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This dissertation focuses on service schedulingtemgshipment problems. The
study of service scheduling is motivated by deasitacing service planners, who must
inspect and maintain geographically dispersed stfuature facilities. We study the
problem of deciding which operations a service unist perform at each customer
location, given the sequence in which the unitquidally visits these locations. Each
customer requires multiple service operations, aadh operation has a time-varying
completion or penalty cost that depends on theipusvservice time. The goal is to
schedule the service start time for each customersalect the operations to perform so
as to minimize the total completion cost.

We first discuss how to solve a special case &f pnoblem in which each site is
visited only once per service cycle. We formulhie problem as a discrete time indexed
network flow problem and prove that it is NP-hardthe ordinary sense. Then, we
represent the problem as a multidimensional shiop@$h problem with path-dependent

arc lengths. In this structure, arc costs depanthe total time spent for all customers.
Vi



The resulting formulation is solvable via algorithrthat have pseudo-polynomial run
times. Computational results show that the shonedh approach outperformed the
general network flow model.

We then analyze the general case of this problaenwhich each site can be
visited more than once and prove that the probkehHA-Hard in the strong sense. We
discuss the valid cuts and describe the preprocéisabreduces the problem size. Next,
we examine an application to the general case efptloblem and develop a fast and
effective heuristic procedure that repeatedly asplthe shortest path approach to
subsequences that do not visit any customer mae adhce. Computational results for
several problem instances show that the proposedskie identifies near optimal results
very quickly, whereas a general purpose integegiaroming solver (CPLEX) is not
able to find an optimal solution even after manynsoof computational time. Then we
focus on techniques such as problem reduction,chiag variables, and subdividing
problem to smaller problems to get better soluttones for the actual problem.
Computational results show that these techniques aprove solution times
substantially.

Finally, we study a transshipment problem, in whikk shipments need to be
transported from their origin to destination and aubject to the logical and physical
transportation network on which they rely. We e¢dasa space-time network that allows
one to formulate the problem as a multi-commodigtwork flow problem with
additional side constraints and show the complexésults. We propose alternative

models and propose algorithms for lower and uppent calculations.
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Chapter 1: Introduction

11 MOTIVATION

Worldwide competition has been forcing companieprtuvide better services to
their customers. Better services not only increasgtomer satisfaction but also help
companies manage resources effectively. In facl/icee management operations are
complex processes, and in many businesses, qadlitye service depends on a timely
response to service needs. The focus of this ribd®e is problems with service
management under the following service types:

* Onetimerequired services. Servicing a number of customers where each custom
is considered one at a time. Here the cost ofiG@epends on the amount of time
spent with each customer. This type of servicallgappears when a service plan is
put in effect only after the orders are receivesl,ira after-market and emergency
services.

* Multiple-time required services. Servicing a number of customers periodically.
Each time a customer gets a service, the businesssia servicing cost that depends
on the time since the customer’s last service.vi€es of this type appear in many
contexts, such as multi-product lot sizing, vendwainaged inventories, machine
maintenance and several problems in telecommuaitsti

* Transportation services. Transportation of shipments from their origin to
destination under capacity and system constraifite objective function minimizes
the weighted transit times of shipments and/or dbst of used paths. This is a
common problem for freight transportation operatiosms well as applicable to
communication networks.

Each of these services requires multi-level hidriaed decisions that lead to

difficult problems of resource allocation and saledy. We will now explain these
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problems in detail. However, the scope of thiglgtis limited to the operational level
problems of each of these service types.

In a typical service management scenario, eachomest requires services or
operations Although the service provider can choose morantlone operation
(opportunistic schedulingto perform for each customer, some of the opamaticannot
be done together for technical reasons. Amongéthef various possible combinations
of operations, #askrefers to a combination afperationsthat can be performed together.

One-time required services. In this section, we consider the problem of
servicing a set of customers with a service comgtrdNamely, only one customer can be
serviced at a time. We also assume that the seorer of the customers is known. In
this situation, resource allocation and order/rayproblems could be seen as upper level
decisions. At thestrategic levelthe company needs to decide how many resourees ar
needed and how the resources are allocated toncesto Thetactical level problem
aims to solve the routing/ordering problems of cosdrs for each resource. Finally, our
problem is aroperational levelproblem and entails deciding which among the [bssi
tasks to perform for each customer on a given ordéhe solution to this problem
specifies: (i) what tasks the resource shouldgperfin the given order, and (ii) when the
resource performs these tasks.

In this problem, we assume that each customerapitlear only once (one-time
requirement). Hence, the problem could be seensgecial case of multiple requirement
case. However, there are some applications djreetated to this service type. The
following examples point to this type of service:

* Roadway snow and ice controlThe streets need clearing after snowy or icy
weather. There are some operations to clean streeth as snowplowing and

gritting. Here, the roads/streets are customers servicing a street means
2



performing winter gritting operations. In this ptem, the timing of intervention

is of prime importance. That is, if the intervemtiis too early or too late, the cost

sharply increases.

» After-market repair servicesConsider a case where a service provider isimadju
to repair the product whenever the customer caliiere, servicing a customer
means maintaining the utility of the product. ifely, high-quality response to
the service need is a critical element for custoswrsfaction. After-market
service maintains the utility of the product andpkdo increase customer loyalty
to the company. Since the service is usually gediby a contract, the quality of
this service directly affects the company’s profit.

Multiple-time required (periodic) services: This problem is a generalization of
the previous one, where a customer can appearpteulimes. Again, our study focuses
on the operational level problem where custometssgevice one at a time and the
customer order is known. In this problem, the s@ng cost depends on the time since
the customer’s last service. There are severalvatotg applications related to this
service type:

* Multi-product lot sizing The manufacturing plan consists of a cyclic skcie
that specifies the sequence in which each prodaroily is produced. In this
problem, there are product families, and in eaafhilfa there are individual items.
The problem of deciding how much of each item ipreduct family to produce
for a given cyclic sequence of family setups islegeus to the problem we are
studying.  Here, the customers represent theugtd@milies, and servicing a
customer corresponds to ordering a subset of iteehenging to one family or
replenishing the subset of the inventory of an itestonging to one family. The

cost of servicing a product family may include %efi ordering cost, inventory
3



carrying charges for the items over the intervdil tihe next service, and possibly
shortage cost in case the demand exceeds the pimdbefore the next service.
Preventive machine maintenanch this context, there are machines that require
periodic maintenance. Here, the machines areub®mers. Each machine may
have several parts (operations) to be maintained,aasubset of these parts (a
task) can be maintained together. In the maintengmoblem, the cost of
servicing a machine increases up to its next servithereas in multi-product lot
sizing, inventory cost decreases up to its nextderopoint.

Vendor managed inventory system&ndor managed service refers to a situation
in which a supplier replenishes the inventory efatistomers. In these systems,
servicing a customer means replenishing its inugntdt is clear that the cost
depends on the inventory status of customers, amtine response is an
important element for customer satisfaction. Tpisblem appears in many
sectors, such as the petrochemical industry, indbiggas industry, automotive
(parts distribution) industry and soft drink (vemglimachines) industry.
Telecommunication services There are several applications in the
telecommunication sector closely related to oubf@mm. Bar-Noy et al. (2002)
present many examples, and we describe one of tleesn In broadcast disk
application, a database contains a number of pagdsbroadcasts a limited
number of these pages at each period. A client wishes to access any page
must wait for the broadcasting time of that padere, the customers represent
the pages, and servicing a customer correspondsetdroadcasting of pages.
This application aims to minimize the expected tispent by clients waiting to

access the pages.



Transportation services.  Transportation systems are complex dynamic
processes and require the management of multipteurees in order to serve customers.
We focus on the problem of shipments needing twdresported from their origin to their
destination under the limitations of the underlytngnsportation network. We assume
that the higher level decisions on the network,hsas capital investment and the
schedule of carriers, are given. The objectivection minimizes the weighted transit
times of shipments and/or the cost of used paswirees.

In the transportation scheduling problem, the suleedmakes an enormous
number of interrelated decisions on strategic,i¢actand operational levels. Strategic
level decisions involve capital investments, suslgetting new planes, trucks, trains or
ships, and expanding the transportation networkt th& tactical level, we need to
schedule carriers/transporters and make maintengiaes. The operational level
problems aim to solve short term planning, suchripglanning of shipments from their
origin to destination.

A moderate size transportation company transpdisigands of shipments on
their network everyday. The system managers shen&lre that the shipments are
getting an appropriate level of service at a lowrafing cost. At the operational level,
the system should solve such big problems verydiadtmake decisions immediately. In
a normal day, new shipments come to the networlt,the state of the system changes
over time. Clearly, the effective usage of avdéatapacity is a key element of success.
A good decision does not only consider the curmefarmation, but also considers the
possible uncertainties, such as future shipmemiisrittay require the resources currently
being used by other shipments.

Transportation service problems also appear in conmcation networks. In

those networks, data packages (as shipments) sheulchnsported from their origin to
5



destination by using underlying multi-layer trandpeetwork. In these networks, there
are (physical) fiber links that make the actual remstions at the bottom layer. Then,
above layers are logically designed to handle datkages appropriately. Our problem
could be seen as trip planning of these data paskaging underlying communication

network.

12 OUTLINE

Our aim in this dissertation is to examine singld enulti-visit service scheduling
problems, and transshipment problems. We anahgedmplexity properties, develop
models and methodologies for these problems anddsinate their performance on an
application.

The dissertation is organized as follows: In Chagt we present the first service
scheduling problem, where each customer is visiBly once. In this chapter, we
formulate the problem as a discrete time indexetivork flow. We analyze the
computational complexity of this problem and shdwattthe problem is NP-Hard in the
ordinary sense. Then, we concentrate on seveegiadpcase structures of this service
scheduling problem and determine their complexitppprties. We propose an
alternative formulation for the problem as a shairfgath problem with path dependent
arc lengths. The resulting formulation is solvabia algorithms that have pseudo-
polynomial run times. Our study shows that the faations are equivalent, so the
shortest path approach solves the problem optimalynally, computational efforts
imply that the proposed shortest path formulatiatperformed the general network flow
formulation on randomly generated test cases.

In Chapter 3, we focus on the second service sdingdproblem where each

customer may be visited multiple times. In fahtstproblem is an extension of the first

6



one and we formulate this periodic service probksna network flow problem. We
prove that the problem is NP-Hard in the strongseseand no pseudo-polynomial
algorithm is available to solve this problem. Rerimore, a performance guaranteed
heuristic with (pseudo-)polynomial run time is paissible. We also analyze the several
special case structures and show their complexdyerties.

In Chapter 4, we focus on the application of theltimusit service problem
motivated by the actual problem facing maintengple@ners at a large company. This
application is based on infrastructure facilitidstt require periodic inspection and
maintenance to ensure uninterrupted service amdtefé operation. These facilities are
geographically dispersed, and the inspection aniditereance operations require on-site
visits by a “service” unit, consisting of skilledovkers and equipment. At each site,
several components need to be serviced; the deBeegdency of service varies by
component and facility, depending on the locatidérthe facility, its usage, and other
factors. Scheduling the service tasks associatddthese inspection and maintenance
activities is an important and challenging problating firms that operate infrastructure
facilities. We formulate the problem and develdpst and effective heuristic procedure.
The heuristic is based on the shortest path apprdaceloped in Chapter 2. We apply
the shortest path approach repeatedly for the gubsees that do not contain any
customer twice. We come up with problem size r&adaoctechniques, and determine
several branching strategies to solve actual probleffectively. Finally, we introduce a
technique for dividing the original problem intobsproblems, so that each of them could
be solved much faster. We compare these technapekprovide computational results
for this application.

In Chapter 5, we concentrate on the transshipmeoblgm and give two

mathematical formulations. To improve computatlgmerformance, we develop three
7



sets of inequalities. We show that none of thesmdlations is stronger than the other
one and test them on the same problem instance. akéé/ze the computational
complexity of this problem and its several specades. We propose three heuristics for
calculating good upper bound for the original pesbl We also construct a lower bound
calculation based on a shortest path solution. cdvepare these approaches on the same
problem instance.

Finally, we summarize our contribution in Chaptelafd discuss future research

directions.



Chapter 2: Task Assignment Problem

21 INTRODUCTION

This chapter focuses on the problem of servicingumber of customers in a
discrete time environment. We consider a servateeduling problem in which each
customer requires services aperations,and we assume that each operation has a time-
varying completion cost. Although the service pdev can choose more than one
operation to perform for each customer, some ofdperations cannot be performed
together for technical reasons. The problem iestjan consists of assigningask—or
combination of operations—to each customer whileimizing the general cost function.
We refer to this problem agask assignmen{ A) problem

We make the following assumptions to facilitate mladevelopment:

* We assume that one customer can be serviced mea fCustomers are allocated
to resources whenever higher (strategic) level silmts are made. Then, the
decision makers concentrate on each resource andsgigned customers.
However, there are some cases in which the “on@ices at a time” rule may be
present because of accounting, physical space, fovogs or transportation
considerations. For instance, in a machine maames context, maintaining
more than one machine at a time may cause sembeisuptions in the systems
that depend on these machines.

* We also assume that the order/route of the custisniexed. Routing/ordering
decisions are intermediate (tactical) level dedisiand a fixed route/order can be
a candidate solution for the tactical level problémsome applications, the order

of the customers may come out naturally. A fixadtomer sequence may appear



in real life when the services are handled onst iome first serve basis or when

the customers are located along an interstate laghw

« We assume that each customer appears only ondeeiseguence. The case
where customers appear more than once is an estensithis study, and we
discuss that problem in the next chapter. Howetare are some applications
where each customer is considered once. In thosidss processes, a service
plan takes place only after the orders are rece@gd emergency situations and
corrective maintenance.

* Finally, we assume that no partial service is alldwWno preemption). This is a
natural constraint in many applications where migtions seriously affect the
guality of the service.

We consider the operational level task assignmewiblem, which assigns one task to
each customer and needs the following items ag:inpu

e acustomer sequence,

» the possible tasks for each customer,

* the processing time for each possible task for eastomer,

» the cost function and the time window for each apen.

Given these assumptions, the planner determineshwhgk among the possible choices
to perform for each customer. We require a plat ¥sits all the customers in the given
sequence while minimizing the general cost functmrall operations.

What makes this task assignment problem uniquehas the each customer
requires multiple services with different time wavds and general cost functions. In the
task assignment problem, an assignment chosen rfer austomer may affect the
feasibility of assignments for other customers.rtlt@rmore, the cost of the service for

any customer depends on not only the duration spanearlier customers but the
10



duration that will be spent on later customers beeaof the structure of the cost
functions.

In this chapter, we make several contributionshi® task assignment problem.
First, we analyze several fundamental propertietheftask assignment problem. We
prove that the problem iBlIP-Hard and show the computational complexity of some
special cases. Then, we approach the problem iffieretht ways. The first approach
formulates the problem as a discrete time indexaed/aork flow problem and solves the
problem by using the commercial software CPLEX. $aeond approach represents the
problem as a multidimensional shortest path prohetim path-dependent arc lengths. In
this structure, arc lengths depend on the totad spent on all the customers. We convert
our problem to the shortest path problem by comsigets special network structure.
The resulting formulation is solvable via algorithrthat have pseudo-polynomial run
times. We also compare the computational effortiireq by these two approaches based
on randomly generated test cases. As a resuhlesketcomputations, we show that the
shortest path approach outperformed the genenabnleflow model.

The remaining part of the chapter is organizedadlevis: Section 2 gives the
related literature review, and Section 3 formuldkesproblem as a discrete time indexed
network flow. In Section 4, we prove that the taskignment problem NP-Hard, and
Section 5 concentrates on the special case stesctuin Section 6, we develop the
modified shortest path approach and adopt the kvelivn shortest path algorithms to our
problem. The computational results of these tw@ragches based on randomly
generated data are reported in Section 7. Finalgy,offer a conclusion and discuss

future extensions in Section 8.

11



2.2 LITERATURE REVIEW

In service management problems, some servicespliake only after the orders
are received, and some other services require gerexecutions. We will discuss the
first type of services here and periodic servicethe next chapter. In the case where a
service takes place only after the orders are vedethe customers usually get a service
only once, as in emergency services and correchigmtenance. Many papers in the
literature also consider routing as a part of tleeiglon process whereas the task
assignment problem has a fixed customer sequence.

One emergency service problem is winter grittingragions, where the timing of
an intervention is of prime importance (Campbeltl drmngevin, 2000; Li and Eglese,
1996) Tagmouti et al. (2007) study an arc routingpfem with capacity constraints and
time-dependent service costs. This problem isvatgd by winter gritting applications,
where a subset of arcs must be serviced at a bastdepends on the timing of the
service. Here, the streets are the customersse@mwiting a customer means performing
winter gritting operations. There is a single @en required for each street, and
routing is a part of the decision process in Taginetal.’s paper. The authors report the
exact problem-solving approach that first trans®rthe arc routing problem into an
equivalent node routing problem. Then, a colummegation scheme is used to solve the
latter. The resulting node routing problem is @igle routing problem with time-
dependent service costs. To the best of our krdgeleTagmouti et al. is the only work
that deals with time-dependent service costs inaticerouting literature, although some
variants of the vehicle routing problem with timendows may be related to it (Ibaraki,
et al. 2005; loachim, et al. 1998; Taillard, 199Desrosiers et al. (1995) provide a good

review of time-constrained vehicle routing problems
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Similar applications are municipal waste (Strickd970), waste collection
(Beltrami and Bodin, 1974; Bodin, 1990), sanitatagerations (Riccio, 1984; Riccio and
Litke, 1986; Ball, 1988) and postal delivery (Bodiragan and Levy, 1992). Bodin and
Kursh (1978) study street sweeping, and Levy andiB¢1988) concentrate on postal
delivery. An excellent survey of these applicasiaran be found in Assad and Golden
(1995). In these papers, the process times fahalbperations are equal. Therefore, the
researchers concentrate on the routing decisions.

Single-visit services are also present in a caxmecimaintenance context.
Consider a firm providing repair services for ataer type of equipment over some area.
Typically, the area is divided into service temiés, and in each territory one repairman
(server or service representative) is responsdsi¢hie repair and maintenance. Here, the
machines (equipment) are the customers, and segvimistomers means maintaining
machines. According to Agnihothri and Karmarka®92), the customer calls are
serviced according to an FCFS (first-come, firstrepdispatching policy, so the routing
decision is given by default. This so-calledchine repairmaifor interferencé problem
gets especial attention in the queuing literatufer instance, Agnihothri and Karmarkar
(1992), and Jamil et al. (1994) use queuing moieVgork on approximating the waiting
times for repair services under given probabilitstributions of equipment failures and
the FCFS rule. Here, waiting time can be seensenace time dependent cost function.
Almost all of the related papers in the queuingdrave the FCFS rule, but they consider
different failure distributions or service availdlyi Excellent surveys can be found in
Stecke and Aronson (1985), and Haque and Armst(@20Q7). There are also a few
papers that consider the machine repairman problghout any stochastic information
about the data. In Abdekhodaee et(2006) and Koulamas (1996), there are two parallel

machines with a single repairman who is requiredséup. The machines have to wait
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for the repairman before processing any task. dlpegpers define the problem under
various objective functions, such as makespan atadl tompletion time, and propose
heuristics that run in polynomial time.

Finally, Armstrong et al. (2008) study a problenthwa single transporter and a
fixed sequence of customers. The production tgdilas a limited production rate, and
the delivery truck has non-negligible traveling ¢ésnbetween locations. Each customer
requests a delivery quantity and a time windowrémeiving the delivery. The problem
chooses a subset of customers from the given seguerreceive the deliveries in order
to maximize the total demand satisfied. Here, isgry customers corresponds to
delivering the order to the customer. The probleas a single operation (customer
order) for each customer, and the decision makerdde which customer will get
service. The problem batches the customer orddmsdthe shipment, whereas there is
no batching in the task assignment problem. Aromgtret al. (2008) propose a heuristic,
and branch and bound procedure for practical proble

There are also related problems in preventive reaarice and the multi-item
replenishment context. By their nature, these isesv are required periodically.

Therefore, we will discuss them in the next chapter

2.3 PROBLEM DEFINITION

This study concerns an operational level problenservice management. In
particular, we consider a service facility with mgde service resource and fixed
sequence of customers, denoted ad1,...,i,...,n} wheren denotes the total number of
customers. Let be the index of customers in the visitation order,1, 2 ...n with a
dummy customer at the end. The last custamsiwes not have any requirements and has

one task with zero duration time. Aldgaxrefers to the latest possible start time for the

14



execution of the task that belongs to the lastarust (i.e. customen), andT is the
ordered set of time periods to be considefed; {1 ... tnag. In the task assignment
problem, completion time (start, also end, time tfog execution of the last customer’s
task) is not fixed. Among the possible time period$, leth be the possible completion
time andH be the set of possible completion times. In tlutation,H is the subset of
at the tail andh < tyax

Each customeri 1 requires a set of operationd(i), and each operation,
indexed a%k, has a specified time windowi] A] within which the start of service is
feasible. The time window for operati&ronly sets the feasible time range for beginning
this operation, but the operatidndoes not have to be completed unless the completio
time is greater thag. Also, each customadrl| has an available set of tasksgi), and
each task, indexed gsincludes a set of operatios)(j) and requires duratiod to be
performed. That is, if tagkis selected for customerthen whenever the customegets
service, the resource spendgisunit time and satisfies the time window, [3] for every
operationk 0KJ(j). In this paper, we are interested in hard timedaw constraints,
but in practice, a violation of the time window straints may be acceptable with a high
penalty. In addition, we assume that no partiatises are allowed (no preemption).
Finally, we assume that each customer appearsomcly in the sequence.

For each customer, the planner tries to honor ithe window requirements of
every operation. LeK be the set of all operations for all customersaclEoperation
k 0K minimally has the following attributes:
Yk Earliest start time for the execution of operaton
L Latest start time for the execution of operatkahthe completion time is greater

than
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Ckt Total cost until time for performing operatiok at timet. If the operation is not
done during the sequence, cagtwill occur for the operatiok if the completion
time is equal td

futh Total cost of performing operatidnat timet to the end of horizom. If the
operation is not done during the sequence, thisdmess not appear.

In some applicationdy equals zero, as in emergency maintenance problé&nse the

item is repaired, there is no problem left. In estlsituations,fy, value should be

considered, as in replenishment problems. This @sesents the inventory cost until
the end of horizon.

The planner accomplishes the operations by exeagthim available tasks for each
customer. LefdK(K) be the set of all tasks that contain operakiamd letJI(i) be the set
of all alternative tasks that can be done for austol. Each taskjJl i( )has the
following characteristics:

I Earliest start time for the execution of tagkif it is selected. That is,
max{y, |kOKJ(j)}

B; Latest start time for the execution of tagkif it is selected. That is,
min{B, [kOKJI(j)}

q Duration for performing task forall j00JI(),i=1,2 ...n

It is clear that the decision maker cannot choosask earlier than the earliest
start time for any operation contained in that taSkmilarly, she cannot start a task later
than the latest start time of any operation coetim that task. In the light @i andB;
parameters, leTJ(j) represent the time window for tagkwvhere TJ(j) = {7, ..., Bj}.
However, time window calculations for tasks ardadrainly if the customers appear once
in the sequence. If the customers appear muliiples, more complicated techniques are

needed for preprocessing. We will explain theshrtgues in the next chapter.
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The task assignment problem contains the time wusdor each operation. We
can use these time windows (and processing timéss&$) to develop time windows for
customers in order to reduce the problem size. r¥fer TI(i) as the time window of
customeri [J1 and calculate it as follows:

Let TI(i). andTI(i)y be the lower and upper bound on the time windd®) of
the customei 01 . Also, let dnin(i) and dnali) be the minimum and maximum durations
of the tasks that belongs to customér| . Then, the lower bound (earliest start time)
TI(i). can be calculated as follows:

TIG), =max{TI(i =1), +J,, (i - D), jruqli?){rj}}
whereTI(0). = 0. The earliest start time for the customeérl cannot be earlier than the
earliest start time for the execution of its taskdso, it cannot be earlier than the earliest
start time of the previous customer plus the mimmduration that should be spent for
the previous customer. At the efid(n), gives the lower bound of the completion time.

As an improvement step, if the lower bound on tbegletion time violates the
latest start time of some operations, we chooséaisles that include those operations in
the calculation of the earliest start time for onsers.

The upper bound (latest start timel(i)y depends on thaiting assumption,
which states whether or not there could be waitinge before task executions. If
waiting is not allowedTI(i)y can be calculated as follows:

TI(i)y = min{TIi 1), + 8 —1),jrgjle}i>)<{5j}j
whereTI(1)y = 0. When no waiting is assumed, the latest staré tior the customer
i1 cannot be later than the latest start time optlegious customer plus the maximum
duration that should be spent for the previousaust. Also, it cannot be later than the

latest start time for the execution of its tasks.this calculation;TI(n)y gives the upper

bound on the completion time.
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As an improvement step, if the selected task inlabest start time calculation
violates the earliest start time of some operatiovs exclude that task and reselect it
(maximum processing time among the remaining ones).

If waiting is allowed,TI(i)y can be calculated as follows:

TI(i), = min{TI(i +1), = Oy, (i),jrgjﬁ?;{sj}j
whereTl(N)y = tmax The latest start time for the customér!l cannot be later than the
latest start time for the execution of its taskdso, it cannot be later than the latest start
time of next customer minus the minimum duratioat tthould be spent for the current
customer.

In this structure, we assume that service forwat@mers in the sequence must be
completed and that the specified maximum numbettimke periods tf.,) for the
completion time is sufficient to complete all stepShe optimization problem outlined
above can be formulated as a discrete time indegegork flow.

Decision Variables:

Xit = 1 if we start taskj at timet, and O otherwise, for all=1 ... n, jOJI(),
tOTI())
Uw = 1 if no tasks containing operatidnare performed during the horizon with

lengthhfor kOK, h(OH

Vikn = 1 if operatiork is performed at timé and the completion time tsfor KO K,
tOT, hOH
Zn = 1 if the completion time ig, and 0 otherwise, for alh[JH — called theexit

indicator variable
The Z, variables are defined merely for convenience amdsitmplify the
representation. We can equivalently formulatepitudblem without these variables.

Modd Formulation:
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Minimize > el +> > Yo X + 33> fuVia

kOK hOH KOK jOJIK(K) TTI( j)
subject to:

Task assignment for first step
2 Xy =1

O3 @) Tl (1)

Flow conservation constraints

in,t—a,» =D 2 Xy

091 (i-1) O3 tat

Exit indicator

> Xy =27,

j03I(n)

Detection of not done operations

Z, - Z ijt S

JOIK(K) €TI( )

kOK ©OT HIH

fori=2...n, t OTI(i)

forh O H,

fork OK, hOH,

Detection of time elapses after performing eachraien

Z + int -1<V,,

JOIK(K)

Integrality

XU Vi, Zy, = Oorl

it

The objective function (1) minimizes the total piydor three terms. The first
term is the penalty for operations that are nofgeered. The second and third terms
hold the penalties for operations that are perform&he second one computes the
penalties until the execution time of the operatjoand the third one calculates the
penalties after the execution time of the operatio€onstraint (2a) assigns the task for

the first customer, and (2b) is a flow conservatimmstraint.
assumption, we can write the right hand side of¢hmonstraints asZth :

(3) determines the exit time and constraint (4edistincomplete operations. Constraint
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fork OK, tOT, hOH

(1)

(2a)

(2b)

®3)

(4)

()

forj 0J,tO0T, k0K, hOH.(6)

joanG)

If there is ao-waiting
Constraint



(5) calculates the time that elapses after perfiogn@ach operation. Finally, constraint
(6) is for integrality requirements.

In some applications, there can also be an additioost for waiting times. We
did not consider waiting time costs here for thieesaf simplicity, but they can be easily
incorporated to our formulation.

In the next two sections, we deal with the compomal complexity and the

special case structures of the task assignmentgmnob

24 NP HARDNESS OF THE TASK ASSIGNMENT PROBLEM

Task assignment [TA] problems are in the categdryifiicult problems, so
called NP-Hard problems. In fact, the well-knowmagsack problem can be written as
an instance of the TA problem. (See Karp (1972}He knapsack problem.)

Knapsack Problem: Let N be the number of items amde the index of each
item,i =1, 2 ...N. Each item has the following attributes:

Ci Cost of itemi if it is selected, forali=1, 2 ...N
a size of item foralli=1,2 ...N

Let b represent the limit that we need to satisfy, iapacity of knapsack. Each
itemi has the following decision variable:

Xi = 1if itemi is selected and O otherwise, foria# 1, 2, ...,N

TheKnapsackproblem can be formulated as an integer program:

N
[KP] Maximize > ¢ X

i=1

S.t. ZN:ay X, <b

i=1

X,=0orl, foralli=1,2...N
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Proposition 2.1: The knapsack problem [KP] is polynomially redueildb the task
assignment problem [TA].
Proof: If we convert the general knapsack problem tosk @ssignment instance, the
construction of the TA instance for the indices aath is as follows:
* Aroute consisting oN + 1 customers. In other words= N+ 1
» Each customer requires only two operations, sayandw;, fori = 1 ... N, and
customem + 1 requires only one operation.1
» Two tasks are available for each customerl1 ... N Each task contains one
operation. For simplicity’s sake, say tagkncludes operatiom;, andw; includes
operatiorw; fori = 1 ... N CustomeN + 1 has one task calleg.;
The construction of the TA instance for the parareets as follows:
* Duration time for performing task is a and zero for task, fori =1, 2 ...N.
Also, the duration time for performing tasgk.; is zero
* =0 for operatiork = v andw;, fori =1, 2 ...N (earliest start time)
* [ =Db+1for operatiork = v andw;, fori =1, 2 ...N (latest start time)

* k= G = bfor operatiork = W1

* ¢, =c foroperatiork = v attimebandc, = Ofor the others

e fn=0foral kK, tOT, hOH

In this instance, the time window of operatiap; has only one elemeit and
there is only one task available for custorNer 1, so this task should be done at time
Since we know that the last customer should getice@at timeb, all the time window
constraints for all operations are irrelevant fostomers =1, 2 ...N. Besides, there will
be no cost related to; in the objective function. Using this structuwes can make the

following observations:
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* The only feasible time point for steN + 1 is periodb. Therefore, flow
constraints (2a) and (2b) try to reach that pelbgdelecting either task or w;.
Also, they can wait in intermediate steps.

