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Abstract 

 

A GIS-based Estimation of Steady-State Non-Point Source Bacteria 

Pollution in the Lower Rio Grande below Falcón Reservoir  

 

Robin Shaw Lynch, MSE, MPAff 

The University of Texas at Austin, 2012 

 

Supervisors:  Daene C McKinney, David Eaton 

 

 

This report estimates the steady-state, non-point source bacteria pollution along 

the international river system of the Lower Rio Grande / Río Bravo between Falcón 

Reservoir and the Gulf of Mexico.  The results from this report may be used by 

environmental agencies in the United States and México in order to develop a steady-

state water quality model of the bacterial load in this river system.  This report creates a 

GIS-based estimation of the steady-state, non-point source pollution from sources such as 

failing septic tanks, untreated sewage, grazing animals, and wildlife in the watershed.  

This report also provides recommendations for environmental agencies when developing 

the water quality model.  The results and methodology developed for this report may be 

used as part of the Lower Rio Grande / Río Bravo Watershed Initiative, a binational pilot 

project to develop a plan to restore and protect the quality of the Rio Grande/Río Bravo.          
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Chapter 1: Introduction 

The United States and México share responsibility in preserving the quantity and 

quality of their international river system, the Rio Grande/ Río Bravo.  Several 

international treaties govern the quantity of water each country must give and take.
1
 No 

treaty establishes joint standards for the quality of the river, which is important for the 

people and wildlife that use the water.  For this reason, the federal and state 

environmental agencies in both the U.S. and Mexico are participating in the Lower Rio 

Grande/Río Bravo Watershed Initiative (the Initiative), a binational pilot project to 

develop a plan to restore and protect the quality of the Rio Grande/Río Bravo. This pilot 

project focuses on the part of the Rio Grande/Río Bravo below Falcón Reservoir to the 

Gulf of Mexico, but it will be used as a model for developing bi-national watershed 

protection plans in the other sections of this international river system.  To protect water 

quality, it is necessary to understand the pollution sources, which involves modeling the 

river.  Any model must be transparent, and use equations and data acceptable to both 

countries.  The Initiative is likely to develop a steady-state model to consider low-flow 

conditions on a constant basis, without adding the complexity of storm water flow.  

Steady-state models are used frequently for point sources, stationary sources of pollution 

such as factories, or wastewater treatment plants that produce a constant flow of 

contaminated water.  Such steady-state models rarely account for non-point sources of 

pollution that are not attributable to a single source, such as septic system failures or 

animal defecation.  This report develops an estimation of the non-point source pollution 

that enters the Rio Grande/Río Bravo below Falcón Reservoir on a steady-state basis in 

order to assist in the development of the Initiative’s water quality of model of pollution 

attributable to non-point sources.   
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The methodology used in this report is adapted from the dissertation of Stephanie 

Lynn Johnson, Ph.D., titled “A General Method for Modeling Coastal Water Pollutant 

Loadings.”
2
  This report is also based on the methodology on several Total Maximum 

Daily Load reports created to satisfy the requirements of section 303(d) of the Clean 

Water Act.
3,4,5

  The method depends on combining geographic data with census data in a 

GIS environment to create an estimate for the fecal coliform bacteria that contaminates 

the Rio Grande/ Río Bravo.   

The results of this study are designed specifically for use as input files into a 

QUALTX model, the style of steady-state water quality model created for the Texas 

Commission on Environmental Quality (TCEQ) that is used for water quality regulations 

by both México and the U.S.
6
  This methodology could be used for any other steady state 

water quality model, such as LAQUAL or QUAL2K.  The results are computed using a 

HydroNetwork created with the ArcHydro add-in for ESRI’s ArcGIS software.  The 

results are segmented into sections called “Reaches” using the previous water quality 

models completed by TCEQ.  In total, there are 48 reaches, starting at Falcón Dam and 

continuing to the Gulf of Mexico.   

This study looks at the non-point sources of pollution that enter the river on a 

constant basis, such as septic system failure, untreated wastewater, and animals 

defecating directly into the river and contributing streams.  This study does not include 

the runoff caused by storm events.  This study differs from some research of the past, that 

seek to estimate non-steady state flow
7
, which includes the runoff from storm events.  

This study seeks to quantify the non-steady state bacteria contamination that enters the 

river.  For an example of the difference, consider a cow that defecates on open land.  The 

bacteria from that defecation will not enter the river until a rainstorm washes the 

defecation into the river.   Some research papers seek to estimate the impact of that 
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defecation after it is washed into the river.  This research does not include rainfall runoff 

contributions from rain-induced defecation.  This study considers the bacteria that would 

enter the river if the cow was to defecate directly into the river while it was drinking 

water. Non-steady state models are important, as non-steady state flows are a significant 

contribution of bacteria contamination in a river.  However, the data and modeling 

expectations for a non-steady state model would require information which is not readily 

available for the Rio Grande/ Río Bravo, and so is beyond the scope of this research.  A 

steady-state model estimates a different type of pollution, the type which would occur in 

times when the river is in low flow conditions.   

This report uses several equations for the calculation of fecal coliform load in the 

watershed.  These equations are presented in Table 1, the Table of Equations.  For the 

purposes of using these equations, it is necessary to make many assumptions in the 

process of estimating the total bacteria load that reaches the Lower Rio Grande/ Río 

Bravo.  Table 2 presents the Table of Assumptions, which lists all of the assumptions 

used in this study.  This report is divided into four chapters.   

Chapter 2 develops the methodology of how the analysis is performed. Chapter 3 

of this report presents the results of this analysis.  The results are divided among 48 

sections of the river, called “Reaches.”  These results are designed for use as inputs into 

steady-state water quality models.  Chapter 4 of this report provides recommendations for 

government agencies on the measures they should take, such as additional studies and 

surveys, when improving this analysis for the use in water quality models of the Rio 

Grande/ Río Bravo.  
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Table 1: Table of Equations 

Equation Subject Details

(1)
First order decay 

of fecal bacteria

Calculates the decay of bacteria for the exposure time between the 

source of the bacteria and reaching the Rio Grande/ Rio Bravo.  Uses a 

first order rate a decay.

(2)
Exposure time of 

bacteria
Calculates the exposure time of the bacteria for use in Equation (1).

(3)
Velocity of river 

based on flow

Calculates the velocity of the river, using the flow rate and coefficients 

for the hydraulic conductivity of the river.

(4)

Number of people 

in each locality 

with and without 

drainage

Calculates the number of people in each locality with and without 

drainage, using INEGI data for the number of households as well as the 

average number of people per household.

(5)

Flow of 

wastewater 

produced per day 

per each locality

Calculates the flow of wastewater produced per day per each locality, 

using the number of people found from Equation (4) and the average 

amount of wastewater produced per person.

(6)

Number of people  

with failing septic 

tanks in each 

subwatershed

Calculates the number of people with failing septic tanks per each 

subwatershed, using the denisty of septic tanks, the area of the riparian 

corridor in the subwatershed, and a failure rate.

(7)

Total grazing 

animals in each 

subwatershed

Calculates the total number of grazing animals in each watershed with 

the average density of animals and the area of appropriate land use.

(8)

Fecal coliform 

load for grazing 

animals, per sub-

watershed

Calculates the fecal coliform load from grazing animals, using the total 

grazing animals in the watershed from Equation (6) and the average 

fecal coliform load per animal.

(9)

Fecal coliform 

load for wild 

animals, per sub-

watershed

Calculates the fecal coliform load for wild animals, using the average 

density of animals and the average fecal coliform load per animal.
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Table 2: Table of Assumptions
Assumption Subject Details

1 Delineation of watershed

The delination of watersheds in Figure 1 accurately represents the watershed that 

drains into the Rio Grande.  These watersheds are still topics of discussion between 

USGS and INEGI as of March 2012.

2 NHD data 

The NHD data avialable accurately represent the rivers and streams in the 

watershed.  The NHD data are still topics of discussion between USGS and INEGI as 

of March 2012.

3 DEM data The DEM data available represent the true topography of the watershed.

4 Decay rate (1) Bacteria in this watershed decays at first order rate.

5 Decay rate (2) The decay rate of bacteria is a constant through the whole watershed.

6 Decay rate (3)
At low decay rates, the decay rate of E.Coli and Fecal Coliform are approximately 

equal.

7 Velocity of river
The velocity of the river can be related to the flow rate according to the equations 

and constants used in prevoius QUALTX models of the Rio Grande.

8
Travel distance from bacterial 

source to reach

When calculating the distance travelled of bacterial load from the source to its 

respective reach, aggregating all sources into subwatersheds and using the distance 

from the centroid of the subwatershed to the reach adequately estimates the 

distance travelled.

9
Rural connections to public 

sewers

In order to distribute percentage of septic tanks and public sewage access in the 

Mexican side of the watershed, it was assumed that people in rural areas did not 

have access to public sewer systems.

10
Number of people without 

sewage

In the Mexican side of the watershed, the number of people without sewage can be 

estimated by multiplying the number of households without sewage by the 

average number of residents per household in each locality.

11 The "other" category
People in the "other" category regarding access to sewage in the INEGI census can 

be equally distributed between urban and rural localities in the municipality.

12 Access to sewage

People with access to public sewage are assumed to not contaminate the rivers or 

streams.  Finding the percentage of sewage collected but is not treated is beyond 

the scope of this report.

13 Septic contamination
Households with septic systems are assumed to contaminate the rivers and streams 

when the septic system is failing.

14 Septic failure rate
The septic failure rate found on the U.S. side of the watershed is applicable on the 

Mexican side as well.

15 Septic riparian corridor
Septic systems outside a 500 meter riparian corridor are assumed to have no 

pollution reaching the rivers or streams.

16
Distribution of sewage in 

urban areas

The distribution of sewage in urban areas, when dividing an urban area across 

subwatersheds, is proportional to the % of area in each subwatershed.

17
Estimation of wastewater 

produced per person

The estimation of wastewater produced per person per day accurately represents 

the wastewater produced by people on each side of the watershed.

18
Lack of wastewater treatment 

in red colonias
Households in colonias labeled as 'red' lack access to wastewater treatment.

19
Fraction of time livestock 

spend in rivers and streams

The percentage of time livestock spend in streams, as used in this study, accurately 

represents the true time spent in streams.

20 Livestock land uses

Livestock are distributed equally across forest, shrub, and grass/pasture land uses, 

except in the municipalities of Rio Bravo, Valle Hermosa, and Matamoros, in which 

they are also on agricultural land.  The exception is due to the fact that these 

municipalities are almost completely agricultural.

21 Wildlife riparian corridor
A riparian corridor of 300 feet accurately represents the wildlife that contribute 

bacteria to the rivers and streams.

22 Deer and feral hog land uses
Deer and Feral Hogs are distributed equally across forest, shrub, grass/pasture, 

agriculture, and wetlands land uses.

23 Deer density
The density of deer found by the Texas Parks and Wildlife in Resource Management 

Unit 8 can be attributed across the whole watershed.

24 Feral hog density

The density of feral hogs found by the Institute of Renewable and Natural 

Resources at Texas A&M University accurately represents the distribution of feral 

hogs in the watershed.

25 Waterfowl distribution Waterfowl are distributed evenly across the wetland and water land uses.

26
Distribution From Rio Grande 

Delta

The distrubtion of waterfowl is inversely related to the distance from the Rio 

Grande Delta.  This study recommends that more complete surveys of waterfowl be 

completed.  
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This chapter has provided an introduction of the purpose of this study as well as a 

table of the equations and assumptions used in the following methodology.  Chapter 2 

presents the methodology used for the study, divided into sections based on the type of 

data and methods used.  

                                                 
1
 United States Government Printing Office, Utilization of Waters of the Colorado and Tijuana Rivers and 

of the Rio Grande: Treaty Between the United States of America and Mexico (Washington D.C: GPO, 

1946), http://www.ibwc.gov/Files/1944Treaty.pdf, 9-11. 
2
 Stephanie Lynn Johnson, “A General Method for Modeling Coastal Water Pollutant Loadings,” (PhD 

diss., The University of Texas at Austin, 2009). 
3
 The United States Environmental Protection Agency, “Impaired Waters and Total Maximum Daily 

Loads,” http://water.epa.gov/lawsregs/lawsguidance/cwa/tmdl/, (Accessed on March 7, 2012). 
4
James Miertschin & Associates, Inc, Final Modeling Report for Fecal Coliform TMDL (Total Maximum 

Daily Load) Development for Leon River Below Proctor Lake, Segment 1221: Project Area 2 – Baisn 

Groups D & E Bacteria Impairments Work Order #5 (Austin, TX: Texas Commission on Environmental 

Quality, November 2006).  
5
 Chief Engineer’s Office, Water Programs, TMDL Section, One Total Maximum Daily Load for Bacteria 

in the Guadalupe River Above Canyon Lake (Austin, TX: Texas Commission on Environmental Quality, 

July 2007).  
6
George H. Ward, Jr. and Jennifer Benaman, Models for TMDL Application in Texas Watercourses (Austin, 

Texas: Texas Natural Resource Conservation Commission, December 1999),  

http://www.crwr.utexas.edu/reports/pdf/1999/rpt99-7.pdf, 169. 
7
Stephanie Lynn Johnson, “A General Method for Modeling Coastal Water Pollutant Loadings,” 249. 

  

http://www.ibwc.gov/Files/1944Treaty.pdf
http://water.epa.gov/lawsregs/lawsguidance/cwa/tmdl/
http://www.crwr.utexas.edu/reports/pdf/1999/rpt99-7.pdf
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Chapter 2: Methodology  

Three challenges for developing a model for the steady-state, non-point source 

effluents for a river are to decide what is the river, what are the sources of several 

different effluents, and how to convert the activities in the river into a mass-balance flow 

of effluents.  To account for these challenges, Chapter 2 is divided into seven sections. 

