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This dissertation focuses on service scheduling and transshipment problems.  The 

study of service scheduling is motivated by decisions facing service planners, who must 

inspect and maintain geographically dispersed infrastructure facilities. We study the 

problem of deciding which operations a service unit must perform at each customer 

location, given the sequence in which the unit periodically visits these locations.  Each 

customer requires multiple service operations, and each operation has a time-varying 

completion or penalty cost that depends on the previous service time.  The goal is to 

schedule the service start time for each customer and select the operations to perform so 

as to minimize the total completion cost.   

We first discuss how to solve a special case of this problem in which each site is 

visited only once per service cycle.  We formulate this problem as a discrete time indexed 

network flow problem and prove that it is NP-hard in the ordinary sense.  Then, we 

represent the problem as a multidimensional shortest path problem with path-dependent 

arc lengths.  In this structure, arc costs depend on the total time spent for all customers.  
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The resulting formulation is solvable via algorithms that have pseudo-polynomial run 

times. Computational results show that the shortest path approach outperformed the 

general network flow model.  

We then analyze the general case of this problem, in which each site can be 

visited more than once and prove that the problem is NP-Hard in the strong sense.  We 

discuss the valid cuts and describe the preprocessor that reduces the problem size.  Next, 

we examine an application to the general case of the problem and develop a fast and 

effective heuristic procedure that repeatedly applies the shortest path approach to 

subsequences that do not visit any customer more than once.  Computational results for 

several problem instances show that the proposed heuristic identifies near optimal results 

very quickly, whereas a general purpose integer-programming solver (CPLEX) is not 

able to find an optimal solution even after many hours of computational time. Then we 

focus on techniques such as problem reduction, branching variables, and subdividing 

problem to smaller problems to get better solution times for the actual problem. 

Computational results show that these techniques can improve solution times 

substantially.  

Finally, we study a transshipment problem, in which the shipments need to be 

transported from their origin to destination and are subject to the logical and physical 

transportation network on which they rely.  We consider a space-time network that allows 

one to formulate the problem as a multi-commodity network flow problem with 

additional side constraints and show the complexity results.  We propose alternative 

models and propose algorithms for lower and upper bound calculations. 
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Chapter 1:  Introduction 

1.1 MOTIVATION 

Worldwide competition has been forcing companies to provide better services to 

their customers. Better services not only increase customer satisfaction but also help 

companies manage resources effectively. In fact, service management operations are 

complex processes, and in many businesses, quality of the service depends on a timely 

response to service needs.  The focus of this dissertation is problems with service 

management under the following service types: 

• One-time required services:  Servicing a number of customers where each customer 

is considered one at a time.  Here the cost of service depends on the amount of time 

spent with each customer.  This type of service usually appears when a service plan is 

put in effect only after the orders are received, as in after-market and emergency 

services.   

• Multiple-time required services:  Servicing a number of customers periodically.  

Each time a customer gets a service, the business incurs a servicing cost that depends 

on the time since the customer’s last service.  Services of this type appear in many 

contexts, such as multi-product lot sizing, vendor managed inventories, machine 

maintenance and several problems in telecommunications. 

• Transportation services:  Transportation of shipments from their origin to 

destination under capacity and system constraints.  The objective function minimizes 

the weighted transit times of shipments and/or the cost of used paths.  This is a 

common problem for freight transportation operations as well as applicable to 

communication networks. 

Each of these services requires multi-level hierarchical decisions that lead to 

difficult problems of resource allocation and scheduling. We will now explain these 
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problems in detail.  However, the scope of this study is limited to the operational level 

problems of each of these service types. 

In a typical service management scenario, each customer requires services or 

operations.  Although the service provider can choose more than one operation 

(opportunistic scheduling) to perform for each customer, some of the operations cannot 

be done together for technical reasons.  Among the set of various possible combinations 

of operations, a task refers to a combination of operations that can be performed together. 

One-time required services:  In this section, we consider the problem of 

servicing a set of customers with a service constraint.  Namely, only one customer can be 

serviced at a time.  We also assume that the service order of the customers is known. In 

this situation, resource allocation and order/routing problems could be seen as upper level 

decisions.  At the strategic level, the company needs to decide how many resources are 

needed and how the resources are allocated to customers.  The tactical level problem 

aims to solve the routing/ordering problems of customers for each resource.  Finally, our 

problem is an operational level problem and entails deciding which among the possible 

tasks to perform for each customer on a given order.  The solution to this problem 

specifies:  (i) what tasks the resource should perform in the given order, and (ii) when the 

resource performs these tasks.   

In this problem, we assume that each customer will appear only once (one-time 

requirement).  Hence, the problem could be seen as a special case of multiple requirement 

case.  However, there are some applications directly related to this service type. The 

following examples point to this type of service: 

• Roadway snow and ice control:  The streets need clearing after snowy or icy 

weather.  There are some operations to clean streets, such as snowplowing and 

gritting.  Here, the roads/streets are customers and servicing a street means 



 3 

performing winter gritting operations.  In this problem, the timing of intervention 

is of prime importance.  That is, if the intervention is too early or too late, the cost 

sharply increases.  

• After-market repair services:  Consider a case where a service provider is required 

to repair the product whenever the customer calls.  Here, servicing a customer 

means maintaining the utility of the product.   A timely, high-quality response to 

the service need is a critical element for customer satisfaction.  After-market 

service maintains the utility of the product and helps to increase customer loyalty 

to the company.  Since the service is usually provided by a contract, the quality of 

this service directly affects the company’s profit.  

Multiple-time required (periodic) services:  This problem is a generalization of 

the previous one, where a customer can appear multiple times.  Again, our study focuses 

on the operational level problem where customers get service one at a time and the 

customer order is known. In this problem, the servicing cost depends on the time since 

the customer’s last service.  There are several motivating applications related to this 

service type: 

• Multi-product lot sizing:  The manufacturing plan consists of a cyclic schedule 

that specifies the sequence in which each product family is produced.  In this 

problem, there are product families, and in each family, there are individual items.  

The problem of deciding how much of each item in a product family to produce 

for a given cyclic sequence of family setups is analogous to the problem we are 

studying.    Here, the customers represent the product families, and servicing a 

customer corresponds to ordering a subset of items belonging to one family or 

replenishing the subset of the inventory of an item belonging to one family.  The 

cost of servicing a product family may include a fixed ordering cost, inventory 
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carrying charges for the items over the interval until the next service, and possibly 

shortage cost in case the demand exceeds the production before the next service. 

• Preventive machine maintenance:  In this context, there are machines that require 

periodic maintenance.  Here, the machines are the customers.  Each machine may 

have several parts (operations) to be maintained, and a subset of these parts (a 

task) can be maintained together. In the maintenance problem, the cost of 

servicing a machine increases up to its next service, whereas in multi-product lot 

sizing, inventory cost decreases up to its next reorder point.  

• Vendor managed inventory systems:  Vendor managed service refers to a situation 

in which a supplier replenishes the inventory of its customers.  In these systems, 

servicing a customer means replenishing its inventory.  It is clear that the cost 

depends on the inventory status of customers, and on-time response is an 

important element for customer satisfaction.  This problem appears in many 

sectors, such as the petrochemical industry, industrial gas industry, automotive 

(parts distribution) industry and soft drink (vending machines) industry. 

• Telecommunication services:  There are several applications in the 

telecommunication sector closely related to our problem. Bar-Noy et al. (2002) 

present many examples, and we describe one of them here.  In broadcast disk 

application, a database contains a number of pages and broadcasts a limited 

number of these pages at each period.  A client who wishes to access any page 

must wait for the broadcasting time of that page.  Here, the customers represent 

the pages, and servicing a customer corresponds to the broadcasting of pages.  

This application aims to minimize the expected time spent by clients waiting to 

access the pages.                



 5 

Transportation services:  Transportation systems are complex dynamic 

processes and require the management of multiple resources in order to serve customers.  

We focus on the problem of shipments needing to be transported from their origin to their 

destination under the limitations of the underlying transportation network.  We assume 

that the higher level decisions on the network, such as capital investment and the 

schedule of carriers, are given.  The objective function minimizes the weighted transit 

times of shipments and/or the cost of used paths/resources. 

In the transportation scheduling problem, the scheduler makes an enormous 

number of interrelated decisions on strategic, tactical and operational levels.  Strategic 

level decisions involve capital investments, such as getting new planes, trucks, trains or 

ships, and expanding the transportation network.  At the tactical level, we need to 

schedule carriers/transporters and make maintenance plans.  The operational level 

problems aim to solve short term planning, such as trip planning of shipments from their 

origin to destination.   

A moderate size transportation company transports thousands of shipments on 

their network everyday.  The system managers should ensure that the shipments are 

getting an appropriate level of service at a low operating cost.  At the operational level, 

the system should solve such big problems very fast and make decisions immediately.  In 

a normal day, new shipments come to the network, and the state of the system changes 

over time.  Clearly, the effective usage of available capacity is a key element of success.  

A good decision does not only consider the current information, but also considers the 

possible uncertainties, such as future shipments that may require the resources currently 

being used by other shipments. 

Transportation service problems also appear in communication networks.  In 

those networks, data packages (as shipments) should be transported from their origin to 
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destination by using underlying multi-layer transport network.  In these networks, there 

are (physical) fiber links that make the actual connections at the bottom layer.  Then, 

above layers are logically designed to handle data packages appropriately.  Our problem 

could be seen as trip planning of these data packages using underlying communication 

network.     

1.2 OUTLINE 

Our aim in this dissertation is to examine single and multi-visit service scheduling 

problems, and transshipment problems.  We analyze the complexity properties, develop 

models and methodologies for these problems and demonstrate their performance on an 

application.  

The dissertation is organized as follows:  In Chapter 2, we present the first service 

scheduling problem, where each customer is visited only once.  In this chapter, we 

formulate the problem as a discrete time indexed network flow.  We analyze the 

computational complexity of this problem and show that the problem is NP-Hard in the 

ordinary sense.  Then, we concentrate on several special case structures of this service 

scheduling problem and determine their complexity properties.  We propose an 

alternative formulation for the problem as a shortest path problem with path dependent 

arc lengths. The resulting formulation is solvable via algorithms that have pseudo-

polynomial run times. Our study shows that the formulations are equivalent, so the 

shortest path approach solves the problem optimally.  Finally, computational efforts 

imply that the proposed shortest path formulation outperformed the general network flow 

formulation on randomly generated test cases.              

In Chapter 3, we focus on the second service scheduling problem where each 

customer may be visited multiple times.  In fact, this problem is an extension of the first 
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one and we formulate this periodic service problem as a network flow problem.  We 

prove that the problem is NP-Hard in the strong sense and no pseudo-polynomial 

algorithm is available to solve this problem.  Furthermore, a performance guaranteed 

heuristic with (pseudo-)polynomial run time is not possible.  We also analyze the several 

special case structures and show their complexity properties.   

In Chapter 4, we focus on the application of the multi visit service problem 

motivated by the actual problem facing maintenance planners at a large company.  This 

application is based on infrastructure facilities that require periodic inspection and 

maintenance to ensure uninterrupted service and effective operation.  These facilities are 

geographically dispersed, and the inspection and maintenance operations require on-site 

visits by a “service” unit, consisting of skilled workers and equipment.  At each site, 

several components need to be serviced; the desired frequency of service varies by 

component and facility, depending on the location of the facility, its usage, and other 

factors.  Scheduling the service tasks associated with these inspection and maintenance 

activities is an important and challenging problem facing firms that operate infrastructure 

facilities.  We formulate the problem and develop a fast and effective heuristic procedure.  

The heuristic is based on the shortest path approach developed in Chapter 2.  We apply 

the shortest path approach repeatedly for the subsequences that do not contain any 

customer twice.  We come up with problem size reduction techniques, and determine 

several branching strategies to solve actual problems effectively.  Finally, we introduce a 

technique for dividing the original problem into sub-problems, so that each of them could 

be solved much faster.  We compare these techniques and provide computational results 

for this application. 

In Chapter 5, we concentrate on the transshipment problem and give two 

mathematical formulations.  To improve computational performance, we develop three 
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sets of inequalities.  We show that none of these formulations is stronger than the other 

one and test them on the same problem instance.  We analyze the computational 

complexity of this problem and its several special cases.  We propose three heuristics for 

calculating good upper bound for the original problem.  We also construct a lower bound 

calculation based on a shortest path solution.  We compare these approaches on the same 

problem instance.   

Finally, we summarize our contribution in Chapter 6, and discuss future research 

directions.   
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Chapter 2:  Task Assignment Problem 

2.1 INTRODUCTION 

This chapter focuses on the problem of servicing a number of customers in a 

discrete time environment.  We consider a service scheduling problem in which each 

customer requires services or operations, and we assume that each operation has a time-

varying completion cost.  Although the service provider can choose more than one 

operation to perform for each customer, some of the operations cannot be performed 

together for technical reasons.   The problem in question consists of assigning a task—or 

combination of operations—to each customer while minimizing the general cost function. 

We refer to this problem as a task assignment (TA) problem. 

We make the following assumptions to facilitate model development: 

• We assume that one customer can be serviced at a time.  Customers are allocated 

to resources whenever higher (strategic) level decisions are made. Then, the 

decision makers concentrate on each resource and its assigned customers.  

However, there are some cases in which the “one customer at a time” rule may be 

present because of accounting, physical space, workforce, or transportation 

considerations.  For instance, in a machine maintenance context, maintaining 

more than one machine at a time may cause serious interruptions in the systems 

that depend on these machines. 

• We also assume that the order/route of the customer is fixed.  Routing/ordering 

decisions are intermediate (tactical) level decisions and a fixed route/order can be 

a candidate solution for the tactical level problem. In some applications, the order 

of the customers may come out naturally.  A fixed customer sequence may appear 
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in real life when the services are handled on a first come first serve basis or when 

the customers are located along an interstate highway.  

• We assume that each customer appears only once in the sequence.  The case 

where customers appear more than once is an extension of this study, and we 

discuss that problem in the next chapter.  However, there are some applications 

where each customer is considered once.  In those business processes, a service 

plan takes place only after the orders are received, as in emergency situations and 

corrective maintenance.  

• Finally, we assume that no partial service is allowed (no preemption).  This is a 

natural constraint in many applications where interruptions seriously affect the 

quality of the service. 

We consider the operational level task assignment problem, which assigns one task to 

each customer and needs the following items as input: 

• a customer sequence, 

• the possible tasks for each customer,  

• the processing time for each possible task for each customer, 

• the cost function and the time window for each operation. 

Given these assumptions, the planner determines which task among the possible choices 

to perform for each customer.  We require a plan that visits all the customers in the given 

sequence while minimizing the general cost function for all operations. 

What makes this task assignment problem unique is that the each customer 

requires multiple services with different time windows and general cost functions. In the 

task assignment problem, an assignment chosen for one customer may affect the 

feasibility of assignments for other customers.  Furthermore, the cost of the service for 

any customer depends on not only the duration spent on earlier customers but the 
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duration that will be spent on later customers because of the structure of the cost 

functions.   

In this chapter, we make several contributions to the task assignment problem.  

First, we analyze several fundamental properties of the task assignment problem.  We 

prove that the problem is NP-Hard and show the computational complexity of some 

special cases.  Then, we approach the problem two different ways.  The first approach 

formulates the problem as a discrete time indexed network flow problem and solves the 

problem by using the commercial software CPLEX. The second approach represents the 

problem as a multidimensional shortest path problem with path-dependent arc lengths.  In 

this structure, arc lengths depend on the total time spent on all the customers.  We convert 

our problem to the shortest path problem by considering its special network structure.  

The resulting formulation is solvable via algorithms that have pseudo-polynomial run 

times. We also compare the computational effort required by these two approaches based 

on randomly generated test cases.  As a result of these computations, we show that the 

shortest path approach outperformed the general network flow model.  

The remaining part of the chapter is organized as follows:  Section 2 gives the 

related literature review, and Section 3 formulates the problem as a discrete time indexed 

network flow.  In Section 4, we prove that the task assignment problem is NP-Hard, and 

Section 5 concentrates on the special case structures.  In Section 6, we develop the 

modified shortest path approach and adopt the well-known shortest path algorithms to our 

problem.  The computational results of these two approaches based on randomly 

generated data are reported in Section 7.  Finally, we offer a conclusion and discuss 

future extensions in Section 8.         
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2.2 LITERATURE REVIEW 

In service management problems, some services take place only after the orders 

are received, and some other services require periodic executions.  We will discuss the 

first type of services here and periodic services in the next chapter.  In the case where a 

service takes place only after the orders are received, the customers usually get a service 

only once, as in emergency services and corrective maintenance.  Many papers in the 

literature also consider routing as a part of the decision process whereas the task 

assignment problem has a fixed customer sequence. 

One emergency service problem is winter gritting operations, where the timing of 

an intervention is of prime importance (Campbell and Langevin, 2000; Li and Eglese, 

1996) Tagmouti et al. (2007) study an arc routing problem with capacity constraints and 

time-dependent service costs.  This problem is motivated by winter gritting applications, 

where a subset of arcs must be serviced at a cost that depends on the timing of the 

service.  Here, the streets are the customers, and servicing a customer means performing 

winter gritting operations.  There is a single operation required for each street, and 

routing is a part of the decision process in Tagmouti et al.’s paper.  The authors report the 

exact problem-solving approach that first transforms the arc routing problem into an 

equivalent node routing problem.  Then, a column generation scheme is used to solve the 

latter.  The resulting node routing problem is a vehicle routing problem with time-

dependent service costs.  To the best of our knowledge, Tagmouti et al. is the only work 

that deals with time-dependent service costs in the arc routing literature, although some 

variants of the vehicle routing problem with time windows may be related to it (Ibaraki, 

et al. 2005; Ioachim, et al. 1998; Taillard, 1997).  Desrosiers et al. (1995) provide a good 

review of time-constrained vehicle routing problems. 
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Similar applications are municipal waste (Stricker, 1970), waste collection 

(Beltrami and Bodin, 1974; Bodin, 1990), sanitation operations (Riccio, 1984; Riccio and 

Litke, 1986; Ball, 1988) and postal delivery (Bodin, Fagan and Levy, 1992).  Bodin and 

Kursh (1978) study street sweeping, and Levy and Bodin (1988) concentrate on postal 

delivery.  An excellent survey of these applications can be found in Assad and Golden 

(1995).  In these papers, the process times for all the operations are equal.  Therefore, the 

researchers concentrate on the routing decisions. 

Single-visit services are also present in a corrective maintenance context.  

Consider a firm providing repair services for a certain type of equipment over some area.  

Typically, the area is divided into service territories, and in each territory one repairman 

(server or service representative) is responsible for the repair and maintenance.  Here, the 

machines (equipment) are the customers, and servicing customers means maintaining 

machines.  According to Agnihothri and Karmarkar (1992), the customer calls are 

serviced according to an FCFS (first-come, first-serve) dispatching policy, so the routing 

decision is given by default.  This so-called machine repairman (or interference) problem 

gets especial attention in the queuing literature.  For instance, Agnihothri and Karmarkar 

(1992), and Jamil et al. (1994) use queuing models to work on approximating the waiting 

times for repair services under given probability distributions of equipment failures and 

the FCFS rule.  Here, waiting time can be seen as a service time dependent cost function.  

Almost all of the related papers in the queuing area have the FCFS rule, but they consider 

different failure distributions or service availability.  Excellent surveys can be found in 

Stecke and Aronson (1985), and Haque and Armstrong (2007).  There are also a few 

papers that consider the machine repairman problem without any stochastic information 

about the data. In Abdekhodaee et al. (2006) and Koulamas (1996), there are two parallel 

machines with a single repairman who is required for setup.  The machines have to wait 
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for the repairman before processing any task.  These papers define the problem under 

various objective functions, such as makespan and total completion time, and propose 

heuristics that run in polynomial time. 

Finally, Armstrong et al. (2008) study a problem with a single transporter and a 

fixed sequence of customers.  The production facility has a limited production rate, and 

the delivery truck has non-negligible traveling times between locations.  Each customer 

requests a delivery quantity and a time window for receiving the delivery.  The problem 

chooses a subset of customers from the given sequence to receive the deliveries in order 

to maximize the total demand satisfied.  Here, servicing customers corresponds to 

delivering the order to the customer.  The problem has a single operation (customer 

order) for each customer, and the decision maker decides which customer will get 

service.  The problem batches the customer orders before the shipment, whereas there is 

no batching in the task assignment problem.  Armstrong et al. (2008) propose a heuristic, 

and branch and bound procedure for practical problems.  

There are also related problems in preventive maintenance and the multi-item 

replenishment context.  By their nature, these services are required periodically.  

Therefore, we will discuss them in the next chapter.  

2.3 PROBLEM DEFINITION 

 This study concerns an operational level problem in service management.  In 

particular, we consider a service facility with a single service resource and a fixed 

sequence of customers, denoted as I = {1,…,i,…,n} where n denotes the total number of 

customers.  Let i be the index of customers in the visitation order, i = 1, 2 … n with a 

dummy customer at the end. The last customer n does not have any requirements and has 

one task with zero duration time.  Also, tmax refers to the latest possible start time for the 



 15 

execution of the task that belongs to the last customer (i.e. customer n), and T is the 

ordered set of time periods to be considered, T = {1 … tmax}.  In the task assignment 

problem, completion time (start, also end, time for the execution of the last customer’s 

task) is not fixed. Among the possible time periods in T, let h be the possible completion 

time and H be the set of possible completion times. In this notation, H is the subset of T 

at the tail and h ≤  tmax.  

Each customer Ii ∈  requires a set of operations KI(i), and each operation, 

indexed as k, has a specified time window [γk, βk] within which the start of service is 

feasible.  The time window for operation k only sets the feasible time range for beginning 

this operation, but the operation k does not have to be completed unless the completion 

time is greater than βk.  Also, each customer Ii ∈ has an available set of tasks JI(i), and 

each task, indexed as j, includes a set of operations KJ(j) and requires duration δj to be 

performed.  That is, if task j is selected for customer i, then whenever the customer i gets 

service, the resource spends δj unit time and satisfies the time window [γk, βk] for every 

operation )( jKJk ∈ .  In this paper, we are interested in hard time window constraints, 

but in practice, a violation of the time window constraints may be acceptable with a high 

penalty.  In addition, we assume that no partial services are allowed (no preemption).  

Finally, we assume that each customer appears only once in the sequence.   

For each customer, the planner tries to honor the time window requirements of 

every operation.  Let K be the set of all operations for all customers.  Each operation 

Kk ∈  minimally has the following attributes:  

γk Earliest start time for the execution of operation k 

βk Latest start time for the execution of operation k if the completion time is greater 

than βk 
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ckt Total cost until time t for performing operation k at time t.  If the operation is not 

done during the sequence, cost ckh will occur for the operation k if the completion 

time is equal to h 

fkth Total cost of performing operation k at time t to the end of horizon h.  If the 

operation is not done during the sequence, this cost does not appear. 

In some applications, fkth equals zero, as in emergency maintenance problems.  Once the 

item is repaired, there is no problem left.  In other situations, fkth value should be 

considered, as in replenishment problems.  This cost represents the inventory cost until 

the end of horizon. 

The planner accomplishes the operations by executing the available tasks for each 

customer.  Let JK(k) be the set of all tasks that contain operation k and let JI(i) be the set 

of all alternative tasks that can be done for customer i.  Each task )(iJIj ∈  has the 

following characteristics:  

Γj Earliest start time for the execution of task j, if it is selected.  That is, 

)}(|max{ jKJkk ∈γ  

Βj Latest start time for the execution of task j, if it is selected.  That is, 

)}(|min{ jKJkk ∈β  

δj Duration for performing task j, for all )(iJIj ∈ , i = 1, 2 … n 

It is clear that the decision maker cannot choose a task earlier than the earliest 

start time for any operation contained in that task.  Similarly, she cannot start a task later 

than the latest start time of any operation contained in that task.  In the light of Γj and Βj 

parameters, let TJ(j) represent the time window for task j where TJ(j) = {Γj, …, Βj}.  

However, time window calculations for tasks are valid only if the customers appear once 

in the sequence.  If the customers appear multiple times, more complicated techniques are 

needed for preprocessing.  We will explain these techniques in the next chapter. 
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The task assignment problem contains the time windows for each operation.  We 

can use these time windows (and processing times of tasks) to develop time windows for 

customers in order to reduce the problem size.  We refer TI(i) as the time window of 

customer Ii ∈  and calculate it as follows: 

Let TI(i)L and TI(i)U be the lower and upper bound on the time window TI(i) of 

the customer Ii ∈ . Also, let δmin(i) and δmax(i) be the minimum and maximum durations 

of the tasks that belongs to customer Ii ∈ . Then, the lower bound (earliest start time) 

TI(i)L can be calculated as follows: 
{ }{ }j

iJIj
LL iiTIiTI Γ−+−=

∈ )(
min min),1()1(max)( δ  

where TI(0)L = 0.  The earliest start time for the customer Ii ∈  cannot be earlier than the 

earliest start time for the execution of its tasks.  Also, it cannot be earlier than the earliest 

start time of the previous customer plus the minimum duration that should be spent for 

the previous customer.  At the end, TI(n)L gives the lower bound of the completion time.   

As an improvement step, if the lower bound on the completion time violates the 

latest start time of some operations, we choose the tasks that include those operations in 

the calculation of the earliest start time for customers.      

The upper bound (latest start time) TI(i)U depends on the waiting assumption, 

which states whether or not there could be waiting time before task executions.  If 

waiting is not allowed, TI(i)U can be calculated as follows: 
{ }{ }j

iJIj
UU BiiTIiTI

)(
max max),1()1(min)(

∈
−+−= δ  

where TI(1)U = 0.  When no waiting is assumed, the latest start time for the customer 

Ii ∈  cannot be later than the latest start time of the previous customer plus the maximum 

duration that should be spent for the previous customer.  Also, it cannot be later than the 

latest start time for the execution of its tasks.  In this calculation, TI(n)U gives the upper 

bound on the completion time.   
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As an improvement step, if the selected task in the latest start time calculation 

violates the earliest start time of some operations, we exclude that task and reselect it 

(maximum processing time among the remaining ones).  

If waiting is allowed, TI(i)U can be calculated as follows: 
{ }{ }j

iJIj
UU BiiTIiTI

)(
min max),()1(min)(

∈
−+= δ  

where TI(n)U = tmax.  The latest start time for the customer Ii ∈  cannot be later than the 

latest start time for the execution of its tasks.  Also, it cannot be later than the latest start 

time of next customer minus the minimum duration that should be spent for the current 

customer. 

In this structure, we assume that service for all customers in the sequence must be 

completed and that the specified maximum number of time periods (tmax) for the 

completion time is sufficient to complete all steps.  The optimization problem outlined 

above can be formulated as a discrete time indexed network flow. 

Decision Variables: 

Xjt = 1 if we start task j at time t, and 0 otherwise, for all i = 1 … n, ),(iJIj ∈  

)( jTJt ∈  

Ukh = 1 if no tasks containing operation k are performed during the horizon with 

length h for ,Kk ∈  Hh∈  

Vkth = 1 if operation k is performed at time t and the completion time is h for ,Kk ∈  

Tt ∈ , Hh∈  

Zh = 1 if the completion time is h, and 0 otherwise, for all Hh∈ – called the exit 

indicator variable 

The Zh variables are defined merely for convenience and to simplify the 

representation.  We can equivalently formulate the problem without these variables. 

Model Formulation: 
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       Minimize ∑∑∑∑ ∑ ∑∑∑
∈ ∈ ∈∈ ∈ ∈∈ ∈

++
Kk Tt Hh

kthkth
Kk kJKj jTJt

jtkt
Kk Hh

khkh VfXcUc
)( )(

   (1)  

subject to: 

Task assignment for first step  
   1

)1( )1(

=∑ ∑
∈ ∈JIj TIt

jtX         (2a) 

Flow conservation constraints   
 ∑ ∑∑

∈ ≥−∈
− =

)( '
'

)1(
,

iJIj tt
jt

iJIj
tj XX

jδ     for i = 2 … n, t ∈ TI(i) (2b) 

Exit indicator 
 h

nJIj
jh ZX =∑

∈ )(

     for h ∈ H,    (3) 

Detection of not done operations  
 kh

kJKj jTJt
jth UXZ ≤− ∑ ∑

∈ ∈)( )(

   for k ∈ K, h ∈ H,   (4)  

Detection of time elapses after performing each operation 
 kth

kJKj
jth VXZ ≤−+ ∑

∈

1
)(

   for k ∈ K, t ∈ T, Hh∈  (5) 

Integrality  

 1or  0,,, =hkthkhjt ZVUX    for j ∈ J, t ∈ T, k ∈ K, h ∈ H.(6) 

The objective function (1) minimizes the total penalty for three terms.  The first 

term is the penalty for operations that are not performed.  The second and third terms 

hold the penalties for operations that are performed.  The second one computes the 

penalties until the execution time of the operations, and the third one calculates the 

penalties after the execution time of the operations.  Constraint (2a) assigns the task for 

the first customer, and (2b) is a flow conservation constraint.  If there is a no-waiting 
assumption, we can write the right hand side of these constraints as ∑

∈ )(iJIj
jtX .  Constraint 

(3) determines the exit time and constraint (4) detects incomplete operations.  Constraint 
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(5) calculates the time that elapses after performing each operation.  Finally, constraint 

(6) is for integrality requirements. 

In some applications, there can also be an additional cost for waiting times.  We 

did not consider waiting time costs here for the sake of simplicity, but they can be easily 

incorporated to our formulation. 

 In the next two sections, we deal with the computational complexity and the 

special case structures of the task assignment problem.  

2.4 NP HARDNESS OF THE TASK ASSIGNMENT PROBLEM 

Task assignment [TA] problems are in the category of difficult problems, so 

called NP-Hard problems.  In fact, the well-known knapsack problem can be written as 

an instance of the TA problem.  (See Karp (1972) for the knapsack problem.)    

Knapsack Problem:  Let N be the number of items and i be the index of each 

item, i = 1, 2 … N.  Each item i has the following attributes:  

ci Cost of item i if it is selected, for all i = 1, 2 … N 

ai size of item i for all i = 1, 2 … N 

Let b represent the limit that we need to satisfy, i.e. capacity of knapsack.  Each 

item i has the following decision variable: 

Xi = 1 if item i is selected and 0 otherwise, for all i = 1, 2, …, N 

The Knapsack problem can be formulated as an integer program: 

[KP]   Maximize ∑
=

N

i
ii Xc

1

       

   s.t.:   bXa
N

i
ii ≤∑

=1

   

      =iX  0 or 1,   for all i = 1, 2 … N 
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Proposition 2.1: The knapsack problem [KP] is polynomially reducible to the task 

assignment problem [TA].   

Proof: If we convert the general knapsack problem to a task assignment instance, the 

construction of the TA instance for the indices and sets is as follows: 

• A route consisting of N + 1 customers. In other words, n = N + 1 

• Each customer i requires only two operations, say vi and wi, for i = 1 … N,  and 

customer N + 1 requires only one operation vN+1 

• Two tasks are available for each customer i = 1 … N.  Each task contains one 

operation.  For simplicity’s sake, say task vi includes operation vi, and wi includes 

operation wi for i = 1 … N.  Customer N + 1 has one task called vN+1  

The construction of the TA instance for the parameters is as follows: 

• Duration time for performing task vi is ai and zero for task wi, for i = 1, 2 … N.  

