

Copyright

by

Kursad Derinkuyu

2011

The Dissertation Committee for Kursad Derinkuyu certifies that this is the

approved version of the following dissertation:

Optimization Models for Transport and Service Scheduling

Committee:

Anant Balakrishnan, Supervisor

Erhan Kutanoglu, Supervisor

Jonathan F. Bard

David P. Morton

S. Travis Waller

Optimization Models for Transport and Service Scheduling

by

Kursad Derinkuyu, B.Sc., M.Sc.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

The University of Texas at Austin

May 2011

To my family…

 v

Acknowledgements

I would like to express my sincere gratitude to my advisors, Dr. Anant

Balakrishnan and Dr. Erhan Kutanoglu, whose encouragement, guidance, and

unconditional support to overcome many personal and professional challenges made this

dissertation possible. I am also grateful to the members of my dissertation committee Dr.

Jonathan Bard, Dr. David Morton and Dr. Travis Waller for their valuable comments and

suggestions. I also would like to thank Dr. Mustafa Pinar of Bilkent University for

encouraging me to pursue an academic career.

I am also thankful to my friends in Austin and Bethlehem for supporting me

throughout my graduate life. I would like to thank Emrah Zarifoglu, Ali Koc, Emrah

Tanriverdi, Fehmi, Burak, Murat, Ferhat, Rasim, Oguz, Ali Pilatin, Gokhan, Ahmet Ali,

Bulent, Firat, Adem, Serdal, Tayfun and numerous others.

Last but the most important, I would like to express my deepest gratitude to my

wife for her trust and confidence, and to my daughter for bringing light to my life. I

would like to thank all the people in my family for their endless support.

 vi

Optimization Models for Transport and Service Scheduling

Publication No._____________

Kursad Derinkuyu, Ph.D.

The University of Texas at Austin, 2011

Supervisors: Anant Balakrishnan

 Erhan Kutanoglu

This dissertation focuses on service scheduling and transshipment problems. The

study of service scheduling is motivated by decisions facing service planners, who must

inspect and maintain geographically dispersed infrastructure facilities. We study the

problem of deciding which operations a service unit must perform at each customer

location, given the sequence in which the unit periodically visits these locations. Each

customer requires multiple service operations, and each operation has a time-varying

completion or penalty cost that depends on the previous service time. The goal is to

schedule the service start time for each customer and select the operations to perform so

as to minimize the total completion cost.

We first discuss how to solve a special case of this problem in which each site is

visited only once per service cycle. We formulate this problem as a discrete time indexed

network flow problem and prove that it is NP-hard in the ordinary sense. Then, we

represent the problem as a multidimensional shortest path problem with path-dependent

arc lengths. In this structure, arc costs depend on the total time spent for all customers.

 vii

The resulting formulation is solvable via algorithms that have pseudo-polynomial run

times. Computational results show that the shortest path approach outperformed the

general network flow model.

We then analyze the general case of this problem, in which each site can be

visited more than once and prove that the problem is NP-Hard in the strong sense. We

discuss the valid cuts and describe the preprocessor that reduces the problem size. Next,

we examine an application to the general case of the problem and develop a fast and

effective heuristic procedure that repeatedly applies the shortest path approach to

subsequences that do not visit any customer more than once. Computational results for

several problem instances show that the proposed heuristic identifies near optimal results

very quickly, whereas a general purpose integer-programming solver (CPLEX) is not

able to find an optimal solution even after many hours of computational time. Then we

focus on techniques such as problem reduction, branching variables, and subdividing

problem to smaller problems to get better solution times for the actual problem.

Computational results show that these techniques can improve solution times

substantially.

Finally, we study a transshipment problem, in which the shipments need to be

transported from their origin to destination and are subject to the logical and physical

transportation network on which they rely. We consider a space-time network that allows

one to formulate the problem as a multi-commodity network flow problem with

additional side constraints and show the complexity results. We propose alternative

models and propose algorithms for lower and upper bound calculations.

 viii

Table of Contents

List of Tables ... xi

List of Figures ... xii

List of Figures ... xii

Chapter 1: Introduction ...1

1.1 Motivation ..1

1.2 Outline..6

Chapter 2: Task Assignment Problem ..9

2.1 Introduction ..9

2.2 Literature Review...12

2.3 Problem Definition...14

2.4 NP Hardness of the Task Assignment Problem20

2.5 Special Case Structures ..27

2.5.1 TA problem: Two operations and single time window27

2.5.2 Task assignment problem with multiple operations and tasks....30

2.5.3 Task assignment problem with equal process times32

2.6 Shortest Path Approach..33

2.7 Computational Results ...39

2.8 Concluding Remarks ..42

Chapter 3: Periodic Task Assignment Problem ..43

3.1 Introduction ..43

3.2 Literature Review...45

3.3 Problem Definition...50

3.4 NP Hardness of the Periodic Task Assignment Problem.....................56

3.5 Special Case Structures ..61

3.5.1 PTA Problem: Two operations and a single time window61

3.5.2 Periodic task assignment problem with equal process times64

3.6 Valid Cuts ..65

 ix

3.6.1 Maximum requirement constraints ...66

3.6.2 Minimum requirement constraints ..67

3.7 Preprocessor ..68

3.7.1 Calculation of the earliest start times for steps68

3.7.2 Calculation of the latest start times for steps71

3.8 Concluding Remarks ...73

Chapter 4: Maintenance Service Application ...74

4.1 Motivation ..74

4.2 Problem Definition...76

4.2.1 Operation level formulation ..79

4.3 Initial Solution ...82

4.4 Perturbation and Problem Reduction ...88

4.4.1 Perturbation ...88

4.4.2 Problem reduction ...89

4.5 Lazy Cuts ...92

4.6 Branching Strategies ..93

4.6.1 Task assignment variables ..94

4.6.2 Time variables ...94

4.6.3 Tour termination variables ..95

4.6.4 Cumulative sink variables ...96

4.7 Subdivision Method ...97

4.7.1 Division by initial solution..98

4.7.2 Division by LP solution ..98

4.8 Computational Results ...99

4.9 Conclusion ...105

Chapter 5: Shipment Routing Problem with Dispatching Policies106

5.1 Introduction ..106

5.2 Literature Review...109

5.3 Problem Definition...114

5.4 Dispatching Policy Constraints ..122

 x

5.4.1 Type-A dispatching constraints ..123

5.4.2 Type-B dispatching constraints...125

5.4.3 Type-C dispatching constraints...127

5.4.4 Strengthening dispatching constraints131

5.5 Path-Based Alternative Formulation..133

5.6 Complexity Results ..135

5.6.1 Integrality conditions ..135

5.6.2 NP-Hard problems ..140

5.7 Upper and Lower Bounds ..148

5.7.1 Moving-in-Time ..149

5.7.2 Aggregation...151

5.7.3 LP relaxation correction ..153

5.7.4 Strengthening the uncapacitated solution154

5.8 Computational Results ...156

Chapter 6: Conclusions and Future Work ...160

Appendices ...164

A. Algorithms for polynomially solvable cases......................................164

A1. Algorithm 1 ...164

A2. Algorithm 2 ...166

A3. Algorithm 3 ...169

A4. Algorithm 4 ...170

B. NP Hardness of the PTA problem in application175

References ..181

Vita ...192

 xi

List of Tables

Table 2.1. Durations of the tasks for each customer ...34

Table 2.2. Comparison of the shortest path approach and IP model formulation .40

Table 4.1. Starting times of tasks in each subproblem ..97

Table 4.2. Problem instances for region A and region B100

Table 4.3. CPLEX and heuristic performances ...101

Table 4.4. Initial gaps and number of branches ..101

Table 4.5. Improved CPLEX performances ..102

Table 4.6. Initial gaps and number of branches ..103

Table 4.7. Performance of subdivision method...104

Table 5.1. Arrival and departure times for the links. ...144

Table 5.2. CPLEX and heuristic performances for instance 1157

Table 5.3. CPLEX and heuristic performances for instance 2 and 3158

Table 5.4. Scaled objective value changes with different aggregation levels158

 xii

List of Figures

Figure 2.1. Time-space network of given example ...34

Figure 2.2. Optimal value vs. Completion time graph of a randomly generated

instance with 100 customers, 5 operations and 10 tasks41

Figure 3.1 Relative time windows (separation) for operation k.51

Figure 4.1. Cycle completion time for 118 steps instance in the LP solution93

Figure 5.1. Shipments, Blocks and Links ...116

Figure 5.2. Time-space network representation for each shipment118

Figure 5.3. Departures of two shipments using the same block123

Figure 5.4. Type-A and Type-B constraints where neither of them is stronger .127

Figure 5.5. Time window violation of links..128

Figure 5.6. Non-overlapping time windows for links ...128

Figure 5.7. Illustration for Proposition 5.8 and Corollary 5.9.140

Figure 5.8. Arrival and departure times for the links in Proposition 5.14.145

Figure 5.8. Shortest path problem where each layer represents a shipment.147

 1

Chapter 1: Introduction

1.1 MOTIVATION

Worldwide competition has been forcing companies to provide better services to

their customers. Better services not only increase customer satisfaction but also help

companies manage resources effectively. In fact, service management operations are

complex processes, and in many businesses, quality of the service depends on a timely

response to service needs. The focus of this dissertation is problems with service

management under the following service types:

• One-time required services: Servicing a number of customers where each customer

is considered one at a time. Here the cost of service depends on the amount of time

spent with each customer. This type of service usually appears when a service plan is

put in effect only after the orders are received, as in after-market and emergency

services.

• Multiple-time required services: Servicing a number of customers periodically.

Each time a customer gets a service, the business incurs a servicing cost that depends

on the time since the customer’s last service. Services of this type appear in many

contexts, such as multi-product lot sizing, vendor managed inventories, machine

maintenance and several problems in telecommunications.

• Transportation services: Transportation of shipments from their origin to

destination under capacity and system constraints. The objective function minimizes

the weighted transit times of shipments and/or the cost of used paths. This is a

common problem for freight transportation operations as well as applicable to

communication networks.

Each of these services requires multi-level hierarchical decisions that lead to

difficult problems of resource allocation and scheduling. We will now explain these

 2

problems in detail. However, the scope of this study is limited to the operational level

problems of each of these service types.

In a typical service management scenario, each customer requires services or

operations. Although the service provider can choose more than one operation

(opportunistic scheduling) to perform for each customer, some of the operations cannot

be done together for technical reasons. Among the set of various possible combinations

of operations, a task refers to a combination of operations that can be performed together.

One-time required services: In this section, we consider the problem of

servicing a set of customers with a service constraint. Namely, only one customer can be

serviced at a time. We also assume that the service order of the customers is known. In

this situation, resource allocation and order/routing problems could be seen as upper level

decisions. At the strategic level, the company needs to decide how many resources are

needed and how the resources are allocated to customers. The tactical level problem

aims to solve the routing/ordering problems of customers for each resource. Finally, our

problem is an operational level problem and entails deciding which among the possible

tasks to perform for each customer on a given order. The solution to this problem

specifies: (i) what tasks the resource should perform in the given order, and (ii) when the

resource performs these tasks.

In this problem, we assume that each customer will appear only once (one-time

requirement). Hence, the problem could be seen as a special case of multiple requirement

case. However, there are some applications directly related to this service type. The

following examples point to this type of service:

• Roadway snow and ice control: The streets need clearing after snowy or icy

weather. There are some operations to clean streets, such as snowplowing and

gritting. Here, the roads/streets are customers and servicing a street means

 3

performing winter gritting operations. In this problem, the timing of intervention

is of prime importance. That is, if the intervention is too early or too late, the cost

sharply increases.

• After-market repair services: Consider a case where a service provider is required

to repair the product whenever the customer calls. Here, servicing a customer

means maintaining the utility of the product. A timely, high-quality response to

the service need is a critical element for customer satisfaction. After-market

service maintains the utility of the product and helps to increase customer loyalty

to the company. Since the service is usually provided by a contract, the quality of

this service directly affects the company’s profit.

Multiple-time required (periodic) services: This problem is a generalization of

the previous one, where a customer can appear multiple times. Again, our study focuses

on the operational level problem where customers get service one at a time and the

customer order is known. In this problem, the servicing cost depends on the time since

the customer’s last service. There are several motivating applications related to this

service type:

• Multi-product lot sizing: The manufacturing plan consists of a cyclic schedule

that specifies the sequence in which each product family is produced. In this

problem, there are product families, and in each family, there are individual items.

The problem of deciding how much of each item in a product family to produce

for a given cyclic sequence of family setups is analogous to the problem we are

studying. Here, the customers represent the product families, and servicing a

customer corresponds to ordering a subset of items belonging to one family or

replenishing the subset of the inventory of an item belonging to one family. The

cost of servicing a product family may include a fixed ordering cost, inventory

 4

carrying charges for the items over the interval until the next service, and possibly

shortage cost in case the demand exceeds the production before the next service.

• Preventive machine maintenance: In this context, there are machines that require

periodic maintenance. Here, the machines are the customers. Each machine may

have several parts (operations) to be maintained, and a subset of these parts (a

task) can be maintained together. In the maintenance problem, the cost of

servicing a machine increases up to its next service, whereas in multi-product lot

sizing, inventory cost decreases up to its next reorder point.

• Vendor managed inventory systems: Vendor managed service refers to a situation

in which a supplier replenishes the inventory of its customers. In these systems,

servicing a customer means replenishing its inventory. It is clear that the cost

depends on the inventory status of customers, and on-time response is an

important element for customer satisfaction. This problem appears in many

sectors, such as the petrochemical industry, industrial gas industry, automotive

(parts distribution) industry and soft drink (vending machines) industry.

• Telecommunication services: There are several applications in the

telecommunication sector closely related to our problem. Bar-Noy et al. (2002)

present many examples, and we describe one of them here. In broadcast disk

application, a database contains a number of pages and broadcasts a limited

number of these pages at each period. A client who wishes to access any page

must wait for the broadcasting time of that page. Here, the customers represent

the pages, and servicing a customer corresponds to the broadcasting of pages.

This application aims to minimize the expected time spent by clients waiting to

access the pages.

 5

Transportation services: Transportation systems are complex dynamic

processes and require the management of multiple resources in order to serve customers.

We focus on the problem of shipments needing to be transported from their origin to their

destination under the limitations of the underlying transportation network. We assume

that the higher level decisions on the network, such as capital investment and the

schedule of carriers, are given. The objective function minimizes the weighted transit

times of shipments and/or the cost of used paths/resources.

In the transportation scheduling problem, the scheduler makes an enormous

number of interrelated decisions on strategic, tactical and operational levels. Strategic

level decisions involve capital investments, such as getting new planes, trucks, trains or

ships, and expanding the transportation network. At the tactical level, we need to

schedule carriers/transporters and make maintenance plans. The operational level

problems aim to solve short term planning, such as trip planning of shipments from their

origin to destination.

A moderate size transportation company transports thousands of shipments on

their network everyday. The system managers should ensure that the shipments are

getting an appropriate level of service at a low operating cost. At the operational level,

the system should solve such big problems very fast and make decisions immediately. In

a normal day, new shipments come to the network, and the state of the system changes

over time. Clearly, the effective usage of available capacity is a key element of success.

A good decision does not only consider the current information, but also considers the

possible uncertainties, such as future shipments that may require the resources currently

being used by other shipments.

Transportation service problems also appear in communication networks. In

those networks, data packages (as shipments) should be transported from their origin to

 6

destination by using underlying multi-layer transport network. In these networks, there

are (physical) fiber links that make the actual connections at the bottom layer. Then,

above layers are logically designed to handle data packages appropriately. Our problem

could be seen as trip planning of these data packages using underlying communication

network.

1.2 OUTLINE

Our aim in this dissertation is to examine single and multi-visit service scheduling

problems, and transshipment problems. We analyze the complexity properties, develop

models and methodologies for these problems and demonstrate their performance on an

application.

The dissertation is organized as follows: In Chapter 2, we present the first service

scheduling problem, where each customer is visited only once. In this chapter, we

formulate the problem as a discrete time indexed network flow. We analyze the

computational complexity of this problem and show that the problem is NP-Hard in the

ordinary sense. Then, we concentrate on several special case structures of this service

scheduling problem and determine their complexity properties. We propose an

alternative formulation for the problem as a shortest path problem with path dependent

arc lengths. The resulting formulation is solvable via algorithms that have pseudo-

polynomial run times. Our study shows that the formulations are equivalent, so the

shortest path approach solves the problem optimally. Finally, computational efforts

imply that the proposed shortest path formulation outperformed the general network flow

formulation on randomly generated test cases.

In Chapter 3, we focus on the second service scheduling problem where each

customer may be visited multiple times. In fact, this problem is an extension of the first

 7

one and we formulate this periodic service problem as a network flow problem. We

prove that the problem is NP-Hard in the strong sense and no pseudo-polynomial

algorithm is available to solve this problem. Furthermore, a performance guaranteed

heuristic with (pseudo-)polynomial run time is not possible. We also analyze the several

special case structures and show their complexity properties.

In Chapter 4, we focus on the application of the multi visit service problem

motivated by the actual problem facing maintenance planners at a large company. This

application is based on infrastructure facilities that require periodic inspection and

maintenance to ensure uninterrupted service and effective operation. These facilities are

geographically dispersed, and the inspection and maintenance operations require on-site

visits by a “service” unit, consisting of skilled workers and equipment. At each site,

several components need to be serviced; the desired frequency of service varies by

component and facility, depending on the location of the facility, its usage, and other

factors. Scheduling the service tasks associated with these inspection and maintenance

activities is an important and challenging problem facing firms that operate infrastructure

facilities. We formulate the problem and develop a fast and effective heuristic procedure.

The heuristic is based on the shortest path approach developed in Chapter 2. We apply

the shortest path approach repeatedly for the subsequences that do not contain any

customer twice. We come up with problem size reduction techniques, and determine

several branching strategies to solve actual problems effectively. Finally, we introduce a

technique for dividing the original problem into sub-problems, so that each of them could

be solved much faster. We compare these techniques and provide computational results

for this application.

In Chapter 5, we concentrate on the transshipment problem and give two

mathematical formulations. To improve computational performance, we develop three

 8

sets of inequalities. We show that none of these formulations is stronger than the other

one and test them on the same problem instance. We analyze the computational

complexity of this problem and its several special cases. We propose three heuristics for

calculating good upper bound for the original problem. We also construct a lower bound

calculation based on a shortest path solution. We compare these approaches on the same

problem instance.

Finally, we summarize our contribution in Chapter 6, and discuss future research

directions.

 9

Chapter 2: Task Assignment Problem

2.1 INTRODUCTION

This chapter focuses on the problem of servicing a number of customers in a

discrete time environment. We consider a service scheduling problem in which each

customer requires services or operations, and we assume that each operation has a time-

varying completion cost. Although the service provider can choose more than one

operation to perform for each customer, some of the operations cannot be performed

together for technical reasons. The problem in question consists of assigning a task—or

combination of operations—to each customer while minimizing the general cost function.

We refer to this problem as a task assignment (TA) problem.

We make the following assumptions to facilitate model development:

• We assume that one customer can be serviced at a time. Customers are allocated

to resources whenever higher (strategic) level decisions are made. Then, the

decision makers concentrate on each resource and its assigned customers.

However, there are some cases in which the “one customer at a time” rule may be

present because of accounting, physical space, workforce, or transportation

considerations. For instance, in a machine maintenance context, maintaining

more than one machine at a time may cause serious interruptions in the systems

that depend on these machines.

• We also assume that the order/route of the customer is fixed. Routing/ordering

decisions are intermediate (tactical) level decisions and a fixed route/order can be

a candidate solution for the tactical level problem. In some applications, the order

of the customers may come out naturally. A fixed customer sequence may appear

 10

in real life when the services are handled on a first come first serve basis or when

the customers are located along an interstate highway.

• We assume that each customer appears only once in the sequence. The case

where customers appear more than once is an extension of this study, and we

discuss that problem in the next chapter. However, there are some applications

where each customer is considered once. In those business processes, a service

plan takes place only after the orders are received, as in emergency situations and

corrective maintenance.

• Finally, we assume that no partial service is allowed (no preemption). This is a

natural constraint in many applications where interruptions seriously affect the

quality of the service.

We consider the operational level task assignment problem, which assigns one task to

each customer and needs the following items as input:

• a customer sequence,

• the possible tasks for each customer,

• the processing time for each possible task for each customer,

• the cost function and the time window for each operation.

Given these assumptions, the planner determines which task among the possible choices

to perform for each customer. We require a plan that visits all the customers in the given

sequence while minimizing the general cost function for all operations.

What makes this task assignment problem unique is that the each customer

requires multiple services with different time windows and general cost functions. In the

task assignment problem, an assignment chosen for one customer may affect the

feasibility of assignments for other customers. Furthermore, the cost of the service for

any customer depends on not only the duration spent on earlier customers but the

 11

duration that will be spent on later customers because of the structure of the cost

functions.

In this chapter, we make several contributions to the task assignment problem.

First, we analyze several fundamental properties of the task assignment problem. We

prove that the problem is NP-Hard and show the computational complexity of some

special cases. Then, we approach the problem two different ways. The first approach

formulates the problem as a discrete time indexed network flow problem and solves the

problem by using the commercial software CPLEX. The second approach represents the

problem as a multidimensional shortest path problem with path-dependent arc lengths. In

this structure, arc lengths depend on the total time spent on all the customers. We convert

our problem to the shortest path problem by considering its special network structure.

The resulting formulation is solvable via algorithms that have pseudo-polynomial run

times. We also compare the computational effort required by these two approaches based

on randomly generated test cases. As a result of these computations, we show that the

shortest path approach outperformed the general network flow model.

The remaining part of the chapter is organized as follows: Section 2 gives the

related literature review, and Section 3 formulates the problem as a discrete time indexed

network flow. In Section 4, we prove that the task assignment problem is NP-Hard, and

Section 5 concentrates on the special case structures. In Section 6, we develop the

modified shortest path approach and adopt the well-known shortest path algorithms to our

problem. The computational results of these two approaches based on randomly

generated data are reported in Section 7. Finally, we offer a conclusion and discuss

future extensions in Section 8.

 12

2.2 LITERATURE REVIEW

In service management problems, some services take place only after the orders

are received, and some other services require periodic executions. We will discuss the

first type of services here and periodic services in the next chapter. In the case where a

service takes place only after the orders are received, the customers usually get a service

only once, as in emergency services and corrective maintenance. Many papers in the

literature also consider routing as a part of the decision process whereas the task

assignment problem has a fixed customer sequence.

One emergency service problem is winter gritting operations, where the timing of

an intervention is of prime importance (Campbell and Langevin, 2000; Li and Eglese,

1996) Tagmouti et al. (2007) study an arc routing problem with capacity constraints and

time-dependent service costs. This problem is motivated by winter gritting applications,

where a subset of arcs must be serviced at a cost that depends on the timing of the

service. Here, the streets are the customers, and servicing a customer means performing

winter gritting operations. There is a single operation required for each street, and

routing is a part of the decision process in Tagmouti et al.’s paper. The authors report the

exact problem-solving approach that first transforms the arc routing problem into an

equivalent node routing problem. Then, a column generation scheme is used to solve the

latter. The resulting node routing problem is a vehicle routing problem with time-

dependent service costs. To the best of our knowledge, Tagmouti et al. is the only work

that deals with time-dependent service costs in the arc routing literature, although some

variants of the vehicle routing problem with time windows may be related to it (Ibaraki,

et al. 2005; Ioachim, et al. 1998; Taillard, 1997). Desrosiers et al. (1995) provide a good

review of time-constrained vehicle routing problems.

 13

Similar applications are municipal waste (Stricker, 1970), waste collection

(Beltrami and Bodin, 1974; Bodin, 1990), sanitation operations (Riccio, 1984; Riccio and

Litke, 1986; Ball, 1988) and postal delivery (Bodin, Fagan and Levy, 1992). Bodin and

Kursh (1978) study street sweeping, and Levy and Bodin (1988) concentrate on postal

delivery. An excellent survey of these applications can be found in Assad and Golden

(1995). In these papers, the process times for all the operations are equal. Therefore, the

researchers concentrate on the routing decisions.

Single-visit services are also present in a corrective maintenance context.

Consider a firm providing repair services for a certain type of equipment over some area.

Typically, the area is divided into service territories, and in each territory one repairman

(server or service representative) is responsible for the repair and maintenance. Here, the

machines (equipment) are the customers, and servicing customers means maintaining

machines. According to Agnihothri and Karmarkar (1992), the customer calls are

serviced according to an FCFS (first-come, first-serve) dispatching policy, so the routing

decision is given by default. This so-called machine repairman (or interference) problem

gets especial attention in the queuing literature. For instance, Agnihothri and Karmarkar

(1992), and Jamil et al. (1994) use queuing models to work on approximating the waiting

times for repair services under given probability distributions of equipment failures and

the FCFS rule. Here, waiting time can be seen as a service time dependent cost function.

Almost all of the related papers in the queuing area have the FCFS rule, but they consider

different failure distributions or service availability. Excellent surveys can be found in

Stecke and Aronson (1985), and Haque and Armstrong (2007). There are also a few

papers that consider the machine repairman problem without any stochastic information

about the data. In Abdekhodaee et al. (2006) and Koulamas (1996), there are two parallel

machines with a single repairman who is required for setup. The machines have to wait

 14

for the repairman before processing any task. These papers define the problem under

various objective functions, such as makespan and total completion time, and propose

heuristics that run in polynomial time.

Finally, Armstrong et al. (2008) study a problem with a single transporter and a

fixed sequence of customers. The production facility has a limited production rate, and

the delivery truck has non-negligible traveling times between locations. Each customer

requests a delivery quantity and a time window for receiving the delivery. The problem

chooses a subset of customers from the given sequence to receive the deliveries in order

to maximize the total demand satisfied. Here, servicing customers corresponds to

delivering the order to the customer. The problem has a single operation (customer

order) for each customer, and the decision maker decides which customer will get

service. The problem batches the customer orders before the shipment, whereas there is

no batching in the task assignment problem. Armstrong et al. (2008) propose a heuristic,

and branch and bound procedure for practical problems.

There are also related problems in preventive maintenance and the multi-item

replenishment context. By their nature, these services are required periodically.

Therefore, we will discuss them in the next chapter.

2.3 PROBLEM DEFINITION

 This study concerns an operational level problem in service management. In

particular, we consider a service facility with a single service resource and a fixed

sequence of customers, denoted as I = {1,…,i,…,n} where n denotes the total number of

customers. Let i be the index of customers in the visitation order, i = 1, 2 … n with a

dummy customer at the end. The last customer n does not have any requirements and has

one task with zero duration time. Also, tmax refers to the latest possible start time for the

 15

execution of the task that belongs to the last customer (i.e. customer n), and T is the

ordered set of time periods to be considered, T = {1 … tmax}. In the task assignment

problem, completion time (start, also end, time for the execution of the last customer’s

task) is not fixed. Among the possible time periods in T, let h be the possible completion

time and H be the set of possible completion times. In this notation, H is the subset of T

at the tail and h ≤ tmax.

Each customer Ii ∈ requires a set of operations KI(i), and each operation,

indexed as k, has a specified time window [γk, βk] within which the start of service is

feasible. The time window for operation k only sets the feasible time range for beginning

this operation, but the operation k does not have to be completed unless the completion

time is greater than βk. Also, each customer Ii ∈ has an available set of tasks JI(i), and

each task, indexed as j, includes a set of operations KJ(j) and requires duration δj to be

performed. That is, if task j is selected for customer i, then whenever the customer i gets

service, the resource spends δj unit time and satisfies the time window [γk, βk] for every

operation)(jKJk ∈ . In this paper, we are interested in hard time window constraints,

but in practice, a violation of the time window constraints may be acceptable with a high

penalty. In addition, we assume that no partial services are allowed (no preemption).

Finally, we assume that each customer appears only once in the sequence.

For each customer, the planner tries to honor the time window requirements of

every operation. Let K be the set of all operations for all customers. Each operation

Kk ∈ minimally has the following attributes:

γk Earliest start time for the execution of operation k

βk Latest start time for the execution of operation k if the completion time is greater

than βk

 16

ckt Total cost until time t for performing operation k at time t. If the operation is not

done during the sequence, cost ckh will occur for the operation k if the completion

time is equal to h

fkth Total cost of performing operation k at time t to the end of horizon h. If the

operation is not done during the sequence, this cost does not appear.

In some applications, fkth equals zero, as in emergency maintenance problems. Once the

item is repaired, there is no problem left. In other situations, fkth value should be

considered, as in replenishment problems. This cost represents the inventory cost until

the end of horizon.

