
Copyright

by

Sashmit B. Bhaduri

2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/10644885?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Report Committee for Sashmit B. Bhaduri
certifies that this is the approved version of the following report:

sALERT: An Intelligent Information Alerting and

Notification Web Service

APPROVED BY

SUPERVISING COMMITTEE:

Adnan Aziz, Supervisor

Daniel Miranker

sALERT: An Intelligent Information Alerting and

Notification Web Service

by

Sashmit B. Bhaduri, B.S.C.S.

REPORT

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2012

This report is dedicated to my parents for instilling within me a lifelong love

for learning, as well as my sister for always supporting me in my educational

endeavors.

Acknowledgments

I would like to thank my supervisor, Dr. Adnan Aziz, for his valuable

feedback and insights for this project. I would also like to thank Dr. Daniel

Miranker for graciously agreeing to act as my reader. In addition, I would like

to thank my past professors for teaching me many wonderful things, and my

classmates for imparting useful tidbits of knowledge, some of which have found

their way into this report.

v

sALERT: An Intelligent Information Alerting and

Notification Web Service

Sashmit B. Bhaduri, M.S.E.

The University of Texas at Austin, 2012

Supervisor: Adnan Aziz

Web services increasingly serve as large repositories and conduits of

information. However, they do not always allow for the efficient dissemination

of this information, particularly in a reactive way. In this report, I describe

sALERT, a web-based application that allows for targeted information from

various web services to be combined and cross-referenced in order to produce

a system that is more convenient and more efficient in reactively disseminat-

ing information. This dissemination is performed using mobile notification

mechanisms such as text messages, and information targeting is performed

using data from social networks and geolocation sources. I present the design,

implementation, and plans for future improvement for this service within this

report.

vi

Table of Contents

Acknowledgments v

Abstract vi

List of Tables ix

List of Figures x

Chapter 1. Introduction 1

1.1 Vision . 1

Chapter 2. Specification 4

2.1 User Stories . 4

2.1.1 Information Consumer 5

2.1.2 Information Publisher 5

2.1.3 Admin . 7

2.2 UI Mockups . 7

Chapter 3. Implementation 17

3.1 Introduction . 17

3.2 Technologies . 18

3.2.1 Cloud Services . 18

3.2.2 Web Application Frameworks 20

3.3 Data Models . 22

3.4 Web Service . 22

3.4.1 Authentication . 22

3.4.2 Geolocation . 25

3.4.3 User Recommendations 27

3.4.4 Web User Interface Pages 30

vii

3.5 User Information Crawler . 39

3.6 Internet Channel Crawler . 43

3.7 Alert Dispatcher . 45

Chapter 4. Results 48

4.1 Benchmarks . 48

4.2 Lines of Code Analysis . 51

4.3 Software Change Management 52

4.4 Runtime Cost Estimate . 53

Chapter 5. Conclusions 55

5.1 Summary . 55

5.2 Discussion . 55

5.3 Future work . 56

5.3.1 Quality . 57

5.3.2 Usability and Functionality 58

5.3.3 Commercialization . 59

5.3.4 Scalability . 60

Chapter 6. Related Work 62

6.1 Personalization . 62

6.2 Notification . 63

Appendix A. An Overview of Django 65

A.1 Introduction . 65

A.2 Models . 65

A.3 Views . 67

A.4 Templates . 68

A.5 Other . 69

Glossary 70

Bibliography 72

Vita 77

viii

List of Tables

2.1 Consumer Oriented User Stories 6

2.2 Publisher Oriented User Stories 8

2.3 Administrator Oriented User Stories 9

3.1 Summary of Technologies Used 19

4.1 Summary of Benchmarks . 50

4.2 Lines of Code . 52

ix

List of Figures

2.1 New Subscription Mockup . 11

2.2 New Local Subscription Mockup 12

2.3 Current Local Offers Mockup 13

2.4 Publish Alert Mockup . 14

2.5 Published Offers Mockup . 15

2.6 View Alert Mockup . 15

3.1 Logical Components . 18

3.2 Models . 23

3.3 Dashboard Page . 31

3.4 New Subscription . 32

3.5 Local Items . 33

3.6 New Alert Page . 35

3.7 My Channels . 37

3.8 View Alert Page . 38

3.9 My Subscriptions . 39

3.10 New Channel Page . 40

3.11 Administration Page . 41

3.12 User Information Crawler . 42

3.13 Internet Channel Crawler Summary 45

3.14 Alert Dispatcher . 47

x

Chapter 1

Introduction

1.1 Vision

It is a common need, in both the physical and virtual worlds, to be

able to share information, content, and events with other people. A business,

for example, may want to share information about special sales to customers,

or an individual may want to share links quickly with friends. Similarly, it is

common for people to seek out and search for such pieces of information from

friends, businesses, or other entities that would publish them. It is natural to

view this process as that of information creation and information discovery.

At the same time, there is often a need to either broadcast or receive

information in a realtime or semi-realtime basis. People want to use their

mobile devices increasingly often to receive this information. The mecha-

nisms for performing these tasks online come in many forms, such as websites

transmitting announcements over email subscription lists, members of social

networks writing status messages to their followers and friends, and websites

syndicating information over various feed formats. Some advanced websites

may even be able to send out alerts upon key events being triggered, such

as airline websites sending out flight status texts and emails to passengers

1

upon exceptional circumstances. Other online presences do not actively try to

broadcast information to their userbases, but are producers of information and

events nonetheless.

I propose sALERT – a system that provides a means of unifying and

augmenting these various information alerting mechanisms. By being able to

intelligently link together characteristics of both consumers and information

produced by publishers through a social network-data based recommendation

system, the system allows for potentially more effective dissemination and

discovery of information and information sources. By allowing mobile-friendly

notification methods, services that had no way of sending out mobile alerts

can suddenly do so. sALERT is extensible enough to progressively add more

content sources, and as this occurs, users gain a centralized location to manage

alerts and subscriptions to sources of alerts.

Social networks have become ever pervasive instruments for people to

connect with others. For third parties that operate or interact with these

platforms, they serve as rich sources of data and a valuable source of users. By

interfacing with social network systems as user-information sources, sALERT al-

lows information publishers to more easily find those who may be interested in

the information they produce. I chose Facebook, currently the most popular

social network, as the primary social network that the system interacts with.

This network has a large ecosystem of third party developers producing services

and applications oriented for the platform including everything from games

to music players that have been made more social due to Facebook’s platform

2

and availability of users.

To summarize, my main goals in this project were to create a system

in which users can be notified of information and events from various sources

that correspond to their interests, to allow for mobile-friendly notifications

for receiving these alerts, to allow for information publishers to send out

information items and target them to specific users in this system, and lastly,

to use social network-derived data to match these publishers and consumers so

they can more easily discover each other.

The rest of this report is organized as follows: Chapter 2 focuses on

planning the functionality of the proposed system by the exploration of user

stories and interface mockups. Chapter 3 focuses on the design and implemen-

tation of the proposed system. Chapter 4 presents various results based on this

implementation. Chapter 5 reaches conclusions about the proposed system and

defines scoping for future work. Prior work is reviewed in Chapter 6.

3

Chapter 2

Specification

2.1 User Stories

In order to plan the functionality of the system, I created a series of

user stories to qualify how users would use the system within the context

of the broad level objectives stated in the vision. The development of user

stories at the beginning of an overall software design process has become an

important part of Agile-oriented software development methodologies such as

Extreme Programming [34]. The stories presented in this section are in the

form recommended by Mike Cohn [5], with a general template of “As a role, I

want goal.”

The stories themselves are divided into three types of user roles: a) in-

formation consumers, b) information publishers, and c) administrators. Each

of these roles are described below, however, it is worth noting that a single

person or entity may potentially function within the context of two or three

roles simultaneously. In addition to a division by role, the user stories are

further subdivided into general and specific sets of stories, corresponding to

generalized and more concrete scenarios respectively. These user stories were

an important part of gaining an intuition of the scope and functionality needed

4

in the system.

2.1.1 Information Consumer

Table 2.1 delineates user stories that I created for an information

consumer user role. For the purposes of these user stories, I conceptualized

consumers as end users who use the system to consume information from alerts.

I recognized several different important concepts in these consumer-

oriented user stories. These include the concepts of channels, or a conduit of

information, and subscriptions, a stateful means of linking a consumer and

publisher that is initiated by the consumer and then persisted by the system.

When information would be pushed over the channel, it would delivered as a

notification by the system to subscriber. As described by these stories, these

channels may be derived from some remote Internet-based site, or may be local

in nature. In addition, some of the stories also implied the need of some sort

of recommendation system to help discover channels that much their interests.

Finally, I extracted the need for multiple methods of delivering alerts to the

end user from these stories.

2.1.2 Information Publisher

Table 2.2 summarizes a set of user stories that I created for the infor-

mation publisher user role. A publisher could be an individual or organization

who uses the system to send information to information consumers.