The first section describes the creation of the watersheds, or the spatial area within which 

all the water bodies drain to one point.  The second section explains the political 

subdivisions of municipalities and counties, because these subdivisions are often the level 

at which census data are available.  Because much of the data are available at the 

municipality and county level, understanding the intersection of these political 

boundaries with the watershed boundaries is a key aspect to the way this methodology 

was developed.  The third section presents the land use data.  These land use data classify 

every part of the watershed into the way the land is used, such as for agriculture, forest, 

shrub, etc.  Each use of the land leads to a bacterial load on the river. For example 

livestock and wildlife spend their time on specific types of land use, and their steady-state 

bacterial loads reflect assumptions about their behavior.  The fourth section develops a 

decay rate to use when bacteria travels from its source to the points along on the Rio 

Grande/ Río Bravo of interest.  The bacteria decays significantly over the period of time 

it travels along the river. An analysis could use the decay rate to estimate the quantity of 

decay of the bacteria.  The fifth section looks at untreated wastewater in Mexico and the 

U.S.  This untreated wastewater originates either from households that have no access to 

public sewage or from households on failing septic systems.  The sixth section looks at 

the bacteria contribution from animal grazing.  Only the bacteria contribution from direct 

defecation into the stream is considered, as that is the only contamination that will enter 

into the river on a constant basis.  Both cattle and horses contribute to the bacteria 

contamination of rivers and streams from direct defecations.  The seventh section 

estimates the bacteria contribution from wildlife, such as deer, feral hogs, and migratory 

fowl.  While this source of bacteria is not one that government agencies can do much to 

control, wildlife still contributes a significant load of bacteria to the river system.      
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WATERSHED DELINEATION 

 The watershed for the Rio Grande/Rio Bravo represents the surface area that 

drains to the river.  The watershed is divided into basins and sub-basins according to the 

Hydrologic Unit Code (HUC). Figure 1 below illustrates the watersheds for the lower Rio 

Grande/Río Bravo.
8,9

 The watersheds for the U.S. side are taken from the National 

Hydrography Dataset (NHD) website of the USGS.
10

  The watersheds from the Mexico 

side are preliminary watersheds that, as of February 2012, are still topics of discussion  

between the United States Geological Survey (USGS) in the U.S. and its counterpart in 

Mexico, the Instituto Nacional de Estadística y Geografía (INEGI).
11

  A watershed will 

end at a reservoir, such as the Falcón Reservoir on the international border as well as the 

reservoirs created by the Las Blancas and Marte R. Gómez dams in Mexico.  These 

watersheds, shown in Figure 1, define the area of the land that contributes to the end 

point of each watershed.  The delineation of these watersheds provides the analysis with a 

way of defining the land area that contributes to the bacteria load in different sections of 

the river.  

Figure 1: Watersheds of Lower Rio Grande/ Río Bravo

 

Source: Derived from USGS, “National Hydrography Dataset,” The National Map, GIS Shapefile, 

http://viewer.nationalmap.gov/viewer/nhd.html?p=nhd , INEGI, Unpublished GIS Shapefile, October 13, 2011, Map created by Robin 
Lynch 

http://viewer.nationalmap.gov/viewer/nhd.html?p=nhd
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The hydrography used in this study is the preliminary NHD file, which is being 

harmonized by USGS and INEGI for the United States-Mexico Border Geographic 

System (USMX-GIS).
12

  The hydrography is still in development and does not represent 

the finalized version of the NHD.
13

  There currently is no NHDPlus dataset available, 

which would estimate the stream flow velocity for every stream and river in this dataset.  

Due to this limitation, this analysis uses rough estimates of the stream velocity.  Figure 2 

presents the National Hydrography Dataset for this watershed.
14

  The National 

Hydrography Dataset is used as a representation of all the rivers and streams in this study, 

and it is also used to create riparian corridors in the analysis.  Most of the sources that 

contribute to steady-state pollution occur close to the rivers and streams. As a result, the 

National Hydrography Dataset is important for defining these riparian corridors 

surrounding the rivers and streams.  

Figure 2: National Hydrography Dataset

 

Source: Derived from USGS, Unpublished GIS Shapefile, June 2011, Map created by Robin Lynch 
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For the analysis, a Digital Elevation Model (DEM) was used to determine the 

flow directions in the watershed.  The DEM uses aerial sensing to determine the elevation 

of the surface.  The DEM for this study was taken from the USGS Seamless Server and 

has a grid size of 30 meters (m) by 30 m.
15

  The smaller the grid size, the more accurate 

the analysis can be. For example, a 30 m x 30 m grid assumes that every grid of that size 

has the same elevation.  A 30 m by 30 m grid size is fairly large, meaning that these data 

are less accurate than would occur with a smaller grid size.  On account of the flat 

topography of the area in this study, there are many problems resulting from such a large 

grid size, especially in the agricultural areas.  For a more accurate analysis, it would be 

necessary to start with a more accurate DEM.  For example, a Light Detection and 

Ranging (Lidar) is used in a plane flying over the area which use light reflection to 

measure accurately the elevation on a very small grid size.
16

  Although the IBWC has 

Lidar data available within 3 miles of the Rio Grande, there is no coherent and 

compatible small grid representation for the entire watershed of this study.
17

  The 

watersheds of USGS and INEGI do not overlap exactly, meaning that they do not agree 

completely with each other, as of April 2012, and USGS and INEGI still seek to develop 

an official harmonized watershed.
18

  This report will use the watershed from INEGI for 

the México side
19

 and the watershed from USGS for the U.S. side,
20

 when possible.  

However, there is one area where the watersheds from INEGI do not agree with the NHD 

hydrography (see Figure 3
21

) and some compromise is necessary.  The INEGI watersheds 

are shown in blue and the USGS watersheds are shown in gray.  The NHD used for this 

study does not match with the watersheds from INEGI, so the watersheds from USGS are 

used.  In future analysis, it is recommended that the harmonized watershed match with 

the NHD. 
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Figure 3: Disagreement of Watersheds from INEGI and USGS just west of Reynosa 

 

Source: Derived from USGS, Unpublished GIS Shapefile, September 15, 2011 & INEGI, Unpublished GIS  
Shapefile, October 13, 2011, Map Created by Robin Lynch 

 Non-point source pollution could be released from among 48 different 

“reaches” or sub-basins along the river.  The reaches were digitized from previous TCEQ 

modeling in QUALTX, based on different hydraulic features of the Rio Grande/ Río 

Bravo.
22

  This analysis uses a pour-point technique, using each reach as a pour-point to 

determine the pollution that enters that particular section of the river.  Figure 4 shows the 

reaches used in this analysis.
23

  They are numbered from 1 to 48, starting at the Falcón 

Reservoir.  In each reach has Figure 4 an alternating color of dark and light blue so as to 

see the length of each reach.  These reaches are used throughout the analysis to divide up 

the pollution that enters the river into the 48 sections, and the results of the analysis can 

be used for water quality modeling in a QUALTX or similar style model.  
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Figure 4: The 48 "Reaches" along the Rio Grande/ Río Bravo 

 

Source: Derived from USGS, “National Hydrography Dataset,” The National Map, GIS Shapefile, 

http://viewer.nationalmap.gov/viewer/nhd.html?p=nhd & INEGI, Unpublished GIS Shapefile, October 31, 2011 & TCEQ, Internal 

Map, digitized by Robin Lynch, June 03, 2011, Map created by Robin Lynch 

The DEM, NHD flowlines, and the watershed delineations were used to create 

pour-point watersheds for each of the 48 reaches, using ArcHydro. The delineation of 

these watersheds follows the method of ArcHydro developed by David Maidment, Ph.D. 

at The University of Texas at Austin and David Tarboton, Ph.D. at Utah State 

University.
24

  The NHD streams were burned into the DEM, which involves decreasing 

the elevation value along the length of the stream to ensure that the procedure directs the 

flow in the correct direction.
25

 Walls were created around the watersheds to ensure that 

the procedure does not route water between different watersheds. The sinks were filled, 

which involves filling any cells that do not have an outlet, as sinks usually are the result 

of flaws in the DEM.
26

 The flow direction grid was created, which defines the direction 

of flow in each grid cell,
27

 and then flow accumulation grid
28

 were calculated, which 

calculates the accumulation grid cells that flow into a particular grid cell. The 48 reaches 

were used as pour-points for creating watersheds.
29

  Figure 5 shows these 48 pour-point 

http://viewer.nationalmap.gov/viewer/nhd.html?p=nhd
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watersheds which will form the basis for the analysis.
30

 Each of the shapes signifies the 

entire area that drains into each reach along the Rio Grande/ Río Bravo.  This study 

estimates the amount of pollution entering the river at each of the 48 pour-points on a 

constant basis.  The watersheds shown in white do not actually enter into the Rio Grande/ 

Río Bravo, but they go to the Gulf of Mexico through the Rodhe Drain.  For a complete 

map of all the individual sub-watersheds used in this study, see Appendix A.
31,32,33

  

Figure 5: Pour-Point Watersheds for each of the 48 Reaches 

 
Source: TCEQ, Internal Map, digitized by author, June 03, 2011, Map created by Robin Lynch 

Table 3 lists the surface area in square kilometers for each of the 48 reaches.
34

  These 

areas represent the total surface area in the watershed that drains to each of the reaches in 

the analysis.  It is hard to evaluate the accuracy or reliability for the areas for reaches that 

are downstream of reach 30, because the DEM for these areas is poor and may not 

accurately represent the actual flow of water.
35
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Table 3: Areas (km
2
) for the Watershed of each Reach 

Reach Area (km2) Reach Area (km2) Reach Area (km2) Reach Area (km2)

1 113.16 13 8.68 25 6.40 37 0.74

2 424.07 14 7.16 26 8.88 38 3.07

3 230.53 15 11.16 27 1.81 39 1.45

4 157.88 16 200.44 28 6.46 40 3.74

5 19.38 17 20.55 29 5.89 41 4.93

6 343.38 18 7.96 30 634.77 42 4.26

7 426.00 19 302.92 31 3.44 43 12.04

8 54.49 20 30.12 32 63.39 44 13.22

9 1378.14 21 84.27 33 12.02 45 13.80

10 15.71 22 16.73 34 2.59 46 23.14

11 680.06 23 5.36 35 0.36 47 30.99

12 552.80 24 14.19 36 0.59 48 1639.35
Source: TCEQ, Internal Map, digitized by Robin Lynch, June 03, 2011, Map created by Robin Lynch 

MUNICIPALITIES AND COUNTIES OF STUDY AREA 

             Much of the data used for this analysis are available at the county level in the 

U.S. and at the municipality level in México. Figure 6 displays the counties and 

municipalities in the study area, labeled from 1 to 17 in counterclockwise order.
36,37

  

Because the data, such as the agricultural census, are available at the level of the county 

or municipality, these boundaries are used in the analysis to estimate the bacteria 

contributions to the river. 

Figure 6: U.S. Counties and México Municipalities in Study Area 

 
Source: INEGI, “Áreas Geoestadísticas Municipales,” Marco Geoestadístico Municipal 2009 Versión 4.1, GIS Shapefile, 

http://mapserver.inegi.org.mx/data/mgm/, U.S. Census Bureau, 2010 TIGER/Line® Shapefiles, November 30, 2010, GIS Shapefile, 

http://www.census.gov/geo/www/tiger/tgrshp2010/tgrshp2010.html, Map created by Robin Lynch 

 

http://mapserver.inegi.org.mx/data/mgm/redirect.cfm?fileX=MUNICIPIOS41
http://mapserver.inegi.org.mx/data/mgm/
http://www.census.gov/geo/www/tiger/tgrshp2010/tgrshp2010.html
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Table 4 provides the names corresponding to the numbers found in Figure 6 of each of 

the counties and municipalities, allowing the figure to be less cluttered.
38,39

       

Table 4: Numbering of Counties and Municipalities 

Municipality State Number County State Number

Guerrero Tamaulipas 1 Cameron Texas 13

Mier Tamaulipas 2 Hidalgo Texas 14

Los Aldamas Nuevo León 3 Starr Texas 15

Miguel Alemán Tamaulipas 4 Jim Hogg Texas 16

Doctor Coss Nuevo León 5 Zapata Texas 17

Camargo Tamaulipas 6

General Bravo Nuevo León 7

Gustavo Díaz Ordaz Tamaulipas 8

Reynosa Tamaulipas 9

Río Bravo Tamaulipas 10

Valle Hermoso Tamaulipas 11

Matamoros Tamaulipas 12

México U.S.

 
Source: INEGI, “Áreas Geoestadísticas Municipales,” Marco Geoestadístico Municipal 2009 Versión 4.1, GIS Shapefile, 

http://mapserver.inegi.org.mx/data/mgm/, U.S. Census Bureau, 2010 TIGER/Line® Shapefiles, November 30, 2010, GIS Shapefile, 

http://www.census.gov/geo/www/tiger/tgrshp2010/tgrshp2010.html, Map created by Robin Lynch. 

Each municipality and county includes a portion within the watershed boundaries 

and a portion outside the watershed.
40,41

  Figure 7 illustrates how each municipality and 

county is divided in the watershed.
42,43

  As Figure 7 shows, the political boundaries do 

not line up exactly with the watershed boundaries.  Therefore, this study often performs 

analyses using the proportionality of the area of the watershed located within the 

municipality or county.   

 

 

 

 

 

 

 

http://mapserver.inegi.org.mx/data/mgm/redirect.cfm?fileX=MUNICIPIOS41
http://mapserver.inegi.org.mx/data/mgm/
http://www.census.gov/geo/www/tiger/tgrshp2010/tgrshp2010.html
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Figure 7: Portions of Municipalities and Counties in Watershed 

 
Source: INEGI, “Áreas Geoestadísticas Municipales,” Marco Geoestadístico Municipal 2009 Versión 4.1, GIS Shapefile, 

http://mapserver.inegi.org.mx/data/mgm/, U.S. Census Bureau, 2010 TIGER/Line® Shapefiles, November 30, 2010, GIS Shapefile, 

http://www.census.gov/geo/www/tiger/tgrshp2010/tgrshp2010.html, Map created by Robin Lynch. 

Table 5 provides the area within the watershed for each municipality or county, 

the total area of the municipality or county, and the percentage of the area of each 

municipality and county in the watershed.
44,45

  This percentage can be used for finding 

the proportionally of the watershed within the municipality or county.  The total area of 

the watershed is 9,682 square kilometers.  The México side of the watershed makes up 

6,491 square kilometers (67% of the watershed), and the U.S. side of the watershed 

makes up 3,191 square kilometers (33% of the watershed). 

 

http://mapserver.inegi.org.mx/data/mgm/redirect.cfm?fileX=MUNICIPIOS41
http://mapserver.inegi.org.mx/data/mgm/
http://www.census.gov/geo/www/tiger/tgrshp2010/tgrshp2010.html
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Table 5: Area of each County and Municipality in the Watershed 

Number Municipality/County State

Area in 

Watershed 

(km2)

Total Area 

(km2)

% of Area in 

Watershed

1 Guerrero Tamaulipas 3                    2,442             0.1%

2 Mier Tamaulipas 559                923                 60.6%

3 Los Aldamas Nuevo León 16                  695                 2.2%

4 Miguel Alemán Tamaulipas 194                639                 30.3%

5 Doctor Coss Nuevo León 125                721                 17.4%

6 Camargo Tamaulipas 790                930                 84.9%

7 General Bravo Nuevo León 704                1,889             37.3%

8 Gustavo Díaz Ordaz Tamaulipas 432                432                 99.9%

9 Reynosa Tamaulipas 942                3,147             29.9%

10 Río Bravo Tamaulipas 235                1,584             14.8%

11 Valle Hermoso Tamaulipas 11                  900                 1.2%

12 Matamoros Tamaulipas 2,481            4,633             53.5%

13 Cameron Texas 105                3,306             3.2%

14 Hidalgo Texas 352                4,100             8.6%

15 Starr Texas 2,468            3,183             77.5%

16 Jim Hogg Texas 264                2,943             9.0%

17 Zapata Texas 2                    2,740             0.1%  
Source: INEGI, “Áreas Geoestadísticas Municipales,” Marco Geoestadístico Municipal 2009 Versión 4.1, GIS 

Shapefile, http://mapserver.inegi.org.mx/data/mgm/, U.S. Census Bureau, 2010 TIGER/Line® Shapefiles, November 

30, 2010, GIS Shapefile, http://www.census.gov/geo/www/tiger/tgrshp2010/tgrshp2010.html, Map created by Robin 

Lynch. 