The planner accomplishes the operations by executing the available tasks for each

customer. Let JK(k) be the set of all tasks that contain operation k and let JI(i) be the set

of all alternative tasks that can be done for customer i. Each task)(iJIj ∈ has the

following characteristics:

Γj Earliest start time for the execution of task j, if it is selected. That is,

)}(|max{ jKJkk ∈γ

Βj Latest start time for the execution of task j, if it is selected. That is,

)}(|min{ jKJkk ∈β

δj Duration for performing task j, for all)(iJIj ∈ , i = 1, 2 … n

It is clear that the decision maker cannot choose a task earlier than the earliest

start time for any operation contained in that task. Similarly, she cannot start a task later

than the latest start time of any operation contained in that task. In the light of Γj and Βj

parameters, let TJ(j) represent the time window for task j where TJ(j) = {Γj, …, Βj}.

However, time window calculations for tasks are valid only if the customers appear once

in the sequence. If the customers appear multiple times, more complicated techniques are

needed for preprocessing. We will explain these techniques in the next chapter.

 17

The task assignment problem contains the time windows for each operation. We

can use these time windows (and processing times of tasks) to develop time windows for

customers in order to reduce the problem size. We refer TI(i) as the time window of

customer Ii ∈ and calculate it as follows:

Let TI(i)L and TI(i)U be the lower and upper bound on the time window TI(i) of

the customer Ii ∈ . Also, let δmin(i) and δmax(i) be the minimum and maximum durations

of the tasks that belongs to customer Ii ∈ . Then, the lower bound (earliest start time)

TI(i)L can be calculated as follows:
{ }{ }j

iJIj
LL iiTIiTI Γ−+−=

∈)(
min min),1()1(max)(δ

where TI(0)L = 0. The earliest start time for the customer Ii ∈ cannot be earlier than the

earliest start time for the execution of its tasks. Also, it cannot be earlier than the earliest

start time of the previous customer plus the minimum duration that should be spent for

the previous customer. At the end, TI(n)L gives the lower bound of the completion time.

As an improvement step, if the lower bound on the completion time violates the

latest start time of some operations, we choose the tasks that include those operations in

the calculation of the earliest start time for customers.

The upper bound (latest start time) TI(i)U depends on the waiting assumption,

which states whether or not there could be waiting time before task executions. If

waiting is not allowed, TI(i)U can be calculated as follows:
{ }{ }j

iJIj
UU BiiTIiTI

)(
max max),1()1(min)(

∈
−+−= δ

where TI(1)U = 0. When no waiting is assumed, the latest start time for the customer

Ii ∈ cannot be later than the latest start time of the previous customer plus the maximum

duration that should be spent for the previous customer. Also, it cannot be later than the

latest start time for the execution of its tasks. In this calculation, TI(n)U gives the upper

bound on the completion time.

 18

As an improvement step, if the selected task in the latest start time calculation

violates the earliest start time of some operations, we exclude that task and reselect it

(maximum processing time among the remaining ones).

If waiting is allowed, TI(i)U can be calculated as follows:
{ }{ }j

iJIj
UU BiiTIiTI

)(
min max),()1(min)(

∈
−+= δ

where TI(n)U = tmax. The latest start time for the customer Ii ∈ cannot be later than the

latest start time for the execution of its tasks. Also, it cannot be later than the latest start

time of next customer minus the minimum duration that should be spent for the current

customer.

In this structure, we assume that service for all customers in the sequence must be

completed and that the specified maximum number of time periods (tmax) for the

completion time is sufficient to complete all steps. The optimization problem outlined

above can be formulated as a discrete time indexed network flow.

Decision Variables:

Xjt = 1 if we start task j at time t, and 0 otherwise, for all i = 1 … n,),(iJIj ∈

)(jTJt ∈

Ukh = 1 if no tasks containing operation k are performed during the horizon with

length h for ,Kk ∈ Hh∈

Vkth = 1 if operation k is performed at time t and the completion time is h for ,Kk ∈

Tt ∈ , Hh∈

Zh = 1 if the completion time is h, and 0 otherwise, for all Hh∈ – called the exit

indicator variable

The Zh variables are defined merely for convenience and to simplify the

representation. We can equivalently formulate the problem without these variables.

Model Formulation:

 19

 Minimize ∑∑∑∑ ∑ ∑∑∑
∈ ∈ ∈∈ ∈ ∈∈ ∈

++
Kk Tt Hh

kthkth
Kk kJKj jTJt

jtkt
Kk Hh

khkh VfXcUc
)()(

 (1)

subject to:

Task assignment for first step
 1

)1()1(

=∑ ∑
∈ ∈JIj TIt

jtX (2a)

Flow conservation constraints
 ∑ ∑∑

∈ ≥−∈
− =

)('
'

)1(
,

iJIj tt
jt

iJIj
tj XX

jδ for i = 2 … n, t ∈ TI(i) (2b)

Exit indicator
 h

nJIj
jh ZX =∑

∈)(

 for h ∈ H, (3)

Detection of not done operations
 kh

kJKj jTJt
jth UXZ ≤− ∑ ∑

∈ ∈)()(

 for k ∈ K, h ∈ H, (4)

Detection of time elapses after performing each operation
 kth

kJKj
jth VXZ ≤−+ ∑

∈

1
)(

 for k ∈ K, t ∈ T, Hh∈ (5)

Integrality

 1or 0,,, =hkthkhjt ZVUX for j ∈ J, t ∈ T, k ∈ K, h ∈ H.(6)

The objective function (1) minimizes the total penalty for three terms. The first

term is the penalty for operations that are not performed. The second and third terms

hold the penalties for operations that are performed. The second one computes the

penalties until the execution time of the operations, and the third one calculates the

penalties after the execution time of the operations. Constraint (2a) assigns the task for

the first customer, and (2b) is a flow conservation constraint. If there is a no-waiting
assumption, we can write the right hand side of these constraints as ∑

∈)(iJIj
jtX . Constraint

(3) determines the exit time and constraint (4) detects incomplete operations. Constraint

 20

(5) calculates the time that elapses after performing each operation. Finally, constraint

(6) is for integrality requirements.

In some applications, there can also be an additional cost for waiting times. We

did not consider waiting time costs here for the sake of simplicity, but they can be easily

incorporated to our formulation.

 In the next two sections, we deal with the computational complexity and the

special case structures of the task assignment problem.

2.4 NP HARDNESS OF THE TASK ASSIGNMENT PROBLEM

Task assignment [TA] problems are in the category of difficult problems, so

called NP-Hard problems. In fact, the well-known knapsack problem can be written as

an instance of the TA problem. (See Karp (1972) for the knapsack problem.)

Knapsack Problem: Let N be the number of items and i be the index of each

item, i = 1, 2 … N. Each item i has the following attributes:

ci Cost of item i if it is selected, for all i = 1, 2 … N

ai size of item i for all i = 1, 2 … N

Let b represent the limit that we need to satisfy, i.e. capacity of knapsack. Each

item i has the following decision variable:

Xi = 1 if item i is selected and 0 otherwise, for all i = 1, 2, …, N

The Knapsack problem can be formulated as an integer program:

[KP] Maximize ∑
=

N

i
ii Xc

1

 s.t.: bXa
N

i
ii ≤∑

=1

 =iX 0 or 1, for all i = 1, 2 … N

 21

Proposition 2.1: The knapsack problem [KP] is polynomially reducible to the task

assignment problem [TA].

Proof: If we convert the general knapsack problem to a task assignment instance, the

construction of the TA instance for the indices and sets is as follows:

• A route consisting of N + 1 customers. In other words, n = N + 1

• Each customer i requires only two operations, say vi and wi, for i = 1 … N, and

customer N + 1 requires only one operation vN+1

• Two tasks are available for each customer i = 1 … N. Each task contains one

operation. For simplicity’s sake, say task vi includes operation vi, and wi includes

operation wi for i = 1 … N. Customer N + 1 has one task called vN+1

The construction of the TA instance for the parameters is as follows:

• Duration time for performing task vi is ai and zero for task wi, for i = 1, 2 … N.

Also, the duration time for performing task vN+1 is zero

• γk = 0 for operation k = vi and wi, for i = 1, 2 … N (earliest start time)

• βk = b+1 for operation k = vi and wi, for i =1, 2 … N (latest start time)

• γk = βk = b for operation k = vN+1

• ikb cc = for operation k = vi at time b and 0=ktc for the others

• 0=kthf for all ,Kk ∈ Tt ∈ , Hh∈

In this instance, the time window of operation vN+1 has only one element b and

there is only one task available for customer N + 1, so this task should be done at time b.

Since we know that the last customer should get service at time b, all the time window

constraints for all operations are irrelevant for customers i =1, 2 … N. Besides, there will

be no cost related to wi in the objective function. Using this structure, we can make the

following observations:

 22

• The only feasible time point for step N + 1 is period b. Therefore, flow

constraints (2a) and (2b) try to reach that period by selecting either task vi or wi.

Also, they can wait in intermediate steps.

• Duration of tasks vi are equal to ai for all steps, and the durations of tasks wi are

zero, for i =1 … N. Therefore, the feasible solution selects the subset of tasks vi,

and the duration of selected vis cannot exceed period b.

• If the solution does not select to do operation vi, (equivalently selects to do

operation wi) we will pay ci for the completion time b.

• If the solution does not choose any of the operations vi, total cost would be ∑
=

N

i
ic

1

.

We can define a new decision variable to capture these observations better:

Yi = 1 if task vi is selected and 0 if task wi is selected, for all i = 1 … N

Therefore we can rewrite the task assignment problem as:

 Obj1 = Minimize ∑∑
==

−
N

i
ii

N

i
i Ycc

11

 s.t.: bYa
N

i
ii ≤∑

=1

 =iY 0 or 1, for all i = 1, 2 … N.

In the objective function, the first term is constant and does not affect the solution,

so we can exclude it during the solution process. Also, recall that ZZ maxmin −=− .

Therefore, we can equivalently write the above formulation as:

 Obj2 = Maximize ∑
=

N

i
ii Yc

1

 s.t.: bYa
N

i
ii ≤∑

=1

 =iY 0 or 1, for all i = 1, 2 … N.

There is a one-to-one relation between the objectives of these two formulations, which is:

 23

Obj1 = − (Obj2 −∑
=

N

i
ic

1

).

Therefore, an optimal solution to one of them is also an optimal solution to the

other one. Finally, observe that the second formulation is equal to the knapsack problem.

Since each in set, the indices and parameters in TA has at most O(N) items, the

reduction will take polynomial time. □

Corollary 2.2: The following problems are NP-Hard:

a) Task assignment problem

b) Task assignment problem with waiting time costs

c) Task assignment problem with negative costs

d) Task assignment problem with customer-wise time window constraints (rather

than operation-wise time window constraints)

Proof: a) In the construction in Proposition 2.1, there is an objective function with value

Z for the knapsack problem if and only if there is an objective function with value – (Z −

∑
=

N

i
ic

1

) for the task assignment problem with knapsack’s parameters where ∑
=

N

i
ic

1

 is

constant. That is why we can conclude that the TA problem is NP-Hard.

b) The TA problem is special case of this problem with zero waiting costs. Therefore, the

result immediately comes from the part (a). If waiting costs should be nonzero, then we

can select the per period waiting costs bigger than the total possible penalty cost ∑
=

N

i
ic

1

.

Then the equality knapsack problem (knapsack problem with equality constraint) is

polynomially reducible to the TA problem with waiting time costs. (See Kaufman et al.

(1985) for equality knapsack problem.)

c) We assign negative knapsack cost parameters as cost parameters for the TA problem.

This construction of the problem instance is similar to Proposition 2.1 except for the

 24

duration parameters: the duration of tasks vi are equal to zero for all steps, and the

duration of tasks wi are ai, for i =1 … N. Since ZZ maxmin −=− , the optimal objective

value for the TA problem is the negative of the optimal objective value for the knapsack

problem.

d) The construction of the TA instance with knapsack parameters in Proposition 2.1

requires only one operation-wise time window constraint (for customer N+1). This time

window constraint could be treated as a customer-wise time window constraint.

Therefore, the conclusion follows from part (a). □

In the construction of the problem instance in Proposition 2.1, the customers

require only two operations. In fact, one of the operations has no duration, time window

or nonzero cost parameter requirement. The cost parameter for the other operation

appears once in time, so we can conclude that any type of cost function other than zero

cost function provides an NP-Hard result.

In the below proposition, we prove that even the problem with zero cost function

is NP-Hard for the TA problem that has a no-waiting assumption.

Proposition 2.3: Consider the task assignment problem under the no-waiting assumption.

If there are only two operations (and their corresponding tasks) for each customer, the

resulting problem is NP-Hard with zero cost function.

Proof: Since there is no cost at all, the problem is a feasibility problem, and we have to

satisfy the time window requirements of the operations.

We show that the 2-Partition problem is polynomially reducible to this problem.

(See Karp, 1972 and Garey and Johnson, 1979.) In the 2-partition;

• Data: a finite set I and a size +∈ Zai for Ii ∈

• Question: Is there a subset II ⊆' such that ∑∑
∈∈

=
'\' IIi

i
Ii

i aa ?

 25

We can construct the desired instance with |I| + 2 customers. In this construction,

assume that each customer i requires only two operations (and has their corresponding

tasks), say vi and wi for i = 1 … |I| + 2. The construction of the TA instance with a no-

waiting assumption is as follows:

• Durations are δv(i) = ai and δw(i) = 0 for i = 1 … |I|. Furthermore, δv(I+ 1) = δw(I+ 1) = 0.

Finally, the last customer has durations δv(I+ 2) = δw(I+ 2) = ∑
∈Ii

ia
2

1
+1.

• γk = 0 and βk = ∞ for all customers except for the customer I + 1.

• γv(I+ 1) = βv(I+1) = ∑
∈Ii

ia
2

1

Using this structure, we can make the following observations:

• The last customer requires ∑
∈Ii

ia
2

1
+1 amount of duration. Therefore, the total

duration time in the sequence is equal to or greater than ∑
∈Ii

ia
2

1
+1.

• Every feasible solution should select v(I+ 1) to satisfy the latest start time

requirement of that operation, because βv(I+1) < ∑
∈Ii

ia
2

1
+1. This selection can only

be done if the task v(I+ 1) starts at time ∑
∈Ii

ia
2

1
 because of the earliest start time

requirement.

• Hence, the problem is feasible only if there is a subset II ⊆' such that

∑∑
∈∈

=
'\' IIi

i
Ii

i aa . In the feasible solution, selected v(i) tasks from i = 1 … |I| give

the subset 'I . We conclude that the problem is NP-Hard. □

In the construction of the problem instance in Proposition 2.3, one of the

operations has only a duration requirement and does not have any time window

requirement.

 26

Corollary 2.4: Consider the task assignment problem under a no-waiting assumption and

with only two operations (and their corresponding tasks) for each customer. The

following problems are NP-Hard:

a) The problem that has no latest start time requirements and has non-decreasing

cost functions with time for all operations

b) The problem that has no time window (earliest or latest time) requirements and

has general cost functions for all operations

c) Task assignment problem with waiting and waiting time costs under the

restriction of part (a) or part (b)

Proof: a) The construction of the problem instance in Proposition 2.3 does not require

time window constraints, except for the operation of customer |I| + 1. We can replace the

latest start time requirement of this operation with a big penalty cost in case of violation.

Hence, this operation acts like there is a latest start time requirement. Therefore, the

result immediately comes from the Proposition 2.3.

b) Similar to part (a), we can replace the time window requirement of the operation of

customer |I| + 1 with big penalty costs in case of violation. Hence, this operation acts like

there is a time window requirement. Therefore, the result immediately comes from the

Proposition 2.3.

c) We can assign big penalties for waiting time costs to the instance constructed in

Proposition 2.3. As a result, this problem acts like the problem under a no-waiting

assumption. Therefore, the results in part (a) and (b) are also true for this problem.

In the next section, we concentrate on some special case structures of the task

assignment problem that are polynomially solvable. We propose algorithms that have

polynomial run times to solve these special cases.

 27

2.5 SPECIAL CASE STRUCTURES

The difficulty of the task assignment problem may arise from many parameters,

such as the number of operations, the number of tasks, and the time window parameters.

In the previous section, we saw that even the task assignment problem with two

operations and a single time window requirement for one of them is NP-Hard (without

any cost function). In this section, we begin with this specific problem and consider two

cases. The first case considers the earliest start time requirement without the latest one,

and the second case deals with the latest start time requirement without the earliest one.

Then, we examine the same problems under multiple operations (k > 2). Lastly, we

discuss another special case that assumes equal process times for all tasks. Since the start

times of the tasks are fixed, there is no point for the time window requirements. Instead,

we consider the general cost function for this special case.

2.5.1 TA problem: Two operations and single time window

Here, we assume that each customer requires only two operations and has two

corresponding tasks. In addition, only one of the operations has either the earliest start

time or the latest start time requirement. The service planner chooses one of these two

operations for each customer. For this subsection, we use v(i) to represent the operation

(and task) with the time window for customer i and w(i) to represent the operation (and

task) without the time window for customer i. Finally, we consider the problem with a

zero cost function. In other words, feasibility is an issue here.

Proposition 2.5: Consider the task assignment problem under zero cost function with n

customers. Assume that each customer i requires two operations, v(i) and w(i), and only

one of the operations, v(i), is restricted with the earliest start time. Under these

conditions, the following statements are true:

a) If waiting is not allowed:

 28

a1. Selection of the tasks without time window restrictions, w(i), for all

customers gives a feasible solution

a2. If the tasks without time window restrictions, w(i), are not available for

some customers, Algorithm 1 (its logic is given below) solves the problem in

O(n)

b) If waiting is allowed:

b1. Selection of the tasks without time window restrictions, w(i), for all

customers gives a feasible solution

b2. If the tasks without time window restrictions, w(i), are not available for

some customers, waiting as much as the latest earliest start time of v(i) at the

beginning and then performing the operation with the earliest start time, v(i)

for all customers gives a feasible solution.

Logic of Algorithm 1: The algorithm begins with the first customer and follows the

same customer order in the sequence. If the service resource comes to any customer

before the earliest start time of the operation v, and operation w is not available, then the

problem is infeasible. Otherwise, the algorithm selects the task that has the maximum

duration. The detailed pseudo code is given in the appendix.

Proof: (a1 and b1) Since there is no time window restriction on any operation w, and

there is no latest start time requirement for any operation v, selection of w for all

customers gives a feasible solution.

(a2) Given in the appendix.

(b2) If the tasks without time window restrictions, w(i), are not available for some

customers, waiting as much as the latest earliest start time at the beginning of the

sequence will prevent any violation. Then, performing operation v(i) for all customers

gives a feasible solution. □

 29

Proposition 2.6: Consider the task assignment problem under zero cost functions with n

customers. Assume that each customer i requires two operations, v(i) and w(i), and only

one of the operations, v(i), restricted with the latest start time. Then, the following

statements are true:

a) Algorithm 2 (its logic is given below) solves the problem under a no-waiting

assumption in O(n2)

b) The problem under a no-waiting assumption is infeasible if and only if the

problem under the waiting allowance is infeasible.

Logic of Algorithm 2: In the initialization part, the algorithm finds the minimum

possible completion time for the given customer sequence (by selecting tasks with

minimum duration). The algorithm begins with the first customer and follows the same

customer order in the sequence. At customer i, if the completion time is smaller than the

latest start time of the operation v(i), the resource performs a task with minimum duration

for that customer. Otherwise, the algorithm checks the time that the resource is available

for that customer. If the time is earlier than the latest start time of the operation v(i), the

algorithm chooses the operation v(i); otherwise, the problem is infeasible. The algorithm

updates the candidate completion time and rescans all the customers. It stops if either

infeasibility is found or if there is no change in the candidate completion time. The

detailed pseudo code is given in the appendix.

Proof: (a) Given in the appendix.

(b) It is clear that if the problem under a waiting allowance is infeasible, then the problem

under no-waiting assumption is infeasible, because the later problem’s feasible set is a

subset of the earlier one.

If the problem under no-waiting assumption is infeasible, then there should be an

operation for some customer in which the resource cannot come to that customer before

 30

the latest start time of its operation. Waiting anywhere will not fix this issue. Hence, the

problem under a waiting allowance is infeasible. □

2.5.2 Task assignment problem with multiple operations and tasks

• When customers require multiple operations, the task assignment problem gets

more complicated for the following reasons: Each customer requires operations

that have different time windows. The service manager should choose an

appropriate task at an appropriate time in order to balances time windows for each

customer.

• For each customer, not all of the operation combinations (i.e. tasks) may be

available. The problem needs to select appropriate tasks that cover required

operations.

Recall that KI(i) represents the set of operations for customer i ∈ I. Also, let JI(i)

be the set of all alternative tasks that can be done for customer i, and let JK(k) be the set

of all tasks that contain operation k.

Proposition 2.7: Consider the task assignment problem under zero cost functions with n

customers. Let maxk be the maximum number of operations required by any customer

(i.e., { }|)(|max iKI
i

) and maxj be the maximum number of available tasks for any

customer (i.e., { }|)(|max iJI
i

). If there are only earliest start time restrictions for all of

operation k, the following statements are true:

a) If waiting is not allowed, Algorithm 3 (its logic is given below) solves the problem

in O(nkmaxjmax)

b) If waiting is allowed, waiting as much as the latest earliest start time of all

operations at the beginning, and then performing any operation gives a feasible

solution

 31

Logic of Algorithm 3: The algorithm begins with the first customer and follows the

customer order in sequence. If the service resource comes to a customer before the

earliest start time of some operations, the algorithm excludes the tasks that contain those

operations. If there are no tasks left, then the problem is infeasible; otherwise, it selects

the task (among available ones) that has the maximum duration. The detailed pseudo

code is given in the appendix.

Proof: (a) Given in the appendix.

 (b) Similar arguments as in Proposition 2.5. □

Proposition 2.8: Consider the task assignment problem under zero cost functions with n

customers. Let maxk be the maximum number of operations required by any customer

(i.e., { }|)(|max iKI
i

) and maxj be the maximum number of available tasks for any

customer (i.e., { }|)(|max iJI
i

). If there are only latest start time restrictions for all

operation k, the following statements are true:

a) Algorithm 4 (its logic is given below) solves the problem under a no-waiting

assumption in O(n|K|kmaxjmax)

b) The problem under a no-waiting assumption is infeasible if and only if the

problem under a waiting allowance is infeasible.

Logic of Algorithm 4: In the initialization part, the algorithm finds the minimum

possible completion time for the given customer sequence (by selecting tasks with

minimum duration) and assigns this length as a candidate completion time. The

algorithm begins with the first customer and follows the customer order in the sequence.

For each customer, it finds the required operations. (An operation is required if the latest

start time is earlier than the candidate completion time.) The algorithm checks the time

that the resource is available for that customer. If the time is earlier than the latest start

time of all required operations, the algorithm chooses a minimum duration task that

 32

contains all of the required operations; otherwise, the problem is infeasible. The

algorithm updates the candidate completion time (by summing up the duration of selected

tasks) and rescans all of the customers. It stops if either infeasibility is found or if there

is no change in the candidate completion time. The detailed pseudo code is given in the

appendix.

Proof: (a) Given in the appendix.

 (b) Similar arguments as in Proposition 2.6. □

2.5.3 Task assignment problem with equal process times

In the task assignment problem, a task selection for one customer affects the other

ones because of different process times. The start times for each customer are

determined by the earlier task decisions. In addition, the completion time of the sequence

depends on all of the selections.

However, if all process times are equal, neither the start times of the customers

nor the completion time depend on the task selections. Therefore, the problem becomes

easy to solve.

Proposition 2.9: Consider the task assignment problem under a no-waiting assumption

with n customers. Let maxk be the maximum number of operations required by any

customer (i.e., { }|)(|max iKI
i

) and maxj be the maximum number of available tasks for

any customer (i.e., { }|)(|max iJI
i

). If all the process times of all tasks of each customer

are equal, the problem is solvable in O(nkmaxjmax) for general cost functions.

Proof: Since all the process times of all the tasks for each customer are equal, the start

time for each customer and the total completion time are known. Therefore, we can

calculate the cost of selecting each task. The optimal solution is the selection of tasks

with minimum cost for each customer.

 33

The cost calculation of any task has to consider up to kmax operation. Then, we

have to choose the task with minimum cost among O(jmax) tasks. For n customers, the

selection of all tasks with minimum costs will take O(nkmaxjmax) time.

2.6 SHORTEST PATH APPROACH

In this section, we develop an alternative formulation for the task assignment

problem by using shortest path algorithms (see Dijkstra, 1959; Dial, 1969; Johnson,

1977; Ahuja et al., 1991). In the classical shortest path problem, we know the arc lengths

in advance. However, the arc lengths in this problem are defined only after the total

service time (completion time) of the sequence is calculated.

Here, we represent the task assignment problem in the time-space network. In

this network, each node denotes the specific customer and that customer’s visitation time,

and denoted as (i, t) where i ∈ I and t ∈ T. The first node is denoted as (1, 0) and

represents the first customer at time 0. The network also has (n+1, t) and sink nodes for

structural purposes.

In this graph, there is an arc from (i, t) to (i + 1, t + δj) where δj is the duration of

task j for each j ∈ JI(i) and i ∈ I and t ∈ T. Moreover, there is an arc from each (n+1, t)

node to the sink node for each t ∈ T.

In the case where waiting is allowed, there is an additional arc from (i, t) to (i, t +

1) for each j ∈ JI(i) and i ∈ I and t ∈ T.

 In the following example, the problem has three customers and each customer

has two tasks. The durations of the tasks are given in Table 2.1.

 34

Customers

1 2 3

Tasks
1 1 1

2 3 1

Table 2.1. Durations of the tasks for each customer

Figure 2.1 represents the time-space network of this instance, assuming that the

maximum completion time is 6.

If waiting is allowed, the network has extra arcs and nodes compared to the

network under the no-waiting assumption. In Figure 2.1, the arcs from (i, t) to (i, t + 1)

are the extra arcs, and the shaded nodes are the extra nodes.

Figure 2.1. Time-space network of given example

Time

 1 2 3 4

t = 0 1,0

t = 2

t =1

t = 3

t = 4

t = 5

2,1

2,2 3,2

3,3

3,4

t = 6

3,5

4,3

4,4

4,5

4,6

Sink

Customers

2,3

2,4

1,2

1,3

1,1

 35

In the task assignment problem, the arc from customer i to customer i + 1 has a

cost which is equal to the total cost of the operations required by customer i. The cost for

each operation depends on the completion time and the cost structure for each operation k

∈ K in the following way for a given completion time h:



 +

=
otherwise

 at time done isoperation theIf
),(

kh

kthkt

c

tfc
tkc

h ∈ H is a candidate completion time for the task assignment problem. Clearly, the

actual completion time is not known at time t.

Let cjit be the cost of an arc from (i, t) to (i + 1, t + δj) for each j ∈ JI(i) at time t.

This arc represents the selection of task j for customer i at time t. Furthermore, let KI(i)

be the set of operations for customer i and KJ(j) be the set of operations for task j. If

there are no time window constraints, then the following expression calculates the cost of

an arc cjit for a given completion time h:
 ∑∑

∈∈

++=
)(\)()(

)(
jKJiKIk

kh
jKJk

kthktjit cfcc

The first summation is the cost of the operations that are done at time t, and the second

summation gives the cost of the skipped operations. (The costs of arcs from nodes (n + 1,

t) to sink node are zero.) For the sake of simplicity, we did not consider waiting time

costs here, but they can be easily incorporated by attaching cost to arcs that go from (i, t)

to (i, t + 1).

In the case of the time window constraints, the earliest start time constraint for

performing operation k is violated if we perform this operation earlier than its earliest

start time, γk. Similarly, the latest start time constraint for performing operation k is

violated if we do not perform this operation within βk time unit. Therefore, we can delete

the arc cjit from the graph under one of the following conditions for a given completion

time h:

 36

•)(for If jKJktk ∈>γ

•)(/)(for or)(for If jKJiKIkhjKJkt kk ∈<∈< ββ

The task assignment problem finds a path of minimum cost from the node (1,0) to

the sink node assuming that each arc has an associated cost cjit, where j ∈ JI(i), i ∈ I and t

∈ T. Recall that the value of the cost cjit is not known at time t since the actual

completion time is not known, whereas it is a priori known in the classical shortest path

problem.

We can calculate the arc costs if we know the completion time, and if we know

the arc costs, we can solve the problem by using the shortest path routine. Therefore, we

solve this problem for each candidate completion time h and take the minimum valued

shortest path solution. The following is a generic scheme for this algorithm:

Algorithm for the shortest path approach

0. Set optimalvalue = ∞, optimalsolution = empty

1. For each candidate completion time h ∈ H do

2. Hold the arc originating from node (n + 1, h) to sink node and delete all the

 remaining arcs terminating at sink node

3. Delete all the arcs that have an incoming node with a time index greater than h

4. Calculate the arc costs with respect to completion time h

5. Solve the shortest path problem for the resulting network

6. If the current shortest path value is less than optimalvalue

7. optimalvalue = current shortest path value

8. optimalsolution = current shortest path solution

9. End For

 37

Another way to solve this problem is by duplicating the network for all candidate

completion times and solving one big shortest path problem. However, this approach

requires more memory than the proposed algorithm above.