In general, these stories helped me define several new pieces of func-

5

Type Description
Specific As an user, I want to subscribe to a weather alert channel

and receive a text when it is going to rain tomorrow.
Specific As an user, I want the system to send me a text and

email the 3rd of every month to remind me to pay my
rent.

Specific As an user, I want to subscribe to my local coffee shops
channel and get alerts when they have flash sales.

Specific As an user, I want to get alerts when businesses in my
town that I havent heard of or used offer deals that I
might be interested in.

Specific As an user, I want to subscribe to a SlickDeals channel
and receive alerts when there are cheap thumb drives on
sale on my area.

Specific As an user, I want to subscribe to a Craigslist channel
and receive alerts when someone is selling SXSW tickets.

General As an user, I want to be able to subscribe to various
channels of my choosing.

General As an user, I want to be able to be alerted to new items
and offers from my subscribed channels.

General As an user, I want to get alerts for new items from
channels I am not subscribed to, but may be of interest
to me.

General As an user, I want to browse any special offers in my area
regardless of whether I am subscribed to those channels.

General As an user, I want to, on demand, get suggestions about
what other channels I could subscribe to based on my
interests.

General As an user, I want to customize how I receive alerts on
a per-channel basis.

General As an user, I want to be able to setup filters on my
subscribed channels.

Table 2.1: Consumer Oriented User Stories

6

tionality that are useful from the point of view of an information publisher,

including the need to be able to manually create alerts to deliver as notification

alerts to users, being able to find new users interested in the publisher’s content,

and being able to have some sort of tracking of published items for analytical

purposes.

2.1.3 Admin

Table 2.3 gives examples of user stories that I created for the administra-

tor user role. These users consist of privileged users who need to administrate

the system. The primary new pieces of perceived functionality in these stories

are additional analytics needing to be tracked by the system and administrator-

level control of publisher created channels.

2.2 UI Mockups

In order to explore the user interface of a proposed system in relation

to the user stories mentioned in Section 2.1, I prototyped the user interface

by creating a series of mockups using a rapid prototyping tool, Balsamiq [31].

I did this before starting work on the actual implementation of the system.

These mockups were useful for discerning what the different components of

the end user interface needed to be, as well as finding the relationships and

user-oriented action flow between them.

At the same time, mockups allowed me to quickly change and evolve

concepts over multiple brainstorming sessions. Moreover, they were invaluable

7

Type Description
Specific As a restaurant owner, I want to send deals to my usual

patrons on a regular basis.
Specific As a restaurant owner, I want my employees to use

the system to send out flash deals when they see the
restaurant empty.

Specific As an electronics shop owner, I want to reach new cus-
tomers by sending out alerts when I get excess inventory
of some product.

General As a publisher, I want to find new customers by sending
them offers they might be interested in.

General As a publisher, I want to alert existing subscribed cus-
tomers of new offers.

General As a publisher, I want to have all pending offers be
browsable and searchable by any potential consumers.

General As a publisher, I want to have an easy to use interface
for setting up offers.

General As a publisher, I want to be able to customize the de-
scription of offers.

General As a publisher, I want to be able to characterize offers
such that they are matchable to users interests.

General As a publisher, I want to set start and expiration dates
for offers.

General As a publisher, I want to track at a glance which of my
offers are being followed up on through the service.

Table 2.2: Publisher Oriented User Stories

8

Description
As an admin, I want to track how many users are sub-
scribed to what channels.
As an admin, I want to track how often users click on
individual deals based on alerts.
As an admin, I want to enable or disable channels.
As an admin, I want to configure categories of channels.

Table 2.3: Administrator Oriented User Stories

for developing a conceptual sense of the data that needed to be stored for

specific types of objects. The mockups are intentionally expressed in a low

fidelity form that is reminiscent of pencil and paper, a characteristic that has

been proposed as advantageous and more effective than higher level designs [28].

In Figure 2.1 and Figure 2.2, a mockup of a new subscription page is

presented, where each figure represents multiple tabs within the same screen.

I viewed this screen as an interface where users could set up subscriptions to

individual channels and define an output mechanism such as email or text

messages for receiving alerts for this subscription. I envisioned three categories

of channels within this page:

1. System Channels – Utility channels in which the system could generate

alerts based on some trigger, such as sending an user an alert at a specific

time every day.

2. Internet Channels – Channels for information sources that exist remotely

on the Internet, such as information being pushed out from a website

9

using a mechanism such as a Really Simple Syndication (RSS) feed or a

HTTP API.

3. Locals Channels – Channels for publishers associated with a geotagged

address.

In Figure 2.3, a mockup of an information consumer-oriented screen is

shown. I planned this interface to be where users can discover channels near

the user, as well as browse the current items (called offers within the mockups)

published by those channels. Moreover, I envisioned the map in the mockup to

allow the user to see at a glance the geographical locations of each of the items.

Ancillary pieces of information about each item were also put into the mockup

as a way providing to the user contextual information, such as the distance

between the publisher of the item and the user, as well as a rating of each item

as voted by users. To illustrate real world usage of the system, the end user in

the mockup is searching for Vietnamese Food within some distance of a zip

code.

In Figure 2.4, a mockup of an information publisher-oriented screen is

presented. This screen allows publishers to push new pieces of information

into a channel that the user owns. The mockup is from the perspective of a

Vietnamese-restaurant owner who wishes to notify subscribed users about a new

offer from the restaurant. In addition, the screen allows the publisher to target

users who are not subscribed to the channel by tagging a maximum distance

and a set of terms associated with the item for recommendation purposes.

10

Figure 2.1: New Subscription Mockup

11

Figure 2.2: New Local Subscription Mockup

12

Figure 2.3: Current Local Offers Mockup

13

Figure 2.4: Publish Alert Mockup

14

Figure 2.5: Published Offers Mockup

Figure 2.6: View Alert Mockup

In Figure 2.5, a mockup of a screen is presented whose aim is to allow

the information publisher to display, at a glance, all of the items that they

publish from their owned channels. The number of clicks is displayed for each

item to allow the publisher to assess popularity of each item.

In Figure 2.6, a mockup of a consumer-centered screen for viewing

information about a specific item is shown. I visualized this screen to be what

would be linked to by the system by any notification mechanisms ultimately

15

supported, such as emails and text messages. I envisioned that the screen allow

the user to see the location of an item (if applicable) on a map, as well to both

view the current rating of an item and rate it themselves.

16

Chapter 3

Implementation

3.1 Introduction

In this chapter, I describe the implementation of a prototype system

centered on the user stories and mockups presented in Chapter 2. I focused

the implementation towards the creation of a minimally viable system that

implemented most of the functionality described in the previous chapter while

serving as the basis for future work, described in Section 5.3. Both deviations

and extensions to the system proposed in Chapter 2 will be described as

appropriate.

Figure 3.1 shows a high level overview of the logical components of the

implementation, as well as the relationships and pieces of data shared between

them. Each of these components will be described in depth within this chapter.

17

Web Service

User Information
Crawler

Facebook
Account

IDs

Internet Channel
Crawler

Internet
Channel

 Subscriptions

Alert
Dispatcher

Local
 Channel
Alerts

Facebook
 Information

Internet
Channel
Alerts

Alert
Viewing

Figure 3.1: Logical Components

3.2 Technologies

The technologies used within the implementation are summarized in

Table 3.1. Generally speaking, those technologies used by a specific logical

component are described in their respective sections. Technologies and idioms

that are used more pervasively will be described in this section.

3.2.1 Cloud Services

I used Amazon Elastic Compute Cloud (EC2) to host the various

components of the sALERT system and serve as a cloud infrastructure provider.

EC2 is an example of a cloud-based Infastructure as a Service (IaaS), or delivery

of computer infrastructure as a service based on some usage-based payment

scheme [36], usually in a scalable way.

18

Type Technology Logical Components
Used In

Cloud Infrastructure Amazon EC2 All
Web Application Framework Django All
Web Server Apache Web Service
Asynchronous Message Passing RabbitMQ Web Service, Alert Dis-

patcher
Task Queueing Celery Web Service, Alert Dis-

patcher
Database MySQL All (if configured)
Database SQLite All (if configured)
Database MongoDB Internet Channel Crawler
Web Service API Twitter API Internet Channel Crawler
Web Service API Facebook API Web Service, User Informa-

tion Crawler
Web Information Feed Craigslist Internet Channel Crawler
Misc Library Feedparser Internet Channel Crawler
Clientside JavaScript Library jQuery Web Service

Table 3.1: Summary of Technologies Used

19

I used EC2 in a fairly naive way in the current implementation, using it

mostly as a Linux-based hosting solution. I deployed an Amazon Machine Image

(AMI) with a stock version of Canonical Ltd’s Ubuntu Linux Cloud Edition

on a single micro EC2 instance, and I installed and configured any supporting

software, including much of the software components listed in Table 3.1 by

hand. This approach serves well for the construction of a system implementing

initial functionality; it is not particularly optimized for scalability. Nonetheless,

EC2 is part of a large umbrella of cloud-related services offered by Amazon,

collectively referred to as Amazon Web Services (AWS). EC2, in addition to the

technologies in AWS, allow for the rapid scaling up of server needs as needed.