Also, the duration time for performing task vN+1 is zero 

• γk = 0  for operation k = vi and wi, for i = 1, 2 … N (earliest start time) 

• βk = b+1 for operation k = vi and wi, for i =1, 2 … N (latest start time) 

• γk  = βk = b for operation k = vN+1 

• ikb cc =  for operation k = vi  at time b and 0=ktc  for the others 

• 0=kthf  for all ,Kk ∈  Tt ∈ , Hh∈   

In this instance, the time window of operation vN+1 has only one element b and 

there is only one task available for customer N + 1, so this task should be done at time b.  

Since we know that the last customer should get service at time b, all the time window 

constraints for all operations are irrelevant for customers i =1, 2 … N.  Besides, there will 

be no cost related to wi in the objective function.  Using this structure, we can make the 

following observations:  
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• The only feasible time point for step N + 1 is period b.  Therefore, flow 

constraints (2a) and (2b) try to reach that period by selecting either task vi or wi.  

Also, they can wait in intermediate steps.   

• Duration of tasks vi are equal to ai for all steps, and the durations of tasks wi are 

zero, for i =1 … N.  Therefore, the feasible solution selects the subset of tasks vi, 

and the duration of selected vis cannot exceed period b. 

• If the solution does not select to do operation vi, (equivalently selects to do 

operation wi ) we will pay ci for the completion time b. 

• If the solution does not choose any of the operations vi, total cost would be ∑
=

N

i
ic

1

.  

We can define a new decision variable to capture these observations better: 

Yi  = 1 if task vi is selected and 0 if task wi is selected, for all i = 1 … N  

Therefore we can rewrite the task assignment problem as: 

  Obj1 = Minimize ∑∑
==

−
N

i
ii

N

i
i Ycc

11

      

   s.t.:   bYa
N

i
ii ≤∑

=1

   

      =iY  0 or 1,   for all i = 1, 2 … N. 

In the objective function, the first term is constant and does not affect the solution, 

so we can exclude it during the solution process. Also, recall that ZZ maxmin −=− .  

Therefore, we can equivalently write the above formulation as: 

  Obj2 = Maximize ∑
=

N

i
ii Yc

1

       

   s.t.:   bYa
N

i
ii ≤∑

=1

   

      =iY  0 or 1,   for all i = 1, 2 … N. 

There is a one-to-one relation between the objectives of these two formulations, which is: 
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Obj1 = − ( Obj2 −∑
=

N

i
ic

1

). 

Therefore, an optimal solution to one of them is also an optimal solution to the 

other one. Finally, observe that the second formulation is equal to the knapsack problem.  

Since each in set, the indices and parameters in TA has at most O(N) items, the 

reduction will take polynomial time.  □ 

Corollary 2.2: The following problems are NP-Hard: 

a) Task assignment problem  

b) Task assignment problem with waiting time costs 

c) Task assignment problem with negative costs 

d) Task assignment problem with customer-wise time window constraints (rather 

than operation-wise time window constraints) 

Proof: a) In the construction in Proposition 2.1, there is an objective function with value 

Z for the knapsack problem if and only if there is an objective function with value – (Z − 

∑
=

N

i
ic

1

) for the task assignment problem with knapsack’s parameters where ∑
=

N

i
ic

1

 is 

constant.  That is why we can conclude that the TA problem is NP-Hard. 

b) The TA problem is special case of this problem with zero waiting costs. Therefore, the 

result immediately comes from the part (a). If waiting costs should be nonzero, then we 

can select the per period waiting costs bigger than the total possible penalty cost ∑
=

N

i
ic

1

. 

Then the equality knapsack problem (knapsack problem with equality constraint) is 

polynomially reducible to the TA problem with waiting time costs. (See Kaufman et al. 

(1985) for equality knapsack problem.)    

c)  We assign negative knapsack cost parameters as cost parameters for the TA problem.  

This construction of the problem instance is similar to Proposition 2.1 except for the 
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duration parameters: the duration of tasks vi are equal to zero for all steps, and the 

duration of tasks wi are ai, for i =1 … N.   Since ZZ maxmin −=− , the optimal objective 

value for the TA problem is the negative of the optimal objective value for the knapsack 

problem. 

d) The construction of the TA instance with knapsack parameters in Proposition 2.1 

requires only one operation-wise time window constraint (for customer N+1).  This time 

window constraint could be treated as a customer-wise time window constraint.  

Therefore, the conclusion follows from part (a). □ 

In the construction of the problem instance in Proposition 2.1, the customers 

require only two operations.  In fact, one of the operations has no duration, time window 

or nonzero cost parameter requirement.  The cost parameter for the other operation 

appears once in time, so we can conclude that any type of cost function other than zero 

cost function provides an NP-Hard result. 

In the below proposition, we prove that even the problem with zero cost function 

is NP-Hard for the TA problem that has a no-waiting assumption.   

Proposition 2.3: Consider the task assignment problem under the no-waiting assumption.  

If there are only two operations (and their corresponding tasks) for each customer, the 

resulting problem is NP-Hard with zero cost function. 

Proof:  Since there is no cost at all, the problem is a feasibility problem, and we have to 

satisfy the time window requirements of the operations.  

We show that the 2-Partition problem is polynomially reducible to this problem.  

(See Karp, 1972 and Garey and Johnson, 1979.)  In the 2-partition; 

• Data: a finite set I and a size +∈ Zai  for Ii ∈  

• Question: Is there a subset II ⊆'  such that ∑∑
∈∈

=
'\' IIi

i
Ii

i aa ? 
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We can construct the desired instance with |I| + 2 customers.  In this construction, 

assume that each customer i requires only two operations (and has their corresponding 

tasks), say vi and wi for i = 1 … |I| + 2.  The construction of the TA instance with a no-

waiting assumption is as follows: 

• Durations are δv(i) = ai and δw(i) = 0 for i = 1 … |I|.  Furthermore, δv(I+ 1) = δw(I+ 1) = 0.  

Finally, the last customer has durations δv(I+ 2) = δw(I+ 2) = ∑
∈Ii

ia
2

1
+1.      

• γk = 0 and βk = ∞ for all customers except for the customer I + 1.  

• γv(I+ 1) =  βv(I+1) = ∑
∈Ii

ia
2

1
 

Using this structure, we can make the following observations:  

• The last customer requires ∑
∈Ii

ia
2

1
+1 amount of duration. Therefore, the total 

duration time in the sequence is equal to or greater than ∑
∈Ii

ia
2

1
+1.    

• Every feasible solution should select v(I+ 1) to satisfy the latest start time 

requirement of that operation, because βv(I+1) < ∑
∈Ii

ia
2

1
+1.  This selection can only 

be done if the task v(I+ 1) starts at time ∑
∈Ii

ia
2

1
 because of the earliest start time 

requirement.   

• Hence, the problem is feasible only if there is a subset II ⊆'  such that 

∑∑
∈∈

=
'\' IIi

i
Ii

i aa .  In the feasible solution, selected v(i) tasks from i = 1 … |I| give 

the subset 'I .  We conclude that the problem is NP-Hard. □ 

In the construction of the problem instance in Proposition 2.3, one of the 

operations has only a duration requirement and does not have any time window 

requirement. 
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Corollary 2.4: Consider the task assignment problem under a no-waiting assumption and 

with only two operations (and their corresponding tasks) for each customer.  The 

following problems are NP-Hard: 

a) The problem that has no latest start time requirements and has non-decreasing 

cost functions with time for all operations 

b) The problem that has no time window (earliest or latest time) requirements and 

has general cost functions for all operations 

c) Task assignment problem with waiting and waiting time costs under the 

restriction of part (a) or part (b) 

Proof: a)  The construction of the problem instance in Proposition 2.3 does not require 

time window constraints, except for the operation of customer |I| + 1.  We can replace the 

latest start time requirement of this operation with a big penalty cost in case of violation.  

Hence, this operation acts like there is a latest start time requirement.  Therefore, the 

result immediately comes from the Proposition 2.3. 

b)  Similar to part (a), we can replace the time window requirement of the operation of 

customer |I| + 1 with big penalty costs in case of violation.  Hence, this operation acts like 

there is a time window requirement.  Therefore, the result immediately comes from the 

Proposition 2.3. 

c)  We can assign big penalties for waiting time costs to the instance constructed in 

Proposition 2.3.  As a result, this problem acts like the problem under a no-waiting 

assumption.  Therefore, the results in part (a) and (b) are also true for this problem.   

In the next section, we concentrate on some special case structures of the task 

assignment problem that are polynomially solvable.  We propose algorithms that have 

polynomial run times to solve these special cases.     
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2.5 SPECIAL CASE STRUCTURES 

The difficulty of the task assignment problem may arise from many parameters, 

such as the number of operations, the number of tasks, and the time window parameters.  

In the previous section, we saw that even the task assignment problem with two 

operations and a single time window requirement for one of them is NP-Hard (without 

any cost function).  In this section, we begin with this specific problem and consider two 

cases.  The first case considers the earliest start time requirement without the latest one, 

and the second case deals with the latest start time requirement without the earliest one.  

Then, we examine the same problems under multiple operations (k > 2). Lastly, we 

discuss another special case that assumes equal process times for all tasks.  Since the start 

times of the tasks are fixed, there is no point for the time window requirements.  Instead, 

we consider the general cost function for this special case.  

2.5.1 TA problem: Two operations and single time window  

Here, we assume that each customer requires only two operations and has two 

corresponding tasks.  In addition, only one of the operations has either the earliest start 

time or the latest start time requirement.  The service planner chooses one of these two 

operations for each customer.  For this subsection, we use v(i) to represent the operation 

(and task) with the time window  for customer i and w(i) to represent the operation (and 

task) without the time window for customer i.  Finally, we consider the problem with a 

zero cost function.  In other words, feasibility is an issue here.  

Proposition 2.5: Consider the task assignment problem under zero cost function with n 

customers.  Assume that each customer i requires two operations, v(i) and w(i), and only 

one of the operations, v(i), is restricted with the earliest start time.  Under these 

conditions, the following statements are true: 

a) If waiting is not allowed: 
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a1.  Selection of the tasks without time window restrictions, w(i), for all 

customers gives a feasible solution  

a2.  If the tasks without time window restrictions, w(i), are not available for 

some customers, Algorithm 1 (its logic is given below) solves the problem in 

O(n) 

b) If waiting is allowed:  

b1.  Selection of the tasks without time window restrictions, w(i), for all 

customers gives a feasible solution  

b2.  If the tasks without time window restrictions, w(i), are not available for 

some customers, waiting as much as the latest earliest start time of v(i) at the 

beginning and then performing the operation with the earliest start time, v(i)  

for all customers gives a feasible solution.    

Logic of Algorithm 1:  The algorithm begins with the first customer and follows the 

same customer order in the sequence.  If the service resource comes to any customer 

before the earliest start time of the operation v, and operation w is not available, then the 

problem is infeasible. Otherwise, the algorithm selects the task that has the maximum 

duration.  The detailed pseudo code is given in the appendix. 

Proof: (a1 and b1) Since there is no time window restriction on any operation w, and 

there is no latest start time requirement for any operation v, selection of w for all 

customers gives a feasible solution. 

(a2) Given in the appendix. 

(b2) If the tasks without time window restrictions, w(i), are not available for some 

customers, waiting as much as the latest earliest start time at the beginning of the 

sequence will prevent any violation.  Then, performing operation v(i) for all customers 

gives a feasible solution.   □ 
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Proposition 2.6: Consider the task assignment problem under zero cost functions with n 

customers.  Assume that each customer i requires two operations, v(i) and w(i), and only 

one of the operations, v(i), restricted with the latest start time.  Then, the following 

statements are true: 

a) Algorithm 2 (its logic is given below) solves the problem under a no-waiting 

assumption in O(n2) 

b) The problem under a no-waiting assumption is infeasible if and only if the 

problem under the waiting allowance is infeasible. 

Logic of Algorithm 2:  In the initialization part, the algorithm finds the minimum 

possible completion time for the given customer sequence (by selecting tasks with 

minimum duration).  The algorithm begins with the first customer and follows the same 

customer order in the sequence.  At customer i, if the completion time is smaller than the 

latest start time of the operation v(i), the resource performs a task with minimum duration 

for that customer.  Otherwise, the algorithm checks the time that the resource is available 

for that customer.  If the time is earlier than the latest start time of the operation v(i), the 

algorithm chooses the operation v(i); otherwise, the problem is infeasible.  The algorithm 

updates the candidate completion time and rescans all the customers.  It stops if either 

infeasibility is found or if there is no change in the candidate completion time.  The 

detailed pseudo code is given in the appendix. 

Proof: (a) Given in the appendix.  

(b) It is clear that if the problem under a waiting allowance is infeasible, then the problem 

under no-waiting assumption is infeasible, because the later problem’s feasible set is a 

subset of the earlier one. 

If the problem under no-waiting assumption is infeasible, then there should be an 

operation for some customer in which the resource cannot come to that customer before 
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the latest start time of its operation.  Waiting anywhere will not fix this issue.  Hence, the 

problem under a waiting allowance is infeasible.    □ 

2.5.2 Task assignment problem with multiple operations and tasks 

• When customers require multiple operations, the task assignment problem gets 

more complicated for the following reasons: Each customer requires operations 

that have different time windows.  The service manager should choose an 

appropriate task at an appropriate time in order to balances time windows for each 

customer. 

• For each customer, not all of the operation combinations (i.e. tasks) may be 

available.  The problem needs to select appropriate tasks that cover required 

operations.   

Recall that KI(i) represents the set of operations for customer i ∈ I.  Also, let JI(i) 

be the set of all alternative tasks that can be done for customer i, and let JK(k) be the set 

of all tasks that contain operation k.  

Proposition 2.7: Consider the task assignment problem under zero cost functions with n 

customers.  Let maxk be the maximum number of operations required by any customer 

(i.e., { }|)(|max iKI
i

) and maxj  be the maximum number of available tasks for any 

customer (i.e., { }|)(|max iJI
i

).  If there are only earliest start time restrictions for all of 

operation k, the following statements are true: 

a) If waiting is not allowed, Algorithm 3 (its logic is given below) solves the problem 

in O(nkmaxjmax) 

b) If waiting is allowed, waiting as much as the latest earliest start time of all 

operations at the beginning, and then performing any operation gives a feasible 

solution    
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Logic of Algorithm 3:  The algorithm begins with the first customer and follows the 

customer order in sequence.  If the service resource comes to a customer before the 

earliest start time of some operations, the algorithm excludes the tasks that contain those 

operations.  If there are no tasks left, then the problem is infeasible; otherwise, it selects 

the task (among available ones) that has the maximum duration.  The detailed pseudo 

code is given in the appendix. 

Proof: (a) Given in the appendix. 

 (b) Similar arguments as in Proposition 2.5. □ 

Proposition 2.8: Consider the task assignment problem under zero cost functions with n 

customers.  Let maxk be the maximum number of operations required by any customer 

(i.e., { }|)(|max iKI
i

) and maxj  be the maximum number of available tasks for any 

customer (i.e., { }|)(|max iJI
i

).  If there are only latest start time restrictions for all 

operation k, the following statements are true: 

a) Algorithm 4 (its logic is given below) solves the problem under a no-waiting 

assumption in O(n|K|kmaxjmax)  

b) The problem under a no-waiting assumption is infeasible if and only if the 

problem under a waiting allowance is infeasible. 

Logic of Algorithm 4: In the initialization part, the algorithm finds the minimum 

possible completion time for the given customer sequence (by selecting tasks with 

minimum duration) and assigns this length as a candidate completion time.  The 

algorithm begins with the first customer and follows the customer order in the sequence.  

For each customer, it finds the required operations.  (An operation is required if the latest 

start time is earlier than the candidate completion time.)  The algorithm checks the time 

that the resource is available for that customer.  If the time is earlier than the latest start 

time of all required operations, the algorithm chooses a minimum duration task that 
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contains all of the required operations; otherwise, the problem is infeasible.  The 

algorithm updates the candidate completion time (by summing up the duration of selected 

tasks) and rescans all of the customers.  It stops if either infeasibility is found or if there 

is no change in the candidate completion time.  The detailed pseudo code is given in the 

appendix. 

Proof: (a) Given in the appendix. 

 (b) Similar arguments as in Proposition 2.6. □ 

2.5.3 Task assignment problem with equal process times 

In the task assignment problem, a task selection for one customer affects the other 

ones because of different process times.  The start times for each customer are 

determined by the earlier task decisions.  In addition, the completion time of the sequence 

depends on all of the selections.  

However, if all process times are equal, neither the start times of the customers 

nor the completion time depend on the task selections.  Therefore, the problem becomes 

easy to solve.    

Proposition 2.9: Consider the task assignment problem under a no-waiting assumption 

with n customers.  Let maxk be the maximum number of operations required by any 

customer (i.e., { }|)(|max iKI
i

) and maxj  be the maximum number of available tasks for 

any customer (i.e., { }|)(|max iJI
i

).  If all the process times of all tasks of each customer 

are equal, the problem is solvable in O(nkmaxjmax) for general cost functions. 

Proof: Since all the process times of all the tasks for each customer are equal, the start 

time for each customer and the total completion time are known.  Therefore, we can 

calculate the cost of selecting each task.  The optimal solution is the selection of tasks 

with minimum cost for each customer.  
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The cost calculation of any task has to consider up to kmax operation.  Then, we 

have to choose the task with minimum cost among O(jmax) tasks.  For n customers, the 

selection of all tasks with minimum costs will take O(nkmaxjmax) time.       

2.6 SHORTEST PATH APPROACH 

In this section, we develop an alternative formulation for the task assignment 

problem by using shortest path algorithms (see Dijkstra, 1959; Dial, 1969; Johnson, 

1977; Ahuja et al., 1991).  In the classical shortest path problem, we know the arc lengths 

in advance.  However, the arc lengths in this problem are defined only after the total 

service time (completion time) of the sequence is calculated. 

Here, we represent the task assignment problem in the time-space network.  In 

this network, each node denotes the specific customer and that customer’s visitation time, 

and denoted as (i, t) where i ∈ I and t ∈ T.  The first node is denoted as (1, 0) and 

represents the first customer at time 0.  The network also has (n+1, t) and sink nodes for 

structural purposes.  

In this graph, there is an arc from (i, t) to (i + 1, t + δj) where δj is the duration of 

task j for each j ∈ JI(i) and i ∈ I and t ∈ T.  Moreover, there is an arc from each (n+1, t) 

node to the sink node for each t ∈ T.   

In the case where waiting is allowed, there is an additional arc from (i, t) to (i, t + 

1) for each j ∈ JI(i) and i ∈ I and t ∈ T.   

 In the following example, the problem has three customers and each customer 

has two tasks.  The durations of the tasks are given in Table 2.1.  
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Customers 

1 2 3 

Tasks 
1 1 1 

2 3 1 

Table 2.1. Durations of the tasks for each customer 

Figure 2.1 represents the time-space network of this instance, assuming that the 

maximum completion time is 6. 

If waiting is allowed, the network has extra arcs and nodes compared to the 

network under the no-waiting assumption.  In Figure 2.1, the arcs from (i, t) to (i, t + 1) 

are the extra arcs, and the shaded nodes are the extra nodes. 

 

Figure 2.1. Time-space network of given example 

Time 
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In the task assignment problem, the arc from customer i to customer i + 1 has a 

cost which is equal to the total cost of the operations required by customer i.  The cost for 

each operation depends on the completion time and the cost structure for each operation k 

∈ K in the following way for a given completion time h:  

 


 +
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otherwise

  at time done isoperation   theIf
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c

tfc
tkc  

h ∈ H is a candidate completion time for the task assignment problem.  Clearly, the 

actual completion time is not known at time t.   

Let cjit be the cost of an arc from (i, t) to (i + 1, t + δj) for each j ∈ JI(i) at time t. 

This arc represents the selection of task j for customer i at time t.  Furthermore, let KI(i) 

be the set of operations for customer i and KJ(j) be the set of operations for task j.  If 

there are no time window constraints, then the following expression calculates the cost of 

an arc cjit for a given completion time h: 
   ∑∑

∈∈

++=
)(\)()(

)(
jKJiKIk

kh
jKJk

kthktjit cfcc  

The first summation is the cost of the operations that are done at time t, and the second 

summation gives the cost of the skipped operations.  (The costs of arcs from nodes (n + 1, 

t) to sink node are zero.)  For the sake of simplicity, we did not consider waiting time 

costs here, but they can be easily incorporated by attaching cost to arcs that go from (i, t) 

to (i, t + 1). 

In the case of the time window constraints, the earliest start time constraint for 

performing operation k is violated if we perform this operation earlier than its earliest 

start time, γk.  Similarly, the latest start time constraint for performing operation k is 

violated if we do not perform this operation within βk time unit.  Therefore, we can delete 

the arc cjit from the graph under one of the following conditions for a given completion 

time h: 
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• )(for   If jKJktk ∈>γ  

• )(/)(for  or  )(for   If jKJiKIkhjKJkt kk ∈<∈< ββ  

The task assignment problem finds a path of minimum cost from the node (1,0) to 

the sink node assuming that each arc has an associated cost cjit, where j ∈ JI(i),  i ∈ I and t 

∈ T.  Recall that the value of the cost cjit is not known at time t since the actual 

completion time is not known, whereas it is a priori known in the classical shortest path 

problem. 

We can calculate the arc costs if we know the completion time, and if we know 

the arc costs, we can solve the problem by using the shortest path routine.  Therefore, we 

solve this problem for each candidate completion time h and take the minimum valued 

shortest path solution.  The following is a generic scheme for this algorithm: 

 

Algorithm for the shortest path approach 

0. Set optimalvalue = ∞, optimalsolution = empty 

1. For each candidate completion time h ∈ H do 

2.  Hold the arc originating from node (n + 1, h) to sink node and delete all the 

 remaining arcs terminating at sink node 

3.  Delete all the arcs that have an incoming node with a time index greater than h 

4.  Calculate the arc costs with respect to completion time h 

5.  Solve the shortest path problem for the resulting network 

6.  If the current shortest path value is less than optimalvalue 

7.   optimalvalue = current shortest path value 

8.   optimalsolution = current shortest path solution 

9. End For 



 37 

Another way to solve this problem is by duplicating the network for all candidate 

completion times and solving one big shortest path problem. However, this approach 

requires more memory than the proposed algorithm above. 

The computational performance of the algorithm relies heavily on the number of 

arcs in the shortest path routine and the number of candidate completion times.  Although 

the algorithm deletes the unnecessary arcs for candidate completion time h in step 2 and 

3, we can do better than that.  

We can improve the computational performance of the algorithm by tightening 

the time window for each customer.  This will decrease the number of arcs so that the 

shortest path routine becomes faster.  If we can tighten the time window of the last 

customer, this will also decrease the number of candidate completion times.  The time 

window calculations of the customers were described in Section 1.3. 

 We can also make some improvements to the network for a given completion 

time.  We can delete the unnecessary arcs and nodes in the shortest path graph using the 

following methods:  1) Changing the direction of the arcs.  2) Finding all the reachable 

nodes from the sink node.  3) Deleting all the nodes that are not reachable from the sink 

node.   

This will give us a tighter graph.  However, it is an expensive method to consider 

unless the cost calculations take too much time. 

These procedures will decrease the size of the network and hopefully increase the 

performance of the algorithm.  

Proposition 2.10: Algorithm shortest path approach solves the task assignment problem. 

Proof: In step 2 of the algorithm, there is only one arc left that goes to the sink node.  If a 

feasible solution to the task assignment problem has a completion time h, this solution 

could appear as a path in only one shortest path problem, which would contain the arc 
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from node (n + 1, h) to the sink node.  Therefore, the shortest path value of this solution 

equals the objective value of the task assignment problem. 

If there is a feasible path in any shortest path routine, this path satisfies flow 

conservation constraints and time window constraints (recall that arcs that have violations 

are already deleted).  Since it only appears in one shortest path routine, the cost functions 

of the operations are calculated correctly.  As a result, it is a feasible solution to the task 

assignment problem with the same objective value.  Similarly, if there is a feasible 

solution to the task assignment problem with completion time h, this solution will appear 

as a feasible path in only one shortest path routine, which would contain the arc from 

node (n + 1, h) to the sink node.  As a result, it is a feasible path in one shortest path 

routine with the same objective value.  This concludes that the algorithm shortest path 

approach solves the task assignment problem.      □ 

When the network is constructed for the shortest path approach algorithm, that 

network is acyclic, so topological ordering is available.  In fact, from the lower time 

index to the higher time index gives the topological ordering.  

According to Ahuja et al. (1993, pp.108),   “The reaching algorithm solves the 

shortest path problem on acyclic networks in O(m) time,” where m denotes the number of 

arcs in the network. 

Corollary 2.11: Let maxk be the maximum number of operations required by any customer 

(i.e., { }|)(|max iKI
i

) and tmax be the latest time in t ∈ T.  The shortest path approach 

algorithm solves the task assignment problem in O( 2
max

maxtnk ).  

Proof: There are at most tmax candidate completion times.  For each of them, we need to 

solve the shortest path routine.  In each shortest path problem, there are n customers, and 

each customer has at most tmax arcs.  Therefore, there are at most ntmax arcs.  Also, the 

calculation of an arc cost will take O(kmax) time.  As a result of the proposition in Ahuja 
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et al. (1993), each shortest path problem will take O(kmax n tmax) time.  Since we need to 

solve at most tmax shortest path problems, the shortest path approach algorithm solves the 

task assignment problem in O( 2
max

maxtnk ).  □ 

2.7 COMPUTATIONAL RESULTS 

We calculated the computational performance of the proposed shortest path 

approach and the IP model formulation through 75 randomly generated test cases.  The 

proposed shortest path approach was programmed in C++, and the IP model uses ILOG 

OPL Development Studio 5.2.  The tests were taken on an Intel Pentium M notebook 

computer with 1.73 GHz and 1.00 GB of RAM and a Windows XP operating system. 

As an objective function, we chose a total weighted tardiness criterion that is 

commonly used in many areas, such as machine scheduling and after-market repair 

services.  In this criterion, each operation has a due date and a per day penalty for each 

time period after the due date.  The amount of per day penalty for each operation equals 

its weight, and the weight of the operation is uniformly assigned on a scale of 1 to 40.  

Since the objective has a specific function, we reformulated the problem (given in 

Section 3) in a more compact way. (See appendix for details.) 

In the numerical analysis, we set the parameters for the number of customers, 

operations and tasks.  The relationship between an operation and a task is randomly 

assigned, and there is a 50% chance to assign the operation to the task. We ensure that all 

the operations are assigned to at least one task.  The processing time of each task depends 

on the number of operations included by that task.  For each operation included in the 

task, numbers from 1 to 6 are uniformly assigned, and the summation of these numbers 

equals the duration time of that task.   
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The due dates of the operations for a particular customer are uniformly calculated 

from an interval.  The middle point of this interval is equal to the average duration time 

of all tasks multiplied by the order number of that customer in the sequence. The lower 

bound of this interval is half of the interval’s middle point, and the upper bound of this 

interval is equal to one and a half times the interval’s middle point.      

Number of Average Number of 

Average CPU Time 

(second) 

Customers Operations Tasks Variables Constraints IP Model Shortest Path 

5 1 2 93.6 76.2 0.24 0.01 

10 1 2 527.4 422.6 0.42 0.01 

15 1 2 1143 907.8 0.76 0.01 

20 1 2 1963.4 1536.6 1.72 0.01 

25 1 2 2973.6 2337.4 3.54 0.02 

5 3 6 804 534 0.67 0.01 

10 3 6 4270.6 2674.6 17.68 0.04 

15 3 6 9987 6139 121.30 0.10 

20 3 6 18054.6 11020.6 630.69 0.27 

25 3 6 29792.2 17973.2 2400.36 0.59 

5 5 10 1718.2 1108 1.72 0.04 

10 5 10 8031.8 5011.4 41.40 0.18 

15 5 10 22373.8 13300 981.74 0.43 

20 5 10 37878.2 22931 >3600 0.77 

25 5 10 N/A N/A N/A 1.68 

Table 2.2. Comparison of the shortest path approach and IP model formulation 



 41 

Table 2.2 reports the corresponding CPU times for solving instances via the 

proposed shortest path approach and the IP formulation with respect to the number of 

customers, operations and tasks.  It also shows the number of constraints and variables in 

the IP formulation.    

Each observation listed in Table 2.2 is the average result from 5 randomly 

generated test cases.  As we can see, the number of operations and tasks has a major 

impact on the required computational time, both in the proposed shortest path approach 

and the IP model.  However, the shortest path approach requires significantly less time 

than the IP model.  When the number of customers n becomes larger, OPL was 

terminated because of either the one-hour time limit or because of insufficient memory.  
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Figure 2.2. Optimal value vs. Completion time graph of a randomly generated instance 
with 100 customers, 5 operations and 10 tasks 

In Figure 2.2, we plot the optimal value vs. completion time graph of a randomly 

generated instance with 100 customers, 5 operations and 10 tasks.  Unfortunately, there 

are some local optimal solutions in this function that prevent us from performing binary 

or golden section searches. 
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2.8  CONCLUDING REMARKS 

In this chapter, we considered a service management problem with a fixed 

customer sequence under time window and multiple operation requirements.  We proved 

that this problem is NP-Hard.  We analyzed the special case structures and proposed 

polynomial time algorithms for these special cases.  We developed an alternative 

algorithm based on the shortest path approach and solved the problem effectively.  The 

proposed shortest path approach algorithm is valid for general cost functions, because the 

algorithm does not make any assumptions on the objective function.  Computational 

results show that this shortest path approach is much faster than the IP formulation solved 

in OPL. 

This work can be extended in several directions.  The problem we considered here 

is an operational level problem in which there are also strategic and tactical level 

decisions.  At the strategic level, we may have multiple resources and want to partition 

the customers to those resources.  At the tactical level, the focus is on finding the optimal 

route.  Another extension would be multiple visitations of the same customer.  In that 

case, task selection does not only affect the other customers, but also affects the other 

visitations of the same customer.   
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Chapter 3:  Periodic Task Assignment Problem 

3.1 INTRODUCTION 

In this chapter, we extend the task assignment problem and allow for multiple 

appearances of the same customer in the given sequence.  We consider the service 

scheduling problem in which each customer requires operations that should be performed 

periodically, and we assume that performing each operation has a time-varying 

completion cost that depends on the previous service time.  Recall that in the task 

assignment problem, the service provider can choose more than one operation to perform 

for each customer, but some of the operations cannot be done together for technical 

reasons.  A task refers to a combination of operations that can be performed together.  

We refer to each successive customer visit as a step in the sequence and consider a 

problem that assigns one task to each step, and we refer to the problem as a periodic task 

assignment (PTA) problem. 

The assumptions we make for this problem are similar to those we made for the 

task assignment problem.  We study the periodic task assignment problem with a single 

resource and a fixed sequence of customers, each of which can appear multiple times in 

the given sequence.  We also assume that no partial service is allowed (no preemption).  