LAND USE 

This study uses land use and land cover data to estimate the amount of non-point 

source pollution produced.  The land use/land cover data were drawn from the USGS 

BEHI website and is a combination of USGS’s “2001 National Land Cover dataset”
46

 for 

the U.S. side and INEGI’s “Uso de Suelos y Vegetación Series III.”
47

  Figure 8 illustrates 

the Land Use Land Cover data for the watershed.
48

  As is presented in Figure 8, the 

western half of the watershed, labeled A, is mostly shrub and grassland, which is the type 

of land use more likely to have livestock grazing.  The eastern part of the watershed, 

labeled B, is largely almost completely agricultural, which would not have as much 

livestock or wildlife. The far eastern part of the watershed, labeled C, is wetland and 

water, which would result in a large number of migratory waterfowl present.  

 

 

http://mapserver.inegi.org.mx/data/mgm/redirect.cfm?fileX=MUNICIPIOS41
http://mapserver.inegi.org.mx/data/mgm/
http://www.census.gov/geo/www/tiger/tgrshp2010/tgrshp2010.html
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Figure 8: Land Use Land Cover for Watershed 

Source: Land Use/ Land Cover: Binational 2001, U.S.-Mexico Border Envrionmental Health Initiative – Available Data Layers, 

http://txpub.usgs.gov/BEHI/Data_download/LULC/bin2001f.zip, Raster file, Accessed on July 20, 2011., Map created by Robin 

Lynch 

Table 6 indicates the area in square kilometers of each land use within the 

watershed.
49

  The land use with the largest percentage of area in the watershed is grass or 

pasture, which covers 30.5 percent of the watershed with 2,948 square kilometers.
50

  The 

second most prominent land use is Shrub, which covers 27.4 percent of the watershed 

with 2,656.50 square kilometers.
51

  These two land uses are mostly in the western part of 

the watershed, labeled as A in Figure 8.  The third most prominent land use is 

Agriculture, which covers 25.7 percent of the watershed with 2,493.1 square kilometers.
52

  

Water makes up 2.9 percent of the watershed with 278.91 square kilometers, which 

accounts for the many rivers and streams throughout the watershed.
53

    

             

 

A 

B 

C 

http://txpub.usgs.gov/BEHI/Data_download/LULC/bin2001f.zip


 19 

Table 6: Type of Land Use in Watershed 

Land Use Km2 Percentage

Developed 407.88 4.2%

Agriculture 2,493.01 25.7%

Forest 13.39 0.1%

Shrub 2,656.50 27.4%

Water 278.91 2.9%

Barren 79.71 0.8%

Grass/ Pasture 2,948.45 30.5%

Wetland 793.79 8.2%

No Data 10.71 0.1%

Total 9,682.34 100.0%  
 
Source: Land Use/ Land Cover: Binational 2001, U.S.-Mexico Border Envrionmental Health Initiative – Available Data Layers, 

http://borderhealth.cr.usgs.gov/datalayers.html,  Raster file, Accessed on July 20, 2011, Table created by Robin Lynch. 

DECAY RATE 

A key assumption in any water quality model is the rate at which bacteria will 

decay over time, the decay rate.  The decay rate equation used for this study (see 

Equation 1), taken from Bowie et al. 1985, calculates the quantity of bacteria that will 

decay over a period of time.
 54

  This equation assumes a first order rate of decay for the 

fecal coliform bacteria. The equation states that the final concentration is equal to the 

original concentration multiplied by the inverse of the constant e raised to the power of 

the decay rate (k) multiplied by the time (t):   

      
              (1)  

where    is the coliform concentration at time t (MPN or count/100ml),    is the initial 

upstream coliform concentration (MPN or count/100ml), k  is the disappearance rate 

constant ( day
-1

), and t  is the exposure time (days).  

The data used to calculate the decay rate are taken from International Boundary 

and Water Commission samples near Brownsville and Matamoros.
55

  The data were 

http://borderhealth.cr.usgs.gov/datalayers.html
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collected for E. Coli and not fecal coliform.
56

  However, Bowie states that “at low decay 

rates, coliform decay rates were approximately equal to pathogen decay rates.”
57

  All the 

data used for calculating decay rates were taken on the same day.  The calculation of 

decay rates used sampling sites adjacent to each other, so the exposure time (t from 

Equation 1) can be considered the time it takes for water to travel from each upstream 

sampling site to an adjacent downstream sampling site.  The exposure time, or travel 

time, is calculated by taking the distance traveled and dividing it by the velocity of the 

river, shown in Equation 2:
58

   

  
 

 
                  (2) 

where t is the exposure time (days), d  is the distance between sampling sites (m), and   v 

is the river velocity (m/s).   

The velocity of the river was not directly measured, but can be estimated from 

flow rate measurements using Equation 3, which is taken from earlier TCEQ QUALTX 

models.  Equation 3 relates the velocity of the river to the flow rate using two 

coefficients, a and b, to account for the hydraulic characteristics of the river.
59

  The river 

characteristics for this stretch of the river are a=0.0758 and b=0.5.
60

 The flow of the river 

on the day the sample was taken was 116 cubic feet per second (cfs), or 4.7 cubic meters 

per second (m
3
/s).

61
  The velocity is estimated as the coefficient a multiplied by the flow 

raised to the power of the coefficient b:
62

 

                 (3) 

where    is the velocity (m/s),         are the coefficients, and Q  is the flow (m
3
/s). 

The bacteria decay calculation used data in which the bacteria concentration 

decreased between the upstream sampling site and the downstream sampling site.  Data in 

which the bacteria increased from upstream to downstream were assumed to have 

bacteria inputs and therefore not representative of bacteria decay.  Three outlier value  
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were not used, because the resulting mean value would be different from typical literature 

values.  Using 11 observations, the mean decay coefficient is k=4.82 day
-1

 and the 

standard of deviation is 4.40 day
-1

.  Table 7 presents data of the sample sites used to 

create this decay coefficient.
63

   

Table 7: Data Used for Calculating Decay Coefficient 

Site 1 Site 2 C1 C2
d 

(m)

v 

(m/s)

k 

(1/days)

20449i 20449h 8.6 6.2 1445 0.164 4.52

20449g 20449f 25.3 12.2 1225 0.164 10.08

20449e 20449d 17.3 6.3 1374 0.164 13.96

20449a 20449 14.8 9.8 1293 0.164 5.70

13178g 13178f 30.7 29.5 1103 0.164 0.55

13178d 13178c 80.9 68.9 851 0.164 2.22

13178c 13178b 68.9 38.9 951 0.164 7.90

13178b 13178a 38.9 34.5 340 0.164 1.66

13177i 13177h 55.6 52 714 0.164 0.93

13177h 13177g 52 51.2 712 0.164 0.21

13177b 13177a 31.3 21.3 809 0.164 5.32  
Source: International Boundary and Water Commission, “Bacteria Characterization in Segment 2302_01 of the Rio Grande near 
Brownsville, Texas: A Texas Clean Rivers Program Special Study,”  

http://www.ibwc.gov/CRP/documents/BrownsvilleBacteriaSpecialStudyFINALSTUDYJune2011.pdf, Accessed on January 12, 2012, 

2011, 17 

UNTREATED WASTEWATER 

One of the contributors of bacteria contamination to the Rio Grande/ Río Bravo is 

untreated sewage entering the river system.
64

  This analysis looks at two sources of 

untreated sewage, that which originates from lack of access to public sewage collection 

systems and that which originates from leaking septic tanks.  The analysis of untreated 

wastewater is different between the Mexican side and the U.S. side of the river, because 

each country has different types of data sets for calculating the number of people with 

septic tanks and sewage connections. 

http://www.ibwc.gov/CRP/documents/BrownsvilleBacteriaSpecialStudyFINALREPORTJune2011.pdf
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México 

 The means of disposing of sewage varies between many different forms of 

disposal, including sewage collection, septic tanks, privies, and deposition on land.  The 

2010 Population and Household Survey performed by INEGI provides information on the 

amount of people with different sewage disposal methods in each municipality.
65

  The 

data from INEGI are available at two different levels of aggregation, the municipality and 

the locality level.  The municipality is roughly similar to a county in the U.S. and a 

locality can be defined as a place, which can range from a population of 1 person to a 

population of millions of people.
66

 This study looks at both levels of data, both 

municipality and locality, because they both provide different types of data.  The 

municipality level divides the type of sewage between public sewers, septic tanks, and 

other categories. Therefore, a municipality covers a large area and cannot be divided 

along the lines of the watershed.
67

  On the other hand, the data at the locality level do not 

provide the level of detail as that at the municipality level, but the localities can be 

divided into the subwatersheds to which they pertain.  Table 8 displays the number of 

people with and without sewage disposal for each municipality in the watershed.
68

  The 

municipalities that have the most people without sewage disposal were Matamoros, with 

43,066 people, and Reynosa, with 28,554 people.
69

  These are the two most urban 

municipalities in the watershed, which also means that they have the largest urban 

population.  The municipalities that have the highest percentage of population without 

drainage were Río Bravo (15%), Los Aldamas (15%), Valle Hermoso (14%), Gustavo 

Díaz Ordaz (14%), and General Bravo (13%).  The more urban municipalities of Reynosa 

and Matamoros only had 5 percent and 9 percent of population without drainage, 

respectively.
70
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Table 8: Population With and Without Sewage on México Side, by Municipality 

Number Municipality State With Sewage No Sewage Not Specified Total

1 Guerrero Tamaulipas 3,712 272 3 3,987

2 Mier Tamaulipas 4,556 94 78 4,728

3 Los Aldamas Nuevo León 1,146 190 5 1,341

4 Miguel Alemán Tamaulipas 25,737 563 137 26,437

5 Doctor Coss Nuevo León 1,474 189 46 1,709

6 Camargo Tamaulipas 13,255 1,097 304 14,656

7 General Bravo Nuevo León 4,760 671 72 5,503

8 Gustavo Díaz Ordaz Tamaulipas 13,349 2,158 134 15,641

9 Reynosa Tamaulipas 517,114 28,554 9,587 555,255

10 Río Bravo Tamaulipas 99,062 17,747 523 117,332

11 Valle Hermoso Tamaulipas 53,667 8,948 186 62,801

12 Matamoros Tamaulipas 429,258 43,066 5,419 477,743
Source: INEGI, “Ocupantes de viviendas particulares habitadas por municipio, disponibilidad de energía eléctrica y agua según 

disponibilidad de drenaje y lugar de desalojo,”  Censo de  Población y Vivienda 2010. Aguascalientes, Aguascalientes, 2010, Excel 
Spreadsheet, http://www3.inegi.org.mx/sistemas/TabuladosBasicos/Default.aspx?c=27302&s=est. 

 Of the population that has sewage disposal, INEGI divides this population by the 

type of drainage they have, such as those with public sewers, septic tanks, piping that 

goes to a crevice or a cliff, and piping that goes to a river, lake, or sea, as illustrated in 

Table 9.
71

  The difference between population with public sewage and septic tanks clearly 

distinguishes which municipalities and are urban and rural, with urban being majority 

public sewage and rural being majority septic tank.  Municipalities such as Matamoros, 

Reynosa, and Río Bravo are more urban, with the majority of the population having 

public sewage.  Municipalities such as Los Aldamas and Gustavo Díaz Ordaz are mare 

more rural, with the majority of the population having septic tanks. 

 

 

 

 

 

 

http://www3.inegi.org.mx/sistemas/TabuladosBasicos/LeerArchivo.aspx?ct=30097&c=27302&s=est&f=1
http://www3.inegi.org.mx/sistemas/TabuladosBasicos/LeerArchivo.aspx?ct=30097&c=27302&s=est&f=1


 24 

Table 9: Type of Sewage Disposal, for Those Who Have Sewage, by Municipality 

Number Municipality State
Public 

Sewage
Septic Tank

Piping that 

goes to a cliff 

or crevice

Piping that 

goes to 

river, lake, 

or sea

Subtotal

1 Guerrero Tamaulipas 3,272 438 2 0 3,712

2 Mier Tamaulipas 4,455 101 0 0 4,556

3 Los Aldamas Nuevo León 4 1139 3 0 1,146

4 Miguel Alemán Tamaulipas 21,781 3,877 28 51 25,737

5 Doctor Coss Nuevo León 7 1467 0 0 1,474

6 Camargo Tamaulipas 7,949 5,205 72 29 13,255

7 General Bravo Nuevo León 914 3846 0 0 4,760

8 Gustavo Díaz Ordaz Tamaulipas 4,050 9,290 4 5 13,349

9 Reynosa Tamaulipas 464,858 51,943 144 169 517,114

10 Río Bravo Tamaulipas 85,886 13,066 92 18 99,062

11 Valle Hermoso Tamaulipas 50,311 3,004 293 59 53,667

12 Matamoros Tamaulipas 398,730 29,866 419 243 429,258  
Source: INEGI, “Viviendas particulares habitadas por municipio, disponibilidad de energía eléctrica y agua según disponibilidad de 

drenaje y lugar de desalojo,”  Censo de  Población y Vivienda 2010. Aguascalientes, Aguascalientes, 2010, Excel Spreadsheet, 
http://www3.inegi.org.mx/sistemas/TabuladosBasicos/Default.aspx?c=27302&s=est 

 

Figure 9 presents the overall percentages of drainage types in the municipalities included 

in the watershed.
72

  Within the 12 municipalities, 81 percent of the population is 

connected to the public sewage system, 9 percent is connected to a septic tank, 8 percent 

has no form of drainage, 1.28 percent did not specify, 0.08 percent has piping that goes to 

a cliff or a crevice, and 0.04 piping had tubing that goes to the river, lake, or sea.   

Figure 9: Percentage of Population by Sewage Disposal Type - México Municipalities in 

Watershed 

 

Source: INEGI, “Viviendas particulares habitadas por municipio, disponibilidad de energía eléctrica y agua según disponibilidad de 

drenaje y lugar de desalojo,”  Censo de  Población y Vivienda 2010. Aguascalientes, Aguascalientes, 2010, Excel Spreadsheet,  
http://www3.inegi.org.mx/sistemas/TabuladosBasicos/Default.aspx?c=27302&s=est, Chart created by Robin Lynch 

76.91% 
9.09% 

0.08% 

0.04% 

7.64% 
1.22% 

Public Sewage 

Septic Tank 

Piping that goes to a cliff 
or crevice 

Piping that goes to river, 
lake, or sea 

No Sewage 

http://www3.inegi.org.mx/sistemas/TabuladosBasicos/LeerArchivo.aspx?ct=30097&c=27302&s=est&f=1
http://www3.inegi.org.mx/sistemas/TabuladosBasicos/LeerArchivo.aspx?ct=30097&c=27302&s=est&f=1
http://www3.inegi.org.mx/sistemas/TabuladosBasicos/LeerArchivo.aspx?ct=30097&c=27302&s=est&f=1
http://www3.inegi.org.mx/sistemas/TabuladosBasicos/LeerArchivo.aspx?ct=30097&c=27302&s=est&f=1
http://www3.inegi.org.mx/sistemas/TabuladosBasicos/Default.aspx?c=27302&s=est
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 The data at the municipal level do not distinguish between the populations within 

the watershed and the populations outside the watershed.  In order to focus the study on 

only the populations within the watershed, the INEGI data from the Principales 

Resultados por Localidad (ITER)
73

, which provide information at the locality level 

(localidad) in the form of a downloadable database, was merged with the shapefiles of all 

the localities. Appendix D presents a full list of all the ITER data in the watershed.
74

 A 

quality control check based on total population was made to test how accurate the merged 

database is compared with the INEGI municipality data.  In the municipality level data, 

the total population in 2010 of the 12 municipalities was 1,355,092, and the total 

population of the merged database using ITER data was 1,354,576, which resulted in a 

0.04 percent difference.  With that degree of consistency between the estimated 

population and the INEGI population totals, it is reasonable to use either dataset for 

regional comparisons.   