» Duration of tasks; are equal t@ for all steps, and the durations of tasksare
zero, fori =1 ... N Therefore, the feasible solution selects thessubf taskw,,
and the duration of selectgd@ cannot exceed peridud

* If the solution does not select to do operatign(equivalently selects to do
operatiorw; ) we will payc; for the completion timé.

N
» If the solution does not choose any of the openatip total cost would bez C .
i=1

We can define a new decision variable to captugsdlobservations better:
Y, =1 if tasky, is selected and O if task is selected, forall=1 ...N
Therefore we can rewrite the task assignment pnolale:

Obj; = Minimize ZN:ci —ZN: GY,

i=1 i=1
N
st: > Y, <b
i=1
Y, =0orl, foralli=1,2...N.

In the objective function, the first term is comgtand does not affect the solution,
so we can exclude it during the solution procedsoArecall thatmin—Z =-maxZ.
Therefore, we can equivalently write the above fdaton as:

Obj, = MaximizeZN: GY,
Ni:l
st: > Y, <b
i=1

Y =0orl, foralli=1,2...N.

There is a one-to-one relation between the objestof these two formulations, which is:
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N
Obj = - (Obp =Y c,).

i=1
Therefore, an optimal solution to one of them soahn optimal solution to the
other one. Finally, observe that the second fortiaridas equal to the knapsack problem.
Since each in set, the indices and parameters imdsAat mosO(N) items, the
reduction will take polynomial timeno
Corollary 2.2: The following problems are NP-Hard:
a) Task assignment problem
b) Task assignment problem with waiting time costs
c) Task assignment problem with negative costs
d) Task assignment problem with customer-wise timelawnconstraints (rather
than operation-wise time window constraints)
Proof: a) In the construction in Proposition 2.1, therem objective function with value
Z for the knapsack problem if and only if there iisabjective function with value Z(-

N N
ZC,) for the task assignment problem with knapsaclésameters WhereZcI is
i=1 i=1

constant. That is why we can conclude that thepigblem is NP-Hard.
b) The TA problem is special case of this probleithwero waiting costs. Therefore, the
result immediately comes from the part (a). If wagjtcosts should be nonzero, then we

N
can select the per period waiting costs bigger thantotal possible penalty coicI .
i=1

Then the equality knapsack problem (knapsack problath equality constraint) is
polynomially reducible to the TA problem with waig time costs. (See Kaufman et al.
(1985) for equality knapsack problem.)

c) We assign negative knapsack cost parametargsaparameters for the TA problem.

This construction of the problem instance is simila Proposition 2.1 except for the
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duration parameters: the duration of tasksre equal to zero for all steps, and the
duration of tasksv; area;, fori =1 ... N Sincemin—Z = -maxZ, the optimal objective
value for the TA problem is the negative of theirmad objective value for the knapsack
problem.

d) The construction of the TA instance with knagsparameters in Proposition 2.1
requires only one operation-wise time window caaistr(for customeN+1). This time
window constraint could be treated as a customsewime window constraint.
Therefore, the conclusion follows from part @).

In the construction of the problem instance in Bmijon 2.1, the customers
require only two operations. In fact, one of the@tions has no duration, time window
or nonzero cost parameter requirement. The cosinpeter for the other operation
appears once in time, so we can conclude thatypey af cost function other than zero
cost function provides an NP-Hard result.

In the below proposition, we prove that even thebfgm with zero cost function
is NP-Hard for the TA problem that hasi@waitingassumption.

Proposition 2.3:Consider the task assignment problem under theaiting assumption.

If there are only two operations (and their corresgding tasks) for each customer, the
resulting problem is NP-Hard with zero cost funatio

Proof: Since there is no cost at all, the problem isasibility problem, and we have to
satisfy the time window requirements of the operadi

We show that the 2-Partition problem is polynonyiaducible to this problem.
(See Karp, 1972 and Garey and Johnson, 1979hel@-partition;

« Data: afinite set and a sizea, 0 Z, for i O
* Question: Is there a subset] | such thatZai = Zai ?

iagr g
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We can construct the desired instance with P customers. In this construction,
assume that each customerequires only two operations (and has their cpoading
tasks), say; andw; fori = 1 ... |I| + 2. The construction of the TA instance witma-
waiting assumption is as follows:

 Durations areg=a anddy;= 0 fori = 1...|I|. Furthermored+1)= Au+1)= 0.

Finally, the last customer has duratialg 2= dv(|+2)=12a1 +1.

igl

* 9= 0andf= » for all customers except for the custorherl.
1

* = Bary = EZai

it
Using this structure, we can make the followingeslations:

o1 :
* The last customer requwesZai +1 amount of duration. Therefore, the total
idl

. : . . 1
duration time in the sequence is equal to or greh&n—Zai +1.
il

* Every feasible solution should seleefl+1) to satisfy the latest start time

. . 1 . .
requirement of that operation, becaytg 1) <§Zai +1. This selection can only
il

. 1 , .
be done if the task(l+1) starts at tlme—2a1 because of the earliest start time
il

requirement.

* Hence, the problem is feasible only if there is ubset I'l11 such that
Y a = Y a . Inthe feasible solution, selectef) tasks fromi = 1 ... ||| give

iar g

the subset'. We conclude that the problem is NP-Hard.

In the construction of the problem instance in Bsdon 2.3, one of the
operations has only a duration requirement and dusshave any time window

requirement.
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Corollary 2.4: Consider the task assignment problem under a ntngaassumption and
with only two operations (and their correspondirgsks) for each customer. The
following problems are NP-Hard:
a) The problem that has no latest start time requinetmend has non-decreasing
cost functions with time for all operations
b) The problem that has no time window (earliest desatime) requirements and
has general cost functions for all operations
c) Task assignment problem with waiting and waitingneti costs under the
restriction of part (a) or part (b)
Proof: a) The construction of the problem instance iopBsition 2.3 does not require
time window constraints, except for the operatiboustomerl] + 1. We can replace the
latest start time requirement of this operatiorhveitbig penalty cost in case of violation.
Hence, this operation acts like there is a latestt sime requirement. Therefore, the
result immediately comes from the Proposition 2.3.
b) Similar to part (a), we can replace the timadew requirement of the operation of
customerl| + 1 with big penalty costs in case of violatidience, this operation acts like
there is a time window requirement. Therefore, rdsult immediately comes from the
Proposition 2.3.
c) We can assign big penalties for waiting timetsao the instance constructed in
Proposition 2.3. As a result, this problem ack® Ilthe problem under a no-waiting
assumption. Therefore, the results in part (a)(Ahdre also true for this problem.
In the next section, we concentrate on some speamg structures of the task
assignment problem that are polynomially solvabWWe propose algorithms that have

polynomial run times to solve these special cases.
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25 SPeCIAL CASE STRUCTURES

The difficulty of the task assignment problem maigea from many parameters,
such as the number of operations, the number k$ tand the time window parameters.
In the previous section, we saw that even the w@skignment problem with two
operations and a single time window requirementoioe of them is NP-Hard (without
any cost function). In this section, we begin wthis specific problem and consider two
cases. The first case considers the earliesttgtatrequirement without the latest one,
and the second case deals with the latest stagtriguirement without the earliest one.
Then, we examine the same problems under multiperations K > 2). Lastly, we
discuss another special case that assumes equakpriimes for all tasks. Since the start
times of the tasks are fixed, there is no pointthar time window requirements. Instead,

we consider the general cost function for this sj@ase.

25.1 TA problem: Two operations and single time window

Here, we assume that each customer requires omlyoperations and has two
corresponding tasks. In addition, only one of dperations has either the earliest start
time or the latest start time requirement. Theiserplanner chooses one of these two
operations for each customer. For this subsectienysev(i) to represent the operation
(and task) with the time window for customeandw(i) to represent the operation (and
task) without the time window for customier Finally, we consider the problem with a
zero cost function. In other words, feasibilityais issue here.

Proposition 2.5:Consider the task assignment problem under zesb femction with n
customers. Assume that each customer i requireoperations, v(i) and w(i), and only
one of the operations, v(i), is restricted with tkarliest start time. Under these
conditions, the following statements are true:

a) If waiting is not allowed:
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al. Selection of the tasks without time windowtric®ns, w(i), for all
customers gives a feasible solution
a2. If the tasks without time window restrictiongj), are not available for
some customers, Algorithm 1 (its logic is giveroiglsolves the problem in
o(n)
b) If waiting is allowed:
bl. Selection of the tasks without time windowtric®ns, w(i), for all
customers gives a feasible solution
b2. If the tasks without time window restrictiongj), are not available for
some customers, waiting as much as the latestesadtart time of v(i) at the
beginning and then performing the operation with #arliest start time, v(i)
for all customers gives a feasible solution.
Logic of Algorithm 1: The algorithm begins with the first customer dalfiows the
same customer order in the sequence. If the sergsource comes to any customer
before the earliest start time of the operatipand operationv is not available, then the
problem is infeasible. Otherwise, the algorithmestd the task that has the maximum
duration. The detailed pseudo code is given irafhygendix.
Proof: (al and bl) Since there is no time window restriction on amgmtionw, and
there is no latest start time requirement for apgrationv, selection ofw for all
customers gives a feasible solution.
(a2) Given in the appendix.
(b2) If the tasks without time window restrictiongji), are not available for some
customers, waiting as much as the latest earliest ime at the beginning of the
sequence will prevent any violation. Then, perfiogmoperationv(i) for all customers

gives a feasible solutiono
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Proposition 2.6:Consider the task assignment problem under zesb fooctions with n
customers. Assume that each customer i require®perations, v(i) and w(i), and only
one of the operations, v(i), restricted with théekt start time. Then, the following
statements are true:
a) Algorithm 2 (its logic is given below) solves thelgem under a no-waiting
assumption in Of
b) The problem under a no-waiting assumption is infdasif and only if the
problem under the waiting allowance is infeasible.
Logic of Algorithm 2: In the initialization part, the algorithm findeet minimum
possible completion time for the given customerusege (by selecting tasks with
minimum duration). The algorithm begins with thestf customer and follows the same
customer order in the sequence. At customiérthe completion time is smaller than the
latest start time of the operatigfi), the resource performs a task with minimum dorati
for that customer. Otherwise, the algorithm cheblestime that the resource is available
for that customer. If the time is earlier than st start time of the operatigf), the
algorithm chooses the operatigf); otherwise, the problem is infeasible. The alfon
updates the candidate completion time and resdariseacustomers. It stops if either
infeasibility is found or if there is no change time candidate completion time. The
detailed pseudo code is given in the appendix.
Proof: (a) Given in the appendix.
(b) It is clear that if the problem under a waitingpalance is infeasible, then the problem
under no-waiting assumption is infeasible, becahselater problem’s feasible set is a
subset of the earlier one.
If the problem under no-waiting assumption is isfbke, then there should be an

operation for some customer in which the resousseot come to that customer before
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the latest start time of its operation. Waitingnahere will not fix this issue. Hence, the

problem under a waiting allowance is infeasible.

25.2 Task assignment problem with multiple operations and tasks

* When customers require multiple operations, th& tEsignment problem gets
more complicated for the following reasons: Eachktamer requires operations
that have different time windows. The service nggmashould choose an
appropriate task at an appropriate time in orddralances time windows for each
customer.

* For each customer, not all of the operation contlmna (i.e. tasks) may be
available. The problem needs to select approptadks that cover required
operations.

Recall thaKI(i) represents the set of operations for custamet. Also, letJI(i)
be the set of all alternative tasks that can beedoncustomer, and letJK(k) be the set
of all tasks that contain operati&n
Proposition 2.7:Consider the task assignment problem under zesb fomctions with n

customers. Lek™ be the maximum number of operations required by @arstomer
(i.e., ma{|KI()[}}) and j™ be the maximum number of available tasks for any

customer (i.e.,m_ax{| JI@i) |}). If there are only earliest start time restrmtis for all of

operation k, the following statements are true:
a) If waiting is not allowed, Algorithm 3 (its logis Diven below) solves the problem
in O(NK™j™®
b) If waiting is allowed, waiting as much as the latesrliest start time of all
operations at the beginning, and then performing aperation gives a feasible

solution
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Logic of Algorithm 3: The algorithm begins with the first customer dalfiows the
customer order in sequence. If the service regoummnes to a customer before the
earliest start time of some operations, the algoriexcludes the tasks that contain those
operations. |If there are no tasks left, then tloblem is infeasible; otherwise, it selects
the task (among available ones) that has the mawimuration. The detailed pseudo
code is given in the appendix.

Proof: (a) Given in the appendix.

(b) Similar arguments as in Proposition 235.

Proposition 2.8:Consider the task assignment problem under zesb fomctions with n

customers. Lek™ be the maximum number of operations required by @arstomer
(i.e., m.a>{| Kl (i)|}) and j™ be the maximum number of available tasks for any
I

customer (i.e.,mﬂa>{|JI(i)|}). If there are only latest start time restrict®rior all
I

operation k, the following statements are true:
a) Algorithm 4 (its logic is given below) solves thelgem under a no-waiting
assumption in O(n|K[Kj™)
b) The problem under a no-waiting assumption is infdasif and only if the
problem under a waiting allowance is infeasible.
Logic of Algorithm 4: In the initialization part, the algorithm findsethminimum
possible completion time for the given customerusege (by selecting tasks with
minimum duration) and assigns this length as a idabtel completion time. The
algorithm begins with the first customer and fol®the customer order in the sequence.
For each customer, it finds the required operatiqAs operation is required if the latest
start time is earlier than the candidate completiore.) The algorithm checks the time
that the resource is available for that custoniéthe time is earlier than the latest start

time of all required operations, the algorithm cbe® a minimum duration task that
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contains all of the required operations; otherwidee problem is infeasible. The
algorithm updates the candidate completion timesf{loyming up the duration of selected
tasks) and rescans all of the customers. It gfogther infeasibility is found or if there
is no change in the candidate completion time. détailed pseudo code is given in the
appendix.

Proof: (a) Given in the appendix.

(b) Similar arguments as in Proposition 216.

2.5.3 Task assignment problem with equal processtimes

In the task assignment problem, a task selectioorie customer affects the other
ones because of different process times. The staks for each customer are
determined by the earlier task decisions. In a@aliithe completion time of the sequence
depends on all of the selections.

However, if all process times are equal, neither gtart times of the customers
nor the completion time depend on the task selestiol herefore, the problem becomes
easy to solve.

Proposition 2.9:Consider the task assignment problem under a ntngaassumption

with n customers. Lek™ be the maximum number of operations required by an
customer (i.e.,m_a>{| Kl (i)|}) and j™ be the maximum number of available tasks for

any customer (i.e.max| JI(i)[}). If all the process times of all tasks of eacistomer

are equal, the problem is solvable in GIAK") for general cost functions.

Proof: Since all the process times of all the tasks #mhecustomer are equal, the start
time for each customer and the total completionetiane known. Therefore, we can
calculate the cost of selecting each task. Themapbtsolution is the selection of tasks

with minimum cost for each customer.
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The cost calculation of any task has to considetoud"® operation. Then, we
have to choose the task with minimum cost among®(tasks. Fon customers, the

selection of all tasks with minimum costs will taRMK™j™®) time.

2.6 SHORTEST PATH APPROACH

In this section, we develop an alternative formafatfor the task assignment
problem by using shortest path algorithms (see dbigk 1959; Dial, 1969; Johnson,
1977; Ahuja et al., 1991). In the classical shairpath problem, we know the arc lengths
in advance. However, the arc lengths in this mwobhre defined only after the total
service time (completion time) of the sequencealsiwdated.

Here, we represent the task assignment problerhdrime-space network. In
this network, each node denotes the specific cust@md that customer’s visitation time,
and denoted ag,(t) wherei [0 | andt [0 T. The first node is denoted as (1, 0) and
represents the first customer at time 0. The ndtwatso hasr(+1,t) and sink nodes for
structural purposes.

In this graph, there is an arc fromtj to ( + 1,t + g) where( is the duration of
taskj for eachj [0 JI(i) andi OO 1 andt O T. Moreover, there is an arc from eaoh1, t)
node to thesinknode for each ] T.

In the case where waiting is allowed, there is ddliteonal arc fromi( t) to (i, t +
1) foreachj O JI(i) andi O 1 andt O T.

In the following example, the problem has threstomers and each customer

has two tasks. The durations of the tasks arengivdable 2.1.
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Customers

1 2 3

1 1 1
Tasks

2 3 1

Table 2.1. Durations of the tasks for each customer

Figure 2.1 represents the time-space network af itftstance, assuming that the
maximum completion time is 6.

If waiting is allowed, the network has extra arexl anodes compared to the
network under the no-waiting assumption. In Fig2uE the arcs fromi,(t) to (i, t + 1)
are the extra arcs, and the shaded nodes arettheexles.

Time ‘r
t=6

Customers

»
»

Figure 2.1. Time-space network of given example
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In the task assignment problem, the arc from custorto customei + 1 has a
cost which is equal to the total cost of the operstrequired by customer The cost for
each operation depends on the completion timelanddst structure for each operation

[0 K in the following way for a given completion tinhe
ok, = {ckt + f,, If theoperationisdoneat timet

Cun otherwise

h 00 H is a candidate completion time for the task asamgm problem. Clearly, the
actual completion time is not known at titne

Let cji: be the cost of an arc from {) to ( + 1,t + g) for eachj O JI(i) at timet.
This arc represents the selection of tafk customei at timet. Furthermore, leKI(i)
be the set of operations for customemdKJ(j) be the set of operations for task If
there are no time window constraints, then theWwihg expression calculates the cost of
an arccj; for a given completion timk:

Cit = Z(th + i) + chh

KOKJ () KOKI (i)\KJ (j)

The first summation is the cost of the operatidreg tire done at time and the second
summation gives the cost of the skipped operatigibe costs of arcs from nodesH 1,

t) to sink node are zero.) For the sake of sintglieve did not consider waiting time
costs here, but they can be easily incorporatealtiaghing cost to arcs that go fromt}
to(,t+1).

In the case of the time window constraints, thdiesdrstart time constraint for
performing operatiork is violated if we perform this operation earlieathits earliest
start time,y. Similarly, the latest start time constraint foerforming operatiork is
violated if we do not perform this operation withfiatime unit. Therefore, we can delete
the arcc;; from the graph under one of the following condisdor a given completion

timeh:
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o |If y, >tforkOKJI(j)
o |If B, <tforkOKJI(j)or B, <hforkOKI(i)/KI(j)

The task assignment problem finds a path of miningost from the node (1,0) to
the sinknode assuming that each arc has an associategjcagterej (1 JI(i), i O | andt
O T. Recall that the value of the cogt is not known at time since the actual
completion time is not known, whereas itipriori known in the classical shortest path
problem.

We can calculate the arc costs if we know the cetigi time, and if we know
the arc costs, we can solve the problem by usiegtiortest path routine. Therefore, we
solve this problem for each candidate completiometh and take the minimum valued

shortest path solution. The following is a gensdheme for this algorithm:

Algorithm for the shortest path approach

0. Setoptimalvalue= «, optimalsolution= empty

1. For each candidate completion tirhél H do

2. Hold the arc originating from node ¢ 1, h) to sink node and delete all the

remaining arcs terminating sinknode

3 Delete all the arcs that have an incoming nodk witime index greater thdn
4 Calculate the arc costs with respect to compléitae h

5 Solve the shortest path problem for the resultieigvork

6. If the current shortest path value is less thtimalvalue

7 optimalvalue= current shortest path value

8 optimalsolution= current shortest path solution

9. End For
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Another way to solve this problem is by duplicatthg network for all candidate
completion times and solving one big shortest gathblem. However, this approach
requires more memory than the proposed algorithoveb

The computational performance of the algorithmeelheavily on the number of
arcs in the shortest path routine and the numbeawdidate completion times. Although
the algorithm deletes the unnecessary arcs foridatedcompletion timé in step 2 and
3, we can do better than that.

We can improve the computational performance ofalgerithm by tightening
the time window for each customer. This will dexe the number of arcs so that the
shortest path routine becomes faster. If we cghtean the time window of the last
customer, this will also decrease the number ofliceate completion times. The time
window calculations of the customers were describhe&gection 1.3.

We can also make some improvements to the net¥aork given completion
time. We can delete the unnecessary arcs and modes shortest path graph using the
following methods: 1) Changing the direction oé tarcs. 2) Finding all the reachable
nodes from thaink node. 3) Deleting all the nodes that are nothable from thesink
node.

This will give us a tighter graph. However, itas expensive method to consider
unless the cost calculations take too much time.

These procedures will decrease the size of theanktand hopefully increase the
performance of the algorithm.

Proposition 2.10:Algorithm shortest path approach solves the tasiggmment problem.
Proof: In step 2 of the algorithm, there is only onelaftthat goes to theinknode. If a
feasible solution to the task assignment probles) dn@ompletion timd, this solution

could appear as a path in only one shortest pathlgm, which would contain the arc
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from node ( + 1, h) to thesinknode. Therefore, the shortest path value ofdbistion
equals the objective value of the task assignmeeiti@m.

If there is a feasible path in any shortest patitine, this path satisfies flow
conservation constraints and time window constsa(recall that arcs that have violations
are already deleted). Since it only appears insbrogtest path routine, the cost functions
of the operations are calculated correctly. Assult, it is a feasible solution to the task
assignment problem with the same objective val&milarly, if there is a feasible
solution to the task assignment problem with comnbetimeh, this solution will appear
as a feasible path in only one shortest path reutivhich would contain the arc from
node ( + 1, h) to thesink node. As a result, it is a feasible path in onhertest path
routine with the same objective value. This codehkithat thelgorithm shortest path
approachsolves the task assignment problemo

When the network is constructed for the shortesh p@proach algorithm, that
network is acyclic, so topological ordering is dable. In fact, from the lower time
index to the higher time index gives the topolobaraering.

According to Ahuja et al(1993, pp.108), “The reaching algorithm solvies t
shortest path problem on acyclic network©{m) time,” wherem denotes the number of
arcs in the network.

Corollary 2.11:Let k™ be the maximum number of operations required lyycaistomer
(i.e., m}a>{| Kl (i)|}) and thax be the latest time in £/ T. The shortest path approach

2
max /*

algorithm solves the task assignment problem inkKO{t
Proof: There are at mostax candidate completion times. For each of themneed to
solve the shortest path routine. In each shop@t problem, there arecustomers, and
each customer has at magiy arcs. Therefore, there are at mokt.x arcs. Also, the

calculation of an arc cost will take(k™®) time. As a result of the proposition in Ahuja
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et al (1993), each shortest path problem will t&k&™* n tnay) time. Since we need to

solve at mostax Shortest path problems, tekortest path approach algoritheolves the

task assignment problem @(nk™t?2_). o

2.7 COMPUTATIONAL RESULTS

We calculated the computational performance of pheposed shortest path
approach and the IP model formulation through fsloaly generated test cases. The
proposed shortest path approach was programmed-n &d the IP model uses ILOG
OPL Development Studio 5.2. The tests were takemro Intel Pentium M notebook
computer with 1.73 GHz and 1.00 GB of RAM and a Wéws XP operating system.

As an objective function, we chose a total weightadliness criterion that is
commonly used in many areas, such as machine daigdand after-market repair
services. In this criterion, each operation hali@ date and a per day penalty for each
time period after the due date. The amount ofdagr penalty for each operation equals
its weight, and the weight of the operation is amiily assigned on a scale of 1 to 40.
Since the objective has a specific function, weonelilated the problem (given in
Section 3) in a more compact way. (See appendigdtails.)

In the numerical analysis, we set the parametargshi® number of customers,
operations and tasks. The relationship betweempamation and a task is randomly
assigned, and there is a 50% chance to assigrp#ratmn to the task. We ensure that all
the operations are assigned to at least one fEs&.processing time of each task depends
on the number of operations included by that taBkr each operation included in the
task, numbers from 1 to 6 are uniformly assigned, the summation of these numbers

equals the duration time of that task.
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The due dates of the operations for a particulatazner are uniformly calculated
from an interval. The middle point of this intelva equal to the average duration time
of all tasks multiplied by the order number of ticastomer in the sequence. The lower
bound of this interval is half of the interval’s adie point, and the upper bound of this

interval is equal to one and a half times the wrgks middle point.

Average CPU Time
Number of Average Number of (second)
Customers Operations Tasks Variables Constraints IPModel Shortest Path
5 1 2 93.6 76.2 0.24 0.01
10 1 2 527.4 422.6 0.42 0.01
15 1 2 1143 907.8 0.76 0.01
20 1 2 1963.4 1536.6 1.72 0.01
25 1 2 2973.6 23374 3.54 0.02
5 3 6 804 534 0.67 0.01
10 3 6 4270.6 2674.6 17.68 0.04
15 3 6 9987 6139 121.30 0.10
20 3 6 18054.6 11020.6 630.69 0.27
25 3 6 29792.2 17973.2 2400.36 0.59
5 5 10 1718.2 1108 172 0.04
10 5 10 8031.8 5011.4 41.40 0.18
15 5 10 22373.8 13300 981.74 0.43
20 5 10 37878.2 22931 >3600 0.77
25 5 10 N/A N/A N/A 1.68

Table 2.2. Comparison of the shortest path approach ando@ehformulation
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Table 2.2 reports the corresponding CPU times @dvirsg instances via the
proposed shortest path approach and the IP forionlatith respect to the number of
customers, operations and tasks. It also showsuh#er of constraints and variables in
the IP formulation.

Each observation listed in Table 2.2 is the avereggilt from 5 randomly
generated test cases. As we can see, the numlmgeddtions and tasks has a major
impact on the required computational time, bothhi& proposed shortest path approach
and the IP model. However, the shortest path agbroequires significantly less time
than the IP model. When the number of customrersecomes larger, OPL was

terminated because of either the one-hour time mbecause of insufficient memory.
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Figure 2.2. Optimal value vs. Completion time graph of a @ntly generated instance
with 100 customers, 5 operations and 10 tasks
In Figure 2.2, we plot the optimal value vs. coniple time graph of a randomly
generated instance with 100 customers, 5 operaéindslO tasks. Unfortunately, there
are some local optimal solutions in this functibattprevent us from performing binary
or golden section searches.
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2.8 CONCLUDING REMARKS

In this chapter, we considered a service managemsotilem with a fixed
customer sequence under time window and multipkraipn requirements. We proved
that this problem is NP-Hard. We analyzed the igpherase structures and proposed
polynomial time algorithms for these special case¥/e developed an alternative
algorithm based on the shortest path approach @lrddsthe problem effectively. The
proposed shortest path approach algorithm is vatigeneral cost functions, because the
algorithm does not make any assumptions on thectpgefunction. Computational
results show that this shortest path approach shrfaster than the IP formulation solved
in OPL.

This work can be extended in several directionlse problem we considered here
is an operational level problem in which there aiso strategic and tactical level
decisions. At the strategic level, we may havetiplel resources and want to partition
the customers to those resources. At the tadaeal, the focus is on finding the optimal
route. Another extension would be multiple visaas of the same customer. In that
case, task selection does not only affect the athetomers, but also affects the other

visitations of the same customer.
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Chapter 3: Periodic Task Assignment Problem

3.1 INTRODUCTION

In this chapter, we extend the task assignmentl@moland allow for multiple
appearances of the same customer in the given segueWe consider the service
scheduling problem in which each customer requpsations that should be performed
periodically, and we assume that performing eaclkratpn has a time-varying
completion cost that depends on the previous sertime. Recall that in the task
assignment problem, the service provider can choase than one operation to perform
for each customer, but some of the operations ¢abeodone together for technical
reasons. Aaskrefers to a combination afperationsthat can be performed together.
We refer to each successive customer visit asepin the sequence and consider a
problem that assigns one task to each step, andfexeto the problem asperiodic task
assignmen(PTA) problem

The assumptions we make for this problem are sinwlahose we made for the
task assignment problem. We study the periodik égsignment problem with a single
resource and a fixed sequence of customers, eashioli can appear multiple times in
the given sequence. We also assume that no pegtidte is allowed (no preemption).

In Chapter 2, we studied the problem in which eag$tomer appears once in a
sequence. To put it more accurately, the problensiders amperation typehat should
be done only once. In other words, if the sameorner appears multiple times in the
sequence but the operations in each appearancaliffeeent, we can treat these
appearances as if they belong to different custemdence, we can use the proposed
algorithms in Chapter 2 to solve this problem.