In Chapter 2, we studied the problem in which each customer appears once in a 

sequence.  To put it more accurately, the problem considers an operation type that should 

be done only once.  In other words, if the same customer appears multiple times in the 

sequence but the operations in each appearance are different, we can treat these 

appearances as if they belong to different customers. Hence, we can use the proposed 

algorithms in Chapter 2 to solve this problem. 

In the periodic service type, the customers require the same operations multiple 

times.  We consider the cost function and the time window relative to the last 
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performance of the same operation.  Each operation has a so called relative time window, 

which means that the earliest and the latest start times depend on the previous execution 

time of that operation.  Therefore, the time windows are relative to the decision maker’s 

previous assignments.  If all of the customers appear once in the sequence, this problem 

coincides with the problem we studied in Chapter 2, and we can use the same techniques 

to solve the problem.  However, shorter sequences without customer repetitions could 

cause myopic decisions, but longer sequences with customer repetitions prevent us from 

making decisions that affect later steps undesirably. 

In this chapter, we consider the operational level periodic task assignment 

problem that assigns one task to each step and its corresponding customer and requires 

the following inputs: 

• a sequence with m steps, 

• the possible tasks for each customer,  

• the processing time for each possible task for every customer, 

• the cost function and relative time window parameters for each operation, and 

• the last execution date for each operation.  

The planner determines which among the possible tasks to perform in each step.  We 

require a plan that completes all of the steps in the given sequence while minimizing the 

general cost function of all operations. 

The periodic task assignment problem has unique characteristics.  First of all, 

each customer requires multiple operations with different time windows and general cost 

functions.  The cost of an operation can take any value if it is done within the time 

window and takes a value of infinity otherwise (time windows are hard).  Moreover, the 

previous decisions of the same customer determine the future time windows.  Hence, 

there is no explicit time window for tasks as there is in the single visit case.  In an optimal 
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solution, the assignment would choose a time that balances the cost functions of all 

operations and does not violate relative time windows.  Furthermore, the total cost of a 

step is affected not only by the decisions made for the earlier steps but also by the 

decisions made for the later steps because of the structure of the cost function.   

In this chapter, we analyze several fundamental properties of the periodic task 

assignment problem.  We prove that the problem is NP-Hard in the strong sense and 

show the computational complexity of some special cases.  We formulate the problem as 

a discrete time indexed network flow.   

The remaining part of the chapter is organized as follows:  Section 2 gives the 

relevant literature review, and Section 3 formulates the problem as a discrete time 

indexed network flow.  In Section 4, we prove that the periodic task assignment problem 

is NP-Hard in the strong sense, and Section 5 concentrates on the special case structures.  

Section 6 discusses the valid cuts and Section 7 describes the preprocessor algorithm that 

reduces the problem size.  Finally, we offer the conclusion and discuss future extensions 

of this study in Section 8.         

3.2  LITERATURE REVIEW 

The periodic task assignment problem may appear in many contexts, such as 

multi-product lot sizing, machine maintenance, and telecommunications.  The problem 

where the order of customers is not given but functions instead as a decision variable has 

received some attention.  In the remainder of this study, we refer to the variant of the 

PTA problem where the order of customers is considered to be a decision variable as the 

sequencing and periodic task assignment (SPTA) problem.  Although the SPTA problem 

seems to be an extension of the PTA problem, we can write the SPTA problem as a 
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special case of the PTA problem in some circumstances.  We will discuss this situation at 

the end of this section. 

Anily et al. (1998) consider the special case of the SPTA problem in the context 

of scheduling preventive maintenance for a set of machines over an infinite horizon.  

Here, the machines are the customers, and servicing a machine means performing 

maintenance.  The authors assume that each machine requires a single maintenance 

operation, and all the processing times are equal.  That is, only one machine can receive 

maintenance in a given period, and the maintenance will be done within the given period.   

Another application they consider, which falls into the same problem framework, is the 

multi-item replenishment of stock.  In this problem, only one item stock may be 

replenished at a time.  In Anily et al. (1998), the cost of operating a machine in a period is 

a linear (increasing) function of the number of periods since its last service.  They assume 

no setup cost for performing the maintenance.  They show that there is an optimal 

maintenance schedule that is cyclic, and they present a polynomial time algorithm to 

compute optimal policies for a two-machine case.  They also present heuristics and worst 

case bounds (2.5-approximation if the linear cost function starts from zero and 2-

approximation if the linear cost function starts from one) for a general number of 

machines.  To date, it is not clear whether the problem considered in Anily et al. (1998) is 

NP-Hard.            

In Anily et al. (1999), the authors consider the problem given in Anily et al. 

(1998) under the additional assumption that there are only three machines.  In this work, 

the authors introduce an algorithm that solves certain instances of the problem optimally, 

and for other instances, they present a heuristic with a worst case performance ratio of 

1.033.    
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Anily and Bramel (2000) study the problem given in Anily et al. (1998) under 

convex cost functions.  They show that there is an optimal schedule that is cyclic for a 

general number of machines, and in the case of two machines, they show that there exists 

an optimal policy, whose closed form can be either predetermined or is one of up to four 

possible forms.     

Grigoriev et al. (2006) work on the problem given in Anily et al. (1998), 

assuming a finite completion time.  They investigate several formulations (linear and 

nonlinear) and propose a column generation method to solve the problem exactly.  They 

show that the subproblem for the column generation procedure is solvable in polynomial 

time. 

Similar types of problems appear in Holte et al. (1992), Mok et al. (1989), and 

Wei and Liu (1983).  Holte et al. (1992) consider the problem where the length of time 

without maintenance has an upper bound for each machine.  Mok et al. (1989), and Wei 

and Liu (1983) assume that the exact maintenance intervals for each of the machines are 

given; the problem is to minimize the number of resources needed for a feasible schedule.  

Duffuaa and Ben-Daya (1994), and Hariga (1994) study the maintenance scheduling 

problems that concentrate on the coordination of a common resource to maintain a set of 

machines.  A review of preventive maintenance scheduling problems can be found in 

Dekker et al. (1997). 

Bar-Noy et al. (2002) and Kenyon et al. (2000) generalize the problem given in 

Anily et al. (1998).  They consider that at most k items out of the m items can be serviced 

in each period, and they apply the problem to data broadcast scheduling.  Broadcasting is 

an efficient means of disseminating data in asymmetric communication environments, 

such as satellite access to internet or car navigation systems.  Typically, the down link 

(e.g., from satellite to personal computers) has greater bandwidth and is faster than the up 
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link (e.g., phone lines).  In these situations, broadcasting protocols reduce the server load 

and do not manage the client requests individually.  In these protocols, data are scheduled 

for broadcasting continuously and one (or k) of them is broadcasted at a time.  The clients 

wait for the requested data to be broadcast, so the schedule is independent of the 

incoming requests.  Acharya (1998) and Schabanel (2000) present a very complete 

history of the field. 

Bar-Noy et al. (2002) prove that the problem is NP-hard, even for k = 1, if there is 

an additional setup cost for maintenance.  Further, they investigate lower bounds and 

propose approximation algorithms for the case k = 1, based on the properties of Fibonacci 

numbers.  The worst case bounds of the proposed heuristics are 9/8 in the case when 

there is no fixed cost, and 1.57 when there is a fixed cost.  They also prove that a greedy 

algorithm used in Anily et al. (1998) has a worst-case bound of 2.  In Kenyon et al. 

(2000), the authors improve the 9/8 result (for no fixed cost case) by giving a polynomial 

time approximation scheme, which is ε-approximation for any ε > 0.  Finally, Kenyon 

and Schabanel (2003) work on the problem with non-identical service times under no 

fixed cost.  They prove that the problem is NP-hard even if the broadcast costs are all 

zero and give randomized 3-approximation algorithms for the case k = 1. 

The problems considered as a version of the SPTA problem can be written as a 

special case of the PTA problem.  For instance, the problem in Anily et al. (1998) can be 

seen as an infinite sequence that consists of only one customer.  Here, the set of the 

machines are operations, and we can only do one operation at a time in each period.  That 

is, all the tasks contain one operation, and their processing times are equal.  In the 

extension where k items can be serviced at a time, we can define tasks that consist of, at 

most, k operations.  As long as the k is given, the transformation takes polynomial time.  

Therefore, the following observations are true: 
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Literature results 3.1: Consider the PTA problem with a cyclic sequence consisting of 

only one customer that requires a number of operations.  Assume that each task contains 

one operation and each operation is in one task.  Under these conditions, the following 

observations are true: 

a) If the cost function increases linearly (cumulative cost function is quadratic) with 

respect to time since the operation’s last service and all the processing times of 

the tasks are equal, 

a1.  If there is no fixed cost, then the heuristic given in Kenyon et al. (2000), 

has a polynomial time approximation scheme which is ε-approximation for 

any ε > 0. 

a2.  If there is a fixed cost, then the heuristic given in Bar-Noy et al. (2002) 

has a worst bound of 1.57. 

b) If the cost function increases linearly (cumulative cost function is quadratic) with 

respect to the time since the operation’s last service, and the processing times of 

the tasks can be non-identical, then the heuristic given in Kenyon and Schabanel 

(2003) has a worst bound of 3. 

c) If the cost function is an increasing convex function with respect to time since the 

operation’s last service, and all the processing times of the tasks are equal, then 

for the case of two operations, there exists an optimal policy, the closed form of 

which can be either predetermined or is one of up to four possible forms.  (Anily 

and Bramel, 2000.)     

Later on, we will see that polynomial time ε-approximation is impossible for any 

ε > 0 in the general PTA problem. 
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3.3  PROBLEM DEFINITION 

The problem that we study is a generalized version of the problem in Chapter 2.  

We consider a single service resource and a fixed sequence of customers, denoted as S = 

{1,…,s,…,m} where m denotes the total number of steps (visitations) in the sequence 

with a dummy step at the end.  A sequence can consist of multiple cycles or tours through 

the same customers and as such, can include the same customer multiple times.  We refer 

to each successive visited customer as a step in the sequence.  The customers form the set 

I = {1,…,i,…,n} where n denotes the total number of customers.  Here, each step has an 

associated customer, but a customer may have more than one associated step if the 

customer appears more than once in the sequence.  Also, tmax refers to the latest possible 

start (and end) time for the last step (i.e. step m), and T is the ordered set of time periods 

to be considered, T = {1 … tmax}.   

Each customer i∈I requires a set of operations KI(i), and each operation, indexed 

as k, has a specified relative time window [ζk, ηk] within which the service is feasible.  

This means that the next execution of the same operation has an earliest start time ζk, and 

the latest start time ηk with respect to the current start time of the same operation. The 

latest start time is effective only if the completion time is greater than the latest start time.  

In addition, if this operation was done t units of time before the starting time of the given 

sequence, then the first execution of the operation has an earliest start time γk, and a latest 

start time βk, where γk = ζk - t, and βk = ηk – t.      

Figure 3.1 gives the graphical representation of the relative time window 

(separation) parameters.  In this figure, the area between t = 1 and t = 3 represents the 

desired times at which the operation should be performed, and the areas between t = 0 

and t = 1, and t > 3 show the outside of the strict time window.   
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Figure 3.1 Relative time windows (separation) for operation k. 

Each step allows a set of tasks JS(s) and each task, indexed as j, includes a set of 

operations KJ(j) and requires a duration δj in which the service is performed.  We define 

tasks for each step rather than for each customer to make the problem more flexible.  

Doing so, a customer may have different task alternatives in different steps.  In this 

chapter, we are interested in strict time windows, but in practice, a violation of the time 

window constraints may be acceptable with a high penalty.  Depending on the tasks 

performed at each step, the completion time of the last step may vary.  Among the time 

periods in T, let h be a possible cycle completion time to complete all steps and H be the 

set of possible cycle completion times.  In this notation, H is the subset of T and h ≤  tmax.   

 For each customer, the planner tries to honor the relative time window 

requirements of operations and accomplishes the operations by executing the available 

tasks.  Let K be the set of all operations for all customers and JK(k) be the set of all tasks 

that contain operation k.  At minimum, each operation k∈K has the following attributes:  

γk Earliest start time for the first execution of operation k  

t = 0 

βk 

 time 

γk 

ζk 

ηk 

Last execution of 
the operation 

t = 1 t = 3 
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βk Latest start time for the first execution of operation k 

ζk Subsequent earliest start time (minimum separation) will be ζk time after the first 

execution of operation k 

ηk Subsequent latest start time (maximum separation) will be ηk time after the first 

execution of operation k 

λk Maximum number of executions that can be performed on operation k.  One of 

the upper bounds for this parameter is the total number of visitations of the 

customer that requires operation k.  (We will investigate this parameter further in 

Section 6.)   

g(k, t) The cost between two consecutive executions of operation k, where t is the 

elapsed time between these executions under the following conditions:  

• If the operation is not done during the sequence, then t = h+ζk−γk.  Therefore, 

the cost g(k, h+ζk−γk) will occur where h represents the completion time, h ∈ 

H. 

• If the operation is executed the first time at time r, then t = r+ ζk−γk. 

Therefore, the cost g(k, r+ζk−γk) will occur. 

• If the operation is executed at time r and the previous execution of this 

operation is at time rp, then t = r−r p.  Therefore, the cost g(k, r−rp) will occur. 

• If the operation is executed last time at time r, then t = h−r .  Therefore, the 

cost g(k, h−r) will occur. 

We also calculate the time window of stepSs∈ , represented as TS(s), to reduce 

the problem size.  The periodic task assignment problem defines the relative time 

windows for each operation.  We can use these time windows (and task processing times) 

to develop time windows for each step.  The detailed logic for the time window 

calculation of steps is given in Section 3.7.    
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In this structure, we assume that all steps in the sequence must be visited and that 

the specified maximum number of time periods (tmax) in the horizon is sufficient to 

complete all steps.  The optimization problem outlined above can be formulated as a 

discrete time indexed network flow problem. 

Decision Variables: 

Xjt =1 if we start task j at time t, and 0 otherwise, for all s = 1 … m,  j ∈ JS(s), t ∈ T 

Ykpt = 1 if an operation k is performed for the pth time at time t for ,Kk ∈ Tt ∈ , 

kp λ≤≤1  

Ukh = 1 if no tasks containing operation k are performed during the horizon with 

length h for ,Kk ∈  h ∈ H 

Wkpt = 1 if t periods elapse from the pth time performing operation k to the (p+1)th time 

performing operation k for ,Kk ∈  Tt ∈ , kp λ<≤1   

Vkt = 1 if t periods elapse from performing operation k the last time to the end of the 

horizon. t = h − r if the completion time is h and operation k is performed at time 

r for the last time for all ,Kk ∈  Tt ∈   

Zh =1 if the last step m starts in period h, 0 otherwise for all h ∈ H  

– called the exit indicator variable 

The Zh variables are defined merely for convenience and to simplify the 

representation.  We can adequately formulate the problem without these variables. 

Model Formulation: 

Minimize 

∑∑∑ ∑ ∑∑∑∑∑
∈ ∈∈ <≤ ∈∈ ∈∈ ∈

++−++−+
Kk Tt

kt
Kk p Tt

kpt
Kk Tt

tkkk
Kk Hh

khkk VtkgWtkgYtkgUhkg
k

),(),(),(),(
1

1
λ

γζγζ  

                      (1) 

subject to: 
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Task assignment for first step  
   1

)1( )1(

=∑ ∑
∈ ∈JSj TSt

jtX         (2a) 

Flow conservation constraints   
 ∑ ∑∑

∈ ≥−∈
− =

)( '
'

)1(
,

sJSj tt
jt

sJSj
tj XX

jδ     for s = 2, … m, t ∈ TS(s) (2b) 

Exit indicator 
 h

mJSj
jh ZX =∑

∈ )(

     for h ∈ H,   (3) 

Earliest start time for the first execution of each operation 

 0
},...,1{)( },...,1{'

' ≤− ∑∑ ∑
∩∈∈ ∈ Hth

h
kJKj tt

jt ZX   for k ∈ K, t ∈ {1,2, .. γk-1}, (4a) 

Latest start time for the first execution of each operation   

 1
)( },...,1{},...,1{'

' ≥+∑ ∑∑
∈ ∩∈∈kJKj Hth

h
tt

jt ZX    for k ∈ K, t ∈ { βk, .. tmax}, (4b) 

Subsequent earliest start time (minimum separation) for each operation  
 1

},...,1{)( },...,{'
' ≤− ∑∑ ∑

∩∈∈ −∈ Hth
h

kJKj ttt
jt ZX

kζ
  for k ∈K, t ∈ T \ {1,..., ζk},     (5a)  

Subsequent latest start time (maximum separation) for each operation  
 1
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' ≥+ ∑∑ ∑

∩∈∈ −∈ Hth
h

kJKj ttt
jt ZX

kη
  for k ∈ K, t ∈ T \ {1,…, ηk}, (5b)  

Detection of done operations 
 ∑∑

≤≤∈
=
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kJKj
jt YX

λ1)(

    for k ∈ K, t ∈ T,  (6) 

Time elapses between consecutive executions of each operation 

 )'(')1( 1 ttkpkpttpk WYY −+ ≤−+    for k ∈ K, t ∈ T, tt ≤' , (7) 

Time elapses after last time execution of each operation  
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       for k ∈ K, h ∈ H, Tt ∈ , (8) 

Detection of not done operations 
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kh
Tt

tkh UYZ ≤−∑
∈

1      for k ∈ K, h ∈ H,  (9) 

Each operation can be performed pth time once  
1=∑

∈Tt
kptY       for ,Kk ∈  kp λ≤≤1 ,           (10) 

pth time is done earlier than (p+1)th time 

∑∑
≥

+
≤

≥
tt

tpk
tt

kpt YY
''

'')1(
'

'      for ,Kk ∈ Tt ∈ , kp λ<≤1  (11) 

Integrality  

1or  0,,,,, =hkptjtkptktkh ZYXWVU    for j ∈ J, t ∈ T, k ∈ K, h ∈ H. (12) 

The objective function (1) minimizes the total penalty with four terms.  The first 

term is the penalty for operations that are not performed, while the second one is the first 

execution of operations.  The third cost holds the consecutive execution of operations.  

Finally, the last cost calculates the penalties after the last execution of the operation.  

Constraint (2a) assigns a task for the first step and (2b) shows flow conservation 

constraints.  If there is a no-waiting assumption, we can write the right hand side of (2b) 
constraints as ∑

∈ )(iJIj
jtX .  Constraint (3) determines the exit time.  Although this model is 

written to complete all the steps in the route and the completion time is varying, we can 

easily incorporate the fixed time horizon approach (not necessarily complete all steps) 

with a little modification to the formulation.  

Constraints (4a) and (5a) define the first and subsequent earliest start times 

(minimum separations), whereas constraints (4b) and (5b) define the first and subsequent 

latest start time (maximum separations), respectively.  Constraint (6) detects how many 

times the operations are done and when they are done.  Constraint (7) calculates the time 

elapsed between consecutive executions of each operation and (8) measures the time 

elapsed after the last execution of each operation.  Constraint (9) detects operations that 

were not done.  Constraints (10) and (11) are technical constraints that set the precedence 
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relations of Y variables.  Finally, constraint (12) is for integrality requirements.  (We did 

not consider waiting time costs here for the sake of simplicity, but they can be easily 

incorporated to our formulation.) 

In the next two sections, we deal with the computational complexity and the 

special case structures of the periodic task assignment problem.  

3.4 NP HARDNESS OF THE PERIODIC TASK ASSIGNMENT PROBLEM  

The Periodic Task Assignment [PTA] problem is in the category of difficult 

problems, or so-called NP-Hard problems, because it is a generalization of the task 

assignment problem.  Although the task assignment problem could be solvable in pseudo-

polynomial time (NP-Hard in the ordinary sense), the PTA problem is even harder than 

that.  In fact, the well-known 3-partition problem can be written as an instance of the 

PTA problem.  

The 3-partition problem is NP-Hard in the strong sense (Karp, 1972; Garey 

&Johnson, 1979).  We will show that the 3-Partition problem can be polynomially 

reducible to the PTA problem, but first we will give the definition of the 3-partition 

problem. 

3-Partition: Given positive integers a1,…,a3q, b such that  

24

b
a

b
j <<  

and 

qba
t

j
j =∑

=

3

1

. 

Do there exist q pair-wise disjoint 3 element subsets }3,..,1{ qSi ⊂ such that 

ba
iSj

j =∑
∈

 for i=1,…q? 
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Proposition 3.2: The 3-Partition problem is polynomially reducible to a periodic task 

assignment problem [PTA].   

Proof: We represent the 3-Partition problem as an instance of the PTA problem.  We take 

the following sequence as a PTA instance: 

• A sequence consisting of 2 different customers:  Customer A and customer B.  

The smallest cycle in the sequence consists of 3B and 1A customers (B customers 

are the first ones).  The sequence consists of q cycles with a number of steps m = 

4q.  

 

• Customer A requires only one operation, and customer B requires 3q operations. 

• Each operation is included in only one task, and each task includes only one 

operation.   

The construction of the PTA instance: 

• The duration time for performing task j for customer A is zero. 

• The duration time for performing task j for customer B is aj, j = 1, 2, …,3q. 

• ζk = qb+1 for all operations k of customer B and b for an operation k of customer 

A. 

• ηk  = 2qb+2 for all operations k of customer B and b for an operation k of 

customer A. 

• γk = 0 for all operations k of customer B and b for an operation k of customer A. 

• βk = qb+1 for all operations k of customer B and b for an operation k of customer 

A. 

B B B A ----------------------------- B B B A 

First cycle 

q cycles 
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• g(k, t) is zero for all operations k and time t.  In other words, the problem is a 

feasibility problem. 

We make the following observations about this PTA problem instance: 

• γk = βk = b for the operation of customer A.  Therefore, each cycle length is b in 

the feasible solution.  As such, the completion time will be qb.    

• ζk = qb+1 for the operations of customer B.  Since the subsequent earliest start 

time for the operations of customer B is greater than the completion time, each 

task could be selected only once.  We have 3q customer B in the sequence and 3q 

operations (a one-to-one relationship with their corresponding tasks).  This means 

that each task should be selected once (otherwise, at least one of the tasks will be 

selected more than once).  In other words, each duration time aj, j = 1, 2, …,3q  

appears only once. 

• We know that qba
t

j
j =∑

=

3

1

 and we have q cycles.  If the summation of the task 

durations of 3-customer B in one cycle is less than b, there will be another cycle 

where the summation of durations of 3-customer B in that cycle is greater than b.  

However, we have ηk = βk = b as the latest start time for the operation of customer 

A.  These constraints are hard constraints and make that solution infeasible.  (A 

similar argument could also be obtained by using the earliest start time for the 

operation of customer A.)  In order to get a feasible solution, the summation of the 

task durations of 3-customer B in each cycle should be exactly b. 

• Since qba
t

j
j =∑

=

3

1

, there is no waiting in the feasible solution, even if the waiting is 

allowed.    
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Therefore, the feasible solution should account for the fact that the summation of 

the durations of 3-customer B in each cycle should be exactly b and each duration time aj, 

j = 1, …,3q appears once. 

Since each set, index and parameter in the PTA has at most O(q) items, the 

reduction will take polynomial time.  

Corollary 3.3: The following problems are NP-Hard in the strong sense: 

a) Periodic task assignment problem 

a1. Periodic task assignment problem with only latest start time constraints 

a2. Periodic task assignment problem with only a general cost function 

(without time windows)   

b) Periodic task assignment problem under a no-waiting assumption 

b1. PTA problem under a no-waiting with only earliest start time constraints 

b2. PTA problem under a no-waiting with only latest start time constraints 

b3. PTA problem under a no-waiting with only a general cost function 

(without time windows)   

c) Periodic task assignment problem with customer-wise time window constraints 

(rather than operation-wise time window constraints) for both waiting allowance 

and no-waiting assumption 

Proof: (a) Based on the construction in Proposition 3.2, there is a feasible solution with 

an objective value of zero in this PTA problem if and only if the 3-partition has a 

solution.  That’s why we can conclude that the PTA problem is NP-Hard in the strong 

sense.   

(b) Since all feasible solutions require no waiting, the result immediately follows from 

part (a). 
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(c) In the instance construction, all the operations of each customer have the same time 

window, so the result immediately follows from part (a) and (b). 

(b1) During the construction of the PTA instance with 3-Partition parameters in 

Proposition 3.2, choose the subsequent earliest start time parameters (ζ) for the operations 

of customer B that are large enough so that each operation of customer B will be done 

just once.  This makes the completion time qb, and the rest of the proof is similar.  The 

conclusion follows from part (b). 

(a1 and b2) In the construction of the PTA instance with 3-Partition parameters in 

Proposition 3.2, define another customer, say customer C, with duration b.  At the end of 

the original sequence, add customer C and A q times: 

 

This construction will force each operation of customer B to be performed once.  

(Completion time is at least qb, and “not done” operations make the problem infeasible.)  

The rest of the proof is similar. The conclusion follows from part (a) and (b). 

(a2 and b3) The construction of the PTA instance with 3-Partition parameters is the same 

as parts (a1) and (b2).  Instead of the latest start time parameters, assume that there is a 

positive cost beyond that time.  Here the question is whether or not there is an objective 

function with a value of zero.  If the answer is yes, then there will also be a solution for 

the 3-partition problem.  The rest of the proof is similar to the proof of Proposition 3.2. 

Corollary 3.4:  There is no ε-approximate heuristic that runs in polynomial time for the 

problems given in corollary 4.2 unless P = NP for any ε > 0. 

B B B A ----------------------------- B B B A 

First cycle 

C A C A 

q cycles q cycles 

First cycle 

-----
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Proof: Since the optimal objective value is zero for the problems given in corollary 3.3, 

any ε-approximate heuristic should provide a solution that has zero objective value.  This 

means that the heuristic solves the problem in polynomial time, so P = NP.    

3.5  SPECIAL CASE STRUCTURES 

In the previous section, we saw that each of the earliest start times, due dates and 

latest start time constraints makes the periodic task assignment problem NP-Hard.  In this 

section, we concentrate on the special case in which each customer requires two 

operations with a time window requirement for one of them (without any cost function). 

Secondly, we will examine another special case that assumes equal process times 

for all tasks.  Here, we consider the general cost function and provide a pseudo-

polynomial time algorithm to solve this problem.    

3.5.1 PTA Problem: Two operations and a single time window 

Here, we assume that each customer requires only two operations and each 

operation is included in its corresponding task.  In addition, only one of the operations 

has either an earliest start time (EST) or latest start time (LST) requirement.  The service 

planner chooses one of these two operations for each customer.  For this subsection, we 

use v(s) to represent the operation (and task) with an EST or LST for step s and w(s) to 

represent the operation (and task) without the time window for step s.  Finally, we 

consider the problem with a zero cost function.  In other words, we concentrate on the 

feasibility of the problem.  

Proposition 3.5: Consider the periodic task assignment problem under a zero cost 

function with m steps.  Assume that each customer i requires two operations, v(i) and 

w(i), and only one of the operations, v(i), is restricted by the earliest start time.  Under 

these conditions, the following statements are true: 
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a) If waiting is not allowed: 

a1. Selection of w(i) tasks for all customers gives a feasible solution  

a2. If w(i) tasks are not available for some customers, the problem is NP-

Hard  

b) If waiting is allowed:  

b1. Selection of w(i) tasks for all customers gives a feasible solution  

b2. If w(i) tasks are not available for some customers, then waiting as much as 

the latest earliest start time of v(i)’s at the beginning and then performing an 

operation with the earliest start time, v(i),  for all customers gives a feasible 

solution    

Proof: (a-b) Arguments are similar as in Proposition 2.5 except part (a2).  

(a2) The result comes from the fact that the 3-Partition problem is polynomially reducible 

to this problem.  Consider a sequence consisting of 3q + 1 different customers:  

Customer A and customer Bi for i = 1, …, 3q.  The smallest cycle in the sequence consists 

of 3q + 1 customers (B customers are the first ones).  The sequence consists of q cycles 

and a number of steps m = q(3q + 1). 

 

Each customer Bi requires two operations v(i) and w(i), and customer A requires 

only operation v. For customer Bi, δv(i) = ai and δw(i) = 0, and for customer A, δv = 0. 

Moreover, the earliest start times are γv(i) = 0 and ζv(i) = q2b + 1 for all operations 

v(i) that belong to customer Bi.  Finally, γv = ζv = b for the operation v of customer A. 

---------------------

First cycle 

----- B3q B1 B2 A ----- B3q B1 B2 A 

q cycles 
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 We chose large enough subsequent earliest start times ζv(i) for the operations of 

customer Bi, such that each operation v(i) can be done only once.  Therefore, the 

completion time of the sequence is at most qb.  On the other hand, the operation v of 

customer A is available b time later than the operation’s last service.  That means we have 

to spend at least b time for each cycle.  Hence, the completion time of the sequence is at 

least qb.  

We can conclude that the completion time of the sequence is qb and that each 

operation v(i) of customer Bi will be done exactly once.  Since 
24

b
a

b
j << , exactly three 

of the operations v(i) of customer Bi will be done in  each cycle.  There is a feasible 

solution to the PTA problem if and only if the 3-partition problem has a solution.  That’s 

why we can conclude that the PTA problem with the given restrictions is NP-Hard in the 

strong sense.  Recall that if there is no customer repetition, this problem is solvable in 

O(n).   

Proposition 3.6: Consider the task assignment problem with m steps.  Assume that each 

customer i requires two operations, v(i) and w(i).  Under that assumption, the following 

problems are NP-Hard both under a waiting and no waiting assumptions: 

a) The problem that has the latest start time for only operation v for every step and 

has a zero cost function  

b) The problem that has no time window (earliest or latest time) requirements and 

has general cost functions for only operation v 

Proof: (a) Here, the latest start times are βv(i) =  qb and η v(i) = q2b for all operations v(i) 

that belong to customer Bi.  In addition, βv = ηv = b for the operation v of customer A.  

The rest of the parameters are similar to Proposition 3.5(a2).  We can define another 

customer, say customer C, with duration b and add the customer C and customer A q 
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times at the end of the sequence.  This construction will force each operation v(i) of 

customer Bi to be performed once.  

The rest of the proof is similar to Proposition 3.5(a2).  Recall that if there is no 

customer repetition, this problem is solvable in O(n2). 

(b) The construction of the PTA instance with 3-Partition parameters is the same as part 

(a).  Instead of the latest start time parameters, assume that there is a positive cost beyond 

that time.  Here, the question is whether or not there is an objective function with a value 

of zero.  If the answer is yes, then there will also be a solution for the 3-partition problem.  

The rest of the proof is similar to part (a). 

3.5.2 Periodic task assignment problem with equal process times 

In the case where process times are equal, neither the start times of customers nor 

the completion time depends on the task selections.  Therefore, the customers do not 

affect each other.  We can partition the problem and solve each customer separately.  

However, different appearances of the same customer interact with one another, and this 

makes the problem hard.     

Proposition 3.7: Consider the periodic task assignment problem with n customers.  If all 

the process times of all the tasks of each customer are equal, the problem is NP-Hard 

both under a waiting and no waiting assumptions. 