Some ideas for using more of EC2 will be described in Section 5.3.4.

3.2.2 Web Application Frameworks

Web frameworks are libraries that assist the development of web-based

services and applications. Web frameworks have become extremely popular

in recent years amongst Web application programmers, especially in the form

a newer generation of frameworks based on a Model View Controller (MVC)

architecture, long used in traditional software development, but shunned until

relatively recently for Web development [25]. These frameworks have helped

increase developer productivity when creating web-centered applications by

offering a large set of functionality while promoting modularity. Traditionally,

dynamic content on the web entailed Common Gateway Interface (CGI) or

servlet style programming, which typically exposed a limited set of functions to

20

the application writer, such as print statements [11]. In these older models, the

web server would pass requests to another functional block to actually handle

and serve the request. The requests could either be passed to an external

program or, for efficiency, run within the same process space as the web server

using server-specific plugins and extensions. These CGI scripts and servlet

programs would then access external systems such as databases as needed. Web

frameworks subsume this model, and even use CGI and servlet technologies

for communication with a web server, but provide a richer set of programming

interfaces for the developer. Thus, web frameworks can be thought of as an

evolution of older CGI and pure servlet style web programming.

In this project, I used the Django web framework. Django is an MVC

architecture that is composed of a multitude of Python-based application

support modules. Django heavily espouses the concept of Don’t Repeat Yourself

(DRY) [12] and has a large ecosystem of developers and third-party extensions.

Similar to other modern MVC-based web frameworks such as Ruby-on-Rails [25],

Django includes the ability to provide an abstraction of data in a higher level

language as opposed to database-specific languages, commonly referred to as

an Object Relational Model (ORM), and includes URL dispatching services as

well as rich HTML templating features. Additionally, modern web frameworks

also tend to have features to assist with techniques that have become popular

recently, including the transfer of data in JavaScript Object Notation (JSON),

handling of Asynchronous Javascript and XML (AJAX) calls, etc. I extensively

used many of these facilities within the implementation, not only for the

21

web-based frontend of the system, but the backend components as well.

A more complete introduction to the core concepts behind Django with

a particular focus on its MVC architecture is presented in Appendix A.

3.3 Data Models

In Figure 3.2, a simplified graph of the Django data models used by

multiple components of the implementation is illustrated. Models provided

by Django itself, and Django-oriented libraries that I used such as Celery and

django facebook are not listed, with the exception of the “User” model from

Django’s authentication framework, which is key to representing several types

of relationships between different models. The operation of key fields and

relationships will be elaborated on in subsequent sections.

3.4 Web Service

The web service component of sALERT comprises the user-facing fron-

tend of the system. In addition to a few general concepts used by the web

service, each of the screens of the web-based interface are examined in this

section.

3.4.1 Authentication

The web service uses Facebook as a primary user authentication source,

and the landing page of the web interface results in little else other than a login

link. Facebook allows authentication with external third party web services

22

Channel
id AutoField
chan_type IntegerField
name CharField
desc TextField
phys_address TextField
zip IntegerField
url URLField
global_worker TextField

User

owner

Subscription
id AutoField
output_type IntegerField
output_val CharField
date_created DateTimeField
argument TextField

channel

owner

FacebookItem
fbid IntegerField
name CharField
category TextField
likes IntegerField
pictureURL TextField

PublishedItem
id AutoField
summary CharField
desc TextField
expiration DateTimeField
target_users_dist IntegerField
clicks IntegerField
active BooleanField

source

viewed upvoted
downvoted

target_users_interests

Alert
id AutoField

sub pub_item

UserProfile
<FacebookProfileModel>

id AutoField
about_me TextField
facebook_id BigIntegerField
access_token TextField
facebook_name CharField
related_fb_ids TextField

user

Figure 3.2: Models

23

exclusively using an Open Authorization (OAuth2) based protocol. OAuth2 is

currently a draft specification [10], however, it has already been widely adopted

to handle authentication and third-party application authorization for a variety

of web services.

To perform OAuth2-based authentication when the user clicks the

“Login with Facebook” link on the landing page, the following steps occur:

1. The Facebook JavaScript API’s OAuth2-based login/authorization popup

is invoked.

(a) If the user is not currently logged into Facebook, a username and

password is asked for by the popup.

(b) The user is asked, via the popup, if they want to authorize the

sALERT application to access a certain set of data, called a scope.

2. Assuming the popup successfully closes, an authorization code is received

and sent to a Django view.

3. This view retrieves an access token by using a client ID and client secret

special to sALERT that have been previously generated when registering

the application with Facebook.

4. A new Django User model object is created with the email address of the

Facebook account just authorized, if one does not exist already.

5. The User model object’s login function is called, which makes it available

to all Django views, including views implemented for the system.

24

6. The access token is stored for later usage by the User Information Crawler

component.

Much of this is abstracted out by the usage of a combination of Django’s

built in user authentication system which offers an extensible authentication

backend system, and a modified version of django facebook, which handles

many of the OAuth2-specific handling logic. OAuth permissions that are asked

for include a user’s likes, interests, groups, events, checkins, activities, email,

birthday, and other profile information, however not all of these are used at the

moment. I modified the latter to account for ongoing changes in the Facebook

OAuth2 API.

3.4.2 Geolocation

Several parts of the sALERT web service either require the user’s current

location or need to calculate distances between two geographical points or zip

codes. The methodologies and algorithms that I used will be described in this

subsection.

The system uses zip codes coupled with street addresses natively as

a means of storing object locations (e.g, for local channels). Additionally, it

exposes zip codes to the user when the user is filtering in various user interfaces

within the web interface (e.g, finding objects that are within n miles from

around a zip code). Addressing locations in this coordinate system is both

intuitive to the end user and supported natively by the Google Maps API used

in the web interface.

25

However, in order to compare the distance between two locations, it is

more convenient mathematically to convert locations into latitude/longitude

space. In the current implementation, only the zip code is transformed into a

latitude/longitude for distance matching purposes, and not the street address

itself. I used information derived from the US Census Bureau [1], from where

the geographical center of each zip code in the United States is retrieved. Since

this only works in the United States, and there is some inherent error in using

the geographical center of a zip code rather than a true latitude/longitude

of a street address, some better strategies are proposed for future work in

Section 5.3.1. In addition to a zipcode → latitude/longitude transformation, I

also implemented a reverse transform by finding the zip code with the minimum

distance between its geographical center and a given latitude/longitude. This

is also an approximation, but suffices for the cases it was used for.

To find distances between two coordinates in latitude/longitude space, I

used the Haversine formula, listed in Equation 3.1. This method computes the

great circle distances between two latitude/longitude pairs (φ1,ψ1 and φ2,ψ2)

using a constant radius r that is a spherical approximation for the Earth’s true

geometry [39].

d = rhav−1
(√

hav(φ2 − φ1) + cos(φ1) cos(φ2) hav(ψ2 −ψ1)
)

(3.1)

which may be rewritten, using more common trigonometric functions as opposed

to versed trigonometric functions that are sometimes used for navigational

26

calculations:

d = 2r arcsin

(√
sin2

(
φ2 − φ1

2

)
+ cos(φ1) cos(φ2) sin2

(
ψ2 −ψ1

2

))
(3.2)

In addition to implementing coordinate space transforms, the web

service must also attempt to find the user’s current location. For this, I

implemented support for the HTML5 Geolocation API, currently a World

Wide Web Consortium (W3C) candidate specification [35]. This API provides

a simple interface to allow websites to retrieve a user’s current geographical

location in latitude/longitude space from location-aware browsers, typically

after a user authorizes this action on a per-website basis. The actual source

of information for this geolocation data is dependent on browser and device.

It may be based on a GPS or cell tower information if available, for example,

on a phone, or it may be based on triangulation based on Wi-Fi networks or

inferred from a IP address [7]. Because of this, the accuracy of the data can

vary wildly based on circumstance and what data sources are available. For

example, the best IP-based methods, may achieve median errors of 690-700

meters for certain types of US-based IPs (assuming no proxy or VPN is used),

while 200-1000 meters accuracy has been achieved using cell tower information

and 10-20 meters can be had using Wi-Fi databases, with GPS being regarded

as the most accurate data source [41].

3.4.3 User Recommendations

In addition to users subscribing to channels to receive alerts, the system

also shows recommended items to the user. This is ultimately performed and

27

presented within the web service. Users are matched up with recommenda-

tions using two methods: geographical proximity and interest-based matching.

Currently, user recommendations only occur for items that are tied to local

channels, and not Internet-based sources, although more advanced recommen-

dation techniques may address this in the future. The current methodologies

serve to provide a basis for future improvements, mentioned in Section 5.3.1.