In the periodic service type, the customers reqthieesame operations multiple

times. We consider the cost function and the tiwiadow relative to the last
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performance of the same operation. Each operhfisma so callecklative time window
which means that the earliest and the latest stags depend on the previous execution
time of that operation. Therefore, the time windaaverelative to the decision maker’'s
previous assignments. If all of the customers appeace in the sequence, this problem
coincides with the problem we studied in Chaptear] we can use the same techniques
to solve the problem. However, shorter sequenddsow customer repetitions could
cause myopic decisions, but longer sequences wgtomer repetitions prevent us from
making decisions that affect later steps undesirabl

In this chapter, we consider the operational lepetiodic task assignment
problem that assigns one task to each step armbitesponding customer and requires
the following inputs:

e asequence witm steps,

the possible tasks for each customer,

the processing time for each possible task foryegestomer,

the cost function and relative time window parameeter each operation, and

the last execution date for each operation.

The planner determines which among the possiblestas perform in each step. We
require a plan that completes all of the stepsfiengiven sequence while minimizing the
general cost function of all operations.

The periodic task assignment problem has uniqueactexistics. First of all,
each customer requires multiple operations witfetght time windows and general cost
functions. The cost of an operation can take aayerif it is done within the time
window and takes a value of infinity otherwise @mwindows are hard). Moreover, the
previous decisions of the same customer deternfiaefuture time windows. Hence,

there is no explicit time window for tasks as thisran the single visit case. In an optimal
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solution, the assignment would choose a time tlddnces the cost functions of all
operations and does not violate relative time wvmslo Furthermore, the total cost of a
step is affected not only by the decisions madetlier earlier steps but also by the
decisions made for the later steps because otiihetsre of the cost function.

In this chapter, we analyze several fundamentgbgnaes of the periodic task
assignment problem. We prove that the probleMsHard in the strong sense and
show the computational complexity of some speaaks. We formulate the problem as
a discrete time indexed network flow.

The remaining part of the chapter is organizedofisvis: Section 2 gives the
relevant literature review, and Section 3 formwdatee problem as a discrete time
indexed network flow. In Section 4, we prove ttieg periodic task assignment problem
is NP-Hard in the strong sense, and Section 5 concestrat the special case structures.
Section 6 discusses the valid cuts and Sectiors@ritbes the preprocessor algorithm that
reduces the problem size. Finally, we offer theobasion and discuss future extensions

of this study in Section 8.

3.2 LITERATURE REVIEW

The periodic task assignment problem may appeanany contexts, such as
multi-product lot sizing, machine maintenance, aglécommunications. The problem
where the order of customers is not given but fonstinstead as a decision variable has
received some attention. In the remainder of shigly, we refer to the variant of the
PTA problem where the order of customers is come@léo be a decision variable as the
sequencing and periodic task assignm@RTA) problem. Although the SPTA problem

seems to be an extension of the PTA problem, wewrite the SPTA problem as a
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special case of the PTA problem in some circumssnaVe will discuss this situation at
the end of this section.

Anily et al. (1998) consider the special case ef 8PTA problem in the context
of scheduling preventive maintenance for a set athimes over an infinite horizon.
Here, the machines are the customers, and serveimgachine means performing
maintenance. The authors assume that each macdguées a single maintenance
operation, and all the processing times are equihht is, only one machine can receive
maintenance in a given period, and the maintenasitbe done within the given period.
Another application they consider, which falls inkee same problem framework, is the
multi-item replenishment of stock. In this problewnly one item stock may be
replenished at a time. In Anily et al. (1998), twost of operating a machine in a period is
a linear (increasing) function of the number ofipas since its last service. They assume
no setup cost for performing the maintenance. Télegw that there is an optimal
maintenance schedule that is cyclic, and they pteaepolynomial time algorithm to
compute optimal policies for a two-machine caseeylalso present heuristics and worst
case bounds (2.5-approximation if the linear casicfion starts from zero and 2-
approximation if the linear cost function start®nfr one) for a general number of
machines. To date, it is not clear whether thdlera considered in Anily et al. (1998) is
NP-Hard.

In Anily et al. (1999), the authors consider thelgem given in Anily et al.
(1998) under the additional assumption that thezeoaly three machines. In this work,
the authors introduce an algorithm that solvesageinstances of the problem optimally,
and for other instances, they present a heuristic & worst case performance ratio of

1.033.
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Anily and Bramel (2000) study the problem givenAnily et al. (1998) under
convex cost functions. They show that there i®ptimal schedule that is cyclic for a
general number of machines, and in the case ohtachines, they show that there exists
an optimal policy, whose closed form can be eiffredetermined or is one of up to four
possible forms.

Grigoriev et al. (2006) work on the problem givem Anily et al. (1998),
assuming a finite completion time. They invesggaeveral formulations (linear and
nonlinear) and propose a column generation meth@live the problem exactly. They
show that the subproblem for the column genergtimcedure is solvable in polynomial
time.

Similar types of problems appear in Holte et a@9@), Mok et al. (1989), and
Wei and Liu (1983). Holte et al. (1992) considee problem where the length of time
without maintenance has an upper bound for eacthimac Mok et al. (1989), and Wei
and Liu (1983) assume that the exact maintenarieevals for each of the machines are
given; the problem is to minimize the number obrgses needed for a feasible schedule.
Duffuaa and Ben-Daya (1994), and Hariga (1994) sttt maintenance scheduling
problems that concentrate on the coordination @dramon resource to maintain a set of
machines. A review of preventive maintenance sclegl problems can be found in
Dekker et al. (1997).

Bar-Noy et al. (2002) and Kenyon et al. (2000) gaelee the problem given in
Anily et al. (1998). They consider that at mkstems out of then items can be serviced
in each period, and they apply the problem to dedadcast scheduling. Broadcasting is
an efficient means of disseminating data in asymme&bmmunication environments,
such as satellite access to internet or car nawigalystems. Typically, the down link

(e.g., from satellite to personal computers) hasigr bandwidth and is faster than the up
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link (e.g., phone lines). In these situations doi@asting protocols reduce the server load
and do not manage the client requests individudtythese protocols, data are scheduled
for broadcasting continuously and one Kpof them is broadcasted at a time. The clients
wait for the requested data to be broadcast, sosthedule is independent of the
incoming requests. Acharya (1998) and Schabar@)Q) present a very complete
history of the field.

Bar-Noy et al. (2002) prove that the problenNR-hard, even fok = 1, if there is
an additional setup cost for maintenance. Furttiezy investigate lower bounds and
propose approximation algorithms for the clasel, based on the properties of Fibonacci
numbers. The worst case bounds of the proposedsties are 9/8 in the case when
there is no fixed cost, and 1.57 when there isedficost. They also prove that a greedy
algorithm used in Anily et al. (1998) has a worase€ bound of 2. In Kenyon et al.
(2000), the authors improve the 9/8 result (foffired cost case) by giving a polynomial
time approximation scheme, whichgspproximation for any > 0. Finally, Kenyon
and Schabanel (2003) work on the problem with mtmiical service times under no
fixed cost. They prove that the problemN®-hard even if the broadcast costs are all
zero and give randomized 3-approximation algoritfionshe casé = 1.

The problems considered as a version of the SPDAIgm can be written as a
special case of the PTA problem. For instanceptbélem in Anily et al. (1998) can be
seen as an infinite sequence that consists of oné/ customer. Here, the set of the
machines are operations, and we can only do orm@atope at a time in each period. That
is, all the tasks contain one operation, and tpeacessing times are equal. In the
extension wher& items can be serviced at a time, we can defirles tdeat consist of, at
most,k operations. As long as thkes given, the transformation takes polynomial time

Therefore, the following observations are true:
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Literature results 3.1:Consider the PTA problem with a cyclic sequenagsisting of
only one customer that requires a number of opernsti Assume that each task contains
one operation and each operation is in one taskdes these conditions, the following
observations are true:

a) If the cost function increases linearly (cumulatogest function is quadratic) with
respect to time since the operation’s last serand all the processing times of
the tasks are equal,

al. If there is no fixed cost, then the heurigiien in Kenyon et al. (2000),
has a polynomial time approximation scheme whick-approximation for
anye > 0.

a2. If there is a fixed cost, then the heurisiieg in Bar-Noy et al. (2002)
has a worst bound of 1.57.

b) If the cost function increases linearly (cumulatogest function is quadratic) with
respect to the time since the operation’s lastisepnand the processing times of
the tasks can be non-identical, then the heurtren in Kenyon and Schabanel
(2003) has a worst bound of 3.

c) If the cost function is an increasing convex fumctivith respect to time since the
operation’s last service, and all the processinges of the tasks are equal, then
for the case of two operations, there exists amnugdtpolicy, the closed form of
which can be either predetermined or is one ofaotir possible forms. (Anily
and Bramel, 2000.)

Later on, we will see that polynomial tinmeapproximation is impossible for any

¢ > 0in the general PTA problem.
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3.3 PROBLEM DEFINITION

The problem that we study is a generalized versiotihe problem in Chapter 2.
We consider a single service resource afides sequence of customers, denote®as
{1,...,s,....m} where m denotes the total number sfeps(visitations) in the sequence
with a dummy step at the end. A sequence can stoofsmultiple cycles or tours through
the same customers and as such, can include treecastomer multiple times. We refer
to each successive visited customer atepin the sequence. The customers form the set
| ={1,...,i,....,n} where n denotes the total number of customers. Here, s@ghhas an
associated customer, but a customer may have rhare dne associated step if the
customer appears more than once in the sequenise, tAx refers to the latest possible
start (and end) time for the last step (i.e. stgpandT is the ordered set of time periods
to be considered; = {1 ... tmay-

Each customeil]l requires a set of operatiol$(i), and each operation, indexed
ask, has a specifiedelative time window[(k, 7] within which the service is feasible.
This means that the next execution of the sameatiparhas an earliest start tifigand
the latest start timey with respect to the current start time of the saperation. The
latest start time is effective only if the compbetitime is greater than the latest start time.
In addition, if this operation was donhenits of time before the starting time of the give
sequence, then the first execution of the operdtaman earliest start timg and a latest
start timefs, wherey= (- t, andf= mn—t

Figure 3.1 gives the graphical representation a tblative time window
(separation) parameters. In this figure, the &retaveent = 1 andt = 3 represents the
desired times at which the operation should beopexd, and the areas betwden O

andt = 1, and > 3 show the outside of the strict time window.
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Figure 3.1 Relative time windows (separation) for operatkon

Each step allows a set of tasi¥s) and each task, indexed jasncludes a set of
operationKJ(j) and requires a duratiad in which the service is performed. We define
tasks for each step rather than for each customenake the problem more flexible.
Doing so, a customer may have different task adiieras in different steps. In this
chapter, we are interested in strict time windolns, in practice, a violation of the time
window constraints may be acceptable with a highatig. Depending on the tasks
performed at each step, the completion time ofldsestep may vary. Among the time
periods inT, leth be a possibleycle completion timé& complete all steps andl be the
set of possible cycle completion times. In thisation,H is the subset oF andh < tnax

For each customer, the planner tries to honor ridative time window
requirements of operations and accomplishes theabpes by executing the available
tasks. LeK be the set of all operations for all customers #0d) be the set of all tasks
that contain operatiok At minimum, each operatidilK has the following attributes:

Yk Earliest start time for the first execution of ogteonk
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{k

Mk

Ak

ok 1)

Latest start time for the first execution of oprnak

Subsequent earliest start time (minimum separgtiolh be ¢, time after the first

execution of operatiok

Subsequent latest start time (maximum separaudh)pe 7 time after the first

execution of operatiok

Maximum number of executions that can be perforimedperatiork. One of

the upper bounds for this parameter is the totahbar of visitations of the

customer that requires operatikn (We will investigate this parameter further in

Section 6.)

The cost between two consecutive executions @rain k, wheret is the

elapsed time between these executions under tosvfog conditions:

» If the operation is not done during the sequerent = h+{—y Therefore,
the costg(k, h+lx—y«) will occur whereh represents the completion tinte[]
H.

» If the operation is executed the first time at timethent = r+ {1y
Therefore, the cosgi(k, r+—yx) will occur.

» If the operation is executed at tinmeand the previous execution of this
operation is at time,, thent =r-r,. Therefore, the cosg(k, r-ry) will occur.

» If the operation is executed last time at timehent = h—-r. Therefore, the
costg(k, h—r) will occur.

We also calculate the time window of sgpS, represented aBSs), to reduce

the problem size. The periodic task assignmenblpno defines the relative time

windows for each operation. We can use thesewmdows (and task processing times)

to develop time windows for each step. The dealailegic for the time window

calculation of steps is given in Section 3.7.
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In this structure, we assume that all steps irsdgrience must be visited and that
the specified maximum number of time periodig,d in the horizon is sufficient to
complete all steps. The optimization problem oetli above can be formulated as a
discrete time indexed network flow problem.

Decision Variables:

Xit =1 if westarttaskj at timet, and O otherwise, foradl=1 ...m, j 0JS9s),t0T

Yot = 1 if an operatiork is performed for thepth time at timet for KOK, tOT,
1< p<A,

Uw = 1 if no tasks containing operatidnare performed during the horizon with

lengthh for kOK, hOH

Wit = 1ift periods elapse from th time performing operatiok to the p+1)" time
performing operatiok for kK OK, t0OT, 1< p<A,

Vi = 1 ift periods elapse from performing operatlothe last time to the end of the
horizon.t = h — r if the completion time i& and operatioik is performed at time
r for the last time for alk O K, tOT

Zn =1 if the last stepn starts in periodh, O otherwise for alh [ H
— called theexit indicatorvariable
The Z, variables are defined merely for convenience amdsitmplify the

representation. We can adequately formulate tbkel@m without these variables.

Modd Formulation:

Minimize
D> gkh+ =y + 2> gt + 4 =Vl + D, D0 D dk W, + D> gk, HV,,
kOK hOH kOK €T kOK 1< p<A, OT kOK 0T

(1)
subject to:

53



Task assignment for first step
> X, =1 (2a)
[Js(1) BTSQ)

Flow conservation constraints

ZX”_JJ = > > X, fors=2, ..mtOTYs) (2b)

PIs(s-1) [JY(s) t=t

Exit indicator
> Xy =27, forh O H, (3)
j1IS(m)

Earliest start time for the first execution of eagberation

> Xp= >.Z,<0 fork OK, tO{1,2, .51}, (4a)
JOIK(K) tD(L,... 1} h{L...thn H

Latest start time for the first execution of eagem@tion

DO X+ D>Z,21 fork OK, t O{S ..tmay,  (4b)

JOIK(K) tTHL...t} Y1t n H

Subsequent earliest start time (minimum separafimngach operation

D Xp= DZs1 fork OK,t OT\{1,...,4}, (5a)
JOIK(K) LT t=Gy,e h31,...t}nH

Subsequent latest start time (maximum separatargdch operation
DXt D721 fork OK, tOT\{1,..., 7}, (5b)

JOIK(K) t T t=ry, ..t} hO{L,....tynH

Detection of done operations
DX = D YV fork DK, tOT, (6)

jOIK(K) 1< psAy
Time elapses between consecutive executions obgachtion
Yo + Yeor =1 Wigiry fork DK, tOT, t'st, 7)
Time elapses after last time execution of eachaimer
Zh + Z zYkpt‘ - z ZYkpt‘ +ZYkpt‘ _1svk(h—t)
tar

I<psA, t'st I<ps<A, tOT

fork DK, hOH, tOT, (8)

Detection of not done operations
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Z, =Y Y sU,, fork 0K, hOH, 9)
tar

Each operation can be performeli ime once

D Ve =1 forkOK, 1< p<A,, (10)
T

p" time is done earlier thagp+1)" time

D Yo 2D Yo forkOK,tOT,1<p<A, (11)
t'st t">t

Integrality

U Vi Wigrr X ¢ Yo Zy = Oorl forj0J,tOT,kOK,hOH.(12)

The objective function (1) minimizes the total piyavith four terms. The first
term is the penalty for operations that are nofgoered, while the second one is the first
execution of operations. The third cost holds ¢basecutive execution of operations.
Finally, the last cost calculates the penaltiegrathe last execution of the operation.
Constraint (2a) assigns a task for the first sted é&b) shows flow conservation

constraints. If there is @o-waitingassumption, we can write the right hand side bj (2

constraints asz X, . Constraint (3) determines the exit time. Altbuhis model is
i0J1 (i)

written to complete all the steps in the route #racompletion time is varying, we can
easily incorporate the fixed time horizon appro&cbt necessarily complete all steps)
with a little modification to the formulation.

Constraints (4a) and (5a) define the first and sgbent earliest start times
(minimum separations), whereas constraints (4b)(&hyldefine the first and subsequent
latest start time (maximum separations), respédgtiv€onstraint (6) detects how many
times the operations are done and when they are. dGonstraint (7) calculates the time
elapsed between consecutive executions of eachatoperand (8) measures the time
elapsed after the last execution of each operat@onstraint (9) detects operations that

were not done. Constraints (10) and (11) are teahnonstraints that set the precedence
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relations ofY variables. Finally, constraint (12) is for intalty requirements. (We did
not consider waiting time costs here for the saksimplicity, but they can be easily
incorporated to our formulation.)

In the next two sections, we deal with the comporal complexity and the

special case structures of the periodic task assghproblem.

3.4 NP HARDNESS OF THE PERIODIC TASK ASSIGNMENT PROBLEM

The Periodic Task Assignment [PTA] problem is ire tbategory of difficult
problems, or so-called NP-Hard problems, becauss #& generalization of the task
assignment problem. Although the task assignmeaiti@m could be solvable in pseudo-
polynomial time (NP-Hard in the ordinary senseg BTA problem is even harder than
that. In fact, the well-known 3-partition probleran be written as an instance of the
PTA problem.

The 3-partition problem is NP-Hard in the strongisse (Karp, 1972; Garey
&Johnson, 1979). We will show that the 3-Partitiproblem can be polynomially
reducible to the PTA problem, but first we will githe definition of the 3-partition
problem.

3-Partition: Given positive integers,a..,aq b such that

b b
_<aj < _—

and

Do there exist g pair-wise disjoint 3 element sth$e [ {1,.. 3¢} such that

Y a =b  fori=1,..q?
i0S
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Proposition 3.2:The 3-Partition problem is polynomially reducildie a periodic task

assignment problem [PTA].

Proof: We represent the 3-Partition problem as an instafthe PTA problem. We take

the following sequence as a PTA instance:

A sequence consisting & different customers: Customérand customeB.
The smallest cycle in the sequence consistBadr®l A customersE customers

are the first ones). The sequence consistsayles with a number of steps =

4q.

B| B| B| A| —mmmmmmmmmmmmmmmmmeee oo B| B| B| A
\Firsfcycle U
—

g cycles

CustomerA requires only one operation, and custoBieequires § operations.
Each operation is included in only one task, ancheask includes only one

operation.

The construction of the PTA instance:

The duration time for performing tagkor custome® is zero.

The duration time for performing tagkor customeBisa;, j=1, 2, ..., 3.

(k= qb+1 for all operationk of customeiB andb for an operatiork of customer
A

nk = 2qb+2 for all operationsk of customerB andb for an operatiork of
customerA.

v = O for all operationk of customeB andb for an operatiork of customeRA.

L« = qb+1 for all operationk of customeB andb for an operatiork of customer

A
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a(k, t) is zero for all operationk and timet. In other words, the problem is a

feasibility problem.

We make the following observations about this PTébem instance:

w = L= b for the operation of customé:. Therefore, each cycle lengthlisn

the feasible solution. As such, the completioretimll begb.

{k = gb+1 for the operations of custom8& Since the subsequent earliest start
time for the operations of customBris greater than the completion time, each
task could be selected only once. We haggeustomeB in the sequence argi
operations (a one-to-one relationship with themregponding tasks). This means
that each task should be selected once (otheratideast one of the tasks will be
selected more than once). In other words, eacatidartimes;, j = 1, 2, ...3q
appears only once.

3t
We know thatZaj =gb and we havey cycles. If the summation of the task
j=1

durations of 3-customeB in one cycle is less thdm there will be another cycle
where the summation of durations of 3-custoBén that cycle is greater thdmn
However, we havey = = b as the latest start time for the operation of @ustr
A. These constraints are hard constraints and nietesolution infeasible. (A
similar argument could also be obtained by usire éhrliest start time for the
operation of customeXk.) In order to get a feasible solution, the suniomabf the
task durations of 3-customBrin each cycle should be exachly

Sincei a; =gb, there is no waiting in the feasible solution, eifehe waiting is

=1

allowed.
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Therefore, the feasible solution should accountlfierfact that the summation of
the durations of 3-customBrin each cycle should be exachiyand each duration tine,
j =1, ...3gappears once.
Since each set, index and parameter in the PTAahasostO(q) items, the
reduction will take polynomial time.
Corollary 3.3: The following problems are NP-Hard in the stromegse:
a) Periodic task assignment problem
al. Periodic task assignment problem with onlydastart time constraints
a2. Periodic task assignment problem with only anegel cost function
(without time windows)
b) Periodic task assignment problem under a no-waidagumption
bl. PTA problem under a no-waiting with only eastistart time constraints
b2. PTA problem under a no-waiting with only latststrt time constraints
b3. PTA problem under a no-waiting with only a gahecost function
(without time windows)

c) Periodic task assignment problem with customer-wilse window constraints
(rather than operation-wise time window constrajrfts' both waiting allowance
and no-waiting assumption

Proof: (a) Based on the construction in Proposition 3.2,ehera feasible solution with
an objective value of zero in this PTA problem ifdaonly if the 3-partition has a
solution. That's why we can conclude that the RirAblem is NP-Hard in the strong
sense.

(b) Since all feasible solutions require no waitingg tiesult immediately follows from

part (a).
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(c) In the instance construction, all the operationgadth customer have the same time
window, so the result immediately follows from p@j} and (b).

(b1l) During the construction of the PTA instance withP&Hition parameters in
Proposition 3.2, choose the subsequent earliestistee parameterg) for the operations
of customerB that are large enough so that each operation d@bmmies B will be done
just once. This makes the completion tigi® and the rest of the proof is similar. The
conclusion follows from part (b).

(@l and b2) In the construction of the PTA instance with 3tRian parameters in
Proposition 3.2, define another customer, say cust®, with durationb. At the end of

the original sequence, add custor@aandA q times:

I —— (e[e[e[alcla] —
%{—) First cycle
\_First cycle AN J
—~
g cycles g cycles

This construction will force each operation of cuserB to be performed once.
(Completion time is at leasgi, and “not done” operations make the problem intdag
The rest of the proof is similar. The conclusioldws from part (a) and (b).
(a2 and b3) The construction of the PTA instance with 3-Pemitparameters is the same
as parts (al) and (b2). Instead of the latest stae parameters, assume that there is a
positive cost beyond that time. Here the quessomhether or not there is an objective
function with a value of zero. If the answer isythen there will also be a solution for
the 3-partition problem. The rest of the proddimmilar to the proof of Proposition 3.2.
Corollary 3.4: There is n@-approximate heuristic that runs in polynomial tirfioe the

problems given in corollary 4.2 unless P = NP forya > 0.
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Proof: Since the optimal objective value is zero for pneblems given in corollary 3.3,
anye-approximate heuristic should provide a solutioat thas zero objective value. This

means that the heuristic solves the problem inmotyial time, sd® = NP.

35 SPECIAL CASE STRUCTURES

In the previous section, we saw that each of thikesgastart times, due dates and
latest start time constraints makes the periodik ggsignment problem NP-Hard. In this
section, we concentrate on the special case inhwkigch customer requires two
operations with a time window requirement for oh¢éhem (without any cost function).

Secondly, we will examine another special casedkatimes equal process times
for all tasks. Here, we consider the general dasttion and provide a pseudo-

polynomial time algorithm to solve this problem.

3.5.1 PTA Problem: Two operations and a single time window

Here, we assume that each customer requires ordyadperations and each
operation is included in its corresponding task. atldition, only one of the operations
has either an earliest start time (EST) or latest §me (LST) requirement. The service
planner chooses one of these two operations fdr eastomer. For this subsection, we
useVv(s) to represent the operation (and task) with an BETLST for steps andw(s) to
represent the operation (and task) without the tmmedow for steps. Finally, we
consider the problem with a zero cost function. other words, we concentrate on the
feasibility of the problem.

Proposition 3.5: Consider the periodic task assignment problem uvralezero cost
function with m steps. Assume that each customequires two operations, v(i) and
w(i), and only one of the operations, v(i), is reted by the earliest start time. Under
these conditions, the following statements are:true
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a) If waiting is not allowed:
al. Selection of w(i) tasks for all customers giadsasible solution
a2. If w(i) tasks are not available for some custosn the problem is NP-
Hard
b) If waiting is allowed:
bl. Selection of w(i) tasks for all customers giadsasible solution
b2. If w(i) tasks are not available for some custosnthen waiting as much as
the latest earliest start time of v(i)'s at the begng and then performing an
operation with the earliest start time, v(i), fall customers gives a feasible
solution
Proof: (a-b) Arguments are similar as in Proposition 2.5 expapt (a2).
(a2) The result comes from the fact that the 3-Partipooblem is polynomially reducible
to this problem. Consider a sequence consistingBgpf+ 1 different customers:
CustomerA and customeB; fori = 1, ...,39. The smallest cycle in the sequence consists
of 3q + 1 customersH customers are the first ones). The sequencesteradiq cycles

and a number of steps = ¢(3q + 1).

Bl Bz """ ng A """"""""""" Bl Bz """ ng A
_/

Firs?(g/cle

qoydfes

Each customeB; requires two operationgi) andw(i), and customer A requires
only operatiorv. For customeB;, J,) = a andady) = 0, and for customer A}, = 0.
Moreover, the earliest start times agg = 0 and(, = g°b + 1 for all operations

V(i) that belong to custom&. Finally,y, = {, = b for the operatiowv of customea.
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We chose large enough subsequent earliest stegs ;) for the operations of
customerB;, such that each operatiorfi) can be done only once. Therefore, the
completion time of the sequence is at mgist On the other hand, the operatorof
customerA is availableb time later than the operation’s last service. tThaans we have
to spend at least time for each cycle. Hence, the completion tirhéhe sequence is at
leastgb.

We can conclude that the completion time of theusage isqb and that each

operationv(i) of customeB; will be done exactly once. Sin%< a, <g, exactlythree

of the operations(i) of customerB; will be done in each cycle. There is a feasible
solution to the PTA problem if and only if the 3rpi@gon problem has a solution. That's
why we can conclude that the PTA problem with theg restrictions is NP-Hard in the
strong sense. Recall that if there is no custompetition, this problem is solvable in
O(n).
Proposition 3.6:Consider the task assignment problem with m stéssume that each
customer i requires two operations, v(i) and w(nder that assumption, the following
problems are NP-Hard both under a waiting and natiwg assumptions:
a) The problem that has the latest start time for apgration v for every step and
has a zero cost function
b) The problem that has no time window (earliest desa time) requirements and
has general cost functions for only operation v
Proof: (a) Here, the latest start times gig) = gb and 7 = q°b for all operations/(i)
that belong to customds;. In addition,3, = 7, = b for the operatiorv of customerA.
The rest of the parameters are similar to Proposi.5(a2). We can define another

customer, say customé€, with durationb and add the custom& and customeA (
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times at the end of the sequence. This constiuatitl force each operation(i) of
customeB; to be performed once.

The rest of the proof is similar to Proposition(@%. Recall that if there is no
customer repetition, this problem is solvabl©im?).
(b) The construction of the PTA instance with 3-Pantitparameters is the same as part
(a). Instead of the latest start time parametas,me that there is a positive cost beyond
that time. Here, the question is whether or netehs an objective function with a value
of zero. If the answer is yes, then there wilbdle a solution for the 3-partition problem.

The rest of the proof is similar to part (a).

3.5.2 Periodic task assignment problem with equal processtimes

In the case where process times are equal, neftbestart times of customers nor
the completion time depends on the task selectiohiserefore, the customers do not
affect each other. We can partition the problerd aolve each customer separately.
However, different appearances of the same custorteact with one another, and this
makes the problem hard.

Proposition 3.7:Consider the periodic task assignment problem wittustomers. If all
the process times of all the tasks of each cust@rerequal, the problem is NP-Hard
both under a waiting and no waiting assumptions.

Proof: Since all the process times of all tasks of eardtarner are equal, the start time of
each customer and the completion time are knowmeréfore, we can partition the
original problem for each customer and solve th®psoblems separately.

The result comes from the fact that the 3-Partitmoblem is polynomially
reducible to each of these subproblems. Consideiseomer that hasg®perations and

appearg) times in the sequence. We construct the taskisadeach task includes only 3
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operations and a summation of the attached tar@arameters is equal to In other
words, these tasks are valid subsets in the 3tiparpproblem. The total number of tasks
is in O(q°®) and finding valid tasks requir€Xq®) time. Therefore, this construction will
take polynomial time.

Let's consider the problem under the no-waitinguagstion first. If we select
large enough subsequent earliest start times fdr eperation, each operation cannot be
performed more than once. The customerdesitations, and in each visitation, three
operations will be done. Therefore, each operatiilh be done exactly once. As a
result, a feasible solution to this problem is adsfeasible solution to the 3-partition
problem so the problem is NP-Hard. If waiting Ilbwed, we can use the latest start
time or general cost function structures to prineedame result.

Recall that if there is no customer repetition,stigroblem is solvable in

O(nK™j™® time.
3.6  VALIDCuTS

The major difficulty in the PTA problem arises whitie sequence visits the same
customer more than once. This will bring about tmportant questions to be answered:
* How many times should each operation be done?
* Which tasks should be selected to cover requiredations?
We will give the answer of the first question imstgection. The second one will
be answered in Section 3.7, which describes prepsuar for the problem.
The number of executions required for each opearais determined by the

following restrictions:
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* The earliest start time parameters. This parameter determines the minimum
time for the next execution of the operation. Herhis parameter gives an upper
bound for the number of executions required fohegueration.