The computational performance of the algorithm relies heavily on the number of

arcs in the shortest path routine and the number of candidate completion times. Although

the algorithm deletes the unnecessary arcs for candidate completion time h in step 2 and

3, we can do better than that.

We can improve the computational performance of the algorithm by tightening

the time window for each customer. This will decrease the number of arcs so that the

shortest path routine becomes faster. If we can tighten the time window of the last

customer, this will also decrease the number of candidate completion times. The time

window calculations of the customers were described in Section 1.3.

 We can also make some improvements to the network for a given completion

time. We can delete the unnecessary arcs and nodes in the shortest path graph using the

following methods: 1) Changing the direction of the arcs. 2) Finding all the reachable

nodes from the sink node. 3) Deleting all the nodes that are not reachable from the sink

node.

This will give us a tighter graph. However, it is an expensive method to consider

unless the cost calculations take too much time.

These procedures will decrease the size of the network and hopefully increase the

performance of the algorithm.

Proposition 2.10: Algorithm shortest path approach solves the task assignment problem.

Proof: In step 2 of the algorithm, there is only one arc left that goes to the sink node. If a

feasible solution to the task assignment problem has a completion time h, this solution

could appear as a path in only one shortest path problem, which would contain the arc

 38

from node (n + 1, h) to the sink node. Therefore, the shortest path value of this solution

equals the objective value of the task assignment problem.

If there is a feasible path in any shortest path routine, this path satisfies flow

conservation constraints and time window constraints (recall that arcs that have violations

are already deleted). Since it only appears in one shortest path routine, the cost functions

of the operations are calculated correctly. As a result, it is a feasible solution to the task

assignment problem with the same objective value. Similarly, if there is a feasible

solution to the task assignment problem with completion time h, this solution will appear

as a feasible path in only one shortest path routine, which would contain the arc from

node (n + 1, h) to the sink node. As a result, it is a feasible path in one shortest path

routine with the same objective value. This concludes that the algorithm shortest path

approach solves the task assignment problem. □

When the network is constructed for the shortest path approach algorithm, that

network is acyclic, so topological ordering is available. In fact, from the lower time

index to the higher time index gives the topological ordering.

According to Ahuja et al. (1993, pp.108), “The reaching algorithm solves the

shortest path problem on acyclic networks in O(m) time,” where m denotes the number of

arcs in the network.

Corollary 2.11: Let maxk be the maximum number of operations required by any customer

(i.e., { }|)(|max iKI
i

) and tmax be the latest time in t ∈ T. The shortest path approach

algorithm solves the task assignment problem in O(2
max

maxtnk).

Proof: There are at most tmax candidate completion times. For each of them, we need to

solve the shortest path routine. In each shortest path problem, there are n customers, and

each customer has at most tmax arcs. Therefore, there are at most ntmax arcs. Also, the

calculation of an arc cost will take O(kmax) time. As a result of the proposition in Ahuja

 39

et al. (1993), each shortest path problem will take O(kmax n tmax) time. Since we need to

solve at most tmax shortest path problems, the shortest path approach algorithm solves the

task assignment problem in O(2
max

maxtnk). □

2.7 COMPUTATIONAL RESULTS

We calculated the computational performance of the proposed shortest path

approach and the IP model formulation through 75 randomly generated test cases. The

proposed shortest path approach was programmed in C++, and the IP model uses ILOG

OPL Development Studio 5.2. The tests were taken on an Intel Pentium M notebook

computer with 1.73 GHz and 1.00 GB of RAM and a Windows XP operating system.

As an objective function, we chose a total weighted tardiness criterion that is

commonly used in many areas, such as machine scheduling and after-market repair

services. In this criterion, each operation has a due date and a per day penalty for each

time period after the due date. The amount of per day penalty for each operation equals

its weight, and the weight of the operation is uniformly assigned on a scale of 1 to 40.

Since the objective has a specific function, we reformulated the problem (given in

Section 3) in a more compact way. (See appendix for details.)

In the numerical analysis, we set the parameters for the number of customers,

operations and tasks. The relationship between an operation and a task is randomly

assigned, and there is a 50% chance to assign the operation to the task. We ensure that all

the operations are assigned to at least one task. The processing time of each task depends

on the number of operations included by that task. For each operation included in the

task, numbers from 1 to 6 are uniformly assigned, and the summation of these numbers

equals the duration time of that task.

 40

The due dates of the operations for a particular customer are uniformly calculated

from an interval. The middle point of this interval is equal to the average duration time

of all tasks multiplied by the order number of that customer in the sequence. The lower

bound of this interval is half of the interval’s middle point, and the upper bound of this

interval is equal to one and a half times the interval’s middle point.

Number of Average Number of

Average CPU Time

(second)

Customers Operations Tasks Variables Constraints IP Model Shortest Path

5 1 2 93.6 76.2 0.24 0.01

10 1 2 527.4 422.6 0.42 0.01

15 1 2 1143 907.8 0.76 0.01

20 1 2 1963.4 1536.6 1.72 0.01

25 1 2 2973.6 2337.4 3.54 0.02

5 3 6 804 534 0.67 0.01

10 3 6 4270.6 2674.6 17.68 0.04

15 3 6 9987 6139 121.30 0.10

20 3 6 18054.6 11020.6 630.69 0.27

25 3 6 29792.2 17973.2 2400.36 0.59

5 5 10 1718.2 1108 1.72 0.04

10 5 10 8031.8 5011.4 41.40 0.18

15 5 10 22373.8 13300 981.74 0.43

20 5 10 37878.2 22931 >3600 0.77

25 5 10 N/A N/A N/A 1.68

Table 2.2. Comparison of the shortest path approach and IP model formulation

 41

Table 2.2 reports the corresponding CPU times for solving instances via the

proposed shortest path approach and the IP formulation with respect to the number of

customers, operations and tasks. It also shows the number of constraints and variables in

the IP formulation.

Each observation listed in Table 2.2 is the average result from 5 randomly

generated test cases. As we can see, the number of operations and tasks has a major

impact on the required computational time, both in the proposed shortest path approach

and the IP model. However, the shortest path approach requires significantly less time

than the IP model. When the number of customers n becomes larger, OPL was

terminated because of either the one-hour time limit or because of insufficient memory.

0

200000

400000

600000

800000

1000000

1200000

0 500 1000 1500 2000

Horizon length

O
p

ti
m

al
 v

al
u

e

Figure 2.2. Optimal value vs. Completion time graph of a randomly generated instance
with 100 customers, 5 operations and 10 tasks

In Figure 2.2, we plot the optimal value vs. completion time graph of a randomly

generated instance with 100 customers, 5 operations and 10 tasks. Unfortunately, there

are some local optimal solutions in this function that prevent us from performing binary

or golden section searches.

 42

2.8 CONCLUDING REMARKS

In this chapter, we considered a service management problem with a fixed

customer sequence under time window and multiple operation requirements. We proved

that this problem is NP-Hard. We analyzed the special case structures and proposed

polynomial time algorithms for these special cases. We developed an alternative

algorithm based on the shortest path approach and solved the problem effectively. The

proposed shortest path approach algorithm is valid for general cost functions, because the

algorithm does not make any assumptions on the objective function. Computational

results show that this shortest path approach is much faster than the IP formulation solved

in OPL.

This work can be extended in several directions. The problem we considered here

is an operational level problem in which there are also strategic and tactical level

decisions. At the strategic level, we may have multiple resources and want to partition

the customers to those resources. At the tactical level, the focus is on finding the optimal

route. Another extension would be multiple visitations of the same customer. In that

case, task selection does not only affect the other customers, but also affects the other

visitations of the same customer.

 43

Chapter 3: Periodic Task Assignment Problem

3.1 INTRODUCTION

In this chapter, we extend the task assignment problem and allow for multiple

appearances of the same customer in the given sequence. We consider the service

scheduling problem in which each customer requires operations that should be performed

periodically, and we assume that performing each operation has a time-varying

completion cost that depends on the previous service time. Recall that in the task

assignment problem, the service provider can choose more than one operation to perform

for each customer, but some of the operations cannot be done together for technical

reasons. A task refers to a combination of operations that can be performed together.

We refer to each successive customer visit as a step in the sequence and consider a

problem that assigns one task to each step, and we refer to the problem as a periodic task

assignment (PTA) problem.

The assumptions we make for this problem are similar to those we made for the

task assignment problem. We study the periodic task assignment problem with a single

resource and a fixed sequence of customers, each of which can appear multiple times in

the given sequence. We also assume that no partial service is allowed (no preemption).

In Chapter 2, we studied the problem in which each customer appears once in a

sequence. To put it more accurately, the problem considers an operation type that should

be done only once. In other words, if the same customer appears multiple times in the

sequence but the operations in each appearance are different, we can treat these

appearances as if they belong to different customers. Hence, we can use the proposed

algorithms in Chapter 2 to solve this problem.

In the periodic service type, the customers require the same operations multiple

times. We consider the cost function and the time window relative to the last

 44

performance of the same operation. Each operation has a so called relative time window,

which means that the earliest and the latest start times depend on the previous execution

time of that operation. Therefore, the time windows are relative to the decision maker’s

previous assignments. If all of the customers appear once in the sequence, this problem

coincides with the problem we studied in Chapter 2, and we can use the same techniques

to solve the problem. However, shorter sequences without customer repetitions could

cause myopic decisions, but longer sequences with customer repetitions prevent us from

making decisions that affect later steps undesirably.

In this chapter, we consider the operational level periodic task assignment

problem that assigns one task to each step and its corresponding customer and requires

the following inputs:

• a sequence with m steps,

• the possible tasks for each customer,

• the processing time for each possible task for every customer,

• the cost function and relative time window parameters for each operation, and

• the last execution date for each operation.

The planner determines which among the possible tasks to perform in each step. We

require a plan that completes all of the steps in the given sequence while minimizing the

general cost function of all operations.

The periodic task assignment problem has unique characteristics. First of all,

each customer requires multiple operations with different time windows and general cost

functions. The cost of an operation can take any value if it is done within the time

window and takes a value of infinity otherwise (time windows are hard). Moreover, the

previous decisions of the same customer determine the future time windows. Hence,

there is no explicit time window for tasks as there is in the single visit case. In an optimal

 45

solution, the assignment would choose a time that balances the cost functions of all

operations and does not violate relative time windows. Furthermore, the total cost of a

step is affected not only by the decisions made for the earlier steps but also by the

decisions made for the later steps because of the structure of the cost function.

In this chapter, we analyze several fundamental properties of the periodic task

assignment problem. We prove that the problem is NP-Hard in the strong sense and

show the computational complexity of some special cases. We formulate the problem as

a discrete time indexed network flow.

The remaining part of the chapter is organized as follows: Section 2 gives the

relevant literature review, and Section 3 formulates the problem as a discrete time

indexed network flow. In Section 4, we prove that the periodic task assignment problem

is NP-Hard in the strong sense, and Section 5 concentrates on the special case structures.

Section 6 discusses the valid cuts and Section 7 describes the preprocessor algorithm that

reduces the problem size. Finally, we offer the conclusion and discuss future extensions

of this study in Section 8.

3.2 LITERATURE REVIEW

The periodic task assignment problem may appear in many contexts, such as

multi-product lot sizing, machine maintenance, and telecommunications. The problem

where the order of customers is not given but functions instead as a decision variable has

received some attention. In the remainder of this study, we refer to the variant of the

PTA problem where the order of customers is considered to be a decision variable as the

sequencing and periodic task assignment (SPTA) problem. Although the SPTA problem

seems to be an extension of the PTA problem, we can write the SPTA problem as a

 46

special case of the PTA problem in some circumstances. We will discuss this situation at

the end of this section.

Anily et al. (1998) consider the special case of the SPTA problem in the context

of scheduling preventive maintenance for a set of machines over an infinite horizon.

Here, the machines are the customers, and servicing a machine means performing

maintenance. The authors assume that each machine requires a single maintenance

operation, and all the processing times are equal. That is, only one machine can receive

maintenance in a given period, and the maintenance will be done within the given period.

Another application they consider, which falls into the same problem framework, is the

multi-item replenishment of stock. In this problem, only one item stock may be

replenished at a time. In Anily et al. (1998), the cost of operating a machine in a period is

a linear (increasing) function of the number of periods since its last service. They assume

no setup cost for performing the maintenance. They show that there is an optimal

maintenance schedule that is cyclic, and they present a polynomial time algorithm to

compute optimal policies for a two-machine case. They also present heuristics and worst

case bounds (2.5-approximation if the linear cost function starts from zero and 2-

approximation if the linear cost function starts from one) for a general number of

machines. To date, it is not clear whether the problem considered in Anily et al. (1998) is

NP-Hard.

In Anily et al. (1999), the authors consider the problem given in Anily et al.

(1998) under the additional assumption that there are only three machines. In this work,

the authors introduce an algorithm that solves certain instances of the problem optimally,

and for other instances, they present a heuristic with a worst case performance ratio of

1.033.

 47

Anily and Bramel (2000) study the problem given in Anily et al. (1998) under

convex cost functions. They show that there is an optimal schedule that is cyclic for a

general number of machines, and in the case of two machines, they show that there exists

an optimal policy, whose closed form can be either predetermined or is one of up to four

possible forms.

Grigoriev et al. (2006) work on the problem given in Anily et al. (1998),

assuming a finite completion time. They investigate several formulations (linear and

nonlinear) and propose a column generation method to solve the problem exactly. They

show that the subproblem for the column generation procedure is solvable in polynomial

time.

Similar types of problems appear in Holte et al. (1992), Mok et al. (1989), and

Wei and Liu (1983). Holte et al. (1992) consider the problem where the length of time

without maintenance has an upper bound for each machine. Mok et al. (1989), and Wei

and Liu (1983) assume that the exact maintenance intervals for each of the machines are

given; the problem is to minimize the number of resources needed for a feasible schedule.

Duffuaa and Ben-Daya (1994), and Hariga (1994) study the maintenance scheduling

problems that concentrate on the coordination of a common resource to maintain a set of

machines. A review of preventive maintenance scheduling problems can be found in

Dekker et al. (1997).

Bar-Noy et al. (2002) and Kenyon et al. (2000) generalize the problem given in

Anily et al. (1998). They consider that at most k items out of the m items can be serviced

in each period, and they apply the problem to data broadcast scheduling. Broadcasting is

an efficient means of disseminating data in asymmetric communication environments,

such as satellite access to internet or car navigation systems. Typically, the down link

(e.g., from satellite to personal computers) has greater bandwidth and is faster than the up

 48

link (e.g., phone lines). In these situations, broadcasting protocols reduce the server load

and do not manage the client requests individually. In these protocols, data are scheduled

for broadcasting continuously and one (or k) of them is broadcasted at a time. The clients

wait for the requested data to be broadcast, so the schedule is independent of the

incoming requests. Acharya (1998) and Schabanel (2000) present a very complete

history of the field.

Bar-Noy et al. (2002) prove that the problem is NP-hard, even for k = 1, if there is

an additional setup cost for maintenance. Further, they investigate lower bounds and

propose approximation algorithms for the case k = 1, based on the properties of Fibonacci

numbers. The worst case bounds of the proposed heuristics are 9/8 in the case when

there is no fixed cost, and 1.57 when there is a fixed cost. They also prove that a greedy

algorithm used in Anily et al. (1998) has a worst-case bound of 2. In Kenyon et al.

(2000), the authors improve the 9/8 result (for no fixed cost case) by giving a polynomial

time approximation scheme, which is ε-approximation for any ε > 0. Finally, Kenyon

and Schabanel (2003) work on the problem with non-identical service times under no

fixed cost. They prove that the problem is NP-hard even if the broadcast costs are all

zero and give randomized 3-approximation algorithms for the case k = 1.

The problems considered as a version of the SPTA problem can be written as a

special case of the PTA problem. For instance, the problem in Anily et al. (1998) can be

seen as an infinite sequence that consists of only one customer. Here, the set of the

machines are operations, and we can only do one operation at a time in each period. That

is, all the tasks contain one operation, and their processing times are equal. In the

extension where k items can be serviced at a time, we can define tasks that consist of, at

most, k operations. As long as the k is given, the transformation takes polynomial time.

Therefore, the following observations are true:

 49

Literature results 3.1: Consider the PTA problem with a cyclic sequence consisting of

only one customer that requires a number of operations. Assume that each task contains

one operation and each operation is in one task. Under these conditions, the following

observations are true:

a) If the cost function increases linearly (cumulative cost function is quadratic) with

respect to time since the operation’s last service and all the processing times of

the tasks are equal,

a1. If there is no fixed cost, then the heuristic given in Kenyon et al. (2000),

has a polynomial time approximation scheme which is ε-approximation for

any ε > 0.

a2. If there is a fixed cost, then the heuristic given in Bar-Noy et al. (2002)

has a worst bound of 1.57.

b) If the cost function increases linearly (cumulative cost function is quadratic) with

respect to the time since the operation’s last service, and the processing times of

the tasks can be non-identical, then the heuristic given in Kenyon and Schabanel

(2003) has a worst bound of 3.

c) If the cost function is an increasing convex function with respect to time since the

operation’s last service, and all the processing times of the tasks are equal, then

for the case of two operations, there exists an optimal policy, the closed form of

which can be either predetermined or is one of up to four possible forms. (Anily

and Bramel, 2000.)

Later on, we will see that polynomial time ε-approximation is impossible for any

ε > 0 in the general PTA problem.

 50

3.3 PROBLEM DEFINITION

The problem that we study is a generalized version of the problem in Chapter 2.

We consider a single service resource and a fixed sequence of customers, denoted as S =

{1,…,s,…,m} where m denotes the total number of steps (visitations) in the sequence

with a dummy step at the end. A sequence can consist of multiple cycles or tours through

the same customers and as such, can include the same customer multiple times. We refer

to each successive visited customer as a step in the sequence. The customers form the set

I = {1,…,i,…,n} where n denotes the total number of customers. Here, each step has an

associated customer, but a customer may have more than one associated step if the

customer appears more than once in the sequence. Also, tmax refers to the latest possible

start (and end) time for the last step (i.e. step m), and T is the ordered set of time periods

to be considered, T = {1 … tmax}.

Each customer i∈I requires a set of operations KI(i), and each operation, indexed

as k, has a specified relative time window [ζk, ηk] within which the service is feasible.

This means that the next execution of the same operation has an earliest start time ζk, and

the latest start time ηk with respect to the current start time of the same operation. The

latest start time is effective only if the completion time is greater than the latest start time.

In addition, if this operation was done t units of time before the starting time of the given

sequence, then the first execution of the operation has an earliest start time γk, and a latest

start time βk, where γk = ζk - t, and βk = ηk – t.

Figure 3.1 gives the graphical representation of the relative time window

(separation) parameters. In this figure, the area between t = 1 and t = 3 represents the

desired times at which the operation should be performed, and the areas between t = 0

and t = 1, and t > 3 show the outside of the strict time window.

 51

Figure 3.1 Relative time windows (separation) for operation k.

Each step allows a set of tasks JS(s) and each task, indexed as j, includes a set of

operations KJ(j) and requires a duration δj in which the service is performed. We define

tasks for each step rather than for each customer to make the problem more flexible.

Doing so, a customer may have different task alternatives in different steps. In this

chapter, we are interested in strict time windows, but in practice, a violation of the time

window constraints may be acceptable with a high penalty. Depending on the tasks

performed at each step, the completion time of the last step may vary. Among the time

periods in T, let h be a possible cycle completion time to complete all steps and H be the

set of possible cycle completion times. In this notation, H is the subset of T and h ≤ tmax.

 For each customer, the planner tries to honor the relative time window

requirements of operations and accomplishes the operations by executing the available

tasks. Let K be the set of all operations for all customers and JK(k) be the set of all tasks

that contain operation k. At minimum, each operation k∈K has the following attributes:

γk Earliest start time for the first execution of operation k

t = 0

βk

 time

γk

ζk

ηk

Last execution of
the operation

t = 1 t = 3

 52

βk Latest start time for the first execution of operation k

ζk Subsequent earliest start time (minimum separation) will be ζk time after the first

execution of operation k

ηk Subsequent latest start time (maximum separation) will be ηk time after the first

execution of operation k

λk Maximum number of executions that can be performed on operation k. One of

the upper bounds for this parameter is the total number of visitations of the

customer that requires operation k. (We will investigate this parameter further in

Section 6.)

g(k, t) The cost between two consecutive executions of operation k, where t is the

elapsed time between these executions under the following conditions:

• If the operation is not done during the sequence, then t = h+ζk−γk. Therefore,

the cost g(k, h+ζk−γk) will occur where h represents the completion time, h ∈

H.

• If the operation is executed the first time at time r, then t = r+ ζk−γk.

Therefore, the cost g(k, r+ζk−γk) will occur.

• If the operation is executed at time r and the previous execution of this

operation is at time rp, then t = r−r p. Therefore, the cost g(k, r−rp) will occur.

• If the operation is executed last time at time r, then t = h−r . Therefore, the

cost g(k, h−r) will occur.

We also calculate the time window of stepSs∈ , represented as TS(s), to reduce

the problem size. The periodic task assignment problem defines the relative time

windows for each operation. We can use these time windows (and task processing times)

to develop time windows for each step. The detailed logic for the time window

calculation of steps is given in Section 3.7.

 53

In this structure, we assume that all steps in the sequence must be visited and that

the specified maximum number of time periods (tmax) in the horizon is sufficient to

complete all steps. The optimization problem outlined above can be formulated as a

discrete time indexed network flow problem.

Decision Variables:

Xjt =1 if we start task j at time t, and 0 otherwise, for all s = 1 … m, j ∈ JS(s), t ∈ T

Ykpt = 1 if an operation k is performed for the pth time at time t for ,Kk ∈ Tt ∈ ,

kp λ≤≤1

Ukh = 1 if no tasks containing operation k are performed during the horizon with

length h for ,Kk ∈ h ∈ H

Wkpt = 1 if t periods elapse from the pth time performing operation k to the (p+1)th time

performing operation k for ,Kk ∈ Tt ∈ , kp λ<≤1

Vkt = 1 if t periods elapse from performing operation k the last time to the end of the

horizon. t = h − r if the completion time is h and operation k is performed at time

r for the last time for all ,Kk ∈ Tt ∈

Zh =1 if the last step m starts in period h, 0 otherwise for all h ∈ H

– called the exit indicator variable

The Zh variables are defined merely for convenience and to simplify the

representation. We can adequately formulate the problem without these variables.

Model Formulation:

Minimize

∑∑∑ ∑ ∑∑∑∑∑
∈ ∈∈ <≤ ∈∈ ∈∈ ∈

++−++−+
Kk Tt

kt
Kk p Tt

kpt
Kk Tt

tkkk
Kk Hh

khkk VtkgWtkgYtkgUhkg
k

),(),(),(),(
1

1
λ

γζγζ

 (1)

subject to:

 54

Task assignment for first step
 1

)1()1(

=∑ ∑
∈ ∈JSj TSt

jtX (2a)

Flow conservation constraints
 ∑ ∑∑

∈ ≥−∈
− =

)('
'

)1(
,

sJSj tt
jt

sJSj
tj XX

jδ for s = 2, … m, t ∈ TS(s) (2b)

Exit indicator
 h

mJSj
jh ZX =∑

∈)(

 for h ∈ H, (3)

Earliest start time for the first execution of each operation

 0
},...,1{)(},...,1{'

' ≤− ∑∑ ∑
∩∈∈ ∈ Hth

h
kJKj tt

jt ZX for k ∈ K, t ∈ {1,2, .. γk-1}, (4a)

Latest start time for the first execution of each operation

 1
)(},...,1{},...,1{'

' ≥+∑ ∑∑
∈ ∩∈∈kJKj Hth

h
tt

jt ZX for k ∈ K, t ∈ { βk, .. tmax}, (4b)

Subsequent earliest start time (minimum separation) for each operation
 1

},...,1{)(},...,{'
' ≤− ∑∑ ∑

∩∈∈ −∈ Hth
h

kJKj ttt
jt ZX

kζ
 for k ∈K, t ∈ T \ {1,..., ζk}, (5a)

Subsequent latest start time (maximum separation) for each operation
 1

},...,1{)(},...,{'
' ≥+ ∑∑ ∑

∩∈∈ −∈ Hth
h

kJKj ttt
jt ZX

kη
 for k ∈ K, t ∈ T \ {1,…, ηk}, (5b)

Detection of done operations
 ∑∑

≤≤∈
=

kp
kpt

kJKj
jt YX

λ1)(

 for k ∈ K, t ∈ T, (6)

Time elapses between consecutive executions of each operation

)'(')1(1 ttkpkpttpk WYY −+ ≤−+ for k ∈ K, t ∈ T, tt ≤' , (7)

Time elapses after last time execution of each operation
)(

'
'

1 '
'

1 '
' 1 thk

Tt
kpt

p Tt
kpt

p tt
kpth VYYYZ

kk

−
∈≤≤ ∈≤≤ ≤

≤−+−+ ∑∑ ∑∑ ∑
λλ

 for k ∈ K, h ∈ H, Tt ∈ , (8)

Detection of not done operations

 55

kh
Tt

tkh UYZ ≤−∑
∈

1 for k ∈ K, h ∈ H, (9)

Each operation can be performed pth time once
1=∑

∈Tt
kptY for ,Kk ∈ kp λ≤≤1 , (10)

pth time is done earlier than (p+1)th time

∑∑
≥

+
≤

≥
tt

tpk
tt

kpt YY
''

'')1(
'

' for ,Kk ∈ Tt ∈ , kp λ<≤1 (11)

Integrality

1or 0,,,,, =hkptjtkptktkh ZYXWVU for j ∈ J, t ∈ T, k ∈ K, h ∈ H. (12)

The objective function (1) minimizes the total penalty with four terms. The first

term is the penalty for operations that are not performed, while the second one is the first

execution of operations. The third cost holds the consecutive execution of operations.

Finally, the last cost calculates the penalties after the last execution of the operation.

Constraint (2a) assigns a task for the first step and (2b) shows flow conservation

constraints. If there is a no-waiting assumption, we can write the right hand side of (2b)
constraints as ∑

∈)(iJIj
jtX . Constraint (3) determines the exit time. Although this model is

written to complete all the steps in the route and the completion time is varying, we can

easily incorporate the fixed time horizon approach (not necessarily complete all steps)

with a little modification to the formulation.

Constraints (4a) and (5a) define the first and subsequent earliest start times

(minimum separations), whereas constraints (4b) and (5b) define the first and subsequent

latest start time (maximum separations), respectively. Constraint (6) detects how many

times the operations are done and when they are done. Constraint (7) calculates the time

elapsed between consecutive executions of each operation and (8) measures the time

elapsed after the last execution of each operation. Constraint (9) detects operations that

were not done. Constraints (10) and (11) are technical constraints that set the precedence

 56

relations of Y variables. Finally, constraint (12) is for integrality requirements. (We did

not consider waiting time costs here for the sake of simplicity, but they can be easily

incorporated to our formulation.)

In the next two sections, we deal with the computational complexity and the

special case structures of the periodic task assignment problem.

3.4 NP HARDNESS OF THE PERIODIC TASK ASSIGNMENT PROBLEM

The Periodic Task Assignment [PTA] problem is in the category of difficult

problems, or so-called NP-Hard problems, because it is a generalization of the task

assignment problem. Although the task assignment problem could be solvable in pseudo-

polynomial time (NP-Hard in the ordinary sense), the PTA problem is even harder than

that. In fact, the well-known 3-partition problem can be written as an instance of the

PTA problem.

The 3-partition problem is NP-Hard in the strong sense (Karp, 1972; Garey

&Johnson, 1979). We will show that the 3-Partition problem can be polynomially

reducible to the PTA problem, but first we will give the definition of the 3-partition

problem.

3-Partition: Given positive integers a1,…,a3q, b such that

24

b
a

b
j <<

and

qba
t

j
j =∑

=

3

1

.

Do there exist q pair-wise disjoint 3 element subsets }3,..,1{ qSi ⊂ such that

ba
iSj

j =∑
∈

 for i=1,…q?

 57

Proposition 3.2: The 3-Partition problem is polynomially reducible to a periodic task

assignment problem [PTA].

Proof: We represent the 3-Partition problem as an instance of the PTA problem. We take

the following sequence as a PTA instance:

• A sequence consisting of 2 different customers: Customer A and customer B.

The smallest cycle in the sequence consists of 3B and 1A customers (B customers

are the first ones). The sequence consists of q cycles with a number of steps m =

4q.

• Customer A requires only one operation, and customer B requires 3q operations.

• Each operation is included in only one task, and each task includes only one

operation.

The construction of the PTA instance:

• The duration time for performing task j for customer A is zero.

• The duration time for performing task j for customer B is aj, j = 1, 2, …,3q.

• ζk = qb+1 for all operations k of customer B and b for an operation k of customer

A.

• ηk = 2qb+2 for all operations k of customer B and b for an operation k of

customer A.