In the first case, users are shown recommended alerts based on geograph-

ical proximity. When a publisher creates an item, they have the opportunity

to provide a targeted maximum user distance. The idea in this case is that

different types of items and channels may have different domain-specific dis-

tances that potentially interested users may be willing to travel within. For

example, a professional sports team may want to send alerts to a very wide

radius across a metropolitan area, but a local neighborhood bar may only want

to target users within the confines of a few miles.

The system, in several location aware user interface pages, attempts

to retrieve a user’s current latitude/longitude and then maps it to a zip code

using the methodology in Section 3.4.2. This is then compared with every item

to see if it meets the item’s minimum distance matching criteria, and if so, a

recommendation is generated. Additionally, the end user has an opportunity

to change the location the system believes they are at by changing the zip code

in the location area pages. These are persisted across multiple interface screens

by storing the current tracked location in a HTTP session cookie.

The second method of recommended item matching is performed by

28

comparing a user’s Facebook graph information in the form of Facebook Graph

Object identifiers (see Section 3.5) with a set of targeted interests as defined

by an information publisher when an item is created. For a given user, this

Facebook graph information may include their likes, interests, activities, and a

limited set of demographic information such as the languages they speak, their

location, hometown, etc. For a given user U and an item I, recommendations

are then generated on the basis of:

IdsC = IdsU ∩ IdsI (3.3)

Where Ids correspond to Facebook Graph Object identifiers. If IdsC 6=

∅, a recommendation is generated for item I, and is annotated with IdsC to

allow the user to know why the recommendation was made. This style of

filtering data for purposes of generating recommendations using a user’s older

preferences has been referred to as keyword-based filtering [38]. This method

allows information publishers to specifically target users who have specific

interests or demographic information. For example, someone who is using the

system to notify people about a book club meeting may want to create an

item whose targeted interest includes the Facebook Graph Objects for that

book, the author, and the book’s genre. This recommendation model is limited

due to the enormity of objects represented by the Facebook Graph as users

may have interests that are similar but not identical to a publisher’s targeted

graph objects. This implementation serves as a first order implementation that

may be improved in various ways. Chapter 6 discusses some related work on

recommendation engines in general.

29

3.4.4 Web User Interface Pages

In this section, each of the major pages within the web service are

described and compared with the pre-implementation mockups.

In Figure 3.3 is a screenshot of the dashboard page of the web interface.

This page serves to both show current alerts for the channels the user has

subscribed to, as well as recommendations of items based on interests (along

with which of the user’s interests triggered the recommendation) and based on

location. I did not envision this page during the design process, and thus I did

not mock it up, but it was clear to me that a central interface for displaying

these pieces of information was useful. The dashboard also serves the additional

useful purpose of being the screen that is shown after login occurs, and therefore

may be thought of the main page for users.

Figure 3.4 presents a screenshot of the New Subscription page of the

web interface and corresponds to the mockups represented in Figure 2.1 and

Figure 2.2. In contrast to the mockups, I did not implement System Level-type

channels in the final implementation. This is proposed as future work in

Section 5.3.2. In addition, I did not implement filtering based on a textual

string, which may be helpful with a larger number of channels. To simplify the

interface, I scrapped multiple tabs as shown in the mockup in favor of showing

and hiding form elements using dynamic JavaScript techniques depending on

what channel was selected. In particular, Internet-based channels accept an

extra argument field.

30

Figure 3.3: Dashboard Page

31

Figure 3.4: New Subscription

32

Figure 3.5: Local Items

33

In Figure 3.5 is a screenshot of the Local Items page of the web interface

and corresponds to the Figure 2.3 mockup. The implementation is a fairly

faithful representation of the mockup, with a key usability change to make the

map a much more central piece of the overall composition of the page. In order

to assist users in browsing the map, when the mouse is hovered on top of an

item, the item corresponding to it in the list below is highlighted. Like the

New Subscription page, I did not implement textual searching.

Figure 3.6 presents a screenshot of the Publish New Alert page of the

web interface. This page is an implementation of the mockup presented in

Figure 2.4, and is, overall, very similar to it. The Targeted User Interests field

is an auto-completing input field that uses Facebook’s Social Graph search API

using an AJAX call to let publishers find Social Graph items corresponding

to a search substring. When a user selects an item from the dropdown box, a

FacebookItem model object is created, and the item’s unique Facebook Graph

identifier as well as various pieces of metadata from the JSON returned by the

API, including a picture (if applicable), category, and number of likes are stored.

The number of likes and category are displayed to help the information publisher

pick the interests that have the widest coverage and are most applicable. This

is important due to the sheer expansiveness of Facebook Graph data. The total

number of elements represented within the Facebook Graph is unpublished and

non-trivial to estimate due to the non-linearity of its identifier space, but the

nodes and edges of this graph includes over 900 million users and 125 billion

friendships between these users. In addition, an average of 3.2 billion likes and

34

Figure 3.6: New Alert Page

35

comments and 300 million photos were uploaded every day within the first

quarter of 2012 ending March 31, 2012 [17]. Not all of this data, however, is

publicly searchable by all users.

Figure 3.7 is a screenshot of the My Channels page of the web interface.

This is an implementation of the mockup presented in Figure 2.5. As opposed

to the mockup, which presents information in just an item-oriented view,

information is shown about channel in the actual implementation as well,

including a number of subscribers. In addition, a complete set of information

about each item is presented at the cost of user interface compactness.

Figure 3.8 shows a screenshot of the View Alert page of the web interface

and is an implementation of Figure 2.6. The implementation is very similar to

the mockup, with the main exception that instead of a graphical cumulative

rating, a numerical one is shown instead. Ratings are implemented using a

upvote/downvote system where any single user has one vote per published item

that they may change at any time.

Figure 3.9 is a screenshot of the My Subscriptions page of the web

interface. This page allows the user to manage their subscriptions and see

where alerts are being sent to, either through email or Short Messaging Service

(SMS). This was another interface that I did not envision during the mockup

phase.

Figure 3.10 is a screenshot of the New Channel page of the web interface.

This allows information publishers to create and specify properties for a new

36

Figure 3.7: My Channels

37

Figure 3.8: View Alert Page

38

Figure 3.9: My Subscriptions

channel. This a key glue page that I did not mock up.

Figure 3.11 is a screenshot of the Edit Channel page of the adminis-

tration interface within the site. The administration interface is optionally

automatically created by the admin module within Django by introspection

into any models defined by the Django application itself. This figure corre-

sponds to the Channel data model within Figure 3.2. This interface allows

specially tagged super-users to perform a multitude of administration related

tasks without having to modify the database directly. This functionality is

very configurable, although I used mostly defaults.

3.5 User Information Crawler

The User Information Crawler, whose basic operation is visualized in

Figure 3.12, is a headless component within the sALERT architecture whose

sole purpose is to retrieve and keep updated Facebook Social Graph about

registered users. This is important to insure that user interest-based alert

39

Figure 3.10: New Channel Page

40

Figure 3.11: Administration Page

41

Django ORM

User Information
Crawler

 Access Tokens Graph IDs

http://graph.facebook.com

Retreive User
Data

 User Likes/
Interest
Data

User
 Demographic

Data

Figure 3.12: User Information Crawler

recommendations have the correct input data to trigger off of.

The crawler operates as a daemon process and periodically accesses

access tokens that were generated when users use the Login with Facebook

button in the web service and subsequently were stored within a UserProfile

Django model. It then uses the access token to initiate authenticated requests

on the user’s behalf to obtain several pieces of information, such as user likes and

activities and retrieval of demographic information from the user’s Facebook

profile, such as hometown, location, and the languages the user speaks.

Each of the discrete pieces of information retrieved from Facebook exists

within its Social Graph, whether it is an activity such as singing, a location

such as New York City, or a language such as Spanish. Some of these objects

are created by Facebook itself by importing data from other sources into the

42

graph, while others are created by its users, and yet others are automatically

created through applications that interact with the Facebook platform. Each

of these objects is associated with an unique numerical identifier. When the

crawler asks for user interest information from within this graph, Facebook is

essentially returning the objects that have edges emanating from the object

that represents the user themselves. The crawler stores the object identifiers

locally on a per-user basis for subsequent recommendation operations by the

web service. The crawler uses a simplistic sequential update model that is

effective when the pool of associated users is low, or when the periodicity of

updates is small. Scalability is discussed in Section 5.3.4.

3.6 Internet Channel Crawler

The Internet Channel Crawler component of the sALERT architecture

exists to power Internet-based channels. A summary of the workings of this

component is presented in Figure 3.13. This component, like the User Informa-

tion Crawler, is a headless daemon process and attempts to fulfill subscriptions

to Internet-based feeds. It periodically iterates through the Subscription ob-

jects created in the Django ORM, filtering on subscriptions to Internet-based

channels. It then invokes one of several different types of workers, depending

on the source of the channels.

Currently, two types channel sources are supported, each of which are

illustrative of two different input methodologies and serve as a template for

others to be created in the future. The first of these is a Craigslist input

43

source. This allows the user to input a Craigslist search URL to monitor.

The crawler uses the RSS feed source that this website exposes. RSS is a

XML-based schema that summarizes informational items from websites [33].

