 

imaging humans. 

The contributions of my dissertation towards realizing these objectives are listed below. 

Also, potential areas of future research are discussed. 

9.1. CONTRIBUTIONS 

(1) The most notable contribution of this dissertation is the demonstration of a new 

approach that can be used for simulating scatterings from a human undergoing 

almost any type of complex movement. This approach involves combining 

animation models describing human motions with electromagnetic models of the 

human body. The approach allowed us to readily evaluate the effect of sensor 

parameters such as frequency, viewing angle, bandwidth and dwell time on the 

resulting human signatures.. 
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(2) The next important contribution was a methodology that can be used for studying 

the impact of propagation channels on human radar signatures. This method  

involved integrating models of propagation channels such as building walls and 

grounds with the radar simulator of humans. The hybrid allowed us to make 

detailed investigations of the effects of different types of homogeneous and 

inhomogeneous walls on human microDopplers. One important observation that 

was made is that human microDoppler signatures are not distorted by the 

considerable phase distortion introduced by complex walls. Some distortions in 

the microDopplers were however observed due to ground effects especially at 

high radar elevations. 

(3) Next, it was demonstrated that it is possible to detect and track multiple humans 

indoors though-walls using joint Doppler processing and spatial beamforming. 

The radar used a limited sized Doppler sensor array to resolve multiple movers in 

the joint Doppler and bearing space thus improving upon the performance of the 

two-element Doppler and direction-of-arrival radar developed earlier by Lin. 

Additional signal processing algorithms such as CLEAN and RELAX can be 

implemented along with beamforming to overcome the problems of high sidelobe 

levels associated with a limited size array. This radar testbed was useful for 

simulation validation. 

(4) Next, it was shown that the readability of human microDoppler features can be 

improved by the application of the reassigned transform on time-domain human 

radar returns. The reassigned transform improves the signal localization properties 
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along both the time and frequency domains when compared to the short-time 

Fourier transform. However, the resolution of the transform is still limited by 

Fourier uncertainty bounds. Reassigned joint time-frequency distributions enables 

us to make detailed studies of human microDopplers.  

(5) The concept of using microDopplers extracted from spectrograms generated at 

multiple spatially distributed Doppler sensors for imaging humans was 

investigated. It was found that the most challenging problem is to correctly 

correspond the microDopplers of each body part across the multiple sensors. 

Errors from feature extraction limit the accuracy of the estimation of the positions 

of different point scatterers on the human body. 

(6) The concept of using multiple Doppler sensors configured as a 2-D array for 

generating frontal images of humans was investigated. Conventional 2-D spatial 

beamforming was found to be inadequate for imaging humans even when large 

antenna apertures with many Doppler sensors are used. Adding Doppler 

processing to the array processing helps to resolve the point scatterers in the 

human body and thus improves the accuracy in the bearing position estimates. 

9.2. FUTURE WORK 

The following potential areas of future research are identified. In this dissertation, 

human radar returns and wall phenomenology were independently simulated and later 

combined to generate the radar returns of humans behind building walls. A further 

extension of this research would be to study the impact of even more complex 
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propagation environments on human radar returns. Some examples of such an 

environment would be a complete 3-D room (walls, ceiling and floor) with furniture or a 

forest with dielectric trees. If detailed CAD models of these environments are available, 

computational electromagnetic techniques can be used to generate their propagation 

function. This function can then be hybridized with the radar simulation model of the 

human to obtain the human radar returns.  The results from these simulations can then 

form the basis for designing radar sensors that have maximum information gathering 

capabilities in these environments. 

Another topic of future work could be to develop target recognition and 

classification algorithms using training databases of simulated microDoppler signatures 

of different types of human and even animal motions. Then these classifiers can be tested 

with actual measurement data collected from different Doppler radar systems. If their 

operations are found to be successful, then automatic target recognition algorithms 

trained by the simulation data can be incorporated into actual radar systems to track and 

monitor human activities. 

Another important research question that follows this work is whether it is 

possible to develop signal processing techniques that have the ability to resolve the 

microDoppler tracks of individual body parts in the Doppler spectrogram. The individual 

tracks will be useful for pinpointing the exact cause of anomalies in the human motion. 

An example of this anomaly would be if a human were carrying a large heavy object in 

one arm, then the microDoppler of that arm would be significantly altered. In Chapter 7, 

we used microDopplers measured at multiple spatially distributed Doppler sensors to 
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image a human. The performance of this algorithm was limited by error involved in 

correctly corresponding the microDoppler track of each body part across multiple 

sensors. Hence, an algorithm that resolves the microDoppler tracks would reduce the 

feature extraction error to a great extent and improve the accuracy of the estimates of the 

positions of the different body parts. 

Chapter 8 demonstrated the possibility of using joint Doppler and 2-D array 

processing to image moving humans. However, further research is required to determine 

the effects of the propagation environment and noise on the performance of the 

algorithm. Also, efforts should be undertaken to reduce the number of array elements 

using principles such as random array theory or interferometry to ensure that such a 

concept is practically viable.  After detailed simulation studies, it would be exciting to 

design, build, and demonstrate such a radar system for through-wall imaging 

applications. 
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