• γk = 0 for all operations k of customer B and b for an operation k of customer A.

• βk = qb+1 for all operations k of customer B and b for an operation k of customer

A.

B B B A ----------------------------- B B B A

First cycle

q cycles

 58

• g(k, t) is zero for all operations k and time t. In other words, the problem is a

feasibility problem.

We make the following observations about this PTA problem instance:

• γk = βk = b for the operation of customer A. Therefore, each cycle length is b in

the feasible solution. As such, the completion time will be qb.

• ζk = qb+1 for the operations of customer B. Since the subsequent earliest start

time for the operations of customer B is greater than the completion time, each

task could be selected only once. We have 3q customer B in the sequence and 3q

operations (a one-to-one relationship with their corresponding tasks). This means

that each task should be selected once (otherwise, at least one of the tasks will be

selected more than once). In other words, each duration time aj, j = 1, 2, …,3q

appears only once.

• We know that qba
t

j
j =∑

=

3

1

 and we have q cycles. If the summation of the task

durations of 3-customer B in one cycle is less than b, there will be another cycle

where the summation of durations of 3-customer B in that cycle is greater than b.

However, we have ηk = βk = b as the latest start time for the operation of customer

A. These constraints are hard constraints and make that solution infeasible. (A

similar argument could also be obtained by using the earliest start time for the

operation of customer A.) In order to get a feasible solution, the summation of the

task durations of 3-customer B in each cycle should be exactly b.

• Since qba
t

j
j =∑

=

3

1

, there is no waiting in the feasible solution, even if the waiting is

allowed.

 59

Therefore, the feasible solution should account for the fact that the summation of

the durations of 3-customer B in each cycle should be exactly b and each duration time aj,

j = 1, …,3q appears once.

Since each set, index and parameter in the PTA has at most O(q) items, the

reduction will take polynomial time.

Corollary 3.3: The following problems are NP-Hard in the strong sense:

a) Periodic task assignment problem

a1. Periodic task assignment problem with only latest start time constraints

a2. Periodic task assignment problem with only a general cost function

(without time windows)

b) Periodic task assignment problem under a no-waiting assumption

b1. PTA problem under a no-waiting with only earliest start time constraints

b2. PTA problem under a no-waiting with only latest start time constraints

b3. PTA problem under a no-waiting with only a general cost function

(without time windows)

c) Periodic task assignment problem with customer-wise time window constraints

(rather than operation-wise time window constraints) for both waiting allowance

and no-waiting assumption

Proof: (a) Based on the construction in Proposition 3.2, there is a feasible solution with

an objective value of zero in this PTA problem if and only if the 3-partition has a

solution. That’s why we can conclude that the PTA problem is NP-Hard in the strong

sense.

(b) Since all feasible solutions require no waiting, the result immediately follows from

part (a).

 60

(c) In the instance construction, all the operations of each customer have the same time

window, so the result immediately follows from part (a) and (b).

(b1) During the construction of the PTA instance with 3-Partition parameters in

Proposition 3.2, choose the subsequent earliest start time parameters (ζ) for the operations

of customer B that are large enough so that each operation of customer B will be done

just once. This makes the completion time qb, and the rest of the proof is similar. The

conclusion follows from part (b).

(a1 and b2) In the construction of the PTA instance with 3-Partition parameters in

Proposition 3.2, define another customer, say customer C, with duration b. At the end of

the original sequence, add customer C and A q times:

This construction will force each operation of customer B to be performed once.

(Completion time is at least qb, and “not done” operations make the problem infeasible.)

The rest of the proof is similar. The conclusion follows from part (a) and (b).

(a2 and b3) The construction of the PTA instance with 3-Partition parameters is the same

as parts (a1) and (b2). Instead of the latest start time parameters, assume that there is a

positive cost beyond that time. Here the question is whether or not there is an objective

function with a value of zero. If the answer is yes, then there will also be a solution for

the 3-partition problem. The rest of the proof is similar to the proof of Proposition 3.2.

Corollary 3.4: There is no ε-approximate heuristic that runs in polynomial time for the

problems given in corollary 4.2 unless P = NP for any ε > 0.

B B B A ----------------------------- B B B A

First cycle

C A C A

q cycles q cycles

First cycle

 61

Proof: Since the optimal objective value is zero for the problems given in corollary 3.3,

any ε-approximate heuristic should provide a solution that has zero objective value. This

means that the heuristic solves the problem in polynomial time, so P = NP.

3.5 SPECIAL CASE STRUCTURES

In the previous section, we saw that each of the earliest start times, due dates and

latest start time constraints makes the periodic task assignment problem NP-Hard. In this

section, we concentrate on the special case in which each customer requires two

operations with a time window requirement for one of them (without any cost function).

Secondly, we will examine another special case that assumes equal process times

for all tasks. Here, we consider the general cost function and provide a pseudo-

polynomial time algorithm to solve this problem.

3.5.1 PTA Problem: Two operations and a single time window

Here, we assume that each customer requires only two operations and each

operation is included in its corresponding task. In addition, only one of the operations

has either an earliest start time (EST) or latest start time (LST) requirement. The service

planner chooses one of these two operations for each customer. For this subsection, we

use v(s) to represent the operation (and task) with an EST or LST for step s and w(s) to

represent the operation (and task) without the time window for step s. Finally, we

consider the problem with a zero cost function. In other words, we concentrate on the

feasibility of the problem.

Proposition 3.5: Consider the periodic task assignment problem under a zero cost

function with m steps. Assume that each customer i requires two operations, v(i) and

w(i), and only one of the operations, v(i), is restricted by the earliest start time. Under

these conditions, the following statements are true:

 62

a) If waiting is not allowed:

a1. Selection of w(i) tasks for all customers gives a feasible solution

a2. If w(i) tasks are not available for some customers, the problem is NP-

Hard

b) If waiting is allowed:

b1. Selection of w(i) tasks for all customers gives a feasible solution

b2. If w(i) tasks are not available for some customers, then waiting as much as

the latest earliest start time of v(i)’s at the beginning and then performing an

operation with the earliest start time, v(i), for all customers gives a feasible

solution

Proof: (a-b) Arguments are similar as in Proposition 2.5 except part (a2).

(a2) The result comes from the fact that the 3-Partition problem is polynomially reducible

to this problem. Consider a sequence consisting of 3q + 1 different customers:

Customer A and customer Bi for i = 1, …, 3q. The smallest cycle in the sequence consists

of 3q + 1 customers (B customers are the first ones). The sequence consists of q cycles

and a number of steps m = q(3q + 1).

Each customer Bi requires two operations v(i) and w(i), and customer A requires

only operation v. For customer Bi, δv(i) = ai and δw(i) = 0, and for customer A, δv = 0.

Moreover, the earliest start times are γv(i) = 0 and ζv(i) = q2b + 1 for all operations

v(i) that belong to customer Bi. Finally, γv = ζv = b for the operation v of customer A.

First cycle

----- B3q B1 B2 A ----- B3q B1 B2 A

q cycles

 63

 We chose large enough subsequent earliest start times ζv(i) for the operations of

customer Bi, such that each operation v(i) can be done only once. Therefore, the

completion time of the sequence is at most qb. On the other hand, the operation v of

customer A is available b time later than the operation’s last service. That means we have

to spend at least b time for each cycle. Hence, the completion time of the sequence is at

least qb.

We can conclude that the completion time of the sequence is qb and that each

operation v(i) of customer Bi will be done exactly once. Since
24

b
a

b
j << , exactly three

of the operations v(i) of customer Bi will be done in each cycle. There is a feasible

solution to the PTA problem if and only if the 3-partition problem has a solution. That’s

why we can conclude that the PTA problem with the given restrictions is NP-Hard in the

strong sense. Recall that if there is no customer repetition, this problem is solvable in

O(n).

Proposition 3.6: Consider the task assignment problem with m steps. Assume that each

customer i requires two operations, v(i) and w(i). Under that assumption, the following

problems are NP-Hard both under a waiting and no waiting assumptions:

a) The problem that has the latest start time for only operation v for every step and

has a zero cost function

b) The problem that has no time window (earliest or latest time) requirements and

has general cost functions for only operation v

Proof: (a) Here, the latest start times are βv(i) = qb and η v(i) = q2b for all operations v(i)

that belong to customer Bi. In addition, βv = ηv = b for the operation v of customer A.

The rest of the parameters are similar to Proposition 3.5(a2). We can define another

customer, say customer C, with duration b and add the customer C and customer A q

 64

times at the end of the sequence. This construction will force each operation v(i) of

customer Bi to be performed once.

The rest of the proof is similar to Proposition 3.5(a2). Recall that if there is no

customer repetition, this problem is solvable in O(n2).

(b) The construction of the PTA instance with 3-Partition parameters is the same as part

(a). Instead of the latest start time parameters, assume that there is a positive cost beyond

that time. Here, the question is whether or not there is an objective function with a value

of zero. If the answer is yes, then there will also be a solution for the 3-partition problem.

The rest of the proof is similar to part (a).

3.5.2 Periodic task assignment problem with equal process times

In the case where process times are equal, neither the start times of customers nor

the completion time depends on the task selections. Therefore, the customers do not

affect each other. We can partition the problem and solve each customer separately.

However, different appearances of the same customer interact with one another, and this

makes the problem hard.

Proposition 3.7: Consider the periodic task assignment problem with n customers. If all

the process times of all the tasks of each customer are equal, the problem is NP-Hard

both under a waiting and no waiting assumptions.

Proof: Since all the process times of all tasks of each customer are equal, the start time of

each customer and the completion time are known. Therefore, we can partition the

original problem for each customer and solve the subproblems separately.

The result comes from the fact that the 3-Partition problem is polynomially

reducible to each of these subproblems. Consider a customer that has 3q operations and

appears q times in the sequence. We construct the tasks so that each task includes only 3

 65

operations and a summation of the attached three aj parameters is equal to b. In other

words, these tasks are valid subsets in the 3-partition problem. The total number of tasks

is in O(q3) and finding valid tasks requires O(q3) time. Therefore, this construction will

take polynomial time.

Let’s consider the problem under the no-waiting assumption first. If we select

large enough subsequent earliest start times for each operation, each operation cannot be

performed more than once. The customer has q visitations, and in each visitation, three

operations will be done. Therefore, each operation will be done exactly once. As a

result, a feasible solution to this problem is also a feasible solution to the 3-partition

problem so the problem is NP-Hard. If waiting is allowed, we can use the latest start

time or general cost function structures to prove the same result.

Recall that if there is no customer repetition, this problem is solvable in

O(nkmaxjmax) time.

3.6 VALID CUTS

The major difficulty in the PTA problem arises when the sequence visits the same

customer more than once. This will bring about two important questions to be answered:

• How many times should each operation be done?

• Which tasks should be selected to cover required operations?

We will give the answer of the first question in this section. The second one will

be answered in Section 3.7, which describes preprocessor for the problem.

The number of executions required for each operation is determined by the

following restrictions:

 66

• The earliest start time parameters: This parameter determines the minimum

time for the next execution of the operation. Hence, this parameter gives an upper

bound for the number of executions required for each operation.

• The latest start time parameters: This parameter determines the maximum time

available for the next execution of the operation. Hence, the latest start time

parameter gives a lower bound for the number of executions required for each

operation.

Using these parameters, we can develop the minimum and the maximum

requirement constraints that determine the minimum and maximum number of executions

that must be performed for each operation in the given planning horizon.

3.6.1 Maximum requirement constraints

The earliest start time parameters γk and ζk (for the first and subsequent

executions) restrict the earliest starting time of the next execution for the same operation.

Let h be the completion time and λkh represent the maximum number of executions of

operation k for the completion time h. We observe the following facts:

• If the completion time is h < γk, we cannot perform operation k.

• After the first execution of operation k, we have to wait ζk time for each

subsequent execution of operation k.

 Therefore, we can calculate λkh as follows:







>















 −
+=

..

 if

0

1

wo

h
h

k
k

k

kh

γ
ζ

γ
λ

If the operation cannot be done more than a given number of times, it also cannot be done

more than the integral part of that number. Hence, we take the floor of the number. The

related maximum requirement constraint is given below:

 67

 ∑∑ ∑
∈∈ ∈

≤
Hh

hkh
kJKj Tt

jt ZX λ
)(

 for k ∈ K,

where Zh refers to the exit indicator. Since the last period (exit time) is varying, the

parameter λkh depends on the exit time h. The constraint sums all the tasks that contain

operation k for all times t ∈ T, and makes sure that these tasks are not done more than λkh

for the given planning horizon h.

3.6.2 Minimum requirement constraints

The latest start time parameters βk and ηk (for the first and subsequent executions)

restrict the latest starting time of the next execution for the same operation. Let h be the

planning horizon and µkh represent the minimum number of times that operation k must

be performed for the planning horizon h. We have observed the following facts:

• If the completion time h > βk, we should perform operation k at least once.

• After the first execution of operation k, we cannot wait more than ηk time for each

subsequent execution of operation k.

 Therefore, we can calculate µkh as follows:







>















 −
+=

..

 if

0

1

wo

h
h

k
k

k

kh

β
η

β
µ

We take the floor, because we cannot do any operation if the latest start time of that

operation is not reached. The related minimum requirement constraint is given below:
 ∑∑ ∑

∈∈ ∈
≥

Hh
hkh

kJKj Tt
jt ZX µ

)(

 for k ∈ K,

where Zh refers to the exit indicator. Since the last period (exit time) is varying, the

parameter µkh depends on the exit time h. The constraint sums all the tasks that contain

operation k for all times t ∈ T, and makes sure that these tasks are not done less than µkh

for the given planning horizon h.

 68

3.7 PREPROCESSOR

The difficulty of the problem forces us to find some special structures that can

help us in the solution procedure. The most distinctive structure is the fixed sequence

that we must follow. With our knowledge of the sequence order, we can tighten the time

window of each step, and that will help to reduce the problem size. Recall that s is the

index of steps in the visitation order, s = 1, 2 … m, and i∈I is the index of customers.

Also, it is assumed that tmax refers to the latest possible visit time for the last step (i.e. step

m), and T is the ordered set of time periods to be considered, T = {1 … tmax}. We define

the TS(s) as the set of available time periods to start a task at step s. Our goal in this

section is to get a smaller set so that the problem size shrinks. Clearly, the time window

TS(s) of each step s heavily affects the number of constraints and variables in our

problem.

A primitive method may calculate time windows of steps as in the following

fashion: the lower bound of step s can be calculated by summing all of the shortest

process times for previous steps s' (< s) up to step s. Also, an upper bound can be

calculated by summing all the longest process times for previous steps up to step s.

However, we can use other information to make the time window TS(s) of each step s

smaller.

In the previous section, the minimum µkh and the maximum λkh requirements of

each operation k were calculated. By using this information, we can determine how

much time we will spend at least and at most for each step of the given sequence.

3.7.1 Calculation of the earliest start times for steps

The earliest start times for steps depend on the minimum time that we will spend

on each step. Here, we propose a two phase algorithm to calculate those minimum times.

In the first phase, we find the minimum duration required for each customer to cover

 69

required operations during the planning horizon. In the second phase, we allocate the

duration found in the first phase into steps that are visited by the same customer.

The following phases are customer specific, and we need to run these phases for

each customer i∈I:

Phase I: Minimum duration required for each customer

We know that operation k must be performed at least µkh and at most λkh times for

the given completion time h. In this section, assume that µk represents the lowest µkh

among all h and λk represents the highest λkh among all h, i.e., for h = tmax.

Let Nj be the decision variable for task j indicating the number of times task j will

be performed to cover operations for a given customer. Also, let Si be the number of

visitations of customer i. (Recall that δj represents the duration for performing task j, and

KI(i) is the set of operations for customer i∈I.)

To find the minimum duration requirement for given customer i, we will solve the

following IP problem:
 MTD = Minimize ∑

∈)(iJIj
jj Nδ

 subject to:
 k

kJKj
jN µ≥∑

∈)(

 for k ∈ KI(i)

 k
kJKj

jN λ≤∑
∈)(

 for k ∈ KI(i)

 i
iJIj

j SN =∑
∈)(

 int and 0≥jN for j ∈ JI(i)

The first constraint satisfies the minimum requirements for operation k ∈ KI(i).

Similarly, the second one will not to exceed the maximum requirements for operation k ∈

KI(i). The third constraint sets the number of chosen tasks equals to the number of steps

belonging to customer i. The last is for nonnegative integrality.

 70

The IP problem finds the minimum duration that would be spent for a given

customer. Since we cannot spend less time without violating requirement constraints, the

optimal objective value of this problem could be used to calculate the lower bound of the

completion time.

Phase II: Allocation of required duration into steps

In the first phase, we get the minimum time we should spend for each customer.

We need to divide this number into corresponding steps for the same customer. Let

δmin(i) and δmax(i) be the minimum and maximum durations of the tasks that belongs to

customer Ii ∈ . Also, let SI(i) be the ordered set of steps that correspond to customer i.

The minimum time (found in phase I) allocation procedure for each customer i∈I

is given below. (The remaining duration RD refers to the minimum time duration MTD
for the given customer subtracted by allocated durations ∑

∈)(iSIs
sAD):

• Allocate δmin(i) for all steps except the last one in SI(i).

• Do the following statements for the steps s ∈ SI(i) in the reverse order beginning

from the last step in SI(i):

a) If the remaining duration RD plus already allocated duration ADs does not

exceed the δmax(i), allocate the remaining duration plus the already allocated

duration to the step s (ADs = ADs+RD) and terminate the procedure.

b) If the remaining duration exceeds the δmax(i), allocate ADs = δmax(i) to the step

s in SI(i). Select the previous step in SI(i) and go to (a).

Since the minimum time we should spend for each customer i is between |)(|)(min iSIiδ

and |)(|)(max iSIiδ , the allocation procedure clearly terminates by allocating at least

δmin(i) time for each step in SI(i).

 71

This allocation procedure runs for each customer and finds how much time we

should allocate for each step. Then, the earliest start time of step s can be calculated by

summing all the allocations ADs for previous steps s' (< s) up to step s.

The allocation procedure ensures two things: The total time spent in steps of

customer i∈I will be equal to minimum time (found in phase I) we should spend for

customer i∈I. Secondly, the shortest possible times are allocated into earlier steps.

Therefore, any solution that satisfies the minimum and maximum requirement constraints

will see this allocation as the earliest start times for its steps.

3.7.2 Calculation of the latest start times for steps

There are two cases we should consider for the latest start times with respect to

the waiting assumption. If waiting is allowed, then the latest start time for the last

customer is at time tmax. For each customer from customer n − 1 to 1, we find the

minimum processing time and subtract this value from the latest start time of the next

customer. (These minimum processing times were calculated in the previous section.)

This will give us the previous customer’s latest start time.

If waiting is not allowed, then the latest start times for each step depend on the

maximum time that we should spend for each customer. Similar to the earliest start time

case, a two phase algorithm is proposed to calculate those maximum times.

The following phases are customer-specific, and we need to run these phases for

each customer i∈I.

Phase I: Maximum duration required for each customer

We will solve the same IP problem as we did in the earliest start time calculation

section. However in this case, we maximize the same objective function, i.e.;
 MaxTD = Maximize ∑

∈)(iJIj
jj Nδ

 72

The IP problem finds the maximum duration that would be spent for the given

customer by satisfying the maximum requirements of its operations. Since we cannot

spend more time without violating requirement constraints, the optimal objective value of

this problem could be used to calculate the upper bound of the completion time.

Phase II: Allocation of required duration into steps

In the first phase, we get the maximum time we should spend for each customer.

We need to divide this number into corresponding steps for the same customer. Let

δmin(i) and δmax(i) be the minimum and maximum durations of the tasks that belong to

customer Ii ∈ . Also, let SI(i) be the ordered set of steps that correspond to customer i.

The maximum time (found in phase I) allocation procedure for each customer i∈I

is described below. (The remaining duration RD refers to the maximum time duration
MaxTD for the given customer subtracted by allocated durations ∑

∈)(iSIs
sAD):

• Allocate δmin(i) for all steps in SI(i).

• Do the followings for the steps s ∈ SI(i) in original order beginning from the

first step in SI(i):

a) If the remaining duration RD plus already allocated duration ADs does not

exceed the δmax(i), allocate the remaining duration plus the already allocated

duration to the step s (ADs= ADs+RD) and terminate the procedure.

b) If the remaining duration exceeds the δmax(i), allocate ADs=δmax(i) to the step s

in SI(i). Select the previous step in SI(i) and go to (a).

Since the maximum time we should spend for each customer i is between

|)(|)(min iSIiδ and |)(|)(max iSIiδ , the allocation procedure clearly terminates by

allocating at least δmin(i) and at most δmax(i) time for each step in SI(i).

 73

This allocation procedure runs for each customer and finds how much time we

should allocate for each step. Then, the latest start time for step s can be calculated by

summing up all the allocations ADs for previous steps s' (< s) up to step s.

The allocation procedure ensures two things: The total time spent in each step of

customer i∈I will be equal to the maximum time we should spend for customer i∈I

(found in phase I). Secondly, the longest possible times are allocated into earlier steps.

Therefore, any solution that satisfies the minimum and maximum requirement constraints

will accept these allocations as the latest start times for the steps.

3.8 CONCLUDING REMARKS

In this chapter, we considered the periodic task assignment problem with a fixed

customer sequence under the time window and multiple operation requirements. We

prove that this problem and almost all the special cases, except perhaps the trivial ones,

are NP-Hard in the strong sense. We propose some valid cuts and problem reduction

techniques to solve the problem effectively.

In the next chapter, we focus on the field application of this problem and develop

techniques to solve it within a reasonable time.

 74

Chapter 4: Maintenance Service Application

4.1 MOTIVATION

This application is motivated by an actual problem faced by maintenance planners

at a large company. The company has geographically dispersed infrastructure facilities

that require periodic inspection and maintenance to ensure uninterrupted service and

effective operation. These maintenance activities require on-site visits by a “service”

unit, consisting of skilled workers and equipment. At each site, several components need

to be serviced; the desired frequency of service varies by component and facility and

depends on the location of the facility, its usage, and other factors. Scheduling the

service tasks associated with these inspection and maintenance activities is an important

and challenging problem facing this company. In the application that motivated this

work, the service planning process begins by deciding a periodic tour for the service unit.

This tour specifies the sequence in which the customers will be periodically visited. The

tour can visit the same customer multiple times. We address the problem of deciding

which task to perform at each site or facility during every visit to that site in order to

conform as closely as possible to the desired frequency of service.

Continuing the terminology we established in the previous chapters, we shall refer

to these infrastructure facilities to customers. Each customer requires multiple service

operations, but not all operations need to be performed during each visit to the customer,

since the desired frequency of service varies by operation. During each visit or step in

the sequence, the planner must decide which operations to perform at the customer

location. Operations that can be performed together during a visit are grouped together

as tasks, and each task has a specified duration. For each operation for every customer,

we are given a desired frequency or desired time between services for that particular

 75

operation. Deviations from this desired frequency are permitted but at a penalty cost.

The planner faces the following core tradeoff: performing all or most operations during

each visit to a customer helps meet the service frequency requirements for that customer.

However, since performing more operations increases the service time at that customer,

this strategy delays the time at which the service unit reaches and can begin operations in

downstream steps, thereby potentially violating service frequency requirements for these

later customers.

In this application, we have lateness costs if the time between services for a

particular operation exceeds the desired time interval, as opposed to the time window

requirements described in the previous chapter. Therefore, we re-formulate the Periodic

Task Assignment problem for this application in a more compact form, which permits us

to represent the task selection decisions as a flow of the resource on a time-space network

with side constraints to capture penalties if the time between successive executions of

each operation exceeds the desired interval. Complexity results both for a “single” visit

special case and “multiple” visits are also valid for this application version of the problem

(see Appendix B). Since this problem is NP-hard, we develop a fast and effective

heuristic procedure that repeatedly applies the shortest path approach developed in

Chapter 2 to subsequences that visit each customer at most once. Computational results

for several problem instances show that the proposed heuristic identifies near optimal

results very quickly, whereas a general purpose integer-programming solver (CPLEX) is

not able to solve the problem optimally even after many hours of computational time.

Next, we focus on techniques such as problem reduction, branching variables, and

subdividing the problem into smaller problems to get better IP solution times for the

actual problem. Computational results show that these techniques can improve solution

times substantially.

 76

4.2 PROBLEM DEFINITION

For this problem, we will keep the definitions of sets and indices given in the

previous chapter. As a reminder, let I = {1, 2, …, n} denote the set of distinct service

locations or customers. A service unit or resource visits these customers in a given

periodic sequence or tour S = {1,…,s,…,m}, where m denotes the total number of steps

(visitations) in the sequence. As a final step of the sequence, we include a dummy step to

mark the end of the tour. Each step represents a visit to a particular customer, and the

same customer may be visited multiple times in the sequence. Let i(s) denote the

customer visited in step s ∈ S. Conversely, S(i) ⊂ S denotes the subset of steps in the

sequence corresponding to visits to customer i. Let T = {1, 2, …, tmax} denote the

planning horizon, i.e., the set of time periods during which the route must be completed,

where tmax is the latest possible start time for the last step m in the sequence and the first

period (t = 1) represents the start time of the first step. Depending on the magnitude of

service times for various operations (discussed later) and travel times between locations,

each period can range from a few hours to days.

Each customer i ∈ I, requires a set of operations KI(i); let K be the set of all

operations for all customers. Every operation k for a particular customer i has an

associated relative due date τk that represents the desired time interval between

successive executions of operation k ∈ KI(i). The due date for the first time that

operation k must be performed during the planning horizon could be lower than τk since

this due date depends on the past history of service, i.e., when the operation was last

performed before period t = 1. Let αk be the due date for the first execution of operation

k. Exceeding the due date incurs a per-period penalty. Let ckt denote the lateness penalty

if operation k is past due (since its last execution) at period t. Due to technological and

policy restrictions, only certain subsets (or combinations) of operations can be jointly

 77

performed during a visit. We refer to each such group of operations as a task j. Let JS(s)

denote the set of permitted tasks during step s for customer i(s), and let JK(k) be the

subset of tasks that include operation k. The duration for task j is δj time periods; tasks

that contain more operations take longer to complete. For convenience, at each step, we

also include a “travel” task that corresponds to not performing any task at that step.

Depending on the tasks performed at each step, the completion time of the last step may

vary. Among the time periods in T, let h be a possible cycle completion time to complete

all steps and H be the set of possible cycle completion times. In this notation, H is the

subset of T and h ≤ tmax.

Performing all the operations that a customer needs during each visit to that

customer may be unnecessary (since the relative due dates may not necessitate such

frequent service) and may delay operations at other (subsequent) customer sites, thereby

incurring lateness penalties. So, the central decision concerns which tasks to perform at

each step of the specified tour so as to minimize the total lateness penalties for all

customers during the length of the tour. At each step, the service unit must perform one

task from among the available tasks JS(s), and we assume that partial services (i.e.,

fractional tasks) are not permitted. The maximum length of the tour, tmax, is the time to

complete the tour if the most time-consuming task is done at each step s (i.e., the task

with the largest value of δj among all tasks that can be performed in step s). Using the

problem data (i.e., the smallest and largest task durations at each step), we can determine

the interval of time periods in which the service unit will visit each step. Let TS(s) denote

the time window for step s, consisting of all periods in which the service unit can arrive

and begin its task at step s.

Decision Variables:

 78

Xjt = 1 if we start task j at time t, and 0 otherwise, for all s = 1 … m, j ∈ JS(s), t

∈ TS(s);

Ukt = 1 if operation k is overdue in period t and cycle is completed after t, and 0

otherwise, for all k ∈ K, t ∈ {αk, …, tmax}; and,

Zh = 1 if the cycle ends in period h, and 0 otherwise, for all h ∈ TS(m).

We refer to these three variables respectively as task assignment, delay indicator,

and tour termination variables. We define the Zh variables merely for convenience (to

make the formulation easier to follow).

Model Formulation for PTA Problem
Minimize ∑∑

∈ ∈Kk Tt
ktktUc (1)

subject to:

Task assignment for first step
1

)1(
1 =∑

∈JSj
jX (2a)

Flow conservation constraints

∑∑
∈−∈

− =
)(

'
)1(

,
sJSj

jt
sJSj

tj XX
jδ for s = 2, … m, t ∈ TS(s) (2b)

Exit indicator

h
mJSj

jh ZX =∑
∈)(

 for h ∈ H, (3)

Penalties for due date violation of first execution of each operation

1
},...,1{)(},...,1{'

' ≥++ ∑∑ ∑
∩∈∈ ∈ Hth

hkt
kJKj tt

jt ZUX for k ∈ K, t ∈ {αk, .. τk −1}, (4a)

Penalties for relative due date violation of subsequent execution of each operation

1
},...,1{)(},...,1{'

' ≥++ ∑∑ ∑
∩∈∈ +−∈ Hth

hkt
kJKj ttt

jt ZUX
kτ

 for k ∈ K, t ∈ {τk, .. tmax}, (4b)

Integrality

1or 0,, =hktjt ZUX for j ∈ J, t ∈ T, k ∈ K, h ∈ H. (5)

 79

The objective function (1) minimizes the total penalty for due date violations.