RSS feeds are often tagged with Globally Unique Identifier (GUID) elements

that allow for discerning unique items being created within a website. I used

the Python-based library Feedparser to handle translation of the raw RSS data

to a higher level description. For each unique item within the feed, a MongoDB

database is queried on a per-subscription basis for the GUID to see if the item

had been encountered before. If not, the GUID is stored in the MongoDB

database and the Alert Dispatcher described in Section 3.7 is asynchronously

invoked. I expect this mechanism generalizes well to any feed in the RSS or

the newer Atom feed formats, which is important as these feeds have become

a widely adopted means of information syndication for websites. This would

allow channels to be created trivially for a large set of websites that have these

feeds.

The second type of Internet channel uses Twitter to allow users to

receive alerts upon specific Twitter search phrases. Twitter is a microblogging-

based social networking service which is commonly used by people to seek or

share information, or share their daily activities [24], in the form of SMS-sized

messages called “tweets.” Like many newer web services, Twitter does not

expose a RSS feed but rather exposes a rich API that third party software

can use as a platform to build applications upon. Like Facebook, this API

uses an OAuth2-based authentication to control access to a Representational

44

Django
ORM

Internet
Channel
Crawler

Subscriptions

PublishedItems

MongoDB

Store & Filter
Unique Data

search.craigslist.com

Retreive & Get RSS
Feed Items

twitter.com

Request &
Get Tweets

Figure 3.13: Internet Channel Crawler Summary

State Transfer-based (RESTful) API, except that in this case, a pre-authorized

long-lived access token is stored that can be created on Twitter’s developer

website. I used the python-twitter library to provide high level access to

this API. Twitter’s search expressions are highly expressive, so users of this

mechanism can search for phrases, specific topics (called hashtags), people, etc.

Each tweet retrieved from the service is tagged with a unique number, which

is used to demarcate old tweets from newly discovered ones.

3.7 Alert Dispatcher

The Alert Dispatcher is the last component of the sALERT implemen-

tation. This is asynchronously invoked by both the Web Service (i.e, for local

channels, when the channel owner creates a new item) as well as by the Internet

Channel Crawler (i.e, for remote Internet channels). A summary of the pipeline

for this mechanism is shown in Figure 3.14.

Celery, a Python-based asynchronous task queueing library, is used to

45

specify tasks to asynchronously invoke. Celery itself is a thin wrapper that

provides a high level API and attempts to abstract out an actual transport and

message passing mechanism, of which several backends exist. Celery defaults to

RabbitMQ, a distributed message passing system. Two types of output tasks

are defined within the component: one that can send emails, and one that

can send text messages via SMS to a phone number. These tasks, which are

actually implemented as simple Python functions, are registered with Celery

and ultimately invoked by it via a RabbitMQ broker process.

The email task simply uses Python’s built in SMTP module to send

a email defined by the end user when a subscription is set up. The body of

the email contains a link to the alert that is created by whatever component

initiated the creation of an alert, either the Web Service or Internet Channel

Crawler. The text message task works similarly, but instead of interacting with

an SMTP server, it interacts with a web service called Twilio [21], which offers

a number of telephony-related web APIs, including the ability to send text

messages at a trivial cost per message. I used Twilio’s official Python-based

SDK to interact with Twilio’s lower level RESTful APIs.

46

Celery

RabbitMQ

 Task Dispatch

Alert
Dispatcher

 Invoke Task

SMTP twilio

 Send Email Send SMS

Aalert Webservice
Internet Channel Controller

Alert
 Fulfilment

Tasks

Figure 3.14: Alert Dispatcher

47

Chapter 4

Results

4.1 Benchmarks

I developed a suite of tools to use the Facebook API’s Test User func-

tionality to simulate real world usage of the implemented system. This is a

mechanism that Facebook provides as part of its platform to allow application

developers to test their applications by being able to programmatically create

and modify up to 500 virtual Facebook accounts that are invisible to the rest of

the network, but can see each other [16]. My tools included dynamic test user

creation, deletion, and listing all test users associated with an application. The

latter action is needed to periodically refresh test user login URLs that can be

used to login to test user accounts using the Facebook website. Unfortunately,

the test user API functionality does not currently allow for the creation of new

interests to be associated with an account, so this had to be done by hand by

logging in to the test user.

In order to assess how the current implementation would perform for a

small amount of users using the system simultaneously, I performed a basic

benchmark test. I created five test users using these tools and associated

them with a variety of interests on the Facebook website. I then created a

48

test bootstrap script that used direct access to Django’s ORM to create ten

test local channels and subscriptions (to SMS) for all of these users to those

channels. Lastly, I created another script that also functioned using direct

access to Django’s ORM to publish 50 items over a 60 second test window into

these test channels.

To bootstrap the test, I logged into the sALERT website using each of

the test users using different browsers, and then used the test bootstrap script

to create test channels and subscriptions. I then measured various pre-test

memory metrics, which are summarized in Table 4.1. I then ran the test

script to publish alerts, while simultaneously viewing the dashboard for each

of the browsers as to generate recommended items. After the total number of

expected SMS messages had been sent, post-test memory usage metrics were

measured.

I measured memory usage per-process by examining the output of the

ps command, while examining the virtual memory usage field. In some cases,

such as apache and celeryd, there were multiple forked copies of processes,

and thus the average and range are presented in these situations. I used the

free command to examine total system memory usage. Determining the total

SQL queries performed in this period was made possible by Django’s ORM-level

debugging functionality. The amount of text messages and timing is made

possible by logging into Twilio’s online account management tool [21], which

allows tracking of API usage.

The EC2 instance in this case was a micro level, which is allocated a

49

Name Type Value
Apache Memory Usage Pretest 260980k± 271k
Apache Memory Usage Posttest 261852k± 226k
mongod Memory Usage Pretest 132204k
mongod Memory Usage Posttest 132204k
celeryd Memory Usage Pretest 33340k± 12845k
celeryd Memory Usage Posttest 57936k± 1091k
mysqld Memory Usage Pretest 137612k
mysqld Memory Usage Posttest 139109k
RabbitMQ Memory Usage Pretest 21112k
RabbitMQ Memory Usage Posttest 22493k
Internet Feed Crawler Memory Usage Pretest 24640k
Internet Feed Crawler Memory Usage Posttest 24633k
User Information Crawler Memory Usage Pretest 27752k
User Information Crawler Memory Usage Posttest 28101k
System Total Memory Usage Pretest 309140k
System Total Memory Usage

Posttest
314752k

mysqld Total SQL Queries 751
Twilio Total Messages Spent 250
Twilio Total Time Spent 63 secs

Table 4.1: Summary of Benchmarks

50

total of 613 MB of memory, of which roughly half was used. Most of the memory

was used while the system was in steady-state, due to the large number of

different services being used in this project, and mostly default settings within

the servers being used. In this particular test, there was only a modest memory

usage increase post-test. The sum of the per-process memory usages does not

add up to the total system memory used because the former is tracking virtual

memory, and most of the processes have shared libraries virtually mapped to

the process that is only used once in physical memory. In the future, it may be

advisable to sample memory usage at regular intervals during the benchmark

process, as to measure peak memory usage before memory is freed or garbage

collected in different languages. However, it appears the EC2 micro level seems

to usable for the current needs.

4.2 Lines of Code Analysis

In order to analyze the lines of code of the system with fidelity, each

of the source files in the sALERT tree, sans modified 3rd party libraries, were

placed in different categories corresponding to which of the system’s logical

components they best matched to as presented in Figure 3.1. An additional

category was created for files whose code was used by multiple components or

was test code. Lines of code information was extracted using the common UNIX

wc, and subdivided depending on language. This is presented in Table 4.2.

51

Component Files Python HTML/JavaScript CSS
Shared Code 4 414 - -
Web Service 27 1059 1516 91
Internet Channel Crawler 3 226 - -
User Information Crawler 6 216 - -
Alert Dispatcher 7 129 - -

Table 4.2: Lines of Code

4.3 Software Change Management

The git version control system was used to track changes in this project.

Git is a Distributed Version Control System (DVCS) system that was originally

created by Linus Torvalds to be the official version control software for the

Linux Kernel, but has since spread rapidly to other projects. A DVCS such as

Git is especially useful for teams of developers, but even for a single developer,

it offers advantages over conventional version control systems. For example, Git

branches are very lightweight, and it is easy to change between them [4]. The

typical developer workflow evolves to creating many branches when working

simultaneously on different topics within a single source tree. Additionally, Git

has a staging area for commits, and offers intelligent merging algorithms.

Since the Fall of 2011, a total of 33 commits were made to the master

repositories tracking the implementation’s codebase until March 24th, 2012. In

addition, 9 local branches were created where most commits initially occurred

before merging back into the master.

52

4.4 Runtime Cost Estimate

There are two driving operating costs for the current implementation of

the system: cloud infrastructure and web services. It is convenient to estimate

these costs in some sort of per user basis. In this section, a model is formed

for estimating the cost of running the service for 100 users using the current

infrastructure in place.