Proof: Since all the process times of all tasks of each customer are equal, the start time of 

each customer and the completion time are known.  Therefore, we can partition the 

original problem for each customer and solve the subproblems separately.  

The result comes from the fact that the 3-Partition problem is polynomially 

reducible to each of these subproblems.  Consider a customer that has 3q operations and 

appears q times in the sequence.  We construct the tasks so that each task includes only 3 
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operations and a summation of the attached three aj parameters is equal to b.  In other 

words, these tasks are valid subsets in the 3-partition problem.  The total number of tasks 

is in O(q3) and finding valid tasks requires O(q3) time.  Therefore, this construction will 

take polynomial time. 

Let’s consider the problem under the no-waiting assumption first.  If we select 

large enough subsequent earliest start times for each operation, each operation cannot be 

performed more than once.  The customer has q visitations, and in each visitation, three 

operations will be done.  Therefore, each operation will be done exactly once.  As a 

result, a feasible solution to this problem is also a feasible solution to the 3-partition 

problem so the problem is NP-Hard.  If waiting is allowed, we can use the latest start 

time or general cost function structures to prove the same result.  

Recall that if there is no customer repetition, this problem is solvable in 

O(nkmaxjmax) time.  

3.6  VALID CUTS 

The major difficulty in the PTA problem arises when the sequence visits the same 

customer more than once.  This will bring about two important questions to be answered:  

• How many times should each operation be done? 

• Which tasks should be selected to cover required operations? 

We will give the answer of the first question in this section.  The second one will 

be answered in Section 3.7, which describes preprocessor for the problem. 

The number of executions required for each operation is determined by the 

following restrictions: 
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• The earliest start time parameters:  This parameter determines the minimum 

time for the next execution of the operation.  Hence, this parameter gives an upper 

bound for the number of executions required for each operation. 

• The latest start time parameters: This parameter determines the maximum time 

available for the next execution of the operation.  Hence, the latest start time 

parameter gives a lower bound for the number of executions required for each 

operation. 

Using these parameters, we can develop the minimum and the maximum 

requirement constraints that determine the minimum and maximum number of executions 

that must be performed for each operation in the given planning horizon.  

3.6.1 Maximum requirement constraints 

The earliest start time parameters γk and ζk (for the first and subsequent 

executions) restrict the earliest starting time of the next execution for the same operation.  

Let h be the completion time and λkh represent the maximum number of executions of 

operation k for the completion time h.  We observe the following facts: 

• If the completion time is h < γk, we cannot perform operation k.   

• After the first execution of operation k, we have to wait ζk time for each 

subsequent execution of operation k.  

 Therefore, we can calculate λkh as follows: 
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If the operation cannot be done more than a given number of times, it also cannot be done 

more than the integral part of that number.  Hence, we take the floor of the number.  The 

related maximum requirement constraint is given below: 
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    for k ∈ K,  

where Zh refers to the exit indicator.  Since the last period (exit time) is varying, the 

parameter λkh depends on the exit time h.  The constraint sums all the tasks that contain 

operation k for all times t ∈ T, and makes sure that these tasks are not done more than λkh 

for the given planning horizon h.   

3.6.2 Minimum requirement constraints 

The latest start time parameters βk and ηk (for the first and subsequent executions) 

restrict the latest starting time of the next execution for the same operation.  Let h be the 

planning horizon and µkh represent the minimum number of times that operation k must 

be performed for the planning horizon h.  We have observed the following facts: 

• If the completion time h > βk, we should perform operation k at least once. 

• After the first execution of operation k, we cannot wait more than ηk time for each 

subsequent execution of operation k.  

 Therefore, we can calculate µkh as follows: 
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We take the floor, because we cannot do any operation if the latest start time of that 

operation is not reached.  The related minimum requirement constraint is given below: 
 ∑∑ ∑

∈∈ ∈
≥

Hh
hkh

kJKj Tt
jt ZX µ

)(

    for k ∈ K,  

where Zh refers to the exit indicator.  Since the last period (exit time) is varying, the 

parameter µkh depends on the exit time h.  The constraint sums all the tasks that contain 

operation k for all times t ∈ T, and makes sure that these tasks are not done less than µkh 

for the given planning horizon h.   
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3.7 PREPROCESSOR 

The difficulty of the problem forces us to find some special structures that can 

help us in the solution procedure.  The most distinctive structure is the fixed sequence 

that we must follow.  With our knowledge of the sequence order, we can tighten the time 

window of each step, and that will help to reduce the problem size.  Recall that s is the 

index of steps in the visitation order, s = 1, 2 … m, and i∈I is the index of customers.  

Also, it is assumed that tmax refers to the latest possible visit time for the last step (i.e. step 

m), and T is the ordered set of time periods to be considered, T = {1 … tmax}.  We define 

the TS(s) as the set of available time periods to start a task at step s.  Our goal in this 

section is to get a smaller set so that the problem size shrinks.  Clearly, the time window 

TS(s) of each step s heavily affects the number of constraints and variables in our 

problem.    

A primitive method may calculate time windows of steps as in the following 

fashion:  the lower bound of step s can be calculated by summing all of the shortest 

process times for previous steps s' (< s) up to step s.  Also, an upper bound can be 

calculated by summing all the longest process times for previous steps up to step s.  

However, we can use other information to make the time window TS(s) of each step s 

smaller.  

In the previous section, the minimum µkh and the maximum λkh requirements of 

each operation k were calculated.  By using this information, we can determine how 

much time we will spend at least and at most for each step of the given sequence.   

3.7.1 Calculation of the earliest start times for steps 

The earliest start times for steps depend on the minimum time that we will spend 

on each step.  Here, we propose a two phase algorithm to calculate those minimum times.  

In the first phase, we find the minimum duration required for each customer to cover 
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required operations during the planning horizon.  In the second phase, we allocate the 

duration found in the first phase into steps that are visited by the same customer.  

The following phases are customer specific, and we need to run these phases for 

each customer i∈I:   

Phase I: Minimum duration required for each customer 

We know that operation k must be performed at least µkh and at most λkh times for 

the given completion time h.  In this section, assume that µk represents the lowest µkh 

among all h and λk represents the highest λkh among all h, i.e., for h = tmax. 

Let Nj be the decision variable for task j indicating the number of times task j will 

be performed to cover operations for a given customer.  Also, let Si be the number of 

visitations of customer i.  (Recall that δj represents the duration for performing task j, and 

KI(i) is the set of operations for customer i∈I.)  

To find the minimum duration requirement for given customer i, we will solve the 

following IP problem: 
 MTD = Minimize ∑

∈ )(iJIj
jj Nδ        

 subject to: 
  k

kJKj
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  i
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The first constraint satisfies the minimum requirements for operation k ∈ KI(i). 

Similarly, the second one will not to exceed the maximum requirements for operation k ∈ 

KI(i).  The third constraint sets the number of chosen tasks equals to the number of steps 

belonging to customer i.  The last is for nonnegative integrality. 
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The IP problem finds the minimum duration that would be spent for a given 

customer.  Since we cannot spend less time without violating requirement constraints, the 

optimal objective value of this problem could be used to calculate the lower bound of the 

completion time.     

Phase II: Allocation of required duration into steps 

In the first phase, we get the minimum time we should spend for each customer.  

We need to divide this number into corresponding steps for the same customer.  Let 

δmin(i) and δmax(i) be the minimum and maximum durations of the tasks that belongs to 

customer Ii ∈ .  Also, let SI(i) be the ordered set of steps that correspond to customer i. 

The minimum time (found in phase I) allocation procedure for each customer i∈I 

is given below. (The remaining duration RD refers to the minimum time duration MTD 
for the given customer subtracted by allocated durations ∑

∈ )(iSIs
sAD ): 

• Allocate δmin(i) for all steps except the last one in SI(i).  

• Do the following statements for the steps s ∈ SI(i) in the reverse order beginning 

from the last step in SI(i):   

a) If the remaining duration RD plus already allocated duration ADs does not 

exceed the δmax(i), allocate the remaining duration plus the already allocated 

duration to the step s (ADs = ADs+RD) and terminate the procedure. 

b) If the remaining duration exceeds the δmax(i), allocate ADs = δmax(i) to the step 

s in SI(i).  Select the previous step in SI(i) and go to (a).       

Since the minimum time we should spend for each customer i is between |)(|)(min iSIiδ  

and |)(|)(max iSIiδ , the allocation procedure clearly terminates by allocating at least 

δmin(i) time for each step in SI(i). 
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This allocation procedure runs for each customer and finds how much time we 

should allocate for each step.  Then, the earliest start time of step s can be calculated by 

summing all the allocations ADs for previous steps s' (< s) up to step s.   

The allocation procedure ensures two things:  The total time spent in steps of 

customer i∈I will be equal to minimum time (found in phase I) we should spend for 

customer i∈I.  Secondly, the shortest possible times are allocated into earlier steps.  

Therefore, any solution that satisfies the minimum and maximum requirement constraints 

will see this allocation as the earliest start times for its steps.      

3.7.2 Calculation of the latest start times for steps 

There are two cases we should consider for the latest start times with respect to 

the waiting assumption. If waiting is allowed, then the latest start time for the last 

customer is at time tmax.  For each customer from customer n − 1 to 1, we find the 

minimum processing time and subtract this value from the latest start time of the next 

customer.  (These minimum processing times were calculated in the previous section.)  

This will give us the previous customer’s latest start time. 

If waiting is not allowed, then the latest start times for each step depend on the 

maximum time that we should spend for each customer.  Similar to the earliest start time 

case, a two phase algorithm is proposed to calculate those maximum times.  

The following phases are customer-specific, and we need to run these phases for 

each customer i∈I.   

Phase I: Maximum duration required for each customer 

We will solve the same IP problem as we did in the earliest start time calculation 

section.  However in this case, we maximize the same objective function, i.e.;  
  MaxTD = Maximize ∑

∈ )(iJIj
jj Nδ       
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The IP problem finds the maximum duration that would be spent for the given 

customer by satisfying the maximum requirements of its operations.  Since we cannot 

spend more time without violating requirement constraints, the optimal objective value of 

this problem could be used to calculate the upper bound of the completion time.     

Phase II: Allocation of required duration into steps 

In the first phase, we get the maximum time we should spend for each customer.  

We need to divide this number into corresponding steps for the same customer.  Let 

δmin(i) and δmax(i) be the minimum and maximum durations of the tasks that belong to 

customer Ii ∈ .  Also, let SI(i) be the ordered set of steps that correspond to customer i. 

The maximum time (found in phase I) allocation procedure for each customer i∈I 

is described below.  (The remaining duration RD refers to the maximum time duration 
MaxTD for the given customer subtracted by allocated durations ∑

∈ )(iSIs
sAD ):  

• Allocate δmin(i) for all steps in SI(i).  

• Do the followings for the steps s ∈ SI(i) in original order beginning from the 

first step in SI(i):   

a) If the remaining duration RD plus already allocated duration ADs does not 

exceed the δmax(i), allocate the remaining duration plus the already allocated 

duration to the step s (ADs= ADs+RD) and terminate the procedure. 

b) If the remaining duration exceeds the δmax(i), allocate ADs=δmax(i) to the step s 

in SI(i).  Select the previous step in SI(i) and go to (a).       

Since the maximum time we should spend for each customer i is between 

|)(|)(min iSIiδ  and |)(|)(max iSIiδ , the allocation procedure clearly terminates by 

allocating at least δmin(i)  and at most δmax(i)  time for each step in SI(i). 
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This allocation procedure runs for each customer and finds how much time we 

should allocate for each step.  Then, the latest start time for step s can be calculated by 

summing up all the allocations ADs for previous steps s' (< s) up to step s.   

The allocation procedure ensures two things:  The total time spent in each step of 

customer i∈I will be equal to the maximum time we should spend for customer i∈I 

(found in phase I).  Secondly, the longest possible times are allocated into earlier steps.  

Therefore, any solution that satisfies the minimum and maximum requirement constraints 

will accept these allocations as the latest start times for the steps.            

3.8 CONCLUDING REMARKS 

In this chapter, we considered the periodic task assignment problem with a fixed 

customer sequence under the time window and multiple operation requirements.  We 

prove that this problem and almost all the special cases, except perhaps the trivial ones, 

are NP-Hard in the strong sense.  We propose some valid cuts and problem reduction 

techniques to solve the problem effectively.   

In the next chapter, we focus on the field application of this problem and develop 

techniques to solve it within a reasonable time.  
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Chapter 4:  Maintenance Service Application 

4.1 MOTIVATION 

This application is motivated by an actual problem faced by maintenance planners 

at a large company.  The company has geographically dispersed infrastructure facilities 

that require periodic inspection and maintenance to ensure uninterrupted service and 

effective operation.  These maintenance activities require on-site visits by a “service” 

unit, consisting of skilled workers and equipment.  At each site, several components need 

to be serviced; the desired frequency of service varies by component and facility and 

depends on the location of the facility, its usage, and other factors.  Scheduling the 

service tasks associated with these inspection and maintenance activities is an important 

and challenging problem facing this company.  In the application that motivated this 

work, the service planning process begins by deciding a periodic tour for the service unit.  

This tour specifies the sequence in which the customers will be periodically visited.  The 

tour can visit the same customer multiple times.  We address the problem of deciding 

which task to perform at each site or facility during every visit to that site in order to 

conform as closely as possible to the desired frequency of service.   

Continuing the terminology we established in the previous chapters, we shall refer 

to these infrastructure facilities to customers.  Each customer requires multiple service 

operations, but not all operations need to be performed during each visit to the customer, 

since the desired frequency of service varies by operation.  During each visit or step in 

the sequence, the planner must decide which operations to perform at the customer 

location.  Operations that can be performed together during a visit are grouped together 

as tasks, and each task has a specified duration.  For each operation for every customer, 

we are given a desired frequency or desired time between services for that particular 
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operation.  Deviations from this desired frequency are permitted but at a penalty cost.  

The planner faces the following core tradeoff:  performing all or most operations during 

each visit to a customer helps meet the service frequency requirements for that customer.  

However, since performing more operations increases the service time at that customer, 

this strategy delays the time at which the service unit reaches and can begin operations in 

downstream steps, thereby potentially violating service frequency requirements for these 

later customers.   

In this application, we have lateness costs if the time between services for a 

particular operation exceeds the desired time interval, as opposed to the time window 

requirements described in the previous chapter.  Therefore, we re-formulate the Periodic 

Task Assignment problem for this application in a more compact form, which permits us 

to represent the task selection decisions as a flow of the resource on a time-space network 

with side constraints to capture penalties if the time between successive executions of 

each operation exceeds the desired interval.  Complexity results both for a “single” visit 

special case and “multiple” visits are also valid for this application version of the problem 

(see Appendix B).  Since this problem is NP-hard, we develop a fast and effective 

heuristic procedure that repeatedly applies the shortest path approach developed in 

Chapter 2 to subsequences that visit each customer at most once.  Computational results 

for several problem instances show that the proposed heuristic identifies near optimal 

results very quickly, whereas a general purpose integer-programming solver (CPLEX) is 

not able to solve the problem optimally even after many hours of computational time. 

Next, we focus on techniques such as problem reduction, branching variables, and 

subdividing the problem into smaller problems to get better IP solution times for the 

actual problem. Computational results show that these techniques can improve solution 

times substantially.  
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4.2 PROBLEM DEFINITION 

For this problem, we will keep the definitions of sets and indices given in the 

previous chapter.  As a reminder, let I = {1, 2, …, n} denote the set of distinct service 

locations or customers.  A service unit or resource visits these customers in a given 

periodic sequence or tour S = {1,…,s,…,m}, where m denotes the total number of steps 

(visitations) in the sequence.  As a final step of the sequence, we include a dummy step to 

mark the end of the tour.  Each step represents a visit to a particular customer, and the 

same customer may be visited multiple times in the sequence.  Let i(s) denote the 

customer visited in step s ∈ S.  Conversely, S(i) ⊂ S denotes the subset of steps in the 

sequence  corresponding to visits to customer i.  Let T = {1, 2, …, tmax} denote the 

planning horizon, i.e., the set of time periods during which the route must be completed, 

where tmax is the latest possible start time for the last step m in the sequence and the first 

period (t = 1) represents the start time of the first step.  Depending on the magnitude of 

service times for various operations (discussed later) and travel times between locations, 

each period can range from a few hours to days.    

Each customer i ∈ I, requires a set of operations KI(i); let K be the set of all 

operations for all customers.  Every operation k for a particular customer i has an 

associated relative due date τk that represents the desired time interval between 

successive executions of operation k ∈ KI(i).  The due date for the first time that 

operation k must be performed during the planning horizon could be lower than τk since 

this due date depends on the past history of service, i.e., when the operation was last 

performed before period t = 1.  Let αk be the due date for the first execution of operation 

k.  Exceeding the due date incurs a per-period penalty.  Let ckt denote the lateness penalty 

if operation k is past due (since its last execution) at period t.  Due to technological and 

policy restrictions, only certain subsets (or combinations) of operations can be jointly 
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performed during a visit.  We refer to each such group of operations as a task j.  Let JS(s) 

denote the set of permitted tasks during step s for customer i(s), and let JK(k) be the 

subset of tasks that include operation k.  The duration for task j is δj time periods; tasks 

that contain more operations take longer to complete.  For convenience, at each step, we 

also include a “travel” task that corresponds to not performing any task at that step.  

Depending on the tasks performed at each step, the completion time of the last step may 

vary.  Among the time periods in T, let h be a possible cycle completion time to complete 

all steps and H be the set of possible cycle completion times.  In this notation, H is the 

subset of T and h ≤  tmax.   

Performing all the operations that a customer needs during each visit to that 

customer may be unnecessary (since the relative due dates may not necessitate such 

frequent service) and may delay operations at other (subsequent) customer sites, thereby 

incurring lateness penalties.  So, the central decision concerns which tasks to perform at 

each step of the specified tour so as to minimize the total lateness penalties for all 

customers during the length of the tour.  At each step, the service unit must perform one 

task from among the available tasks JS(s), and we assume that partial services (i.e., 

fractional tasks) are not permitted.  The maximum length of the tour, tmax, is the time to 

complete the tour if the most time-consuming task is done at each step s (i.e., the task 

with the largest value of δj among all tasks that can be performed in step s).  Using the 

problem data (i.e., the smallest and largest task durations at each step), we can determine 

the interval of time periods in which the service unit will visit each step.  Let TS(s) denote 

the time window for step s, consisting of all periods in which the service unit can arrive 

and begin its task at step s.   

Decision Variables: 
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Xjt = 1 if we start task j at time t, and 0 otherwise, for all s = 1 … m,  j ∈ JS(s), t 

∈ TS(s); 

Ukt = 1 if operation k is overdue in period t and cycle is completed after t, and 0 

otherwise, for all k ∈ K, t ∈ {αk, …, tmax}; and, 

Zh = 1 if the cycle ends in period h, and 0 otherwise, for all h ∈ TS(m). 

We refer to these three variables respectively as task assignment, delay indicator, 

and tour termination variables.  We define the Zh variables merely for convenience (to 

make the formulation easier to follow).   

Model Formulation for PTA Problem  
Minimize ∑∑

∈ ∈Kk Tt
ktktUc         (1) 
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Integrality  

1or  0,, =hktjt ZUX     for j ∈ J, t ∈ T, k ∈ K, h ∈ H.  (5) 
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The objective function (1) minimizes the total penalty for due date violations.  

Constraint (2a) assigns a task to the first step, and constraints (2b) are flow conservation 

constraints for subsequent steps.  These constraints assume that the service unit does not 

remain idle before any step (with a minor modification, we can incorporate the possibility 

of waiting before commencing a task at any step).  Constraint (3) determines the tour 

termination time.  Although this model requires completing all the steps in the route and 

treats the tour termination time as a decision variable, we can easily adapt it to situations 

where the tour duration is specified ahead of time and the tour can terminate before 

reaching the final step.  Constraints (4a) and (4b) serve to identify whether or not each 

operation k is late at time period t.  Constraint (4a) states that if, for t ∈ {αk, …τk}, the 

solution has not performed operation k or completed the tour by period t (since the start 

of the tour), then the first execution of operation k is overdue.  Constraint (4b) captures 

the relative due date requirement by specifying that if the tour does not end at or before 

period t and the solution does not perform operation k (or end the tour) within a time 

interval of τk periods prior to period t, then we must incur a lateness penalty for this 

period.  Finally, constraints (5) impose the nonnegativity and integrality requirements.  

Proposition 4.1: For the application version of the periodic task assignment [PTA] 

problem, the PTA problem is NP-Hard in the strong sense, and the PTA problem where 

no customer is visited twice is NP-Hard in the ordinary sense.   

Proof: See Appendix B. 

4.2.1 Operation level formulation 

In the above formulation, constraints (4a) and (4b) contain quite a few numbers of 

variables in each constraint.  We develop an alternative formulation that can represent the 

objective cost without using the constraint set (4a).  In order to do that, we distinguish the 
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variables for the first execution of the operation and the other executions.  This 

formulation is also helpful for constraint (4b) if the number of tasks is much higher than 

the number of operations.  However, we do so at the expense of introducing more 

variables and relationship constraints. 

Additional parameters and indices: 

gkt the cost of the first execution of operation k before time τk, where t is the first 

execution time and this cost can be calculated as max(0, min(t−αk, τk−αk)).  It 

represents a penalty for due date violation of first execution of operation k until τk.  

Decision Variables 

Xjt =1 if we start task j at time t, and 0 otherwise for all s = 1 … m,  j ∈ JS(s), t ∈ T 

Ykst =1 if we start operation k of step s at time t for the first execution, and 0 otherwise 

for all s ∈ FS(s), k ∈ KS(s), t ∈ T 

Vkst =1 if we start operation k of step s at time t for the subsequent executions, and 0 

otherwise for all s ∈ SS(s),  k ∈ KS(s), t ∈ T 

Ukt = 1 if no tasks containing operation k are performed within the subsequent due 

date τk for operation k, called the delay indicator variable for ,Kk ∈  t ∈ T 

Zh =1 if the last step m starts in period h and 0 otherwise for all h ∈ H, called the exit 

indicator variable 

Alternative Model Formulation for PTA Problem 
Minimize ∑∑∑∑∑
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kstkt
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Flow conservation constraints   
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Y variables is done earlier than X variables 
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Integrality  

1or  0,,,, =hktkstkstjh ZUVYX     for  t ∈ T, j ∈ J, k ∈ K, h ∈ H.      (7) 

The objective function (1) minimizes the total penalty for due date violations.  The 

second term represents the penalties previously described in constraints (4a).  Constraint 

(2a) assigns a task to the first step, and constraints (2b) are flow conservation constraints 

for subsequent steps.  Constraint (2c) constructs the relationship between job level 

variables and operation level variables.  Constraint (3) determines the tour termination 

time.  Constraint (4b) captures the relative due date requirement by specifying that, if the 

tour does not end at or before period t and the solution does not perform operation k (or 

end the tour) within a time interval of τk periods prior to period t, then we must incur a 

lateness penalty for this period.  Constraints (5a) and (5b) detect whether the operation is 
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or is not done during the sequence.  Constraint (6) ensures that the first execution 

variables are done earlier in time than subsequent executions. Finally, constraints (7) 

impose the non-negativity and integrality requirements. 

This formulation potentially performs better than the previous one if the number 

of operations is much smaller than the number of tasks. 

4.3 INITIAL SOLUTION 

In Chapter 2, we saw that the “single” visit task assignment problem is pseudo-

polynomially solvable, whereas the “multiple” visit task assignment problem is NP-hard 

in the strong sense.  The difficulty arises in customer repetition, because in a multi-visit 

case, the knowledge of the start times of the tasks and the cycle completion time is not 

enough to give an optimal decision.  In other words, the cost structure also depends on 

the previous decisions for the same customer.  Polynomial time algorithms have been 

developed in special cases of the single-visit problem (Chapter 2, Section 5), but these 

algorithms do not apply to the multi-visit case (Chapter 3, Section 5). 

When there is customer repetition, no (pseudo-)polynomial algorithm can 

generate an ε-optimal solution for any ε > 0 unless P = NP (see corollary 3.4).  Although 

there is no theoretical bound, (pseudo-)polynomial algorithms may provide good feasible 

solutions in practice.  We take into account the generation of a solution on the basis of the 

solution of the single visit case.  In fact, we can divide the original sequence into parts, so 

that each part contains a customer only once.  These parts are solvable via algorithms 

developed in Chapter 2.  

The heuristics based on dividing the horizon into smaller parts receive attention in 

the dynamic lot sizing context.  Federgruen and Tzur (1994) have demonstrated that for 

single-item uncapacitated dynamic lot-sizing models, optimal or close-to-optimal initial 
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decisions can be made by truncating the horizon.  Stadtler (2003), and Suerie and Stadtler 

(2003) develop heuristics that solve the multi-item capacitated lot sizing problem over a 

progressively larger time interval by fixing the variables of a progressively larger number 

of periods at their optimal values in earlier iterations.  The proposed heuristics divide the 

given horizon of h periods into sub-horizons that come one after another.  Each sub-

horizon is solved optimally after fixing all (or up to some predefined period) variables of 

previous sub-horizons.  The computational tests showed that the heuristics provide 

promising results.  Federgruen et al. (2007) proved that, under some parameter 

conditions, these heuristics can be designed to be ε-optimal for any desired value of ε > 0 

with a running time that is polynomially bounded by the size of the problem.  However 

the theoretical results do not apply to the periodic task assignment problem.  

These results suggest that a close to optimal solution may be obtained by 

partitioning or truncating the customer sequence.  In our heuristic, we divide the original 

sequence into subsequences so that each subsequence contains each customer at most 

once.  An optimal solution to a subsequence can be reached after fixing all task decisions 

of steps prior to the first step of the current subsequence by solving previous 

subsequences via algorithms developed in Chapter 2. 

We construct the subsequences by using one of these rules: 

• Strict partitioning rule:  This rule partitions the original sequence into non-

overlapping parts so that each part consists of consecutive steps and contains the 

same customer only once. 

Example: Suppose that the following is the sequence of customers.  (13 steps, 4 

customers.)  This rule partitions the original sequence into four parts. 
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• Expanding customer rule:  This rule divides the original sequence into parts, so 

that each part consists of consecutive steps and contains the same customer only 

once.   

o Each subsequence (except the last one) ends if the next step after the last 

step of the subsequence causes customer repetition.   

o The next subsequence begins one step after the step that contains the same 

customer as the next step after the last step of the previous subsequence. 

Example:  This rule divides the original sequence into six parts. 

 

 

Both strict partitioning and expanding customer rules can provide better solutions 

with respect to the other one.  Dividing the sequence into subsequences in this heuristic 

1 2 3 4 

Divided into 6 parts: 

3 4 2 

2 4 3 

3 4 1 

4 1 3 2 

2 3 1 

1 2 3 4 2 4 3 4 1 3 2 3 1 

1 2 3 4 2 4 3 4 1 3 2 3 1 

Original sequence: 

Partitioned into 4 parts: 
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looks different than the heuristics developed in the capacitated lot sizing problems.  The 

conditions that can potentially alter the division are as follows: 

• The number of customers in each subsequence is not the same.  In fact, each 

subsequence is naturally obtained from the order of the customers in the 

sequence.  

• The division into parts is based on customers, not periods.  The time spent on 

each part depends on the optimal decision, so cannot be fixed a priori.    

Our heuristic for the periodic task assignment problem, as discussed in Chaprer 2, 

is based on the idea of quickly solving each subsequence one after another by applying 

the pseudo-polynomial (in h, cycle completion time) shortest path method.  Although 

each part of the sequence is solved optimally, the resulting solution might not be optimal 

for the original problem, because this strategy both in this problem and in the lot sizing 

context cannot encompass the whole sequence at once and can result in myopic decisions.  

Using the shortest path method, the algorithm solves each subsequence for each possible 

subsequence completion time h∈H.  This method does not predict what will happen after 

the completion time of the subsequence, which will result in the underestimation of costs 

in a situation where a customer will not be visited again for a long time.  As such, we 

extend the heuristic to solve this myopia problem.   

We modify the shortest path method to improve the heuristic in the following 

way:  assume that a customer i is visited again ∆i time later than the end of the horizon of 

the current subsequence.  In that case, we use h + ∆i instead of h as a subsequence 

completion time to calculate the arc costs of that customer.  Since we do not know how 

much time will be spent on the later steps, we have to approximate the ∆i value for each 

customer i.  The approximation assumes a fixed duration time a priori, say ε, for each 

step after the last step of the current subsequence.  Hence, if a customer i is revisited ai 
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steps later, then the ∆i = aiε.  This ε value could be maximum or average task duration for 

intermediate steps until next visit. 

Finally, the heuristic may generate a solution that is different from the optimal 

solution for the following reasons: 

• the selected task contains an operation which is done early 

• the selected task does not contain an operation which is already late 

• the selected task contains an operation which is done early, and there is a chance 

that the operation could be done during that customer’s next visit 

• the selected task contains an operation which is done late, and there is a chance 

that the operation could be done during the same customer’s  previous visit . 

Therefore, as a final refinement, we will make the necessary one-task and two-

task swaps to get a better solution.  In the one-task swap, we change only one task 

decision of one step at a time.  In two-task swaps, two task decisions of two different 

steps (not necessarily same customer) will be changed at a time and tested for resulting 

improvement in the objective function.  The one-task swap aims to address the first two 

reasons, and the two-task swap aims to address the last two.   

Let ε be the possible approximate duration times (such as minimum, average and 

maximum duration times) for every step after the last step of any subsequence and E be 

the set of these ε values.  Then, a customer i is visited again ∆i = aiε time later than the 

end of the horizon of the current subsequence where ai represents the number of steps 

customer i is revisited after current subsequence.  The following is a generic scheme for 

this heuristic. 

Heuristic for periodic task assignment problem 

0     Set bestValue = ∞, bestSolution = empty 
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1     Construct the subsequences from the original sequence by using the strict 

partitioning rule or customer expanding rule.  Let Sp represent the pth 

subsequence in the order.    

2     For each ε ∈ E do 

3 For each subsequence Sp in the order beginning from p = 1 do 

4  a. Calculate ∆i values for each customer i in the subsequence Sp            

5     b. Solve the problem for the subsequence Sp by using the modified shortest 

path approach problem with ∆i values given the assignment for earlier 

subsequences  

6 c.  Modify the last service date (corresponding α values) of each operation  

7            End For 

8       Calculate the objective function for the original problem (total cost for the 

subsequences could be different than the cost for the original problem)   

9  If the current objective value of original problem is less than bestvalue then 

10      bestvalue = current objective value 

11 bestsolution = current solution 

12  End if 

13    End For 

14    Refinement Step:  Do the one-task or two-task swaps unless there is no 

improvement in the objective function for some predefined number of iterations. 

The computational performance of the heuristic depends on the set E, the set of 

approximate duration times, and the neighborhood search in the refinement step.  There is 

a tradeoff between the time spent for the heuristic and the quality of the solution.  The 

user can determine the appropriate level by changing the set E and using the refinement 

step.   



 88 

This heuristic solution provides an initial solution to solve the original problem 

faster.  In the following sections, we develop further methods to speed up this solution 

process.   