Constraint (2a) assigns a task to the first step, and constraints (2b) are flow conservation

constraints for subsequent steps. These constraints assume that the service unit does not

remain idle before any step (with a minor modification, we can incorporate the possibility

of waiting before commencing a task at any step). Constraint (3) determines the tour

termination time. Although this model requires completing all the steps in the route and

treats the tour termination time as a decision variable, we can easily adapt it to situations

where the tour duration is specified ahead of time and the tour can terminate before

reaching the final step. Constraints (4a) and (4b) serve to identify whether or not each

operation k is late at time period t. Constraint (4a) states that if, for t ∈ {αk, …τk}, the

solution has not performed operation k or completed the tour by period t (since the start

of the tour), then the first execution of operation k is overdue. Constraint (4b) captures

the relative due date requirement by specifying that if the tour does not end at or before

period t and the solution does not perform operation k (or end the tour) within a time

interval of τk periods prior to period t, then we must incur a lateness penalty for this

period. Finally, constraints (5) impose the nonnegativity and integrality requirements.

Proposition 4.1: For the application version of the periodic task assignment [PTA]

problem, the PTA problem is NP-Hard in the strong sense, and the PTA problem where

no customer is visited twice is NP-Hard in the ordinary sense.

Proof: See Appendix B.

4.2.1 Operation level formulation

In the above formulation, constraints (4a) and (4b) contain quite a few numbers of

variables in each constraint. We develop an alternative formulation that can represent the

objective cost without using the constraint set (4a). In order to do that, we distinguish the

 80

variables for the first execution of the operation and the other executions. This

formulation is also helpful for constraint (4b) if the number of tasks is much higher than

the number of operations. However, we do so at the expense of introducing more

variables and relationship constraints.

Additional parameters and indices:

gkt the cost of the first execution of operation k before time τk, where t is the first

execution time and this cost can be calculated as max(0, min(t−αk, τk−αk)). It

represents a penalty for due date violation of first execution of operation k until τk.

Decision Variables

Xjt =1 if we start task j at time t, and 0 otherwise for all s = 1 … m, j ∈ JS(s), t ∈ T

Ykst =1 if we start operation k of step s at time t for the first execution, and 0 otherwise

for all s ∈ FS(s), k ∈ KS(s), t ∈ T

Vkst =1 if we start operation k of step s at time t for the subsequent executions, and 0

otherwise for all s ∈ SS(s), k ∈ KS(s), t ∈ T

Ukt = 1 if no tasks containing operation k are performed within the subsequent due

date τk for operation k, called the delay indicator variable for ,Kk ∈ t ∈ T

Zh =1 if the last step m starts in period h and 0 otherwise for all h ∈ H, called the exit

indicator variable

Alternative Model Formulation for PTA Problem
Minimize ∑∑∑∑∑

∈ ∈ ∈∈ ∈

+
Kk Ss Tt

kstkt
Kk Tt

ktkt YgUc (1)

subject to:

Task assignment for first step
1

)1(
1 =∑

∈JSj
jX (2a)

Flow conservation constraints

 81

∑∑
∈−∈

− =
)(

'
)1(

,
sJSj

jt
sJSj

tj XX
jδ for s = 2, … m, t ∈ TS(s) (2b)

Job-operation relation constraints
 ∑

∈

=+
)(kJKj

jtkstkst XVY for s ∈ S, j∈JS(s), k∈KJ(j), t∈TS(s) (2c)

Exit indicator

h
mJSj

jh ZX =∑
∈)(

 for h ∈ H, (3)

Subsequent due dates for executions of each operation

1)(
},...,1{)(},...,1{'

'' ≥+++ ∑∑ ∑
∩∈∈ +−∈ Hth

hkt
kSKs ttt

kstkst ZUVY
kτ

 for k ∈ K, t ∈ { τk, .. tmax}, (4b)

Detection of not done operations
1

)(

=+∑ ∑ ∑
∈ ∈ ∈kSKs Tt Hh

kshkst YY for k ∈ K, (5a)

hksh ZY ≤ for k ∈ K, h ∈ H (5b)

Y variables is done earlier than X variables

kst
ss tt

tks VY ≥∑∑
≤ ≤' '

'' for ,Kk ∈ ,Ss∈ Tt ∈ (6)

Integrality

1or 0,,,, =hktkstkstjh ZUVYX for t ∈ T, j ∈ J, k ∈ K, h ∈ H. (7)

The objective function (1) minimizes the total penalty for due date violations. The

second term represents the penalties previously described in constraints (4a). Constraint

(2a) assigns a task to the first step, and constraints (2b) are flow conservation constraints

for subsequent steps. Constraint (2c) constructs the relationship between job level

variables and operation level variables. Constraint (3) determines the tour termination

time. Constraint (4b) captures the relative due date requirement by specifying that, if the

tour does not end at or before period t and the solution does not perform operation k (or

end the tour) within a time interval of τk periods prior to period t, then we must incur a

lateness penalty for this period. Constraints (5a) and (5b) detect whether the operation is

 82

or is not done during the sequence. Constraint (6) ensures that the first execution

variables are done earlier in time than subsequent executions. Finally, constraints (7)

impose the non-negativity and integrality requirements.

This formulation potentially performs better than the previous one if the number

of operations is much smaller than the number of tasks.

4.3 INITIAL SOLUTION

In Chapter 2, we saw that the “single” visit task assignment problem is pseudo-

polynomially solvable, whereas the “multiple” visit task assignment problem is NP-hard

in the strong sense. The difficulty arises in customer repetition, because in a multi-visit

case, the knowledge of the start times of the tasks and the cycle completion time is not

enough to give an optimal decision. In other words, the cost structure also depends on

the previous decisions for the same customer. Polynomial time algorithms have been

developed in special cases of the single-visit problem (Chapter 2, Section 5), but these

algorithms do not apply to the multi-visit case (Chapter 3, Section 5).

When there is customer repetition, no (pseudo-)polynomial algorithm can

generate an ε-optimal solution for any ε > 0 unless P = NP (see corollary 3.4). Although

there is no theoretical bound, (pseudo-)polynomial algorithms may provide good feasible

solutions in practice. We take into account the generation of a solution on the basis of the

solution of the single visit case. In fact, we can divide the original sequence into parts, so

that each part contains a customer only once. These parts are solvable via algorithms

developed in Chapter 2.

The heuristics based on dividing the horizon into smaller parts receive attention in

the dynamic lot sizing context. Federgruen and Tzur (1994) have demonstrated that for

single-item uncapacitated dynamic lot-sizing models, optimal or close-to-optimal initial

 83

decisions can be made by truncating the horizon. Stadtler (2003), and Suerie and Stadtler

(2003) develop heuristics that solve the multi-item capacitated lot sizing problem over a

progressively larger time interval by fixing the variables of a progressively larger number

of periods at their optimal values in earlier iterations. The proposed heuristics divide the

given horizon of h periods into sub-horizons that come one after another. Each sub-

horizon is solved optimally after fixing all (or up to some predefined period) variables of

previous sub-horizons. The computational tests showed that the heuristics provide

promising results. Federgruen et al. (2007) proved that, under some parameter

conditions, these heuristics can be designed to be ε-optimal for any desired value of ε > 0

with a running time that is polynomially bounded by the size of the problem. However

the theoretical results do not apply to the periodic task assignment problem.

These results suggest that a close to optimal solution may be obtained by

partitioning or truncating the customer sequence. In our heuristic, we divide the original

sequence into subsequences so that each subsequence contains each customer at most

once. An optimal solution to a subsequence can be reached after fixing all task decisions

of steps prior to the first step of the current subsequence by solving previous

subsequences via algorithms developed in Chapter 2.

We construct the subsequences by using one of these rules:

• Strict partitioning rule: This rule partitions the original sequence into non-

overlapping parts so that each part consists of consecutive steps and contains the

same customer only once.

Example: Suppose that the following is the sequence of customers. (13 steps, 4

customers.) This rule partitions the original sequence into four parts.

 84

• Expanding customer rule: This rule divides the original sequence into parts, so

that each part consists of consecutive steps and contains the same customer only

once.

o Each subsequence (except the last one) ends if the next step after the last

step of the subsequence causes customer repetition.

o The next subsequence begins one step after the step that contains the same

customer as the next step after the last step of the previous subsequence.

Example: This rule divides the original sequence into six parts.

Both strict partitioning and expanding customer rules can provide better solutions

with respect to the other one. Dividing the sequence into subsequences in this heuristic

1 2 3 4

Divided into 6 parts:

3 4 2

2 4 3

3 4 1

4 1 3 2

2 3 1

1 2 3 4 2 4 3 4 1 3 2 3 1

1 2 3 4 2 4 3 4 1 3 2 3 1

Original sequence:

Partitioned into 4 parts:

 85

looks different than the heuristics developed in the capacitated lot sizing problems. The

conditions that can potentially alter the division are as follows:

• The number of customers in each subsequence is not the same. In fact, each

subsequence is naturally obtained from the order of the customers in the

sequence.

• The division into parts is based on customers, not periods. The time spent on

each part depends on the optimal decision, so cannot be fixed a priori.

Our heuristic for the periodic task assignment problem, as discussed in Chaprer 2,

is based on the idea of quickly solving each subsequence one after another by applying

the pseudo-polynomial (in h, cycle completion time) shortest path method. Although

each part of the sequence is solved optimally, the resulting solution might not be optimal

for the original problem, because this strategy both in this problem and in the lot sizing

context cannot encompass the whole sequence at once and can result in myopic decisions.

Using the shortest path method, the algorithm solves each subsequence for each possible

subsequence completion time h∈H. This method does not predict what will happen after

the completion time of the subsequence, which will result in the underestimation of costs

in a situation where a customer will not be visited again for a long time. As such, we

extend the heuristic to solve this myopia problem.

We modify the shortest path method to improve the heuristic in the following

way: assume that a customer i is visited again ∆i time later than the end of the horizon of

the current subsequence. In that case, we use h + ∆i instead of h as a subsequence

completion time to calculate the arc costs of that customer. Since we do not know how

much time will be spent on the later steps, we have to approximate the ∆i value for each

customer i. The approximation assumes a fixed duration time a priori, say ε, for each

step after the last step of the current subsequence. Hence, if a customer i is revisited ai

 86

steps later, then the ∆i = aiε. This ε value could be maximum or average task duration for

intermediate steps until next visit.

Finally, the heuristic may generate a solution that is different from the optimal

solution for the following reasons:

• the selected task contains an operation which is done early

• the selected task does not contain an operation which is already late

• the selected task contains an operation which is done early, and there is a chance

that the operation could be done during that customer’s next visit

• the selected task contains an operation which is done late, and there is a chance

that the operation could be done during the same customer’s previous visit .

Therefore, as a final refinement, we will make the necessary one-task and two-

task swaps to get a better solution. In the one-task swap, we change only one task

decision of one step at a time. In two-task swaps, two task decisions of two different

steps (not necessarily same customer) will be changed at a time and tested for resulting

improvement in the objective function. The one-task swap aims to address the first two

reasons, and the two-task swap aims to address the last two.

Let ε be the possible approximate duration times (such as minimum, average and

maximum duration times) for every step after the last step of any subsequence and E be

the set of these ε values. Then, a customer i is visited again ∆i = aiε time later than the

end of the horizon of the current subsequence where ai represents the number of steps

customer i is revisited after current subsequence. The following is a generic scheme for

this heuristic.

Heuristic for periodic task assignment problem

0 Set bestValue = ∞, bestSolution = empty

 87

1 Construct the subsequences from the original sequence by using the strict

partitioning rule or customer expanding rule. Let Sp represent the pth

subsequence in the order.

2 For each ε ∈ E do

3 For each subsequence Sp in the order beginning from p = 1 do

4 a. Calculate ∆i values for each customer i in the subsequence Sp

5 b. Solve the problem for the subsequence Sp by using the modified shortest

path approach problem with ∆i values given the assignment for earlier

subsequences

6 c. Modify the last service date (corresponding α values) of each operation

7 End For

8 Calculate the objective function for the original problem (total cost for the

subsequences could be different than the cost for the original problem)

9 If the current objective value of original problem is less than bestvalue then

10 bestvalue = current objective value

11 bestsolution = current solution

12 End if

13 End For

14 Refinement Step: Do the one-task or two-task swaps unless there is no

improvement in the objective function for some predefined number of iterations.

The computational performance of the heuristic depends on the set E, the set of

approximate duration times, and the neighborhood search in the refinement step. There is

a tradeoff between the time spent for the heuristic and the quality of the solution. The

user can determine the appropriate level by changing the set E and using the refinement

step.

 88

This heuristic solution provides an initial solution to solve the original problem

faster. In the following sections, we develop further methods to speed up this solution

process.

4.4 PERTURBATION AND PROBLEM REDUCTION

The special structure of the real problem instances provides us to offer the

following perturbation and problem reduction techniques to make these instances faster

to solve using CPLEX.

4.4.1 Perturbation

The structure of the objective function contains many equal objective terms, and

these terms cause alternative solutions. In fact, the per unit time penalty is equal for all

operations and time points for each customer in our application problem instances. This

means that the number of distinct objective coefficients for all variables can be as high as

the number of customers. Clearly, this causes a huge number of iterations in the LP

relaxation solution process.

To decrease the effect of this phenomenon, we made small perturbations in the

objective function. We make this perturbation for each customer separately by using

following rule:

• For each Ukt variable belonging to this customer, rank (arbitrarily) the operations

from 1 to |K|, denote as rk, for operation k, where |K| represents the total number

of operations for this customer.

• The perturbation value for this variable is rkt/|K|tmax
2

Observe that the maximum perturbation for any variable would be 1/tmax, so the total

perturbation for any operation will not exceed 1, which will ensure the optimality of the

original problem for big enough cost coefficients.

 89

We can also perturb these variables randomly, but the above manual perturbation

performed better in our problem instances.

4.4.2 Problem reduction

We develop two methods to reduce the size of the problem. In the first method,

we use the following definitions:

Dominated task: For a given task j, if there is another task j' that includes all the

operations that are included by task j, and the duration of task j' is not greater than task j,

then task j is a dominated task.

Proposition 4.2: There is an optimal solution that does not perform any dominated task

in any step.

Proof: For a given optimal solution, since the problem has penalties only for the lateness

of the operations, all the dominated tasks can be replaced by the tasks that dominate them

without affecting the optimality of the solution.

We eliminated all the dominated tasks (as many as 20% of all tasks) from our

problem instances, which decreased the solution time.

Using the problem data (i.e., the smallest and largest task durations for each step),

we can determine the interval of time periods in which the service unit will visit each

step. TS(s) denotes the time window for step s consisting of all periods in which the

service unit can arrive and begin its task at step s. We can narrow this time window

further. The next method uses the nested property of the tasks in the application

instances.

Nested property: For a given task j, if there is another task j' that includes all the

operations that are included under task j, then the tasks j and j' have nested characteristics

 90

with respect to each other. If all the task pairs of each customer have nested

characteristics, then the problem instance has a nested property.

With a nested property in mind, consider a task that contains more operations than

any other task for a particular customer. In this case, there is at least one operation in that

task that could be performed only by this task. Assume that there is only one operation,

operation k, that satisfies this condition. For that operation k, if the difference between

the earliest visitation time for the customer to which it belongs in vth visit and maximum

cycle completion time tmax is smaller than the associated relative due date τk for that

operation k, then there is no need to perform this operation more than v times as well as

the corresponding task. Therefore, we do not always need to use the largest task

durations to calculate the upper bound of each time window.

We can generalize this logic to the other operations with a nested property. The

following procedure needs to be done for each customer separately, so we drop the

customer index from the notation for the sake of simplicity. For each customer, assign an

index or order number to each task so that the higher indexed task contains more

operations. Let EST(v) be the vth earliest visit time (lower bound of the time window at vth

visit) for this customer and n be the total number of visitations for this customer. tmax is

the current maximum cycle completion time. In the below algorithm, NumberOfTask [j]

variable holds how many times task j should be performed and remainingVisit variable

shows how many visitation left to consider for that customer.

Problem size reduction under the nested property for a particular customer

0 remainingVisit = n, NumberOfTask [j] = 0

1 For choose task j from highest indexed task to lowest one do

2 For each operation k included in task j but not lower indexed tasks do

3 minVisit = min {v | τk > tmax −EST(v) or v = remainingVisit}

 91

4 If NumberOfTask [j] < minVisit then

5 NumberOfTask [j] = minVisit

6 End If

7 End For

8 remainingVisit = remainingVisit - NumberOfTask [j]

9 End For

This algorithm calculates the number of times each task should be considered in

the calculation of upper bounds. The outer “for loop” examines the tasks in decreasing

order (longest duration task first, shortest duration task last). The inner “for loop”

considers the operations that can only be performed by the current task but not lower

indexed tasks. In each iteration of the inner loop, the first visitation where the relative

due date of an operation at that iteration is bigger than the difference between lower

bound of visitation and tmax, is calculated. We know that we do not need to perform that

operation after that visit because the operation will not be late at the completion time if it

is performed on that visit. Hence, the maximum number of execution for the given task

should not be higher than that visitation number.

Previously, we used largest task durations (maximum δj values where j ∈ JS(s) for

each step s) to calculate the upper bounds of each time window. The above algorithm

provides the number of times we should count each task during the calculation of the

upper bounds of each time window using the array NumberOfTask. We use the duration

of these tasks in decreasing order to calculate the upper bounds of each time window.

For example, if a customer is visited 5 times, and the algorithm provides the 3, 1

and 1 for the tasks that have the longest, second longest and third longest durations

respectively, then we use the longest duration for the first three visits, the second longest

 92

duration in the 4th visit, and the third longest duration in the 5th visit to calculate the upper

bound of each time window for corresponding steps.

This algorithm is performed for all customers, and if tmax is decreased at the end,

then the process is repeated for the new tmax.

Proposition 4.3: The above algorithm, which accounts for the nested property case, does

not eliminate the optimal solution.

Proof: Step 3 in this algorithm checks the visitation number of the customer, where the

selected operation does not need to be done after that visitation. Therefore, we do not

need to perform that operation more than the visitation number captured at step 5;

therefore, the optimal solution is not cut.

4.5 LAZY CUTS

Lazy cuts are defined as constraints that are part of the original problem but are

unlikely to be violated. In the PTA problem, it is unlikely that the largest duration tasks

for each step will be performed because the task with a larger duration delays the

visitation time of later steps and increases the potential lateness penalties.

Figure 4.1 shows the cycle completion time’s cumulative flow distribution for the

LP solution of one of the instance we tested with 118 steps. In this instance, the

maximum cycle completion time is 524 days, and the optimal solution’s (also initial

solution’s) cycle completion time is 363 days. In its LP solution, the cumulative flow

hits its mid point 0.5 at 360 days, and the longest fractional flow ends at 424 days.

Therefore, the solution is unlikely to consider all the constraints in (2b), (4a) and (4b)

until tmax, 524 days.

 93

Figure 4.1. Cycle completion time for 118 steps instance in the LP solution

We use the following procedure to declare some constraints to be lazy constraints:

a. Calculate the point at the middle of tmax and the cycle completion time of the

initial solution, say h*, which is equal to h* + (tmax −h*)/2

b. Declare all the flow constraints (constraint 2b) to be lazy constraints if the

minimum time indexed variable is higher than the value found at (a).

c. Declare all the due date constraints (constraint 4a and 4b) to be lazy

constraints if the minimum time indexed variable is higher than the value

found at (a).

As an extension, flow constraint declarations could be done separately for each

step by considering latest start time of that step and the visitation time of the initial

solution at that step.

4.6 BRANCHING STRATEGIES

Branching rules are developed to increase the performance of the solver. The

branching strategies are not only based on original variables but also on additional

variables that are defined for this purpose. The computational results show that the

Cycle Completion Time vs Cumulative Flow in LP Solution

0
0.2

0.4

0.6

0.8

1
1.2

303 310 316 319 324 329 333 340 347 352 357 360 364 367 372 375 380 384 388 393 407 410 424

Cycle Completion Time (in days)

Cumulative Flow

 94

appropriate selection of branching variables has a significant impact on solution time.

We provide these strategies in increasing order of importance below.

4.6.1 Task assignment variables

In an ordinary LP solution, the number of positively valued variables is increasing

in later steps of the sequence. Hence, branching on task assignment variables of earlier

steps provides a faster solution than branching on task assignment variables of later steps.

To capture this characteristic, the task assignment variables of earlier steps have a

higher priority when it comes to branching.

4.6.2 Time variables

When an LP solution selects more than one task with fractional values for a

particular step, the completion times of these tasks are different in the next step. We

define a new variable set to prevent this phenomenon from happening.

Assume that the minimum task duration time is at least one in a given instance.

As such, we cannot start more than one task for a given time. Define the following

variables:

Wt = 1 if a task at any step is started at time t, and 0 otherwise, t ∈ T

We refer to these variables as time variables. The following constraint relates the

time variables to the task assignment variables.

{ }
∑ ∑
∈ ∈

=
)(|)(sTSts

t
sJSj

jt WX for t ∈ T.

The first summation is for steps in which time t is an element of their time windows, and

the second summation is for all tasks in those steps. For further improvement, assume

that the minimum task duration for all steps appearing in the first summation is δmin;

therefore, the next task cannot start before t + δmin:

 95

{ }
∑ ∑ ∑
∈ ∈

−+

=

=
)(|)(

1

'
' '

min

sTSts
t

sJSj

t

tt
jt WX

δ

 for t ∈ T,

where W't equals to one if a task at any step is started between time t and t + δmin −1, and

0 otherwise, t ∈ T

Although the LP solution satisfies these constraints anyway, the time variables are

useful in branching because number of time variables is much less than the number of

task assignment variables. Hence, we give higher priority to time variables over task

assignment variables when it comes to branching. In addition, we provide higher priority

to earlier time variables compared to the later ones.

4.6.3 Tour termination variables

Although the number of time variables is much less than the number of task

assignment variables, we need to define additional variables and constraints. In our

problem, we already have tour termination (sink) variables that determine the cycle

completion time. Branching on these variables before than time variables has pros and

cons:

• Pros: We do not need to define additional variables and constraints. The

number of sink variables is much less than the number of time variables.

• Cons: Even though the solution has integer valued sink variables, it does not

guarantee the feasibility of the solution.

Computational results show that sink variables are more powerful tools than time

variables, so we give them higher priority than time or task assignment variables. As

usual, earlier sink variables have higher priorities compared to the later ones.

 96

4.6.4 Cumulative sink variables

Although the tour termination (sink) variables help us with our branching

strategies, every sink variable Zh appears with due date constraints for all operations and

times if the time index h of the corresponding sink variable is less than the time t

corresponding to the delay indicator variable Ukt at that constraint. This fact causes dense

columns and rows in our constraint matrix and makes it difficult to conduct matrix

operations. Therefore, we define the following variables:

CZh = 1 if the last step m starts at or before period h, and 0 otherwise for all h ∈

TS(m).

Instead of defining a variable Zh to indicate tour termination at time h, new

cumulative sink variables CZh become one if the cycle completion time of the tour is

equal to or less than h. Using these variables, we can change the constraints (3), (4a) and

(4b) in our formulation such that:

h
mJSj hh

jh CZX =∑ ∑
∈ ≤)('

 for h ∈ H, (3`)

1
)(},...,1{'

' ≥++∑ ∑
∈ ∈

tkt
kJKj tt

jt CZUX for k ∈ K, t ∈ {αk, .. τk −1}, (4a`)

1
)(},...,1{'

' ≥++∑ ∑
∈ +−∈

tkt
kJKj ttt

jt CZUX
kτ

 for k ∈ K, t ∈ {τk, .. tmax}. (4b`)

 The due date constraints now contain only one cumulative sink variable instead of

the summation of sink variables. This change will reduce the density of the constraint

matrix and improve the solution time.

We give cumulative sink variables higher priority than the other variables.

Similarly, cumulative sink variables with earlier time index have higher priorities

compared to the later ones.

 97

4.7 SUBDIVISION METHOD

In the above strategies, we concentrate on the full problem and try to improve its

solution time. However, since our constraint matrix is not sparse, solution times increase

rapidly with the size of the problem.

Hence, we generate the subproblems from the original problem, so that each of

them can be solved faster. The idea behind subproblem generation is to force a start time

of a task for a chosen step, say division step, before or after a chosen time, say division

time. The following scheme shows subproblem generation:

• We select three steps; 




 + 5.0
3

m
, 




 + 5.0
3

2m
 and m, as division steps where m is

the last step. For example, if a sequence has 100 steps, then division steps are 33,

67 and 100.

• For division steps, we select division times t1, t2, t3 to start a task. With the 100

step example in mind, let t1 = 100, t2 = 200 and t3=300.

• We generate 8 subproblems (23) by declaring that these division steps should start

a task before or after those selected division times. (In each subproblem, selected

times are included.) Continuing the example, Table 4.1 shows the starting times

of tasks for each step in each subproblem.
 Division Steps

 33 67 100

Subproblem 1 ≤100 ≤200 ≤300

Subproblem 2 ≤100 ≤200 ≥300

Subproblem 3 ≤100 ≥200 ≤300

Subproblem 4 ≤100 ≥200 ≥300

Subproblem 5 ≥100 ≤200 ≤300

Subproblem 6 ≥100 ≤200 ≥300

Subproblem 7 ≥100 ≥200 ≤300

Subproblem 8 ≥100 ≥200 ≥300

 Table 4.1. Starting times of tasks in each subproblem

 98

One can select fewer or more division steps depending on the problem size. The

effectiveness of this method relies on the appropriate time selection of the division steps,

because bad time selections may generate a subproblem which is as hard as the original

problem. Hence, we offer two division methods using either the initial solution or the LP

solution.

4.7.1 Division by initial solution

In Section 4.3, we described a procedure to find an initial solution. The task

starting times in this initial solution could be used as the selected times for division steps.

There are pros and cons for this selection:

• Pros: Each subproblem has a valid initial solution generated for the original

full size problem. We do not need to deal with the full size problem at all.

• Cons: Theoretically, the initial solution might not be close enough to the

optimal solution. It may cause bad time selections, and the resulting

subproblems could be hard to solve.

In actual computational tests, this method works very well if the initial solution is close to

the optimal solution.

4.7.2 Division by LP solution

The LP solution is another alternative for selecting those time points. We can

look at the cumulative flows in time for these division steps and select the time at mid

flow 0.5 which is expected to be close to the optimal solution. Here are the pros and cons

of this selection:

• Pros: Selected times are expected to be close to the optimal solution.

• Cons: Each subproblem may not have a valid initial solution. Furthermore we at

least need to solve the LP relaxation of the full size problem.

 99

In computational tests, this method performed better when we intentionally provided an

initial solution that is far away from the optimal solution. However, with the initial

solution at hand (from Section 4.3), division by initial solution method performed much

better at all instances.

4.8 COMPUTATIONAL RESULTS

We evaluate the performance of our approaches on real data instances. The

heuristic was programmed in Java and the IP model uses CPLEX 11.2 via concert

technology. The tests are on the 11 Dell Poweredge 2950 workstation with 3.73 GHz

Xeon and 24 GB of shared memory under Ubuntu Linux system.

In our experiments, we tested on two maintenance regions, called Region-A and

Region-B. Region-A contains 34 facilities (customers) requiring maintenance and these

facilities are visited in 58 steps in one full cycle. (The service “unit” repeats the tour after

58 steps.) Region-B also contains 34 maintenance facilities and one full cycle consists of

59 steps. Each full cycle approximately takes 6-months to complete in each region. The

durations of the tasks can range from half day to 14 days, and the weights of the

operations (depend on workload of facilities) vary between 7 and 189.

We generate 6 instances for each region. All instances of each region has same

starting conditions (first customer and customer order in their sequence, and due date of

operations of customers) but contains different number of steps in their sequence. In

Table 4.2, the first column shows the problem names. The first letter refers to region

name and the number indicates the number of steps in that instance. Second column

states the number of customers considered on that instance and the other columns give

details about the number of visitations. For example, problem A-58 has 34 customers.

 100

13 of these customers are visited once, 18 of them are visited twice and 3 of them are

visited three times.

Problem customers 1 visit 2 visits 3 visits 4 visits 5 visits 6 visits

A-20 20 20 0 0 0 0 0
A-40 30 20 10 0 0 0 0
A-58 34 13 18 3 0 0 0
A-80 34 6 13 12 3 0 0
A-100 34 2 11 11 7 3 0
A-116 34 0 13 0 18 0 3
B-20 20 20 0 0 0 0 0
B-40 30 20 10 0 0 0 0
B-59 34 10 23 1 0 0 0
B-80 34 5 12 17 0 0 0
B-100 34 3 7 13 11 0 0
B-118 34 0 10 0 23 0 1

Table 4.2. Problem instances for region A and region B

In Table 4.3, the details about IP formulation is given for each instance developed

in Section 4.2 without initial solution, preprocessing, additional variables/constraints and

methods discussed in Section 4.3 to Section 4.7. The strict partitioning rule is used as a

subsequence method for the heuristic.