To keep this model simple, the following general assumptions are made:

1. An user will have 5 subscriptions they are subscribed to at any given

time.

2. An user receives all notifications over SMS.

3. The source of each subscription generates two new items per day.

4. A month has 31 days.

To estimate the cost of cloud infrastructure, Amazon’s extensive cost

estimator tools can be used to generate “what if” scenarios for a variety of

AWS services. Most of cost of EC2 is tied to the compute power (which, on

EC2 is also tied to maximum memory available) rather than bandwidth or

disk space, as can be common with other hosting solutions. For example, the

cheapest instance, the micro instance that is always on, has a 1 GB persistent

volume attached to it and a 5 GB of both input and output network transfer

and is billed at a $15.89/month rate. On the other hand, the compute power

53

is billed at $14.64, the storage is billed at $1.25, and the data transfer is billed

at $1.32. Only when the monthly network transfer is raised to 230 GB/mo

(115 GB in, 115 GB out), does the cost of the monthly network transfer eclipse

the cost of the compute power. Meanwhile, going from a micro instance to the

next level up, a small instance (which provides 1.7 GB of memory, 160 GB

of built-in non-persistant storage, and 1 guaranteed virtual CPU core) raises

the compute cost to $58.56/month. I expect that the micro instance would

suffice for some time, especially if configuration parameters were tweaked from

default values for a lower memory situation.

The only commercial web service being used at the moment is that of

Twilio. Twilio’s cost structure is relatively simple, with a fixed cost of a one

cent per message (with a free $30.00 credit upon opening an account) and

increasing volume discounts, culminating at 0.2 cents per message over 100

million messages sent/month. To estimate the number of messages sent using

the above assumptions, the number of users can be multiplied by the average

number of subscriptions and the average number of new items per day for each

subscription. In this case, this would amount to 1000 messages per day, or

$310.00 per month at a cent per message rate. This volume is not high enough

for volume pricing, so no other adjustments are necessary in this estimate. In

order to avoid this cost, other notification schemes may need to be explored

such as direct mobile pushes to phones. Some of these schemes are explored in

Section 6.2.

54

Chapter 5

Conclusions

5.1 Summary

The implemented system satisfies the criteria laid out by the vision and

most of the criteria within the specification. The following major objectives

outlined in the vision were achieved:

• Users can be alerted of information and events from various sources that

correspond to their interests.

• Users may receive mobile notifications based on these alerts.

• Information publishers may send out information items and target them

to specific users.

• Social network-derived data is used to match these two user groups.

5.2 Discussion

While a famous software engineering axiom as stated by Knuth is that

“premature optimization is the root of all evil” [26], many modern libraries

traditionally thought of as within the domain of scalability or optimization

are well designed enough that it is often better to use them early than later.

55

This was the case in this project with the usage of the Celery/RabbitMQ stack

to perform asynchronous task handling. I used these somewhat late in the

development process as there was a hesitancy to use it for fears of unnecessary

complexity. However, the stack turned out to have a high benefit to learning

curve and complexity ratio. Because of time constraints, I only used this stack

for scheduling the asynchronous handling of alert notification dispatching, but

using it in the crawler components to handle the scheduling of various periodic

tasks would have saved having to write custom controller code. I would have

saved net development time savings with an additional benefits of less brittle

code, more flexibility and a great deal more scalability.

I found Django to be a highly productive framework. My main problems

with it were not found in the core libraries itself, but in the form of the

django facebook library, which was not always updated to whatever API

changes Facebook had made recently. In hindsight, I should have explored

other Django or Python-based libraries that wrap the Facebook APIs to see if

there were any that were more actively maintained.

5.3 Future work

In this section, possibilities for future work on the sALERT system are

discussed.

56

5.3.1 Quality

The current recommendation system is simplistic in nature, and although

it works for various scenarios, more complex algorithms would serve well to

provide higher quality and more comprehensive recommendations. Some of the

possible avenues are discussed in Section 6.1 and involve either matching users

to similar users, or interests to other similar interests. From the perspective

of the system, the data needed for these algorithms could be gained by more

comprehensive retrieval of information from Facebook and other social network

sources as well as subsequent data mining-related post processing steps. The

information retrieved could include links between users themselves, such as

friendship and group relationships. Additionally, recommendations can be

made more comprehensive by including items from Internet-based channels.

This would need richer parsing of metadata (e.g., geographical location, content

topics/interests, etc) from those sources or interpretation of metadata from the

contents of items when metadata is not available.

Deeper integration into social networks themselves may present oppor-

tunities for quality improvement. Facebook offers different levels of integration

with the service [40]. At the deepest level, applications can run in top of

Facebook’s Canvas API, which allows applications to leverage Facebook’s look

and feel and run within a HTML iframe within the Facebook site itself. Using

this in the web service, even in a limited fashion, may encourage user partici-

pation. For a more data-oriented integration, Facebook’s Graph API allows

applications to objects into the Facebook Social Graph complete with pieces of

57

metadata, which allows those objects to be viewed and be searched for on the

Facebook website as well as be usable by other third party applications. This

may be useful for various constructs such as published items.

5.3.2 Usability and Functionality

In addition to usability-related feedback from end users, there are several

general areas that require usability-related improvement. The current web

interface is not optimized for a large number of channels, items, and alerts,

and can become unusable with many of these elements. This may happen, for

example, if there are many channels in a single locality being shown in a map,

or if an user has too many active alerts. As the service grows, this will be

increasingly important problem to address to avoid information overload. This

could be solved with simple techniques such as pagination, text-based search

capabilities, and limiting item display to a maximum amount of items at any

one time.

I proposed System Channels as a piece of functionality during initial

design stages but I did not ultimately implement them. These channels could

improve the usefulness of the system to users while leveraging much of the

existing infrastructure. Examples of these types of channels include allowing the

system to create synthetic alerts at specific dates that are sent as notifications

to users as well as mobile location based alerts. The scope and relevancy of

these pieces of functionality will have to be decided.

The system currently uses United States zip codes extensively. Ul-

58

timately, I may want to internationalize this service. In this case, various

Geographic Information System (GIS) systems may be beneficial for both more

efficient geographical coordinate conversions, but more easily internationalized

mechanisms. Django includes a set of modules that may simplify this task by

interfacing with a number of GIS libraries and services.

5.3.3 Commercialization

Approaches to marketing and subsequent monetization of this system

will be discussed in this section.

Marketing the product system is an important means to an end to

generate a critical mass of users needed for the service. As an important

part of the service is geospecific, focusing on a specific initial locality for a

pilot program may be important. The area around The University of Texas

at Austin campus itself may be a good candidate for this program owing to

the density of people and businesses, including a particularly social network

savvy student base. Initially, low cost mechanisms such as fliers will be used

as a means of marketing to prospective users around campus, combined with

reach-out partnership programs to local business owners to encourage publisher

participation.

There are a number of ways that are possible to monetize the service

itself. An initial solution may be to use online advertisement services such as

Google Adsense [20] in the web service, which delivers targeted ads to users

and ultimately revenue to site owners based on advertisement clicks. Further

59

work on mobile-development may also open doors to mobile advertisement

platforms such as Google Admob [19], which are tailored to mobile applications

and services.

Paid services may also be a monetization opportunity. These services

may be in the form of parts or the entire site being available on a subscriber

model to specific user bases, such as commercial entities wishing to act as

subscribers. This may be tiered, for example, by offering extra functionality

and features such as analytics information, preferred recommendations, and a

larger maximum amount of published items. Furthermore, other services, such

as API-level access to the system, may be possible to monetize off of.

5.3.4 Scalability

The Amazon AWS architecture includes a number of ancillary cloud

infrastructure technologies usable on EC2 that allow applications to be quickly

scaled up in both users and functionality. Currently, the most pressing short

term need is for server persistence. This is needed because EC2 instances are

not inherently stateful across reboots. This is typically solved using Amazon’s

Elastic Block Store service [13], which allow virtual volumes to be attached and

persisted as underlying EC2 instances get created and destroyed. Amazon’s

Elastic Load Balancing technology could be used to spread web traffic across

multiple EC2 instances according to flexible load and geographical constraints

(for example, to handle all requests in the western United States on Amazon’s

data centers in the west). This may be combined with EC2 Auto Scaling

60

mechanism to automatically create and destroy EC2 instances depending

on load [14], effectively generating computational power on demand. The

AWS architecture includes a number of other services that may be explored

including scalable email sending, database, deployment, and task management

technologies.

As the number of users and subscriptions increases, API usage restric-

tions of various data sources may be hit. This can be managed in several ways.

In RSS feeds, subscriptions to popular feeds can be handled in a feed-centric

rather than a strictly subscription-centric manner. This could by done by

periodically fetching remote feeds into a local caches and having similar sub-

scriptions use this cache as an input source. This would alleviate problems with

fetching remote feeds too many times. Social networks such as Facebook and

Twitter also have similar usage restrictions with their APIs. They both give

developers similar tools to solve this issue by letting high usage applications

setup subscriptions for updates to specific data pieces as they change, instead

of traditional polling mechanisms [16,22].