4.4 PERTURBATION AND PROBLEM REDUCTION 

The special structure of the real problem instances provides us to offer the 

following perturbation and problem reduction techniques to make these instances faster 

to solve using CPLEX.     

4.4.1 Perturbation 

The structure of the objective function contains many equal objective terms, and 

these terms cause alternative solutions.  In fact, the per unit time penalty is equal for all 

operations and time points for each customer in our application problem instances.  This 

means that the number of distinct objective coefficients for all variables can be as high as 

the number of customers.  Clearly, this causes a huge number of iterations in the LP 

relaxation solution process.  

To decrease the effect of this phenomenon, we made small perturbations in the 

objective function. We make this perturbation for each customer separately by using 

following rule: 

• For each Ukt variable belonging to this customer, rank (arbitrarily) the operations 

from 1 to |K|, denote as rk, for operation k, where |K| represents the total number 

of operations for this customer.  

• The perturbation value for this variable is rkt/|K|tmax
2 

Observe that the maximum perturbation for any variable would be 1/tmax, so the total 

perturbation for any operation will not exceed 1, which will ensure the optimality of the 

original problem for big enough cost coefficients. 
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We can also perturb these variables randomly, but the above manual perturbation 

performed better in our problem instances. 

4.4.2 Problem reduction 

We develop two methods to reduce the size of the problem.  In the first method, 

we use the following definitions: 

Dominated task:  For a given task j, if there is another task j'  that includes all the 

operations that are included by task j, and the duration of task j' is not greater than task j, 

then task j is a dominated task.  

Proposition 4.2: There is an optimal solution that does not perform any dominated task 

in any step. 

Proof: For a given optimal solution, since the problem has penalties only for the lateness 

of the operations, all the dominated tasks can be replaced by the tasks that dominate them 

without affecting the optimality of the solution.  

We eliminated all the dominated tasks (as many as 20% of all tasks) from our 

problem instances, which decreased the solution time. 

Using the problem data (i.e., the smallest and largest task durations for each step), 

we can determine the interval of time periods in which the service unit will visit each 

step.  TS(s) denotes the time window for step s consisting of all periods in which the 

service unit can arrive and begin its task at step s.  We can narrow this time window 

further.  The next method uses the nested property of the tasks in the application 

instances.  

Nested property:  For a given task j, if there is another task j'  that includes all the 

operations that are included under task j, then the tasks j and j'  have nested characteristics 
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with respect to each other. If all the task pairs of each customer have nested 

characteristics, then the problem instance has a nested property.  

With a nested property in mind, consider a task that contains more operations than 

any other task for a particular customer.  In this case, there is at least one operation in that 

task that could be performed only by this task.  Assume that there is only one operation, 

operation k, that satisfies this condition.  For that operation k, if the difference between 

the earliest visitation time for the customer to which it belongs in vth visit and maximum 

cycle completion time tmax is smaller than the associated relative due date τk for that 

operation k, then there is no need to perform this operation more than v times as well as 

the corresponding task.  Therefore, we do not always need to use the largest task 

durations to calculate the upper bound of each time window. 

We can generalize this logic to the other operations with a nested property.  The 

following procedure needs to be done for each customer separately, so we drop the 

customer index from the notation for the sake of simplicity.  For each customer, assign an 

index or order number to each task so that the higher indexed task contains more 

operations. Let EST(v) be the vth earliest visit time (lower bound of the time window at vth 

visit) for this customer and n be the total number of visitations  for this customer.  tmax is 

the current maximum cycle completion time.  In the below algorithm, NumberOfTask [j] 

variable holds how many times task j should be performed and remainingVisit variable 

shows how many visitation left to consider for that customer. 

Problem size reduction under the nested property for a particular customer 

0     remainingVisit = n, NumberOfTask [j] = 0   

1     For choose task j from highest indexed task to lowest one do   

2     For each operation k included in task j but not lower indexed tasks do 

3  minVisit = min {v | τk > tmax −EST(v) or v = remainingVisit}  
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4  If  NumberOfTask [j] < minVisit then            

5      NumberOfTask [j] = minVisit 

6  End If 

7            End For 

8    remainingVisit = remainingVisit - NumberOfTask [j] 

9    End For 

This algorithm calculates the number of times each task should be considered in 

the calculation of upper bounds.  The outer “for loop” examines the tasks in decreasing 

order (longest duration task first, shortest duration task last).  The inner “for loop” 

considers the operations that can only be performed by the current task but not lower 

indexed tasks.  In each iteration of the inner loop, the first visitation where the relative 

due date of an operation at that iteration is bigger than the difference between lower 

bound of visitation and tmax, is calculated.  We know that we do not need to perform that 

operation after that visit because the operation will not be late at the completion time if it 

is performed on that visit.  Hence, the maximum number of execution for the given task 

should not be higher than that visitation number.   

Previously, we used largest task durations (maximum δj values where j ∈ JS(s) for 

each step s) to calculate the upper bounds of each time window.  The above algorithm 

provides the number of times we should count each task during the calculation of the 

upper bounds of each time window using the array NumberOfTask.  We use the duration 

of these tasks in decreasing order to calculate the upper bounds of each time window.  

For example, if a customer is visited 5 times, and the algorithm provides the 3, 1 

and 1 for the tasks that have the longest, second longest and third longest durations 

respectively, then we use the longest duration for the first three visits, the second longest 
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duration in the 4th visit, and the third longest duration in the 5th visit to calculate the upper 

bound of each time window for corresponding steps. 

This algorithm is performed for all customers, and if tmax is decreased at the end, 

then the process is repeated for the new tmax.     

Proposition 4.3: The above algorithm, which accounts for the nested property case, does 

not eliminate the optimal solution.  

Proof: Step 3 in this algorithm checks the visitation number of the customer, where the 

selected operation does not need to be done after that visitation.  Therefore, we do not 

need to perform that operation more than the visitation number captured at step 5; 

therefore, the optimal solution is not cut. 

4.5 LAZY CUTS 

Lazy cuts are defined as constraints that are part of the original problem but are 

unlikely to be violated.  In the PTA problem, it is unlikely that the largest duration tasks 

for each step will be performed because the task with a larger duration delays the 

visitation time of later steps and increases the potential lateness penalties.  

Figure 4.1 shows the cycle completion time’s cumulative flow distribution for the 

LP solution of one of the instance we tested with 118 steps.  In this instance, the 

maximum cycle completion time is 524 days, and the optimal solution’s (also initial 

solution’s) cycle completion time is 363 days.  In its LP solution, the cumulative flow 

hits its mid point 0.5 at 360 days, and the longest fractional flow ends at 424 days.  

Therefore, the solution is unlikely to consider all the constraints in (2b), (4a) and (4b) 

until tmax, 524 days.      
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Figure 4.1. Cycle completion time for 118 steps instance in the LP solution 

We use the following procedure to declare some constraints to be lazy constraints: 

a. Calculate the point at the middle of tmax and the cycle completion time of the 

initial solution, say h*, which is equal to h* + ( tmax −h* )/2 

b. Declare all the flow constraints (constraint 2b) to be lazy constraints if the 

minimum time indexed variable is higher than the value found at (a).  

c.  Declare all the due date constraints (constraint 4a and 4b) to be lazy 

constraints if the minimum time indexed variable is higher than the value 

found at (a).  

As an extension, flow constraint declarations could be done separately for each 

step by considering latest start time of that step and the visitation time of the initial 

solution at that step. 

4.6 BRANCHING STRATEGIES 

Branching rules are developed to increase the performance of the solver.  The 

branching strategies are not only based on original variables but also on additional 

variables that are defined for this purpose.  The computational results show that the 
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appropriate selection of branching variables has a significant impact on solution time.  

We provide these strategies in increasing order of importance below. 

4.6.1 Task assignment variables 

In an ordinary LP solution, the number of positively valued variables is increasing 

in later steps of the sequence.  Hence, branching on task assignment variables of earlier 

steps provides a faster solution than branching on task assignment variables of later steps. 

To capture this characteristic, the task assignment variables of earlier steps have a 

higher priority when it comes to branching.    

4.6.2 Time variables 

When an LP solution selects more than one task with fractional values for a 

particular step, the completion times of these tasks are different in the next step.  We 

define a new variable set to prevent this phenomenon from happening.   

Assume that the minimum task duration time is at least one in a given instance.  

As such, we cannot start more than one task for a given time.  Define the following 

variables: 

Wt = 1 if a task at any step is started at time t, and 0 otherwise, t ∈ T 

We refer to these variables as time variables.  The following constraint relates the 

time variables to the task assignment variables. 

{ }
∑ ∑
∈ ∈

=
)(| )(sTSts

t
sJSj

jt WX    for t ∈ T. 

The first summation is for steps in which time t is an element of their time windows, and 

the second summation is for all tasks in those steps.  For further improvement, assume 

that the minimum task duration for all steps appearing in the first summation is δmin; 

therefore, the next task cannot start before t + δmin: 
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where W't equals to one if a task at any step is started between time t and t + δmin −1, and 

0 otherwise, t ∈ T 

Although the LP solution satisfies these constraints anyway, the time variables are 

useful in branching because number of time variables is much less than the number of 

task assignment variables.  Hence, we give higher priority to time variables over task 

assignment variables when it comes to branching.  In addition, we provide higher priority 

to earlier time variables compared to the later ones. 

4.6.3 Tour termination variables 

Although the number of time variables is much less than the number of task 

assignment variables, we need to define additional variables and constraints. In our 

problem, we already have tour termination (sink) variables that determine the cycle 

completion time.  Branching on these variables before than time variables has pros and 

cons: 

• Pros: We do not need to define additional variables and constraints. The 

number of sink variables is much less than the number of time variables. 

• Cons: Even though the solution has integer valued sink variables, it does not 

guarantee the feasibility of the solution.  

Computational results show that sink variables are more powerful tools than time 

variables, so we give them higher priority than time or task assignment variables.  As 

usual, earlier sink variables have higher priorities compared to the later ones. 
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4.6.4 Cumulative sink variables 

Although the tour termination (sink) variables help us with our branching 

strategies, every sink variable Zh appears with due date constraints for all operations and 

times if the time index h of the corresponding sink variable is less than the time t 

corresponding to the delay indicator variable Ukt at that constraint. This fact causes dense 

columns and rows in our constraint matrix and makes it difficult to conduct matrix 

operations.  Therefore, we define the following variables: 

CZh = 1 if the last step m starts at or before period h, and 0 otherwise for all h ∈ 

TS(m). 

Instead of defining a variable Zh to indicate tour termination at time h, new 

cumulative sink variables CZh become one if the cycle completion time of the tour is 

equal to or less than h.  Using these variables, we can change the constraints (3), (4a) and 

(4b) in our formulation such that: 

h
mJSj hh

jh CZX =∑ ∑
∈ ≤)( '

    for h ∈ H,            (3`) 

1
)( },...,1{'

' ≥++∑ ∑
∈ ∈

tkt
kJKj tt

jt CZUX   for k ∈ K, t ∈ {αk, .. τk −1},      (4a`) 

1
)( },...,1{'

' ≥++∑ ∑
∈ +−∈

tkt
kJKj ttt

jt CZUX
kτ

  for k ∈ K, t ∈ {τk, .. tmax}.        (4b`) 

 The due date constraints now contain only one cumulative sink variable instead of 

the summation of sink variables.  This change will reduce the density of the constraint 

matrix and improve the solution time. 

We give cumulative sink variables higher priority than the other variables.  

Similarly, cumulative sink variables with earlier time index have higher priorities 

compared to the later ones. 
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4.7 SUBDIVISION METHOD 

In the above strategies, we concentrate on the full problem and try to improve its 

solution time.  However, since our constraint matrix is not sparse, solution times increase 

rapidly with the size of the problem.  

Hence, we generate the subproblems from the original problem, so that each of 

them can be solved faster.  The idea behind subproblem generation is to force a start time 

of a task for a chosen step, say division step, before or after a chosen time, say division 

time.  The following scheme shows subproblem generation: 

• We select three steps; 




 + 5.0
3

m
, 




 + 5.0
3

2m
 and m, as division steps where m is 

the last step.  For example, if a sequence has 100 steps, then division steps are 33, 

67 and 100. 

• For division steps, we select division times t1, t2, t3 to start a task.  With the 100 

step example in mind, let t1 = 100, t2 = 200 and t3=300. 

• We generate 8 subproblems (23) by declaring that these division steps should start 

a task before or after those selected division times. (In each subproblem, selected 

times are included.)  Continuing the example, Table 4.1 shows the starting times 

of tasks for each step in each subproblem. 
  Division Steps 

  33 67 100 

Subproblem 1 ≤100 ≤200 ≤300 

Subproblem 2 ≤100 ≤200 ≥300 

Subproblem 3 ≤100 ≥200 ≤300 

Subproblem 4 ≤100 ≥200 ≥300 

Subproblem 5 ≥100 ≤200 ≤300 

Subproblem 6 ≥100 ≤200 ≥300 

Subproblem 7 ≥100 ≥200 ≤300 

Subproblem 8 ≥100 ≥200 ≥300 

  Table 4.1. Starting times of tasks in each subproblem 
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One can select fewer or more division steps depending on the problem size.  The 

effectiveness of this method relies on the appropriate time selection of the division steps, 

because bad time selections may generate a subproblem which is as hard as the original 

problem.  Hence, we offer two division methods using either the initial solution or the LP 

solution.    

4.7.1 Division by initial solution 

In Section 4.3, we described a procedure to find an initial solution.  The task 

starting times in this initial solution could be used as the selected times for division steps.  

There are pros and cons for this selection: 

• Pros:  Each subproblem has a valid initial solution generated for the original 

full size problem. We do not need to deal with the full size problem at all.  

• Cons:  Theoretically, the initial solution might not be close enough to the 

optimal solution. It may cause bad time selections, and the resulting 

subproblems could be hard to solve. 

In actual computational tests, this method works very well if the initial solution is close to 

the optimal solution. 

4.7.2 Division by LP solution 

The LP solution is another alternative for selecting those time points.  We can 

look at the cumulative flows in time for these division steps and select the time at mid 

flow 0.5 which is expected to be close to the optimal solution. Here are the pros and cons 

of this selection: 

• Pros: Selected times are expected to be close to the optimal solution. 

• Cons: Each subproblem may not have a valid initial solution. Furthermore we at 

least need to solve the LP relaxation of the full size problem.  
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In computational tests, this method performed better when we intentionally provided an 

initial solution that is far away from the optimal solution.  However, with the initial 

solution at hand (from Section 4.3), division by initial solution method performed much 

better at all instances.    

4.8 COMPUTATIONAL RESULTS 

We evaluate the performance of our approaches on real data instances.  The 

heuristic was programmed in Java and the IP model uses CPLEX 11.2 via concert 

technology.  The tests are on the 11 Dell Poweredge 2950 workstation with 3.73 GHz 

Xeon and 24 GB of shared memory under Ubuntu Linux system. 

In our experiments, we tested on two maintenance regions, called Region-A and 

Region-B.  Region-A contains 34 facilities (customers) requiring maintenance and these 

facilities are visited in 58 steps in one full cycle.  (The service “unit” repeats the tour after 

58 steps.)  Region-B also contains 34 maintenance facilities and one full cycle consists of 

59 steps.  Each full cycle approximately takes 6-months to complete in each region.  The 

durations of the tasks can range from half day to 14 days, and the weights of the 

operations (depend on workload of facilities) vary between 7 and 189.  

We generate 6 instances for each region.  All instances of each region has same 

starting conditions (first customer and customer order in their sequence, and due date of 

operations of customers) but contains different number of steps in their sequence.  In 

Table 4.2, the first column shows the problem names.  The first letter refers to region 

name and the number indicates the number of steps in that instance.  Second column 

states the number of customers considered on that instance and the other columns give 

details about the number of visitations.  For example, problem A-58 has 34 customers.   
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13 of these customers are visited once, 18 of them are visited twice and 3 of them are 

visited three times. 

  
Problem customers 1 visit 2 visits 3 visits 4 visits 5 visits 6 visits 

A-20 20 20 0 0 0 0 0 
A-40 30 20 10 0 0 0 0 
A-58 34 13 18 3 0 0 0 
A-80 34 6 13 12 3 0 0 
A-100 34 2 11 11 7 3 0 
A-116 34 0 13 0 18 0 3 
B-20 20 20 0 0 0 0 0 
B-40 30 20 10 0 0 0 0 
B-59 34 10 23 1 0 0 0 
B-80 34 5 12 17 0 0 0 
B-100 34 3 7 13 11 0 0 
B-118 34 0 10 0 23 0 1 

Table 4.2. Problem instances for region A and region B 

In Table 4.3, the details about IP formulation is given for each instance developed 

in Section 4.2 without initial solution, preprocessing, additional variables/constraints and 

methods discussed in Section 4.3 to Section 4.7.  The strict partitioning rule is used as a 

subsequence method for the heuristic.  

For each instance, number of constraints, variables and nonzero coefficients are 

given.  Then, the IP, LP and heuristic solution times are presented.  Finally, the gap (* = 

(heuristic value – optimal value)/optimal value) is calculated on the last column. 

The heuristic finds the optimal solutions in 10 instances and the biggest difference 

between the heuristic value and optimal solution is 1.4%.  As the problem sizes increase, 

the solution times increase enormously.   
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Problem 
Number of  

IP 
solution 

time  

Root 
solution 

time  

Heuristic 
solution 

time  

Heuristic 
vs. 

optimal 
value* constraints variables nonzeros (sec) (sec) (sec) 

A-20 2K 3K 67K 2 1 6 0.0% 
A-40 9K 13K 718K 87 74 20 0.0% 
A-58 14K 22K 1.4M 437 400 54 0.0% 
A-80 21K 35K 3.1M 6946 2492 287 0.4% 

A-100 32K 57K 7.0M 123847 31288 554 0.0% 
A-116 39K 70K 9.5M 21274 20931 588 1.4% 
B-20 3K 3K 62K 3 1 6 0.0% 
B-40 10K 13K 668K 123 83 22 0.0% 
B-59 19K 26K 2.0M 2231 2170 25 0.0% 
B-80 28K 40K 4.0M 1.3M 7467 101 0.0% 

B-100 39K 58K 7.6M >1.8M 23022 84 0.0% 
B-118 49K 76K 11.2M >1.8M 49835 683 0.0% 

* = (heuristic value – optimal value)/optimal value  

Table 4.3. CPLEX and heuristic performances 

Problem 
Initial 
gap* 

Number of 
branches Problem 

Initial 
gap* 

Number of 
branches 

A-20 8.06% 0 B-20 0.00% 0 

A-40 0.00% 0 B-40 31.44% 0 

A-58 0.00% 0 B-59 0.00% 0 

A-80 15.25% 185 B-80 30.69% 75702 

A-100 31.76% 839 B-100 39.61% >28250 

A-116 0.00% 0 B-118 62.88% >6100 
              * = (First feasible solution – Root LP solution)/ First feasible solution 

Table 4.4. Initial gaps and number of branches 
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In Table 4.4, initial gap ((= First feasible solution – Root LP solution)/ First 

feasible solution) and number of branches in the B&B tree are provided for the problems 

solved in Table 4.3.  We did not provide any initial solution for this set. 

We use the methods developed in Section 4.3 to Section 4.6 and obtain substantial 

improvements on solution time seen in Table 4.5. 

 

Problem 

Number of  

IP 
solution 

time  

Root 
solution 

time  

Heuristic 
solution 

time  

Heuristic 
vs. 

optimal 
value* constraints variables nonzeros (sec) (sec) (sec) 

A-20 2K 2K 36K 2 1 3 0.0% 

A-40 9K 11K 381K 12 9 6 0.0% 

A-58 13K 16K 759K 30 24 10 0.0% 

A-80 20K 26K 1.7M 201 112 28 0.3% 

A-100 31K 41K 3.9M 978 109 118 0.0% 

A-116 37K 48K 5.3M 977 915 128 0.0% 

B-20 3K 3K 35K 1 1 2 0.0% 

B-40 10K 12K 390K 13 10 7 0.0% 

B-59 19K 24K 1.2M 101 91 9 0.0% 

B-80 27K 35K 2.5M 482 53 29 0.0% 

B-100 38K 50K 4.8M 27051 18991 106 0.0% 

B-118 48K 66K 7.4M 80405 31651 424 0.0% 
* = (heuristic value – optimal value)/optimal value 

Table 4.5. Improved CPLEX performances 

The following approaches are considered: 

• Use heuristic solution described in Section 4.3 as an initial solution, 

• Apply perturbation and problem reduction techniques described in Section 4.4, 

• Apply lazy cuts as in Section 4.5, 

• Use following branching strategies: 
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o First, branch on cumulative sink variables (see Section 4.6.4), 

o Second, use time variables (see Section 4.6.2), 

o Finally, apply task assignment variables (see Section 4.6.1). 

In Table 4.5, the number of nonzero coefficients is reduced approximately 40-

50% with the help of problem reduction techniques and cumulative sink variables.  

Furthermore, the solution times are decreased 99% in some of the instances.  Besides the 

solving smaller problem, initial solution and branching strategies, especially cumulative 

sink variables, provide these good results.  

In Table 4.6, initial gap ((= Heuristic solution – Root LP solution)/ Heuristic 

solution) and number of branches in the B&B tree are provided for the problems solved 

in Table 4.5.   

 

Problem 
Initial 
gap* 

Number of 
branches Problem 

Initial 
gap* 

Number of 
branches 

A-20 0.18% 0 B-20 0.00% 0 

A-40 0.00% 0 B-40 0.14% 0 

A-58 0.00% 0 B-59 0.00% 0 

A-80 0.65% 10 B-80 0.77% 32 

A-100 0.40% 35 B-100 1.44% 91 

A-116 0.00% 0 B-118 2.97% 110 
             * = (Heuristic solution – Root LP solution)/ Heuristic solution 

Table 4.6. Initial gaps and number of branches 

Despite of major improvements at hand, we can further reduce the solution time 

by using subdivision method developed in Section 4.7.  We generate 8 subproblems 

following the guidelines of Section 4.7 by using heuristic solution.  (We continue to use 

approaches that are considered in Table 4.5.)  
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In these subproblems, we concentrate on the instances that have 80 steps or more.  

Instead of using smaller instances (that are already solved quickly), we generate the 

additional problems using following logic:  First, we solved the instances of two full 

cycle problems optimally (116-step problem for region A and 118-step problem for 

region B).  Then, we assume that the service planners perform the tasks for one full cycle 

by using these optimal solutions.  We update the due dates of operations based on the 

task decisions and cycle completion times of these solutions.  Finally, we obtain the new 

instances with the new starting conditions.    

In Table 4.7, we see the performance of the subdivision method by using initial 

solution.  The new instances are referred to an additional letter “R”.  Our heuristic finds 

optimal solutions for 5 instances and there is a 0.9% difference between the optimal 

solution of the “B-100-R” problem and the heuristic solution.  Table 4.7 also shows the 

worst initial gap and maximum number of branches needed to solve IP among all 

subproblems generated by subdivision method.   

 

Problem 

IP 
solution 

time  Initial 
gap* 

Number 
of 

brances Problem 

IP 
solution 

time  Initial 
gap* 

Number 
of 

brances (sec) (sec) 

A-80 169 0.26% 0 A-80-R 219 8.43% 38 

A-100 532 0.25% 25 A-100-R 502 1.69% 17 

A-116 597 0.00% 0 A-116-R 329 0.00% 0 

B-80 416 0.00% 0 B-80-R 357 0.02% 0 

B-100 1406 0.55% 6 B-100-R 1265 1.21% 6 

B-118 2481 0.06% 0 B-118-R 3949 0.62% 0 
* = maximum of {(Heuristic solution – Root LP solution)/ Heuristic solution} among all 
subproblems 

           Table 4.7. Performance of subdivision method 
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Solving problem instance B-118 takes 23 hours without considering subdivision 

method and now, it is taking less than an hour.  The performance of the subdivision 

method highly depends on the division steps and times.  The closer these time points are 

to their optimal values, the better performance we get.  Therefore, it is very important to 

have a good initial solution to apply this method.  

4.9 CONCLUSION 

In this chapter, we considered the maintenance service application of the periodic 

task assignment problem.  We develop a heuristic that use shortest path approach given in 

Chapter 2 as a subroutine.  Computational results show that the heuristic can provide near 

optimal solutions.  We also propose problem reduction techniques to solve the problem 

effectively.  We further improve the solution time by investigating on techniques such 

that lazy cuts, branching variables, and subdividing the problem into smaller problems.  

We show that these techniques can provide substantial improvements on solution time. 
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Chapter 5:  Shipment Routing Problem with Dispatching Policies 

5.1  INTRODUCTION 

In transportation systems, planning and executing the transportation of shipments 

involves many complex decisions and requires the management of multiple resources.  

Appropriate management of these resources is necessary to improve service quality while 

ensuring efficient use of resources and satisfy customer orders on time.  The decision 

makers need to solve many interrelated problems, such as the design of the underlying 

network, the routing and timetabling of the carriers and the transportation of the 

shipments.  

In this chapter, the focus will be on the problem of routing shipments that need to 

be transported from their origin to their destination.  The shipment routing problem 

determines the path (physical and temporal) that each shipment will use on its journey. 

We investigate the transportation problem of shipments from their origin to their 

respective destinations under capacity constraints and dispatching policies.  The effective 

usage of available capacity under a given network decreases costs and increases customer 

satisfaction.  Dispatching policies determine the handling rules of shipments on 

intermediate stations during their trips.  We assume that higher level decisions in the 

network, such as capital investment and the carrier schedule, are given. 

Complex network systems usually consist of multi-layer (physical and logical) 

networks to handle traffic.  In the physical layer, the actual transmitting network is 

designed such as location of stations/airports and schedule of carriers in transportation 

network, and location of routers and fiber optic lines in communication network.  The 

logical network is designed over physical network to handle traffic effectively such as IP 

networks in computer networks.  
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In transportation network, a shipment may pass through many classification 

stations on its route from origin to destination.  At these stations, the station operators 

reclassify the incoming traffic to be placed on outgoing carriers.  Each reclassification 

takes time and incurs handling costs.  Instead of reclassifying shipments at every station 

on its route, several shipments may be grouped together to form a block, a term barrowed 

from railway terminology.  A block has its own origin–destination pair that may be 

different from the origin-destination pair of individual shipments contained in the block.  

Therefore, a shipment may be assigned to more than one block to reach its destination.  

With this blocking mechanism, the shipments are classified only at the origin of the 

blocks to which they are assigned.  (See Cordeau et al., 1998 and Ahuja et al., 2005 for 

multi-layer network designs in railway applications).  In communication network, 

different fiber links group together to form a trunk to handle data packages.  Again, the 

data is reclassified only at the origin of the trunks.  (More information about multi-layer 

communication networks can be found in Pioro and Medhi, 2004.)     

After the design stages of physical and logical networks, the next step determines 

the possible carrier assignments within the planning horizon for blocks.  During the block 

construction, carrier scheduling and possible carrier assignments, the forecasted 

shipments are considered.  At the final stage, the shipment routing problem determines 

carrier assignments for actual (not forecasted) shipments among the possible carriers 

generated in the design stages.   

The shipment routing problem has some important practical constraints that the 

trip planner should consider: 

• Carrier capacities: The carriers have capacities between two stations they travel.  

These capacities could be different during the trip of carriers.  If the capacity 

requirements are not considered, the last minute adjustment will change the 
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original routing plan given to the customer, so these changes may affect customer 

satisfaction.  Moreover, myopic decisions may result in ineffective use of 

resources, especially in congested systems.  In our network structure, multiple 

blocks could be assigned to a single carrier and a single block could be assigned 

to multiple carriers.  If the arcs are considered as carrier to block assignments for 

a particular shipment in a given network, multiple arcs can share same resource.  

This structure is different than the standard multi-commodity flow problems 

where each arc has its own capacity.    

• Dispatching policies: The other issue concerns rules about shipment interactions 

on the network.  If two shipments are assigned to the same block, then a shipment 

that comes to a station earlier should not be assigned to a carrier that departs later 

than the one carrying a shipment that arrived later.  This is a practical constraint in 

many networks, and simply states first-in-first-out (FIFO) rule for that station if 

the shipments are using same departing block.  Clearly, an approach that designs 

the routing plan for each shipment independently cannot handle this rule. 

      Note: A dispatching policy can be designed to handle arbitrary order of the 

shipments (not necessarily FIFO). 

We consider a problem that requires the following items as inputs: 

• Shipments with their release times and volumes 

• Set of blocks that can carry each shipment 

• Legitimate Block-to-Carrier assignments for each block 

• Carrier capacities (could vary by location even for same carrier) 

• Dispatching policies 

The shipment routing problem determines which among the possible Block-to-Carrier 

assignment should be assigned to each shipment considering capacities and dispatching 



 109 

policies.  The objective function is to minimize the total weighted transit times of 

shipments from their origin to destination. 

This chapter focuses on a shipment routing problem under capacity and 

dispatching policies.  We consider a space-time network that allows one to formulate the 

shipment routing problem as a multi-commodity network flow problem with additional 

side constraints.  We explore alternative models and develop methodologies for routing 

decisions.  We propose algorithms and techniques that can solve real size shipment 

routing problem to optimality or near-optimality.  

The remainder of this study is organized as follows:  The next section provides 

the background and literature review for shipment routing problems and related multi-

commodity network flow problems.  Section 3 defines the problem and formulates the 

shipment routing problem, and Section 4 investigates the characteristics of three different 

dispatching policy constraints.  Section 5 proposes an alternative formulation, and 

Section 6 shows complexity results.  Section 7 concentrates on heuristics and lower 

bounds, and Section 8 provides computational results.   

5.2  LITERATURE REVIEW 

Shipment routing problems appear in many network applications such as 

transportation and telecommunication.  These problems are operational level problems 

and handled after designing the physical and logical networks.   

Railroad trip planning problems are one of the applications of shipment routing 

problems.  In railroad planning and scheduling, Assad (1980) presents the hierarchical 

structure of decision problems in railroads.  Cordeau  et al. (1998) and Ahuja et al. (2005) 

give a recent survey of railroad network design problems.   
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In railroad planning hierarchy, the railroad blocking problem and the train 

scheduling problem should be solved before solving the trip planning problem.  The 

blocking problem which involves grouping shipments into blocks is the primary planning 

problem in the railroad industry for logical network generation.  Newton et al. (1998), 

Barnhart et al. (2000), and Ahuja et al. (2007) work on this problem.  After a railroad has 

developed a blocking plan, designing a train schedule is the next operational planning 

task.  Related works can be found in Farvolden and Powell (1994), Campbell (1996), 

Kraft (1998), and Brannlund et al. (1998). 

To the best of our knowledge, there are few papers in the literature related to the 

trip planning problem (see Van Dyke 1992, 1994) which corresponds to shipment routing 

problem in railway applications.  Nozick and Morlok (1997) study the shipment-to-train 

assignment problem and the problem of repositioning empty cars together for a given 

train schedule without considering any blocking plans.  They consider the objective 

function of minimizing the total movement cost of cars while satisfying due date 

constraints.  They formulate the problem as an integer program over a time-space 

network, and propose a heuristic based on the linear programming relaxation.  The 

heuristic rounds up or down some of the fractional values and reruns the linear 

programming relaxation until a feasible integral solution is found. 