For each instance, number of constraints, variables and nonzero coefficients are

given. Then, the IP, LP and heuristic solution times are presented. Finally, the gap (* =

(heuristic value – optimal value)/optimal value) is calculated on the last column.

The heuristic finds the optimal solutions in 10 instances and the biggest difference

between the heuristic value and optimal solution is 1.4%. As the problem sizes increase,

the solution times increase enormously.

 101

Problem
Number of

IP
solution

time

Root
solution

time

Heuristic
solution

time

Heuristic
vs.

optimal
value* constraints variables nonzeros (sec) (sec) (sec)

A-20 2K 3K 67K 2 1 6 0.0%
A-40 9K 13K 718K 87 74 20 0.0%
A-58 14K 22K 1.4M 437 400 54 0.0%
A-80 21K 35K 3.1M 6946 2492 287 0.4%

A-100 32K 57K 7.0M 123847 31288 554 0.0%
A-116 39K 70K 9.5M 21274 20931 588 1.4%
B-20 3K 3K 62K 3 1 6 0.0%
B-40 10K 13K 668K 123 83 22 0.0%
B-59 19K 26K 2.0M 2231 2170 25 0.0%
B-80 28K 40K 4.0M 1.3M 7467 101 0.0%

B-100 39K 58K 7.6M >1.8M 23022 84 0.0%
B-118 49K 76K 11.2M >1.8M 49835 683 0.0%

* = (heuristic value – optimal value)/optimal value

Table 4.3. CPLEX and heuristic performances

Problem
Initial
gap*

Number of
branches Problem

Initial
gap*

Number of
branches

A-20 8.06% 0 B-20 0.00% 0

A-40 0.00% 0 B-40 31.44% 0

A-58 0.00% 0 B-59 0.00% 0

A-80 15.25% 185 B-80 30.69% 75702

A-100 31.76% 839 B-100 39.61% >28250

A-116 0.00% 0 B-118 62.88% >6100
 * = (First feasible solution – Root LP solution)/ First feasible solution

Table 4.4. Initial gaps and number of branches

 102

In Table 4.4, initial gap ((= First feasible solution – Root LP solution)/ First

feasible solution) and number of branches in the B&B tree are provided for the problems

solved in Table 4.3. We did not provide any initial solution for this set.

We use the methods developed in Section 4.3 to Section 4.6 and obtain substantial

improvements on solution time seen in Table 4.5.

Problem

Number of

IP
solution

time

Root
solution

time

Heuristic
solution

time

Heuristic
vs.

optimal
value* constraints variables nonzeros (sec) (sec) (sec)

A-20 2K 2K 36K 2 1 3 0.0%

A-40 9K 11K 381K 12 9 6 0.0%

A-58 13K 16K 759K 30 24 10 0.0%

A-80 20K 26K 1.7M 201 112 28 0.3%

A-100 31K 41K 3.9M 978 109 118 0.0%

A-116 37K 48K 5.3M 977 915 128 0.0%

B-20 3K 3K 35K 1 1 2 0.0%

B-40 10K 12K 390K 13 10 7 0.0%

B-59 19K 24K 1.2M 101 91 9 0.0%

B-80 27K 35K 2.5M 482 53 29 0.0%

B-100 38K 50K 4.8M 27051 18991 106 0.0%

B-118 48K 66K 7.4M 80405 31651 424 0.0%
* = (heuristic value – optimal value)/optimal value

Table 4.5. Improved CPLEX performances

The following approaches are considered:

• Use heuristic solution described in Section 4.3 as an initial solution,

• Apply perturbation and problem reduction techniques described in Section 4.4,

• Apply lazy cuts as in Section 4.5,

• Use following branching strategies:

 103

o First, branch on cumulative sink variables (see Section 4.6.4),

o Second, use time variables (see Section 4.6.2),

o Finally, apply task assignment variables (see Section 4.6.1).

In Table 4.5, the number of nonzero coefficients is reduced approximately 40-

50% with the help of problem reduction techniques and cumulative sink variables.

Furthermore, the solution times are decreased 99% in some of the instances. Besides the

solving smaller problem, initial solution and branching strategies, especially cumulative

sink variables, provide these good results.

In Table 4.6, initial gap ((= Heuristic solution – Root LP solution)/ Heuristic

solution) and number of branches in the B&B tree are provided for the problems solved

in Table 4.5.

Problem
Initial
gap*

Number of
branches Problem

Initial
gap*

Number of
branches

A-20 0.18% 0 B-20 0.00% 0

A-40 0.00% 0 B-40 0.14% 0

A-58 0.00% 0 B-59 0.00% 0

A-80 0.65% 10 B-80 0.77% 32

A-100 0.40% 35 B-100 1.44% 91

A-116 0.00% 0 B-118 2.97% 110
 * = (Heuristic solution – Root LP solution)/ Heuristic solution

Table 4.6. Initial gaps and number of branches

Despite of major improvements at hand, we can further reduce the solution time

by using subdivision method developed in Section 4.7. We generate 8 subproblems

following the guidelines of Section 4.7 by using heuristic solution. (We continue to use

approaches that are considered in Table 4.5.)

 104

In these subproblems, we concentrate on the instances that have 80 steps or more.

Instead of using smaller instances (that are already solved quickly), we generate the

additional problems using following logic: First, we solved the instances of two full

cycle problems optimally (116-step problem for region A and 118-step problem for

region B). Then, we assume that the service planners perform the tasks for one full cycle

by using these optimal solutions. We update the due dates of operations based on the

task decisions and cycle completion times of these solutions. Finally, we obtain the new

instances with the new starting conditions.

In Table 4.7, we see the performance of the subdivision method by using initial

solution. The new instances are referred to an additional letter “R”. Our heuristic finds

optimal solutions for 5 instances and there is a 0.9% difference between the optimal

solution of the “B-100-R” problem and the heuristic solution. Table 4.7 also shows the

worst initial gap and maximum number of branches needed to solve IP among all

subproblems generated by subdivision method.

Problem

IP
solution

time Initial
gap*

Number
of

brances Problem

IP
solution

time Initial
gap*

Number
of

brances (sec) (sec)

A-80 169 0.26% 0 A-80-R 219 8.43% 38

A-100 532 0.25% 25 A-100-R 502 1.69% 17

A-116 597 0.00% 0 A-116-R 329 0.00% 0

B-80 416 0.00% 0 B-80-R 357 0.02% 0

B-100 1406 0.55% 6 B-100-R 1265 1.21% 6

B-118 2481 0.06% 0 B-118-R 3949 0.62% 0
* = maximum of {(Heuristic solution – Root LP solution)/ Heuristic solution} among all
subproblems

 Table 4.7. Performance of subdivision method

 105

Solving problem instance B-118 takes 23 hours without considering subdivision

method and now, it is taking less than an hour. The performance of the subdivision

method highly depends on the division steps and times. The closer these time points are

to their optimal values, the better performance we get. Therefore, it is very important to

have a good initial solution to apply this method.

4.9 CONCLUSION

In this chapter, we considered the maintenance service application of the periodic

task assignment problem. We develop a heuristic that use shortest path approach given in

Chapter 2 as a subroutine. Computational results show that the heuristic can provide near

optimal solutions. We also propose problem reduction techniques to solve the problem

effectively. We further improve the solution time by investigating on techniques such

that lazy cuts, branching variables, and subdividing the problem into smaller problems.

We show that these techniques can provide substantial improvements on solution time.

 106

Chapter 5: Shipment Routing Problem with Dispatching Policies

5.1 INTRODUCTION

In transportation systems, planning and executing the transportation of shipments

involves many complex decisions and requires the management of multiple resources.

Appropriate management of these resources is necessary to improve service quality while

ensuring efficient use of resources and satisfy customer orders on time. The decision

makers need to solve many interrelated problems, such as the design of the underlying

network, the routing and timetabling of the carriers and the transportation of the

shipments.

In this chapter, the focus will be on the problem of routing shipments that need to

be transported from their origin to their destination. The shipment routing problem

determines the path (physical and temporal) that each shipment will use on its journey.

We investigate the transportation problem of shipments from their origin to their

respective destinations under capacity constraints and dispatching policies. The effective

usage of available capacity under a given network decreases costs and increases customer

satisfaction. Dispatching policies determine the handling rules of shipments on

intermediate stations during their trips. We assume that higher level decisions in the

network, such as capital investment and the carrier schedule, are given.

Complex network systems usually consist of multi-layer (physical and logical)

networks to handle traffic. In the physical layer, the actual transmitting network is

designed such as location of stations/airports and schedule of carriers in transportation

network, and location of routers and fiber optic lines in communication network. The

logical network is designed over physical network to handle traffic effectively such as IP

networks in computer networks.

 107

In transportation network, a shipment may pass through many classification

stations on its route from origin to destination. At these stations, the station operators

reclassify the incoming traffic to be placed on outgoing carriers. Each reclassification

takes time and incurs handling costs. Instead of reclassifying shipments at every station

on its route, several shipments may be grouped together to form a block, a term barrowed

from railway terminology. A block has its own origin–destination pair that may be

different from the origin-destination pair of individual shipments contained in the block.

Therefore, a shipment may be assigned to more than one block to reach its destination.

With this blocking mechanism, the shipments are classified only at the origin of the

blocks to which they are assigned. (See Cordeau et al., 1998 and Ahuja et al., 2005 for

multi-layer network designs in railway applications). In communication network,

different fiber links group together to form a trunk to handle data packages. Again, the

data is reclassified only at the origin of the trunks. (More information about multi-layer

communication networks can be found in Pioro and Medhi, 2004.)

After the design stages of physical and logical networks, the next step determines

the possible carrier assignments within the planning horizon for blocks. During the block

construction, carrier scheduling and possible carrier assignments, the forecasted

shipments are considered. At the final stage, the shipment routing problem determines

carrier assignments for actual (not forecasted) shipments among the possible carriers

generated in the design stages.

The shipment routing problem has some important practical constraints that the

trip planner should consider:

• Carrier capacities: The carriers have capacities between two stations they travel.

These capacities could be different during the trip of carriers. If the capacity

requirements are not considered, the last minute adjustment will change the

 108

original routing plan given to the customer, so these changes may affect customer

satisfaction. Moreover, myopic decisions may result in ineffective use of

resources, especially in congested systems. In our network structure, multiple

blocks could be assigned to a single carrier and a single block could be assigned

to multiple carriers. If the arcs are considered as carrier to block assignments for

a particular shipment in a given network, multiple arcs can share same resource.

This structure is different than the standard multi-commodity flow problems

where each arc has its own capacity.

• Dispatching policies: The other issue concerns rules about shipment interactions

on the network. If two shipments are assigned to the same block, then a shipment

that comes to a station earlier should not be assigned to a carrier that departs later

than the one carrying a shipment that arrived later. This is a practical constraint in

many networks, and simply states first-in-first-out (FIFO) rule for that station if

the shipments are using same departing block. Clearly, an approach that designs

the routing plan for each shipment independently cannot handle this rule.

 Note: A dispatching policy can be designed to handle arbitrary order of the

shipments (not necessarily FIFO).

We consider a problem that requires the following items as inputs:

• Shipments with their release times and volumes

• Set of blocks that can carry each shipment

• Legitimate Block-to-Carrier assignments for each block

• Carrier capacities (could vary by location even for same carrier)

• Dispatching policies

The shipment routing problem determines which among the possible Block-to-Carrier

assignment should be assigned to each shipment considering capacities and dispatching

 109

policies. The objective function is to minimize the total weighted transit times of

shipments from their origin to destination.

This chapter focuses on a shipment routing problem under capacity and

dispatching policies. We consider a space-time network that allows one to formulate the

shipment routing problem as a multi-commodity network flow problem with additional

side constraints. We explore alternative models and develop methodologies for routing

decisions. We propose algorithms and techniques that can solve real size shipment

routing problem to optimality or near-optimality.

The remainder of this study is organized as follows: The next section provides

the background and literature review for shipment routing problems and related multi-

commodity network flow problems. Section 3 defines the problem and formulates the

shipment routing problem, and Section 4 investigates the characteristics of three different

dispatching policy constraints. Section 5 proposes an alternative formulation, and

Section 6 shows complexity results. Section 7 concentrates on heuristics and lower

bounds, and Section 8 provides computational results.

5.2 LITERATURE REVIEW

Shipment routing problems appear in many network applications such as

transportation and telecommunication. These problems are operational level problems

and handled after designing the physical and logical networks.

Railroad trip planning problems are one of the applications of shipment routing

problems. In railroad planning and scheduling, Assad (1980) presents the hierarchical

structure of decision problems in railroads. Cordeau et al. (1998) and Ahuja et al. (2005)

give a recent survey of railroad network design problems.

 110

In railroad planning hierarchy, the railroad blocking problem and the train

scheduling problem should be solved before solving the trip planning problem. The

blocking problem which involves grouping shipments into blocks is the primary planning

problem in the railroad industry for logical network generation. Newton et al. (1998),

Barnhart et al. (2000), and Ahuja et al. (2007) work on this problem. After a railroad has

developed a blocking plan, designing a train schedule is the next operational planning

task. Related works can be found in Farvolden and Powell (1994), Campbell (1996),

Kraft (1998), and Brannlund et al. (1998).

To the best of our knowledge, there are few papers in the literature related to the

trip planning problem (see Van Dyke 1992, 1994) which corresponds to shipment routing

problem in railway applications. Nozick and Morlok (1997) study the shipment-to-train

assignment problem and the problem of repositioning empty cars together for a given

train schedule without considering any blocking plans. They consider the objective

function of minimizing the total movement cost of cars while satisfying due date

constraints. They formulate the problem as an integer program over a time-space

network, and propose a heuristic based on the linear programming relaxation. The

heuristic rounds up or down some of the fractional values and reruns the linear

programming relaxation until a feasible integral solution is found.

Kwon et al. (1998) consider the shipment-to-block assignment and the trip

planning problems for a given train schedule under train capacity constraints. They

formulate the problem as a linear multicommodity flow problem and use column

generation as a solution approach. They formulate the multicommodity flow problem

using path flows for every shipment from its origin to its destination. During column

generation, the restricted master problem is solved for a subset of the paths, and the

subproblems are represented as shortest path problems for every shipment from its origin

 111

to its destination. In their computations, they use a network with 12 stations and 16

trains.

Jha et al. (2008) deal with the trip planning problem for a given block plan and a

train schedule subject to train capacity constraints. They develop arc-based and path-

based multicommodity network flow formulations of the problem. In their model, they

assume that all the trains run every day, and all the blocks are made every day. The

formulations are defined in a time-space network in which every node is distinctly

identified by place, time and train within the block. They connect the last node to the

first node at the same station and obtain a one-day network with wrap around arcs.

The path based formulation given in Jha et al. (2008) considers the potential paths

for each block. This approach is different than Kwon et al. (1998) because Kwon et al.

define the potential paths for each shipment. Since a shipment can use multiple blocks in

its blocking plan, the formulation in Jha et al. (2008) has fewer path variables than the

formulation in Kwon et al. (1998). However, the path based formulation in Jha et al.

requires connection arcs between blocks to capture the transit times of the shipments. Jha

et al. (2008) do not generate these connection arcs but instead assume that there is only

one release time for each block in a day. This assumption reduces the problem to the

block level so that the problem assigns one path for each block under train capacity

constraints.

Jha et al. propose exact and heuristic algorithms based on the path-based

formulation. Their exact algorithm solves an integer programming formulation based on

a branch and price approach. The columns are generated either a priori or dynamically.

They also develop Lagrangian relaxation-based heuristic method and present

computational results using the data provided by a major U.S. railroad. (Data consists of

around 1200 blocks and 350 trains.)

 112

The trip planning problem also appears indirectly in the problem structures of a

few papers. These efforts determine the routing and frequency of trains (but not the

actual departure times of the trains), and the block to train assignments together. The

blocking policy may be either determined within the model or given as an input. Thomet

(1971) develops a cancellation procedure that gradually replaces direct shipments with a

series of intermediate train connections in order to minimize operation and delay costs.

Crainic et al. (1984), and Crainic and Rousseau (1986) propose a nonlinear, mixed

integer, multi-commodity flow model that deals with the interaction between blocking,

block to train assignments and train and traffic routing decisions. The model specifies

the feasible routes on which train services may be run and defines a set of feasible trip

plans for each origin-destination pair. Haghani (1987, 1989) develops a formulation and

heuristic decomposition approach for combined train routing, block-to-train assignment

and empty car distribution problems. Keaton (1989) develops a heuristic method based

on Lagrangian relaxation for the combined problem of car blocking, train routing, and

block-to-train assignment. He obtains subproblems that can be represented as shortest

path and knapsack problems. Keaton (1992) additionally considers constraints for

blocking and maximum transit time for each origin–destination pair. Martinelli and Teng

(1996) propose a neural network approach to solve the train routing and the shipment to

train assignment problems. The problem is formulated as a nonlinear integer program

that minimizes the total time spent by shipments in the system. Marin and Salmeron

(1996) consider the train routing and the shipment-to-train assignment problems and

develop three heuristic methods: the descent method, simulated annealing, and tabu

search. In their computational tests, simulated annealing obtained the best solutions but

required more time than the other heuristics.

 113

In communication networks, data transfer over multi-layer networks. Related

problems about multi-layer network design in communication networks can be found in

Pioro and Medhi (2004) and Orlowski (2009). After the design of communication

network, data packages are routed on this network following network policies.

The shipment routing problem is often formulated as a multicommodity network

flow problem with additional side constraints. In fact, the shipment routing problem

without capacity and dispatching constraints is simply solvable via shortest path

algorithms. However the shipment routing problem differs from the standard

multicommodity flow problem when we consider the capacities such that each

capacitated resource may be usable by multiple arcs and each arc may be consists of

multiple resources in the shipment routing problem.

The multicommodity network flow problem is one of the classical problems in the

literature since the publication of Ford and Fulkerson (1958). Many of the approaches

were developed in the 1960s and 1970s. Assad (1978) and Kennington (1978) are

excellent survey papers that describe several algorithms and standard properties of

multicommodity flow problems. Additionally, Ahuja et al. (1993) present several

solution procedures. Decomposition techniques have been used extensively in solving

large multicommodity flow problems. Barnhart et al. (1995) and Jones et al. (1993)

develop column generation models for linear multicommodity flow problems. Barnhart

et al. (2000) propose a branch-and-price-and-cut algorithm for integer origin-destination

multicommodity flow problems. Crainic et al. (2001) develop the Lagrangian relaxation

technique, and their experiments show that the bundle methods appear superior to

subgradient approaches. Castro (2000) considers the interior point algorithm to solve

linear multicommodity flow problems. There are also multicommodity flow problems

with convex costs, and Ouorou et al. (2000) give an excellent survey of this area.

 114

The shipment routing problem is a large scale problem that is hard to solve. To

the best of our knowledge, there is no study done in the literature for the shipment routing

problem with capacity and dispatching policies. Without dispatching policy constraints,

the efforts in the railway literature either solve small problem instances (Kwon et al,

1998) or deal with simplified versions of this problem (Jha et al., 2008). In this chapter,

we develop approaches to solve real-size problems in a reasonable time.

5.3 PROBLEM DEFINITION

In this section, we will formulate the shipment routing problem as a

multicommodity network flow problem over a time-space network. Traditionally, there

are two formulations developed for multicommodity network flow problems: Arc-based

and path-based. The arc-based formulation is a standard method for formulating a

multicommodity network flow problem. The path-based formulation is commonly used

with column generation techniques because its constraint set is smaller than the constraint

set of arc-based formulation, but its variable set is far bigger.

Several side constraints in multi-layer networks make the arc-based formulation

impractical in solving shipment routing problems. To be able to construct relations

between shipments, we need enormous number of constraints in the arc-based

formulation. Conversely, the number of variables in the path-based formulation can be in

the billions. Therefore, we formulate the shipment routing problem by using a hybrid

approach. We expand the arc definition and consider only those stations where the

dispatching constraints take place. This approach handles the practical constraints with

an affordable number of variables.

 115

Let W be the set of all shipments that are customer orders and should be

transported from their origin to destination. Each shipment Ww∈ has the following

attributes:

ow Origin station of shipment w; w ∈ W

dw Destination station of shipment w; w ∈ W

rtw Release time (available time to use) of shipment w; w ∈ W

vw Volume of shipment w; w ∈ W

A shipment travels from its origin to destination using appropriate blocks. Let B

be the set of all blocks, and let BW(w) represent the set of all blocks that can carry

shipment w. Each block Bb∈ has the following characteristics:

obb Origin station of block b; b ∈ B

dbb Destination station of block b; b ∈ B

A block is carried by a sequence of carriers during its path. The route of a carrier

between two consecutive stations is called a resource that subject to capacity. The

volume capacity of each resource is considered as a resource capacity. Let R represent

the set of all resources, with each resource indexed as r.

Each possible sequence of carriers for a block from its origin to destination is

called a link, a term barrowed from communication network. Each link can be

represented by the block’s origin, the block’s destination, the departure time of a carrier

that carries the block from its origin, the arrival time of a carrier that carries the block to

its destination, and the resources passed on the block’s route.

Let P be the set of all links. Each link Pp∈ can be related to shipments and

resources. We define the following sets to represent relationships between shipments and

resources:

PW(w) Set of links that can be used by shipment w; w ∈ W

 116

WP(p) Set of shipments that can use link p; p ∈ P

PR(r) Set of links that use resource r; r ∈ R

Figure 5.1 shows the representation of shipments, blocks, links and their

relationships discussed so far.

Figure 5.1. Shipments, Blocks and Links

The shipment routing problem uses all of the information given above as input

and generates a solution that assigns shipments to links by considering following side

constraints:

• Capacity constraints: Resource capacity cannot be violated.

• Dispatching policy constraints: Among two shipments, a shipment that arrived

at the station earlier cannot go after one that arrived later if they are attached to

same block for their next trip.

The objective function minimizes total weighted transit times of shipments from

their origin to destination. However the formulation we give here can also handle other

Shipment A

1
Shipment B Shipment C ….

9

Block 100

1 5
Block 200

5 9

Carrier 111
Date: 4/17/11

1 5

Carrier 222
Date: 4/13/11

1 3
Carrier 333

Date: 4/19/11

3 5

Shipments

Links

Shipment-Block
Sequence

 117

types of objective criteria such as total waiting times at the stations and total

earliness/tardiness (if there are due dates for shipments).

The time-space network of the shipment routing problem is defined as G = (N, A)

where N denotes the node set and A denotes the arc set. A node (w, s, t) in the network

represents a valid station s at a time t that a link can arrive or depart from that station for

shipment w. Two types of arcs are introduced for the arc set A: Link arcs and connection

arcs. A link is designed for each possible carrier sequence from the origin of the block to

the destination of the block and a link arc is generated for each shipment that can attach

to corresponding link. Hence, the link arc may consist of multiple resources.

On the other hand, connection arcs connects one link arc to next link arc so they

represent waiting time at each station for each shipment, except for the destination station

of the shipment. All the nodes for a station are sorted in chronological order by their time

attributes, and each node at a station is connected to the next node in this order. We

assume that the planning horizon is given and we accept the link arcs within that horizon.

Moreover, the latest node at a station is connected to the dummy node at the destination

to guarantee feasibility. Otherwise infeasibility may occur either because of capacity

constraints or planning horizon is not long enough to complete routings of some

shipments. Figure 5.2 illustrates the time-space network for the shipment routing

problem for a shipment.

 118

Figure 5.2. Time-space network representation for each shipment

In Figure 5.2, P11 and P12 are outgoing link arcs from the origin station and

incoming link arcs to the intermediate station for given shipment. Similarly, P21 and P22

are outgoing link arcs from the intermediate station and incoming link arcs to the

destination. D1 and D2 are dummy link arcs from the origin and the intermediate station

to the destination, respectively. These arcs move the shipment from one station to

another. C11 and C12 are connection arcs at the origin, and C21, C22, C23 and C24 are

connection arcs at the intermediate station. These arcs represent the waiting time of the

shipments if there is a flow on them.

In this time-space network, shipments flow on “link” arcs and connection arcs,

going from their origin to their destination. This formulation is a mixture of pure arc-

based and pure path-based formulations. The other two formulations can be described as

follows:

• Pure arc based formulation: In this time-space network, arcs represent individual

resources and waiting times. Although this formulation can potentially reduce the

number of arcs in the network, it requires too many constraints to represent

P11 P12

P21 P22

C21 C22 C23 C24

D2

time

space
Origin

Intermediate
station

Destination

D1

C11 C12

 119

shipment-block sequence structure of the network. Besides, two shipments can

share same resource by using different blocks, so we need to embed the block

information to the formulation anyway to represent dispatching policy constraints.

• Pure path based formulation: In this time-space network, paths are generated for

all shipments from their origin to destination. Although all of the network

structure and practical constraints could be honored during the generation of

feasible paths, the number of possible paths can be in the billions (around 2.1

billions in one of our instance we tested) for a moderate size transportation

company.

The hybrid formulation holds the number of variables to a manageable size and

handles the network structure and practical constraints easily. We use the following sets

and indices in the IP formulation.

Sets and Indices:

W Set of all shipments, indexed by w

P Set of all links, including dummy links, indexed by p

R Set of all resources, indexed by r

S Set of all valid stations, indexed by s

PW(w) Set of links that can be used by shipment w; ∀ w ∈ W

POW(w) Set of links that can be used by shipment w where the starting location is

the origin of w; ∀ w ∈ W

PDW(w) Set of links that can be used by shipment w where the ending location is

the destination of w; ∀ w ∈ W

PIW(w) Set of links that can be used by shipment w other than the links within the

set of POW(w) and PDW(w); ∀ w ∈ W

WP(p) Set of shipments that can use link p; ∀ p ∈ P

 120

PR(r) Set of links that use resource r; ∀ r ∈ R

SW(w) Set of stations that originate links in PW(w); ∀ w ∈ W

SIW(w) Set of stations (intermediate stations) that originate links in PIW(w); ∀ w

∈ W

TSW(s, w) Set of departure and arrival times of links in PW(w) that originate and

terminate at station s; ∀ w ∈ W, s ∈ SIW(w)

tnext(w, s, t) Earliest element of TSW(s, w) later than time t; ; ∀ w ∈ W, s ∈ SIW(w), t

∈ TSW(s, w)

tprev(w, s, t) Latest element of TSW(s, w) earlier than time t; ∀ w ∈ W, s ∈ SIW(w), t ∈

TSW(s, w)

Porig(w, s, t) Set of links in PW(w) that originate at station s and time t; ∀ w ∈ W, s ∈

SIW(w), t ∈ TSW(s, w)

Pdest(w, s, t) Set of links in P(w) that terminate at station s and time t; ∀ w ∈ W, s ∈

SIW(w), t ∈ TSW(s, w)

vw Volume of shipment w; ∀ w ∈ W

ur Total volume allowed on resource r; ∀ r ∈ R

cwp Cost of using link p for shipment w; ∀ w ∈ W, p ∈ PW(w). Note: In our

test data, this cost represents weighted transit times; (time to go from

origin to destination of link p) times (volume of shipment w).

fwst Cost of being idle for shipment w at station s from time t to time tnext(w,

s, t); ∀ w ∈ W, s ∈ SIW(w), t ∈ TSW(s, w). Note: We include the cost of

being idle at origin or destination (if any) into the corresponding link to

reduce number of variables.

In this structure, we assume that all the shipments should be routed from their

origin to their destination without violating capacity or dispatching policy constraints.

 121

The optimization problem outlined above can be formulated as a multicommodity

network flow with side constraints.

Decision Variables:

Xwp = 1 if shipment w uses link p, 0 otherwise; ∀ w ∈ W, p ∈ PW (w)

Ywst = 1 if shipment w idles at station s from time t to time tnext(w, s, t), 0 otherwise;

∀ w ∈ W, s ∈ SIW(w), t ∈ TSW(s, w)

Model Formulation:
Minimize ∑ ∑ ∑∑ ∑

∈ ∈ ∈∈ ∈

+
Ww wSIWs wsTSWt

wstwst
Ww wPWp

wpwp YfXc
)(),()(

 (1)

subject to:

Flow conservation constraints for origin stations of shipments
1

)(

=∑
∈ wPOWp

wpX for all w ∈ W (2)

Flow conservation constraints for intermediate stations of shipments

),,(,,
),,(

,,
),,(

tswtprevsw
tswPdestp
wptsw

tswPorigp
wp YXYX +=+ ∑∑

∈∈

 for all w ∈ W, s ∈ SIW (w), t ∈ TSW(s, w) (3)

Flow conservation constraints for destination stations of shipments
1

)(

=∑
∈ wPDWp

wpX for all w ∈ W (4)

Resource capacity constraints

r
pWPw rPRp

wpw uXv ≤∑ ∑
∈ ∈)()(

 for all r ∈ R (5)

Dispatching policy constraints

First-in-first-out among shipments that use same block (see next section) (6)

Integrality

1or 0=wpX for all w ∈ W, p ∈ PW(w) (7)

1or 0=wstY for all w ∈ W, s ∈ SIW(w), t ∈ TSW(s, w)

 122

The objective function (1) minimizes the total cost of links and connection arcs.