61

Chapter 6

Related Work

6.1 Personalization

Recommendation engines, or systems which aim to recommend items

to users, have rapidly evolved within the last several decades. They have been

of great interest to both researchers and to production environments. The

importance of recommendation systems is perhaps exemplified by the Netflix

Prize, announced in 2006, which promised a $1 million prize to any group which

could improve on Netflix’s Cinematch movie recommendation system by more

than 10% [23], which was ultimately won in 2009 [27]. Two different broad

categories have been have been described for these systems [3]: content-based,

where users are recommend items similar to items they have liked in the past,

and collaborative, in which users are recommend items from similar users. In

the context of social networks, both may be applicable, as the former approach

needs preference information from a specific user, and the later needs preference

information from multiple users, and possibly the relationships between the

users as well. Both of these pieces of data are commonly tracked by social

networks.

One of the most important and influential early systems for collaborative

62

recommendations was that of the Ringo system [38], which attempted to

make personalized music recommendations based on a holistic approach by

considering the overall interest profile of a user and comparing it to other

users, in essence trying to capture the intuition behind “word of mouth”. The

authors found that the system worked increasingly well as more users trained

the system.

Recommendation systems have made their way into many commercial

environments as well. Besides the aforementioned usage by Netflix for movie

recommendations, other notable examples include Amazon, who uses collab-

orative recommendation systems to extensively personalize its e-commerce

site [30], and Google, which incorporates these systems to produce personal-

ization functionality in products such as Google News [6]. Recommendation

systems are emerging in a newer sector, “daily deal” services such as GroupOn

and LivingSocial, which have gained prominence in recent years. These web-

sites originally focused on showing deals from a person’s locality, but now offer

increasing amounts of content personalization.

6.2 Notification

With the rise in popularity of mobile devices and the increasing ubiq-

uity of electronic communication, there has been an increased interest in the

development and usage of notification systems. These systems have a number

of technical challenges such as information delivery and scalability.

Location based notification systems have been an emerging field that

63

have been popularized recently due to geolocation devices and services being

found on mobile devices. When users arrive at specific geographical locations,

they may be sent notifications through these systems. Munson and Gupta [32]

argued that these systems should be highly generalized, and could be useful

for a wide variety of applications, including automatic information about

landmarks delivered to tourists as they walk around, public safety notifications

when drivers are close to inclement weather, and utility companies sending

information to all close by customers when maintenance is about to occur.

Mobile devices increasingly support the Multimedia Messaging Service

(MMS), an evolution of SMS which allows for much richer content to be

delivered to users. It has been argued that typical notification messages sent

over SMS are not very informational, and require a user to visit a URL in order

to gauge a notification’s value [37], which may ultimately decrease follow rates.

The usage of richer messages delivered over MMS may eliminate this problem.

In addition to classic mobile messaging services such as SMS and MMS,

the concept of push notification has been an important innovation in noti-

fication services and have become common in mobile applications. These

notifications are typically implemented using mobile-platform specific services,

such as the Apple Push Notification Service (APNs) [15] and Android Cloud to

Device Messaging (C2DM) [18], on the iOS and Android platforms respectively.

Platform-agonistic services have also been proposed [9] that piggyback on top

of the platform specific services.

64

Appendix A

An Overview of Django

A.1 Introduction

Django is a web application framework that was originally developed

in-house by the Lawrence Journal-World, a newspaper in Lawrence, Kansas,

and was created to power its online presence, which included a number of news

and local entertainment websites. After several years of development behind

closed doors, it evolved into a more general form and was subsequently spun

off as an open source project and released to the public in July 2005 [12].

At its core, Django consists of three major layers: a model layer where

data is stored and represented, a view layer in which program logic occurs,

and a template layer, where presentation may be expressed. Each of these is

explored in the following sections.

A.2 Models

Django includes a complete ORM, with the ability to interface with

different database backends such as MySQL, SQLite, and PostgreSQL. In

addition, a fork of the framework, called django-norel, is underway to port the

Django ORM to non relational databases such as that of Google App Engine,

65

Apache Cassandra, Apache HBase/Hadoop, Apache CouchDB, and MongoDB,

with the long term goal to merge these changes back into the official Django

release [2]. These databases, collectively referred to as NoSQL-databases,

have gained market traction recently [29]. While leveraging the Django ORM,

developers write small Python-based classes to describe pieces of data and the

relationships between them. These are referred to within the Django lexicon

as “models”. The main purpose of Djangos ORM is to abstract away database

details so that the developer can work with high-level objects rather than lower

level database constructs. Except for exotic situations such as importing a

large set of records en masse, Django-based applications do not need to be

concerned with the details of the actual database they are ultimately storing

data into.

The Django ORM classes support the classic Create Replace Update

Delete (CRUD) operations on these models by exposing an API. In addition, a

variety of operations are supported for querying for existing data. Typically,

developer declared models eventually derive from the Django ORMs “model”

class somewhere in their inheritance hierarchy. Fields declared within a model

are translated into database columns, and relationships between different

models are annotated through special types of fields. Code reuse is promoted

by allowing models to derive from other models, in which case a child model

automatically inherits the fields of a parent model.

66

A.3 Views

The business logic for a Django program is typically defined in what are

called “views”. Views are defined by developers as simple Python functions

that operate on a request object, and return a response object. Views are the

most analogous construct within Django to CGI scripts and servlets.

Django supports a URL dispatch mechanism to map URLs to specific

view functions. A Django application defines a file that contains regular

expressions for this mapping. Individual parts of the URL can be captured and

sent to the resultant view function using Pythons keyword variable argument

feature. This is commonly utilized to support the creation of “pretty” URLs

for search engine optimization (SEO) purposes, or for the implementation of

RESTful APIs.

Response objects are constructed and returned by view functions based

on the request parameter and any other arguments passed to the function.

The request object stores information such as HTTP header information. The

values represented by the response object are returned back to the web server,

and eventually the client. These objects may represent textual information in

the form of html, JSON, XML, or other data types, or they may be HTTP-

based control statements such as redirects and errors. Typically, views will

perform CRUD and querying operations on models in order to build up a

correct response.

67

A.4 Templates

Django includes a templating system. This system is typically used

by applications to generate dynamic HTML, although they can also instead

generate other textual data types such as JSON, XML, CSV, etc [12]. Com-

monly, templates are invoked by view functions, and data in the form of Python

objects, including model objects, can be passed from the view to the template.

Templates support the concept of variables, which are the pieces of

data passed from the view. Additionally, global state is supported through the

concept of a context processor. These are typically used to support aspects of

web programming such as sessions and cookies. As variables exposed to the

template are actual Python objects, the template system also allows accessing

fields and invoking methods. Variables are read only within Django templates,

however, the system also supports the concept of a filter, which are akin to

UNIX shell pipes. A variable can be sent into a filter before the value is read.

Django has a multitude of built-in filters for transforming data in various ways,

such as justifying text and reformatting absolute dates into relative ones.

The last major construct in Django templates is called tags. These are

used to define control flow logic within a template. Typical flow and conditional

statements are supported such as if and for statements, and variables may be

used as parameters for these conditional and iteration statements.

Tags are also used to implement the concept of blocks. Templates

are allowed to extend other templates, and blocks allow templates to define

68

regions that are replaced wholesale in either other templates or in the same one.

This is commonly used, for example, to create a base template for an entire

website that has a number of blocks corresponding to customization points, and

allow individual templates corresponding to different subpages to only contain

the blocks those pages need to customize. This technique for implementing

inheritance allows for a more consistent look and feel within a web application

while reducing code duplication and was used in the implementation.

A.5 Other

When it comes to the breadth of functionality in its standard libraries,

the Python language has a “batteries included” philosophy [8]. Django follows

this philosophy, and includes a large number of features that support different

uses cases of web applications within the django.contrib set of modules that

Django applications can optionally use. These include HTML form abstractions,

generic views, widgets, a built-in admin interface, session support, unit testing

support, authentication, etc.

69

Glossary

AJAX Asynchronous Javascript and XML. 21, 34

AMI Amazon Machine Image. 20

AWS Amazon Web Services. 20, 53, 60, 61

CGI Common Gateway Interface. 20, 21, 67

CRUD Create Replace Update Delete. 66, 67

DRY Don’t Repeat Yourself. 21

DVCS Distributed Version Control System. 52

EC2 Elastic Compute Cloud. 18, 20, 53, 60

GIS Geographic Information System. 59

GUID Globally Unique Identifier. 44

IaaS Infastructure as a Service. 18

JSON JavaScript Object Notation. 21, 34, 67

MMS Multimedia Messaging Service. 64

70

MVC Model View Controller. 20–22

OAuth2 Open Authorization. 24, 25, 44

ORM Object Relational Model. 21, 65, 66

RESTful Representational State Transfer-based. 44, 46, 67

RSS Really Simple Syndication. 10, 43, 44

SMS Short Messaging Service. 36, 44, 46, 49, 53, 64

W3C World Wide Web Consortium. 27

71

Bibliography

[1] United States Census Bureau Gazetteer. http://www.census.gov/geo/

www/gazetteer/gazette.html, 2010.