Kwon et al. (1998) consider the shipment-to-block assignment and the trip 

planning problems for a given train schedule under train capacity constraints.  They 

formulate the problem as a linear multicommodity flow problem and use column 

generation as a solution approach.  They formulate the multicommodity flow problem 

using path flows for every shipment from its origin to its destination.  During column 

generation, the restricted master problem is solved for a subset of the paths, and the 

subproblems are represented as shortest path problems for every shipment from its origin 
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to its destination.  In their computations, they use a network with 12 stations and 16 

trains. 

Jha et al. (2008) deal with the trip planning problem for a given block plan and a 

train schedule subject to train capacity constraints.  They develop arc-based and path-

based multicommodity network flow formulations of the problem.  In their model, they 

assume that all the trains run every day, and all the blocks are made every day.  The 

formulations are defined in a time-space network in which every node is distinctly 

identified by place, time and train within the block.  They connect the last node to the 

first node at the same station and obtain a one-day network with wrap around arcs.   

The path based formulation given in Jha et al. (2008) considers the potential paths 

for each block.  This approach is different than Kwon et al. (1998) because Kwon et al. 

define the potential paths for each shipment.  Since a shipment can use multiple blocks in 

its blocking plan, the formulation in Jha et al. (2008) has fewer path variables than the 

formulation in Kwon et al. (1998).  However, the path based formulation in Jha et al. 

requires connection arcs between blocks to capture the transit times of the shipments.  Jha 

et al. (2008) do not generate these connection arcs but instead assume that there is only 

one release time for each block in a day.  This assumption reduces the problem to the 

block level so that the problem assigns one path for each block under train capacity 

constraints. 

Jha et al. propose exact and heuristic algorithms based on the path-based 

formulation.  Their exact algorithm solves an integer programming formulation based on 

a branch and price approach.  The columns are generated either a priori or dynamically.  

They also develop Lagrangian relaxation-based heuristic method and present 

computational results using the data provided by a major U.S. railroad.  (Data consists of 

around 1200 blocks and 350 trains.)  
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The trip planning problem also appears indirectly in the problem structures of a 

few papers.  These efforts determine the routing and frequency of trains (but not the 

actual departure times of the trains), and the block to train assignments together.  The 

blocking policy may be either determined within the model or given as an input.  Thomet 

(1971) develops a cancellation procedure that gradually replaces direct shipments with a 

series of intermediate train connections in order to minimize operation and delay costs.  

Crainic et al. (1984), and Crainic and Rousseau (1986) propose a nonlinear, mixed 

integer, multi-commodity flow model that deals with the interaction between blocking, 

block to train assignments and train and traffic routing decisions.  The model specifies 

the feasible routes on which train services may be run and defines a set of feasible trip 

plans for each origin-destination pair.  Haghani (1987, 1989) develops a formulation and 

heuristic decomposition approach for combined train routing, block-to-train assignment 

and empty car distribution problems.  Keaton (1989) develops a heuristic method based 

on Lagrangian relaxation for the combined problem of car blocking, train routing, and 

block-to-train assignment.  He obtains subproblems that can be represented as shortest 

path and knapsack problems.  Keaton (1992) additionally considers constraints for 

blocking and maximum transit time for each origin–destination pair.  Martinelli and Teng 

(1996) propose a neural network approach to solve the train routing and the shipment to 

train assignment problems.  The problem is formulated as a nonlinear integer program 

that minimizes the total time spent by shipments in the system.  Marin and Salmeron 

(1996) consider the train routing and the shipment-to-train assignment problems and 

develop three heuristic methods:  the descent method, simulated annealing, and tabu 

search. In their computational tests, simulated annealing obtained the best solutions but 

required more time than the other heuristics.   
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In communication networks, data transfer over multi-layer networks.  Related 

problems about multi-layer network design in communication networks can be found in 

Pioro and Medhi (2004) and Orlowski (2009).  After the design of communication 

network, data packages are routed on this network following network policies. 

The shipment routing problem is often formulated as a multicommodity network 

flow problem with additional side constraints.  In fact, the shipment routing problem 

without capacity and dispatching constraints is simply solvable via shortest path 

algorithms.  However the shipment routing problem differs from the standard 

multicommodity flow problem when we consider the capacities such that each 

capacitated resource may be usable by multiple arcs and each arc may be consists of 

multiple resources in the shipment routing problem.   

The multicommodity network flow problem is one of the classical problems in the 

literature since the publication of Ford and Fulkerson (1958).  Many of the approaches 

were developed in the 1960s and 1970s.  Assad (1978) and Kennington (1978) are 

excellent survey papers that describe several algorithms and standard properties of 

multicommodity flow problems.  Additionally, Ahuja et al. (1993) present several 

solution procedures.  Decomposition techniques have been used extensively in solving 

large multicommodity flow problems. Barnhart et al. (1995) and Jones et al. (1993) 

develop column generation models for linear multicommodity flow problems.  Barnhart 

et al. (2000) propose a branch-and-price-and-cut algorithm for integer origin-destination 

multicommodity flow problems.  Crainic et al. (2001) develop the Lagrangian relaxation 

technique, and their experiments show that the bundle methods appear superior to 

subgradient approaches.  Castro (2000) considers the interior point algorithm to solve 

linear multicommodity flow problems.  There are also multicommodity flow problems 

with convex costs, and Ouorou et al. (2000) give an excellent survey of this area. 
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The shipment routing problem is a large scale problem that is hard to solve.  To 

the best of our knowledge, there is no study done in the literature for the shipment routing 

problem with capacity and dispatching policies.  Without dispatching policy constraints, 

the efforts in the railway literature either solve small problem instances (Kwon et al, 

1998) or deal with simplified versions of this problem (Jha et al., 2008).  In this chapter, 

we develop approaches to solve real-size problems in a reasonable time. 

5.3  PROBLEM DEFINITION 

In this section, we will formulate the shipment routing problem as a 

multicommodity network flow problem over a time-space network.  Traditionally, there 

are two formulations developed for multicommodity network flow problems:  Arc-based 

and path-based.  The arc-based formulation is a standard method for formulating a 

multicommodity network flow problem.  The path-based formulation is commonly used 

with column generation techniques because its constraint set is smaller than the constraint 

set of arc-based formulation, but its variable set is far bigger.  

Several side constraints in multi-layer networks make the arc-based formulation 

impractical in solving shipment routing problems.  To be able to construct relations 

between shipments, we need enormous number of constraints in the arc-based 

formulation.  Conversely, the number of variables in the path-based formulation can be in 

the billions.  Therefore, we formulate the shipment routing problem by using a hybrid 

approach.  We expand the arc definition and consider only those stations where the 

dispatching constraints take place.  This approach handles the practical constraints with 

an affordable number of variables.   
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Let W be the set of all shipments that are customer orders and should be 

transported from their origin to destination.  Each shipment Ww∈  has the following 

attributes:  

ow Origin station of shipment w; w ∈ W 

dw Destination station of shipment w; w ∈ W 

rtw Release time (available time to use) of shipment w; w ∈ W 

vw Volume of shipment w; w ∈ W 

A shipment travels from its origin to destination using appropriate blocks.  Let B 

be the set of all blocks, and let BW(w) represent the set of all blocks that can carry 

shipment w.  Each block Bb∈  has the following characteristics:  

obb Origin station of block b; b ∈ B 

dbb Destination station of block b; b ∈ B 

A block is carried by a sequence of carriers during its path.  The route of a carrier 

between two consecutive stations is called a resource that subject to capacity.  The 

volume capacity of each resource is considered as a resource capacity.  Let R represent 

the set of all resources, with each resource indexed as r.  

Each possible sequence of carriers for a block from its origin to destination is 

called a link, a term barrowed from communication network.  Each link can be 

represented by the block’s origin, the block’s destination, the departure time of a carrier 

that carries the block from its origin, the arrival time of a carrier that carries the block to 

its destination, and the resources passed on the block’s route.   

Let P be the set of all links.  Each link Pp∈  can be related to shipments and 

resources.  We define the following sets to represent relationships between shipments and 

resources: 

PW(w)   Set of links that can be used by shipment w; w ∈ W 
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WP(p)    Set of shipments that can use link p; p ∈ P 

PR(r)     Set of links that use resource r; r ∈ R 

Figure 5.1 shows the representation of shipments, blocks, links and their 

relationships discussed so far. 

 

Figure 5.1. Shipments, Blocks and Links 

The shipment routing problem uses all of the information given above as input 

and generates a solution that assigns shipments to links by considering following side 

constraints: 

• Capacity constraints:  Resource capacity cannot be violated. 

• Dispatching policy constraints:  Among two shipments, a shipment that arrived 

at the station earlier cannot go after one that arrived later if they are attached to 

same block for their next trip. 

The objective function minimizes total weighted transit times of shipments from 

their origin to destination.  However the formulation we give here can also handle other 
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types of objective criteria such as total waiting times at the stations and total 

earliness/tardiness (if there are due dates for shipments). 

The time-space network of the shipment routing problem is defined as G = (N, A) 

where N denotes the node set and A denotes the arc set.  A node (w, s, t) in the network 

represents a valid station s at a time t that a link can arrive or depart from that station for 

shipment w.  Two types of arcs are introduced for the arc set A: Link arcs and connection 

arcs.  A link is designed for each possible carrier sequence from the origin of the block to 

the destination of the block and a link arc is generated for each shipment that can attach 

to corresponding link.  Hence, the link arc may consist of multiple resources.  

On the other hand, connection arcs connects one link arc to next link arc so they 

represent waiting time at each station for each shipment, except for the destination station 

of the shipment.  All the nodes for a station are sorted in chronological order by their time 

attributes, and each node at a station is connected to the next node in this order.  We 

assume that the planning horizon is given and we accept the link arcs within that horizon.  

Moreover, the latest node at a station is connected to the dummy node at the destination 

to guarantee feasibility.  Otherwise infeasibility may occur either because of capacity 

constraints or planning horizon is not long enough to complete routings of some 

shipments.  Figure 5.2 illustrates the time-space network for the shipment routing 

problem for a shipment. 
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Figure 5.2. Time-space network representation for each shipment 

In Figure 5.2, P11 and P12 are outgoing link arcs from the origin station and 

incoming link arcs to the intermediate station for given shipment.  Similarly, P21 and P22 

are outgoing link arcs from the intermediate station and incoming link arcs to the 

destination.  D1 and D2 are dummy link arcs from the origin and the intermediate station 

to the destination, respectively.  These arcs move the shipment from one station to 

another. C11 and C12 are connection arcs at the origin, and C21, C22, C23 and C24 are 

connection arcs at the intermediate station.  These arcs represent the waiting time of the 

shipments if there is a flow on them.  

In this time-space network, shipments flow on “link” arcs and connection arcs, 

going from their origin to their destination.  This formulation is a mixture of pure arc-

based and pure path-based formulations.  The other two formulations can be described as 

follows: 

• Pure arc based formulation: In this time-space network, arcs represent individual 
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shipment-block sequence structure of the network.  Besides, two shipments can 

share same resource by using different blocks, so we need to embed the block 

information to the formulation anyway to represent dispatching policy constraints.    

• Pure path based formulation: In this time-space network, paths are generated for 

all shipments from their origin to destination. Although all of the network 

structure and practical constraints could be honored during the generation of 

feasible paths, the number of possible paths can be in the billions (around 2.1 

billions in one of our instance we tested) for a moderate size transportation 

company.  

The hybrid formulation holds the number of variables to a manageable size and 

handles the network structure and practical constraints easily. We use the following sets 

and indices in the IP formulation. 

Sets and Indices: 

W Set of all shipments, indexed by w 

P Set of all links, including dummy links, indexed by p 

R Set of all resources, indexed by r 

S Set of all valid stations, indexed by s 

PW(w) Set of links that can be used by shipment w; ∀ w ∈ W 

POW(w) Set of links that can be used by shipment w where the starting location is 

the origin of w; ∀ w ∈ W 

PDW(w) Set of links that can be used by shipment w where the ending location is 

the destination of w; ∀ w ∈ W 

PIW(w) Set of links that can be used by shipment w other than the links within the 

set of POW(w) and PDW(w); ∀ w ∈ W 

WP(p) Set of shipments that can use link p; ∀ p ∈ P 
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PR(r) Set of links that use resource r; ∀ r ∈ R 

SW(w) Set of stations that originate links in PW(w); ∀ w ∈ W 

SIW(w) Set of stations (intermediate stations) that originate links in PIW(w); ∀ w 

∈ W 

TSW(s, w) Set of departure and arrival times of links in PW(w) that originate and 

terminate at station s;  ∀ w ∈ W, s ∈ SIW(w) 

tnext(w, s, t) Earliest element of TSW(s, w ) later than time t; ;  ∀ w ∈ W, s ∈ SIW(w), t 

∈ TSW(s, w) 

tprev(w, s, t) Latest element of TSW(s, w) earlier than time t; ∀ w ∈ W, s ∈ SIW(w), t ∈ 

TSW(s, w) 

Porig(w, s, t) Set of links in PW(w) that originate at station s and time t; ∀ w ∈ W, s ∈ 

SIW(w), t ∈ TSW(s, w) 

Pdest(w, s, t) Set of links in P(w) that terminate at station s and time t; ∀ w ∈ W, s ∈ 

SIW(w), t ∈ TSW(s, w) 

vw Volume of shipment w; ∀ w ∈ W 

ur Total volume allowed on resource r; ∀ r ∈ R 

cwp  Cost of using link p for shipment w;  ∀ w ∈ W, p ∈ PW(w).  Note:  In our 

test data, this cost represents weighted transit times; (time to go from 

origin to destination of link p) times (volume of shipment w).   

fwst  Cost of being idle for shipment w at station s from time t to time tnext(w, 

s, t); ∀ w ∈ W,  s ∈ SIW(w), t ∈ TSW(s, w).  Note: We include the cost of 

being idle at origin or destination (if any) into the corresponding link to 

reduce number of variables.  

In this structure, we assume that all the shipments should be routed from their 

origin to their destination without violating capacity or dispatching policy constraints.  
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The optimization problem outlined above can be formulated as a multicommodity 

network flow with side constraints. 

Decision Variables: 

Xwp = 1 if shipment w uses link p, 0 otherwise; ∀ w ∈ W, p ∈ PW (w) 

Ywst = 1 if shipment w idles at station s from time t to time tnext(w, s, t), 0 otherwise; 

∀ w ∈ W,  s ∈ SIW(w), t ∈ TSW(s, w) 

Model Formulation: 
Minimize ∑ ∑ ∑∑ ∑

∈ ∈ ∈∈ ∈

+
Ww wSIWs wsTSWt

wstwst
Ww wPWp

wpwp YfXc
)( ),()(

           (1)  

subject to: 

Flow conservation constraints for origin stations of shipments    
1

)(

=∑
∈ wPOWp

wpX      for all w ∈ W           (2) 

Flow conservation constraints for intermediate stations of shipments    

),,(,,
),,(

,,
),,(

tswtprevsw
tswPdestp
wptsw

tswPorigp
wp YXYX +=+ ∑∑

∈∈

       

     for all w ∈ W, s ∈ SIW (w), t ∈ TSW(s, w)        (3) 

Flow conservation constraints for destination stations of shipments    
1

)(

=∑
∈ wPDWp

wpX      for all w ∈ W           (4) 

Resource capacity constraints 

r
pWPw rPRp

wpw uXv ≤∑ ∑
∈ ∈)( )(

  for all r ∈ R                     (5) 

Dispatching policy constraints 

First-in-first-out among shipments that use same block (see next section)             (6) 

Integrality  

1or  0=wpX     for all w ∈ W, p ∈ PW(w)               (7)  

1or  0=wstY     for all w ∈ W,  s ∈ SIW(w), t ∈ TSW(s, w)  
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The objective function (1) minimizes the total cost of links and connection arcs.  

The objective function can represent several types of cost structures such as: 

• Total weighted transit times of shipments from their origin to destination if the arc 

costs are equal to time spend on corresponding arcs 

•  Total waiting times at the stations if only the connection arcs have (time based) 

costs 

• Total earliness/tardiness if there are due dates for shipments and only the link arcs 

that go to destination of shipment have costs based on due dates. 

Constraint (2) and (4) assign shipments to their first and last blocks, respectively. 

Constraint (3) represents flow conservation constraints for intermediate stations.  

Constraint (5) indicates the capacity restrictions, and constraint (6) ensures dispatching 

policy, which will be described in detail in the next section.  Finally, constraint (7) is for 

integrality requirements.  

In addition to these constraints, there are also physical constraints, called 

dispatching constraints, needed to ensure the first in first out rule for shipments at the 

stations.  In the next section, we propose alternative formulations for dispatching 

constraints. 

5.4  DISPATCHING POLICY CONSTRAINTS 

In a transportation network, shipments wait in line for their next block connection.  

When the carrier arrives, it picks up the shipments located at the front of the line and fills 

to capacity.  Therefore, there is a practical constraint which states:  Among two 

shipments, a shipment that arrived at the station earlier cannot go after one that arrived 

later if they are attached to same block for their next trip.   
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In Figure 5.3, there are two shipments w and w' at the same station s and they are 

attached to same block to depart this station.  Let shipment w arrives to the station with 

link p and departs from the station with link q.  Then, the dispatching policy rule states 

that shipment w' cannot come to station s earlier than the arrival time of shipment w and 

depart from station s later than shipment w.  We develop three types of formulations to 

describe these constraints.  

 

Figure 5.3. Departures of two shipments using the same block 

5.4.1 Type-A dispatching constraints 

We define the following additional sets and indices: 

ap  Arrival time of link p; ∀ p ∈ P 

link variables 
waiting variables 

Station s, 
Shipment w 

Station s, 
Shipment w’ 

Xw,p 

time ap 

Xw,q 

Xw’q’ 

Yw’,dsp,tprev(w’,dsp,ap) 
link p 

link q 

link q’ 

time tprev(ap) 
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dp  Departure time of link p; ∀ p ∈ P 

dsp  Destination station of link p; ∀ p ∈ P 

ow  Origin of shipment w; ∀ w ∈ W 

rtw  Release time of shipment w; ∀ w ∈ W 

PWdest(w,p) Links usable by shipment w at the destination of link p; ∀ p ∈ P, ∀ w ∈ W 

Plater(q)   Links that depart later than link q and belong to same block as link q; ∀ q 

∈ P 

The following constraints ensure the dispatching criteria: 

both shipments are at their origin 

1'' ≤+ qwwq XX    for all w ∈ W, q ∈ POW(w),  rtw > rtw'             (A1)                   

     w'∈ WP(q), q' ∈ Plater(q), q' ∈ POW(w')        

shipment w is at the middle station, and w' is at its origin 

2'' ≤++ qwwqwp XXX   for all w ∈ W, q ∈ PIW(w), q∈PWdest(w,p)  (A2)                     

     w′∈ WP(q), q'∈ Plater(q), q'∈ POW(w'), ap > rtw'      

shipment w' is at the middle station, and w is at its origin 

2''),,'(,,' ≤++ qwrtowtprevowwq XYX
www

 for all w ∈ W, q ∈ POW(w),                     (A3) 

     w′∈ WP(q), q' ∈ Plater(q)    

both shipments are at their middle station 

3''),,'(,,' ≤+++ qwadswtprevdswwqwp XYXX
ppp

 for all w ∈ W, q ∈ PIW(w),       (A4)         

      q∈PWdest(w,p), w′∈ WP(q), q' ∈ Plater(q)   

 In each of these constraint sets, we are comparing two shipments at each 

constraint.  Constraint (A1) is for the case where both shipments are at the same origin.  

Constraint (A2) and (A3) are for the cases where only one shipment is at its origin.  

Constraint (A4) shows the case where both shipments are at their intermediate stations.  

Suppose shipment w is attached to links p and q.  Shipment w' ≠ w cannot arrive at station 
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s before than link p and depart on a link q' that departs later than link q without violating 

the dispatching rule.  Similarly, if shipment w' is waiting at station s whenever shipment 

w arrives, then shipment w should not depart before shipment w'.  Therefore, the 

variables at the left hand side of the constraints cannot be one at the same time. 

5.4.2 Type-B dispatching constraints 

Type-B dispatching constraints introduce new variables to represent arrival and 

departure time of a particular shipment at each station as a single variable.  We define the 

following additional sets and indices: 

osp  Origin station of link p; ∀ p ∈ P 

dsp  Destination station of link p; ∀ p ∈ P 

Plater(q)   Links that depart later than link q and belong to same block as link q; ∀ q 

∈ P 

TASW(s, w) Set of arrival times of links in PW(w) that terminate at station s;  ∀ w ∈ W, 

s ∈ SW(w).  This also includes release time of shipments that originate at 

station s. 

PSW (w, s, t)   Links that are eligible for shipment w and depart from station s later than 

time t; ∀ w ∈ W, s ∈ SW (w), t ∈ TASW(s, w) 

We define the following variables: 

Zwtq = 1 if shipment w arrives to station osq at time t and departs from station osq by 

using link q, 0 otherwise; ∀ w ∈ W, t ∈ TASW (osq, w), q ∈ PSW (w, osq, t) 

The following constraints ensure the dispatching criteria: 

1''' ≤+ qtwwtq ZZ  for all w ∈ W, t ∈ TASW (osq, w), q ∈ PSW (w, osq, t)     (B1)        

   w′∈ WP(q), q′ ∈ Plater(q) , t′ < t, t′ ∈ TASW (osq, w′), 

wtqwq ZX ≤   for all w ∈ W, t = rtw, q ∈ PSW (w, osq, t),             (B2) 
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  q ∈ POW(w)  

wtqwqwp ZXX ≤−+ 1  for all w ∈ W, t ∈ TASW (osq, w), q ∈ PSW (w, osq, t),              (B3) 

  q ∈ PIW(w), t = ap 

The explanation of constraint (B1) is similar to the explanations for Type-A 

constraints.  The additional Z variables have three indexes to represent both arrival and 

departure times of a particular shipment.  Constraints (B2) and (B3) link the X and Z 

variables at the origin and intermediate stations.   

Clearly, Type-B dispatching constraints use more variables than the Type-A 

constraints.  In addition, Type-B has more constraints than Type-A, because previous 

constraints check whether shipment w′ waits or not at the time shipment w arrives by 

using one connection variable.  However, Type-B constraints look at all the time points 

smaller than the arrival time of shipment w. 

Proposition 5.1: Neither Type-A nor Type-B dispatching constraints is the stronger than 

the other.  

Proof: In Figure 5.4, there are two shipments (w and w′) that are use the same block to 

depart station s.  Assume that Xwp = Xwq = 1.  Then, Zwtq = 1 for t = ap. 

If Xw′p′ = Xw′p′′ = Xw′q = Xw′q′ = 0.5, then all the Z variables related to w′ could be 

zero.  Therefore, this solution satisfies Type-B constraints.  However 

1),,'(,,' =
pqq aoswtprevoswY  due to flow constraints.  Hence; 

35.35.0111''),,'(,,' >=+++=+++ qwaoswtprevoswwqwp XYXX
pqq

  

violates Type-A constraints. 

Similarly, if Xw′p′ =1 and Xw′q′ = Xw′q′′ = 0.5; then 5.0),,'(,,' =
pqq aoswtprevoswY  due to the 

flow constraints.  Hence, 35.05.011''),,'(,,' =+++=+++ qwaowTowwqwp XYXX
pqlastq

 

satisfies Type-A constraints.  On the other hand, Zwtq′ = 0.5 for t = ap′.  Hence, 
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15.15.01''' >=+=+ qtwwtq ZZ  violates Type-B constraints.  Therefore, neither Type-A 

nor Type-B is the stronger of the two. 

 

Figure 5.4. Type-A and Type-B constraints where neither of them is stronger 

5.4.3 Type-C dispatching constraints 

Type-C dispatching constraints require a different approach.  In this case, we 

introduce the variables that determine time window for every link.  For each link, there is 

a time window whose lower and upper bounds are calculated based on the arrival time of 

the earliest and latest shipments assigned to that link.  If the arrival time of the latest 

shipment assigned to a previous link has a time greater than that of the arrival time of the 

earliest shipment assigned to a next link of the same block, then we can conclude that 

there is a dispatching violation between these links.  

link variables 
waiting variables 

Station s, 
Shipment w 

Station s, 
Shipment w’ 

Xw,p 

time ap 

Xw,q 

Xw’q’ 

Yw’,oq,Tlast(w’,oq,ap) 

link p 

link q 

link q’ 

time Tlast(ap) 

Xw’,p” 

Xw’q 

Xw’q” 

Xw’,p’ 
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There are two kinds of shipments that violate the dispatching rule:   (i) shipments 

assigned to a link p with arrival times that are later than the shipment with the earliest 

arrival time in the next link and (ii) shipments with arrival times that are earlier than the 

shipment with the latest arrival time in the previous link p.  

Consider the following two links (P1 and P2) of the same block: 

  

Figure 5.5. Time window violation of links 

In Figure 5.5, two links of same block have time windows based on the arrival 

time of shipments assigned to these links.  The first link carries shipments that arrive 

between t1 and t3, and the second link carries shipments that arrive between t2 and t4.  

Here we have to reschedule shipments that arrive between t2 and t3.  Figure 5.6 shows 

non-overlapping time windows for links.   

 

Figure 5.6. Non-overlapping time windows for links 

time 

P2 

P1 

t1 t2 t3 t4 

w1 

P1 P2 D 

space 

station 

w2 w3 w4 w5 w6 w7 

Time window 
of P1 

Time window 
of P2 

Time window 
of D 

Assigned to P1 Assigned to P2 Assigned to D time 
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To determine time windows for links, we define the following additional sets and indices: 

SIW(w) Set of stations for shipment w other than origin and destination; ∀ w ∈ W 

PIOS(w,s) Set of links that can be used by shipment w and starting location of links is 

station s; ∀ w ∈ W, s ∈ SIW(w) 

PIDS(w,s) Set of links that can be used by shipment w where its ending location is 

station s; ∀ w ∈ W, s ∈ SIW(w) 

next(p)      Next link in time after link p that belongs to same block; ∀ p ∈ P 

We define the following additional variables: 

LBp    Lower bound in time for accepting shipments for link p, ∀ p ∈ P 

UBp    Upper bound in time for accepting shipments for link p, ∀ p ∈ P 

The following constraints ensure the dispatching criteria: 

pwpwpwp UBXMrtLBXM +−≤≤+−− )1()1(         for all w ∈ W, p ∈ POW (w) (C1) 

qwq
swPIDSp

wppqwq UBXMXaLBXM +−≤≤+−− ∑
∈

)1()1(
),(

 for all w ∈ W, s ∈ SIW (w)    (C2) 

                                                                              q ∈ PIOS (w,s)       

pp UBLB ≤             for all p ∈ P                          (C3) 

ppnext UBLB =)(            for all p ∈ P                          (C4) 

where M represents a big number and makes a constraint loose if a shipment is not 

assigned to a link in that constraint. (M will be properly calculated in the next section.) 

Constraint (C1) is for the origin, and (C2) is for intermediate stations of the 

shipment.  Whenever a shipment is assigned to a link, these constraints ensure that the 

lower bound of the link is not bigger than the arrival time of the shipment and the upper 

bound of the link is not smaller than the arrival time of the shipment. 

Note:  Instead of arrival time of shipments, any kind of ordering criteria could be used to 

determine dispatching policy.  
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Although the Type-C constraint set requires fewer constraints than others, it 

contains big M parameters that weaken the constraints.  However, if we choose 

appropriate big M parameters (calculated in the next section), we can strengthen them.   

Proposition 5.2: Neither Type-A nor Type-B dispatching constraints is stronger than 

Type-C dispatching constraints and vice versa. 

Proof:  In Figure 5.4, there are two shipments (w and w′) that use the same block to 

depart station s.  Assume that Xwp = Xwq = 1. Then, Zwtq = 1 for t = ap. 

• If Xw′p′  = Xw′p′′ = Xw′q = Xw′q′ = 0.5, this solution violates Type-A, and satisfies 

Type B.  Assume that Xw′q′′′ = 0.5 instead of Xw′q, where link q′′′ departs later than 

the other links.  The solution still violates Type-A, and satisfies Type B.  We can 

choose M = ap, which is the latest arrival time at that station.  Therefore, 

  

2
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5.0
2

5.0
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'

'
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'
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pqq

qp
pp
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qpq
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 This solution violates or satisfies Type-C constraints depending on the selection 

of ap, ap′, and ap′′. 

• If Xw′p′ =1 and Xw′q′ = Xw′q′′ = 0.5, this solution violates Type-B, and satisfies Type 

A. We can choose M = ap, then; 

''

'''

5.0

5.05.0

ppqq

qppqp

qpq

aaLBUB

UBaaLBa

UBaLB

≤⇒=

+≤≤+−

≤≤

 

 This solution violates or satisfies Type-C constraints depending on the selection 

of ap, and ap′. 

This result shows that none of the dispatching constraints are weaker or stronger than any 

of the others. 
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5.4.4 Strengthening dispatching constraints 

In a capacitated shipment routing problem, we have flow-in-flow-out constraints, 

and there is one flow for each shipment. This means that a shipment can arrive at or 

depart from a station using only one link. Using this knowledge, we can find the 

following constraints, which are a stronger version of the Type-A dispatching constraints: 

both shipments are at their origin 
1

)('
'' ≤+ ∑

∈ qPq
qwwq

later

XX             for all w ∈ W, q ∈ POW(w),  rtw > rtw’  (A1)              

               w′∈ WP(q), q’ ∈ POW(w’)         

shipment w is at the middle station, and w’ is at its origin 
2

)('
'' ≤++ ∑

∈ qPq
qwwqwp

later

XXX            for all w∈W, q∈PIW(w), q ∈ PWdest(w,p) (A2)                     

              w′∈ WP(q), q’∈ POW(w’), ap > rt w’       

shipment w’ is at the middle station, and w is at its origin 
2

)('
''

)('
'' ≤++ ∑∑

∈∈ qPq
qw

rtPp
pwwq

laterwearlier

XXX           for all w ∈ W, q ∈ POW(w),                      (A3) 

              w′∈ WP(q)  

both shipments are at their middle station 
3

)('
''

)('
'' ≤+++ ∑∑

∈∈ qPq
qw

rtPp
pwwqwp

laterwearlier

XXXX     for all w ∈ W, q ∈ PIW(w),      (A4)         

              q∈PWdest(w,p), w′∈ WP(q)  

Similarly, the following constraints are a stronger version of the Type-B dispatching 

constraints: 
1

)',('
)'( )('

''' ≤+ ∑ ∑
∈
< ∈

wosTASWt
tt qPq

qtwwtq

q

later

ZZ           for all w ∈ W, t ∈ TASW (osq, w),      (B1)       

              q ∈ PSW (w, osq, t), w′∈ WP(q),  

wtqwq ZX ≤              for all w ∈ W, t = rtw, q ∈ PSW (w, osq, t),(B2) 

                                                         q ∈ POW(w)  
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wtqwq
twPATp
wp ZXX ≤−+∑

∈

1
),(

       for all w ∈ W, q∈PWdest(w,p), t = ap        (B3) 

         t∈TASW (osq, w), q∈PSW (w, osq, t), q∈PIW(w),  

where PAT(w, t) is the set of links related to shipment w and arrival times are equal to t.  