* Thelatest start time parameters. This parameter determines the maximum time
available for the next execution of the operatiodence, the latest start time
parameter gives a lower bound for the number otetkens required for each
operation.

Using these parameters, we can develop the mininameh the maximum
requirement constraints that determine the mininameh maximum number of executions

that must be performed for each operation in thergplanning horizon.
3.6.1 Maximum requirement constraints

The earliest start time parametefis and {« (for the first and subsequent
executions) restrict the earliest starting timehaf next execution for the same operation.
Let h be the completion time an, represent the maximum number of executions of
operatiork for the completion timé. We observe the following facts:

 If the completion time if < y,, we cannot perform operatién
» After the first execution of operatiok, we have to waitly time for each
subsequent execution of operatlon

Therefore, we can calculatg, as follows:

h-y, :

1+ —5% if h>

A = \‘ {, J Vi
0 O.W.

If the operation cannot be done more than a givenber of times, it also cannot be done
more than the integral part of that number. Hemaetake the floor of the number. The

related maximum requirement constraint is giverowel
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DD X <D A, fork OK,

jOIK(K) OT hOH
where Z, refers to the exit indicator. Since the last ger{exit time) is varying, the
parametety, depends on the exit timte The constraint sums all the tasks that contain
operationk for all timest [0 T, and makes sure that these tasks are not donethaorg,

for the given planning horizam
3.6.2 Minimum requirement constraints

The latest start time parametgisand 75 (for the first and subsequent executions)
restrict the latest starting time of the next execufor the same operation. Letbe the
planning horizon andi, represent the minimum number of times that opemdtimust
be performed for the planning horizbn We have observed the following facts:

* If the completion timér > £, we should perform operatidat least once.
» After the first execution of operatidq we cannot wait more thap time for each
subsequent execution of operatlon

Therefore, we can calculatg, as follows:
_ 1+{MJ if h> z,
l'lkh - ,7k

0 oW.

We take the floor, because we cannot do any operatithe latest start time of that
operation is not reached. The related minimumiremqment constraint is given below:
DX 2D ez, fork O K,
JOJIK (k) T hOH
where Z, refers to the exit indicator. Since the last ger{exit time) is varying, the
parametenk, depends on the exit tinfe The constraint sums all the tasks that contain
operationk for all timest O T, and makes sure that these tasks are not donthéassi,

for the given planning horizam
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3.7 PREPROCESSOR

The difficulty of the problem forces us to find sempecial structures that can
help us in the solution procedure. The most diitre structure is the fixed sequence
that we must follow. With our knowledge of the seqce order, we can tighten the time
window of each step, and that will help to reduoe problem size. Recall thats the
index of steps in the visitation order= 1, 2 ...m, andilJl is the index of customers.
Also, it is assumed thatax refers to the latest possible visit time for tastistep (i.e. step
m), andT is the ordered set of time periods to be consdjdre {1 ... tnag. We define
the TYs) as the set of available time periods to starsk tat stes. Our goal in this
section is to get a smaller set so that the proldee shrinks. Clearly, the time window
TYs) of each steps heavily affects the number of constraints and aldes in our
problem.

A primitive method may calculate time windows oés as in the following
fashion: the lower bound of stepcan be calculated by summing all of the shortest
process times for previous steps(< s) up to steps. Also, an upper bound can be
calculated by summing all the longest process tifoesprevious steps up to step
However, we can use other information to make iime twindow TYs) of each ste[s
smaller.

In the previous section, the minimum, and the maximumiy, requirements of
each operatiork were calculated. By using this information, wen acetermine how

much time we will spend at least and at most feahesep of the given sequence.

3.7.1 Calculation of the earliest start timesfor steps

The earliest start times for steps depend on tménmaim time that we will spend
on each step. Here, we propose a two phase dlgotd calculate those minimum times.

In the first phase, we find the minimum duratiolguieed for each customer to cover
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required operations during the planning horizon. tHe second phase, we allocate the
duration found in the first phase into steps thatwsited by the same customer.

The following phases are customer specific, anche&d to run these phases for
each customar]l:
Phase I: Minimum duration required for each customer

We know that operatiok must be performed at legg, and at mosty, times for
the given completion timé. In this section, assume that represents the lowegk,
among allh and/i represents the highegt, among alh, i.e., forh =ty

Let N; be the decision variable for taskdicating the number of times tashill
be performed to cover operations for a given customAlso, let§ be the number of
visitations of customer. (Recall thaij represents the duration for performing tasind
KI(i) is the set of operations for custonigt.)

To find the minimum duration requirement for givaustomet, we will solve the
following IP problem:

MTD = Minimize > J, N,

IX0)

subject to:

DN, 2y, fork O KI(i)
JOIK(K)

DN, <A, fork O KI(i)
JOIK(K)

2N =S
031 (i)
N, = Oandint forj O JI(i)

The first constraint satisfies the minimum requieents for operatiok O KI(i).
Similarly, the second one will not to exceed theximaim requirements for operatidi]
KI(i). The third constraint sets the number of chdasks equals to the number of steps

belonging to customer The last is for nonnegative integrality.
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The IP problem finds the minimum duration that wbille spent for a given
customer. Since we cannot spend less time withioldating requirement constraints, the
optimal objective value of this problem could bediso calculate the lower bound of the
completion time.

Phasell: Allocation of required duration into steps

In the first phase, we get the minimum time we #th@pend for each customer.
We need to divide this number into correspondirepstfor the same customer. Let
Shin(i) and dnai) be the minimum and maximum durations of the tabks$ belongs to
customeri (11 . Also, letSI(i) be the ordered set of steps that correspondstoiern.

The minimum time (found in phase I) allocation pdare for each customenl

is given below. (The remaining durati®D refers to the minimum time duratiddTD
for the given customer subtracted by allocated tthna ZADS ):

SI81()
» Allocate dni(i) for all steps except the last oneSifi).
* Do the following statements for the stegds SI(i) in thereverse order beginning
from the last step i8I(i):

a) If the remaining duratiorRD plus already allocated duratigkDs does not
exceed thednai), allocate the remaining duration plus the alreafiigcated
duration to the step(ADs= ADs+RD) and terminate the procedure.

b) If the remaining duration exceeds (i), allocateADs= dnaxi) to the step

sin SKi). Select the previous step$ti(i) and go to (a).

Since the minimum time we should spend for eachoocwsri is betweend,,, (i)| SI() |

and o

max

()]SI {)} the allocation procedure clearly terminates bpcalting at least

Smin(i) time for each step i81(i).
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This allocation procedure runs for each customer famds how much time we
should allocate for each step. Then, the eariest time of stes can be calculated by
summing all the allocatiomsDs for previous steps' (< s) up to sters.

The allocation procedure ensures two things: Ttal time spent in steps of
customeridl will be equal to minimum time (found in phase Iewhould spend for
customerill. Secondly, the shortest possible times are akdcanto earlier steps.
Therefore, any solution that satisfies the minimamd maximum requirement constraints

will see this allocation as the earliest start srfa its steps.

3.7.2 Calculation of the latest start timesfor steps

There are two cases we should consider for thetlatart times with respect to
the waiting assumption. If waiting is allowed, thére latest start time for the last
customer is at timeénax For each customer from custonrer- 1 to 1, we find the
minimum processing time and subtract this valuenfithe latest start time of the next
customer. (These minimum processing times wereutzkd in the previous section.)
This will give us the previous customer’s latestristime.

If waiting is not allowed, then the latest starhéis for each step depend on the
maximum time that we should spend for each custorBenilar to the earliest start time
case, a two phase algorithm is proposed to catethaise maximum times.

The following phases are customer-specific, ancheed to run these phases for
each customarl.

Phase |: Maximum duration required for each customer

We will solve the same IP problem as we did ine¢hdiest start time calculation

section. However in this case, we maximize theesabjective function, i.e.;

MaxTD = Maximize 251 N,

031 (i)
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The IP problem finds the maximum duration that wiobé spent for the given
customer by satisfying the maximum requirement#&sobperations. Since we cannot
spend more time without violating requirement coaists, the optimal objective value of
this problem could be used to calculate the uppant of the completion time.

Phasell: Allocation of required duration into steps

In the first phase, we get the maximum time we &hepend for each customer.
We need to divide this number into correspondirepstfor the same customer. Let
Shin(i) and dnali) be the minimum and maximum durations of the tablks$ belong to
customeri (11 . Also, letSI(i) be the ordered set of steps that correspondstoiern.

The maximum time (found in phase 1) allocation maare for each customgil

is described below. (The remaining duratiRD refers to the maximum time duration
MaxTDfor the given customer subtracted by allocate@tioms ZADS ):

SI81()
+ Allocate din(i) for all steps irSI(i).
* Do the followings for the steps ] SI(i) in original order beginning from the
first step inSI(i):

a) If the remaining duratiorRD plus already allocated duratigkDs does not
exceed thednai), allocate the remaining duration plus the alreafiigcated
duration to the step(ADs= AD<+RD) and terminate the procedure.

b) If the remaining duration exceeds #gy(i), allocateADs<= dhaxi) to the ste
in SK(i). Select the previous step$i(i) and go to (a).

Since the maximum time we should spend for eachomey i is between

8, 0)ISI0)| and g

max

(i)|SI{()}] the allocation procedure clearly terminates by

allocating at leasthin(i) and at mostha(i) time for each step i8l(i).

72



This allocation procedure runs for each customer famds how much time we
should allocate for each step. Then, the latest 8tne for stes can be calculated by
summing up all the allocatiosDs for previous steps' (< S) up to stefs.

The allocation procedure ensures two things: ®ka time spent in each step of
customerilJl will be equal to the maximum time we should spémd customerill
(found in phase 1). Secondly, the longest posdibhes are allocated into earlier steps.
Therefore, any solution that satisfies the minimamd maximum requirement constraints

will accept these allocations as the latest sit@aes for the steps.

3.8 CONCLUDING REMARKS

In this chapter, we considered the periodic taskgasnent problem with a fixed
customer sequence under the time window and melltypleration requirements. We
prove that this problem and almost all the spetaales, except perhaps the trivial ones,
are NP-Hard in the strong sense. We propose saiid suts and problem reduction
techniques to solve the problem effectively.

In the next chapter, we focus on the field appitabf this problem and develop

techniques to solve it within a reasonable time.
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Chapter 4: Maintenance Service Application

4.1 MOTIVATION

This application is motivated by an actual probleed by maintenance planners
at a large company. The company has geographidapersed infrastructure facilities
that require periodic inspection and maintenancertsure uninterrupted service and
effective operation. These maintenance activiteggiire on-site visits by a “service”
unit, consisting of skilled workers and equipmeAt. each site, several components need
to be serviced; the desired frequency of serviagesaby component and facility and
depends on the location of the facility, its usaged other factors. Scheduling the
service tasks associated with these inspectiomaaidtenance activities is an important
and challenging problem facing this company. la #pplication that motivated this
work, the service planning process begins by degidi periodic tour for the service unit.
This tour specifies the sequence in which the caste will be periodically visited. The
tour can visit the same customer multiple timese ®ddress the problem of deciding
which task to perform at each site or facility dgrievery visit to that site in order to
conform as closely as possible to the desired &eqy of service.

Continuing the terminology we established in thevpyus chapters, we shall refer
to these infrastructure facilities tastomers Each customer requires multiple service
operations but not all operations need to be performed dueach visit to the customer,
since the desired frequency of service varies tgraipn. During each visit or step in
the sequence, the planner must decide which opegatio perform at the customer
location. Operations that can be performed togedieng a visit are grouped together
astasks and each task has a specified duration. For epehation for every customer,

we are given a desired frequency or desired timtevden services for that particular
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operation. Deviations from this desired frequeacy permitted but at a penalty cost.
The planner faces the following core tradeoff: fpening all or most operations during
each visit to a customer helps meet the serviguéecy requirements for that customer.
However, since performing more operations increéisesservice time at that customer,
this strategy delays the time at which the seruitié reaches and can begin operations in
downstream steps, thereby potentially violatingiser frequency requirements for these
later customers.

In this application, we have lateness costs if tihee between services for a
particular operation exceeds the desired time vateas opposed to the time window
requirements described in the previous chaptereréibre, we re-formulate the Periodic
Task Assignment problem for this application in arencompact form, which permits us
to represent the task selection decisions as adfdive resource on a time-space network
with side constraints to capture penalties if tineetbetween successive executions of
each operation exceeds the desired interval. Gaatplresults both for a “single” visit
special case and “multiple” visits are also vabdthis application version of the problem
(see Appendix B). Since this problem is NP-hare, develop a fast and effective
heuristic procedure that repeatedly applies thertssio path approach developed in
Chapter 2 to subsequences that visit each custatmapst once. Computational results
for several problem instances show that the prapdssiristic identifies near optimal
results very quickly, whereas a general purpossgartprogramming solver (CPLEX) is
not able to solve the problem optimally even afteany hours of computational time.
Next, we focus on techniques such as problem remdycbranching variables, and
subdividing the problem into smaller problems ta getter IP solution times for the
actual problem. Computational results show thasehtechniques can improve solution

times substantially.
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4.2 PROBLEM DEFINITION

For this problem, we will keep the definitions adts and indices given in the
previous chapter. As a reminder, let {1, 2, ..., n} denote the set of distinct service
locations orcustomers A service unit or resource visits these cust@mara given
periodic sequence a@our S= {1,...,s,...,m}, where m denotes the total number stieps
(visitations) in the sequence. As a final stegphefsequence, we include a dummy step to
mark the end of the tour. Each step represenisitate a particular customer, and the
same customer may be visited multiple times in skquence. Lei(s) denote the
customer visited in step[1 S. Conversely, (i) [0 S denotes the subset of steps in the
sequence corresponding to visits to customerLet T = {1, 2, ..., tnad denote the
planning horizon, i.e., the set of time periodsimigiwhich the route must be completed,
wheretmax IS the latest possible start time for the lasp sten the sequence and the first
period ¢ = 1) represents the start time of the first st&epending on the magnitude of
service times for various operations (discussest)and travel times between locations,
each period can range from a few hours to days.

Each customer O I, requires a set of operatioid(i); let K be the set of all
operations for all customers. Every operatiorior a particular customer has an
associatedrelative due daterg that represents the desired time interval between
successive executions of operatikn] Ki(i). The due date for the first time that
operationk must be performed during the planning horizon cdaddower thanr since
this due date depends on the past history of servie., when the operation was last
performed before period= 1. Leta be the due date for the first execution of operati
k. Exceeding the due date incurs a per-period penaktcy denote théateness penalty
if operationk is past due (since its last execution) at petio®ue to technological and
policy restrictions, only certain subsets (or comalions) of operations can be jointly

76



performed during a visit. We refer to each suatugrof operations astaskj. LetJYs)
denote the set of permitted tasks during stdpr customeri(s), and letJK(k) be the
subset of tasks that include operationThe duration for taskis g time periods; tasks
that contain more operations take longer to coreplétor convenience, at each step, we
also include a “travel” task that corresponds td performing any task at that step.
Depending on the tasks performed at each stemaimpletion time of the last step may
vary. Among the time periods i leth be a possibleycle completion tim&é complete
all steps andH be the set of possible cycle completion times.thla notationH is the
subset off andh < tmax

Performing all the operations that a customer nedtng each visit to that
customer may be unnecessary (since the relativeddtess may not necessitate such
frequent service) and may delay operations at dthdrsequent) customer sites, thereby
incurring lateness penalties. So, the centralstt@eticoncerns which tasks to perform at
each step of the specified tour so as to minimige tbtal lateness penalties for all
customers during the length of the tour. At eaelp,sthe service unit must perform one
task from among the available task§s), and we assume that partial services (i.e.,
fractional tasks) are not permitted. The maximemgth of the tourt.x is the time to
complete the tour if the most time-consuming tasklone at each step(i.e., the task
with the largest value off among all tasks that can be performed in sjepUsing the
problem data (i.e., the smallest and largest tas&tbns at each step), we can determine
the interval of time periods in which the servigetwvill visit each step. LetYs) denote
the time window for stepg, consisting of alperiods in which the service unit can arrive
and begin its task at step

Decision Variables:
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Xit = 1 if westart taskj at timet, and O otherwise, forai=1 ...m, j 00 JY9), t
OTYs);
Ukt = 1 if operatiork is overdue in periotland cycle is completed aftgrand 0
otherwise, for alk O K, t O {a, ..., tmag; and,
Zn = 1 if the cycle ends in peridg and 0 otherwise, for atl 1 TSm).
We refer to these three variables respectivelyasis assignmentelay indicator
andtour terminationvariables. We define th&, variables merely for convenience (to
make the formulation easier to follow).

Modéd For mulation for PTA Problem

Minimize Y > ¢, U, 1)
kOK tOT
subject to:
Task assignment for first step
> X,=1 (2a)
IS

Flow conservation constraints

ij,t—a,. = > Xy fors=2,..m tOTYs) (2b)
pISs-) £IS(s)

Exit indicator
> Xy =27, forh O H, 3)
HIXm)

Penalties for due date violation of first executafreach operation

DY XptUt > Z, 21 fork OK,tO{ax .. i -1}, (4a)

OIK(K) tO(L,.... 1) hO{L...thn H

Penalties for relative due date violation of suhsatt execution of each operation

D> D XptU+ Yz 21 fork OK, t O{, . tmax, (4b)
JOIK(K) tO{t-1, +1,...,1 h{4,....t}n H

Integrality

XUy, Z, = Oorl forj 0J,tO0T,kOK,hOH, (5)
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The objective function (1) minimizes the total pypdor due date violations.
Constraint (2a) assigns a task to the first stad,@nstraints (2b) are flow conservation
constraints for subsequent steps. These constrassume that the service unit does not
remain idle before any step (with a minor modificat we can incorporate the possibility
of waiting before commencing a task at any ste@pnstraint (3) determines the tour
termination time. Although this model requires @beting all the steps in the route and
treats the tour termination time as a decisionade, we can easily adapt it to situations
where the tour duration is specified ahead of tené the tour can terminate before
reaching the final step. Constraints (4a) and g#ye to identify whether or not each
operationk is late at time periotl Constraint (4a) states that if, forl {a, ...n}, the
solution has not performed operatibor completed the tour by periadsince the start
of the tour), then the first execution of operatiois overdue. Constraint (4b) captures
the relative due date requirement by specifying théne tour does not end at or before
periodt and the solution does not perform operatiofor end the tour) within a time
interval of 7 periods prior to period, then we must incur a lateness penalty for this
period. Finally, constraints (5) impose the noraiegy and integrality requirements.
Proposition 4.1: For the application version of the periodic tasksgnment [PTA]
problem, the PTA problem is NP-Hard in the stroegse, and the PTA problem where
no customer is visited twice is NP-Hard in the ety sense.

Proof: See Appendix B.

4.2.1 Operation level formulation

In the above formulation, constraints (4a) and @tojtain quite a few numbers of
variables in each constraint. We develop an atera formulation that can represent the

objective cost without using the constraint se).(4a order to do that, we distinguish the
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variables for the first execution of the operatiand the other executions. This

formulation is also helpful for constraint (4b)tife number of tasks is much higher than

the number of operations. However, we do so atekgense of introducing more
variables and relationship constraints.

Additional parametersand indices:

Okt the cost of the first execution of operatibrbefore timer, wheret is the first
execution time and this cost can be calculated as(@n min{-a, n—ay)). It
represents a penalty for due date violation of @ssecution of operatiok until z.

Decision Variables

Xit =1 if westarttaskj at timet, and O otherwise foratl=1 ...m, j 0 JSs),t0T

Ywst =1 if westart operatiork of steps at timet for the first execution, and O otherwise
forallsOFSs), kOKSs),tOT

Vst =1 if we start operationk of steps at timet for the subsequent executions, and 0
otherwise for als 1 S§s), kOKYs), tOT

U = 1 if no tasks containing operatidnare performed within the subsequent due
date i for operatiork, called thedelay indicatorvariable fork 0K ,t 0T

Zn =1 if the last stemn starts in periodh and O otherwise for all [1 H, called theexit
indicator variable

Alter native Modd Formulation for PTA Problem

Minimize > > U, + > > g Yo 1)

kOK tOT kOK §1S BT
subject to:
Task assignment for first step
> X, =1 (2a)
IS

Flow conservation constraints
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ij,t—aj = > Xy fors=2,..mtOTYs) (2b)
pISs-) £IS(s)

Job-operation relation constraints
Yot tViet = Z X i forsO S, [1JYs), kOKJ()), tOOTYs) (2¢)

JO0IK(K)

Exit indicator
> Xy, =2, forh OH, (3)
13gm)

Subsequent due dates for executions of each operati

D Y *Vig) U+ > Z, 21 fork OK, t O{ % ..tmag (4b)

SISK(K) tO{t-7, +1.., } hO{1...t}n H

Detection of not done operations

D D NVt D Yien =1 fork OK, (5a)
§ISK(k) BT B H
Yien < Z4, forkOK,hOH (5b)
Y variables is done earlier than X variables
DD Y 2V fork OK,sOS,tOT (6)
s<s t<t
Integrality
X Yiests VistrU e Zyy = Oorl for tOT,j0J, kOK,hOH. (7

The objective function (1) minimizes the total pydor due date violations. The
second term represents the penalties previouskyribed in constraints (4a). Constraint
(2a) assigns a task to the first step, and conssr§2b) are flow conservation constraints
for subsequent steps. Constraint (2c) construus reélationship between job level
variables and operation level variables. Constré8ih determines the tour termination
time. Constraint (4b) captures the relative due dequirement by specifying that, if the
tour does not end at or before pertaahd the solution does not perform operatdor
end the tour) within a time interval @f periods prior to periotl then we must incur a

lateness penalty for this period. Constraints éa) (5b) detect whether the operation is
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or is not done during the sequence. Constrainte(@ures that the first execution
variables are done earlier in time than subseqagatutions. Finally, constraints (7)
impose the non-negativity and integrality requiretse

This formulation potentially performs better thédme tprevious one if the number

of operations is much smaller than the numberskga

4.3 INITIAL SOLUTION

In Chapter 2, we saw that the “single” visit tassignment problem is pseudo-
polynomially solvable, whereas the “multiple” vis#isk assignment problem is NP-hard
in the strong sense. The difficulty arises in costr repetition, because in a multi-visit
case, the knowledge of the start times of the taskkthe cycle completion time is not
enough to give an optimal decision. In other wpttle cost structure also depends on
the previous decisions for the same customer. nBatjal time algorithms have been
developed in special cases of the single-visit lerob(Chapter 2, Section 5), but these
algorithms do not apply to the multi-visit case &pter 3, Section 5).

When there is customer repetition, no (pseudo-jpmiyial algorithm can
generate ap-optimal solution for any > 0 unlessP = NP (see corollary 3.4). Although
there is no theoretical bound, (pseudo-)polynomigbrithms may provide good feasible
solutions in practice. We take into account theegation of a solution on the basis of the
solution of the single visit case. In fact, we chiwvide the original sequence into parts, so
that each part contains a customer only once. €lpasts are solvable via algorithms
developed in Chapter 2.

The heuristics based on dividing the horizon imt@blier parts receive attention in
the dynamic lot sizing context. Federgruen andr12@94) have demonstrated that for

single-item uncapacitated dynamic lot-sizing mogde[gtimal or close-to-optimal initial
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decisions can be made by truncating the horizdaadter (2003), and Suerie and Stadtler
(2003) develop heuristics that solve the multi-iteapacitated lot sizing problem over a
progressively larger time interval by fixing theriadoles of a progressively larger number
of periods at their optimal values in earlier itevas. The proposed heuristics divide the
given horizon ofh periods into sub-horizons that come one after lerot Each sub-
horizon is solved optimally after fixing all (or up some predefined period) variables of
previous sub-horizons. The computational testswesdothat the heuristics provide
promising results. Federgruen et al. (2007) provledt, under some parameter
conditions, these heuristics can be designed tedptimal for any desired value ef> 0
with a running time that is polynomially bounded ttwe size of the problem. However
the theoretical results do not apply to the pedadsk assignment problem.

These results suggest that a close to optimal isolunay be obtained by
partitioning or truncating the customer sequeniceour heuristic, we divide the original
sequence into subsequences so that each subsequernams each customer at most
once. An optimal solution to a subsequence camréaehed after fixing all task decisions
of steps prior to the first step of the current sequence by solving previous
subsequences via algorithms developed in Chapter 2.

We construct the subsequences by using one of thkese

o Strict partitioning rule This rule partitions the original sequence imon-
overlapping parts so that each part consists o$emrtive steps and contains the
same customer only once.

Example: Suppose that the following is the sequence ofotnsts. (13 steps, 4

customers.) This rule partitions the original ssae into four parts.

83



Original sequence:

1123424341 3]2|3|1

Partitioned into 4 parts:

1234IIZ>243IE>4132IE>31

* Expanding customer ruleThis rule divides the original sequence intotgpaso

that each part consists of consecutive steps anthiog the same customer only
once.
o0 Each subsequence (except the last one) ends ifetktestep after the last
step of the subsequence causes customer repetition.
0 The next subsequence begins one step after théhstepontains the same
customer as the next step after the last stepegbtévious subsequence.

Example: This rule divides the original sequence intofsaxts.

Divided into 6 parts:

112| 3| 4

|]:>342
“:>243

"::>4132
|]:>231

Both strict partitioning and expanding customeesutan provide better solutions

with respect to the other one. Dividing the segeeimto subsequences in this heuristic
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looks different than the heuristics developed i thpacitated lot sizing problems. The
conditions that can potentially alter the diviseme as follows:
 The number of customers in each subsequence ishaosame. In fact, each
subsequence is naturally obtained from the orderthef customers in the
sequence.
* The division into parts is based on customers,paotods. The time spent on
each part depends on the optimal decision, so tdmenfixed a priori.

Our heuristic for the periodic task assignment f@ot) as discussed in Chaprer 2,
is based on the idea of quickly solving each subbsiece one after another by applying
the pseudo-polynomial (ih, cycle completion time) shortest path method. héligh
each part of the sequence is solved optimallyrékalting solution might not be optimal
for the original problem, because this strategynhnotthis problem and in the lot sizing
context cannot encompass the whole sequence atodogan result in myopic decisions.
Using the shortest path method, the algorithm sobach subsequence for each possible
subsequence completion timeH. This method does not predict what will happéerraf
the completion time of the subsequence, which iggllt in the underestimation of costs
in a situation where a customer will not be visitaghin for a long time. As such, we
extend the heuristic to solve this myopia problem.

We modify the shortest path method to improve tharistic in the following
way: assume that a customes visited agaim; time later than the end of the horizon of
the current subsequence. In that case, wehuseA; instead ofh as a subsequence
completion time to calculate the arc costs of theftomer. Since we do not know how
much time will be spent on the later steps, we havapproximate tha; value for each
customer. The approximation assumes a fixed duration t@iori, saye, for each

step after the last step of the current subsequeHR@nce, if a customeris revisiteda
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steps later, then th'g = a;e. Thise value could be maximum or average task duration fo
intermediate steps until next visit.

Finally, the heuristic may generate a solution ftkadlifferent from the optimal
solution for the following reasons:

* the selected task contains an operation whichne @arly

» the selected task does not contain an operatiochabialready late

* the selected task contains an operation which e @g@rly, and there is a chance
that the operation could be done during that custtamext visit

» the selected task contains an operation which e date, and there is a chance

that the operation could be done during the sam®mer’s previous visit .

Therefore, as a final refinement, we will make ttezessary one-task and two-
task swaps to get a better solution. In the osk-gwap, we change only one task
decision of one step at a time. In two-task swaps, task decisions of two different
steps (not necessarily same customer) will be ahrg a time and tested for resulting
improvement in the objective function. The one«tawap aims to address the first two
reasons, and the two-task swap aims to addresasiisvo.

Let ¢ be the possible approximate duration times (sgcmi@imum, average and
maximum duration times) for every step after thst Eep of any subsequence &lde
the set of these values. Then, a customiers visited agaim\; = ae time later than the
end of the horizon of the current subsequence waerepresents the number of steps
customei is revisited after current subsequence. Thewiofig is a generic scheme for
this heuristic.

Heuristic for periodic task assignment problem

0 SebestValue= «, bestSolutiorr empty
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a ~~ W DN

10
11
12
13
14

Construct the subsequences from the origgegjuence by using thstrict
partitioning rule or customer expanding rule Let S, represent thepth
subsequence in the order.
For eache 0 Edo
For each subsequenégin the order beginning from= 1do
a. Calculata; values for each customiein the subsequen
b. Solve the problem for the subseque®d®y using the modified shortest
path approach problem with; values given the assignment for earlier
subsequences
c. Modify the last service date (correspondingalues) of each operation
End For
Calculate the objective function for thegoval problem (total cost for the
subsequences could be different than the cosh&otiginal problem)
If the current objective value of original probleneass tharbestvalughen
bestvalue= current objective value
bestsolutior= current solution
End if
End For
Refinement Step: Do the one-task or two-task swaps unless ther@ois

improvement in the objective function for some @feted number of iterations.

The computational performance of the heuristic ddpeon the seg, the set of

approximate duration times, and the neighborhoadcten the refinement step. There is

a tradeoff between the time spent for the heuretid the quality of the solution. The

user can determine the appropriate level by chantjia seE and using the refinement

step.
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This heuristic solution provides an initial solutito solve the original problem
faster. In the following sections, we develop Hert methods to speed up this solution

process.