 Figure 10 illustrates the locations of all the localities.
75

  Each locality has 

information on the number of people with and without sewage treatment.  The population 

without sewage treatment is treated as a direct source of fecal coliform. The amount of 

fecal coliform that reaches is the Rio Grande/ Río Bravo is calculated by summing up the 

input over each smaller watershed.  In order to account for the decay, the approximate 

distance from the river is calculated.  This calculation sums up the total fecal coliform 

deposit within each smaller watershed.  The centroid is taken of the smaller watershed 

and the distance of each subwatershed centroid to the reach is calculated.  Appendix B 

shows the travel distances used between sub-watersheds and their corresponding reaches 

as well as the percent of decay that will occur when bacteria arrives at the reach.
76,77,78
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Figure 10: Localities with Wastewater Data 

 

Source: INEGI. "Principales Resultados por localidad (ITER)." Censo de Población y Vivienda. Aguascalientes, Aguascalientes, 
2010. Map created by Robin Lynch 

 

Data are available for the number of households in each locality that has drainage, 

but information is not available to distinguish whether people are connected to public 

sewage systems or to septic tanks.  Therefore, to distinguish between the number of 

people connected to public sewage and septic tanks, this study back-calculated from the 

municipality level data.  One assumption this study makes is that rural areas are not 

connected to public sewers. In other words, all people connected to a public sewer system 

are attributed to be in an urban city.  ‘Urban’ in this study is defined by the localities 

included by INEGI in the “Polygons of Urban Localities” shapefile, which are listed in 

Table 10 along with their population and drainage information.
 79

  Table 10 presents the 

number of people with and without drainage in each of these urban areas, but several 

calculations were necessary to produce this information.  For each locality, the data 
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provide the number of households (not population) with or without drainage.  Data are 

not available for the actual number of people.   The number of people with and without 

drainage connections can be estimated by using the average number of people per 

household in each locality.   Equation 4 calculates the number of people in each locality 

with and without drainage by multiplying the number of households with and without 

drainage (in each locality) by the average number of people per household in each 

locality:
80

 

 

                    (4) 

 

where P is the total population with or without drainage in each locality, H is the number 

of households with or without drainage in each locality, and PPH is the average number 

of people per household in each locality. 

Table 10: Population and Drainage Information on Mexican Side, by City 

City Municipality Population
Average People 

Per Household

Households 

with Drainage

Households 

without 

Drainage

People  With Drainage

People 

Without 

Drainage

Reynosa Reynosa 589,466 3.62 139,526 5,237 505,084 18,958

Heroica Matamoros Matamoros 449,815 3.68 112,307 5,781 413,290 21,274

Ciudad Rio Bravo Rio Bravo 95,647 3.77 23,478 1,625 88,512 6,126

Ciudad Miguel Aleman Miguel Aleman 19,997 3.48 5,613 61 19,533 212

Ciudad Gustavo Diaz Ordaz Gustavo Diaz Ordaz 11,523 3.5 2,984 258 10,444 903

Nuevo Progreso Rio Bravo 10,178 4.03 1,741 744 7,016 2,998

Ciudad Camargo Camargo 7,984 3.4 2,184 101 7,426 343

Mier Mier 4,762 3.3 1,375 33 4,538 109

Los Guerra Miguel Aleman 4,566 4.02 1,108 11 4,454 44

Nueva Ciudad Guerrero Guerrero 4,312 3.08 1,182 84 3,641 259

Ramirez Matamoros 3,743 3.77 705 282 2,658 1,063

El Control Matamoros 3,136 3.52 781 105 2,749 370

Comales Camargo 2,429 3.31 694 26 2,297 86

Source: INEGI. "Principales Resultados por localidad (ITER)." Censo de Población y Vivienda. Aguascalientes, Aguascalientes, 

2010, INEGI. "Polígonos de Localidades Urbanas Geoestadísticas”, INEGI, Aguascalientes, Aguascalientes, 2010. 
http://mapserver.inegi.org.mx/data/mgm/redirect.cfm?fileX=LOCURBANAS50, Accessed on January 22, 2012. 

In order to use the data available at the locality level, it was necessary to create a ratio 

comparing the number of people with public sewage and the number of people with 

septic systems.  The number of people with drainage in each city in Table 10 was 

http://mapserver.inegi.org.mx/data/mgm/redirect.cfm?fileX=LOCURBANAS50
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summed for each municipality and compared with the data in Table 8 and Table 9 to find 

the percentage of people with public sewage compared with septic systems, considering 

both rural and urban localities.  Table 11 presents the division of drainage between public 

sewage and septic systems.
81,82

  The ‘other’ category refers to waste being discharged 

into a cliff, crevice, river, lake or sea.  It is unclear how to divide the ‘other’ category 

between urban and rural, so these numbers were divided proportionally to the urban and 

rural population of each municipality.  Values in Table 11 indicate that the urban areas in 

the México side of the watershed vary on the percentage of people that have sewage 

collection and septic tanks.  For example, the municipality of Matamoros has 95 percent 

of the urban population with septic connections and the municipality of Reynosa has 92 

percent of the urban population with septic connections.  The municipality of Gustavo 

Díaz Ordaz has 39 percent of the urban population with sewage connections, which 

shows that the population centers in this municipality have a lower frequency of sewered 

population than Matamoros or Reynosa. 

Table 11: Division of Drainage between Sewage and Septic Systems, by Municipality 

Number Municipality State Sewage Septic Other Sewage Septic Other

1 Guerrero Tamaulipas 90% 10% 0% 0% 100% 0%

2 Mier Tamaulipas 98% 2% 0% 0% 100% 0%

3 Los Aldamas Nuevo León 0% 0% 0% 0% 100% 0%

4 Miguel Alemán Tamaulipas 91% 9% 0% 0% 100% 0%

5 Doctor Coss Nuevo León 0% 0% 0% 0% 100% 0%

6 Camargo Tamaulipas 81% 18% 1% 0% 99% 1%

7 General Bravo Nuevo León 25% 75% 0% 0% 100% 0%

8 Gustavo Díaz Ordaz Tamaulipas 39% 61% 0% 0% 100% 0%

9 Reynosa Tamaulipas 92% 8% 0% 0% 100% 0%

10 Río Bravo Tamaulipas 90% 10% 0% 0% 100% 0%

11 Valle Hermoso Tamaulipas 98% 1% 1% 0% 98% 2%

12 Matamoros Tamaulipas 95% 5% 0% 0% 100% 0%

Urban Rural

  
Source: INEGI. "Principales Resultados por localidad (ITER)." Censo de Población y Vivienda. Aguascalientes, Aguascalientes, 

2010, INEGI. "Polígonos de Localidades Urbanas Geoestadísticas”, INEGI, Aguascalientes, Aguascalientes, 2010. 
http://mapserver.inegi.org.mx/data/mgm/redirect.cfm?fileX=LOCURBANAS50, Accessed on January 22, 2012.  Table created by 

Robin Lynch. 

http://mapserver.inegi.org.mx/data/mgm/redirect.cfm?fileX=LOCURBANAS50
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The analysis for the pollutant load due to human waste is divided into 4 types of 

waste treatment (sewage, septic, no drainage, and other) and 2 types of communities 

(rural and urban).  A household with access to a public sewer system is assumed to be a 

household that does not contaminate the rivers or stream.  Households with a septic 

system are assumed to contaminate when the septic system fails.  A 2002 report done for 

the Texas On-Site Wastewater Treatment Research Council found that 4.1 percent of on-

site septic systems in the Lower Rio Grande Valley were failing.
83

  As both the U.S. and 

Mexican side have comparable soil conditions, the approach used in this study is to 

assume the same rate of failure on the Mexican side of the watershed.  Only septic 

systems near to rivers or streams contaminate the surface water, so this study uses a 500 

meter riparian corridor around every river or stream.
84

  This study assumes that 4 percent 

of all rural people within this riparian corridor contribute to steady-state pollution of the 

rivers and streams, and everybody outside of the corridor does not contribute a steady-

state bacterial load on the river.  The population that has no drainage or other types of 

drainage are considered to deposit waste directly if they live within the 500 meter riparian 

corridor.  Otherwise, this study assumes that they do not contribute to the river bacterial 

load.  In the urban localities that cross subwatershed lines, the bacteria load will be 

distributed across the subwatersheds, weighted by the percentage of each community’s 

area within the watershed.  Table 12 illustrates the distribution of each urban locality 

between the subwatersheds that they cross.
85

  For example, the city of Heroica 

Matamoros contains 21 separate subwatersheds, and Reynosa contains 9 subwatersheds. 
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Table 12: Urban Cities and the Percentage of Area in Each Sub-Watershed 

City

Subwatershed 88 89

Percentage 99.9% 0.1%

Subwatershed 75 76 77 78 79 80 81 82 83

Percentage 0.1% 6.7% 6.3% 0.0% 3.2% 34.1% 48.7% 0.9% 0.0%

Subwatershed 14

Percentage 100.0%

Subwatershed 13 14 15 17 20

Percentage 63.0% 33.0% 0.4% 2.1% 1.5%

Subwatershed 12

Percentage 100.0%

Subwatershed 104

Percentage 100.0%

Subwatershed 104

Percentage 100.0%

Subwatershed 104 108 109 110 111 112 113 114 115

Percentage 3.4% 0.0% 16.4% 0.1% 7.3% 1.8% 0.0% 0.0% 0.1%

Subwatershed 116 117 118 119 120 121 122 123 124

Percentage 0.2% 0.0% 0.0% 0.4% 0.0% 2.7% 0.0% 0.5% 0.0%

Subwatershed 125 142 143

Percentage 1.3% 23.9% 41.8%

Subwatershed 48 53 58 73

Percentage 18.3% 28.3% 42.3% 11.2%

Subwatershed 3

Percentage 100.0%

Subwatershed 25 26

Percentage 59.2% 40.8%

Subwatershed 25 57

Percentage 72.0% 28.0%

Ramírez

Nuevo Progreso

Reynosa

Los Guerra

Ciudad Miguel Aleman

Mier

Nueva Ciudad Guerrero

Comales

Ciudad Camargo

El Control

Heroica Matamoros

Ciudad Gustavo Diaz

INEGI. "Polígonos de Localidades Urbanas Geoestadísticas”, INEGI, Aguascalientes, Aguascalientes, 2010. 

http://mapserver.inegi.org.mx/data/mgm/redirect.cfm?fileX=LOCURBANAS50, 
 

Equation 5 calculates the amount of wastewater produced per day in each 

community.
86

  This equation multiplies the population of the locality by the average 

wastewater produced per person per day, using a 15 percent confidence interval to 

account for the variation:
87

 

                 
 

 
          (5) 

where     is the wastewater produced per second per locality (L/s),      is the 

population of each locality,       is the wastewater produced per person per day 

(L/day), and CF is a conversion factor of (1/86,400) days/seconds.  

The amount of wastewater produced per person per day in Mexico was taken 

from the Manual of Potable Water, Drainage, and Sanitation: Basic Data, published by 

the National Commission of Water.
88

  Table 13 provides the range of values 

representative of the amount of wastewater produced per person every five years from the 

years 1990 to 2010.
89

  For this study, the value of 148 liters per person per day (l/p/d) is 

http://mapserver.inegi.org.mx/data/mgm/redirect.cfm?fileX=LOCURBANAS50
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used, which is the most recent datum found in 2010.  Due to the uncertainty with of this 

number, a margin of error of 15 percent was used.    

Table 13: Wastewater Produced per Day per Person 

1990 1995 2000 2005 2010

L/person/day 170 164 159 153 148  

Source: Comisión Nacional del Agua. "Manual de Agua Potable, Alcantarillado y Saneamiento: Datos Básicos." Coyoacán, Distrito 
Federal, 2007. 

The average fecal coliform counts produced per person for this study was 1x10
4
 

counts/100 ml of septic overcharge, taken from the EPA Bacteria Indicator Tool.
90

  The 

analysis found that the total contribution of rural localities on the Mexican side to the 

bacteria load was 3.91x10
8 

FC counts/day, and that the decayed bacteria load was 

1.72x10
8
 FC counts/day.  The bacteria load for the urban localities on the Mexican side 

was 7.49x10
11

 FC counts/day, and the decayed bacteria load was 8.9x10
10

 day. 

U.S. 

This study divides the analysis of the sewage bacterial load on the U.S. side 

between two sources, failing septic tanks in general and colonias.  The number of septic 

tanks is found from the United States Census.
91

  On the 1990 Census, there were 

questions on ‘what type of sewage treatment’ people use, but later census collections 

(2000 or 2010) do not include this question.
92

  The data were available at the census track 

level, which produced a density of people with septic tanks.  Equation 6 calculates the 

number of people with failing septic tanks in each subwatershed.
93

  The equation 

multiplies the density of septic tanks in the subwatershed by the area of the subwatershed 

and the failure rate of 4.1 percent:
94

 

                     (6) 

where    is the number of people with failing septic tanks in each subwatershed,    is the 

density of people with septic tanks in each subwatershed (people/km
2
),     is the area of 

the riparian corridor in each subwatershed (km
2
), and FR is the failure rate of 4.1 percent. 



 32 

Using Equations 4 and 5, the amount of wastewater produced from leaking septic tanks in 

the riparian corridor was calculated, assuming a 4.1 percent failure rate in septic tanks.
95

  

The other source for bacterial load are the colonias, which are the improperly planned 

developments that lack adequate infrastructure.
96

  Each colonia is classified with a color 

of green, yellow or red, depending on a state-created system on the risk to human 

health.
97

  The colonias labeled as red signify that they lack piped water, adequate 

wastewater treatment, or platting.  This analysis assumes that all the red colored colonias 

do not have adequate wastewater treatment.  Figure 11 illustrates the locations of all the 

red colored colonias in the watershed on the U.S. side, found from the USGS Border 

Environmental Health Initiative CHIPS database on the colonias.
98

  In the figure, the 

majority of the colonias without wastewater treatment are found in the area near Rio 

Grande City.   