Observe that the proof of Proposition 5.1 does not hold for the strengthened Type-A and 

Type-B constraints.  

Finally, we can choose appropriate values for big M parameters for Type-C 

constraints. These parameters could be selected separately for each constraint.  We make 

the following observations: 

• The lower bound of the link should not be greater than the departure time of an 

earlier link for the same block, because an earlier link cannot get a shipment after 

it departs from the station. 

• The upper bound of the link could be as low as the earliest release time of the 

shipments or the earliest possible arrival time of the shipments to that station 

among the shipments that can also use this link, because that shipment can ride on 

a later link. 

To set the big M values, we define the following additional sets and indices: 

rtw Release time of shipment w at its origin; ∀ w ∈ W 

prev(p)      Previous link in time after the link p that belongs to the same block; ∀ 

p∈P 

first(p) First link in time that arrives among the links of the same block; ∀ p∈P 

last(p, t) Last link in time before time t that arrives among the links of same block; 

∀ p ∈ P 

tearliest(p)      Earliest arrival time or release time among the shipments w ∈ WP(p); ∀ 

p∈P 
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ap Arrival time of link p 

dp Departure time of link p 

We obtain the following results for the constraints at the origin (C1): 

wpprevpprevwp rtdMdMrtLB −=⇒=+≤ )()(             for all w ∈ W, p ∈ POW (w)   

)()( pearliestwpearliestwp trtMtMrtUB −=⇒=−≥             for all w ∈ W, p ∈ POW (w)   

We obtain the following results for the constraints at the origin (C2): 

)()()(
),(

pfirstqprevqprev
swPIDSp

wppq adMdMXaLB −=⇒=+≤ ∑
∈

         for all w ∈ W, s ∈ SIW (w)      

)(),()(
),(

qearliestdplastqearliest
swPIDSp

wppq taMtMXaUB
q

−=⇒=−≥ ∑
∈

   for all w ∈ W, s ∈ SIW (w) 

Observe that the proof of Proposition 5.2 does not hold for the strengthened Type-

A, Type-B and Type-C constraints.  

5.5  PATH-BASED ALTERNATIVE FORMULATION 

In this formulation, all feasible paths for all shipments, called shipment-paths, 

from origin to destination are created a priori for each shipment.  In the construction of 

shipment-path, one appropriate link is chosen for each block in the shipment-block 

sequence.  The problem is then to optimally assign each shipment to exactly one 

shipment-path.  Observe that the shipment-path definition here is different than the link 

definition for all shipments that have more than one block in its block sequence.          

Sets and Indices: 

W                    Set of all shipments 

P                     Set of all paths (from origin to destination) 

R                     Set of all resources 

PW(w)             Set of paths that can be used by shipment w; ∀ w ∈ W 

rWW(w)            Set of shipments that share at least one block with shipment w; ∀ w ∈ W 

WP(p)              Set of shipments that can use path p; ∀ p ∈ P 
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PR(r)               Set of paths that use resource r; ∀ r ∈ R 

PI(p, w, w’) Set of paths that are inconsistent (violate dispatching) with path p, if 

shipment w uses path p and shipment w’ uses the inconsistent path; ∀ 

p∈P, w ∈ WP(p), w’∈WW(w) 

ur  Total volume allowed on resource r; ∀ r ∈ R 

vw  Volume in shipment w; ∀ w ∈ W 

cwp  Cost of using path p for shipment w;  ∀ w ∈ W, p ∈ PW(w) 

Decision Variables: 

Xwp  = 1 if shipment w uses shipment path p, 0 otherwise; ∀ w∈W, p ∈ PW (w) 

Model Formulation: 
Minimize ∑ ∑

∈ ∈Ww wPWp
wpwpXc

)(

              (1) 

subject to: 

Assignment constraints for shipments    
1

)(

=∑
∈ wPWp

wpX      for all w ∈ W           (2) 

Resource capacity constraints 

r
pWPw rPRp

wpw uXv ≤∑ ∑
∈ ∈)( )(

  for all r ∈ R               (3) 

Dispatching constraints 

1'' ≤+ pwwp XX    for all w ∈ W, p ∈ PW(w)         (4) 

     w’ ∈ { i ∈ W: i ≠ w}, p’ ∈ PI(p, w, w’) 

Integrality  

1or  0=wpX     for all w ∈ W, p ∈ PW(w)          (5)   

The objective function (1) minimizes the total cost of used paths.  Constraint (2) 

assigns shipments to their paths.  Constraint (3) determines the capacity restrictions and 
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constraint (4) ensures dispatching policy rules.  Finally, constraint (5) is for integrality 

requirements.  

For a stronger version of the dispatching constraints, we can have a set that 

includes shipment-path pairs in which each of the pairs is inconsistent with another one. 

Then, we can write a clique constraint for them: 
1

),(),(

≤∑
∈ pwCliquepw

wpX    for all w ∈ W, p∈ PW(w), Clique(w, p)          (4) 

Although all of the network structure and practical constraints could be 

considered during the generation of feasible paths, the number of possible paths could be 

in the billions (2.1 billion for one of our test instance) for a moderate size transportation 

company. 

5.6  COMPLEXITY RESULTS 

The capacitated network flow problem is a well-known NP-Hard problem.  That 

is why we will explore the uncapacitated version of the problem with dispatching policy 

constraints, called USR-DP.  We first analyze the conditions that make the solution of the 

problem integral. Then, we explore the complexity properties of the general shipment 

routing problem with dispatching constraints. 

5.6.1 Integrality conditions 

The path-based formulation can be seen as a multicommodity network flow 

problem with side constraints. In network flow problems, there are many special cases 

that have an integrality property. We examine this problem to find the same property.  

Proposition 5.3: A shipment routing problem without resource capacity and dispatching 

policy constraints [USR] has an integer optimal solution even if there is no integrality 

requirement. 
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Proof: If there is no resource capacity or dispatching policy constraints, the problem can 

be decomposed for each shipment.  In each of these subproblems, the corresponding 

shipment should be carried from its origin to destination with minimum cost.  The 

subproblem is a shortest path problem and always has an integer optimal solution.  (See 

Ahuja et al. (1993) for details about the shortest path problem, such as Dijksta’s 

algorithm for acyclic graphs where the solution time is O(m), m is number of arcs in the 

graph.)  Therefore, the planning problem without resource capacity and dispatching 

policy constraints has an integer optimal solution. 

Remark:  In our later discussions, we will refer to the optimal solution of USR problem 

as the shortest path solution.     

In the shipment routing problem, one of the most common objective functions is 

total weighted transit time.  After all, the company wants to send their shipments as soon 

as possible to their destination.  This objective is in fact same as minimum weighted 

arrival time at the destination of shipments because the release times of shipments are 

fixed and given a priori.   

The next observation concerns the dispatching policy constraints.  The following 

proposition states that if shared blocks have same shortest paths for all shipments, then 

the shortest path solution preserves after the addition of dispatching policy constraints.  

Examples of this type of objective function are total weighted transit time cost and total 

weighted tardiness cost (if there are due dates for shipments).  

Proposition 5.4: Consider the sub-path for a shipment-pair that shares block(s) where 

the sub-path begins from the starting station and time of the earliest available link of the 

first shared block, and ends at the ending station and time of the latest arrived link of the 

last shared block.  If all shipment pairs have same shortest sub-paths for their commonly 

used blocks, then the uncapacitated shipment routing problem with dispatching policy 
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constraints [USR-DP] has an optimal solution which is equal to the shortest path 

solution. 

Proof:  From Proposition 5.3, the USR problem has an integer optimal solution even if 

there is no integrality requirement.  Assume that there is an integer optimal solution to the 

USR problem, and this solution violates dispatching policy constraints.  

In the optimal solution, w, w′ ∈ W use links, respectively, p and p′ of the same 

block.  These shipments use the same departing block, and the earlier shipment that 

comes to that station (say w) uses the later link p for departure.  Since shipment w is the 

earlier shipment, it can also use the earlier link p′.  In addition, shipment w′ can be 

assigned to the later link p used by shipment w.   

Since both paths are feasible for both shipments, we can assign both of them to 

the same link with minimum cost. With this assignment, following situations may occur: 

• If the new assignment causes an earlier arrival to the ending station of the link, 

then the remaining downward assignments are still feasible.  If the ending station 

is the destination of one of the shipments and the new assignment allows it to 

come to that station earlier, then this solution contradicts the optimality of the 

original solution.   

• If the new assignment causes a later arrival to the ending station of the link, then 

the remaining downward assignments may not be feasible.  If it is infeasible, then 

re-assign the links on the downwards.  If it causes a cost increment, then the 

shortest sub-path assumption in the proposition does not hold.  If the ending 

station is the destination of one of the shipments and the new assignment allows 

it to come to that station later, then again the shortest sub-path assumption in the 

proposition does not hold.   
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Hence, the USR-DP problem has an integer optimal solution which is equal to the 

shortest path solution.  The following result shows some examples of cost functions that 

satisfy Proposition 5.4.  In some of the cost functions, the shipments have due dates, 

desired time to reach the destination, and if a shipment is late, there could be a tardiness 

cost which is difference between arrival time to the destination and the due date.     

Corollary 5.5:  Results from Proposition 5.4 hold for the following functions: 

• Total weighted transit time cost, 

• Total weighted tardiness cost, 

• Maximum weighted tardiness cost, 

• Total number of tardy shipments. 

Unfortunately, this result is not true for the general type of objective functions such as 

total earliness cost.  

Proposition 5.6: Assume that the following assumptions hold: 

• cwp = gwhp and fwst = 0 for all w ∈ W, 

• All the shipments have the same destination, but they can have multiple origins, 

• If two shipments share a block, then they share all blocks after that block. 

Then the multiple origin-single destination uncapacitated shipment routing problem with 

dispatching policy constraints has an optimal solution which is equal to the shortest path 

solution. 

Proof: Since the shipments are using the same blocks at the tail of the block sequence 

and go to the same destination, the shortest remaining path after the first common station 

for one shipment is also the shortest remaining path for the other one.  

This proposition shows that the single destination special case could be solvable 

polynomially even for time independent costs.  
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Corollary 5.7:  Results in Proposition 5.6 hold for multiple destinations if the shipments 

that have common blocks also have common destinations.  

Proof:  The problem is decomposable for each destination.  The remaining shortest path 

claim is still valid in this case. 

Proposition 5.8: Assume that the following assumptions hold: 

• cwp and fwst are not restricted for all w ∈ W, 

• All the shipments have the same origin but can have multiple destinations, 

• Only the first block is a common block. 

Then the single origin- multiple destination uncapacitated shipment routing problem with 

dispatching constraints is solvable in polynomial time by using shortest path algorithms. 

Proof: If a shipment does not share any block, we can send it directly via its shortest 

path. Assume that there are n shipments that share their first block and m links that 

belong to that block. Let release times be a1<a2…<an for these n shipments and m links, 

and let cij be the total cost from origin to destination if shipment i is assigned to link j.  

We will construct the following graph to solve this problem. 

At each node (i,j), the outgoing arc represents the flow on link j such that 

(i,j)�(i+k,j+1) assign shipments i+1,..,i+k  to link j. The cost of this link is ∑
+

+=

ki

il
ljc

1

.  Since 

each link assignment begins with the earliest shipment that is not assigned to previous 

links, the resulting solution satisfies the dispatching constraints. 

The graph is acyclic, so Dijkstra’s algorithm could solve it. Under the given 

release times of shipments, the given links, and the cost from origin to destination for 

selected links, the problem is solvable in O(nm). 

Corollary 5.9: The result for proposition 5.8 is true for multiple origins if only the first 

blocks are common. 
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Proof: The problem is decomposable for each origin. For each sub-problem, proposition 

5.8 holds. 

 

Figure 5.7.  Illustration for Proposition 5.8 and Corollary 5.9. 
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B is the conjuction of n clauses, each of which is the disjunction of 3 literals. A literal aij 

represents either a Boolean variable or its negation. B is satisfiable if the variables can be 

assigned Boolean values so that B is true. In other words, at least one variable should be 

true in each clause. The 3-Satisfiability problem determines if B is satisfiable. 

Proposition 5.10: The 3-Satisfiability problem [3-SAT] is polynomially reducible to the 

uncapacitated shipment routing problem with dispatching policy constraints [USR-DP].   

Proof:  We will use the shipment-path (see Section 4.5) formulation to simplify the proof 

and convert the general 3-SAT to a USR-DP instance.  Assume that we have a Boolean 

expression )( 321
1

iii

n

i
aaaB ∨∨=

=
∧ .  The construction of the USR-DP instance for the 

indices and sets is as follows: 

• There are n shipments for each clause. 

• Each shipment w has 3 paths corresponding to 3 variables in its clause 

• The set of pair of paths that are inconsistent contains all Boolean variables and 

their negations. 

• The costs of the paths are zero.  

By construction, if there is a solution to the USR-DP instance, that solution cannot 

contain a Boolean variable and its negation at the same time. Therefore, the solution of 

the USR-DP instance satisfies the Boolean expression. 

Since each set, index and parameter in USR-DP has at most O(n) items, the 

reduction will take polynomial time.   

Corollary 5.11: The 3-Satisfiability problem [3-SAT] is polynomially reducible to the 

uncapacitated shipment routing problem for a single origin and destination with 

dispatching constraints [USRS-DP].   
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Proof: Using the proof of Proposition 5.10, additionally define the paths for each 

variable and its negation in the Boolean expression.  Let all of the available paths for all 

of the shipments but only the variables in a shipment’s corresponding clause have zero 

costs.  The other paths have cost 1 for that shipment.  

Then, the question becomes whether there is an optimal solution with a zero 

objective function or not.  If there is, the solution of the USR-DP instance satisfies the 

Boolean expression. Since each set, index and parameter in USR-DP has at most O(n) 

items, the reduction will take polynomial time.   

Corollary 5.12: The 3-Satisfiability problem [3-SAT] is polynomially reducible to the 

uncapacitated shipment routing problem for a single origin and destination with 

dispatching constraints, and the problem contains only two blocks [USRS2-DP].   

Proof: In the proof of Corollary 5.11, only the Boolean variable and its negation are 

corresponding inconsistent paths. This inconsistency could be obtained by switching 

station blocks.  Therefore, two blocks are enough to complete the proof of Corollary 5.11. 

Corollary 5.13: The uncapacitated shipment routing problem for a single origin and 

destination with dispatching constraints where the problem contains only two blocks is 

NP-hard in the strong sense.   

Proof: From corollary 5.12, proof is clear. 

The above complexity results are obtained using a shipment-path formulation and 

general cost function.  The cost function of shipment-path formulation may require a non-

linear cost function to represent in the link based formulation.  However, we intend to 

focus on linear cost structures in the link based formulation.  As such, we obtained the 

following result.  

Proposition 5.14: Assume that the following assumptions hold: 

• cwp = gwhp   
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• fwst equals the weighted waiting time at that station for all w ∈ W, 

Then, the 3-Satisfiability problem [3-SAT] is polynomially reducible to the uncapacitated 

shipment routing problem with dispatching constraints [USRL-DP].   

Proof: We will use the link formulation and convert the general 3-SAT to a USRL-DP 

instance.  Assume that we have a Boolean expression )( 321
1

iii

n

i
aaaB ∨∨=

=
∧ , and the 

expression has m variables. The construction of the USRL-DP instance for the indices 

and sets is as follows: 

• There are n shipments for each clause. 

• Each shipment w has 3 blocks to assign, and the intermediate block is the same 

for all shipments. Shipments have different origins and destinations, but they have 

the same intermediate stations. Each shipment is released at time 0. 

o First block construction: Each shipment has a different first block, and 

each of these blocks has 3 links which correspond to variables in that 

shipment’s clause. These links have the same departure times (time 0), but 

their arrival times are different. In total, 2m arrival times are defined for 

each variable and its negation.  Let c be a small number and M be a big 

number. Then the arrival times are: {c, 2c}, { M+c, M+2c},  {2M+c, 

2M+2c}, … , { mM+c, mM+2c}. There are two numbers in each 

parenthesis; one for each variable and one for its negation. 

o The second block is a common block and has 2m links for each variable 

and its negation. The departure times of these links are: {2c, 3c}, { M+2c, 

M+3c},  {2M+2c, 2M+3c},…, { mM+2c, mM+3c}. The corresponding 

arrival times of these links are: M, 2M, 3M, … , 2mM. 
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o The third block is different for each shipment, and each of these blocks 

has 3 links. As seen in the above, 2m links for the second block have m 

groups, and each group has only two links that have closer arrival and 

departure times than others.  The departure times of the links for the third 

block are the same as the arrival time of the links for the second block if 

the second link is in the group where its assigned variable (or its negation) 

is in the clause of the corresponding shipment. 

o There are no costs for links, but there are waiting costs at the stations.  

The question is whether there is a feasible solution whose objective value is less than M? 

To arrive at a solution, the shipment should select one of the variables in its clause 

always based on the links of the third block. Moreover, both of the links in the group 

cannot be selected at the same time, because there is a conflict in the switch station of the 

first and second block.  Therefore, the solution of the USR-DP instance satisfies the 

Boolean expression. 

Since each set, index and parameter in the USR-DP has at most O(n) items, the 

reduction will take polynomial time.  

 

Variables a1 2a  a3 

1st Links {0, c} {0, M+2c} {0, 2M+c} 

2nd Links All of them All of them All of them 

3rd Links {2M, 2M } {3 M, 3M} {6 M, 6M} 

Table 5.1.  Arrival and departure times for the links. 

Below there is a graphical illustration of this construction for one shipment. Let 

the variables be named as a1, a2, …, am and their negation be named as .,..,, 21 maaa  The 
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link arrival and departure times are assigned in the same order.  Assume that the shipment 

has a clause that includes the following three variables: .,, 321 aaa  Then, we have the 

arrival and departure times for each link given in Table 5.1.  

Here is the corresponding graph for that shipment: 

 

Figure 5.8.  Arrival and departure times for the links in Proposition 5.14. 
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Unfortunately, the USR-DP problem does not have any pseudo-polynomial 

algorithm to find an optimal solution unless P=NP. We see that solving the USR-DP is 

not easier than solving the 3-Satisfiability problem. But what is the difficulty level of 

solving the USR-DP problem? Next, we will transform the USR-DP to a shortest path 

problem with inconsistent pairs. 

Shortest Path with Inconsistent Pairs: Let I be a given a collection of pairs of vertices, 

referred to as inconsistent pairs, under a graph G = (V, A) with two fixed vertices s,t ∈V. 

A directed (s-t)-path is called the I-path if it contains at most one vertex out of each pair 

in I. The problem requires finding a shortest path among the I-paths. 

Proposition 5.15: The uncapacitated shipment routing problem with dispatching 

constraints [USR-DP] is polynomially reducible to the shortest path problem with 

inconsistent pairs.   

Proof: We will use the shipment-path formulation to simplify the proof. We will convert 

the general USR-DP instance to a shortest path problem with inconsistent pairs.  

Assume that there are n shipments, and each shipment w has pw paths. We will 

construct a (n+2) layered graph where each layer represents one shipment and two layers 

are for origin and destination nodes, as in the following graph:  



 147 

 

Figure 5.8.  Shortest path problem where each layer represents a shipment. 
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shipment and we have ordered them properly, each inconsistent pair has an arc in the 

shortest path graph.  By definition, these arcs cannot be used in the solution, so we delete 

them.  The resulting problem is nothing more than a well known shortest path problem, 

and it can be solvable in polynomial time (via Dijkstra’s algorithm, for instance). 

We can generalize this characteristic if inconsistent pairs have a nested structure.  

Definition: Assume that i1, i2, i3, i4 are the layer levels of the shipments in the graph. If 

there are no (i1, i2) and (i3, i4) pairs in the set of inconsistent pairs, such that i1< i 3<i 2< i 4, 

then the inconsistent set has a nested structure.   

Proposition 5.17: If the set of inconsistent pairs has a nested structure, the USR-DP 

problem is solvable in polynomial time. 

Proof: The solution algorithm has two steps: 

• In the first step, find a layer that has no inconsistent pairs with other layers.  

Delete this layer and connect one previous layer and one later layer to each other 

by summing the related incoming and outgoing arcs of the deleted layer. 

• In the second step, find a layer that has only inconsistent pairs with one previous 

or/and one later layer.  Delete the corresponding arcs that are inconsistent.  

The algorithm repeats itself until there is no layer left except origin and 

destination.  The algorithm is valid because in each step, we can find a layer that has no 

inconsistency or inconsistency with only neighbor layers. Otherwise, the nested structure 

will be violated.   

5.7  UPPER AND LOWER BOUNDS 

The capacitated shipment routing problem with dispatching policy constraints is 

hard to solve.  Hence, we develop some heuristics to get good feasible solutions which 

provide upper bounds for the optimal solution. We look at the problem from 3 different 
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perspectives and offer 3 heuristics.  We also provide a lower bound that strengthens the 

uncapacitated shipment routing solution.    

5.7.1 Moving-in-Time 

In this heuristic, the system has a state, which evolves with time, and a state 

change, which moves the system from one state to another.  State changes are called 

events.  The process of a system is characterized as a chronological sequence of events.  

In our problem, the shipment release, departure and arrival links are called events, and the 

time attributes of these events are called event times.  The heuristic algorithm keeps track 

of the current time, called clock, and the clock moves to the next event start time as the 

algorithm proceeds.  

Our approach constructs a feasible solution by assigning shipments to available 

links in chronological order.  As time goes by, the algorithm assigns the earliest arrived 

shipment to the earliest available link and changes the arrival time information of the 

shipment to the arrival time of the assigned link at the next station.  The algorithm repeats 

this process until all shipments reach their destination (by using real or dummy links).  

The following is the generic scheme for the Moving-in-Time algorithm. 

Algorithm for the Moving-in-Time 

0 Set eventList = (shipment, currentTime, currentStation) for all shipments where  

 (currentTime = shipment release time) and (currentStation = shipment Origin) 

1      While eventList is not empty do 

2           Set clock to the earliest currentTime in the eventList 

3      For all shipments whose currentTime equal to clock do 

4              Delete corresponding event from the eventList 



 150 

5 Find the earliest available link for the corresponding shipment at 

currentStation and assign that link to the shipment          

6               If the destination of shipment is not equal to the destination of the block 

 path then 

7 Add (shipment, currentTime, currentStation) event to the 

eventList: 

 currentTime = arrival time of link at the destination 

 currentStation = destination station of assigned link  

8    End If 

9       End For 

10  End While 

The algorithm performance could be improved by applying tie-breaking rules for 

the third step where the shipments have equal currentTime attributes.   Instead of 

selecting randomly, choosing a shipment whose earliest available link has minimum 

capacity could be a better idea. 

Although the algorithm works on a first come first served basis, it can find an 

optimal solution for the uncapacitated shipment routing problem with dispatching 

constraints.  

Proposition 5.18: Assume that the following assumptions hold: 

• Objective function is one of the objective functions given in Corollary 5.5, 

• Earliest available link at step 5 in the Moving-in-Time algorithm is taken as the 

link for which the arrival time at the destination is the earliest among the 

available times. 

Then, the Moving-in-Time algorithm provides the optimal solution for the uncapacitated 

shipment routing problem with dispatching policy constraints [USR-DP].  
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Proof: Since there are no capacity constraints, all the links that depart after the arrival 

time of the shipment are available.  Choosing the link for which the arrival time is the 

earliest provides the fastest route to the destination for each shipment.  This selection will 

not violate the dispatching policy constraints, because the earlier shipment can always 

select the later departing link even if that link arrives the earliest (similar arguments given 

in the proof of proposition 5.4).  The algorithm minimizes the total transit time if the 

shipment has the unique shipment-block sequence, so the result is true for the objective 

functions given in corollary 5.5.   

5.7.2 Aggregation 

The number of constraints and variables in the IP formulation are increasing with 

the number of shipments in the problem.  We can aggregate similar shipments to obtain a 

smaller problem, but the optimal solution for the aggregated shipments may not be equal 

to the optimal solution for the actual shipments.  However the aggregation could provide 

a feasible solution close to the optimal solution.   

Aggregated Shipment: An aggregated shipment is a set of similar shipments whose 

• Origin and destination are the same, 

• Set of blocks that can carry these shipments is the same, 

• First available link at the origin that can carry these shipments is the same. 

The volume of the aggregated shipment is the sum of all shipments in that aggregated 

shipment.  By construction, a feasible path for one shipment in the aggregated shipment 

is also a feasible path for the rest of the shipments in that aggregated shipment.  

The following is the generic scheme for the aggregated shipment generation. 

Algorithm for the aggregated shipment generation 

0      Set W = all shipments and set AW = empty set 
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1      While W is not empty do 

2           Get w ∈ W and delete that shipment w from set W.       

3 Generate an aggregated shipment aw whose origin, destination, volume and 

set of all available blocks are the same as w; add it to set AW 

4 For all shipments w’ ∈ W do 

5  If origin, destination, volume, set of all available blocks and the first 

available link at the origin of w’ is same as w then 

6 Add shipment w’ to aggregated shipment aw 

7 Add volume of shipment w’ to volume of aggregated shipment aw 

8 Delete shipment w’ from set W 

9             End If 

10 End For 

11    End While 

The heuristic simply solves the original problem optimally by using aggregated 

shipments and assigns those paths given by the solution to the shipments inside of the 

corresponding aggregated shipment.  Clearly, the aggregation heuristic forces the 

shipments to use the same path if they are in the same aggregated shipment.  In 

uncapacitated case, this approach satisfies the optimality. 

Proposition 5.19:  Assume that the objective function is one of the objective functions 

given in Corollary 5.5.  The following statements are true: 

a) For the capacitated shipment routing problem with dispatching policy constraints 

[CSR-DP], the problem with aggregated shipments provides a feasible (not 

necessarily optimal) solution to the problem with normal shipments 
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b) For the uncapacitated shipment routing problem with dispatching policy 

constraints [USR-DP], the optimal solution with aggregated shipments is also 

optimal with normal shipments 

Proof: (a)  Since a feasible path for one shipment in the aggregated shipment is also a 

feasible path for the rest of the shipments in that aggregated shipment, the solution for 

aggregated shipments is a feasible solution to the problem for normal shipments.   

 (b)  Without capacity constraints, the shipments use the shortest path.  Therefore, the 

optimal solution with aggregated shipments is also optimal with normal shipments. 

5.7.3 LP relaxation correction 

We can use the LP relaxation to obtain good feasible solutions.  The LP relaxation 

solution usually contains shipments with integer flows.  This heuristic fixes link 

assignments of those shipments.  Then, the remaining problem is resolved as an IP.  If the 

capacity violations are not too high, we hope that the remaining problem is small enough 

to solve quickly.   

The following is the generic scheme for the LP relaxation correction algorithm. 

Algorithm for the LP relaxation correction 

0      Solve the problem as an LP 

1      Fix the shipment-link assignments if all the assignments for that shipment are 

integer 

2      Resolve the reduced problem as an IP 

3      If the problem is infeasible or takes too much time to solve, terminate the 

algorithm without solution 

Remark:  If the problem contains only shipments for which all link assignments are 

integer in the LP solution, then the LP relaxation is optimal for that problem. 
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5.7.4 Strengthening the uncapacitated solution  

We also develop some lower bound calculation rules to decrease the optimality 

gap of feasible solutions obtained in the previous section.  The uncapacitated shipment 

routing problem is a relaxation of the original problem, and the optimal solution to this 

problem could be obtained easily via shortest path algorithms (or even the Moving-in-

Time algorithm described in 5.7.1) under certain cost conditions.  

The optimal solution to the uncapacitated shipment routing problem may violate 

the capacity constraints.  Therefore, some of the shipments that use a resource the 

capacity of which is exceeded should be shipped without using that resource.  Let vw be 

the volume of shipment w, ∀ w ∈ W, and ur be the total volume allowed on resource r, ∀ 

r ∈ R.  Also, we define set WR(r, x*) to represent shipments that use resource r for a 

given solution x*.  Let cdw,r show the cost difference between the shortest path of 

shipment w that does not use resource r and the current shortest path.  Then, the 

following result holds. 

Proposition 5.21:  Let x* represent the optimal solution of the uncapacitated shipment 

routing problem with dispatching policy constraints [USR-DP].  Let Xw be one if 

shipment w will not use the resource r in question.  If the optimal value of this problem 

increased by the optimal value of the following problem; 









∈∀−≥ ∑∑∑
∈∈∈∈

WwXuvXvXcd wr
xrWRw
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xrWRw
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xrWRw
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Rr
for binary  is ;|minmax

*),(*),(*),(
,  

then the resulting value is still a lower bound for the capacitated shipment routing 

problem with dispatching policy constraints [CSR-DP]. 

Proof:  For each inner minimization problem, the problem finds the minimum possible 

cost changes to eliminate any capacity violation of the selected resource.  Since these re-

assignments are necessary anyway, the increment of the objective function is the 
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minimum amount for the problem with capacity constraints.  The outer maximization 

selects the maximum increment among all resources.  

There is a close connection between shadow price of capacity constraints and cdw,r 

parameters.  Shadow price is change in the objective function if we change the capacity 

of corresponding resource with a small amount.  If the shipment volumes are small 

enough, this shadow price could be seen as minimum cdw,r parameter of shipments 

attached to that resource at the earliest or latest time.  

For the problem with a single resource violation and a single path for all 

shipments (plus dummy paths), the lower bound given in Proposition 5.21 is binding (i.e. 

gives the optimal value of the capacitated problem).  The following proposition 

strengthens the bound given in Proposition 5.21 even further.      

Proposition 5.22:  Let x* represent the optimal solution of the uncapacitated shipment 

routing problem with dispatching policy constraints [USR-DP].  Let Xw be one if 

shipment w will not use the resource r in question.  Solve the following problem for each 

r ∈ R: 


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
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Generate set CD(w) for all w ∈ W and put cdw,r to corresponding set CD(w) for all 

positive Xw values.  If the optimal value of the uncapacitated shipment routing problem is 
increased by the amount of { }∑ ∈

w
ww wCDcdcd )(:max , then the resulting value is still a 

lower bound for the capacitated shipment routing problem.  

Proof:  This proposition is a generalization of the previous one.  It adds all shipment path 

cost differences if the associated shipments are selected for only one problem.  If a 

shipment is selected in more than one problem, then the calculation in this proposition 

chooses the maximum one among the elements of set CD(w).  
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5.8  COMPUTATIONAL RESULTS 

We evaluate the performance of our approaches on real data instances.  The 

heuristics were programmed in Java and the IP model uses CPLEX 11.2 via concert 

technology.  The tests are taken on the 11 Dell Poweredge 2950 workstation with 3.73 

GHz Xeon and 24 GB of shared memory under Ubuntu Linux system. 

In our experiments, we tested on three instances and called these instances 1, 2 

and 3.  Our objective criterion is total weighted transit times of shipments and our 

planning horizon is one week.  Each instance has over 40000 shipments, over 10000 links 

and over 8000 resources.  In these instances, each shipment may be carried by over 5 

blocks.  Each block may have over 20 links and each link may use over 10 resources that 

are subject to capacity.      