4.4 PERTURBATION AND PROBLEM REDUCTION

The special structure of the real problem instanges/ides us to offer the
following perturbation and problem reduction teciugs to make these instances faster

to solve using CPLEX.

4.4.1 Perturbation

The structure of the objective function containsgnaqual objective terms, and
these terms cause alternative solutions. In faetper unit time penalty is equal for all
operations and time points for each customer inaplication problem instances. This
means that the number of distinct objective coiits for all variables can be as high as
the number of customers. Clearly, this causes ge mumber of iterations in the LP
relaxation solution process.

To decrease the effect of this phenomenon, we rsaddl perturbations in the
objective function. We make this perturbation f@rcle customer separately by using
following rule:

* For eachUy variable belonging to this customer, rank (arbityfathe operations
from 1 to K|, denote asy, for operatiork, where K| represents the total number
of operations for this customer.

« The perturbation value for this variable i |Ktmax

Observe that the maximum perturbation for any Wéeiavould be 1/, SO the total
perturbation for any operation will not exceed hiat will ensure the optimality of the
original problem for big enough cost coefficients.
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We can also perturb these variables randomly, iriabove manual perturbation

performed better in our problem instances.

4.4.2 Problem reduction

We develop two methods to reduce the size of tbelem. In the first method,
we use the following definitions:
Dominated task: For a given task, if there is another task that includes all the
operations that are included by tasknd the duration of tagkis not greater than tagk
then task is adominated task
Proposition 4.2:There is an optimal solution that does not perf@amy dominated task
in any step.
Proof: For a given optimal solution, since the problera panalties only for the lateness
of the operations, all the dominated tasks carepkaced by the tasks that dominate them
without affecting the optimality of the solution.

We eliminated all the dominated tasks (as many(® »f all tasks) from our
problem instances, which decreased the solutioe.tim

Using the problem data (i.e., the smallest andetrtask durations for each step),
we can determine the interval of time periods inclwvhthe service unit will visit each
step. TYs) denotes the time window for stepconsisting of allperiods in which the
service unit can arrive and begin its task at stepNVe can narrow this time window
further. The next method uses thested propertyof the tasks in the application
instances.
Nested property: For a given task, if there is another task that includes all the

operations that are included under tggken the tasksand]' have nested characteristics
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with respect to each other. If all the task paifs emch customer have nested
characteristics, then the problem instance haesséed property

With a nested property in mind, consider a task ¢batains more operations than
any other task for a particular customer. In tfase, there is at least one operation in that
task that could be performed only by this task.sukse that there is only one operation,
operationk, that satisfies this condition. For that opematoif the difference between
the earliest visitation time for the customer taichhit belongs in/" visit and maximum
cycle completion timénmna is smaller than the associated relative due dafier that
operationk, then there is no need to perform this operationenthanv times as well as
the corresponding task. Therefore, we do not awaged to use the largest task
durations to calculate the upper bound of each tmneow.

We can generalize this logic to the other operatwith a nested property. The
following procedure needs to be done for each costoseparately, so we drop the
customer index from the notation for the sake wipdicity. For each customer, assign an
index or order number to each task so that theenighdexed task contains more
operations. LeEST\V) be the/" earliest visit time (lower bound of the time windatv™"
visit) for this customer and be the total number of visitations for this cus&. tmnaxis
the current maximum cycle completion time. In beow algorithm NumberOfTaskj]
variable holds how many times taskhould be performed ameémainingVisitvariable
shows how many visitation left to consider for thastomer.

Problem sizereduction under the nested property for a particular customer
0 remainingVisit=n, NumberOfTaskj] = 0

1 For choose taskfrom highest indexed task to lowest ate

2 For each operatiok included in task but not lower indexed taski®
3

minVisit= min {v | k> tmax—EST{) or v =remainingVisi}
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remainingVisit remainingVisit- NumberOfTaskj]

4 If NumberOfTaskj] < minVisitthen
5 NumberOfTaskj] = minVisit
6 End If

7 End For

8

9

End For

This algorithm calculates the number of times eashk should be considered in
the calculation of upper bounds. The outer “faypbexamines the tasks in decreasing
order (longest duration task first, shortest dorattask last). The inner “for loop”
considers the operations that can only be performethe current task but not lower
indexed tasks. In each iteration of the inner |abp first visitation where the relative
due date of an operation at that iteration is highan the difference between lower
bound of visitation anthy is calculated. We know that we do not need téope that
operation after that visit because the operatidhnet be late at the completion time if it
is performed on that visit. Hence, the maximum hanof execution for the given task
should not be higher than that visitation number.

Previously, we used largest task durations (maxirqualues wher¢ U JY's) for
each sters) to calculate the upper bounds of each time winddvine above algorithm
provides the number of times we should count eask turing the calculation of the
upper bounds of each time window using the aiNaynberOfTask We use the duration
of these tasks in decreasing order to calculatepiper bounds of each time window.

For example, if a customer is visited 5 times, #rmaalgorithm provides the 3, 1
and 1 for the tasks that have the longest, secongekt and third longest durations

respectively, then we use the longest duratioriferfirst three visits, the second longest
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duration in the % visit, and the third longest duration in tH2\Bsit to calculate the upper
bound of each time window for corresponding steps.

This algorithm is performed for all customers, d@nth.xis decreased at the end,
then the process is repeated for the hew
Proposition 4.3:The above algorithm, which accounts for the neptegerty case, does
not eliminate the optimal solution.
Proof: Step 3 in this algorithm checks the visitation twemof the customer, where the
selected operation does not need to be done afewisitation. Therefore, we do not
need to perform that operation more than the visitanumber captured at step 5;

therefore, the optimal solution is not cut.

4.5 LAzy CuUTs

Lazy cuts are defined as constraints that aregdatie original problem but are
unlikely to be violated. In the PTA problem, ituslikely that the largest duration tasks
for each step will be performed because the task wilarger duration delays the
visitation time of later steps and increases themnt@l lateness penalties.

Figure 4.1 shows the cycle completion time’s curinvgaflow distribution for the
LP solution of one of the instance we tested will8 kteps. In this instance, the
maximum cycle completion time is 524 days, and @épé&mal solution’s (also initial
solution’s) cycle completion time is 363 days. it LP solution, the cumulative flow
hits its mid point 0.5 at 360 days, and the londesttional flow ends at 424 days.
Therefore, the solution is unlikely to consider thié constraints in (2b), (4a) and (4b)

until tmax 524 days.
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Cycle Completion Time vs Cumulative Flow in LP Solution

Cumulative Flow
12
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Cycle Completion Time (in days)

Figure4.1. Cycle completion time for 118 steps instance enltF solution

We use the following procedure to declare sometcaings to be lazy constraints:

a. Calculate the point at the middle if.x and the cycle completion time of the
initial solution, sayh*, which is equal tt"* + ( tmax—h*)/2

b. Declare all the flow constraints (constraint 2b)be lazy constraints if the
minimum time indexed variable is higher than thieigdound at (a).

c. Declare all the due date constraints (constraeta#d 4b) to be lazy
constraints if the minimum time indexed variablehigher than the value
found at (a).

As an extension, flow constraint declarations cduddone separately for each

step by considering latest start time of that steg the visitation time of the initial

solution at that step.

4.6 BRANCHING STRATEGIES

Branching rules are developed to increase the pedoce of the solver. The
branching strategies are not only based on origuaaiables but also on additional

variables that are defined for this purpose. Tampmutational results show that the
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appropriate selection of branching variables hasgaificant impact on solution time.

We provide these strategies in increasing ordenpbrtance below.

4.6.1 Task assignment variables

In an ordinary LP solution, the number of positywehlued variables is increasing
in later steps of the sequence. Hence, branchingsk assignment variables of earlier
steps provides a faster solution than branchintask assignment variables of later steps.

To capture this characteristic, the task assignmariables of earlier steps have a

higher priority when it comes to branching.

46.2 Timevariables

When an LP solution selects more than one task Wwabtional values for a
particular step, the completion times of these damle different in the next step. We
define a new variable set to prevent this phenomémon happening.

Assume that the minimum task duration time is asiene in a given instance.
As such, we cannot start more than one task foivengtime. Define the following
variables:

W =1 if a task at any step is started at tiprend O otherwisd, [ T
We refer to these variables @®e variables. The following constraint relates the

time variables to the task assignment variables.
DX =W, fortOT.

jt
{ $0T(s)} DIS(s)

The first summation is for steps in which tinis an element of their time windows, and
the second summation is for all tasks in thosesstdpor further improvement, assume
that the minimum task duration for all steps apipegin the first summation i8min;

therefore, the next task cannot start beforémin:
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t"'b_mm_l
D X =W fort O,

{$0T(9)} Pas(s) b=t
whereW} equals to one if a task at any step is starteddwsst timet andt + omin —1, and
0 otherwiset O T

Although the LP solution satisfies these constsaamyway, the time variables are
useful in branching because number of time var@aidemuch less than the number of
task assignment variables. Hence, we give higherify to time variables over task

assignment variables when it comes to branchingaddition, we provide higher priority

to earlier time variables compared to the lateisone

4.6.3 Tour termination variables

Although the number of time variables is much l&ssn the number of task
assignment variables, we need to define additimaaiables and constraints. In our
problem, we already have tour termination (sinkjialdles that determine the cycle
completion time. Branching on these variables teetban time variables has pros and
cons:

* Pros. We do not need to define additional variables aodstraints. The
number of sink variables is much less than the rarrobtime variables.

* Cons: Even though the solution has integer valued simkables, it does not
guarantee the feasibility of the solution.

Computational results show that sink variablesraoee powerful tools than time
variables, so we give them higher priority thanetior task assignment variables. As

usual, earlier sink variables have higher priositempared to the later ones.
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4.6.4 Cumulativesink variables

Although the tour termination (sink) variables helg with our branching
strategies, every sink variabfg appears witldue dateconstraints for all operations and
times if the time indexh of the corresponding sink variable is less tham time t
corresponding to the delay indicator variablgat that constraint. This fact causes dense
columns and rows in our constraint matrix and maikedifficult to conduct matrix
operations. Therefore, we define the followingiailes:

CZ, =1 if the last stepn starts at or before peridd and O otherwise for ah O

Tm).

Instead of defining a variablg, to indicate tour termination at time new
cumulative sinkvariablesCZ, become one if the cycle completion time of ther tsu
equal to or less tham Using these variables, we can change the comist(@), (4a) and

(4b) in our formulation such that:

> DX, =Cz, forh OH, 3)
pJYm) k< h
> D> Xp+U,+CZ 21 fork DK, tO{a, .. & -1}, (4a)
JOIK(K) tT{d,....t

D Xy +Uy +CZ 21 fork OK, t O {1 ..tmag- (4b")

JOIK(K) tO{t-1, +1,...,t}

The due date constraints now contain only one tatiwa sink variable instead of
the summation of sink variables. This change v@tluce the density of the constraint
matrix and improve the solution time.

We give cumulative sink variables higher priorityah the other variables.
Similarly, cumulative sink variables with earlieime index have higher priorities

compared to the later ones.
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4.7 SUBDIVISION METHOD

In the above strategies, we concentrate on thefalblem and try to improve its
solution time. However, since our constraint nxaisinot sparse, solution times increase
rapidly with the size of the problem.

Hence, we generate the subproblems from the otigirdblem, so that each of
them can be solved faster. The idea behind sulgrobeneration is to force a start time
of a task for a chosen step, sdiyision step before or after a chosen time, shyision
time The following scheme shows subproblem generation

* We select three step%% + O.SJ , {2—? + O.SJ andm, as division steps wherais

the last step. For example, if a sequence hastepd, then division steps are 33,
67 and 100.

» For division steps, we select division timest,, t3 to start a task. With the 100
step example in mind, leét = 100,t, = 200 and3=300.

« We generate 8 subproblems)(By declaring that these division steps should sta
a task before or after those selected divisiondginjie each subproblem, selected
times are included.) Continuing the example, Tableshows the starting times

of tasks for each step in each subproblem.
Division Steps

33 67 100
Subproblem 1 <100 <200 <300
Subproblem 2 <100 <200 >300
Subproblem 3 <100 >200 <300
Subproblem 4 <100 >200 >300
Subproblem 5 >100 <200 <300
Subproblem 6 >100 <200 >300
Subproblem 7 >100 >200 <300
Subproblem 8 >100 >200 >300

Table 4.1. Starting times of tasks in each subproblem

97



One can select fewer or more division steps depgnain the problem size. The
effectiveness of this method relies on the appateriime selection of the division steps,
because bad time selections may generate a subprafghich is as hard as the original
problem. Hence, we offer two division methods gsgither the initial solution or the LP

solution.

4.7.1 Division by initial solution

In Section 4.3, we described a procedure to findnétral solution. The task
starting times in this initial solution could beedsas the selected times for division steps.
There are pros and cons for this selection:

* Pros. Each subproblem has a valid initial solution gatexl for the original
full size problem. We do not need to deal withfilesize problem at all.

« Cons: Theoretically, the initial solution might not l@ose enough to the
optimal solution. It may cause bad time selectioasnd the resulting
subproblems could be hard to solve.

In actual computational tests, this method worky veell if the initial solution is close to

the optimal solution.

4.7.2 Division by LP solution

The LP solution is another alternative for selagtthose time points. We can
look at the cumulative flows in time for these dion steps and select the time at mid
flow 0.5 which is expected to be close to the optisolution. Here are the pros and cons
of this selection:
* Pros: Selected times are expected to be close to thmalpsolution.
e Cons. Each subproblem may not have a valid initial sotutFurthermore we at
least need to solve the LP relaxation of the fizk problem.
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In computational tests, this method performed bettegen we intentionally provided an
initial solution that is far away from the optimsblution. However, with the initial
solution at hand (from Section 4.3), division bitial solution method performed much

better at all instances.

4.8 COMPUTATIONAL RESULTS

We evaluate the performance of our approaches ahdata instances. The
heuristic was programmed in Java and the IP modebk (\CPLEX 11.2 via concert
technology. The tests are on the 11 Dell Power&8$® workstation with 3.73 GHz
Xeon and 24 GB of shared memory under Ubuntu Leystem.

In our experiments, we tested on two maintenangmms, called Region-A and
Region-B. Region-A contains 34 facilities (custeg)aequiring maintenance and these
facilities are visited in 58 steps in one full aycl(The service “unit” repeats the tour after
58 steps.) Region-B also contains 34 maintenaaaéties and one full cycle consists of
59 steps. Each full cycle approximately takes 6ii® to complete in each region. The
durations of the tasks can range from half day 4odays, and the weights of the
operations (depend on workload of facilities) vaegween 7 and 189.

We generate 6 instances for each region. All imsta of each region has same
starting conditions (first customer and customeieoiin their sequence, and due date of
operations of customers) but contains different peimof steps in their sequence. In
Table 4.2, the first column shows the problem name&ke first letter refers to region
name and the number indicates the number of steplsak instance. Second column
states the number of customers considered on riktnce and the other columns give

details about the number of visitations. For exi@nproblem A-58 has 34 customers.
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13 of these customers are visited once, 18 of thmwisited twice and 3 of them are

visited three times.

Problem | customers lvisit 2visits 3visits 4visits 5visits 6 visits
A-20 20 20 0 0 0 0 0
A-40 30 20 10 0 0 0 0
A-58 34 13 18 3 0 0 0
A-80 34 6 13 12 3 0 0

A-100 34 2 11 11 7 3 0
A-116 34 0 13 0 18 0 3
B-20 20 20 0 0 0 0 0
B-40 30 20 10 0 0 0 0
B-59 34 10 23 1 0 0 0
B-80 34 5 12 17 0 0 0
B-100 34 3 7 13 11 0 0
B-118 34 0 10 0 23 0 1

Table 4.2. Problem instances for region A and region B

In Table 4.3, the details about IP formulationiigeg for each instance developed
in Section 4.2 without initial solution, preprocegs additional variables/constraints and
methods discussed in Section 4.3 to Section 4he Strict partitioning rule is used as a
subsequence method for the heuristic.

For each instance, number of constraints, variadhes nonzero coefficients are
given. Then, the IP, LP and heuristic solutionesmare presented. Finally, the gap (* =
(heuristic value — optimal value)/optimal valueraculated on the last column.

The heuristic finds the optimal solutions in 10tamees and the biggest difference
between the heuristic value and optimal solutioh.486. As the problem sizes increase,

the solution times increase enormously.
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IP Root | Heuristic | Heurigtic
solution | solution | solution VS,
Number of time time time optimal
Problem | constraints | variables | nonzeros | (sec) (sec) (sec) value*
A-20 2K 3K 67K 2 1 6 0.0%
A-40 9K 13K 718K 87 74 20 0.0%
A-58 14K 22K 1.4M 437 400 54 0.0%
A-80 21K 35K 3.1M 6946 2492 287 0.4%
A-100 32K 57K 7.0M 123847 | 31288 554 0.0%
A-116 39K 70K 9.5M 21274 20931 588 1.4%
B-20 3K 3K 62K 3 1 6 0.0%
B-40 10K 13K 668K 123 83 22 0.0%
B-59 19K 26K 2.0M 2231 2170 25 0.0%
B-80 28K 40K 4.0M 1.3M 7467 101 0.0%
B-100 39K 58K 7.6M >1.8M 23022 84 0.0%
B-118 49K 76K 11.2M >1.8M 49835 683 0.0%
* = (heuristic value — optimal value)/optimal value
Table 4.3. CPLEX and heuristic performances
Initial | Number of Initial | Number of
Problem | gap* branches | Problem | gap* branches

A-20 8.06% 0 B-20 0.00% 0

A-40 0.00% 0 B-40 31.44% 0

A-58 0.00% 0 B-59 0.00% 0

A-80 15.25% 185 B-80 30.69% 75702

A-100 | 31.76% 839 B-100 | 39.61% >28250

A-116 0.00% 0 B-118 [ 62.88% >6100

Table 4.4. Initial gaps and number of branches
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In Table 4.4, initial gap ((= First feasible sotuti— Root LP solution)/ First
feasible solution) and number of branches in théBB&e are provided for the problems
solved in Table 4.3. We did not provide any inigalution for this set.

We use the methods developed in Section 4.3 todhetit and obtain substantial

improvements on solution time seen in Table 4.5.

IP_ Roqt Heuri_stic Heuristic
solution | solution | solution VS,

Number of time time time optimal

Problem | constraints | variables | nonzeros | (sec) (sec) (sec) value*
A-20 2K 2K 36K 2 1 3 0.0%
A-40 9K 11K 381K 12 9 6 0.0%
A-58 13K 16K 759K 30 24 10 0.0%
A-80 20K 26K 1.7M 201 112 28 0.3%
A-100 31K 41K 3.9M 978 109 118 0.0%
A-116 37K 48K 5.3M 977 915 128 0.0%
B-20 3K 3K 35K 1 1 2 0.0%
B-40 10K 12K 390K 13 10 7 0.0%
B-59 19K 24K 1.2M 101 91 9 0.0%
B-80 27K 35K 2.5M 482 53 29 0.0%
B-100 38K 50K 4.8M 27051 18991 106 0.0%
B-118 48K 66K 7.4M 80405 31651 424 0.0%

* = (heuristic value — optimal value)/optimal value

Table 4.5. Improved CPLEX performances

The following approaches are considered:
» Use heuristic solution described in Section 4.8rasitial solution,
* Apply perturbation and problem reduction technigdescribed in Section 4.4,
* Apply lazy cuts as in Section 4.5,

» Use following branching strategies:
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o First, branch on cumulative sink variables (sediGed.6.4),
0 Second, use time variables (see Section 4.6.2),
o Finally, apply task assignment variables (see 8eecti6.1).
In Table 4.5, the number of nonzero coefficientseduced approximately 40-
50% with the help of problem reduction techniquesl aumulative sink variables.
Furthermore, the solution times are decreased 9986me of the instances. Besides the
solving smaller problem, initial solution and braimg strategies, especially cumulative
sink variables, provide these good results.
In Table 4.6, initial gap ((= Heuristic solution Root LP solution)/ Heuristic

solution) and number of branches in the B&B tree @ovided for the problems solved

in Table 4.5.
Initial [ Number of Initial Number of
Problem | gap* branches | Problem | gap* branches
A-20 0.18% 0 B-20 0.00% 0
A-40 0.00% 0 B-40 0.14% 0
A-58 0.00% 0 B-59 0.00% 0
A-80 0.65% 10 B-80 0.77% 32
A-100 | 0.40% 35 B-100 | 1.44% 91
A-116 | 0.00% 0 B-118 | 2.97% 110

* = (Heuristic solution — Root LP sbn)/ Heuristic solution

Table 4.6. Initial gaps and number of branches

Despite of major improvements at hand, we can éurteduce the solution time
by using subdivision method developed in Sectioh 4We generate 8 subproblems
following the guidelines of Section 4.7 by usinguhistic solution. (We continue to use

approaches that are considered in Table 4.5.)
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In these subproblems, we concentrate on the inssathat have 80 steps or more.
Instead of using smaller instances (that are ayressdved quickly), we generate the
additional problems using following logic: Firstie solved the instances of two full
cycle problems optimally (116-step problem for o#giA and 118-step problem for
region B). Then, we assume that the service planmerform the tasks for one full cycle
by using these optimal solutions. We update the dlates of operations based on the
task decisions and cycle completion times of trsedetions. Finally, we obtain the new
instances with the new starting conditions.

In Table 4.7, we see the performance of the susidivimethod by using initial
solution. The new instances are referred to aitiaddl letter “R”. Our heuristic finds
optimal solutions for 5 instances and there is ®difference between the optimal
solution of the “B-100-R” problem and the heurissmlution. Table 4.7 also shows the
worst initial gap and maximum number of branchesded to solve IP among all

subproblems generated by subdivision method.

P P

solution Number solution Number
time | |nitial |  of time | |nitial | of

Problem | (sec) gap* | brances | Problem | (sec) gap* | brances
A-80 169 | 0.26% 0 A-80-R 219 | 8.43% 38
A-100 532 | 0.25% 25 A-100-R 502 | 1.69% 17
A-116 597 | 0.00% 0 A-116-R 329 | 0.00% 0
B-80 416 | 0.00% 0 B-80-R 357 | 0.02% 0
B-100 1406 | 0.55% 6 B-100-R 1265 | 1.21% 6
B-118 2481 | 0.06% 0 B-118-R 3949 | 0.62% 0

* = maximum of {(Heuristic solution — Root LP soiom)/ Heuristic solution} among all

subproblems

Table4.7. Performance of subdivision method

104




Solving problem instance B-118 takes 23 hours witlamnsidering subdivision
method and now, it is taking less than an hour.e Pperformance of the subdivision
method highly depends on the division steps andgimThe closer these time points are
to their optimal values, the better performancegee Therefore, it is very important to

have a good initial solution to apply this method.

4.9 CONCLUSION

In this chapter, we considered the maintenancecgeapplication of the periodic
task assignment problem. We develop a heuristicibe shortest path approach given in
Chapter 2 as a subroutine. Computational reshitie/ghat the heuristic can provide near
optimal solutions. We also propose problem redunctechniques to solve the problem
effectively. We further improve the solution tinbg investigating on technigques such
that lazy cuts, branching variables, and subdigdime problem into smaller problems.

We show that these techniques can provide substamiprovements on solution time.
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Chapter 5: Shipment Routing Problem with Dispatching Policies

51 INTRODUCTION

In transportation systems, planning and executiegttansportation of shipments
involves many complex decisions and requires theagement of multiple resources.
Appropriate management of these resources is reagessimprove service quality while
ensuring efficient use of resources and satisfyorner orders on time. The decision
makers need to solve many interrelated problemsh as the design of the underlying
network, the routing and timetabling of the casieand the transportation of the
shipments.

In this chapter, the focus will be on the probleimauting shipments that need to
be transported from their origin to their destioati The shipment routing problem
determines the path (physical and temporal) theh ehipment will use on its journey.
We investigate the transportation problem of shipimefrom their origin to their
respective destinations under capacity constraindsdispatching policies. The effective
usage of available capacity under a given netwettehses costs and increases customer
satisfaction.  Dispatching policies determine thendiing rules of shipments on
intermediate stations during their trips. We assuimat higher level decisions in the
network, such as capital investment and the casdkedule, are given.

Complex network systems usually consist of mulgela(physical and logical)
networks to handle traffic. In the physical layérge actual transmitting network is
designed such as location of stations/airports sofetdule of carriers in transportation
network, and location of routers and fiber optieeb in communication network. The
logical network is designed over physical netwarlhandle traffic effectively such as IP

networks in computer networks.
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In transportation network, a shipment may passugitomany classification
stations on its route from origin to destinatioAt these stations, the station operators
reclassify the incoming traffic to be placed ongmimg carriers. Each reclassification
takes time and incurs handling costs. Insteacdfssifying shipments at every station
on its route, several shipments may be groupedheg#o form alock a term barrowed
from railway terminology. A block has its own dngdestination pair that may be
different from the origin-destination pair of indiwal shipments contained in the block.
Therefore, a shipment may be assigned to more dhanblock to reach its destination.
With this blocking mechanism, the shipments aressifeed only at the origin of the
blocks to which they are assigned. (See Cordeail,et998 and Ahuja et al., 2005 for
multi-layer network designs in railway applicatipns In communication network,
different fiber links group together to formtraunk to handle data packages. Again, the
data is reclassified only at the origin of the &sin (More information about multi-layer
communication networks can be found in Pioro andliMe2004.)

After the design stages of physical and logicalvoeks, the next step determines
the possible carrier assignments within the plaghiorizon for blocks. During the block
construction, carrier scheduling and possible earrassignments, the forecasted
shipments are considered. At the final stagestiipment routing problem determines
carrier assignments for actual (not forecastedprsbnts among the possible carriers
generated in the design stages.

The shipment routing problem has some importanttiwa constraints that the
trip planner should consider:

» Carrier capacities The carriers have capacities between two statioen travel.

These capacities could be different during the tfipcarriers. If the capacity

requirements are not considered, the last minujastdent will change the
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original routing plan given to the customer, scsthehanges may affect customer
satisfaction. Moreover, myopic decisions may resal ineffective use of
resources, especially in congested systems. Inmnetwork structure, multiple
blocks could be assigned to a single carrier asoh@gle block could be assigned
to multiple carriers. If the arcs are considersctarrier to block assignments for
a particular shipment in a given network, multiples can share same resource.
This structure is different than the standard medinmodity flow problems
where each arc has its own capacity.

Dispatching policiesThe other issue concerns rules about shipmeetactions
on the network. If two shipments are assignedhéosame block, then a shipment
that comes to a station earlier should not be aedigo a carrier that departs later
than the one carrying a shipment that arrived laldris is a practical constraint in
many networks, and simply states first-in-first-gbtFO) rule for that station if
the shipments are using same departing block. ri¢)esmn approach that designs
the routing plan for each shipment independenthynoahandle this rule.

Note: A dispatching policy can be designed to handlatrary order of the

shipments (not necessarily FIFO).

We consider a problem that requires the followtegnis as inputs:

Shipments with their release times and volumes

Set of blocks that can carry each shipment

Legitimate Block-to-Carrier assignments for eaabckl

Carrier capacities (could vary by location evendame carrier)

Dispatching policies

The shipment routing problem determines which amthreg possible Block-to-Carrier

assignment should be assigned to each shipmenideang capacities and dispatching
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policies. The objective function is to minimizeethotal weighted transit times of
shipments from their origin to destination.

This chapter focuses on a shipment routing problender capacity and
dispatching policies. We consider a space-time/oidt that allows one to formulate the
shipment routing problem as a multi-commodity netwibow problem with additional
side constraints. We explore alternative modet$s develop methodologies for routing
decisions. We propose algorithms and techniques ¢an solve real size shipment
routing problem to optimality or near-optimality.

The remainder of this study is organized as foltow$e next section provides
the background and literature review for shipmeniting problems and related multi-
commodity network flow problems. Section 3 defirtee problem and formulates the
shipment routing problem, and Section 4 investg#te characteristics of three different
dispatching policy constraints. Section 5 propoaes alternative formulation, and
Section 6 shows complexity results. Section 7 eatrates on heuristics and lower

bounds, and Section 8 provides computational result

5.2 LITERATURE REVIEW

Shipment routing problems appear in many networkliegtions such as
transportation and telecommunication. These problare operational level problems
and handled after designing the physical and |lbgietworks.

Railroadtrip planning problems are one of the applications of shipmeanting
problems. In railroad planning and scheduling, adis§1980) presents the hierarchical
structure of decision problems in railroads. Cardeet al. (1998) and Ahuja et al. (2005)

give a recent survey of railroad network desigrbfms.



In railroad planning hierarchy, the railroad blogki problem and the train
scheduling problem should be solved before solthwy trip planning problem. The
blocking problem which involves grouping shipmeinit® blocks is the primary planning
problem in the railroad industry for logical netkageneration. Newton et al. (1998),
Barnhart et al. (2000), and Ahuja et al. (2007)kvan this problem. After a railroad has
developed a blocking plan, designing a train scleedtithe next operational planning
task. Related works can be found in Farvolden Radell (1994), Campbell (1996),
Kraft (1998), and Brannlund et al. (1998).