Figure 11: Red Colonias on the U.S. Side of the Watershed 

 
Source: USGS, “Border Environmental Health Initiative: Colonia CHIPS Database”, 2007, 
http://txpub.usgs.gov/BEHI/Data_download/Places%20Layers/Colonias.zip. 
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This study chose a riparian corridor of 500 meters as the distance from streams 

and rivers in which a colonia will discharge sewage into the river system.  This study 

assumes that any colonia within 500 meters of a stream or river will produce a bacterial 

load into the river.  Table 14 presents all the colonias that are within the riparian corridor 

as well as their estimated population.
99

 

Table 14: Red Colonias within Riparian Corridor 

Colonia ID Name Population Colonia ID Name Population

M2140038 East Alto Bonito 446 M2140050 El Rancho Vela 246

M2140037 E. Lopez 199 M2140003 Ala Blanca 35

M2140228 West Alto Bonito 560 M2140101 La Lomita 110

M2140142 Mike's 538 M2140159 Northridge 107

M2140005 Alto Bonito Heights 281 M2140198 Sandoval 55

M2140174 Ramirez-Perez 47 M2140070 Fronton North 208

M2140229 Zarate 136 M2140110 Las Palmas 60

M2140209 South Refugio 59 M2140097 La Esperanza 102

M2140044 El Castillo 187 M2140193 Sammy Martinez 64

M2140009 Antonio Flores 59 M2140043 El Brazil 43

M2140080 Gutierrez 149 M2140024 Casas 47

M2140007 Amada Acres 27 M2140119 Los Arrieros 149

M2140218 Valle Hermosa 29 M2140191 Salineno South 547

M2140049 El Quiote 229 M2140090 Jardin de San Julian 25

M2140008 Anacua 39 M2140190 Salineno North 250

M2140138 Mi Ranchito Estate 234 M2140100 La Loma de Falcon 136

M2140018 Campo Verde 50 M2140062 Falconaire 119

M2140054 Elodia's 63 M2140087 Indio #2 51

M2140120 Los Barreras North 140 M2140086 Indio #1 42

M2140177 Ranchitos Del Norte 67 M2140061 Falcon Heights 121

M2140126 M. Munoz 199 M2140108 Lago Vista 110
 Source: USGS, “Border Environmental Health Initiative: Colonia CHIPS Database”, 2007, 

http://txpub.usgs.gov/BEHI/Data_download/Places%20Layers/Colonias.zip. 

 

Fecal coliform loadings were calculated based upon a septic system fecal coliform 

density of 10
4

 org/100 mL, and a household flow of 210 gal/day (3 persons per 

household, at 70 gal/capita-day).
100

 The analysis calculates the range of wastewater 

produced by multiplying the population of each colonia by the wastewater produced per 

person, as shown in Equation 5 from before.  Table 15 presents the total wastewater 

produced per day for each of the subwatersheds.
101,102

  The wastewater is divided 
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between that which is from the colonias and that which is not from the colonias.  The 

wastewater from the colonias is more concentrated in a few areas, whereas the non-

colonia wastewater has less concentration and is spread out through the whole watershed.  

The total fecal coliform load on the U.S. side from septic tanks was 6.08x10
9 

FC/day, and 

with decay was 6.94x10
8 
FC/day.   

Table 15: Wastewater Produced from Failing Septic Tank –U.S. 

Subwatershed
Colonia Septic 

Failure

Non-Colonia 

Septic Failure 

(Based on 

Census)

Subwatershed
Colonia Septic 

Failure

Non-Colonia 

Septic Failure 

(Based on 

Census)

Subwatershed
Colonia Septic 

Failure

Non-Colonia 

Septic Failure 

(Based on 

Census)

WW Produced

(L/day)

WW Produced

(L/day)

WW Produced

(L/day)

WW Produced

(L/day)

WW Produced

(L/day)

WW Produced

(L/day)

1 0 814 49 0 9,634 97 0 0

2 0 0 50 0 8,850 98 0 1,102

3 0 0 51 528,633 7,185 99 0 0

4 386,074 12,847 52 18,549 8,875 100 0 404

5 24,643 29,389 53 0 0 101 0 0

6 0 863 54 0 12,830 102 0 1,140

7 0 0 55 160,842 12,320 103 0 0

8 0 0 56 0 1,022 104 0 0

9 0 0 57 0 0 105 0 12,926

10 0 0 58 0 0 106 0 0

11 0 0 59 0 18,314 107 0 2,325

12 0 0 60 0 23,492 108 0 6,473

13 0 0 61 0 15,513 109 0 0

14 0 0 62 0 7,264 110 0 16,106

15 69,689 14,963 63 0 59 111 0 0

16 0 20,224 64 0 9,983 112 0 0

17 0 0 65 0 3,392 113 0 1,558

18 117,386 15,949 66 0 0 114 0 328

19 28,353 30,011 67 0 4,087 115 0 0

20 0 0 68 0 0 116 0 0

21 111,026 5,474 69 0 9,444 117 0 482

22 0 0 70 0 853 118 0 449

23 0 0 71 0 0 119 0 0

24 0 0 72 0 0 120 0 154

25 0 0 73 0 0 121 0 0

26 0 0 74 0 22,740 122 0 737

27 0 0 75 0 4,320 123 0 0

28 106,786 18,182 76 0 0 124 0 1,348

29 0 14,696 77 0 0 125 0 0

30 0 18,124 78 0 1,248 126 0 0

31 0 6,993 79 0 0 127 0 2,967

32 0 18,845 80 0 0 128 0 0

33 0 63 81 0 0 129 0 1,438

34 0 7,363 82 0 0 130 0 0

35 0 0 83 0 23,238 131 0 3,933

36 0 9,721 84 0 0 132 0 0

37 0 12,401 85 0 11,567 133 0 8,118

38 0 0 86 0 0 134 0 0

39 0 9,629 87 0 7,795 135 0 1,809

40 0 9,890 88 0 0 136 0 1,385

41 0 6,844 89 0 3,046 137 0 0

42 118,975 34,312 90 0 0 138 0 915

43 0 1,221 91 0 269 139 0 0

44 0 304 92 0 3,736 140 0 294

45 0 4,196 93 0 0 141 0 0

46 15,634 527 94 0 2,468 142 0 0

47 0 0 95 0 0 143 0 0

48 0 0 96 0 4,097 144 0 0  

Source: U.S. Census Bureau, “1990 Census Data”, U.S. Census Bureau. U.S. Geological Survey, “Colonias: Texas Geodatabase”, 
U.S.-Mexico Border Environmental Health Initiative – Available Data Layers, Geodatabase, 

http://txpub.usgs.gov/BEHI/Data_download/Places%20Layers/Colonias.zip.  
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ANIMAL GRAZING 

There are two ways in which the defecation of livestock animals reaches the 

streams and rivers.  The first is through direct defecation of the animals into the streams 

and rivers while grazing, and the second is from storm runoff that carries the overland 

feces to the streams and rivers.  Because this study looks at the steady-state bacteria load, 

it only considers the first kind of contamination in which the livestock directly defecates 

into the streams and rivers.  The TMDL for the Leon River by James Miertschin & 

Associates, Inc., assumes that cattle and horses spend a “small fraction of their time 

directly in the stream,” whereas other animals such as dairy cows, sheep, goats, and hogs 

do not spend time in the streams and rivers.
103

 The amount of time cattle and horses 

spend directly in the streams was taken from estimates in the Leon River TMDL (see 

Table 16).
104

  This estimate assumes that the amount of time cattle spend in the stream 

changes based on the mean water temperature, spending more time in the streams in the 

summer months and no time in the streams during the winter months.
105

 

Table 16: Percent of Time Cattle Spend in Streams 

Month Time Spent in Streams

January 0%

February 0%

March 1.03%

April 1.14%

May 1.26%

June 1.36%

July 1.40%

August 1.40%

September 1.32%

October 1.18%

November 1.00%

December 0%  
Source: James Miertschin & Associates, Inc, “Final Modeling Study for Fecal Coliform TMDL (Total Maximum Daily Load) 
Development for Leon River Below Proctor Lake, Segment 1221: Project Area 2 – Baisn Groups D & E Bacteria Impairments Work 

Order #5,” Prepared for Texas Commission on Environmental Quality, November 2006, 4-10. 
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 Due to the seasonality of the time spent by grazing animals in streams, the 

pollutant load caused by these animals varies throughout the year.  This study chooses a 

conservative approach estimating the daily bacterial load based on the month in which 

the animals would have the largest contribution.  This approach means that these are the 

maximum values and are not likely to be exceeded.  

Cattle 

The number of cattle grazing in the river is calculated using statistics from the 

Texas Department of Agriculture’s 2009 Agricultural Statistics
106

 and INEGI’s 2007 

Agricultural Census.
107

  The number of cattle in each county/municipio were divided 

evenly among land use that supports cattle grazing.  Johnson 2009 defines the land uses 

that support cattle as “deciduous forest, evergreen forest, mixed forest, shrub/scrubland, 

grassland/herbaceous, and pasture/hay.”
108

  The LULC for this study is not as detailed as 

that used in Johnson 2009, so the LULC attributed to cattle are forest, shrub, and 

grass/pasture.  An exception was made for the municipalities of Río Bravo, Valle 

Hermoso, and Matamoros which are almost entirely agriculture, so the cattle were 

equally distributed across agriculture as well for these three municipalities.  For each, 

county and municipality, a density of cattle per square kilometer was calculated.  

Equation 7 calculates the total grazing animals in each sub-watershed by multiplying the 

area of LULC that pertains to cattle by the density of cattle in that subwatershed:
109

 

                         (7) 

where     is the total animals in each subwatershed j,     is the total area of LULC 

attributable to the animal (km
2
),    is the density of the animal in each 

county/municipality i. 

In several instances, the sub-watersheds crossed the boundaries of counties or 

municipalities.  In these cases, the sub-watershed was divided at the county or 

municipality border.  The number of cattle in each part was calculated separately, using 
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Equation 7.  Then the cattle in each part were added together to find the total number of 

cattle in each sub-watershed.  The fecal loading rate per cattle was taken as 1.04x10
11

 

FC/animal/day, which is the default value from the EPA Bacteria Indicator Tool.
110

  

Equation 8 calculates the total fecal coliform loading for each subwatershed by 

multiplying the total number of animals by the fecal coliform loading rate for cattle and 

the percent of time spent in streams:
111

   

                       (8) 

where     is the total fecal coliform load per j subwatershed (count/day),     is the total 

animals in each subwatershed j, LR is the fecal coliform production rate per animal 

(FC/animal/day), and    is the percent of time spent in streams and rivers per k month.  

For this analysis, the maximum percentage of time spent in streams was chosen in order 

to create a conservative estimate.  The study found that there are a total of 50,126 cattle 

in the watershed.  These cattle produce 7.30x1013 FC/day that reaches the streams, which 

results in 1.76x1012 FC/day when accounting for the decay.   

Horses 

The number of horses grazing in the river is calculated using statistics from the 

USDA 2007 Agricultural Census
112

 and INEGI’s 2007 Agricultural Census.
113

  The 

number of cattle in each county/municipio were divided evenly among land use that 

supports cattle grazing.  Johnson 2009 assigned all agricultural animals to the same 

LULC, so this study assigns horses to the same LULC as cattle.
114

  The fecal coliform 

loading for horses was calculated in the same way as with cattle, using Equation 8.  A 

fecal coliform loading rate was used as 4.2x10
8
 count/animal/day for horses, which is the 

default value used in the EPA Bacteria Indicator Tool.
115

 

A computed total of 2,045 horses in the watershed, based on these assumptions, 

produce a total of 1.2x10
10 

FC/day, which results in 4.14x10
08

 FC/day reaching the Rio 

Grande/Río Bravo when taking into account decay. 



 38 

WILDLIFE 

The estimates for fecal contamination are based on estimates for the density of 

each species as well as the LULC each species is expected to be found in.  The animals 

considered by this study include deer, feral hogs, and birds.  As with grazing animals, the 

pollutant load for wildlife varies depending on the time of the year.  This study assumes a 

conservative estimate by choosing the month that would have the highest pollutant load.  

Therefore, the actual load is likely to be lower than the load presented in this report. 

Deer 

The bacteria load from deer into the river comes from two sources, one from the 

direct defecation of deer into rivers and streams and second from the storm runoff 

carrying the over land defecation into the rivers.  This study, as a result of looking at 

steady state pollution, only looks at the first kind, which is the direct defecation of deer 

into the rivers and streams.  This study defines a 300 foot (91 meter) riparian corridor to 

account for the animals that are in direct contact with rivers and streams, as used in the 

TMDL study for Leon River, Segment 1221.
116

  Within the 91 meters from each stream, a 

standard density of deer was assumed on all the LULC types in which deer typically are 

found.  In Johnson 2009, the LULC assigned to deer were “deciduous forest, evergreen 

forest, mixed forest, shrub/scrubland, grasslands/herbaceous…pasture/hay…cultivated 

crops, and woody wetlands.”
117

  The LULC used for this study is less detailed, so deer 

were assigned to the LULC of forest, shrub, grass/pasture, agriculture, and wetlands.  

Estimates for the deer population are taken from the Texas Parks and Wildlife 

Department, as discussed below.  Deer are monitored according to Range Management 

Units, which are units of land in which deer concentrations are kept track of by the Texas 

Parks and Wildlife Department.  The Resource Management Unit Number 8 includes 

parts of the watershed, particularly in Starr County.  Texas Parks and Wildlife 

Department estimates from surveys that the Resource Management Unit Number 8 in 

2010 had a deer density of 13.01 deer per 1000 acres, or 3.21 deer per square 
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kilometer.
118

  In order to estimate the total bacteria load for deer, a value of 5x10
8
 FC 

counts/animal/day was used, which is the default value in the EPA Bacteria Indicator 

Tool.
119 

 Equation 9 calculates the total fecal coliform load produced by wildlife.
120

 This 

calculation is performed for each of the 144 subwatersheds.  It multiplies the total area of 

suitable habitat for each animal by the population density, the fecal coliform production 

rate of each animal and the percent of time assumed to spend in the stream, varying by 

month:
121

   

                        (9) 

where     is the total fecal coliform load per j subwatershed (count/day),     is the 

suitable habitat per j subwatershed (km
2
),   is the density (population/km

2
),    is the 

fecal coliform production rate per animal, and    is the percent of time spent in streams 

and rivers per k month.  The amount of time each animal spends in the stream was 

assumed to be equal to that of cattle, from Table 16.  The values number presented in this 

study represents the maximum fecal coliform load for cattle, which is from the months 

that have the most percentage of time spent in streams, in order to create a conservative 

estimate.    

This study found that in the entire watershed there is a total of 835.16 km
2 

of 

suitable habitat for deer within the riparian corridors of 91 meters from a river or stream.  

There is an estimated 2,685 total deer located within the riparian corridors.  The 

estimated total load of fecal coliform deposited by deer into the rivers and streams is 

1.88*10
10

 counts/day, and the total including decay is 6.14*10
8
 counts/day.   