[2] NoSQL Support for Django. http://www.allbuttonspressed.com/

projects/django-nonrel, 2012.

[3] G. Adomavicius and A. Tuzhilin. Toward the Next Generation of Recom-

mender Systems: A Survey of The State of the Art and Possible Extensions.

Knowledge and Data Engineering, IEEE Transactions on, 17(6):734–749,

2005.

[4] S. Chacon. Pro Git. Springer, 2009.

[5] M. Cohn. User Stories Applied: For Agile Software Development. Addison-

Wesley Professional, 2004.

[6] Abhinandan S. Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram.

Google News Personalization: Scalable Online Collaborative Filtering. In

Proceedings of the 16th International Conference on World Wide Web,

WWW ’07, pages 271–280, New York, NY, USA, 2007. ACM.

[7] Nick Doty, Deirdre K. Mulligan, and Erik Wilde. Privacy Issues of the

W3C Geolocation API. CoRR, abs/1003.1775, 2010.

72

http://www.census.gov/geo/www/gazetteer/gazette.html
http://www.census.gov/geo/www/gazetteer/gazette.html
http://www.allbuttonspressed.com/projects/django-nonrel
http://www.allbuttonspressed.com/projects/django-nonrel

[8] P.F. Dubois. Python: Batteries Included. Computing in Science &

Engineering, 9(3):7–9, 2007.

[9] Huber Flores, Satish Narayana Srirama, and Carlos Paniagua. A Generic

Middleware Framework for Handling Process Intensive Hybrid Cloud

Services from Mobiles. In Proceedings of the 9th International Conference

on Advances in Mobile Computing and Multimedia, MoMM ’11, pages

87–94, New York, NY, USA, 2011. ACM.

[10] E. Hammer-Lahav, D. Recordon, and D. Hardt. The OAuth 2.0 Autho-

rization Protocol. Draft RFC, March 2012.

[11] A.E. Hassan and R.C. Holt. A Lightweight Approach for Migrating Web

Frameworks. Information and Software Technology, 47(8):521–532, 2005.

[12] A. Holovaty and J. Kaplan-Moss. The Definitive Guide to Django: Web

Development Done Right. Springer, 2009.

[13] Amazon.com Inc. Elastic Block Store. http://aws.amazon.com/ebs.

[14] Amazon.com Inc. Elastic Load Balancing. http://aws.amazon.com/

elasticloadbalancing.

[15] Apple Inc. Apple Push Notification. https://developer.apple.com/

documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG.

[16] Facebook Inc. Facebook API Documentation. http://developers.

facebook.com/docs/reference/api.

73

http://aws.amazon.com/ebs
http://aws.amazon.com/elasticloadbalancing
http://aws.amazon.com/elasticloadbalancing
http://developers.facebook.com/docs/reference/api
http://developers.facebook.com/docs/reference/api

[17] Facebook Inc. SEC S-1/Amendment Filing. http://www.sec.gov/

Archives/edgar/data/1326801/000119312512175673/d287954ds1a.htm.

[18] Google Inc. Android Cloud to Device Messaging Framework. https:

//developers.google.com/android/c2dm/.

[19] Google Inc. Google Admob. http://www.google.com/ads/admob/.

[20] Google Inc. Google Adsense. http://www.google.com/adsense.

[21] Twilio Inc. Twilio Cloud Communications. https://www.twilio.com.

[22] Twitter Inc. Twitter Developer Documentation. https://dev.twitter.

com/docs.

[23] D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich. Recommender

Systems: An Introduction. Cambridge Univ Press, 2010.

[24] Akshay Java, Xiaodan Song, Tim Finin, and Belle Tseng. Why We

Twitter: Understanding Microblogging Usage and Communities. In

Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on

Web Mining and Social Network Analysis, WebKDD/SNA-KDD ’07, pages

56–65, New York, NY, USA, 2007. ACM.

[25] M. Jazayeri. Some Trends in Web Application Development. In Future of

Software Engineering, 2007. FOSE’07, pages 199–213. IEEE, 2007.

[26] D.E. Knuth. Computer Programming as an Art. Communications of the

ACM, 17(12):667–673, 1974.

74

https://developers.google.com/android/c2dm/
https://developers.google.com/android/c2dm/
http://www.google.com/ads/admob/
http://www.google.com/adsense
https://www.twilio.com
https://dev.twitter.com/docs
https://dev.twitter.com/docs

[27] Y. Koren. The Bell-Kor Solution to the Netflix Grand Prize. Netflix

Prize Documentation, 2009.

[28] James A. Landay and Brad A. Myers. Interactive Sketching for The Early

Stages of User Interface Design. In Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems, CHI ’95, pages 43–50, New

York, NY, USA, 1995. ACM Press/Addison-Wesley Publishing Co.

[29] N. Leavitt. Will NoSQL Databases Live Up to Their Promise? Computer,

43(2):12–14, Feb. 2010.

[30] G. Linden, B. Smith, and J. York. Amazon.com Recommendations: Item-

to-item Collaborative Filtering. Internet Computing, IEEE, 7(1):76–80,

2003.

[31] Balsamiq Studios LLC. Balsamiq Mockups. http://www.balsamiq.com.

[32] Jonathan P. Munson and Vineet K. Gupta. Location-Based Notification

as a General-Purpose Service. In Proceedings of the 2nd International

Workshop on Mobile Commerce, WMC ’02, pages 40–44, New York, NY,

USA, 2002. ACM.

[33] S. Murugesan. Understanding Web 2.0. IT professional, 9(4):34–41,

2007.

[34] R.L. Nord and J.E. Tomayko. Software Architecture-Centric Methods

and Agile Development. Software, IEEE, 23(2):47–53, 2006.

75

http://www.balsamiq.com

[35] A. Popescu. Geolocation API Specification. World Wide Web Consor-

tium, Candidate Recommendation CR-geolocation-API-20100907, 2010.

[36] B.P. Rimal, Eunmi Choi, and I. Lumb. A Taxonomy and Survey of

Cloud Computing Systems. In NCM ’09. International Conference on

Networked Computing, Advanced Information Management and Digital

Content and Multimedia Technologies, pages 44–51, Aug. 2009.

[37] S. Samanta, J. Woods, and M. Ghanbari. Special Delivery: An Increase in

MMS Adoption. Potentials, IEEE, 28(1):12–16, January-February 2009.

[38] Upendra Shardanand and Pattie Maes. Social Information Filtering:

Algorithms for Automating Word of Mouth. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, CHI ’95, pages 210–

217, New York, NY, USA, 1995. ACM Press/Addison-Wesley Publishing

Co.

[39] R. W. Sinnott. Virtues of the Haversine. Sky and Telescope, 68:158, 1984.

[40] S. Srivastava and A. Singh. Facebook Application Development With

Graph API Cookbook. Packt Pub Limited, 2011.

[41] Y. Wang, D. Burgener, M. Flores, A. Kuzmanovic, and C. Huang. Towards

Street-Level Client-Independent IP Geolocation. In USENIX Symposium

on Networked Systems Design and Implementation, 2011.

76

Vita

Sashmit Bhaduri attended the Georgia Institute of Technology and

graduated with a Bachelors of Science in Computer Science in 2006. He has

since worked as a Software Engineer for the Applied Research Laboratories at

the University of Austin, a Department of Defense-affliated research center,

on a variety of DoD and private industry contracts. In 2010, he entered the

Graduate School at the University of Texas at Austin and enrolled in the

Software Engineering Program. He has long enjoyed building software, learning

new programming languages, and keeping abreast of developing technologies.

Permanent address: sashmit@gmail.com
9009 Great Hills Trail Apt. 1013
Austin, Texas 78759

This report was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special version
of Donald Knuth’s TEX Program.

77

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1. Introduction
	Vision

	Chapter 2. Specification
	User Stories
	Information Consumer
	Information Publisher
	Admin

	UI Mockups

	Chapter 3. Implementation
	Introduction
	Technologies
	Cloud Services
	Web Application Frameworks

	Data Models
	Web Service
	Authentication
	Geolocation
	User Recommendations
	Web User Interface Pages

	User Information Crawler
	Internet Channel Crawler
	Alert Dispatcher

	Chapter 4. Results
	Benchmarks
	Lines of Code Analysis
	Software Change Management
	Runtime Cost Estimate

	Chapter 5. Conclusions
	Summary
	Discussion
	Future work
	Quality
	Usability and Functionality
	Commercialization
	Scalability

	Chapter 6. Related Work
	Personalization
	Notification

	Appendix A. An Overview of Django
	Introduction
	Models
	Views
	Templates
	Other

	Glossary
	Bibliography
	Vita