To the best of our knowledge, there are few pajetise literature related to the
trip planning problem (see Van Dyke 1992, 1994)chlgorresponds to shipment routing
problem in railway applications. Nozick and Morl@k997) study the shipment-to-train
assignment problem and the problem of repositiomngpty cars together for a given
train schedule without considering any blockingngla They consider the objective
function of minimizing the total movement cost ofrg while satisfying due date
constraints. They formulate the problem as angmiteprogram over a time-space
network, and propose a heuristic based on the rlipeagramming relaxation. The
heuristic rounds up or down some of the fractiomalues and reruns the linear
programming relaxation until a feasible integrdusion is found.

Kwon et al. (1998) consider the shipment-to-blodsignment and the trip
planning problems for a given train schedule unglain capacity constraints. They
formulate the problem as a linear multicommoditgwil problem and use column
generation as a solution approach. They formulaemulticommodity flow problem
using path flows for every shipment from its origmits destination. During column
generation, the restricted master problem is sofeeda subset of the paths, and the

subproblems are represented as shortest path prelite every shipment from its origin
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to its destination. In their computations, the ws network with 12 stations and 16
trains.

Jha et al. (2008) deal with the trip planning peoblfor a given block plan and a
train schedule subject to train capacity constsainThey develop arc-based and path-
based multicommodity network flow formulations betproblem. In their model, they
assume that all the trains run every day, andhalllilocks are made every day. The
formulations are defined in a time-space networkwinich every node is distinctly
identified by place, time and train within the locThey connect the last node to the
first node at the same station and obtain a onaadawork with wrap around arcs.

The path based formulation given in Jha et al. $@0nsiders the potential paths
for each block. This approach is different thanddwet al. (1998) because Kwon et al.
define the potential paths for each shipment. &ashipment can use multiple blocks in
its blocking plan, the formulation in Jha et al0Q8) has fewer path variables than the
formulation in Kwon et al. (1998). However, thetlpdased formulation in Jha et al.
requires connection arcs between blocks to capiweré&ransit times of the shipments. Jha
et al. (2008) do not generate these connectiontarcsnstead assume that there is only
one release time for each block in a day. Thisirapsion reduces the problem to the
block level so that the problem assigns one pathefch block under train capacity
constraints.

Jha et al. propose exact and heuristic algorithrasedb on the path-based
formulation. Their exact algorithm solves an iegrogramming formulation based on
a branch and price approach. The columns are ggekeeither a priori or dynamically.
They also develop Lagrangian relaxation-based &&urimethod and present
computational results using the data provided byagor U.S. railroad. (Data consists of

around 1200 blocks and 350 trains.)
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The trip planning problem also appears indireatlythe problem structures of a
few papers. These efforts determine the routing faequency of trains (but not the
actual departure times of the trains), and thekoloctrain assignments together. The
blocking policy may be either determined within thedel or given as an input. Thomet
(1971) develops a cancellation procedure that gidreplaces direct shipments with a
series of intermediate train connections in ordeminimize operation and delay costs.
Crainic et al. (1984), and Crainic and RousseaB@L%ropose a nonlinear, mixed
integer, multi-commodity flow model that deals withe interaction between blocking,
block to train assignments and train and traffigtireg decisions. The model specifies
the feasible routes on which train services mayupeand defines a set of feasible trip
plans for each origin-destination pair. Hagham®ig2, 1989) develops a formulation and
heuristic decomposition approach for combined trauting, block-to-train assignment
and empty car distribution problems. Keaton (198&elops a heuristic method based
on Lagrangian relaxation for the combined problentar blocking, train routing, and
block-to-train assignment. He obtains subprobl¢nas can be represented as shortest
path and knapsack problems. Keaton (1992) addilirconsiders constraints for
blocking and maximum transit time for each origiastination pair. Martinelli and Teng
(1996) propose a neural network approach to sdlgdrain routing and the shipment to
train assignment problems. The problem is fornedads a nonlinear integer program
that minimizes the total time spent by shipmentshie system. Marin and Salmeron
(1996) consider the train routing and the shipntefitain assignment problems and
develop three heuristic methods: the descent rdethinulated annealing, and tabu
search. In their computational tests, simulatedeahimg obtained the best solutions but

required more time than the other heuristics.
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In communication networks, data transfer over rdalfer networks. Related
problems about multi-layer network design in comioation networks can be found in
Pioro and Medhi (2004) and Orlowski (2009). Aftdwe design of communication
network, data packages are routed on this netvadidfing network policies.

The shipment routing problem is often formulatecaasulticommodity network
flow problem with additional side constraints. flct, the shipment routing problem
without capacity and dispatching constraints is pdymsolvable via shortest path
algorithms.  However the shipment routing problenffecs from the standard
multicommodity flow problem when we consider thepaeaties such that each
capacitated resource may be usable by multiple andseach arc may be consists of
multiple resources in the shipment routing problem.

The multicommodity network flow problem is one bétclassical problems in the
literature since the publication of Ford and Fudker (1958). Many of the approaches
were developed in the 1960s and 1970s. Assad J1&7& Kennington (1978) are
excellent survey papers that describe several itlges and standard properties of
multicommodity flow problems. Additionally, Ahuj&t al. (1993) present several
solution procedures. Decomposition techniques Hmaen used extensively in solving
large multicommodity flow problems. Barnhart et 1995) and Jones et al. (1993)
develop column generation models for linear muitiaoodity flow problems. Barnhart
et al. (2000) propose a branch-and-price-and-gdrdéhm for integer origin-destination
multicommodity flow problems. Crainic et al. (200develop the Lagrangian relaxation
technique, and their experiments show that the lleumdethods appear superior to
subgradient approaches. Castro (2000) considersntkrior point algorithm to solve
linear multicommodity flow problems. There areaalmulticommodity flow problems

with convex costs, and Ouorou et al. (2000) givexaellent survey of this area.
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The shipment routing problem is a large scale mmbthat is hard to solve. To
the best of our knowledge, there is no study dartge literature for the shipment routing
problem with capacity and dispatching policies. thWut dispatching policy constraints,
the efforts in the railway literature either solsmall problem instances (Kwon et al,
1998) or deal with simplified versions of this platn (Jha et al., 2008). In this chapter,

we develop approaches to solve real-size problarageasonable time.

5.3 PROBLEM DEFINITION

In this section, we will formulate the shipment tiog problem as a
multicommodity network flow problem over a time-spanetwork. Traditionally, there
are two formulations developed for multicommodistwork flow problems: Arc-based
and path-based. The arc-based formulation is adatd method for formulating a
multicommodity network flow problem. The path-bddermulation is commonly used
with column generation techniques because its cnsset is smaller than the constraint
set of arc-based formulation, but its variableisédr bigger.

Several side constraints in multi-layer networkskentéhe arc-based formulation
impractical in solving shipment routing problem§.o be able to construct relations
between shipments, we need enormous number of raonst in the arc-based
formulation. Conversely, the number of variableshie path-based formulation can be in
the billions. Therefore, we formulate the shipmemiting problem by using a hybrid
approach. We expand the arc definition and consiiy those stations where the
dispatching constraints take place. This apprdauidles the practical constraints with

an affordable number of variables.
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Let W be the set of all shipments that are customerrsrd@d should be
transported from theiorigin to destination Each shipmenwW has the following
attributes:

Ow Origin station of shipmem; w 0 W

dw Destination station of shipmewt w [0 W

rtw Release time (available time to use) of shipment 0 W
Viy Volume of shipmentv; w O W

A shipment travels from its origin to destinatiosing appropriate blocks. L&
be the set of all blocks, and IBMw) represent the set of all blocks that can carry
shipmentw. Each blockb[1 B has the following characteristics:
ob,  Origin station of bloclk; b 1 B
db, Destination station of blod b [1 B

A block is carried by a sequence of carriers duiisigpath. The route of a carrier
between two consecutive stations is calledesourcethat subject to capacity. The
volume capacity of each resource is considered r@as@urce capacity. L& represent
the set of all resources, with each resource irtlese.

Each possible sequence of carriers for a block fitsnorigin to destination is
called alink, a term barrowed from communication network. Edictkk can be
represented by the block’s origin, the block’s tegton, the departure time of a carrier
that carries the block from its origin, the arrisiahe of a carrier that carries the block to
its destination, and the resources passed on tlc&’blroute.

Let P be the set of all links. Each link[OP can be related to shipments and
resources. We define the following sets to repressationships between shipments and
resources:

PWw) Set of links that can be used by shipmentv 0 W
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WR(p) Set of shipments that can use Inlp O P
PR(r) Set of links that use resource [1R
Figure 5.1 shows the representation of shipmenksckb, links and their

relationships discussed so far.

Shipment A Shipment B Shipment C Shipments

Shipment-Block
Block 200 Sequence

y

Block 100

Carrier 111
Date: 4/17/11

Links

Carrier 222 Carrier 333
Date: 4/13/11 Date: 4/19/11

Figure5.1. Shipments, Blocks and Links

The shipment routing problem uses all of the infation given above as input
and generates a solution that assigns shipmentek® by considering following side
constraints:

» Capacity constraints: Resource capacity cannot be violated.

» Digpatching policy constraints: Among two shipments, a shipment that arrived
at the station earlier cannot go after one thavexdrlater if they are attached to
same block for their next trip.

The objective function minimizes total weightednsd times of shipments from

their origin to destination. However the formutettiwe give here can also handle other
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types of objective criteria such as total waitinghds at the stations and total
earliness/tardiness (if there are due dates f@nsénts).

The time-space network of the shipment routing |enobis defined a& = (N, A)
whereN denotes the node set aAdlenotes the arc set. A node §, t) in the network
represents a valid statigmat a timet that a link can arrive or depart from that station
shipmentw. Two types of arcs are introduced for the arcAsétink arcs andconnection
arcs A link is designed for each possible carriensagpe from the origin of the block to
the destination of the block andiak arc is generated for each shipment that can attach
to corresponding link. Hence, the link arc maysishof multiple resources.

On the other handonnection arczonnects one link arc to next link arc so they
represent waiting time at each station for eacprsknt, except for the destination station
of the shipment. All the nodes for a station angexl in chronological order by their time
attributes, and each node at a station is conndotékde next node in this order. We
assume that the planning horizon is given and wegdhe link arcs within that horizon.
Moreover, the latest node at a station is conneictéle dummy node at the destination
to guarantee feasibility. Otherwise infeasibilityay occur either because of capacity
constraints or planning horizon is not long enoughcomplete routings of some
shipments. Figure 5.2 illustrates the time-spaeéwvork for the shipment routing

problem for a shipment.



time

spac
Origin Cu Cow
P
11 Py, D,
Intermediate Ca . Ca2 s Cos C24;
statior
P21 P2 D,
Destinatiol

Figure5.2. Time-space network representation for each shipmen

In Figure 5.2,P;; and P1, are outgoing link arcs from the origin station and
incoming link arcs to the intermediate station goren shipment. SimilarlyP,; andP,;
are outgoing link arcs from the intermediate statemd incoming link arcs to the
destination. D; andD, are dummy link arcs from the origin and the intedrate station
to the destination, respectively. These arcs mitnee shipment from one station to
another.Cy; and Cy, are connection arcs at the origin, a@gl, C,,, Cy3 and Cy4 are
connection arcs at the intermediate station. Tlese represent the waiting time of the
shipments if there is a flow on them.

In this time-space network, shipments flow on “firdeccs and connection arcs,
going from their origin to their destination. THrmulation is a mixture of pure arc-
based and pure path-based formulations. The balteformulations can be described as
follows:

» Pure arc based formulatiorin this time-space network, arcs represent indiaid
resources and waiting times. Although this forrtialacan potentially reduce the

number of arcs in the network, it requires too maystraints to represent
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shipment-block sequence structure of the netwdlksides, two shipments can

share same resource by using different blocks, smeed to embed the block

information to the formulation anyway to represeéispatching policy constraints.

* Pure path based formulationn this time-space network, paths are generated fo

all shipments from their origin to destination. #dugh all of the network

structure and practical constraints could be hahatering the generation of

feasible paths, the number of possible paths cam ke billions (around 2.1

billions in one of our instance we tested) for aderate size transportation

company.

The hybrid formulation holds the number of varigbte a manageable size and

handles the network structure and practical comésr@asily. We use the following sets

and indices in the IP formulation.

Sets and Indices:

W

P

R

S
PWw)
POWwW)

PDWw)

PIW(W)

WH(p)

Set of all shipments, indexed iy

Set of all links, including dummy links, indexey jp

Set of all resources, indexed by

Set of all valid stations, indexed by

Set of links that can be used by shipmentl w O W

Set of links that can be used by shipmemwhere the starting location is
the origin ofw; Ow OW

Set of links that can be used by shipmenwvhere the ending location is
the destination ofv; 0w O W

Set of links that can be used by shipmemdther than the links within the
set ofPOWw) andPDWw); Ow O W

Set of shipments that can use |mkJ p O P
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PR()

SWw)

SIWwW)

TSWs, W)

tnex{w, s, )

tprew, s, 9

Porig(w, s, )

Pdestw, s, )

Vi

Uy

fust

Set of links that use resounge] r O R

Set of stations that originate linksRWw); O w O W

Set of stations (intermediate stations) thatinate links inPIW(w); [0 w
0w

Set of departure and arrival times of linksREw) that originate and
terminate at statiog [Jw W, s SIWw)

Earliest element of SWs, w) later than time; ; Ow O W, s SIWw), t
OTSWs, w)

Latest element of SWs, w) earlier than timeé; 0w O W, s SIWw), t [J
TSWs, W)

Set of links INPWw) that originate at statiomand timet; O w [0 W, sl
SIWw), t 0 TSWs, w)

Set of links inP(w) that terminate at statiohand timet; 0 w 00 W, s
SIWW), t O TSWs, w)

Volume of shipmentv; 0w O W

Total volume allowed on resourceld r O R

Cost of using linkp for shipmentw; Ow O W, p 0 PWw). Note: In our
test data, this cost represents weighted transiésj (time to go from
origin to destination of linlp) times (volume of shipment).

Cost of being idle for shipmemt at stations from timet to timetnex{(w,
s, ); OwOW, sOSIWw), t 0TSWs, w. Note: We include the cost of
being idle at origin or destination (if any) intieet corresponding link to

reduce number of variables.

In this structure, we assume that all the shipmehtauld be routed from their

origin to their destination without violating captgcor dispatching policy constraints.
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The optimization problem outlined above can be fdated as a multicommodity

network flow with side constraints.

Decision Variables:

Xwp = 1if shipment uses linkp, 0 otherwiseJ w O W, p OO PW(w)

Ywst = 1 if shipmenw idles at statiors from timet to timetnex{w, s, 9, O otherwise;
OwOW, sOSIWw), t OTSWs, w)

Modd Formulation:

Minimize Z chpxwp + z z Z f oYt (1)

WOW [IPW (W) WOW §ISIW(wW) ETSW( s
subject to:
Flow conservation constraints for origin stationfsshipments

D Xyp =1 for allw OW (2)
pOPOW/(w)

Flow conservation constraints for intermediate stas of shipments

Z Xwp +Yw,s,t = Z pr +Yw,s,tprev(w,s,t)
pOPorig (w,s,t) pOPdest(w,s,t)
for allw O W, s SIW(w), t O TSWs, w) 3)
Flow conservation constraints for destination stas of shipments
D Xy =1 for allw O W (4)
pOPDW (w)

Resource capacity constraints
DV Xy S U, forallr OR (5)

VEWP(p) fIPR(T)

Dispatching policy constraints

First-in-first-out among shipments that use same block (see nexrsect (6)
Integrality

Xup = 00rl for allw O W, p O PWMw) (7
Y, = 0orl for allw OW, s SIWw), t O TSWS, w)
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The objective function (1) minimizes the total co$tlinks and connection arcs.
The objective function can represent several tgpeost structures such as:

» Total weighted transit times of shipments from tlogigin to destination if the arc
costs are equal to time spend on corresponding arcs

» Total waiting times at the stations if only thenoection arcs have (time based)
costs

» Total earliness/tardiness if there are due datestipments and only the link arcs
that go to destination of shipment have costs basatle dates.

Constraint (2) and (4) assign shipments to thest And last blocks, respectively.
Constraint (3) represents flow conservation comdggafor intermediate stations.
Constraint (5) indicates the capacity restricticasgd constraint (6) ensures dispatching
policy, which will be described in detail in thextesection. Finally, constraint (7) is for
integrality requirements.

In addition to these constraints, there are alsgsiphl constraints, called
dispatching constraints, needed to ensure theifirfitst out rule for shipments at the
stations. In the next section, we propose alter@atormulations for dispatching

constraints.

54 DISPATCHING PoLICcY CONSTRAINTS

In a transportation network, shipments walit in lioetheir next block connection.
When the carrier arrives, it picks up the shipmémtated at the front of the line and fills
to capacity. Therefore, there is a practical camst which states: Among two
shipments, a shipment that arrived at the statastiee cannot go after one that arrived

later if they are attached to same block for theixt trip.
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In Figure 5.3, there are two shipmemntandw' at the same statiaand they are
attached to same block to depart this station. shgimentw arrives to the station with
link p and departs from the station with ligk Then, the dispatching policy rule states
that shipmentv' cannot come to statiosearlier than the arrival time of shipmemtand
depart from statiors later than shipment. We develop three types of formulations to

describe these constraints.

Station s, Station s,
Shipment w Shipment w’
\J fime tpreva)
Xw,p
. Yw',dsp,tprev(w‘dsp,ap
link p

) 4
™\

I Y
N\

Xuwg

link q
I\ Xwq'

—» link variables
—» waiting variables

timea,

Figure5.3. Departures of two shipments using the same block

54.1 Type-A dispatching constraints

We define the following additional sets and indices

ap Arrival time of linkp; Op O P
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dp Departure time of linlp; O p OP

ds, Destination station of link; O p O P
Ow Origin of shipmentv; 0w O W
rtw Release time of shipmewt 0w OW

PWges{w,p)  Links usable by shipmemt at the destination of ling, Op O P, 0w OW
Plater(Q) Links that depart later than limkand belong to same block as ligk[d g
P
The following constraints ensure the dispatchingpia:

both shipments are at their origin

Xag T Xpg =1 for allw OW, q 0 POWW), rty >rty (A1)
w'0 WHQ), 9' O Piater(d), ' 0 POWW)

shipment w is at the middle station, and w' ig|brigin

Xup T Xg ¥ X g £2 for allw O W, g O PIW(w), qOPWyes{W,p) (A2)
wll WR(Q), g0 Piatedq), 'l POWW), ap > rty

shipment w' is at the middle station, and w igsabrigin

Xug TV, +Xyg 2 forallwOW, g POWwW), (A3)

w0, ,tprev(w',0,,,rt,,)

wWHQ), q' U Plater(Q)

both shipments are at their middle station
Xup t Xug T Yuas, prevwids, ap) T Xwg S 3 forallwOW,qOPIWw), (A4)
qOPWaes(w,p), Wl W), ' [ Piater(0)

In each of these constraint sets, we are compam@ shipments at each
constraint. Constraint (Al) is for the case wheoéh shipments are at the same origin.
Constraint (A2) and (A3) are for the cases wherly @mme shipment is at its origin.
Constraint (A4) shows the case where both shipmamsat their intermediate stations.

Suppose shipment is attached to linkp andg. Shipmentw' # w cannot arrive at station
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s before than linkp and depart on a ling' that departs later than lirkwithout violating
the dispatching rule. Similarly, if shipmewnt is waiting at statiors whenever shipment
w arrives, then shipmentv should not depart before shipmemt Therefore, the

variables at the left hand side of the constrazatmot be one at the same time.

5.4.2 TypeB dispatching constraints

Type-B dispatching constraints introduce new vaeslo represent arrival and
departure time of a particular shipment at eactiostas a single variable. We define the

following additional sets and indices:

0% Origin station of linkp; O p O P

ds, Destination station of link; O p O P

Plater(Q) Links that depart later than litkand belong to same block as ligk[] g
OP

TASWs, W Set of arrival times of links iIRWw) that terminate at statig) Ow O W,
s 0 SWw). This also includes release time of shipmends thiginate at
stations.

PSW(w, s,t) Links that are eligible for shipmemwt and depart from statioslater than
timet; Ow OW, s SW(w), t 0 TASWs, w)

We define the following variables:

Zyg = 1 if shipmentw arrivesto stationos, at timet and departs from statiarg, by

using linkg, 0 otherwise{Jw O W, t 0 TASW0s,, W), g J PSWMw, 0s;, )

The following constraints ensure the dispatchingpia:

A A for allw O W, t 0 TASW0s;, W), g 0 PSWMw, 0g, t) (B1)
WO WRQ), q' U Plaer(q) , t' <t, t' 0 TASWoOSg, W),
Xug < Zug forallwOW, t = rty, g 0 PSWMw, 0s, 1), (B2)
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g POWwW)
Xup ¥ Xog —1=Z,,, forallw O W, t 0 TASWos, w), q L PSWw, os, 1), (B3)
q 0 PIWW), t = a,

The explanation of constraint (B1l) is similar tce texplanations for Type-A
constraints. The additional Z variables have thnelexes to represent both arrival and
departure times of a particular shipment. Constsa{B2) and (B3) link theX andZ
variables at the origin and intermediate stations.

Clearly, Type-B dispatching constraints use moreabées than the Type-A
constraints. In addition, Type-B has more constsathan Type-A, because previous
constraints check whether shipmevitwaits or not at the time shipmewt arrives by
using one connection variable. However, Type-Bst@mnts look at all the time points
smaller than the arrival time of shipment
Proposition 5.1:Neither Type-A nor Type-B dispatching constraiatthe stronger than
the other.

Proof: In Figure 5.4, there are two shipmentsgndw’) that are use the same block to
depart statios. Assume thaXwp= Xwg=1. ThenZyq= 1 fort = a.
If Xwp' = Xwp'= Xwg = Xwg = 0.5, then all the Z variables relatedwocould be

zero. Therefore, this solution satisfies Type-B nstaaints. However
Y,

Woos, iprev(w,os,.a,) — L due to flow constraints. Hence;

Xy + X + Yoy + Xyq =1+1+1+05=35>3

,08 Jtprev( v\l,osq ,ap)

violates Type-A constraints.

Similarly, if Xwp'=1 andXuq = Xwg= 0.5; thenY,, = 05 due to the

,08 Jtprev( v\l,osq ,ap)

flow constraints. Hence,, + X, + Yoo, 1o (wioay) T Xwg =111+ 05+05=3

satisfies Type-A constraints. On the other haAgy = 0.5 fort = ay,. Hence,
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Zyg t Zypg =1+ 05=15>1 violates Type-B constraints. Therefore, neithgperA

wiq

nor Type-B is the stronger of the two.

Station s, Station s,
Shipment w Shipment w’

time Tias{ap)

time a,
Yw’,oq,Tlas(w"oq,ap

Xuq Xwg
link g
I\ )(W,qy
link g’

—» link variables
—» waiting variables

Figure5.4. Type-A and Type-B constraints where neither ofrthe stronger

5.4.3 Type-C dispatching constraints

Type-C dispatching constraints require a differapproach. In this case, we
introduce the variables that determine time windomevery link. For each link, there is
a time window whose lower and upper bounds areutzkd based on the arrival time of
the earliest and latest shipments assigned tolitilat If the arrival time of the latest
shipment assigned to a previous link has a timatgrahan that of the arrival time of the
earliest shipment assigned to a next link of thmesdlock, then we can conclude that

there is a dispatching violation between theseslink
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There are two kinds of shipments that violate tispatching rule: (i) shipments
assigned to a linlp with arrival times that are later than the shiptmeith the earliest
arrival time in the next link and (ii) shipmentstlwiarrival times that are earlier than the
shipment with the latest arrival time in the prexgdinkp.

Consider the following two links% andP;) of the same block:

P1 |
P> I
| o | time
ty L t3 ts

Figure5.5. Time window violation of links

In Figure 5.5, two links of same block have timeneows based on the arrival
time of shipments assigned to these links. Thet fink carries shipments that arrive
between t1 and t3, and the second link carriesnsérps that arrive between t2 and t4.

Here we have to reschedule shipments that arritveela® t2 and t3. Figure 5.6 shows

non-overlapping time windows for links.
Assigned tdP; Assigned tdP, Assigned tdD

time

Qe NDEN\E

statior

Time window Time window Time windo
of Py of P, of D
P; P, D

Figure 5.6. Non-overlapping time windows for links
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To determine time windows for links, we define tbBowing additional sets and indices:

SIWw) Set of stations for shipmewtother than origin and destinatiddw O W

PIOSw,9 Set of links that can be used by shipmemind starting location of links is
stations;, 0w O W, s [ SIWw)

PIDSw,9 Set of links that can be used by shipmentvhere its ending location is
stations;, 0w O W, s [ SIWw)

nex{p) Next link in time after linlp that belongs to same blodK;p (I P

We define the following additional variables:

LBy Lower bound in time for accepting shipmentsliiok p, 0 p O P

UB, Upper bound in time for accepting shipmentdifdcp, O p O P

The following constraints ensure the dispatchintgia:

-M(@-X,,) +LB, <rt, <M (@1-X,,)+UB, for allw O W, p O POW(w) (C1)
~M@L-X,)+LB < Y aX,<M@-X,)+UB, forallwOW,sOSIW(W) (C2)
POPIDS(w$)
g PIOS(w,9
LB, <UB, forallpOP (C3)
LB expy =UB, forallp O P (C4)

where M represents a big number and makes a constraise [doa shipment is not

assigned to a link in that constrairi¥l (ill be properly calculated in the next section.)
Constraint (C1) is for the origin, and (C2) is fotermediate stations of the

shipment. Whenever a shipment is assigned toka fivese constraints ensure that the

lower bound of the link is not bigger than the \atitime of the shipment and the upper

bound of the link is not smaller than the arrivale of the shipment.

Note: Instead of arrival time of shipments, any kindbodering criteria could be used to

determine dispatching policy.



Although the Type-C constraint set requires fewenstraints than others, it
contains bigM parameters that weaken the constraints. Howevewe choose
appropriate bigl parameters (calculated in the next section), westi@ngthen them.
Proposition 5.2:Neither Type-A nor Type-B dispatching constraiiststronger than
Type-C dispatching constraints and vice versa.

Proof: In Figure 5.4, there are two shipments gndw’) that use the same block to
depart statios. Assume thaXup= Xwg= 1. ThenZuq = 1 fort = a,.
o If Xwp = Xwpr= Xug = Xwg = 0.5, this solution violates Type-A, and satisfies

Type B. Assume th&,q~= 0.5 instead oKyq, Where linkq"’ departs later than

the other links. The solution still violates Type-and satisfies Type B. We can

chooseM = a,, which is the latest arrival time at that statidrherefore,
LB, <a, <UB,
a,+a

- 058, +LB, <~ = < 053, +UB,

a. +a,.
UB, =LB, = 05a, < ———*
This solution violates or satisfies Type-C constsadepending on the selection
of ap, ay, anday-.
* If Xyp=1 andXuq = Xwq'= 0.5, this solution violates Type-B, and satisflgpe

A. We can choosk = a,, then;
LB, <a, <UB,

- 05a, +LB, <a, <053, +UB,
UB, =LB, = 05a,<a,
This solution violates or satisfies Type-C constsadepending on the selection
of ap, anday.
This result shows that none of the dispatching traimgs are weaker or stronger than any

of the others.
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5.4.4 Strengthening dispatching constraints

In a capacitated shipment routing problem, we Hboxe-in-flow-out constraints,
and there is one flow for each shipment. This mdahas a shipment can arrive at or
depart from a station using only one link. Usingstknowledge, we can find the
following constraints, which are a stronger versabthe Type-A dispatching constraints:

both shipments are at their origin
Xugt D Xyg <1 for allw O W, g O POWW), rty > rty (A1)

qORer (7)
v WR(q), g’ D POWW’)

shipment w is at the middle station, and w’ isteirigin
Xup * Xugt D Xpyg S2 for allwOW, qOPIW(W), g O PWyes{w,p) (A2)

A'0Per (4)
W] Wp(q)l q’D POV\(W’)) ap> rItW'

shipment w’ is at the middle station, and w istgbirigin

Xogt D Xypt D Xyqs2 for allw O W, g O POWw), (A3)
p'D Pearlier (I’t w) q‘D Plater (Q)
w'l] WR(q)
both shipments are at their middle station
Xup tF Xyg ' D Xyt D Xyes3  forallwOw, gOPIWW), (A4)
p‘D F’earlier (rtw ) q‘DPIater (Cl)

qUPWees{w,p), W'l WH()
Similarly, the following constraints are a strongarsion of the Type-B dispatching

constraints:
Zug® D, D Zwg <1 for allw O W, t 0 TASW(0s;, W), (B1)
)

(t‘<t q‘DPIater (q)
tOTASW(os, ,W')

q U PSWw, os, t), wll WH(q),
Xug < Zug for alw O W, t = rtw, g J PSWMw, 0s, 1),(B2)

g 0 POWw)
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D Xyp+ Xyq—1<Z

pOPAT (W,t)

for allw O W, gOPWes{w,p), t = ap (B3)

wiq

ITASWos;, W), gOIPSWw, 0s, t), gOPIW(w),
wherePAT(w, t) is the set of links related to shipmentaind arrival times are equal to
Observe that the proof of Proposition 5.1 doeshodd for the strengthened Type-A and
Type-B constraints.

Finally, we can choose appropriate values for ligparameters for Type-C
constraints. These parameters could be selectedagely for each constraint. We make
the following observations:

* The lower bound of the link should not be greatemtthe departure time of an
earlier link for the same block, because an eadlilircannot get a shipment after
it departs from the station.