Feral Hogs 

Feral hogs typically reside in similar LULC as deer,
122

 with forest, shrub, grass/ 

pasture, agriculture, and wetland considered as their suitable habitat.  The Institute of 

Renewable and Natural Resource at Texas A&M University estimates that the density of 

feral hogs in Texas range between 1.33-2.45 hogs per square mile, which is equivalent to 
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0.51-0.95 hogs per square kilometer.
123

  This study uses the more conservative estimate 

of 0.95 hogs per square kilometer.  As with deer, this study only looks at the direct 

defecation of feral hogs into the rivers and streams.  A 91 meter (300 feet) riparian 

corridor from all the streams was used to account for the direct defecation into streams.
124

 

A value of 1.08*10
10  

FC counts/animal/day was used for feral hogs, which is the default 

value in the EPA Bacteria Indicator Tool.
125

  

The total fecal coliform load from feral hogs was calcualed with Equation 9, using 

the time spent in streams equivalent with the maximum fecal coliform loading, the same 

as with deer.  The total suitable habitat for feral hogs within the 91 meter riparian 

corridor is 835.16 km
2
.  There are an estimated 793 feral hogs within the riparian 

corridor.  The total fecal coliform load is 1.20*10
11 

counts/day, and the total including 

decay is 3.92*10
9
 counts/day. 

Waterfowl 

The bacteria load from waterfowl varies throughout the year, depending on the 

migratory patterns of the waterfowl.  The Texas gulf coast is one of the primary locations 

of seasonal waterfowl in the winter.
126

  Many of the waterfowl in the Texas gulf coast 

stay in the wetlands of the Rio Grande delta, defined in Tunnel and Judd 2002 as the area 

which divides the Laguna Madre in Texas from the Laguna Madre de Tamaulipas.
127

 

Table 17 shows the average percentages of migratory waterfowl that were found in the 

Rio Grande delta, as compared to other locations in the Texas Gulf Coast region. The 

chart is presented in Smith 2002 and was recorded from aerial surveys between 1970 to 

1988.
128

 This table shows that the Rio Grande Delta is the favored wintering grounds for 

all the types of geese in the study, as well as mottled ducks and green-winged teal ducks.  

Other types of ducks spend more time in the Lower Laguna Madre or Campeche/Yucutan 

areas, which are outside the watershed of the Rio Grande/ Río Bravo. 
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Table 17: Percentage of Migratory Waterfowl in Rio Grande 

Rio 

Grande

Lower

 Laguna 

Madre

Tampico/

 Tamiahua

Alvarado 

Lagoons

Tabasco 

Lagoons

Campeche/

Yucatan

Lesser Canada goose 68.0 27.3 4.7/0.0 0.0 0.0 0.0

White-fronted goose 60.7 28.6 6.6/4.1 0.0 0.0 0.0

Lesser Snow goose 68.4 21.2 0.0/10.4 0.0 0.0 0.0

Whistling ducks 8.7 0.1 20.2/0.4 30.3 40.1 0.1

Mottled duck 64.4 26.7 5.4/0.4 2.6 0.5 0.0

Gadwall 33.4 28.2 15.0/7.8 11.1 3.7 0.8

Northern pintail 18.2 61.1 4.3/3.9 5.0 4.8 2.7

Green-winged teal 56.7 13.4 21.3/4.0 3.7 0.8 0.1

Blue-winged teal 0.6 0.4 2.2/2.2 17.8 47.9 28.9

American wigeon 19.8 42.8 4.0/6.8 11.9 6.8 7.9

Northern shoveler 40.5 9.4 6.1/3.4 8.2 25.0 7.5

Redhead 0.1 97.5 0.0/2.1 0.0 0.0 0.2

Ring-necked duck 1.1 2.9 1.9/0.3 14.4 17.5 62.0

Canvasback 11.4 55.2 7.9/17.7 7.5 0.1 0.2

Scaup 1.1 36.7 6.3/12.7 5.6 5.4 32.2

Ruddy duck 31.8 33.8 14.9/7.2 7.5 4.9 0.0

Source: Elizabeth H. Smith, “Redheads and Other Wintering Waterfowl,” in The Laguna Madre of Texas 

and Tamaulipas, edited by John W. Tunnell Jr. and Frank W. Judd (College Station: Texas A&M 

University Press, 2002), 177. 

Table 18 uses the percentages of each species in the Rio Grande Delta from Smith 

(2002) and multiplies it by the waterfowl population in the Lower Texas Coast during the 

1980-81 winter season, found from a survey by U.S. Fish and Wildlife Service 

(1981).
129,130  

Table 18 illustrates that the dominant waterfowl in the watershed are the 

Lesser Snow goose, with 23,461 geese, and the Northern Pintail duck, with 19,474 ducks. 
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Table 18: Winter Population of Waterfowl in Rio Grande Delta 

Species

% in Rio 

Grande 

Delta

Winter 

Population in 

Lower Texas 

Coast

Winter 

Population in 

Rio Grande 

Delta

Lesser Canadian Goose 68.0 12,100 8,228

White-fronted goose 60.7 3,900 2,367

Lesser Snow goose 68.4 34,300 23,461

Mottled duck 64.4 2,200 1,417

Gadwall 33.4 14,900 4,977

Northern pintail 18.2 107,000 19,474

Green-winged teal 56.7 4,300 2,438

Blue-winged teal 0.6 0 0

American wigeon 19.8 22,800 4,514

Northern shoveler 40.5 6,700 2,714

Redhead 0.1 208,000 208

Ring-necked duck 1.1 100 1

Canvasback 11.4 700 80

Scaup 1.1 14,100 155

Ruddy duck 31.8 3,300 1,049

Geese

Ducks

 
Source: Smith, “Redheads and Other Wintering Waterfowl,” 177. U.S. Fish and Wildlife Service, Wetland 

Preservation Program, 5. 

The land uses attributed to waterfowl in this study are water and wetland.  In the 

riparian corridor of 91 meters, there is a total of 1072 km
2
 of suitable habitat for 

waterfowl.  Based on the assumptions above, there are an estimated total 34,057 geese 

and 37,027 ducks in the watershed.  An assumption is made that the waterfowl are spread 

evenly across their suitable habitat so that there is a density of 31.77 geese/km
2 

and 34.54 

ducks/km
2
 within the suitable habitat.  This density was used for the direct Rio Grande 

Delta, which includes subwatersheds 126 through 144.  The density was diminished 

going upstream from the delta using an inverse distance weighting based on the distance 

of each subwatershed from the Rio Grande Delta.   

This study looks at the maximum fecal coliform load from waterfowl in the peak 

migratory season in order to create a conservative estimate.  The fecal coliform load from 

waterfowl are taken as 10
7 

counts/animal/day for geese and 10
9 

counts/animal/day for 

ducks, taken from Wieskel et al. 1996.
131
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Using Equation 9, the total fecal coliform load from geese is 3.00x10
11

counts per 

day and the total fecal coliform load from ducks is 7.91*10
13

, for a total of 7.97x10
13

 

counts per day for all waterfowl.  After accounting for decay, the total fecal coliform load 

for waterfowl is 2.12x10
12 

fecal coliform counts per day. 

The pollutant load for grazing animals and wildlife varies seasonally throughout 

the year.  The pollutant load from cattle, horses, deer, and feral hogs will be highest in the 

summer, when they spend more time in rivers and streams.  The pollutant load for 

waterfowl will be highest in the winter, due to their migratory patterns.  The estimate of 

the pollutant load for each animal in this study is a conservative estimate that chooses the 

month that will have the highest load for each animal.   Therefore, the estimates 

presented in this report are the maximum value of the pollutant loads, and these estimates 

are not likely to be exceeded due to the conservative nature of the estimation of the loads. 

This chapter has explained the methodology used for this study. Chapter 3 will 

present the results of this analysis to estimate the fecal coliform bacteria produced from 

the non-point sources along the Lower Rio Grande/ Río Bravo below Falcón reservoir.    
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Chapter 3: Results  

The steady-state, non-point source bacterial loading of the Rio Grande/ Río Bravo  

is divided for all the components discussed below: untreated sewage, uncontrolled septic 

effluents, and the wasteloads associated with cattle, hourses, feral hogs, deer, and birds.  

The effluents for all sources can be aggregated to compare the watershed of each of the 

Rio Grande/ Río Bravo 48 reaches, as defined from previous TCEQ water quality 

models.  For an understanding of the how the water quality of the Rio Grande/ Río Bravo 

changes across the length of this section, Figure 12 illustrates data as sampled by the 

International Boundary and Water Commission and as available from the Texas 

Commission on Environmental Quality.  Figure 12 illustrates the annual geometric mean 

of E. Coli in 2010 for several testing stations from upstream to downstream, left to right. 

The red line indicates an E-Coli concentration of 126 MPN/100mL, which is the 

maximum allowable annual geometric mean for the ambient concentration of bacteria for 

recreational contact.
132

 The highest bacteria levels are found downstream of Ciudad 

Miguel Alemán and at the border of Reynosa and Hidalgo.  
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Figure 12: Annual Geometric Mean 2010 E. Coli 

 
Source: Texas Commission on Environmental Quality, Monitoring Station List, 

http://www8.tceq.state.tx.us/SwqmisWeb/public/index.faces,  Accessed on July 12, 2011. Graph created by Robin Lynch 

In comparison, the results of this analysis are displayed in Figure 13, which 

graphs the total non-point source contribution of fecal coliform for each of the 48 

reaches.
133

  The results are presented in tabular form in Appendix C.
134

 The figure uses a 

logarithmic scale, showing the total fecal coliform colonies that are contributed for each 

reach.  The far left of the figure starts at Falcón dam and it continues to the right until the 

Gulf of Mexico.  The bacteria contribution is high at Ciudad Miguel Alemán (on the 

order of 10
11

 FC counts/day) and Reynosa/ Hidalgo (on the order of 10
10 

FC counts/day), 

which conforms with the spike in bacteria concentrations at these locations shown in 

Figure 12.  Bacteria levels also are very high below Matamoros and Brownsville (on the 

order of 10
11

 FC counts/day).  The highest bacteria loading is found close to the Gulf of 

Mexico, from Reach 44 to 48, almost on the order of 10
12

 FC counts/day.  This very large 

bacteria loading in the tidal region is due to the migratory waterfowl population in the 

winter, and it would not be present in the summer.  The letters A through G represent the 
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major cities and towns along the river.  Table 19 provides a key for which letter 

corresponds with each city, as well as the Reach Number that the city is closest to.
135

    

Figure 13: Non Point Source Fecal Coliform Bacteria Loadings, per Reach 

 
Source: Created by Robin Lynch 

Table 19: Cities with their Corresponding Reach Number 

Label City Reach Number 

A Mier 2 

B Roma/ Ciudad Miguel Aleman 4 

C Ciudad Camargo 7 

D Rio Grande City 8 

E Gustavo Diaz Ordaz 11 

F Reynosa / Hidalgo 19 

G Matamoros / Brownsville 33 
Source: TCEQ, Internal Map, digitized by author, June 03, 2011. 

The following figures divide up the various sources that contribute to the total bacteria 

load.  In the first graph, Figure 14 presents the bacteria contributions of septic systems, 

comparing the U.S. with the Mexican side.
136

  From septic tanks, there is generally a 

larger contribution of bacteria from the U.S. side than from the Mexican side.  This can 

be explained by a larger population in the Mexican watershed living in more concentrated 

urban areas, whereas the U.S. side of the watershed is mostly rural.  According to the 
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1990 U.S. Census, 65 percent of households on the U.S. side of the watershed use septic 

tanks while 27 percent are connected to public sewage.
137

   The Mexican side of the 

watershed, on the other hand, has 77 percent of households connected to public sewage 

and only 9 percent on septic tanks.
138

  The U.S. side produces between 0 to 10
8
 FC 

counts/ day in each reach, but remains fairly constant between 10
6 

to 10
8
 FC counts/day.  

The U.S. side spikes at the cities of Hidalgo and Brownsville.  The Mexican side has 

produces between 0 to 10
7
 FC counts/day, but unlike the U.S. side, only has bacteria 

contamination in concentrated areas, as shown by spikes in the Figure 14.  These spikes 

represent the urban areas along the border in México.  The Mexican side has its largest 

spikes near the cities of Ciudad Camargo, Gustavo Díaz Ordaz, and Reynosa. 

Figure 14: Bacteria Contribution from Septic Systems in the U.S. and Mexico 

 
Source: Created by Robin Lynch 

 Figure 15 presents the bacteria contributions from colonias on the U.S. side and 

from urban residents in Mexico.
139

  This contamination has peaks in the urban areas with 

no contamination in other non-urban areas.  The bacteria contamination from urban areas 

in Mexico is larger, reaching 10
10

 FC counts/ day, than the bacteria contamination from 

U.S. colonias, only reaching 10
8
 FC counts/ day.  This corresponds to the Mexican side 

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Fe
ca

l C
o

lif
o

rm
 c

o
lo

n
ie

s

Reach Number (Upstream to Downsteam)

U.S. Septic Mexico Septic

A B C D E F G



 52 

of the watershed being more urban and the U.S. side of the watershed being more rural.  

The contamination from the U.S. side is all upstream of Hidalgo, because the cities 

downstream of Hidalgo mostly drain into the Arroyo Colorado instead of the Rio Grande/ 

Río Bravo.  The largest peaks from the Mexican side occur at Reynosa and at 

Matamoros, reaching 10
10

 FC counts/ day.   

Figure 15: Bacteria Contributions from U.S. Colonias and Mexican Urban Areas 

 
Source: Created by Robin Lynch 

 Figure 16 presents the bacteria contribution from livestock of cattle and horses.
140

  

The bacteria from cattle is generally between 3 to 4 orders of magnitude greater than that 

of horses.  The bacteria contribution from cattle ranges from 10
8
 to 10

11
 FC counts/ day, 

whereas the bacteria contribution from horses ranges from 10
5 

to 10
7
 FC counts/ day.  

The bacteria from cattle represent one of the largest sources of bacteria in the watershed. 