Using the algorithm in Section 5.7.2, we generate the aggregated shipments by 

combining at most k shipments in one aggregated shipment, where k is 2, 5 and F (where 

F refers to full aggregation − aggregates all shipments if it can).  We test these instances 

by using one of the three FIFO (dispatching) constraints (Type-A, Type-B and Type-C) 

developed in Section 5.4.  In the problem names of our tables, the first number refers to 

instance, second one refers to aggregation level and the letter indicates the type of FIFO 

constraints.  In Table 5.2, the details about IP formulation is given for instance 1. 

To reduce the problem size, we perform the reachability test (whether the origin 

node can reach a particular node or not on the time-space network) and eliminate all the 

unreachable nodes and their potential arcs.  

For each problem, number of constraints, variables and nonzero coefficients are 

given.  Then, the IP, LP and heuristic (Moving-in-Time algorithm which performs better) 

solution times are presented.  Finally, the gap (* = heuristic value – best lower 

bound)/heuristic value) is calculated on the last column. 
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Problem 

Number of  

IP 
solution 

time  

Root 
solution 

time  

Heuristic 
solution 

time  
Heuristic 
vs. best 
lower 

bound* constraints variables nonzeros (sec) (sec) (sec) 

1-F-A 7.1M 216K 48.3M 6753 330 2 6.78% 

1-F-B 7.2M 442K 45.2M 82269 269 2 6.84% 

1-F-C 350K 227K 1.5M 1925 21 2 5.60% 

1-5-A 12.5M 291K 81.9M 11681 583 3 3.53% 

1-5-B 12.7M 580K 74.5M >86.4K 649 3 3.60% 

1-5-C 482K 308K 2.0M 3366 37 3 3.14% 

1-2-A 33.5M 475K 213.6M >86.4K 3859 6 3.32% 

1-2-B N/A N/A N/A N/A N/A 6 N/A 

1-2-C 793K 500K 3.3M 3104 91 6 2.54% 

1-1-A N/A N/A N/A N/A N/A 9 N/A 

1-1-B N/A N/A N/A N/A N/A 9 N/A 

1-1-C 1.3M 846K 5.5M 10450 252 9 2.50% 

Table 5.2.  CPLEX and heuristic performances for instance 1 

We use Moving-in-Time heuristic solution described in Section 5.7.1 as an initial 

solution.  Unfortunately, the lower bounds provided in Section 5.8 are worse than LP 

solution, so we skip them. 

In Table 5.2, the problems generated with Type-C FIFO constraints are solvable 

much faster than the problems with other FIFO types.  Therefore, we use only those ones 

to obtain the results for instances 2 and 3 in Table 5.3. 

The heuristic finds the better solutions as the aggregation level decreases in all of 

the instances.  Other than the non-aggregated problems, we are able to solve all the 

problems within an hour.  The non-aggregate problems are solvable in between 80 

minutes and 5 hours.   
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Problem 

Number of  

IP 
solution 

time  

Root 
solution 

time  

Heuristic 
solution 

time  
Heuristic 
vs. best 
lower 

bound* constraints variables nonzeros (sec) (sec) (sec) 

2-F-C 319K 212K 1.4M 803 25 2 15.06% 

2-5-C 489K 321K 2.1M 995 42 3 4.30% 

2-2-C 850K 552K 3.6M 1812 129 5 3.91% 

2-1-C 1.5M 956K 6.2M 5995 318 9 3.66% 

3-F-C 354K 235K 1.6M 622 20 2 11.67% 

3-5-C 518K 339K 2.2M 797 39 3 3.88% 

3-2-C 876K 567K 3.7M 2026 141 6 3.52% 

3-1-C 1.5M 971K 6.4M 18925 290 9 3.51% 

Table 5.3.  CPLEX and heuristic performances for instance 2 and 3 

In Table 5.4, the scaled objective values are shown for different level of 

aggregations with respect to the best lower bound of non-aggregated problem. 

Problem 
Best lower 

bound* 
Best upper 

bound* 
Heuristic 

value* 

1-F-C 108.18 108.81 116.14 

1-5-C 100.05 100.40 103.01 

1-2-C 100.04 100.47 102.65 

1-1-C 100.00 100.57 102.57 

2-F-C 121.42 122.31 142.94 

2-5-C 100.02 100.53 104.51 

2-2-C 99.99 100.45 104.06 

2-1-C 100.00 100.61 103.80 

3-F-C 119.39 119.82 135.16 

3-5-C 99.98 100.29 104.02 

3-2-C 99.98 100.36 103.62 

3-1-C 100.00 100.61 103.65 
             * = 100*(value) / (best lower bound of corresponding non-aggregated problem) 

Table 5.4.  Scaled objective value changes with different aggregation levels 
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The objective values are close to each other in the aggregation level of 1, 2 and 5.  

However, the full aggregation level problems have significantly higher objective values 

because some of the aggregated shipments may contain huge number of shipments 

(around 300 in instance 2-F-C).  Those aggregated shipment could have volume more 

than the capacity of some resources and the trip (from one station to another) for those 

shipments may be impossible. 
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Chapter 6:  Conclusions and Future Work 

This dissertation investigates optimization models for transport and service 

scheduling.  The service scheduling problems described here have applications in many 

decision making activities, such as multi-product lot sizing, telecommunication services 

and maintenance planning.  The transshipment problem focused on in this work is the 

backbone of many transportation companies.   

In the first part, we worked on the problem of deciding which operations a service 

unit must perform at each customer location given the sequence in which the unit 

periodically visits these locations.  We formulated the problem as an integer program, 

and proved that it is NP-hard.  We discussed the special case in which each site is visited 

only once per service cycle and showed that it is NP-Hard (in the ordinary sense), and we 

developed an alternative algorithm based on the shortest path structure.  

In Chapter 4, we proposed a heuristic procedure for the general problem for a 

real-life maintenance application.  Computational results for several problem instances 

show that the proposed heuristic identifies near optimal results very quickly, whereas a 

general purpose integer-programming solver (CPLEX) is not able to generate an optimal 

solution even after many hours of computational time.  To handle real-life problems, we 

focused on techniques such as problem reduction, branching variables, and subdividing 

the problem to smaller problems to get better solution.  These strategies improve solution 

times substantially.  

Several opportunities for further research are suggested by this study: 

• The problem we considered here is an operational level problem, but there are 

also strategic and tactical level decisions.  At the strategic level, we may have 

multiple resources and want to partition the customers to those resources.  The 
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partition should consider the capacity of the resource, amount of work needed to 

be done and geographic dispersion of the customers.   

• At the tactical level decisions, the focus is on finding the optimal route.  The 

master (full cycle) route should cover all the customers within a reasonable 

visitation frequencies.  The route should balance the visitation requirements of 

each customer.  Furthermore, the relative due date differences between operations 

for each customer should also be considered.  

• This study assumes the full availability of visitation locations or customers.  

However the customer may not be available at the visitation time.  The integration 

of this service with the other activities operated in those locations is another 

potential avenue for research. 

• Stability analysis of the optimal solution is also important to consider.  The 

additional steps to a sequence should not change the task decisions seriously in 

the earlier steps.  If the solution is stable, the myopic decisions can be obstructed 

by solving a longer sequence but applying the task decisions on the earlier steps.       

• One can also investigate the sensitivity and the robustness of the given solution.  

In real-life, the calculation of the due date parameters and the duration times of 

tasks may include uncertainty and is therefore hard to estimate.  Understanding 

the characteristic of the robust solution under uncertainty would be an interesting 

research direction.  This extension can further focus on the price of the robust 

solution and the value of information. 

In the shipment routing problem with dispatching policies, we formulated the 

problem as a multi-commodity network flow problem with additional side constraints and 

showed the complexity results.  We proposed alternative models and algorithms for lower 

and upper bound calculations.  Computational results show that this problem could be 
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solvable in a reasonable time if we use Type-C constraints.  These results also indicate 

that the optimal objective values of limited aggregation solutions are close to the optimal 

objective value of non-aggregated solution.  Furthermore, Moving-in-Time heuristic 

provides good initial solutions for the instances we tested on the limited or non-

aggregated level. 

We also recommend the following potential extensions for future research:     

• The methods for lower bound calculation can be further developed.  Without 

dispatching policy constraints, we can obtain a lower bound for the shipment 

routing problem via Lagrangian relaxation approach by relaxing capacity 

constraints.  The remaining problem can be separable by shipments and solvable 

via shortest path algorithms.  Although there are a few capacity constraints, the 

number of dispatching policy constraints is huge.  If we only relaxed the capacity 

constraints, the remaining subproblem is NP-Hard for arbitrary Lagrangian 

multipliers (see Proposition 5.14).  The research on uncapacitated shipment 

routing problem with dispatching policy constraints could be an interesting field. 

• Moving-in-Time and aggregation approaches provide good feasible solutions 

within a reasonable time for tested instances.  However there are further 

improvements one can consider.  One of the problems for Moving-in-Time 

heuristic is tie-breaking rules.  Many shipments are released on same time and 

many arcs are come to their destinations at the same time.  Therefore, the 

selection of shipments for their next trips is highly affected by tie-breaking rules.  

Eventually, this selection determines the heuristic performance.  One can also 

consider the other heuristic possibilities such as tabu search or LP based 

heuristics.  Especially LP based heuristics could be useful because LP solution 

times in our problem instances are much smaller than IP solution times.   
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Effectively correction of LP solution could find a better feasible solution and 

improve the solution performance.             

• The shipment routing problem can be used to analyze the correctness and the 

effectiveness of the underlying physical network.  This research could be 

developed further to find a stable carrier schedule under demand fluctuations.  

With the side constraints (capacity and dispatching) in mind, the optimal solution 

of shipment routing problem deviate from the shortest path solution.  The optimal 

solution for capacitated problem gives an idea about bottlenecks in the 

transportation system and provides a feedback for carrier scheduling problem.  

The integration of shipment routing and carrier scheduling problems will lead to 

better trip plans for shipments and better capacity usage of resources.  

• In real life, shipment demands are coming one at a time.  Some of the shipments 

are already in the network and assigned to their trips.  However, there are some 

shipments with uncertain availability and volume at the starting time of the 

planning horizon.  Another direction for research would be making stable 

shipment routing decisions by using the information on hand.  How should 

planners behave for the shipments that are available at the last minute of their first 

link departure times?  One of the common practices is not using full capacities of 

resources.  Then, how much capacity should be used?  What is the cost of not 

using full capacity?  How about the lateness of link arrivals with respect to given 

schedules?  More stable schedule comes at a cost and will give us a benchmark 

for the routing plan developed in this study. 

The importance of transport and service scheduling problems makes them 

attractive and fruitful research fields even though we have come to the end of our 

journey: cursum perficio.        
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Appendices 

A.  ALGORITHMS FOR POLYNOMIALLY SOLVABLE CASES 

We dealt with the four polynomially solvable cases and gave their algorithms.  

Let first examine the sets and parameters we used so far.  

Parameter reminder:  

K   Set of all operations for all customers 

KI(i)   Set of all operations for customer i 

γk  Earliest start time for the execution of operation k  

βk  Latest start time for the execution of operation k  

J           Set of all tasks for all customers 

JK(k)    Set of all tasks that contain operation k  

JI(i)      Set of all alternative tasks that can be done for customer i  

δj  Duration for performing task j, for all j ∈ JI(i), i = 1, 2 … n 

A1. Algorithm 1 

Logic of Algorithm 1: The algorithm begins from the first customer and follows 

the customer order of the sequence.  If the service resource comes to any customer before 

than the earliest start time of the operation v, and operation w is not available, then it 

returns infeasible otherwise it selects the one of the tasks that has the maximum duration.  

Let set A be the set of customers that traveling option is available.  The durations 

are represented with δv(i) and δw(i) for the task v(i) that has time window and w(i) that has 

not time window of customer i.  Also ∆ represents the current time (the time that resource 

comes to that customer) and select(1,…,n) holds the solution vector. 

1    begin procedure 
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2    ∆ = 0      

3    for i = 1 to n do 

4  if ∆ ≥ γv(i) or Ai ∈  then 

5               select (i) = argmax {δv(i), δw(i)} 

6      ∆ = ∆ + max {δv(i), δw(i)} 

7 else 

8      select (i) = infeasible 

9      exit procedure 

10 end if 

11  end for   

12  end procedure 

Proposition 2.5 (related part): Consider the task assignment problem under zero cost 

function with n customers.  Assume that each customer i requires two operations, v(i) and 

w(i), and only one of the operations, v(i), restricted with the earliest start time.  If waiting 

is not allowed and the tasks without time window restrictions, w(i), are not available for 

some customers, Algorithm 1 solves the problem in O(n). 

Proof: The problem has only earliest start time requirements.  The algorithm begins from 

the first customer and follows the customer order of the sequence.  It chooses task with 

maximum duration (among available ones) for each customer.  If the resource comes to 

any customer before the earliest start time of its operation and task w is not available, the 

problem is infeasible because we cannot come to that step later than that time.  

Otherwise, selection will give the feasible (so the optimal) solution.  

The algorithm has “for” loop for customers.  In each iteration, selection, assigning 

and summation operations are done in O(1).  Therefore, the algorithm 1 solves this 

problem in O(n).   
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A2. Algorithm 2 

Logic of Algorithm 2:  In the initialization part, the algorithm finds the minimum 

possible cycle completion time for the given customer sequence (by selecting tasks with 

minimum duration).  The algorithm begins from the first customer and follows the 

customer order of the sequence.  At customer i, if the completion time is smaller than the 

latest start time of the operation v(i), the resource performs a task with minimum duration 

for that customer.  Otherwise, the algorithm checks the time that the resource is available 

for that customer.  If the time is earlier than the latest start time of the operation v(i), the 

algorithm chooses the operation v(i); else the problem is infeasible.  The algorithm 

updates the candidate completion time and rescans all the customers.  It stops either 

infeasibility is found or there is no change in the candidate completion time.  

Let T represents the candidate completion time for the given sequence.  The 

durations are represented with δv(i) and δw(i) for the task v(i) that has time window and w(i) 

that has not time window of customer i.  Also ∆ represents the current time (the time that 

resource comes to that customer) and select(1,…,n) holds the solution vector. 

1    begin initialization 

2    T = 0     // T represents candidate completion time 

3    for i = 1 to n do 

4          T = T + min {δv(i), δw(i)}   // minimum possible completion time 

5          select (i) = argmin {δv(i), δw(i)} // do the task with minimum duration 

6    end for 

7    old T = T 

8    end initialization 
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9 

10    begin procedure 

11     flag = false    // indicator whether candidate completion 

time 

12     while flag = false do   // changed or not 

13          ∆ = 0  

14          for i = 1 to n do 

15              if T < βv(i) then 

16                   ∆ = ∆ + min {δv(i), δw(i)} 

17              else  

18         if ∆ ≤ βv(i) then 

19                    T = T + δv(i) − δselect (i)       

20                    select (i) = v(i)                        // do the operation related task for customer i 

21                    ∆ = ∆ + δv(i)  

22          else 

23             select (i) = infeasible              // infeasibility detected 

24             exit procedure 

25        end if 

26             end if 

27         end for 

28         if T = old T then              // no changes detected 

29      flag = true    // exit while and procedure 

30 end if  

31        old T = T   

32     end while 
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33  end procedure 

Proposition 2.6 (related part): Consider the task assignment problem under zero cost 

function with n customers.  Assume that each customer i requires two operations, v(i) and 

w(i), and only one of the operations, v(i), restricted with the latest start time.  Algorithm 2 

solves the problem under no-waiting assumption in O(n2). 

Proof: The problem has only latest start time constraints.  The initialization finds the 

minimum possible completion time T without considering any time window constraints.  

At line 19, the algorithm updates the candidate completion time T.  Observe that if δv(i) ≤ 

δw(i), T remains same and if δv(i) > δw(i), T increases.  However T will never decrease.  

Therefore, the algorithm terminates in finite time.  

At the beginning, we choose the smallest T and at each iteration, we update T 

whenever T is greater than βv(i) and v(i) is not selected.  That means the algorithm 

increases the T value only if it has to increase it.  Therefore, whenever the algorithm 

comes to step i, the current candidate T cannot be lower.  It concludes that if ∆ > βv(i), the 

problem should be infeasible detected at line 23.  Otherwise, select (1 … n) will give the 

feasible solution.  

The algorithm has for loop with n iterations.  In each iteration, comparison, 

selection, assigning and summation operations are done in O(1).  “While loop” occurs 

whenever T is changed.  It changes whenever select(i) is assigned to v(i) at step i.  Once it 

is assigned, it would not change anymore for step i.  Therefore, the algorithm has at most 

n iterations in “while” loop.  It concludes that the algorithm 2 solves this problem in 

O(n2).  □ 
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A3. Algorithm 3 

Logic of Algorithm 3:  The algorithm begins from the first customer and follows 

the customer order of the sequence.  If the service resource comes to a customer before 

than the earliest start time of some operations, the algorithm excludes the tasks that 

contain those operations.  If there are no tasks left, then the algorithm returns infeasible 

otherwise it selects the task (among available ones) that has the maximum duration.  

Let ∆ represent the current time (the time that resource comes to that customer) 

and select(1… n) holds the solution vector.  Let set P represent the available operations 

whenever the service resource comes to customer location ( ∆≤kγ ) and P` represents the 

unavailable operations ( ∆>kγ ).  Also, let Q holds the tasks that contain only available 

operations. 

1    begin procedure 

2    ∆ = 0             

3    for i = 1 to n do 

4 { })(,|: iKIkkP k ∈∆≤= γ  

5 { })(,|:` iKIkkP k ∈∆>= γ  

6 { }`)(),(|: PJKjPJKjjQ ∉∈=  

7  if ∅≠Q then 

8      { }Qjiselect j ∈= |maxarg)( δ  

9      { }Qjj ∈+∆=∆ |maxδ  

10 else 

11      select (i) = infeasible 

12      exit procedure 

13 end if 

14  end for   
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15  end procedure 

Proposition 2.7 (related part): Consider the task assignment problem under zero cost 

function with n customers.  Let { }|)(|maxmax iKIk
i

=  and { }|)(|maxmax iJIj
i

= .  If there 

are only earliest start time restrictions for all operation k and waiting is not allowed, 

Algorithm 3 solves the problem in O(nkmaxjmax). 

Proof: The problem has only earliest start time constraints.  The algorithm chooses task 

with maximum duration among available ones for each customer.  Therefore, if ∅=Q  

for some customer i (there is no task available at time ∆), clearly the problem is infeasible 

because we cannot come to that step later than ∆.  Otherwise, select (1 … n) will give the 

feasible (so the optimal) solution. 

The algorithm has “for” loop for customers.  The construction of the set Q is 

bottleneck at each iteration.  We need to include the tasks of all operations in set P and to 

exclude the tasks of each operation in set P`.  Each operation may have maxj tasks and set 

P may have maxk operations.  Therefore, the algorithm 3 solves this problem in 

O(nkmaxjmax).  □ 

A4. Algorithm 4 

Logic of Algorithm 4: In the initialization part, the algorithm finds the minimum 

possible completion time for the given customer sequence (by selecting tasks with 

minimum duration) and assigns this length as a candidate completion time.  The 

algorithm begins from the first customer and follows the customer order of the sequence.  

At each customer, it finds the required operations.  (Operation is required if the latest 

start time is earlier than the candidate completion time.)  The algorithm checks the time 

that the resource is available for that customer.  If the time is earlier than the latest start 

time of all required operations, the algorithm chooses minimum duration task that 
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contains all the required operations; else the problem is infeasible.  The algorithm updates 

the candidate completion time (by summing duration of selected tasks) and rescans all the 

customers.  It stops either infeasibility is found or there is no change in the candidate 

completion time.  

Let T represents the candidate completion time for the given sequence.  Let ∆ 

represent the current time (the time that resource comes to that customer) and select(1 … 

n) holds the solution vector.  Let set P(i) represents the required operations ( Tk <β ) for 

customer i and P`(i) shows the operations of currently selected task for customer i. 

1    begin initialization 

2    T = 0            // T represents candidate completion 

time 

3    for i = 1 to n do 

4          { })(|min iJIjTT j ∈+= δ           // minimum possible completion time 

5          select (i) = { })(|minarg iJIjj ∈δ        // do the task with minimum duration  

6    end for 

7    old T = T 

8    end initialization 

9 

10    begin procedure 

11     flag = false 

12     while flag = false do 

13          ∆ = 0  

14          for i = 1 to n do 

15       { })(,|:)( iKIkTkiP k ∈<= β        //required operations  

16       { }))((|:)`( iselectKJkkiP ∈=        //operations in the selected task 
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17              if ∅=)`(\)( iPiP then 

18                   )(iselectδ+∆=∆  

19              else  

// if (current time is less than the latest start time of all required operations) and  

// (there is a task that contains all required operations) 

20         if { })(|min iPkk ∈≤∆ β and ∅≠








∈∈
∈
I

)(

)(),(|
iPk

kJKjiJIjj  then 

21  








∈∈=
∈
I

)(

)(),(|minarg:
iPk

j kJKjiJIjjob δ   

22                    T = T + δtask − δselect (i)       

23                    select (i) = task                    

24                    ∆ = ∆ + δtask  

25          else 

26             select (i) = infeasible 

27             exit procedure 

28        end if 

29             end if 

30         end for 

31         if T = old T then         // no changes detected 

32      flag = true          // exit while and procedure 

33 end if  

34        old T = T   

35     end while 

36  end procedure 
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Proposition 2.8 (related part): Consider the task assignment problem under zero cost 

function with n customers.  Let { }|)(|maxmax iKIk
i

=  and { }|)(|maxmax iJIj
i

= .  If there 

are only latest start time restrictions for all operation k, Algorithm 4 solves the problem 

under no-waiting assumption in O(n|K|kmaxjmax).  

Proof: The problem has only latest start time constraints.  The initialization finds the 

minimum possible completion time T without considering any time window constraints.  

At line 22, the algorithm updates the candidate completion time T.  We come to that step 

whenever another operation is needed to be done.  Therefore the new selected task should 

have higher duration time than the previous one.  In other words, T will never decrease.  

Therefore, the algorithm terminates in finite time.  

At the beginning, we choose the smallest T and at each iteration, we update T 

whenever another operation is needed to be done.  That means the algorithm increases the 

T value only if it has to increase it.  Therefore, whenever the algorithm comes to 

customer i, the current candidate T cannot be lower.  It concludes that if 

{ })(|min iPkk ∈>∆ β the problem should be infeasible detected at line 26.  Otherwise, 

select(1 … n) will give the feasible solution.  

The algorithm has “for” loop with n iterations.  In each “for” loop iteration, the 
construction of set I

)(

)(
iPk

kJK
∈

is bottleneck at lines 20 and 21.  Each operation may have 

maxj tasks and set P(i) may have maxk operations.  Therefore “for” loop runs in 

O(nkmaxjmax). 

 “While loop” occurs whenever T is changed.  It changes whenever an additional 

operation is needed to be done.  Once the operation is an element of the set P(i), it will 

always be an element of it (because T does not decrease).  Therefore, the algorithm has at 
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most |K| “while” iterations.  It concludes that the algorithm 4 solves this problem in 

O(n|K|kmaxjmax).  □ 
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B.  NP HARDNESS OF THE PTA PROBLEM IN APPLICATION 

The Periodic Task Assignment [PTA] problem in application described in Chapter 

4 is in the category of difficult problems, so called NP-Hard problems.  In fact, the well-

known 3-partition problem can be written as an instance of the PTA problem.  

The 3-partition problem is NP-Hard in the strong sense.  (See Karp, 1972 and 

Garey and Johnson, 1979.)  We will show that the 3-Partition problem can be 

polynomially reducible to the PTA problem.  First, we will give the definition of the 3-

partition problem. 

3-Partition: Given positive integers a1,…,a3q, b such that  

24

b
a

b
j <<  

and 

qba
t

j
j =∑

=

3

1

. 

Do there exist q pair-wise disjoint 3 element subsets }3,..,1{ qSi ⊂ such that 

ba
iSj

j =∑
∈

 for i=1,…q? 

Proposition 1: The 3-Partition problem is polynomially reducible to a periodic task 

assignment problem [PTA].   

Proof: We represent the 3-Partition problem as an instance of the PTA problem.  Our aim 

is getting an optimal solution for the resulted PTA problem with zero optimal value.  We 

take the following sequence as a PTA instance: 

• A sequence consisting of 3 different customers:  Customer A, B, and C.  First part 

of the sequence has q subcycles that consists of 3B and 1A customers (B 

customers are the first ones).  Second part of the sequence has also q subcycles 
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with one C and one A customers (C customers are the first ones).  The sequence 

consists of m = 6q steps.  

 

• Customer A and C require only one operation and customer B requires 3q 

operations. 

• Each operation is included in only one task, and each task includes only one 

operation.   

The construction of the PTA instance: 

• The duration time for performing task j for customer A is zero and for customer C 

is b. 

• The duration time for performing task j for customer B is aj, j = 1, 2, …,3q. 

• αk  =  qb and τk  is very big number for all operation k of customer B. 

• αk  =τk = b for the operation of customer A and for the operation of customer C. 

• ckt is one for all operation k and time t in case of due date violation.  

We have the following observations in this PTA problem instance: 

• Customer C appears q times and each time b units spend on these steps. Then, the 

completion time should be at least qb.    

• Customer B appears 3q times and it requires 3q operations with αk = qb.  Since 

completion time is at least qb, each operation should be done exactly once to not 

to get any penalty.  

• We know that qba
t

j
j =∑

=

3

1

 and we have q sub-cycles regarding customer B.  If the 

summation of the task durations of 3-customer B in one sub-cycle is less than b, 

B B B A ------------------------- B B B A 

First cycle 

C A A C -----

q cycles 
q cycles 
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there will be another cycle where the summation of durations of 3-customer B in 

that cycle is greater than b.  However, we have αk = τk = b, as the due date for the 

operation of customer A.  To not to pay any penalty, the summation of the task 

durations of 3-customer B in each cycle should be exactly b. 

• Since the operation of customer A should be done in every b units of time, there is 

no waiting to not to pay any penalty, even if the waiting is allowed.    

Therefore, the solution with zero cost function honor that the summation of the durations 

of 3-customer B in each cycle should be exactly b and each duration time aj, j = 1, …,3q 

appears once.  Since each set, indices and parameters in the PTA has at most O(q) items, 

the reduction will take polynomial time.  □ 

Corollary 2: The periodic task assignment problem is NP-Hard in the strong sense. 

Furthermore, there is no ε-approximate heuristic that runs in polynomial time for the 

PTA problem unless P = NP for any ε > 0. 

Proof: Since the optimal objective value is zero for the PTA problem in the proof of 

Proposition 1, any ε-approximate heuristic should provide a solution that has zero 

objective value.  This means that the heuristic solves the problem in polynomial time so P 

= NP. □ 

In the next result, the well-known knapsack problem is written as an instance of 

PTA problem where no customer is visited twice.  (See Karp (1972) for the knapsack 

problem.)    

Knapsack Problem:  Let N be the number of items and i be the index of each item, i = 1, 

2 … N.  Each item i has the following attributes:  

ci Cost of item i if it is selected, for all i = 1, 2 … N 

ai size of item i for all i = 1, 2 … N 
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Let b represent the limit that we need to satisfy, i.e. capacity of knapsack.  Each 

item i has the following decision variable: 

Xi = 1 if item i is selected and 0 otherwise, for all i = 1, 2, …, N 

The Knapsack problem can be formulated as an integer program: 

[KP]   Maximize ∑
=

N

i
ii Xc

1

       

   s.t.:   bXa
N

i
ii ≤∑

=1

   

      =iX  0 or 1,   for all i = 1, 2 … N 

Proposition 3: The knapsack problem [KP] is polynomially reducible to the PTA problem 

where no customer is visited twice [TA].   

Proof: We will convert the general knapsack problem to a task assignment instance.  The 

construction of the TA instance for the indices and sets is as follows: 

• A route consisting of N + 1 customers. In other words, n = N + 1 

• Each customer i requires only two operations say vi and wi for i = 1 … N  and 

customer N + 1 requires only one operation vN+1 

• Two tasks are available for each customer i = 1 … N.  Each task contains one 

operation.  For simplicity, say task vi includes operation vi and wi includes 

operation wi for i = 1 … N.  Customer N + 1 has one task called vN+1  

The construction of the TA instance for the parameters is as follows: 

• Duration time for performing task vi is ai and zero for task wi, for i = 1, 2 … N.  

Also duration time for performing task vN+1 is b+1 

• αk  =  b and τk  is very big number for all operation k of customer i = 1, 2 … N+1 

• ikb cc =  for operation k = vi  at time b and 0=ktc  for the other times for customer 

i = 1, 2 … N. There will be no cost related to operation wi for customer i = 1, 2 … 

N. 
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• ∑
=

+=
N

i
ikb cc

1

1  for operation k = vN+1  at time b and 0=ktc  for the other times  

In this instance, the cost function value of operation vN+1 at time b is very high so this task 

should be done before than its due date b.  Since we know that the duration of the task 

vN+1 is b+1, all the operation vi for customer i = 1, 2 … N have due and pay penalty ci if 

they are not performed.  We have the following observations in this TA problem 

instance: 

• The flow constraints (2a) and (2b) try to reach last customer before or at time b by 

selecting either task vi or wi.  (Also, the service provider can wait in intermediate 

steps but the result is also true even if the waiting is not allowed.)    

• Duration of tasks vi are equal to ai for all steps and duration of tasks wi are zero, 

for i =1 … N.  Therefore the feasible solution selects the subset of tasks vi and the 

duration of selected vi’s cannot exceed period b. 

• If the solution does not select to do operation vi, (equivalently selects to do 

operation wi ) we will pay ci at the end for this operation. 

• If the solution does not choose any of the operation vi, total cost would be ∑
=

N

i
ic

1

.  

We can define a new decision variable to capture these observations better: 

 Yi  = 1 if task vi selected and 0 if task wi is selected, for all i = 1 … N  

Therefore we can rewrite the task assignment problem as: 

  Obj1 = Minimize ∑∑
==

−
N

i
ii

N

i
i Ycc

11

      

   s.t.:   bYa
N

i
ii ≤∑

=1

   

      =iY  0 or 1,   for all i = 1, 2 … N. 
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In the objective function, the first term is constant and does not affect the solution 

so we can exclude it during the solution process. Also, recall that ZZ maxmin −=− .  

Therefore, we can equivalently write the above formulation as: 

  Obj2 = Maximize ∑
=

N

i
ii Yc

1

       

   s.t.:   bYa
N

i
ii ≤∑

=1

   

      =iY  0 or 1,   for all i = 1, 2 … N. 

There is a one-to-one relation between objectives of these two formulations which is: 

Obj1 = − ( Obj2 −∑
=

N

i
ic

1

). 

Therefore, optimal solution of one of them is also an optimal solution to the other 

one. Finally, observe that the second formulation is equal to the knapsack problem.  Since 

each set, indices and parameters in TA has at most O(N) items, the reduction will take 

polynomial time.  □ 
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