* The upper bound of the link could be as low asdhdiest release time of the
shipments or the earliest possible arrival timethd shipments to that station
among the shipments that can also use this lintquse that shipment can ride on
a later link.

To set the bigvl values, we define the following additional setd ardices:

rtw Release time of shipmewtat its origin;Cdw O W

prevp) Previous link in time after the link that belongs to the same blodk;
pLIP

first(p) First link in time that arrives among the linkstioe same block;] pOP

last(p, t) Last link in time before timethat arrives among the links of same block;
OpOP

tearlies(p) Earliest arrival time or release time amohng shipmentsv 00 WR(p); [
pUP

132



ap Arrival time of linkp
dp Departure time of link

We obtain the following results for the constraiatshe origin (C1):

LB, <rt, +M =d ., > M =d ., ~ I, for alw O W, p O POW(w)

UB,zrt, —M =t y=>M=rt, —t for alw O W, p 0O POW(w)

earliest p earliest( p)

We obtain the following results for the constraiatshe origin (C2):

LB, < D a X, tM =d, o =M =d e ~ nan for allw O W, s O SIW(w)
pOPIDS(w,s)

UB, 2 D a,Xy, =M ooy = M = Bagpa) ~teariestg O &l O'W, s 0 SIW(W)
pOPIDS(w,s)

Observe that the proof of Proposition 5.2 doeshatd for the strengthened Type-
A, Type-B and Type-C constraints.

55 PATH-BASED ALTERNATIVE FORMULATION

In this formulation, all feasible paths for all ghments, calledshipment-paths
from origin to destination are created a priori é&@ch shipment. In the construction of
shipment-path, one appropriate link is chosen facheblock in the shipment-block
sequence. The problem is then to optimally assgoh shipment to exactly one
shipment-path. Observe that the shipment-patmidiefn here is different than the link
definition for all shipments that have more thae bdiock in its block sequence.

Sets and Indices:

W Set of all shipments

P Set of all paths (from origodestination)

R Set of all resources

PWw) Set of paths that can be used bynséigw; (0w O W

r'WWw) Set of shipments that share at leastldock with shipmenw; O w 0 W
WHR(p) Set of shipments that can use pathp [0 P
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PR(r) Set of paths that use resourcer R
Pl(p, w, w) Set of paths that are inconsistent (violate ddpag) with pathp, if
shipmentw uses patlp and shipmentv’ uses the inconsistent path;

pOP, w 0 WH(p), w’ OWWw)

Ur Total volume allowed on resourceldr [0 R
Viy Volume in shipmeny;, Ow O W
Cup Cost of using patp for shipmentw; Ow O W, p 0 PWw)

Decision Variables:

Xup = 1 if shipmentv uses shipment path) O otherwise{J wCOW, p O PW(w)
Model Formulation:
Minimize > > ¢, X, (1)
WIW @dIPW(w)
subject to:
Assignment constraints for shipments
D Xy =1 for allw OW (2)
FIPW (w)

Resource capacity constraints
> D VX S, forallr OR (3)

VEWP(p) BIPR 1)
Dispatching constraints
Xop ¥ Xyp €1 forallwOW, p 0 PWMw) (4)
w O{i OWi#w}, p’ OPI(p, w, w)
Integrality
Xap = 0o0rl for allw OW, p O PWMw) (5)
The objective function (1) minimizes the total costused paths. Constraint (2)

assigns shipments to their paths. Constraint €B&rchines the capacity restrictions and
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constraint (4) ensures dispatching policy rulesnalfy, constraint (5) is for integrality
requirements.

For a stronger version of the dispatching consisaiwe can have a set that
includes shipment-path pairs in which each of tarspis inconsistent with another one.

Then, we can write a clique constraint for them:
D X <1 for all w O W, pO PWWw), Cliquew, p) (4)

wp
(w, p)CClique(w, p)

Although all of the network structure and practicabnstraints could be
considered during the generation of feasible pdktiessnumber of possible paths could be
in the billions (2.1 billion for one of our teststance) for a moderate size transportation

company.
5.6 COMPLEXITY RESULTS

The capacitated network flow problem is a well-kmoWP-Hard problem. That
is why we will explore the uncapacitated versiortt@d problem with dispatching policy
constraints, called USR-DP. We first analyze thieditions that make the solution of the
problem integral. Then, we explore the complexitgperties of the general shipment

routing problem with dispatching constraints.

5.6.1 Integrality conditions

The path-based formulation can be seen as a nmiltmomlity network flow
problem with side constraints. In network flow plehs, there are many special cases
that have an integrality property. We examine phiablem to find the same property.
Proposition 5.3:A shipment routing problem without resource cafyaand dispatching
policy constraints [USR] has an integer optimalwgan even if there is no integrality

requirement.
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Proof: If there is no resource capacity or dispatchingcgatonstraints, the problem can
be decomposed for each shipment. In each of teesproblems, the corresponding
shipment should be carried from its origin to desiion with minimum cost. The
subproblem is a shortest path problem and alwagsahanteger optimal solution. (See
Ahuja et al. (1993) for details about the shortpath problem, such as Dijksta’s
algorithm for acyclic graphs where the solutiondimO(m), m is number of arcs in the
graph.) Therefore, the planning problem withousotece capacity and dispatching
policy constraints has an integer optimal solution.

Remark: In our later discussions, we will refer to the aml solution of USR problem
as theshortest path solution

In the shipment routing problem, one of the moshiemn objective functions is
total weighted transit time. After all, the comgamants to send their shipments as soon
as possible to their destination. This objectizan fact same as minimum weighted
arrival time at the destination of shipments beeatie release times of shipments are
fixed and givera priori.

The next observation concerns the dispatching panstraints. The following
proposition states that if shared blocks have ssinogtest paths for all shipments, then
the shortest path solution preserves after thetiaddof dispatching policy constraints.
Examples of this type of objective function areatateighted transit time cost and total
weighted tardiness cost (if there are due datesHmpments).

Proposition 5.4:Consider the sub-path for a shipment-pair thatrekablock(s) where

the sub-path begins from the starting station anetof the earliest available link of the
first shared block, and ends at the ending sta#ind time of the latest arrived link of the
last shared block. If all shipment pairs have samertest sub-paths for their commonly

used blocks, then the uncapacitated shipment rgytioblem with dispatching policy
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constraints [USR-DP] has an optimal solution whigh equal to the shortest path
solution.

Proof: From Proposition 5.3, the USR problem has an imtegémal solution even if
there is no integrality requirement. Assume thate is an integer optimal solution to the
USR problem, and this solution violates dispatchpolticy constraints.

In the optimal solutionw, w [0 W use links, respectivelyg andp’ of the same
block. These shipments use the same departing,béoaw the earlier shipment that
comes to that station (say) uses the later link for departure. Since shipmentis the
earlier shipment, it can also use the earlier ik In addition, shipmentv’ can be
assigned to the later linkused by shipment.

Since both paths are feasible for both shipmengéscan assign both of them to
the same link with minimum cost. With this assigmméollowing situations may occur:

» If the new assignment causes an earlier arrivéh@oending station of the link,
then the remaining downward assignments are gtilible. If the ending station
is the destination of one of the shipments andniws assignment allows it to
come to that station earlier, then this solutionmtcadicts the optimality of the
original solution.

» If the new assignment causes a later arrival teetitdng station of the link, then
the remaining downward assignments may not belflsaslf it is infeasible, then
re-assign the links on the downwards. If it causesost increment, then the
shortest sub-path assumption in the propositiors dee hold. If the ending
station is the destination of one of the shipmamid the new assignment allows
it to come to that station later, then again thert&st sub-path assumption in the

proposition does not hold.



Hence, the USR-DP problem has an integer optimatiea which is equal to the
shortest path solution. The following result shaesme examples of cost functions that
satisfy Proposition 5.4. In some of the cost fiond, the shipments have due dates,
desired time to reach the destination, and if arakent is late, there could be a tardiness
cost which is difference between arrival time te tiestination and the due date.
Corollary 5.5: Results from Proposition 5.4 hold for the followingctions:

» Total weighted transit time cost,

» Total weighted tardiness cost,

* Maximum weighted tardiness cost,

» Total number of tardy shipments.
Unfortunately, this result is not true for the gextdype of objective functions such as
total earliness cost.
Proposition 5.6:Assume that the following assumptions hold:

*  Cwp= Owhpand fuse= 0 for all w /W,

» All the shipments have the same destination, layt ¢tan have multiple origins,

* If two shipments share a block, then they sharblatiks after that block.
Then the multiple origin-single destination uncapsted shipment routing problem with
dispatching policy constraints has an optimal siolutwhich is equal to the shortest path
solution.
Proof: Since the shipments are using the same blockseatathof the block sequence
and go to the same destination, the shortest remgapath after the first common station
for one shipment is also the shortest remaining faatthe other one.

This proposition shows that the single destinasipacial case could be solvable

polynomially even for time independent costs.
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Corollary 5.7: Results in Proposition 5.6 hold for multiple deations if the shipments
that have common blocks also have common destisatio
Proof: The problem is decomposable for each destinatidme remaining shortest path
claim is still valid in this case.
Proposition 5.8:Assume that the following assumptions hold:

* Cypand fistare not restricted for all w/W,

» All the shipments have the same origin but can Inawiéiple destinations,

* Only the first block is a common block.
Then the single origin- multiple destination unceipated shipment routing problem with
dispatching constraints is solvable in polynomiald by using shortest path algorithms.
Proof: If a shipment does not share any block, we can #edulectly via its shortest
path. Assume that there ameshipments that share their first block amdlinks that
belong to that block. Let release timesah€as,...<a, for thesen shipments andh links,
and letc; be the total cost from origin to destination if@henti is assigned to link
We will construct the following graph to solve tipsoblem.

At each nodeifj), the outgoing arc represents the flow on llinlsuch that
(@i,))=>(i+k,j+1) assign shipments1,..j+k to link j. The cost of this link isﬁqj . Since
(=]
each link assignment begins with the earliest sbkipnthat is not assigned to previous
links, the resulting solution satisfies the dispaig constraints.
The graph is acyclic, so Dijkstra’s algorithm cowddlve it. Under the given

release times of shipments, the given links, ardcdbst from origin to destination for
selected links, the problem is solvabledmm).

Corollary 5.9: The result for proposition 5.8 is true for mulgpbrigins if only the first

blocks are common.



Proof: The problem is decomposable for each origin. Feheab-problem, proposition

5.8 holds.

Figure5.7. lllustration for Proposition 5.8 and Corollar®5s.

5.6.2 NP-Hard problems

Under the several cost functions (such as earlioestsor time independent cost)
given in the shipment-path formulation (see Secto), the uncapacitated shipment
routing problem with dispatching policy constrairftdSR-DP] is in the category of
difficult problems, so called NP-Hard problems. féat, the well-known 3-satisfiability
problem can be written as an instance of the USRy@Blem. (See Karp (1972) for the
3-satisfiability problem.)
3-Satisfiability Problem: Satisfiability is the problem of determining if thariables of
a given Boolean formula can be assigned in suclhyaas to make the formula evaluate

to true. For the 3-Satisfiability problem, we areem a Boolean expressi@such that
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B= il-:—;(ail[laiz Oas).

B is the conjuction oh clauses, each of which is the disjunction of &réits. A literala;
represents either a Boolean variable or its negafias satisfiableif the variables can be
assigned Boolean values so tBat true. In other words, at least one variableukhbe
true in each clause. The 3-Satisfiability problestedmines iB is satisfiable.

Proposition 5.10:The 3-Satisfiability problem [3-SAT] is polynoniyateducible to the
uncapacitated shipment routing problem with dispatg policy constraints [USR-DP].
Proof: We will use the shipment-path (see Section aBhtilation to simplify the proof

and convert the general 3-SAT to a USR-DP instarkgsume that we have a Boolean

expressionB = E(qlﬂaz Oa,). The construction of the USR-DP instance for the

indices and sets is as follows:
» There aren shipments for each clause.
» Each shipmentv has 3 paths corresponding to 3 variables in ésse
* The set of pair of paths that are inconsistentaostall Boolean variables and
their negations.
* The costs of the paths are zero.
By construction, if there is a solution to the UBR- instance, that solution cannot
contain a Boolean variable and its negation atstmae time. Therefore, the solution of
the USR-DP instance satisfies the Boolean expnessio
Since each set, index and parameter in USR-DP hasosat O(n) items, the
reduction will take polynomial time.
Corollary 5.11: The 3-Satisfiability problem [3-SAT] is polynontyateducible to the
uncapacitated shipment routing problem for a singlegin and destination with

dispatching constraints [USRS-DP].

141



Proof: Using the proof of Proposition 5.10, additionathgfine the paths for each
variable and its negation in the Boolean expressiogt all of the available paths for all
of the shipments but only the variables in a shipsecorresponding clause have zero
costs. The other paths have cost 1 for that smpme

Then, the question becomes whether there is amapisolution with a zero
objective function or not. If there is, the sotutiof the USR-DP instance satisfies the
Boolean expression. Since each set, index and g#eanm USR-DP has at moSX(n)
items, the reduction will take polynomial time.

Corollary 5.12: The 3-Satisfiability problem [3-SAT] is polynontyateducible to the
uncapacitated shipment routing problem for a singlegin and destination with
dispatching constraints, and the problem containly dwvo blocks [USRS2-DP].

Proof: In the proof of Corollary 5.11, only the Booleaariable and its negation are
corresponding inconsistent paths. This inconsistetmuld be obtained by switching
station blocks. Therefore, two blocks are enowgtomplete the proof of Corollary 5.11.
Corollary 5.13: The uncapacitated shipment routing problem forirggle origin and
destination with dispatching constraints where fieblem contains only two blocks is
NP-hard in the strong sense.

Proof: From corollary 5.12, proof is clear.

The above complexity results are obtained usinigipnsent-path formulation and
general cost function. The cost function of shiptaeath formulation may require a non-
linear cost function to represent in the link basaunulation. However, we intend to
focus on linear cost structures in the link basmantilation. As such, we obtained the
following result.

Proposition 5.14:Assume that the following assumptions hold:

° pr = gwhp
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» fustequals the weighted waiting time at that stationail w /W,
Then, the 3-Satisfiability problem [3-SAT] is palymally reducible to the uncapacitated
shipment routing problem with dispatching consttsify SRL-DP].

Proof: We will use the link formulation and convert thengral 3-SAT to a USRL-DP

instance. Assume that we have a Boolean expresBier{j_;(ailDa,.2 Oa,), and the

expression ham variables. The construction of the USRL-DP inseafur the indices
and sets is as follows:
» There aren shipments for each clause.
» Each shipmentv has 3 blocks to assign, and the intermediate bitke same
for all shipments. Shipments have different origansl destinations, but they have
the same intermediate stations. Each shipmenlkeased at time 0.

o First block construction: Each shipment has a dbffé first block, and
each of these blocks has 3 links which correspandatiables in that
shipment’s clause. These links have the same depantnes (time 0), but
their arrival times are different. In totalm2arrival times are defined for
each variable and its negation. loebe a small number and be a big
number. Then the arrival times arec, {2c}, { M+c, M+2c}, {2M+c,
2M+2c}, ... , {mM+c, mM+2c}. There are two numbers in each
parenthesis; one for each variable and one foreggtion.

o The second block is a common block and hadigks for each variable
and its negation. The departure times of theses larke: {Z, 3c}, { M+2c,
M+3c}, {2M+2c, 2M+3c},..., {mM+2c, mM+3c}. The corresponding

arrival times of these links arkt, 2M, 3M, ..., 2mM.
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o The third block is different for each shipment, aath of these blocks
has 3 links. As seen in the above) Enks for the second block have
groups, and each group has only two links that hdeser arrival and
departure times than others. The departure tirhdsedinks for the third
block are the same as the arrival time of the liftkshe second block if
the second link is in the group where its assigratble (or its negation)
is in the clause of the corresponding shipment.

o0 There are no costs for links, but there are waitiogts at the stations.

The question is whether there is a feasible soluttbose objective value is less tHdfR
To arrive at a solution, the shipment should setewt of the variables in its clause
always based on the links of the third block. Maesp both of the links in the group
cannot be selected at the same time, becauseishee®nflict in the switch station of the
first and second block. Therefore, the solutiontttd USR-DP instance satisfies the
Boolean expression.

Since each set, index and parameter in the USRd3PabhmosO(n) items, the

reduction will take polynomial time.

Variables & a, as

1* Links {0, c} {0, M+2c} {0, 2M+c}
2" Links All of them All of them All of them
39 Links {2M, 2M } {3M, 3M} {6 M, 6M}

Table5.1. Arrival and departure times for the links.

Below there is a graphical illustration of this stmction for one shipment. Let

the variables be named as ay, ..., an and their negation be named &s3a,,..,a,. The
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link arrival and departure times are assigned enslime order. Assume that the shipment

has a clause that includes the following threealdes: a,,a,,a8,. Then, we have the

arrival and departure times for each link giveTable 5.1.

Here is the corresponding graph for that shipment:

time

Origin

Intermediate

Destination

\ 4

A 4

A 4

A 4

Figure5.8. Arrival and departure times for the links in Posftion 5.14.
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Unfortunately, the USR-DP problem does not have asgudo-polynomial
algorithm to find an optimal solution unless P=N¥e see that solving the USR-DP is
not easier than solving the 3-Satisfiability prableBut what is the difficulty level of
solving the USR-DP problem? Next, we will transfotine USR-DP to a shortest path
problem with inconsistent pairs.

Shortest Path with Inconsistent Pairs. Let| be a given a collection of pairs of vertices,
referred to asconsistent pairsunder a grapls = (V, A with two fixed vertices,t V.

A directed §-)-path is called thé-pathif it contains at most one vertex out of each pair
in 1. The problem requires finding a shortest path antbel-paths.

Proposition 5.15: The uncapacitated shipment routing problem witlspdiching
constraints [USR-DP] is polynomially reducible ttet shortest path problem with
inconsistent pairs.

Proof: We will use the shipment-path formulation to siifyplhe proof. We will convert
the general USR-DP instance to a shortest patHearolith inconsistent pairs.

Assume that there areshipments, and each shipmenthasp, paths. We will
construct arf+2) layered graph where each layer representstopment and two layers

are for origin and destination nodes, as in thie¥ahg graph:
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Figure5.8. Shortest path problem where each layer represestifoment.

In this graph, nodei,|) represents shipmeimtand its assigned path All the
incoming arcs of nodd,() have a cost of paththat belongs to shipment (Incoming
arcs of the destination path have no costs.) Is flroblem, inconsistent pairs are
inconsistent paths of the USR-DP problem. By aoietibn, USR-DP is polynomially
reducible to the shortest path problem with incstesit pairs. The following proposition
shows a special case of this construction.

Proposition 5.16:If each shipment appears with only one shipmenthm set of
inconsistent pairs, the USR-DP problem is solvablpolynomial time via shortest path
algorithms.

Proof: For each shipment in the set of inconsistentspairder the shipments such that
inconsistent pairs of shipments are ordered cotisetyy Construct a graph like the one

described in the proof of proposition 5.15. Sineeheshipment appears with only one
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shipment and we have ordered them properly, eaatnsgistent pair has an arc in the
shortest path graph. By definition, these arcsictbe used in the solution, so we delete
them. The resulting problem is nothing more thamed known shortest path problem,
and it can be solvable in polynomial time (via Bipla’s algorithm, for instance).

We can generalize this characteristic if inconsispairs have a nested structure.

Definition: Assume that!, i2, i3

, i* are the layer levels of the shipments in the gréiph
there are noif, i%) and (%, i*) pairs in the set of inconsistent pairs, such ithat®<i< i*,
then the inconsistent set hasested structure

Proposition 5.17:If the set of inconsistent pairs has a nestedctirne, the USR-DP
problem is solvable in polynomial time.

Proof: The solution algorithm has two steps:

* In the first step, find a layer that has no incetesit pairs with other layers.
Delete this layer and connect one previous laydrare later layer to each other
by summing the related incoming and outgoing af¢ckedeleted layer.

* In the second step, find a layer that has onlynsient pairs with one previous
or/and one later layer. Delete the corresponding that are inconsistent.

The algorithm repeats itself until there is no layeft except origin and
destination. The algorithm is valid because inhestep, we can find a layer that has no
inconsistency or inconsistency with only neighkayers. Otherwise, the nested structure

will be violated.

5.7 UPPER AND L OWER BOUNDS

The capacitated shipment routing problem with didpiag policy constraints is
hard to solve. Hence, we develop some heurisbigget good feasible solutions which

provide upper bounds for the optimal solution. Wekl at the problem from 3 different
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perspectives and offer 3 heuristics. We also jpi®wa lower bound that strengthens the
uncapacitated shipment routing solution.
5.7.1 Moving-in-Time

In this heuristic, the system hasstate which evolves with time, and a state
change, which moves the system from one state #than State changes are called
events The process of a system is characterized asomalogical sequence of events.
In our problem, the shipment release, departureaarvhl links are calledventsand the
time attributes of these events are calednt times The heuristic algorithm keeps track
of the current time, calledlock and the clock moves to the next event start tisi¢he
algorithm proceeds.

Our approach constructs a feasible solution bygassy shipments to available
links in chronological order. As time goes by, #igorithm assigns the earliest arrived
shipment to the earliest available link and chanesarrival time information of the
shipment to the arrival time of the assigned linkha next station. The algorithm repeats
this process until all shipments reach their dastm (by using real or dummy links).

The following is the generic scheme for the MovingFime algorithm.

Algorithm for the Moving-in-Time
0 SeteventList= (shipmentcurrentTime currentStatiof for all shipments where
(currentTime= shipment release time) armlifrentStation= shipment Origin)
While eventListis not emptydo

Setlockto the earliesturrentTimein theeventList

For all shipments whoseurrentTimeequal toclockdo

A W N P

Delete corresponding event fromehentList
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5 Find the earliest available linkfor the correspondingshipment at

currentStationand assign that link to the shipment

6 If the destination of shipment is not equal to th&tidation of the block
paththen
7 Add (hipment currentTime currentStatiof event to the
eventList

currentTime= arrival time of link at the destination
currentStation= destination station of assigned link

8 End If

(o]

End For
10 End While

The algorithm performance could be improved by @ppl tie-breaking rules for
the third step where the shipments have equafentTime attributes. Instead of
selecting randomly, choosing a shipment whose esrkavailable link has minimum
capacity could be a better idea.

Although the algorithm works on a first come fisgtrved basis, it can find an
optimal solution for the uncapacitated shipmenttirmu problem with dispatching
constraints.

Proposition 5.18:Assume that the following assumptions hold:

* Objective function is one of the objective funaigiven in Corollary 5.5,

» Earliest available link at step 5 in the Moving-Time algorithm is taken as the
link for which the arrival time at the destinatias the earliest among the
available times.

Then, the Moving-in-Time algorithm provides theimopt solution for the uncapacitated

shipment routing problem with dispatching policystraints [USR-DP].
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Proof: Since there are no capacity constraints, all thieslithat depart after the arrival
time of the shipment are available. Choosing thk for which the arrival time is the
earliest provides the fastest route to the destindbr each shipment. This selection will
not violate the dispatching policy constraints, daese the earlier shipment can always
select the later departing link even if that limkiaes the earliest (similar arguments given
in the proof of proposition 5.4). The algorithmmmnizes the total transit time if the
shipment has the unique shipment-block sequencthescesult is true for the objective

functions given in corollary 5.5.

5.7.2 Aggregation

The number of constraints and variables in theolimh@ilation are increasing with
the number of shipments in the problem. We cameagge similar shipments to obtain a
smaller problem, but the optimal solution for tlygegated shipments may not be equal
to the optimal solution for the actual shipmenttowever the aggregation could provide
a feasible solution close to the optimal solution.
Aggregated ShipmentAn aggregated shipment is a set of similar shipsestose
» Origin and destination are the same,
» Set of blocks that can carry these shipments isainee,
» First available link at the origin that can carrppese shipments is the same.
The volume of the aggregated shipment is the sumllathipments in that aggregated
shipment. By construction, a feasible path for shgpment in the aggregated shipment
is also a feasible path for the rest of the shigmenthat aggregated shipment.
The following is the generic scheme for the aggiedjahipment generation.
Algorithm for the aggregated shipment generation
0 SetW = all shipments and s&W = empty set
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While Wis not emptydo
Getv [ W and delete that shipmentfrom setW.
Generate an aggregated shipmemtwhose origin, destination, volume and
set of all available blocks are the samevaadd it to seAW
For all shipmentsv' 0 Wdo
If origin, destination, volume, set of all availablecks and the first
available link at the origin o&’ is same aw then
Add shipmentv’ to aggregated shipmeanv
Add volume of shipmemt’ to volume of aggregated shipment
Delete shipment’ from setW
End If
End For
End While

The heuristic simply solves the original problentimally by using aggregated

shipments and assigns those paths given by théi@olio the shipments inside of the

corresponding aggregated shipment. Clearly, thgreggtion heuristic forces the

shipments to use the same path if they are in Hmesaggregated shipment. In

uncapacitated case, this approach satisfies thealft .

Proposition 5.19: Assume that the objective function is one ofdhjective functions

given in Corollary 5.5. The following statements aue:

a) For the capacitated shipment routing problem witspdtching policy constraints

[CSR-DP], the problem with aggregated shipmentsvigles a feasible (not

necessarily optimal) solution to the problem witrmal shipments
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b) For the uncapacitated shipment routing problem widspatching policy
constraints [USR-DP], the optimal solution with aggated shipments is also
optimal with normal shipments

Proof: (a) Since a feasible path for one shipment in the agdesl shipment is also a
feasible path for the rest of the shipments in #Hgdregated shipment, the solution for
aggregated shipments is a feasible solution t@tbklem for normal shipments.

(b) Without capacity constraints, the shipments e shortest path. Therefore, the

optimal solution with aggregated shipments is alsttmal with normal shipments.

5.7.3 LPredaxation correction

We can use the LP relaxation to obtain good feasiblutions. The LP relaxation
solution usually contains shipments with integeswi#. This heuristic fixes link
assignments of those shipments. Then, the rengggrivblem is resolved as an IP. If the
capacity violations are not too high, we hope thatremaining problem is small enough
to solve quickly.

The following is the generic scheme for the LP xataon correction algorithm.

Algorithm for the L P relaxation correction

0 Solve the problem as an LP

1 Fix the shipment-link assignments if all thesignments for that shipment are
integer

2 Resolve the reduced problem as an IP

3 If the problem is infeasible or takes toocmuime to solve, terminate the

algorithm without solution
Remark: If the problem contains only shipments for whahlink assignments are

integer in the LP solution, then the LP relaxatisroptimal for that problem.
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5.7.4 Strengthening the uncapacitated solution

We also develop some lower bound calculation rtdedecrease the optimality
gap of feasible solutions obtained in the previsestion. The uncapacitated shipment
routing problem is a relaxation of the original Iplem, and the optimal solution to this
problem could be obtained easily via shortest @ddgjorithms (or even the Moving-in-
Time algorithm described in 5.7.1) under certaist@@nditions.

The optimal solution to the uncapacitated shipnmmenting problem may violate
the capacity constraints. Therefore, some of thipnsents that use a resource the
capacity of which is exceeded should be shippetowit using that resource. Lef be
the volume of shipmemw, [0 w 0 W, andu, be the total volume allowed on resourcél
r O R Also, we define se¥?WVRr, x*) to represent shipments that use resourf a
given solutionx*. Let cd,, show the cost difference between the shortest path
shipmentw that does not use resourceand the current shortest path. Then, the
following result holds.

Proposition 5.21: Let x* represent the optimal solution of the ymameitated shipment
routing problem with dispatching policy constraintdSR-DP]. Let X be one if
shipment w will not use the resource r in questidinthe optimal value of this problem

increased by the optimal value of the followinghpenn;

{rflmaéxmln doed, X, | DV X, 2 va—ur;lesblnaryfoerDW}

VEWR(T, X) VEWR(T, X) VEWR(T, X*)
then the resulting value is still a lower bound fitve capacitated shipment routing
problem with dispatching policy constraints [CSR]DP
Proof: For each inner minimization problem, the problermd§ the minimum possible
cost changes to eliminate any capacity violatiothefselected resource. Since these re-

assignments are necessary anyway, the incremenheofobjective function is the
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minimum amount for the problem with capacity coaisits. The outer maximization
selects the maximum increment among all resources.

There is a close connection between shadow pricadcity constraints arnd,,
parameters. Shadow price is change in the obge¢tinction if we change the capacity
of corresponding resource with a small amount.th&é shipment volumes are small
enough, this shadow price could be seen as minimdyp parameter of shipments
attached to that resource at the earliest or Ititast

For the problem with a single resource violatiord e single path for all
shipments (plus dummy paths), the lower bound gimdProposition 5.21 is binding (i.e.
gives the optimal value of the capacitated problemJhe following proposition
strengthens the bound given in Proposition 5.2h éweher.

Proposition 5.22: Let x* represent the optimal solution of the ymameitated shipment
routing problem with dispatching policy constraintdSR-DP]. Let X be one if
shipment w will not use the resource r in questiGuolve the following problem for each

r JR:

{min doed, Xl DV X, 2 va—ur;XWisbinaryforDWDW}

WIWR(r, x*¥) WIWR(r, X*) WIWR(r, X*)
Generate set CD(w) for all w7 W and put cg, to corresponding set CD(w) for all

positive X, values. If the optimal value of the uncapacitathgbment routing problem is
increased by the amount Emw{cdw :cd, DCD(W)}, then the resulting value is still a

lower bound for the capacitated shipment routinglpem.