The objective function can represent several types of cost structures such as:

• Total weighted transit times of shipments from their origin to destination if the arc

costs are equal to time spend on corresponding arcs

• Total waiting times at the stations if only the connection arcs have (time based)

costs

• Total earliness/tardiness if there are due dates for shipments and only the link arcs

that go to destination of shipment have costs based on due dates.

Constraint (2) and (4) assign shipments to their first and last blocks, respectively.

Constraint (3) represents flow conservation constraints for intermediate stations.

Constraint (5) indicates the capacity restrictions, and constraint (6) ensures dispatching

policy, which will be described in detail in the next section. Finally, constraint (7) is for

integrality requirements.

In addition to these constraints, there are also physical constraints, called

dispatching constraints, needed to ensure the first in first out rule for shipments at the

stations. In the next section, we propose alternative formulations for dispatching

constraints.

5.4 DISPATCHING POLICY CONSTRAINTS

In a transportation network, shipments wait in line for their next block connection.

When the carrier arrives, it picks up the shipments located at the front of the line and fills

to capacity. Therefore, there is a practical constraint which states: Among two

shipments, a shipment that arrived at the station earlier cannot go after one that arrived

later if they are attached to same block for their next trip.

 123

In Figure 5.3, there are two shipments w and w' at the same station s and they are

attached to same block to depart this station. Let shipment w arrives to the station with

link p and departs from the station with link q. Then, the dispatching policy rule states

that shipment w' cannot come to station s earlier than the arrival time of shipment w and

depart from station s later than shipment w. We develop three types of formulations to

describe these constraints.

Figure 5.3. Departures of two shipments using the same block

5.4.1 Type-A dispatching constraints

We define the following additional sets and indices:

ap Arrival time of link p; ∀ p ∈ P

link variables
waiting variables

Station s,
Shipment w

Station s,
Shipment w’

Xw,p

time ap

Xw,q

Xw’q’

Yw’,dsp,tprev(w’,dsp,ap)
link p

link q

link q’

time tprev(ap)

 124

dp Departure time of link p; ∀ p ∈ P

dsp Destination station of link p; ∀ p ∈ P

ow Origin of shipment w; ∀ w ∈ W

rtw Release time of shipment w; ∀ w ∈ W

PWdest(w,p) Links usable by shipment w at the destination of link p; ∀ p ∈ P, ∀ w ∈ W

Plater(q) Links that depart later than link q and belong to same block as link q; ∀ q

∈ P

The following constraints ensure the dispatching criteria:

both shipments are at their origin

1'' ≤+ qwwq XX for all w ∈ W, q ∈ POW(w), rtw > rtw' (A1)

 w'∈ WP(q), q' ∈ Plater(q), q' ∈ POW(w')

shipment w is at the middle station, and w' is at its origin

2'' ≤++ qwwqwp XXX for all w ∈ W, q ∈ PIW(w), q∈PWdest(w,p) (A2)

 w′∈ WP(q), q'∈ Plater(q), q'∈ POW(w'), ap > rtw'

shipment w' is at the middle station, and w is at its origin

2''),,'(,,' ≤++ qwrtowtprevowwq XYX
www

 for all w ∈ W, q ∈ POW(w), (A3)

 w′∈ WP(q), q' ∈ Plater(q)

both shipments are at their middle station

3''),,'(,,' ≤+++ qwadswtprevdswwqwp XYXX
ppp

 for all w ∈ W, q ∈ PIW(w), (A4)

 q∈PWdest(w,p), w′∈ WP(q), q' ∈ Plater(q)

 In each of these constraint sets, we are comparing two shipments at each

constraint. Constraint (A1) is for the case where both shipments are at the same origin.

Constraint (A2) and (A3) are for the cases where only one shipment is at its origin.

Constraint (A4) shows the case where both shipments are at their intermediate stations.

Suppose shipment w is attached to links p and q. Shipment w' ≠ w cannot arrive at station

 125

s before than link p and depart on a link q' that departs later than link q without violating

the dispatching rule. Similarly, if shipment w' is waiting at station s whenever shipment

w arrives, then shipment w should not depart before shipment w'. Therefore, the

variables at the left hand side of the constraints cannot be one at the same time.

5.4.2 Type-B dispatching constraints

Type-B dispatching constraints introduce new variables to represent arrival and

departure time of a particular shipment at each station as a single variable. We define the

following additional sets and indices:

osp Origin station of link p; ∀ p ∈ P

dsp Destination station of link p; ∀ p ∈ P

Plater(q) Links that depart later than link q and belong to same block as link q; ∀ q

∈ P

TASW(s, w) Set of arrival times of links in PW(w) that terminate at station s; ∀ w ∈ W,

s ∈ SW(w). This also includes release time of shipments that originate at

station s.

PSW (w, s, t) Links that are eligible for shipment w and depart from station s later than

time t; ∀ w ∈ W, s ∈ SW (w), t ∈ TASW(s, w)

We define the following variables:

Zwtq = 1 if shipment w arrives to station osq at time t and departs from station osq by

using link q, 0 otherwise; ∀ w ∈ W, t ∈ TASW (osq, w), q ∈ PSW (w, osq, t)

The following constraints ensure the dispatching criteria:

1''' ≤+ qtwwtq ZZ for all w ∈ W, t ∈ TASW (osq, w), q ∈ PSW (w, osq, t) (B1)

 w′∈ WP(q), q′ ∈ Plater(q) , t′ < t, t′ ∈ TASW (osq, w′),

wtqwq ZX ≤ for all w ∈ W, t = rtw, q ∈ PSW (w, osq, t), (B2)

 126

 q ∈ POW(w)

wtqwqwp ZXX ≤−+ 1 for all w ∈ W, t ∈ TASW (osq, w), q ∈ PSW (w, osq, t), (B3)

 q ∈ PIW(w), t = ap

The explanation of constraint (B1) is similar to the explanations for Type-A

constraints. The additional Z variables have three indexes to represent both arrival and

departure times of a particular shipment. Constraints (B2) and (B3) link the X and Z

variables at the origin and intermediate stations.

Clearly, Type-B dispatching constraints use more variables than the Type-A

constraints. In addition, Type-B has more constraints than Type-A, because previous

constraints check whether shipment w′ waits or not at the time shipment w arrives by

using one connection variable. However, Type-B constraints look at all the time points

smaller than the arrival time of shipment w.

Proposition 5.1: Neither Type-A nor Type-B dispatching constraints is the stronger than

the other.

Proof: In Figure 5.4, there are two shipments (w and w′) that are use the same block to

depart station s. Assume that Xwp = Xwq = 1. Then, Zwtq = 1 for t = ap.

If Xw′p′ = Xw′p′′ = Xw′q = Xw′q′ = 0.5, then all the Z variables related to w′ could be

zero. Therefore, this solution satisfies Type-B constraints. However

1),,'(,,' =
pqq aoswtprevoswY due to flow constraints. Hence;

35.35.0111''),,'(,,' >=+++=+++ qwaoswtprevoswwqwp XYXX
pqq

violates Type-A constraints.

Similarly, if Xw′p′ =1 and Xw′q′ = Xw′q′′ = 0.5; then 5.0),,'(,,' =
pqq aoswtprevoswY due to the

flow constraints. Hence, 35.05.011''),,'(,,' =+++=+++ qwaowTowwqwp XYXX
pqlastq

satisfies Type-A constraints. On the other hand, Zwtq′ = 0.5 for t = ap′. Hence,

 127

15.15.01''' >=+=+ qtwwtq ZZ violates Type-B constraints. Therefore, neither Type-A

nor Type-B is the stronger of the two.

Figure 5.4. Type-A and Type-B constraints where neither of them is stronger

5.4.3 Type-C dispatching constraints

Type-C dispatching constraints require a different approach. In this case, we

introduce the variables that determine time window for every link. For each link, there is

a time window whose lower and upper bounds are calculated based on the arrival time of

the earliest and latest shipments assigned to that link. If the arrival time of the latest

shipment assigned to a previous link has a time greater than that of the arrival time of the

earliest shipment assigned to a next link of the same block, then we can conclude that

there is a dispatching violation between these links.

link variables
waiting variables

Station s,
Shipment w

Station s,
Shipment w’

Xw,p

time ap

Xw,q

Xw’q’

Yw’,oq,Tlast(w’,oq,ap)

link p

link q

link q’

time Tlast(ap)

Xw’,p”

Xw’q

Xw’q”

Xw’,p’

 128

There are two kinds of shipments that violate the dispatching rule: (i) shipments

assigned to a link p with arrival times that are later than the shipment with the earliest

arrival time in the next link and (ii) shipments with arrival times that are earlier than the

shipment with the latest arrival time in the previous link p.

Consider the following two links (P1 and P2) of the same block:

Figure 5.5. Time window violation of links

In Figure 5.5, two links of same block have time windows based on the arrival

time of shipments assigned to these links. The first link carries shipments that arrive

between t1 and t3, and the second link carries shipments that arrive between t2 and t4.

Here we have to reschedule shipments that arrive between t2 and t3. Figure 5.6 shows

non-overlapping time windows for links.

Figure 5.6. Non-overlapping time windows for links

time

P2

P1

t1 t2 t3 t4

w1

P1 P2 D

space

station

w2 w3 w4 w5 w6 w7

Time window
of P1

Time window
of P2

Time window
of D

Assigned to P1 Assigned to P2 Assigned to D time

 129

To determine time windows for links, we define the following additional sets and indices:

SIW(w) Set of stations for shipment w other than origin and destination; ∀ w ∈ W

PIOS(w,s) Set of links that can be used by shipment w and starting location of links is

station s; ∀ w ∈ W, s ∈ SIW(w)

PIDS(w,s) Set of links that can be used by shipment w where its ending location is

station s; ∀ w ∈ W, s ∈ SIW(w)

next(p) Next link in time after link p that belongs to same block; ∀ p ∈ P

We define the following additional variables:

LBp Lower bound in time for accepting shipments for link p, ∀ p ∈ P

UBp Upper bound in time for accepting shipments for link p, ∀ p ∈ P

The following constraints ensure the dispatching criteria:

pwpwpwp UBXMrtLBXM +−≤≤+−−)1()1(for all w ∈ W, p ∈ POW (w) (C1)

qwq
swPIDSp

wppqwq UBXMXaLBXM +−≤≤+−− ∑
∈

)1()1(
),(

 for all w ∈ W, s ∈ SIW (w) (C2)

 q ∈ PIOS (w,s)

pp UBLB ≤ for all p ∈ P (C3)

ppnext UBLB =)(for all p ∈ P (C4)

where M represents a big number and makes a constraint loose if a shipment is not

assigned to a link in that constraint. (M will be properly calculated in the next section.)

Constraint (C1) is for the origin, and (C2) is for intermediate stations of the

shipment. Whenever a shipment is assigned to a link, these constraints ensure that the

lower bound of the link is not bigger than the arrival time of the shipment and the upper

bound of the link is not smaller than the arrival time of the shipment.

Note: Instead of arrival time of shipments, any kind of ordering criteria could be used to

determine dispatching policy.

 130

Although the Type-C constraint set requires fewer constraints than others, it

contains big M parameters that weaken the constraints. However, if we choose

appropriate big M parameters (calculated in the next section), we can strengthen them.

Proposition 5.2: Neither Type-A nor Type-B dispatching constraints is stronger than

Type-C dispatching constraints and vice versa.

Proof: In Figure 5.4, there are two shipments (w and w′) that use the same block to

depart station s. Assume that Xwp = Xwq = 1. Then, Zwtq = 1 for t = ap.

• If Xw′p′ = Xw′p′′ = Xw′q = Xw′q′ = 0.5, this solution violates Type-A, and satisfies

Type B. Assume that Xw′q′′′ = 0.5 instead of Xw′q, where link q′′′ departs later than

the other links. The solution still violates Type-A, and satisfies Type B. We can

choose M = ap, which is the latest arrival time at that station. Therefore,

2
5.0

5.0
2

5.0

"'
'

'
"'

'

pp
pqq

qp
pp

qp

qpq

aa
aLBUB

UBa
aa

LBa

UBaLB

+
≤⇒=

+≤
+

≤+−

≤≤

 This solution violates or satisfies Type-C constraints depending on the selection

of ap, ap′, and ap′′.

• If Xw′p′ =1 and Xw′q′ = Xw′q′′ = 0.5, this solution violates Type-B, and satisfies Type

A. We can choose M = ap, then;

''

'''

5.0

5.05.0

ppqq

qppqp

qpq

aaLBUB

UBaaLBa

UBaLB

≤⇒=

+≤≤+−

≤≤

 This solution violates or satisfies Type-C constraints depending on the selection

of ap, and ap′.

This result shows that none of the dispatching constraints are weaker or stronger than any

of the others.

 131

5.4.4 Strengthening dispatching constraints

In a capacitated shipment routing problem, we have flow-in-flow-out constraints,

and there is one flow for each shipment. This means that a shipment can arrive at or

depart from a station using only one link. Using this knowledge, we can find the

following constraints, which are a stronger version of the Type-A dispatching constraints:

both shipments are at their origin
1

)('
'' ≤+ ∑

∈ qPq
qwwq

later

XX for all w ∈ W, q ∈ POW(w), rtw > rtw’ (A1)

 w′∈ WP(q), q’ ∈ POW(w’)

shipment w is at the middle station, and w’ is at its origin
2

)('
'' ≤++ ∑

∈ qPq
qwwqwp

later

XXX for all w∈W, q∈PIW(w), q ∈ PWdest(w,p) (A2)

 w′∈ WP(q), q’∈ POW(w’), ap > rt w’

shipment w’ is at the middle station, and w is at its origin
2

)('
''

)('
'' ≤++ ∑∑

∈∈ qPq
qw

rtPp
pwwq

laterwearlier

XXX for all w ∈ W, q ∈ POW(w), (A3)

 w′∈ WP(q)

both shipments are at their middle station
3

)('
''

)('
'' ≤+++ ∑∑

∈∈ qPq
qw

rtPp
pwwqwp

laterwearlier

XXXX for all w ∈ W, q ∈ PIW(w), (A4)

 q∈PWdest(w,p), w′∈ WP(q)

Similarly, the following constraints are a stronger version of the Type-B dispatching

constraints:
1

)',('
)'()('

''' ≤+ ∑ ∑
∈
< ∈

wosTASWt
tt qPq

qtwwtq

q

later

ZZ for all w ∈ W, t ∈ TASW (osq, w), (B1)

 q ∈ PSW (w, osq, t), w′∈ WP(q),

wtqwq ZX ≤ for all w ∈ W, t = rtw, q ∈ PSW (w, osq, t),(B2)

 q ∈ POW(w)

 132

wtqwq
twPATp
wp ZXX ≤−+∑

∈

1
),(

 for all w ∈ W, q∈PWdest(w,p), t = ap (B3)

 t∈TASW (osq, w), q∈PSW (w, osq, t), q∈PIW(w),

where PAT(w, t) is the set of links related to shipment w and arrival times are equal to t.

Observe that the proof of Proposition 5.1 does not hold for the strengthened Type-A and

Type-B constraints.

Finally, we can choose appropriate values for big M parameters for Type-C

constraints. These parameters could be selected separately for each constraint. We make

the following observations:

• The lower bound of the link should not be greater than the departure time of an

earlier link for the same block, because an earlier link cannot get a shipment after

it departs from the station.

• The upper bound of the link could be as low as the earliest release time of the

shipments or the earliest possible arrival time of the shipments to that station

among the shipments that can also use this link, because that shipment can ride on

a later link.

To set the big M values, we define the following additional sets and indices:

rtw Release time of shipment w at its origin; ∀ w ∈ W

prev(p) Previous link in time after the link p that belongs to the same block; ∀

p∈P

first(p) First link in time that arrives among the links of the same block; ∀ p∈P

last(p, t) Last link in time before time t that arrives among the links of same block;

∀ p ∈ P

tearliest(p) Earliest arrival time or release time among the shipments w ∈ WP(p); ∀

p∈P

 133

ap Arrival time of link p

dp Departure time of link p

We obtain the following results for the constraints at the origin (C1):

wpprevpprevwp rtdMdMrtLB −=⇒=+≤)()(for all w ∈ W, p ∈ POW (w)

)()(pearliestwpearliestwp trtMtMrtUB −=⇒=−≥ for all w ∈ W, p ∈ POW (w)

We obtain the following results for the constraints at the origin (C2):

)()()(
),(

pfirstqprevqprev
swPIDSp

wppq adMdMXaLB −=⇒=+≤ ∑
∈

 for all w ∈ W, s ∈ SIW (w)

)(),()(
),(

qearliestdplastqearliest
swPIDSp

wppq taMtMXaUB
q

−=⇒=−≥ ∑
∈

 for all w ∈ W, s ∈ SIW (w)

Observe that the proof of Proposition 5.2 does not hold for the strengthened Type-

A, Type-B and Type-C constraints.

5.5 PATH-BASED ALTERNATIVE FORMULATION

In this formulation, all feasible paths for all shipments, called shipment-paths,

from origin to destination are created a priori for each shipment. In the construction of

shipment-path, one appropriate link is chosen for each block in the shipment-block

sequence. The problem is then to optimally assign each shipment to exactly one

shipment-path. Observe that the shipment-path definition here is different than the link

definition for all shipments that have more than one block in its block sequence.

Sets and Indices:

W Set of all shipments

P Set of all paths (from origin to destination)

R Set of all resources

PW(w) Set of paths that can be used by shipment w; ∀ w ∈ W

rWW(w) Set of shipments that share at least one block with shipment w; ∀ w ∈ W

WP(p) Set of shipments that can use path p; ∀ p ∈ P

 134

PR(r) Set of paths that use resource r; ∀ r ∈ R

PI(p, w, w’) Set of paths that are inconsistent (violate dispatching) with path p, if

shipment w uses path p and shipment w’ uses the inconsistent path; ∀

p∈P, w ∈ WP(p), w’∈WW(w)

ur Total volume allowed on resource r; ∀ r ∈ R

vw Volume in shipment w; ∀ w ∈ W

cwp Cost of using path p for shipment w; ∀ w ∈ W, p ∈ PW(w)

Decision Variables:

Xwp = 1 if shipment w uses shipment path p, 0 otherwise; ∀ w∈W, p ∈ PW (w)

Model Formulation:
Minimize ∑ ∑

∈ ∈Ww wPWp
wpwpXc

)(

 (1)

subject to:

Assignment constraints for shipments
1

)(

=∑
∈ wPWp

wpX for all w ∈ W (2)

Resource capacity constraints

r
pWPw rPRp

wpw uXv ≤∑ ∑
∈ ∈)()(

 for all r ∈ R (3)

Dispatching constraints

1'' ≤+ pwwp XX for all w ∈ W, p ∈ PW(w) (4)

 w’ ∈ { i ∈ W: i ≠ w}, p’ ∈ PI(p, w, w’)

Integrality

1or 0=wpX for all w ∈ W, p ∈ PW(w) (5)

The objective function (1) minimizes the total cost of used paths. Constraint (2)

assigns shipments to their paths. Constraint (3) determines the capacity restrictions and

 135

constraint (4) ensures dispatching policy rules. Finally, constraint (5) is for integrality

requirements.

For a stronger version of the dispatching constraints, we can have a set that

includes shipment-path pairs in which each of the pairs is inconsistent with another one.

Then, we can write a clique constraint for them:
1

),(),(

≤∑
∈ pwCliquepw

wpX for all w ∈ W, p∈ PW(w), Clique(w, p) (4)

Although all of the network structure and practical constraints could be

considered during the generation of feasible paths, the number of possible paths could be

in the billions (2.1 billion for one of our test instance) for a moderate size transportation

company.

5.6 COMPLEXITY RESULTS

The capacitated network flow problem is a well-known NP-Hard problem. That

is why we will explore the uncapacitated version of the problem with dispatching policy

constraints, called USR-DP. We first analyze the conditions that make the solution of the

problem integral. Then, we explore the complexity properties of the general shipment

routing problem with dispatching constraints.

5.6.1 Integrality conditions

The path-based formulation can be seen as a multicommodity network flow

problem with side constraints. In network flow problems, there are many special cases

that have an integrality property. We examine this problem to find the same property.

Proposition 5.3: A shipment routing problem without resource capacity and dispatching

policy constraints [USR] has an integer optimal solution even if there is no integrality

requirement.

 136

Proof: If there is no resource capacity or dispatching policy constraints, the problem can

be decomposed for each shipment. In each of these subproblems, the corresponding

shipment should be carried from its origin to destination with minimum cost. The

subproblem is a shortest path problem and always has an integer optimal solution. (See

Ahuja et al. (1993) for details about the shortest path problem, such as Dijksta’s

algorithm for acyclic graphs where the solution time is O(m), m is number of arcs in the

graph.) Therefore, the planning problem without resource capacity and dispatching

policy constraints has an integer optimal solution.

Remark: In our later discussions, we will refer to the optimal solution of USR problem

as the shortest path solution.

In the shipment routing problem, one of the most common objective functions is

total weighted transit time. After all, the company wants to send their shipments as soon

as possible to their destination. This objective is in fact same as minimum weighted

arrival time at the destination of shipments because the release times of shipments are

fixed and given a priori.

The next observation concerns the dispatching policy constraints. The following

proposition states that if shared blocks have same shortest paths for all shipments, then

the shortest path solution preserves after the addition of dispatching policy constraints.

Examples of this type of objective function are total weighted transit time cost and total

weighted tardiness cost (if there are due dates for shipments).

Proposition 5.4: Consider the sub-path for a shipment-pair that shares block(s) where

the sub-path begins from the starting station and time of the earliest available link of the

first shared block, and ends at the ending station and time of the latest arrived link of the

last shared block. If all shipment pairs have same shortest sub-paths for their commonly

used blocks, then the uncapacitated shipment routing problem with dispatching policy

 137

constraints [USR-DP] has an optimal solution which is equal to the shortest path

solution.

Proof: From Proposition 5.3, the USR problem has an integer optimal solution even if

there is no integrality requirement. Assume that there is an integer optimal solution to the

USR problem, and this solution violates dispatching policy constraints.

In the optimal solution, w, w′ ∈ W use links, respectively, p and p′ of the same

block. These shipments use the same departing block, and the earlier shipment that

comes to that station (say w) uses the later link p for departure. Since shipment w is the

earlier shipment, it can also use the earlier link p′. In addition, shipment w′ can be

assigned to the later link p used by shipment w.

Since both paths are feasible for both shipments, we can assign both of them to

the same link with minimum cost. With this assignment, following situations may occur:

• If the new assignment causes an earlier arrival to the ending station of the link,

then the remaining downward assignments are still feasible. If the ending station

is the destination of one of the shipments and the new assignment allows it to

come to that station earlier, then this solution contradicts the optimality of the

original solution.

• If the new assignment causes a later arrival to the ending station of the link, then

the remaining downward assignments may not be feasible. If it is infeasible, then

re-assign the links on the downwards. If it causes a cost increment, then the

shortest sub-path assumption in the proposition does not hold. If the ending

station is the destination of one of the shipments and the new assignment allows

it to come to that station later, then again the shortest sub-path assumption in the

proposition does not hold.

 138

Hence, the USR-DP problem has an integer optimal solution which is equal to the

shortest path solution. The following result shows some examples of cost functions that

satisfy Proposition 5.4. In some of the cost functions, the shipments have due dates,

desired time to reach the destination, and if a shipment is late, there could be a tardiness

cost which is difference between arrival time to the destination and the due date.

Corollary 5.5: Results from Proposition 5.4 hold for the following functions:

• Total weighted transit time cost,

• Total weighted tardiness cost,

• Maximum weighted tardiness cost,

• Total number of tardy shipments.

Unfortunately, this result is not true for the general type of objective functions such as

total earliness cost.

Proposition 5.6: Assume that the following assumptions hold:

• cwp = gwhp and fwst = 0 for all w ∈ W,

• All the shipments have the same destination, but they can have multiple origins,

• If two shipments share a block, then they share all blocks after that block.

Then the multiple origin-single destination uncapacitated shipment routing problem with

dispatching policy constraints has an optimal solution which is equal to the shortest path

solution.

Proof: Since the shipments are using the same blocks at the tail of the block sequence

and go to the same destination, the shortest remaining path after the first common station

for one shipment is also the shortest remaining path for the other one.

This proposition shows that the single destination special case could be solvable

polynomially even for time independent costs.

 139

Corollary 5.7: Results in Proposition 5.6 hold for multiple destinations if the shipments

that have common blocks also have common destinations.

Proof: The problem is decomposable for each destination. The remaining shortest path

claim is still valid in this case.

Proposition 5.8: Assume that the following assumptions hold:

• cwp and fwst are not restricted for all w ∈ W,

• All the shipments have the same origin but can have multiple destinations,

• Only the first block is a common block.

Then the single origin- multiple destination uncapacitated shipment routing problem with

dispatching constraints is solvable in polynomial time by using shortest path algorithms.

Proof: If a shipment does not share any block, we can send it directly via its shortest

path. Assume that there are n shipments that share their first block and m links that

belong to that block. Let release times be a1<a2…<an for these n shipments and m links,

and let cij be the total cost from origin to destination if shipment i is assigned to link j.

We will construct the following graph to solve this problem.

At each node (i,j), the outgoing arc represents the flow on link j such that

(i,j)�(i+k,j+1) assign shipments i+1,..,i+k to link j. The cost of this link is ∑
+

+=

ki

il
ljc

1

. Since

each link assignment begins with the earliest shipment that is not assigned to previous

links, the resulting solution satisfies the dispatching constraints.

The graph is acyclic, so Dijkstra’s algorithm could solve it. Under the given

release times of shipments, the given links, and the cost from origin to destination for

selected links, the problem is solvable in O(nm).

Corollary 5.9: The result for proposition 5.8 is true for multiple origins if only the first

blocks are common.

 140

Proof: The problem is decomposable for each origin. For each sub-problem, proposition

5.8 holds.

Figure 5.7. Illustration for Proposition 5.8 and Corollary 5.9.

5.6.2 NP-Hard problems

Under the several cost functions (such as earliness cost or time independent cost)

given in the shipment-path formulation (see Section 5.5), the uncapacitated shipment

routing problem with dispatching policy constraints [USR-DP] is in the category of

difficult problems, so called NP-Hard problems. In fact, the well-known 3-satisfiability

problem can be written as an instance of the USR-DP problem. (See Karp (1972) for the

3-satisfiability problem.)

3-Satisfiability Problem: Satisfiability is the problem of determining if the variables of

a given Boolean formula can be assigned in such a way as to make the formula evaluate

to true. For the 3-Satisfiability problem, we are given a Boolean expression B such that

0,1 0,2

1,2

2,2

0,3

1,3

n,2

2,3

0,m

n,3

.

.

.

.

.

.

.

.

.

1,m

2,m

n,m

Destination

…

…

…

…

 141

)(321
1

iii

n

i
aaaB ∨∨=

=
∧ .

B is the conjuction of n clauses, each of which is the disjunction of 3 literals. A literal aij

represents either a Boolean variable or its negation. B is satisfiable if the variables can be

assigned Boolean values so that B is true. In other words, at least one variable should be

true in each clause. The 3-Satisfiability problem determines if B is satisfiable.

Proposition 5.10: The 3-Satisfiability problem [3-SAT] is polynomially reducible to the

uncapacitated shipment routing problem with dispatching policy constraints [USR-DP].

Proof: We will use the shipment-path (see Section 4.5) formulation to simplify the proof

and convert the general 3-SAT to a USR-DP instance. Assume that we have a Boolean

expression)(321
1

iii

n

i
aaaB ∨∨=

=
∧ . The construction of the USR-DP instance for the

indices and sets is as follows:

• There are n shipments for each clause.

• Each shipment w has 3 paths corresponding to 3 variables in its clause

• The set of pair of paths that are inconsistent contains all Boolean variables and

their negations.

• The costs of the paths are zero.

By construction, if there is a solution to the USR-DP instance, that solution cannot

contain a Boolean variable and its negation at the same time. Therefore, the solution of

the USR-DP instance satisfies the Boolean expression.

Since each set, index and parameter in USR-DP has at most O(n) items, the

reduction will take polynomial time.

Corollary 5.11: The 3-Satisfiability problem [3-SAT] is polynomially reducible to the

uncapacitated shipment routing problem for a single origin and destination with

dispatching constraints [USRS-DP].