The non-point source bacteria contributions for cattle will have a large effect on any 

water quality model, even though the accuracy of this estimation is largely dependent on 

estimating how much time cattle spend in streams.  A small change in amount of time 

cattle spend in streams could have a large effect on the water quality model.  Therefore, it 

will be important to develop studies to determine more accurately the percentage of time 

cattle spend in streams within this watershed.   
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Figure 16: Bacteria Contributions from Livestock (Cattle and Horses) 

 
Source: Created by Robin Lynch 

 Figure 17 shows the bacteria contributions from wildlife, specifically water fowl, 

deer, and feral hogs.
141

  The bacteria contamination from water fowl is much larger than 

the contribution from other wildlife, ranging from 10
7
 to 10

12
 FC counts/day.  The 

bacteria contribution from deer ranges from 10
6
 to 10

7 
FC counts/ day and the 

contribution from feral hogs ranges from 10
6
 to 10

8
 FC counts/day.  The bacteria 

contribution from waterfowl is from migratory waterfowl that migrate to the Lower Rio 

Grande in the winter. Thus, the bacteria contamination would vary largely throughout the 

year.  By estimating bird bacterial contributions based on the maximum load, as this 

study does in the tidal region of the Rio Grande/ Río Bravo, the contamination from 

waterfowl is the dominant source of bacteria by several factors of magnitude.  This 

estimation was developed from the few waterfowl surveys of the Lower Rio Grande 

Delta.  It is recommended that any further studies and water quality models conduct 

studies and surveys to more accurately determine the number of waterfowl that are in the 

watershed, because these numbers would influence the accuracy and reliability of my 

water quality study.   
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Figure 17: Bacteria Contributions from Wildlife 

 
Source: Created by Robin Lynch 

Figure 18 displays a graphical representation of the fecal coliform loading based 

on each subwatershed.
142,143,144

  The scale of colors shows green as the lowest amount of 

fecal coliform load, up to red which represents the highest fecal coliform load.  This 

figure shows that the subwatersheds closer to the river contribute more to the bacteria 

loadings to the river.  This makes sense, because most of the population in the watershed 

lives close to the river; bacteria deposited farther away from the Rio Grande/ Río Bravo 

would decay before reaching the river.  In the western part of the watershed, part A, the 

orange areas largely represent the bacteria from cattle being deposited into rivers and 

streams.  Part B on the map represents the area around Reynosa/Hidalgo, which has many 

households without sewage collection.  Part C on the map represents the area around 

Matamoros/ Brownsville, which also has many households without sewage connections.  

Part D represents the Rio Grande Delta, which has a large population of migratory birds. 
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Figure 18: Geographical Representation of Fecal Coliform Loadings 

 
Source: Derived from USGS, “National Hydrography Dataset,” The National Map, GIS Shapefile, 
http://viewer.nationalmap.gov/viewer/nhd.html?p=nhd & INEGI, Unpublished GIS Shapefile, October 31, 2011 & TCEQ, Internal 

Map, digitized by Robin Lynch, June 03, 2011, Map created by Robin Lynch 

This chapter presented the results of estimating the steady-state non-point source 

pollution entering into the Rio Grande/ Río Bravo.  The last chapter will present 

recommendations and conclusions for how environmental agencies can use results to 

improve the water quality models of the river. 
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Chapter 4:  Conclusions and Recommendations 

  

The two challenges for including steady-state, non-point effluent sources is that it 

is not easy to estimate their actual value and even more difficult to control them.  For 

sources like untreated sewage, several programs have been implemented to provide 

adequate sewage treatment capacity and connections, such as the Texas Secretary of 

State’s Colonia Initiatives Program
145

 and the wastewater control investments of the 

Border Environment Cooperation Commission.
146

  For sources such as migratory 

waterfowl, it would not be feasible to try to reduce this bacteria contribution, nor would it 

be preferable to limit the presence of migratory waterfowl in the watershed.  This study, 

as other similar studys of its kind, makes many assumptions, as listed in the Table of 

Assumptions, and these assumptions should be considered when using this study for 

future water quality modeling.  Much of the data used are taken from a large scale (such 

as the county or municipality level), and therefore subject to rough estimation.  In many 

areas of this study, the results could be improved and made more accurate through further 

studies, delineations, surveys, and interviews.  This section highlights the areas that could 

be useful for added investigation. It will be up to the government agencies to determine 

which areas merit more research to achieve more accurate results. 

 This study has estimated steady state, non-point source bacteria pollution on the 

Lower Rio Grande/ Río Bravo between the Falcón Reservoir and the Gulf of Mexico.  

This study looked at the bacteria contribution from septic tanks, untreated sewage, 

livestock, and wildlife, comparing the bacteria load from the U.S. and México side of the 

watershed.  The total fecal coliform load of each source is shown in Appendix C and is 

divided by each subsection, or “reach.” 

These results are intended for use as an input for creating a steady-state water 

quality model using QUALTX, or a similar steady-state water quality model.  The 

bacteria contributions in this study were divided in 48 different reaches, as were defined 
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in a previous QUALTX model of the river that was performed by the Texas Commission 

on Environmental Quality.
147

  The information compiled in this study would also be 

helpful for creating a non-steady state model, but much more information would need to 

be collected in order to create such a model.   

 The results indicate that the watershed should continue to improve the wastewater 

infrastructure and treatment to prevent untreated sewage from reaching the river.  The 

largest contributions of untreated sewage to the river occurred close to the Mexican urban 

centers as well as the U.S. colonias.  Cattle represent another large contributor of bacteria 

to the watershed, although there is some uncertainty in the estimate of bacteria 

contributed by cattle due to the assumptions regarding how many, where, and when they 

have direct access to surface water.  This problem could be remedied by enabling cattle to 

drink water from sources other than rivers, through providing separate watering ponds for 

cattle to drink from and fences to limit cattle access.  Waterfowl have the potential to 

contribute a very large load of bacteria to the river, especially in the tidal area close to the 

Rio Grande Delta.  The reason that waterfowl and cattle have such a significant 

contribution to the bacterial load is because these animals produce a very high count of 

fecal coliform per day (10
11

 and 10
9
 FC counts/ day)

148,149
 compared with what humans 

produce (10
4
 FC counts/ day).

150
   

This study has several recommendations for government agencies that will use 

this study for developing water quality models and policy (see Table 20).  Each 

recommendation will have a different financial cost, so it will be the government 

agencies’ decision on which improvements they choose to invest their resources.  
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Table 20: Table of Recommendations 

Recommendation Details

1
Research and revise the watershed delineation to 

accurately represent the movement of water

2
Perform a survey of the percent of septic failure on the 

Mexican side of the watershed

3
Research the amount of time cattle spend in rivers and 

streams

4 Perform waterfowl surveys along the river

5
Determine what percentage of collected sewage is 

untreated

6
For point-source study, determine the degree of 

treatment at wastewater treatment plants

7
Determine the appropriate riparian corridor to use for 

septic systems and animals

8
Collect  streamflow data for the NHD dataset in order to  

create an NHD Plus dataset  

 

The first recommendation is that the watershed delineation should be researched and 

revised to accurately determine what area of land drains into the Rio Grande/ Río Bravo.  

The watershed delineation as is currently accepted between USGS and INEGI may not 

accurately represent the true area that drains into the Rio Grande/ Río Bravo.  There are 

many canals built on the Mexican side of the watershed with the purpose of carrying 

water away from the Rio Grande/ Río Bravo and into the Gulf of Mexico.
151

  These 

canals are not adequately accounted for in the current watershed delineation, which 

results in a large amount of land that this study includes as draining into the river.  In 

reality some of these areas may not drain into the river.  Second, the DEM used for the 

delineation not only uses a large grid size, meaning less detail, but also it is hard to 

validate the data in the current DEM.  It would be helpful for the analysis to have Lidar 

data over the entire watershed, and if that is not possible, to at least perform a quality 

control check on the current DEM data available.  Another way to improve the analysis 

would be to create an NHD file that accurately represents the drainage in the eastern part 

of the watershed, because many canals and streams are not considered in the current 
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NHD file that is accepted between USGS and INEGI.  The current NHD appears it may 

be incomplete in the eastern part of the watershed.   

Second, government agencies should perform a survey of how well septic systems are 

functioning in the México side of the watershed.  This study used a survey conducted on 

the U.S. side of the watershed and assumed that the México side would have the same 

rate of septic tank failure.  It is unclear how reliable or valid this assumption may be, so 

conducting a survey would be helpful. 

Third, government agencies should research the amount of time cattle spend in rivers 

and streams in the watershed.   This study used data from previous studies performed in 

other parts of the state of Texas, because no studies from this watershed were found.
152

  

The bacteria contribution from cattle to the river is highly dependent on the amount of 

time they spend in the river, because that is the only way that the bacteria will reach the 

river in a steady-state model.  The accuracy of this model would be greatly improved 

with a study on the amount of time cattle spend in the rivers and streams, especially since 

cattle were such a large contributor of bacteria to the river. 

Another useful survey would be for waterfowl on the river for various locations along 

the entire length of the river in the study.  There are very few waterfowl surveys 

performed in this watershed, so this study had to make generalizations based on the few 

surveys that do exist.   A more complete survey of the number of waterfowl in the 

watershed as well as the amount of time they spend in the watershed would improve the 

accuracy of this study. 

Fifth, government agencies should determine the percentage of collected sewage that 

enters the Rio Grande/ Río Bravo untreated.  This study makes the assumption that all 

sewage that is collected is properly treated and does not enter into the river.  It is likely 

that a percentage of the sewage collected will enter the river untreated, but no data are 

currently available to support or reject this idea.  A study of the percentage of collected 

sewage that is not treated should be performed so as to understand the magnitude of this 

contamination. 
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 Sixth, when government agencies are creating a full water quality model of the 

river that includes point sources, the study should take into account the fraction of the 

wastewater actually treated by wastewater treatment facilities.  This study only takes into 

account non-point sources, which does not include wastewater treatment plants.  The 

degree of treatment, whether primary or secondary, ought to affect the bacteria load 

reaching the river. 

 Seventh, research should be undertaken to determine what distance of a riparian 

corridor is appropriate to use in this study.  This study used a riparian corridor of 500 

meters for septic tanks and 300 meters for wildlife.  There is uncertainty as to how 

representative these riparian corridors are regarding the actual distance from the river one 

can assume that contamination will reach the river.   

 Eight, government agencies should collect the stream flow data necessary in order 

to be able to create an NHD Plus dataset.  An NHD Plus dataset does not exist yet for this 

watershed.  The creation of such a dataset would allow better methods for calculating the 

pollutant load that reaches the river.
153

 

This study is meant to be used an input for a full steady-state water quality model 

for the Lower Rio Grande/ Río Bravo watershed. These recommendations will provide 

more confidence in the results of the water quality model and provide government 

agencies with a better knowledge of how policies could reduce bacteria pollution to the 

river. This steady-state water quality model may be included as part of the Lower Rio 

Grande/ Río Bravo Watershed Initiative, a bi-national effort to improve the quality of this 

stretch of the river.   

The Appendices provide further documentation of data used and calculated in this 

study.  Appendix A illustrates the 144 subwatersheds used in this study.
154,155

  These 

subwatersheds are labeled with identification numbers for easy reference between other 

tables.  Appendix B provides the information used to calculate decay rates from each of 

the subwatersheds.  Appendix B includes a reference between the subwatershed 

identification numbers and the reach identification numbers.   Each reach is made of 

several subwatersheds that all drain into the same pour point of the reach.  Each 
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subwatershed has a different distance to travel to the reach, and thus has a different 

amount of decay.   The value e
-kt

 represents the fraction of the original bacterial load that 

will arrive at the reach.  Appendix C presents the results of the bacterial load for each 

reach.  These results are in units of total fecal coliforms per day, and they are divided by 

the different sources.  Appendix D provides the INEGI data on the number of households 

without drainage for each locality.
156

  These data were used to calculate the amount of 

sewage contamination from the Mexican side of the watershed. 
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Appendix A: Sub-watersheds for Pour Points 
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Appendix B:  Travel Distances and Decay Rates from Sub-watersheds to Reaches
Subwatershed Reach

Total 

(km)

Velocity

(m/s)

k

( 1/days)

t

(days)
e-kt Subwatershed Reach

Total 

(km)

Velocity

(m/s)

k

( 1/days)