Proof: This proposition is a generalization of the pregiame. It adds all shipment path
cost differences if the associated shipments alecteel for only one problem. If a
shipment is selected in more than one problem, thercalculation in this proposition

chooses the maximum one among the elements Gilxgt).
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5.8 COMPUTATIONAL RESULTS

We evaluate the performance of our approaches ahda&ta instances. The
heuristics were programmed in Java and the IP moset CPLEX 11.2 via concert
technology. The tests are taken on the 11 DelléPedge 2950 workstation with 3.73
GHz Xeon and 24 GB of shared memory under UbuntuxLsystem.

In our experiments, we tested on three instancdscaled these instances 1, 2
and 3. Our objective criterion is total weightednsit times of shipments and our
planning horizon is one week. Each instance has 49000 shipments, over 10000 links
and over 8000 resources. In these instances, sfapment may be carried by over 5
blocks. Each block may have over 20 links and diaghmay use over 10 resources that
are subject to capacity.

Using the algorithm in Section 5.7.2, we generate aggregated shipments by
combining at mosk shipments in one aggregated shipment, wkese?, 5 and~ (where
F refers to full aggregation — aggregates all shipisé it can). We test these instances
by using one of the three FIFO (dispatching) camnsts (Type-A, Type-B and Type-C)
developed in Section 5.4. In the problem namesuoftables, the first number refers to
instance, second one refers to aggregation lekettamn letter indicates the type of FIFO
constraints. In Table 5.2, the details about Hnfdation is given for instance 1.

To reduce the problem size, we perform the reathabest (whether the origin
node can reach a particular node or not on the-$ipaee network) and eliminate all the
unreachable nodes and their potential arcs.

For each problem, number of constraints, variabled nonzero coefficients are
given. Then, the IP, LP and heuristic (Moving-ima€ algorithm which performs better)
solution times are presented. Finally, the gap=(*heuristic value — best lower
bound)/heuristic value) is calculated on the lastimn.
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IP Root | Heurigtic
Number of Fime | “time: | Stime | Hearistc
vs. best
lower
Problem | constraints | variables | nonzeros| (sec) (sec) (sec) bound*
1-F-A 7.1M 216K 48.3M 6753 330 2 6.78%
1-F-B 7.2M 442K 45.2M 82269 269 2 6.84%
1-F-C 350K 227K 1.5M 1925 21 2 5.60%
1-5-A 12.5M 291K 81.9M 11681 583 3 3.53%
1-5-B 12.7M 580K 745M | >86.4K 649 3 3.60%
1-5-C 482K 308K 2.0M 3366 37 3 3.14%
1-2-A 33.5M 475K 213.6M | >86.4K 3859 6 3.32%
1-2-B N/A N/A N/A N/A N/A 6 N/A
1-2-C 793K 500K 3.3M 3104 91 6 2.54%
1-1-A N/A N/A N/A N/A N/A 9 N/A
1-1-B N/A N/A N/A N/A N/A 9 N/A
1-1-C 1.3M 846K 5.5M 10450 252 9 2.50%

Table5.2. CPLEX and heuristic performances for instance 1

We use Moving-in-Time heuristic solution describedection 5.7.1 as an initial
solution. Unfortunately, the lower bounds providadSection 5.8 are worse than LP
solution, so we skip them.

In Table 5.2, the problems generated with Type-BCGFtonstraints are solvable
much faster than the problems with other FIFO typEserefore, we use only those ones
to obtain the results for instances 2 and 3 in @4&t3.

The heuristic finds the better solutions as theeggfion level decreases in all of
the instances. Other than the non-aggregated eanshlwe are able to solve all the
problems within an hour. The non-aggregate problere solvable in between 80

minutes and 5 hours.



IP Root | Heurigtic
Number of Fime | “time: | Stime | Hearistc

vs. best

lower

Problem | constraints | variables | nonzeros| (sec) (sec) (sec) bound*
2-F-C 319K 212K 1.4M 803 25 2 15.06%
2-5-C 489K 321K 2.1M 995 42 3 4.30%
2-2-C 850K 552K 3.6M 1812 129 5 3.91%
2-1-C 1.5M 956K 6.2M 5995 318 9 3.66%
3-F-C 354K 235K 1.6M 622 20 2 11.67%
3-5-C 518K 339K 2.2M 797 39 3 3.88%
3-2-C 876K 567K 3.7M 2026 141 6 3.52%
3-1-C 1.5M 971K 6.4M 18925 290 9 3.51%

In Table 5.4, the scaled objective values are shdarndifferent level of

Table5.3. CPLEX and heuristic performances for instance@ &

aggregations with respect to the best lower bodmbo-aggregated problem.

* = 100*(value) / (best lower boundaafrresponding non-aggregated problem)

Best lower Best upper | Heuristic
Problem bound* bound* value*
1-F-C 108.18 108.81 116.14
1-5-C 100.05 100.40 103.01
1-2-C 100.04 100.47 102.65
1-1-C 100.00 100.57 102.57
2-F-C 121.42 122.31 142.94
2-5-C 100.02 100.53 104.51
2-2-C 99.99 100.45 104.06
2-1-C 100.00 100.61 103.80
3-F-C 119.39 119.82 135.16
3-5-C 99.98 100.29 104.02
3-2-C 99.98 100.36 103.62
3-1-C 100.00 100.61 103.65

Table5.4. Scaled objective value changes with differentragation levels
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The objective values are close to each other iragggegation level of 1, 2 and 5.
However, the full aggregation level problems haigmificantly higher objective values
because some of the aggregated shipments may momigie number of shipments
(around 300 in instance 2-F-C). Those aggregatgohment could have volume more
than the capacity of some resources and the tgpn(fone station to another) for those

shipments may be impossible.



Chapter 6: Conclusionsand Future Work

This dissertation investigates optimization mod&ds transport and service
scheduling. The service scheduling problems desdrhere have applications in many
decision making activities, such as multi-prodwttdizing, telecommunication services
and maintenance planning. The transshipment prolbbeused on in this work is the
backbone of many transportation companies.

In the first part, we worked on the problem of d@&ag which operations a service
unit must perform at each customer location giviea sequence in which the unit
periodically visits these locations. We formulatbée@ problem as an integer program,
and proved that it is NP-hard. We discussed tleeigpcase in which each site is visited
only once per service cycle and showed that itRsHvrd (in the ordinary sense), and we
developed an alternative algorithm based on thees$tgpath structure.

In Chapter 4, we proposed a heuristic proceduregHergeneral problem for a
real-life maintenance application. Computatioregults for several problem instances
show that the proposed heuristic identifies nedm results very quickly, whereas a
general purpose integer-programming solver (CPLEXjot able to generate an optimal
solution even after many hours of computationaktinTo handle real-life problems, we
focused on techniques such as problem reducti@amching variables, and subdividing
the problem to smaller problems to get better smiut These strategies improve solution
times substantially.

Several opportunities for further research are estggl by this study:

* The problem we considered here is an operational leroblem, but there are
also strategic and tactical level decisions. Ad #trategic level, we may have
multiple resources and want to partition the cugh@rto those resources. The

16C



partition should consider the capacity of the resepamount of work needed to
be done and geographic dispersion of the customers.

* At the tactical level decisions, the focus is onding the optimal route. The
master (full cycle) route should cover all the oansers within a reasonable
visitation frequencies. The route should balare® tisitation requirements of
each customer. Furthermore, the relative due diffisxences between operations
for each customer should also be considered.

* This study assumes the full availability of visiteit locations or customers.
However the customer may not be available at thigation time. The integration
of this service with the other activities operatedthose locations is another
potential avenue for research.

» Stability analysis of the optimal solution is alsoportant to consider. The
additional steps to a sequence should not charg¢attk decisions seriously in
the earlier steps. If the solution is stable, th@pic decisions can be obstructed
by solving a longer sequence but applying the tiesksions on the earlier steps.

* One can also investigate the sensitivity and tleisthess of the given solution.
In real-life, the calculation of the due date paetans and the duration times of
tasks may include uncertainty and is therefore hardstimate. Understanding
the characteristic of the robust solution undereatagnty would be an interesting
research direction. This extension can furtheus$oon the price of the robust
solution and the value of information.

In the shipment routing problem with dispatchindipes, we formulated the
problem as a multi-commodity network flow problenthwadditional side constraints and
showed the complexity results. We proposed altermanodels and algorithms for lower

and upper bound calculations. Computational resshiow that this problem could be
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solvable in a reasonable time if we use Type-C ttaims. These results also indicate
that the optimal objective values of limited agg®on solutions are close to the optimal
objective value of non-aggregated solution. Furtitege, Moving-in-Time heuristic
provides good initial solutions for the instances tested on the limited or non-
aggregated level.

We also recommend the following potential extensifan future research:

 The methods for lower bound calculation can behkmtdeveloped. Without
dispatching policy constraints, we can obtain adowound for the shipment
routing problem via Lagrangian relaxation approdai relaxing capacity
constraints. The remaining problem can be sepaiaplshipments and solvable
via shortest path algorithms. Although there afeva capacity constraints, the
number of dispatching policy constraints is hudfewe only relaxed the capacity
constraints, the remaining subproblem is NP-Hard ddbitrary Lagrangian
multipliers (see Proposition 5.14). The research umcapacitated shipment
routing problem with dispatching policy constraintsild be an interesting field.

* Moving-in-Time and aggregation approaches providedgfeasible solutions
within a reasonable time for tested instances. &l@w there are further
improvements one can consider. One of the probleansMoving-in-Time
heuristic is tie-breaking rules. Many shipments sleased on same time and
many arcs are come to their destinations at theesame. Therefore, the
selection of shipments for their next trips is hygaffected by tie-breaking rules.
Eventually, this selection determines the heuripicformance. One can also
consider the other heuristic possibilities such talsu search or LP based
heuristics. Especially LP based heuristics cowdubeful because LP solution

times in our problem instances are much smallen thHa solution times.
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Effectively correction of LP solution could find lzetter feasible solution and
improve the solution performance.

» The shipment routing problem can be used to analyeecorrectness and the
effectiveness of the underlying physical networkThis research could be
developed further to find a stable carrier scheduider demand fluctuations.
With the side constraints (capacity and dispatchingnind, the optimal solution
of shipment routing problem deviate from the shirpath solution. The optimal
solution for capacitated problem gives an idea #bbattlenecks in the
transportation system and provides a feedback &orier scheduling problem.
The integration of shipment routing and carrierezitiling problems will lead to
better trip plans for shipments and better capamsgge of resources.

* In real life, shipment demands are coming onetaha. Some of the shipments
are already in the network and assigned to thgas.tr However, there are some
shipments with uncertain availability and volume thé starting time of the
planning horizon. Another direction for researclowd be making stable
shipment routing decisions by using the informatimm hand. How should
planners behave for the shipments that are avaiktithe last minute of their first
link departure times? One of the common practisest using full capacities of
resources. Then, how much capacity should be usattat is the cost of not
using full capacity? How about the lateness dt Anrivals with respect to given
schedules? More stable schedule comes at a coswiirgive us a benchmark
for the routing plan developed in this study.

The importance of transport and service schedufpngblems makes them
attractive and fruitful research fields even though have come to the end of our

journey:cursum perficio
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Appendices

A. ALGORITHMSFOR POLYNOMIALLY SOLVABLE CASES

We dealt with the four polynomially solvable casesl gave their algorithms.
Let first examine the sets and parameters we uséat.s
Parameter reminder:
K Set of all operations for all customers

KI(i) Set of all operations for customer

Yk Earliest start time for the execution of openako
L Latest start time for the execution of operakon
J Set of all tasks for all customers

JK(k) Set of all tasks that contain operation
Ji(i)  Set of all alternative tasks that can beediom customer

g Duration for performing tasgk for allj 0 JI(i),i =1, 2 ...n
Al.  Algorithm 1

Logic of Algorithm 1: The algorithm begins from the first customer aokbfvs
the customer order of the sequence. If the sereiseurce comes to any customer before
than the earliest start time of the operatiprand operatiow is not available, then it
returns infeasible otherwise it selects the ondeftasks that has the maximum duration.

Let setA be the set of customers that traveling optiorvalable. The durations
are represented witd ) and d,) for the taskv(i) that has time window ana(i) that has
not time window of customer Also A represents the current time (the time that resourc
comes to that customer) asdlec(l,...,n) holds the solution vector.

1 begin procedure
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2 A=0

3 fori=1tondo

4 if A=y oridA then

5 seledt) = argmax By, A}
6 A=A+ max {ag), i}

7 else

8 selecti) = infeasible

9 exit procedure

10 end if

11 end for

12 end procedure
Proposition 2.5 (related part)Consider the task assignment problem under zesb co
function with n customers. Assume that each custorequires two operations, v(i) and
w(i), and only one of the operations, v(i), reseit with the earliest start time. If waiting
is not allowed and the tasks without time windostrietions, w(i), are not available for
some customers, Algorithm 1 solves the problem(m).O
Proof: The problem has only earliest start time requirdsieifhe algorithm begins from
the first customer and follows the customer ordethe sequence. It chooses task with
maximum duration (among available ones) for eadtarner. If the resource comes to
any customer before the earliest start time obptsration and task w is not available, the
problem is infeasible because we cannot come to shep later than that time.
Otherwise, selection will give the feasible (so dptéimal) solution.

The algorithm has “for” loop for customers. In leaieration, selection, assigning
and summation operations are doneG¢l). Therefore, the algorithm 1 solves this

problem inO(n).
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A2. Algorithm 2

Logic of Algorithm 2: In the initialization part, the algorithm findset minimum
possible cycle completion time for the given custorsequence (by selecting tasks with
minimum duration). The algorithm begins from thestf customer and follows the
customer order of the sequence. At customiéithe completion time is smaller than the
latest start time of the operatigfi), the resource performs a task with minimum dorati
for that customer. Otherwise, the algorithm cheblestime that the resource is available
for that customer. If the time is earlier than kst start time of the operatigfi), the
algorithm chooses the operatiofi); else the problem is infeasible. The algorithm
updates the candidate completion time and resclriteeacustomers. It stops either
infeasibility is found or there is no change in taadidate completion time.

Let T represents the candidate completion time for tivengsequence. The
durations are represented wify) and . for the tasky(i) that has time window anai(i)
that has not time window of custonierAlso A represents the current time (the time that

resource comes to that customer) aalkdc(l,...,n) holds the solution vector.

1 begininitialization

2 T=0 /IT represents candidate completion time
3 fori=1tondo

4 T=T + min {Ay), i)} /I minimum possible completion time

5 selecfi) = argmin {Aui), Ay} /l do the task with minimum duration

6 endfor

7 oldT=T

8

end initialization
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9

10 begin procedure
11 flag = false
time

12 whileflag = falsedo

13 A=0

14 fori =1tondo

15 if T< By then

16 A=A+ min {Ay), Oy}
17 else

18 if A<py) then

19 T=T+ Ay~ Gelectii)
20 select(i) = v(i)

21 A=A+ d

22 else

23 select(i) = infeasible
24 exit procedure

25 end if

26 end if

27 end for

28 if T=old Tthen

29 flag = true

30 endif

31 odT=T

32 endwhile

/I indicator whether candidate completi

/I changed or not

/I do the operation retatask for customar

Il infeasibility detected

/I no changes detected

/I exit while and procedure



33 end procedure

Proposition 2.6 (related part)Consider the task assignment problem under zesb co
function with n customers. Assume that each custorequires two operations, v(i) and
w(i), and only one of the operations, v(i), redtet with the latest start time. Algorithm 2
solves the problem under no-waiting assumption(inf)O

Proof: The problem has only latest start time constraint&e initialization finds the
minimum possible completion time without considering any time window constraints.
At line 19, the algorithm updates the candidate @etion timeT. Observe that iB,j) <
Ay, T remains same and & > Au), T increases. However will never decrease.
Therefore, the algorithm terminates in finite time.

At the beginning, we choose the small@sand at each iteration, we upddte
wheneverT is greater than3 andv(i) is not selected. That means the algorithm
increases thd value only if it has to increase it. Thereforehemever the algorithm
comes to step the current candidafecannot be lower. It concludes thatit By, the
problem should be infeasible detected at line @®herwiseselect(1 ... n) will give the
feasible solution.

The algorithm has for loop witm iterations. In each iteration, comparison,
selection, assigning and summation operations ane ah O(1). “While loop” occurs
whenevefT is changed. It changes wheneselec(i) is assigned to(i) at sted. Once it
is assigned, it would not change anymore for gteépherefore, the algorithm has at most
n iterations in “while” loop. It concludes that tladgorithm 2 solves this problem in

ond. o
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A3. Algorithm 3

Logic of Algorithm 3: The algorithm begins from the first customer &vitbws
the customer order of the sequence. If the sengseurce comes to a customer before
than the earliest start time of some operations, algorithm excludes the tasks that
contain those operations. If there are no tadksthen the algorithm returns infeasible
otherwise it selects the task (among available Jote$ has the maximum duration.

Let A represent the current time (the time that resouoeees to that customer)

andselec{l... n) holds the solution vector. Let detrepresent the available operations

whenever the service resource comes to customatidod(y, <A) andP" represents the

unavailable operationsyf > A). Also, letQ holds the tasks that contain only available

operations.
1 begin procedure
2 A=0

3 fori=1tondo

4 P={k|y, <AkOKI()}

5 P={k|y, >4 kOKI ()}

6  Q={j|j0IK(P),jOIK(P)}
7 if Q#0then

8 select(i) = argmaxd; | j 0Q}
9 A=A+maxd, | j0Q)

10 else

11 selecti) = infeasible

12 exit procedure

13 end if

14 end for



15 end procedure

Proposition 2.7 (related part)Consider the task assignment problem under zesb co
function with n customers. L&™ = mia>{| Kl (i)|} and j™ = mia><{| Ji (i)|}. If there
are only earliest start time restrictions for alperation k and waiting is not allowed,
Algorithm 3 solves the problem in O(Hi§™®.

Proof: The problem has only earliest start time constsairmhe algorithm chooses task
with maximum duration among available ones for eaastomer. Therefore, @ =[]

for some customar(there is no task available at timg clearly the problem is infeasible
because we cannot come to that step later sha@therwiseselect(1 ... n) will give the
feasible (so the optimal) solution.

The algorithm has “for” loop for customers. Thenstwuction of the se@ is
bottleneck at each iteration. We need to inclindetasks of all operations in $&aand to
exclude the tasks of each operation inFset Each operation may have™tasks and set
P may have k™ operations. Therefore, the algorithm 3 solves thisblem in

O(NK™™. o
A4. Algorithm 4

Logic of Algorithm 4: In the initialization part, the algorithm findsettminimum
possible completion time for the given customerusege (by selecting tasks with
minimum duration) and assigns this length as a idabel completion time. The
algorithm begins from the first customer and folfothie customer order of the sequence.
At each customer, it finds the required operatioi®peration is required if the latest
start time is earlier than the candidate completiove.) The algorithm checks the time
that the resource is available for that custoriéthe time is earlier than the latest start

time of all required operations, the algorithm cbe® minimum duration task that
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contains all the required operations; else thelprobs infeasible. The algorithm updates
the candidate completion time (by summing duratibselected tasks) and rescans all the
customers. It stops either infeasibility is fouodthere is no change in the candidate
completion time.
Let T represents the candidate completion time for thengsequence. Let

represent the current time (the time that resoocorees to that customer) aasdlec(l ...
n) holds the solution vector. Let 9efi) represents the required operatiog € T) for
customeli andP (i) shows the operations of currently selected tasktistomer.
1 begininitialization
2 T=0 II'T represents candidate completion
time
3 fori=1tondo
4 T=T+ min{dj | jO Jl(i)} /I minimum possible completion time
5 selecti) = argmin{g; | j 0 JI(i)} /I do the task with minimum duration

end for

odT=T

6
7
8 endinitialization
9

10 begin procedure
11 flag=false
12 whileflag = falsedo

13 A=0

14 fori = 1tondo

15 P@) ={k| B, <T.kOKI ()} I/required operations

16 P(i) ={k |k O KJ(selecti))} /loperations in the selected task
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17
18

19

if P(i)\P(i) = O then
A=A+7,

selecti)

else

/l'if (current time is less than the latest stamiet of all required operations) and

/I (there is a task that contains all required apens)

20

21

22
23
24
25
26
27
28
29
30
31
32
33
34
35

ifAsnmﬂ@JkDPa»mm{”jDJuujm[jmqm}¢m1hm

KOP (i)

job ::argmin{dj [ jOJI@),jO ﬂJK(k)}

KOP (i)
T=T+ Qask— Sselect(i)
select(i) = task
A=A+ Qask
else
select(i) = infeasible
exit procedure
end if
end if
end for
if T=old Tthen // no changes detected
flag = true /I exit while and procedure
end if

odT=T

end while

36 end procedure
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Proposition 2.8 (related part)Consider the task assignment problem under zesb co
function with n customers. L&™ = mia>{| Kl (i)|} and |™ = mia><{| Ji (i)|}. If there
are only latest start time restrictions for all op&on k, Algorithm 4 solves the problem
under no-waiting assumption in O(n|Kfg™.

Proof: The problem has only latest start time constraint$ie initialization finds the
minimum possible completion timE without considering any time window constraints.
At line 22, the algorithm updates the candidate getion timeT. We come to that step
whenever another operation is needed to be doherefore the new selected task should
have higher duration time than the previous onmeother wordsT will never decrease.
Therefore, the algorithm terminates in finite time.

At the beginning, we choose the small&sand at each iteration, we upddte
whenever another operation is needed to be dohat rieans the algorithm increases the
T value only if it has to increase it. Thereforehemever the algorithm comes to
customer i, the current candidatel cannot be lower. It concludes that if
A > min{[p’k |k O P(i)}the problem should be infeasible detected at lBe Otherwise,
selecfl ... n) will give the feasible solution.

The algorithm has “for” loop withn iterations. In each “for” loop iteration, the
construction of setﬂ JK(K)is bottleneck at lines 20 and 21. Each operatiay rave

KOP (i)
j™tasks and seP(i) may have k™ operations. Therefore “for” loop runs in
O(nK™jm®,

“While loop” occurs whenever is changed. It changes whenever an additional
operation is needed to be done. Once the operatian element of the sB(i), it will

always be an element of it (becadsdoes not decrease). Therefore, the algorithmahas
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most |K| “while” iterations. It concludes that the algbmt 4 solves this problem in

O(n[K[K™§™. o
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B. NP HARDNESSOF THE PTA PROBLEM IN APPLICATION

The Periodic Task Assignment [PTA] problem in apgiion described in Chapter
4 is in the category of difficult problems, so ealINP-Hard problems. In fact, the well-
known 3-partition problem can be written as ananse of the PTA problem.

The 3-partition problem is NP-Hard in the strongsse (See Karp, 1972 and
Garey and Johnson, 1979.) We will show that thPaBition problem can be
polynomially reducible to the PTA problem. Firgte will give the definition of the 3-
partition problem.

3-Partition: Given positive integers;a..,aq, b such that

b b
_<aj < —

and

Do there exist g pair-wise disjoint 3 element stbh$e U {1,.. 3¢} such that

Ya;=b  fori=1,...q?
05

Proposition 1: The 3-Partition problem is polynomially reducible a periodic task
assignment problem [PTA].
Proof: We represent the 3-Partition problem as an instafithe PTA problem. Our aim
is getting an optimal solution for the resulted Ppdblem with zero optimal value. We
take the following sequence as a PTA instance:
* A sequence consisting 8fdifferent customers: Custom&yB, andC. First part
of the sequence hag subcycles that consists oB3and 1A customers B

customers are the first ones). Second part os#ueience has algpsubcycles
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with oneC and oneA customers@ customers are the first ones). The sequence

consists ofn = 6q steps.

B| B| B| A| ------m-mmmmmmoeeees B| B| B| Al C| A| - C| A
\Firsf cycle — A — —
I g cycles
q cycles

CustomerA and C require only one operation and custonierrequires §
operations.
Each operation is included in only one task, ancheask includes only one

operation.

The construction of the PTA instance:

The duration time for performing tagkor custome is zero and for customé&
isb.

The duration time for performing tagkor customeBisa;, j=1, 2, ..., 3.

ax = gbandr is very big number for all operatidof customeB.

ax = Ik = b for the operation of custom@rand for the operation of custonm@r

Ck: IS one for all operatiok and timet in case of due date violation.

We have the following observations in this PTA peob instance:

CustomelC appears) times and each timeunits spend on these steps. Then, the
completion time should be at le@gt

CustomerB appears @ times and it requiresq3operations withay = gb. Since
completion time is at leasjb, each operation should be done exactly once to not
to get any penalty.

3t
We know thatz a; =gb and we have sub-cycles regarding custontr If the

j=1

summation of the task durations of 3-custof@en one sub-cycle is less than
17¢



there will be another cycle where the summatiodwhtions of 3-customds in
that cycle is greater thdm However, we havex = 1 = b, as the due date for the
operation of customei. To not to pay any penalty, the summation of tesk
durations of 3-customd3 in each cycle should be exachly
» Since the operation of custonfeshould be done in evebyunits of time there is
no waiting to not to pay any penalty, even if thaiting is allowed.
Therefore, the solution with zero cost function diothat the summation of the durations
of 3-customeB in each cycle should be exachyand each duration tineg, j = 1, ... 3q
appears once. Since each set, indices and paranretee PTA has at mo€Xq) items,
the reduction will take polynomial timex
Corollary 2: The periodic task assignment problem is NP-Hardhe strong sense.
Furthermore, there is ne-approximate heuristic that runs in polynomial tirfee the
PTA problem unless P = NP for aay 0.
Proof: Since the optimal objective value is zero for BiEA problem in the proof of
Proposition 1, any-approximate heuristic should provide a solutiomtthas zero
objective value. This means that the heuristigethe problem in polynomial time Bo
=NP.o
In the next result, the well-known knapsack problsmwritten as an instance of
PTA problem where no customer is visited twice.eg¥Xarp (1972) for the knapsack
problem.)
Knapsack Problem: LetN be the number of items antbe the index of each items 1,
2 ...N. Each item has the following attributes:
Ci Cost of itemi if it is selected, for ali=1, 2 ...N

a; size of itemi foralli=1,2 ...N



Let b represent the limit that we need to satisfy, iagpacity of knapsack. Each

itemi has the following decision variable:

X

=1 if itemi is selected and O otherwise, foriad 1, 2, ...,N

TheKnapsackproblem can be formulated as an integer program:

N
[KP] Maximize "¢ X,

i=1

s.t.: EN:a,. X, <b

i=1

X, =0or1, foralli=1,2...N

Proposition 3:The knapsack problem [KP] is polynomially redueibd the PTA problem

where no customer is visited twice [TA].

Proof: We will convert the general knapsack problem task assignment instance. The

construction of the TA instance for the indices aats is as follows:

A route consisting o + 1 customers. In other words= N+ 1

Each customer requires only two operations s&yandw; fori = 1 ... N and
customem + 1 requires only one operatiog.1

Two tasks are available for each customerl1 ... N Each task contains one
operation. For simplicity, say task includes operation; and w; includes

operationw; fori = 1 ... N CustomeN + 1 has one task calleg.,

The construction of the TA instance for the pararsets as follows:

Duration time for performing task is g and zero for tasky, fori =1, 2 ...N.
Also duration time for performing task. is b+1

ax = b andr is very big number for all operatidof customei =1, 2 ...N+1

Cc,, = C for operatiork = v at timeb andc,, = Ofor the other times for customer
i =1, 2 ...N. There will be no cost related to operatigrfor customei =1, 2 ...

N.
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N
* C,=1+ Zc, for operatiork = w.1 attimeb andc, = Ofor the other times
i=1

In this instance, the cost function value of ogeraty.; at timeb is very high so this task
should be done before than its due dateSince we know that the duration of the task
Vn+1 1S bt1, all the operation; for customeri = 1, 2 ...N have due and pay penaltyif
they are not performed. We have the following obatons in this TA problem
instance:

» The flow constraints (2a) and (2b) try to reach tastomer before or at tineby
selecting either tas¥ or wi. (Also, the service provider can wait in internage
steps but the result is also true even if the wgits not allowed.)

» Duration of tasks; are equal t@ for all steps and duration of tasksare zero,
fori=1... N Therefore the feasible solution selects the efutsistasks/ and the
duration of selected’s cannot exceed peridd

» If the solution does not select to do operatipn(equivalently selects to do
operationw; ) we will payc; at the end for this operation.

N
» If the solution does not choose any of the opematictotal cost would bez C .
i=1

We can define a new decision variable to captugsdlobservations better:
Y =1 if taskv; selected and O if tas; is selected, forall=1 ...N
Therefore we can rewrite the task assignment pnolale:

Obj; = Minimize ZN:ci —ZN: GY,

i=1 i=1
N

st > aY<b
i=1

Y, =0or1, foralli=1,2...N.



In the objective function, the first term is comgtand does not affect the solution
so we can exclude it during the solution procedsoArecall thatmin—Z =-maxZ .
Therefore, we can equivalently write the above idation as:
Obj, = MaximizeZN: GY,

i=1
S.t. EN: aY, <b

i=1

Y =0orl, foralli=1,2...N.

There is a one-to-one relation between objectivélase two formulations which is:

N
Obj; = - (Obp - c,).

i=1
Therefore, optimal solution of one of them is asooptimal solution to the other
one. Finally, observe that the second formulatsoequal to the knapsack problem. Since
each set, indices and parameters in TA has at @@ét items, the reduction will take

polynomial time.o
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