t

(days)
e-kt

1 1 1.87 0.13 4.82 0.17 0.44 73 16 22.40 0.13 4.82 2.04 0.00

2 1 4.65 0.13 4.82 0.42 0.13 74 16 6.10 0.13 4.82 0.55 0.07

3 1 11.04 0.13 4.82 1.00 0.01 75 17 3.23 0.22 4.82 0.17 0.44

4 2 13.31 0.13 4.82 1.21 0.00 76 17 3.77 0.22 4.82 0.20 0.39

5 2 13.98 0.13 4.82 1.27 0.00 77 18 1.43 0.22 4.82 0.07 0.70

6 2 2.35 0.13 4.82 0.21 0.36 78 18 1.63 0.22 4.82 0.09 0.66

7 2 16.90 0.13 4.82 1.54 0.00 79 19 4.76 0.22 4.82 0.25 0.30

8 2 8.77 0.13 4.82 0.80 0.02 80 19 24.33 0.22 4.82 1.27 0.00

9 2 4.69 0.13 4.82 0.43 0.13 81 19 12.48 0.22 4.82 0.65 0.04

10 2 7.84 0.13 4.82 0.71 0.03 82 19 26.22 0.22 4.82 1.37 0.00

11 3 18.05 0.13 4.82 1.64 0.00 83 19 3.76 0.22 4.82 0.20 0.39

12 3 7.71 0.13 4.82 0.70 0.03 84 20 5.35 0.22 4.82 0.28 0.26

13 4 8.07 0.13 4.82 0.73 0.03 85 20 5.49 0.22 4.82 0.29 0.25

14 4 7.82 0.13 4.82 0.71 0.03 86 21 2.72 0.22 4.82 0.14 0.50

15 4 5.28 0.13 4.82 0.48 0.10 87 21 6.49 0.22 4.82 0.34 0.20

16 5 4.63 0.13 4.82 0.42 0.13 88 22 3.93 0.22 4.82 0.20 0.37

17 5 1.40 0.13 4.82 0.13 0.54 89 22 2.81 0.22 4.82 0.15 0.49

18 6 11.46 0.13 4.82 1.04 0.01 90 23 1.63 0.22 4.82 0.08 0.66

19 6 22.18 0.13 4.82 2.02 0.00 91 23 0.89 0.22 4.82 0.05 0.80

20 6 11.51 0.13 4.82 1.05 0.01 92 24 2.67 0.20 4.82 0.15 0.48

21 6 11.97 0.13 4.82 1.09 0.01 93 24 2.92 0.20 4.82 0.17 0.45

22 6 7.55 0.13 4.82 0.69 0.04 94 25 1.65 0.20 4.82 0.09 0.63

23 7 35.22 0.13 4.82 3.20 0.00 95 25 1.72 0.20 4.82 0.10 0.62

24 7 44.29 0.13 4.82 4.03 0.00 96 26 1.32 0.20 4.82 0.08 0.69

25 7 9.73 0.13 4.82 0.88 0.01 97 26 2.07 0.20 4.82 0.12 0.57

26 7 26.08 0.13 4.82 2.37 0.00 98 27 1.08 0.20 4.82 0.06 0.74

27 8 2.85 0.13 4.82 0.26 0.29 99 27 0.90 0.20 4.82 0.05 0.78

28 8 7.29 0.13 4.82 0.66 0.04 100 28 0.55 0.20 4.82 0.03 0.86

29 9 32.99 0.13 4.82 3.00 0.00 101 28 1.81 0.20 4.82 0.10 0.61

30 9 42.16 0.13 4.82 3.83 0.00 102 29 1.36 0.20 4.82 0.08 0.69

31 9 37.75 0.13 4.82 3.43 0.00 103 29 0.99 0.20 4.82 0.06 0.76

32 9 55.45 0.13 4.82 5.04 0.00 104 30 13.41 0.20 4.82 0.77 0.02

33 9 67.98 0.13 4.82 6.18 0.00 105 30 9.14 0.20 4.82 0.52 0.08

34 9 54.79 0.13 4.82 4.98 0.00 106 31 1.84 0.20 4.82 0.11 0.60

35 9 1.76 0.13 4.82 0.16 0.46 107 31 0.97 0.20 4.82 0.06 0.77

36 9 18.42 0.13 4.82 1.67 0.00 108 32 6.53 0.20 4.82 0.37 0.17

37 9 28.41 0.13 4.82 2.58 0.00 109 32 6.50 0.20 4.82 0.37 0.17

38 9 3.61 0.13 4.82 0.33 0.21 110 33 2.26 0.20 4.82 0.13 0.54

39 9 42.87 0.13 4.82 3.90 0.00 111 33 3.44 0.20 4.82 0.20 0.39

40 9 45.07 0.13 4.82 4.10 0.00 112 34 0.67 0.24 4.82 0.03 0.86

41 9 48.35 0.13 4.82 4.39 0.00 113 34 0.76 0.24 4.82 0.04 0.84

42 9 12.06 0.13 4.82 1.10 0.01 114 35 0.23 0.24 4.82 0.01 0.95

43 9 3.74 0.13 4.82 0.34 0.19 115 35 0.27 0.24 4.82 0.01 0.94

44 9 1.66 0.13 4.82 0.15 0.48 116 36 0.44 0.24 4.82 0.02 0.91

45 9 28.57 0.13 4.82 2.60 0.00 117 36 0.48 0.24 4.82 0.02 0.90

46 10 2.94 0.13 4.82 0.27 0.28 118 37 0.43 0.24 4.82 0.02 0.91

47 10 2.17 0.13 4.82 0.20 0.39 119 37 0.45 0.24 4.82 0.02 0.90

48 11 1.82 0.13 4.82 0.17 0.45 120 38 0.37 0.24 4.82 0.02 0.92

49 11 24.23 0.13 4.82 2.20 0.00 121 38 1.32 0.24 4.82 0.06 0.74

50 11 34.54 0.13 4.82 3.14 0.00 122 39 0.92 0.24 4.82 0.04 0.81

51 11 14.45 0.13 4.82 1.31 0.00 123 39 0.49 0.24 4.82 0.02 0.89

52 11 24.61 0.13 4.82 2.24 0.00 124 40 1.75 0.24 4.82 0.08 0.67

53 11 10.81 0.13 4.82 0.98 0.01 125 40 1.67 0.24 4.82 0.08 0.68

54 11 39.34 0.13 4.82 3.57 0.00 126 41 0.54 0.24 4.82 0.03 0.88

55 11 12.31 0.13 4.82 1.12 0.00 127 41 1.23 0.24 4.82 0.06 0.76

56 11 1.44 0.13 4.82 0.13 0.53 128 42 1.16 0.24 4.82 0.05 0.77

57 11 22.87 0.13 4.82 2.08 0.00 129 42 1.21 0.24 4.82 0.06 0.76

58 12 7.45 0.13 4.82 0.68 0.04 130 43 2.79 0.24 4.82 0.13 0.53

59 12 17.88 0.13 4.82 1.63 0.00 131 43 3.37 0.24 4.82 0.16 0.46

60 12 11.50 0.13 4.82 1.04 0.01 132 44 2.28 0.24 4.82 0.11 0.59

61 12 28.08 0.13 4.82 2.55 0.00 133 44 3.55 0.24 4.82 0.17 0.43

62 12 42.61 0.13 4.82 3.87 0.00 134 45 2.74 0.24 4.82 0.13 0.53

63 12 41.44 0.13 4.82 3.77 0.00 135 45 2.50 0.24 4.82 0.12 0.56

64 12 37.14 0.13 4.82 3.38 0.00 136 46 5.82 0.24 4.82 0.28 0.25

65 12 1.05 0.13 4.82 0.10 0.63 137 46 2.37 0.24 4.82 0.12 0.57

66 13 1.44 0.13 4.82 0.13 0.53 138 47 5.84 0.24 4.82 0.28 0.25

67 13 1.10 0.13 4.82 0.10 0.62 139 47 7.28 0.24 4.82 0.35 0.18

68 14 4.60 0.13 4.82 0.42 0.13 140 48 1.10 0.24 4.82 0.05 0.77

69 14 3.59 0.13 4.82 0.33 0.21 141 48 49.16 0.24 4.82 2.40 0.00

70 15 0.66 0.13 4.82 0.06 0.75 142 48 33.30 0.24 4.82 1.62 0.00

71 15 2.84 0.13 4.82 0.26 0.29 143 48 41.59 0.24 4.82 2.03 0.00

72 16 17.99 0.13 4.82 1.64 0.00 144 48 13.30 0.24 4.82 0.65 0.04  
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Appendix C: Total Fecal Coliforms Per Day Produced, by Reach 

 
Reach U.S. Colonias U.S. Septic Mexico Urban Mexico Septic Cattle Horses Deer Feral Hogs Waterfowl Total

1 0.00E+00 3.59E+06 3.25E+07 0.00E+00 1.61E+11 7.59E+06 4.91E+07 3.13E+08 2.81E+08 1.61E+11

2 1.19E+07 4.11E+06 0.00E+00 0.00E+00 1.51E+11 9.02E+06 4.57E+07 2.92E+08 2.30E+08 1.51E+11

3 0.00E+00 0.00E+00 5.67E+07 0.00E+00 9.88E+10 2.95E+06 2.80E+07 1.79E+08 6.18E+04 9.91E+10

4 6.90E+07 1.48E+07 1.86E+08 5.65E+04 1.53E+11 1.54E+07 3.49E+07 2.23E+08 2.48E+08 1.54E+11

5 0.00E+00 2.66E+07 5.72E+07 0.00E+00 1.05E+10 3.45E+06 7.77E+06 4.96E+07 1.26E+08 1.07E+10

6 1.36E+07 1.36E+06 5.08E+05 8.83E+06 1.77E+10 1.99E+06 5.93E+06 3.79E+07 4.15E+07 1.78E+10

7 0.00E+00 0.00E+00 8.26E+07 5.24E+06 3.69E+10 2.68E+06 9.15E+06 5.84E+07 1.43E+06 3.70E+10

8 4.38E+07 7.47E+06 0.00E+00 0.00E+00 1.14E+10 3.74E+06 5.91E+06 3.77E+07 1.25E+08 1.16E+10

9 6.05E+06 5.62E+06 0.00E+00 0.00E+00 5.13E+09 1.69E+06 5.20E+06 3.32E+07 2.61E+08 5.44E+09

10 4.32E+07 1.46E+06 0.00E+00 1.40E+04 8.14E+09 2.68E+06 3.77E+06 2.40E+07 2.29E+08 8.44E+09

11 1.67E+07 6.13E+06 1.47E+09 1.93E+07 4.86E+09 3.04E+06 8.60E+06 5.49E+07 4.87E+08 6.92E+09

12 0.00E+00 2.30E+07 2.80E+08 6.85E+05 6.94E+09 7.10E+06 4.46E+06 2.85E+07 3.23E+08 7.61E+09

13 0.00E+00 2.53E+07 0.00E+00 7.02E+06 4.67E+09 5.63E+06 5.93E+06 3.78E+07 2.38E+08 4.99E+09

14 0.00E+00 1.96E+07 0.00E+00 8.45E+03 1.41E+09 1.70E+06 5.25E+06 3.35E+07 2.17E+08 1.68E+09

15 0.00E+00 6.39E+06 0.00E+00 0.00E+00 4.86E+08 5.86E+05 5.83E+06 3.72E+07 6.70E+08 1.21E+09

16 0.00E+00 1.57E+07 1.07E+05 2.37E+07 1.24E+09 1.50E+06 2.56E+06 1.63E+07 7.24E+08 2.03E+09

17 0.00E+00 1.92E+07 8.14E+09 0.00E+00 2.13E+10 1.64E+07 1.56E+07 9.98E+07 3.35E+09 3.29E+10

18 0.00E+00 8.28E+06 1.36E+10 0.00E+00 2.11E+10 1.27E+07 9.89E+06 6.31E+07 1.93E+08 3.50E+10

19 0.00E+00 9.04E+07 9.79E+09 1.78E+07 3.68E+10 1.96E+07 2.58E+07 1.65E+08 1.57E+09 4.84E+10

20 0.00E+00 2.91E+07 0.00E+00 1.79E+04 1.32E+10 3.83E+06 1.85E+07 1.18E+08 4.42E+09 1.78E+10

21 0.00E+00 1.53E+07 0.00E+00 1.79E+03 1.25E+11 1.96E+07 2.49E+07 1.59E+08 1.02E+09 1.27E+11

22 0.00E+00 1.51E+07 1.67E+10 3.69E+06 1.46E+10 2.35E+06 1.18E+07 7.50E+07 4.75E+08 3.19E+10

23 0.00E+00 2.15E+06 0.00E+00 7.11E+06 3.51E+10 7.01E+06 4.23E+06 2.70E+07 4.07E+08 3.56E+10

24 0.00E+00 1.79E+07 0.00E+00 2.56E+04 5.48E+10 1.12E+07 1.57E+07 1.00E+08 8.11E+08 5.58E+10

25 0.00E+00 1.57E+07 0.00E+00 0.00E+00 3.95E+10 1.22E+07 1.30E+07 8.28E+07 3.02E+08 3.99E+10

26 0.00E+00 2.85E+07 0.00E+00 0.00E+00 2.56E+10 4.38E+06 1.69E+07 1.08E+08 3.70E+08 2.62E+10

27 0.00E+00 8.18E+06 0.00E+00 0.00E+00 1.24E+10 6.76E+06 8.45E+06 5.39E+07 3.54E+08 1.28E+10

28 0.00E+00 3.48E+06 0.00E+00 3.84E+06 4.07E+10 8.28E+06 4.86E+06 3.10E+07 1.80E+08 4.09E+10

29 0.00E+00 7.85E+06 0.00E+00 0.00E+00 3.21E+10 8.20E+06 7.54E+06 4.82E+07 6.73E+08 3.29E+10

30 0.00E+00 1.04E+07 8.16E+08 5.54E+05 1.68E+11 2.98E+07 7.10E+06 4.53E+07 1.25E+09 1.70E+11

31 0.00E+00 1.78E+07 0.00E+00 9.15E+03 7.98E+09 4.16E+06 1.30E+07 8.33E+07 1.37E+09 9.47E+09

32 0.00E+00 1.07E+07 9.19E+09 5.29E+06 8.03E+10 1.53E+07 8.63E+06 5.51E+07 1.34E+09 9.09E+10

33 0.00E+00 8.65E+07 9.68E+09 0.00E+00 2.34E+10 1.76E+07 8.00E+06 5.11E+07 3.17E+09 3.64E+10

34 0.00E+00 1.31E+07 5.16E+09 0.00E+00 3.55E+09 2.57E+06 3.83E+06 2.45E+07 1.25E+09 1.00E+10

35 0.00E+00 3.11E+06 2.96E+08 0.00E+00 7.95E+08 5.83E+05 1.38E+06 8.83E+06 4.30E+08 1.54E+09

36 0.00E+00 4.33E+06 6.73E+08 0.00E+00 6.73E+08 4.75E+05 2.60E+06 1.66E+07 1.10E+09 2.47E+09

37 0.00E+00 4.07E+06 1.16E+09 0.00E+00 1.77E+08 1.28E+05 2.15E+06 1.37E+07 2.35E+09 3.70E+09

38 0.00E+00 1.42E+06 6.80E+09 0.00E+00 1.91E+09 1.44E+06 2.00E+06 1.27E+07 4.03E+08 9.13E+09

39 0.00E+00 5.98E+06 1.61E+09 0.00E+00 2.35E+08 1.35E+05 2.32E+06 1.48E+07 5.26E+08 2.40E+09

40 0.00E+00 9.04E+06 3.11E+09 7.32E+03 2.15E+10 1.24E+07 6.84E+06 4.37E+07 1.83E+09 2.65E+10

41 0.00E+00 2.24E+07 0.00E+00 1.10E+04 3.86E+10 2.17E+07 1.67E+07 1.07E+08 3.32E+10 7.20E+10

42 0.00E+00 1.09E+07 0.00E+00 1.07E+07 2.57E+10 9.16E+06 1.41E+07 9.00E+07 1.51E+10 4.09E+10

43 0.00E+00 1.82E+07 0.00E+00 1.83E+03 4.19E+10 1.06E+07 1.80E+07 1.15E+08 4.90E+10 9.11E+10

44 0.00E+00 3.53E+07 0.00E+00 0.00E+00 3.92E+10 9.93E+06 1.70E+07 1.09E+08 9.94E+10 1.39E+11

45 0.00E+00 1.00E+07 0.00E+00 1.65E+04 5.32E+10 2.94E+07 1.71E+07 1.09E+08 2.61E+11 3.14E+11

46 0.00E+00 3.53E+06 0.00E+00 0.00E+00 5.48E+10 3.41E+07 1.05E+07 6.71E+07 3.03E+11 3.58E+11

47 0.00E+00 2.32E+06 0.00E+00 0.00E+00 5.46E+09 3.89E+06 1.58E+07 1.01E+08 4.89E+11 4.95E+11

48 0.00E+00 2.27E+06 4.01E+07 5.85E+07 4.32E+10 7.04E+06 4.17E+07 2.66E+08 8.33E+11 8.76E+11
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Appendix D: Household and Sewage Data for Mexican Watershed
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Glossary 

ArcHydro: An add-in for ArcGIS that is specifically designed for graphical analysis of 

water data 

ArcGIS: a software that allows for analysis with GIS data 

Colonia: a housing development on the U.S. border that lacks adequate infrastructure, not 

to be confused with the Spanish word colonia, which means “neighborhood” 

Digital Elevation Model: a dataset collected from satellites that measures the elevation 

across the globe 

E-coli: a bacteria that is generally association with a fecal source, either from human or 

animal defecation 

Fecal coliform: a bacteria that is generally associated with an a fecal source, either from 

human or animal defecation 

Fecal coliform colonies: a way of measuring the quantity of fecal coliform 

First Order Decay rate: the rate at which bacteria decays, assuming that the decay occurs 

at an exponential rate 

Geometric mean: a mean taken by multiplying a series of n numbers by each other than 

then taking the n
th

 root of the product 

GIS: geographic information system 

Low-flow conditions: the conditions in a river in which it has the lowest volume of water 

flowing through it 

LULC: land use/ land cover, a map that categorizes the type of use or vegetation each 

parcel of land has 

Non-point source pollution:  the pollution that cannot be attributed to a single source, but 

is the collection of many smaller sources that are not easily traceable 

QUAL-TX: a steady-state water quality model developed for the Texas Commission on 

Environmental Quality 

Reach: a term in a QUAL-TX water quality model that signifies a small stretch of the 

river that shares similar hydraulic characteristics 
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Steady-state model:  a water quality model that only considers the inputs that enter the 

river on a constant basis, not considering storm-water runoff 

Total Maximum Daily Load:  an analysis of the total pollutant load entering into a river 

that is required by the Clean Water Act 

Watershed: the entire area of land in which water drains to a certain point 
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