 142

Proof: Using the proof of Proposition 5.10, additionally define the paths for each

variable and its negation in the Boolean expression. Let all of the available paths for all

of the shipments but only the variables in a shipment’s corresponding clause have zero

costs. The other paths have cost 1 for that shipment.

Then, the question becomes whether there is an optimal solution with a zero

objective function or not. If there is, the solution of the USR-DP instance satisfies the

Boolean expression. Since each set, index and parameter in USR-DP has at most O(n)

items, the reduction will take polynomial time.

Corollary 5.12: The 3-Satisfiability problem [3-SAT] is polynomially reducible to the

uncapacitated shipment routing problem for a single origin and destination with

dispatching constraints, and the problem contains only two blocks [USRS2-DP].

Proof: In the proof of Corollary 5.11, only the Boolean variable and its negation are

corresponding inconsistent paths. This inconsistency could be obtained by switching

station blocks. Therefore, two blocks are enough to complete the proof of Corollary 5.11.

Corollary 5.13: The uncapacitated shipment routing problem for a single origin and

destination with dispatching constraints where the problem contains only two blocks is

NP-hard in the strong sense.

Proof: From corollary 5.12, proof is clear.

The above complexity results are obtained using a shipment-path formulation and

general cost function. The cost function of shipment-path formulation may require a non-

linear cost function to represent in the link based formulation. However, we intend to

focus on linear cost structures in the link based formulation. As such, we obtained the

following result.

Proposition 5.14: Assume that the following assumptions hold:

• cwp = gwhp

 143

• fwst equals the weighted waiting time at that station for all w ∈ W,

Then, the 3-Satisfiability problem [3-SAT] is polynomially reducible to the uncapacitated

shipment routing problem with dispatching constraints [USRL-DP].

Proof: We will use the link formulation and convert the general 3-SAT to a USRL-DP

instance. Assume that we have a Boolean expression)(321
1

iii

n

i
aaaB ∨∨=

=
∧ , and the

expression has m variables. The construction of the USRL-DP instance for the indices

and sets is as follows:

• There are n shipments for each clause.

• Each shipment w has 3 blocks to assign, and the intermediate block is the same

for all shipments. Shipments have different origins and destinations, but they have

the same intermediate stations. Each shipment is released at time 0.

o First block construction: Each shipment has a different first block, and

each of these blocks has 3 links which correspond to variables in that

shipment’s clause. These links have the same departure times (time 0), but

their arrival times are different. In total, 2m arrival times are defined for

each variable and its negation. Let c be a small number and M be a big

number. Then the arrival times are: {c, 2c}, { M+c, M+2c}, {2M+c,

2M+2c}, … , { mM+c, mM+2c}. There are two numbers in each

parenthesis; one for each variable and one for its negation.

o The second block is a common block and has 2m links for each variable

and its negation. The departure times of these links are: {2c, 3c}, { M+2c,

M+3c}, {2M+2c, 2M+3c},…, { mM+2c, mM+3c}. The corresponding

arrival times of these links are: M, 2M, 3M, … , 2mM.

 144

o The third block is different for each shipment, and each of these blocks

has 3 links. As seen in the above, 2m links for the second block have m

groups, and each group has only two links that have closer arrival and

departure times than others. The departure times of the links for the third

block are the same as the arrival time of the links for the second block if

the second link is in the group where its assigned variable (or its negation)

is in the clause of the corresponding shipment.

o There are no costs for links, but there are waiting costs at the stations.

The question is whether there is a feasible solution whose objective value is less than M?

To arrive at a solution, the shipment should select one of the variables in its clause

always based on the links of the third block. Moreover, both of the links in the group

cannot be selected at the same time, because there is a conflict in the switch station of the

first and second block. Therefore, the solution of the USR-DP instance satisfies the

Boolean expression.

Since each set, index and parameter in the USR-DP has at most O(n) items, the

reduction will take polynomial time.

Variables a1 2a a3

1st Links {0, c} {0, M+2c} {0, 2M+c}

2nd Links All of them All of them All of them

3rd Links {2M, 2M } {3 M, 3M} {6 M, 6M}

Table 5.1. Arrival and departure times for the links.

Below there is a graphical illustration of this construction for one shipment. Let

the variables be named as a1, a2, …, am and their negation be named as .,..,, 21 maaa The

 145

link arrival and departure times are assigned in the same order. Assume that the shipment

has a clause that includes the following three variables: .,, 321 aaa Then, we have the

arrival and departure times for each link given in Table 5.1.

Here is the corresponding graph for that shipment:

Figure 5.8. Arrival and departure times for the links in Proposition 5.14.

time

c
2c
3c

0

M+c
M+2c
M+3c

M

2M+c
2M+2c
2M+3c

2M

3M+c
3M+2c
3M+3c

3M

4M+c
4M+2c
4M+3c

4M

5M+c
5M+2c
5M+3c

5M

6M+c
6M+2c
6M+3c

6M

Origin Intermediate Destination

 146

Unfortunately, the USR-DP problem does not have any pseudo-polynomial

algorithm to find an optimal solution unless P=NP. We see that solving the USR-DP is

not easier than solving the 3-Satisfiability problem. But what is the difficulty level of

solving the USR-DP problem? Next, we will transform the USR-DP to a shortest path

problem with inconsistent pairs.

Shortest Path with Inconsistent Pairs: Let I be a given a collection of pairs of vertices,

referred to as inconsistent pairs, under a graph G = (V, A) with two fixed vertices s,t ∈V.

A directed (s-t)-path is called the I-path if it contains at most one vertex out of each pair

in I. The problem requires finding a shortest path among the I-paths.

Proposition 5.15: The uncapacitated shipment routing problem with dispatching

constraints [USR-DP] is polynomially reducible to the shortest path problem with

inconsistent pairs.

Proof: We will use the shipment-path formulation to simplify the proof. We will convert

the general USR-DP instance to a shortest path problem with inconsistent pairs.

Assume that there are n shipments, and each shipment w has pw paths. We will

construct a (n+2) layered graph where each layer represents one shipment and two layers

are for origin and destination nodes, as in the following graph:

 147

Figure 5.8. Shortest path problem where each layer represents a shipment.

In this graph, node (i,j) represents shipment i and its assigned path j. All the

incoming arcs of node (i,j) have a cost of path j that belongs to shipment i. (Incoming

arcs of the destination path have no costs.) In this problem, inconsistent pairs are

inconsistent paths of the USR-DP problem. By construction, USR-DP is polynomially

reducible to the shortest path problem with inconsistent pairs. The following proposition

shows a special case of this construction.

Proposition 5.16: If each shipment appears with only one shipment in the set of

inconsistent pairs, the USR-DP problem is solvable in polynomial time via shortest path

algorithms.

Proof: For each shipment in the set of inconsistent pairs, order the shipments such that

inconsistent pairs of shipments are ordered consecutively. Construct a graph like the one

described in the proof of proposition 5.15. Since each shipment appears with only one

1,1

1,2

1,3

2,1

2,2

1,p1

2,3

n,1

2,p2

.

.

.

.

.

.

.

.

.

n,2

n,3

n,pn

Destination

…

…

…

…

Origin

 148

shipment and we have ordered them properly, each inconsistent pair has an arc in the

shortest path graph. By definition, these arcs cannot be used in the solution, so we delete

them. The resulting problem is nothing more than a well known shortest path problem,

and it can be solvable in polynomial time (via Dijkstra’s algorithm, for instance).

We can generalize this characteristic if inconsistent pairs have a nested structure.

Definition: Assume that i1, i2, i3, i4 are the layer levels of the shipments in the graph. If

there are no (i1, i2) and (i3, i4) pairs in the set of inconsistent pairs, such that i1< i 3<i 2< i 4,

then the inconsistent set has a nested structure.

Proposition 5.17: If the set of inconsistent pairs has a nested structure, the USR-DP

problem is solvable in polynomial time.

Proof: The solution algorithm has two steps:

• In the first step, find a layer that has no inconsistent pairs with other layers.

Delete this layer and connect one previous layer and one later layer to each other

by summing the related incoming and outgoing arcs of the deleted layer.

• In the second step, find a layer that has only inconsistent pairs with one previous

or/and one later layer. Delete the corresponding arcs that are inconsistent.

The algorithm repeats itself until there is no layer left except origin and

destination. The algorithm is valid because in each step, we can find a layer that has no

inconsistency or inconsistency with only neighbor layers. Otherwise, the nested structure

will be violated.

5.7 UPPER AND LOWER BOUNDS

The capacitated shipment routing problem with dispatching policy constraints is

hard to solve. Hence, we develop some heuristics to get good feasible solutions which

provide upper bounds for the optimal solution. We look at the problem from 3 different

 149

perspectives and offer 3 heuristics. We also provide a lower bound that strengthens the

uncapacitated shipment routing solution.

5.7.1 Moving-in-Time

In this heuristic, the system has a state, which evolves with time, and a state

change, which moves the system from one state to another. State changes are called

events. The process of a system is characterized as a chronological sequence of events.

In our problem, the shipment release, departure and arrival links are called events, and the

time attributes of these events are called event times. The heuristic algorithm keeps track

of the current time, called clock, and the clock moves to the next event start time as the

algorithm proceeds.

Our approach constructs a feasible solution by assigning shipments to available

links in chronological order. As time goes by, the algorithm assigns the earliest arrived

shipment to the earliest available link and changes the arrival time information of the

shipment to the arrival time of the assigned link at the next station. The algorithm repeats

this process until all shipments reach their destination (by using real or dummy links).

The following is the generic scheme for the Moving-in-Time algorithm.

Algorithm for the Moving-in-Time

0 Set eventList = (shipment, currentTime, currentStation) for all shipments where

 (currentTime = shipment release time) and (currentStation = shipment Origin)

1 While eventList is not empty do

2 Set clock to the earliest currentTime in the eventList

3 For all shipments whose currentTime equal to clock do

4 Delete corresponding event from the eventList

 150

5 Find the earliest available link for the corresponding shipment at

currentStation and assign that link to the shipment

6 If the destination of shipment is not equal to the destination of the block

 path then

7 Add (shipment, currentTime, currentStation) event to the

eventList:

 currentTime = arrival time of link at the destination

 currentStation = destination station of assigned link

8 End If

9 End For

10 End While

The algorithm performance could be improved by applying tie-breaking rules for

the third step where the shipments have equal currentTime attributes. Instead of

selecting randomly, choosing a shipment whose earliest available link has minimum

capacity could be a better idea.

Although the algorithm works on a first come first served basis, it can find an

optimal solution for the uncapacitated shipment routing problem with dispatching

constraints.

Proposition 5.18: Assume that the following assumptions hold:

• Objective function is one of the objective functions given in Corollary 5.5,

• Earliest available link at step 5 in the Moving-in-Time algorithm is taken as the

link for which the arrival time at the destination is the earliest among the

available times.

Then, the Moving-in-Time algorithm provides the optimal solution for the uncapacitated

shipment routing problem with dispatching policy constraints [USR-DP].

 151

Proof: Since there are no capacity constraints, all the links that depart after the arrival

time of the shipment are available. Choosing the link for which the arrival time is the

earliest provides the fastest route to the destination for each shipment. This selection will

not violate the dispatching policy constraints, because the earlier shipment can always

select the later departing link even if that link arrives the earliest (similar arguments given

in the proof of proposition 5.4). The algorithm minimizes the total transit time if the

shipment has the unique shipment-block sequence, so the result is true for the objective

functions given in corollary 5.5.

5.7.2 Aggregation

The number of constraints and variables in the IP formulation are increasing with

the number of shipments in the problem. We can aggregate similar shipments to obtain a

smaller problem, but the optimal solution for the aggregated shipments may not be equal

to the optimal solution for the actual shipments. However the aggregation could provide

a feasible solution close to the optimal solution.

Aggregated Shipment: An aggregated shipment is a set of similar shipments whose

• Origin and destination are the same,

• Set of blocks that can carry these shipments is the same,

• First available link at the origin that can carry these shipments is the same.

The volume of the aggregated shipment is the sum of all shipments in that aggregated

shipment. By construction, a feasible path for one shipment in the aggregated shipment

is also a feasible path for the rest of the shipments in that aggregated shipment.

The following is the generic scheme for the aggregated shipment generation.

Algorithm for the aggregated shipment generation

0 Set W = all shipments and set AW = empty set

 152

1 While W is not empty do

2 Get w ∈ W and delete that shipment w from set W.

3 Generate an aggregated shipment aw whose origin, destination, volume and

set of all available blocks are the same as w; add it to set AW

4 For all shipments w’ ∈ W do

5 If origin, destination, volume, set of all available blocks and the first

available link at the origin of w’ is same as w then

6 Add shipment w’ to aggregated shipment aw

7 Add volume of shipment w’ to volume of aggregated shipment aw

8 Delete shipment w’ from set W

9 End If

10 End For

11 End While

The heuristic simply solves the original problem optimally by using aggregated

shipments and assigns those paths given by the solution to the shipments inside of the

corresponding aggregated shipment. Clearly, the aggregation heuristic forces the

shipments to use the same path if they are in the same aggregated shipment. In

uncapacitated case, this approach satisfies the optimality.

Proposition 5.19: Assume that the objective function is one of the objective functions

given in Corollary 5.5. The following statements are true:

a) For the capacitated shipment routing problem with dispatching policy constraints

[CSR-DP], the problem with aggregated shipments provides a feasible (not

necessarily optimal) solution to the problem with normal shipments

 153

b) For the uncapacitated shipment routing problem with dispatching policy

constraints [USR-DP], the optimal solution with aggregated shipments is also

optimal with normal shipments

Proof: (a) Since a feasible path for one shipment in the aggregated shipment is also a

feasible path for the rest of the shipments in that aggregated shipment, the solution for

aggregated shipments is a feasible solution to the problem for normal shipments.

 (b) Without capacity constraints, the shipments use the shortest path. Therefore, the

optimal solution with aggregated shipments is also optimal with normal shipments.

5.7.3 LP relaxation correction

We can use the LP relaxation to obtain good feasible solutions. The LP relaxation

solution usually contains shipments with integer flows. This heuristic fixes link

assignments of those shipments. Then, the remaining problem is resolved as an IP. If the

capacity violations are not too high, we hope that the remaining problem is small enough

to solve quickly.

The following is the generic scheme for the LP relaxation correction algorithm.

Algorithm for the LP relaxation correction

0 Solve the problem as an LP

1 Fix the shipment-link assignments if all the assignments for that shipment are

integer

2 Resolve the reduced problem as an IP

3 If the problem is infeasible or takes too much time to solve, terminate the

algorithm without solution

Remark: If the problem contains only shipments for which all link assignments are

integer in the LP solution, then the LP relaxation is optimal for that problem.

 154

5.7.4 Strengthening the uncapacitated solution

We also develop some lower bound calculation rules to decrease the optimality

gap of feasible solutions obtained in the previous section. The uncapacitated shipment

routing problem is a relaxation of the original problem, and the optimal solution to this

problem could be obtained easily via shortest path algorithms (or even the Moving-in-

Time algorithm described in 5.7.1) under certain cost conditions.

The optimal solution to the uncapacitated shipment routing problem may violate

the capacity constraints. Therefore, some of the shipments that use a resource the

capacity of which is exceeded should be shipped without using that resource. Let vw be

the volume of shipment w, ∀ w ∈ W, and ur be the total volume allowed on resource r, ∀

r ∈ R. Also, we define set WR(r, x*) to represent shipments that use resource r for a

given solution x*. Let cdw,r show the cost difference between the shortest path of

shipment w that does not use resource r and the current shortest path. Then, the

following result holds.

Proposition 5.21: Let x* represent the optimal solution of the uncapacitated shipment

routing problem with dispatching policy constraints [USR-DP]. Let Xw be one if

shipment w will not use the resource r in question. If the optimal value of this problem

increased by the optimal value of the following problem;









∈∀−≥ ∑∑∑
∈∈∈∈

WwXuvXvXcd wr
xrWRw
w

xrWRw
www

xrWRw
rw

Rr
for binary is ;|minmax

),(),(*),(
,

then the resulting value is still a lower bound for the capacitated shipment routing

problem with dispatching policy constraints [CSR-DP].

Proof: For each inner minimization problem, the problem finds the minimum possible

cost changes to eliminate any capacity violation of the selected resource. Since these re-

assignments are necessary anyway, the increment of the objective function is the

 155

minimum amount for the problem with capacity constraints. The outer maximization

selects the maximum increment among all resources.

There is a close connection between shadow price of capacity constraints and cdw,r

parameters. Shadow price is change in the objective function if we change the capacity

of corresponding resource with a small amount. If the shipment volumes are small

enough, this shadow price could be seen as minimum cdw,r parameter of shipments

attached to that resource at the earliest or latest time.

For the problem with a single resource violation and a single path for all

shipments (plus dummy paths), the lower bound given in Proposition 5.21 is binding (i.e.

gives the optimal value of the capacitated problem). The following proposition

strengthens the bound given in Proposition 5.21 even further.

Proposition 5.22: Let x* represent the optimal solution of the uncapacitated shipment

routing problem with dispatching policy constraints [USR-DP]. Let Xw be one if

shipment w will not use the resource r in question. Solve the following problem for each

r ∈ R:









∈∀−≥ ∑∑∑
∈∈∈

WwXuvXvXcd wr
xrWRw
w

xrWRw
www

xrWRw
rw for binary is ;|min

),(),(*),(
,

Generate set CD(w) for all w ∈ W and put cdw,r to corresponding set CD(w) for all

positive Xw values. If the optimal value of the uncapacitated shipment routing problem is
increased by the amount of { }∑ ∈

w
ww wCDcdcd)(:max , then the resulting value is still a

lower bound for the capacitated shipment routing problem.

Proof: This proposition is a generalization of the previous one. It adds all shipment path

cost differences if the associated shipments are selected for only one problem. If a

shipment is selected in more than one problem, then the calculation in this proposition

chooses the maximum one among the elements of set CD(w).

 156

5.8 COMPUTATIONAL RESULTS

We evaluate the performance of our approaches on real data instances. The

heuristics were programmed in Java and the IP model uses CPLEX 11.2 via concert

technology. The tests are taken on the 11 Dell Poweredge 2950 workstation with 3.73

GHz Xeon and 24 GB of shared memory under Ubuntu Linux system.

In our experiments, we tested on three instances and called these instances 1, 2

and 3. Our objective criterion is total weighted transit times of shipments and our

planning horizon is one week. Each instance has over 40000 shipments, over 10000 links

and over 8000 resources. In these instances, each shipment may be carried by over 5

blocks. Each block may have over 20 links and each link may use over 10 resources that

are subject to capacity.

Using the algorithm in Section 5.7.2, we generate the aggregated shipments by

combining at most k shipments in one aggregated shipment, where k is 2, 5 and F (where

F refers to full aggregation − aggregates all shipments if it can). We test these instances

by using one of the three FIFO (dispatching) constraints (Type-A, Type-B and Type-C)

developed in Section 5.4. In the problem names of our tables, the first number refers to

instance, second one refers to aggregation level and the letter indicates the type of FIFO

constraints. In Table 5.2, the details about IP formulation is given for instance 1.

To reduce the problem size, we perform the reachability test (whether the origin

node can reach a particular node or not on the time-space network) and eliminate all the

unreachable nodes and their potential arcs.

For each problem, number of constraints, variables and nonzero coefficients are

given. Then, the IP, LP and heuristic (Moving-in-Time algorithm which performs better)

solution times are presented. Finally, the gap (* = heuristic value – best lower

bound)/heuristic value) is calculated on the last column.

 157

Problem

Number of

IP
solution

time

Root
solution

time

Heuristic
solution

time
Heuristic
vs. best
lower

bound* constraints variables nonzeros (sec) (sec) (sec)

1-F-A 7.1M 216K 48.3M 6753 330 2 6.78%

1-F-B 7.2M 442K 45.2M 82269 269 2 6.84%

1-F-C 350K 227K 1.5M 1925 21 2 5.60%

1-5-A 12.5M 291K 81.9M 11681 583 3 3.53%

1-5-B 12.7M 580K 74.5M >86.4K 649 3 3.60%

1-5-C 482K 308K 2.0M 3366 37 3 3.14%

1-2-A 33.5M 475K 213.6M >86.4K 3859 6 3.32%

1-2-B N/A N/A N/A N/A N/A 6 N/A

1-2-C 793K 500K 3.3M 3104 91 6 2.54%

1-1-A N/A N/A N/A N/A N/A 9 N/A

1-1-B N/A N/A N/A N/A N/A 9 N/A

1-1-C 1.3M 846K 5.5M 10450 252 9 2.50%

Table 5.2. CPLEX and heuristic performances for instance 1

We use Moving-in-Time heuristic solution described in Section 5.7.1 as an initial

solution. Unfortunately, the lower bounds provided in Section 5.8 are worse than LP

solution, so we skip them.

In Table 5.2, the problems generated with Type-C FIFO constraints are solvable

much faster than the problems with other FIFO types. Therefore, we use only those ones

to obtain the results for instances 2 and 3 in Table 5.3.

The heuristic finds the better solutions as the aggregation level decreases in all of

the instances. Other than the non-aggregated problems, we are able to solve all the

problems within an hour. The non-aggregate problems are solvable in between 80

minutes and 5 hours.

 158

Problem

Number of

IP
solution

time

Root
solution

time

Heuristic
solution

time
Heuristic
vs. best
lower

bound* constraints variables nonzeros (sec) (sec) (sec)

2-F-C 319K 212K 1.4M 803 25 2 15.06%

2-5-C 489K 321K 2.1M 995 42 3 4.30%

2-2-C 850K 552K 3.6M 1812 129 5 3.91%

2-1-C 1.5M 956K 6.2M 5995 318 9 3.66%

3-F-C 354K 235K 1.6M 622 20 2 11.67%

3-5-C 518K 339K 2.2M 797 39 3 3.88%

3-2-C 876K 567K 3.7M 2026 141 6 3.52%

3-1-C 1.5M 971K 6.4M 18925 290 9 3.51%

Table 5.3. CPLEX and heuristic performances for instance 2 and 3

In Table 5.4, the scaled objective values are shown for different level of

aggregations with respect to the best lower bound of non-aggregated problem.

Problem
Best lower

bound*
Best upper

bound*
Heuristic

value*

1-F-C 108.18 108.81 116.14

1-5-C 100.05 100.40 103.01

1-2-C 100.04 100.47 102.65

1-1-C 100.00 100.57 102.57

2-F-C 121.42 122.31 142.94

2-5-C 100.02 100.53 104.51

2-2-C 99.99 100.45 104.06

2-1-C 100.00 100.61 103.80

3-F-C 119.39 119.82 135.16

3-5-C 99.98 100.29 104.02

3-2-C 99.98 100.36 103.62

3-1-C 100.00 100.61 103.65
 * = 100*(value) / (best lower bound of corresponding non-aggregated problem)

Table 5.4. Scaled objective value changes with different aggregation levels

 159

The objective values are close to each other in the aggregation level of 1, 2 and 5.

However, the full aggregation level problems have significantly higher objective values

because some of the aggregated shipments may contain huge number of shipments

(around 300 in instance 2-F-C). Those aggregated shipment could have volume more

than the capacity of some resources and the trip (from one station to another) for those

shipments may be impossible.

 160

Chapter 6: Conclusions and Future Work

This dissertation investigates optimization models for transport and service

scheduling. The service scheduling problems described here have applications in many

decision making activities, such as multi-product lot sizing, telecommunication services

and maintenance planning. The transshipment problem focused on in this work is the

backbone of many transportation companies.

In the first part, we worked on the problem of deciding which operations a service

unit must perform at each customer location given the sequence in which the unit

periodically visits these locations. We formulated the problem as an integer program,

and proved that it is NP-hard. We discussed the special case in which each site is visited

only once per service cycle and showed that it is NP-Hard (in the ordinary sense), and we

developed an alternative algorithm based on the shortest path structure.

In Chapter 4, we proposed a heuristic procedure for the general problem for a

real-life maintenance application. Computational results for several problem instances

show that the proposed heuristic identifies near optimal results very quickly, whereas a

general purpose integer-programming solver (CPLEX) is not able to generate an optimal

solution even after many hours of computational time. To handle real-life problems, we

focused on techniques such as problem reduction, branching variables, and subdividing

the problem to smaller problems to get better solution. These strategies improve solution

times substantially.

Several opportunities for further research are suggested by this study:

• The problem we considered here is an operational level problem, but there are

also strategic and tactical level decisions. At the strategic level, we may have

multiple resources and want to partition the customers to those resources. The

 161

partition should consider the capacity of the resource, amount of work needed to

be done and geographic dispersion of the customers.

• At the tactical level decisions, the focus is on finding the optimal route. The

master (full cycle) route should cover all the customers within a reasonable

visitation frequencies. The route should balance the visitation requirements of

each customer. Furthermore, the relative due date differences between operations

for each customer should also be considered.

• This study assumes the full availability of visitation locations or customers.

However the customer may not be available at the visitation time. The integration

of this service with the other activities operated in those locations is another

potential avenue for research.

• Stability analysis of the optimal solution is also important to consider. The

additional steps to a sequence should not change the task decisions seriously in

the earlier steps. If the solution is stable, the myopic decisions can be obstructed

by solving a longer sequence but applying the task decisions on the earlier steps.

• One can also investigate the sensitivity and the robustness of the given solution.

In real-life, the calculation of the due date parameters and the duration times of

tasks may include uncertainty and is therefore hard to estimate. Understanding

the characteristic of the robust solution under uncertainty would be an interesting

research direction. This extension can further focus on the price of the robust

solution and the value of information.

In the shipment routing problem with dispatching policies, we formulated the

problem as a multi-commodity network flow problem with additional side constraints and

showed the complexity results. We proposed alternative models and algorithms for lower

and upper bound calculations. Computational results show that this problem could be

 162

solvable in a reasonable time if we use Type-C constraints. These results also indicate

that the optimal objective values of limited aggregation solutions are close to the optimal

objective value of non-aggregated solution. Furthermore, Moving-in-Time heuristic

provides good initial solutions for the instances we tested on the limited or non-

aggregated level.

We also recommend the following potential extensions for future research:

• The methods for lower bound calculation can be further developed. Without

dispatching policy constraints, we can obtain a lower bound for the shipment

routing problem via Lagrangian relaxation approach by relaxing capacity

constraints. The remaining problem can be separable by shipments and solvable

via shortest path algorithms. Although there are a few capacity constraints, the

number of dispatching policy constraints is huge. If we only relaxed the capacity

constraints, the remaining subproblem is NP-Hard for arbitrary Lagrangian

multipliers (see Proposition 5.14). The research on uncapacitated shipment

routing problem with dispatching policy constraints could be an interesting field.

• Moving-in-Time and aggregation approaches provide good feasible solutions

within a reasonable time for tested instances. However there are further

improvements one can consider. One of the problems for Moving-in-Time

heuristic is tie-breaking rules. Many shipments are released on same time and

many arcs are come to their destinations at the same time. Therefore, the

selection of shipments for their next trips is highly affected by tie-breaking rules.

Eventually, this selection determines the heuristic performance. One can also

consider the other heuristic possibilities such as tabu search or LP based

heuristics. Especially LP based heuristics could be useful because LP solution

times in our problem instances are much smaller than IP solution times.

 163

Effectively correction of LP solution could find a better feasible solution and

improve the solution performance.

• The shipment routing problem can be used to analyze the correctness and the

effectiveness of the underlying physical network. This research could be

developed further to find a stable carrier schedule under demand fluctuations.

With the side constraints (capacity and dispatching) in mind, the optimal solution

of shipment routing problem deviate from the shortest path solution. The optimal

solution for capacitated problem gives an idea about bottlenecks in the

transportation system and provides a feedback for carrier scheduling problem.

The integration of shipment routing and carrier scheduling problems will lead to

better trip plans for shipments and better capacity usage of resources.

• In real life, shipment demands are coming one at a time. Some of the shipments

are already in the network and assigned to their trips. However, there are some

shipments with uncertain availability and volume at the starting time of the

planning horizon. Another direction for research would be making stable

shipment routing decisions by using the information on hand. How should

planners behave for the shipments that are available at the last minute of their first

link departure times? One of the common practices is not using full capacities of

resources. Then, how much capacity should be used? What is the cost of not

using full capacity? How about the lateness of link arrivals with respect to given

schedules? More stable schedule comes at a cost and will give us a benchmark

for the routing plan developed in this study.

The importance of transport and service scheduling problems makes them

attractive and fruitful research fields even though we have come to the end of our

journey: cursum perficio.

 164

Appendices

A. ALGORITHMS FOR POLYNOMIALLY SOLVABLE CASES

We dealt with the four polynomially solvable cases and gave their algorithms.

Let first examine the sets and parameters we used so far.

Parameter reminder:

K Set of all operations for all customers

KI(i) Set of all operations for customer i

γk Earliest start time for the execution of operation k

βk Latest start time for the execution of operation k

J Set of all tasks for all customers

JK(k) Set of all tasks that contain operation k

JI(i) Set of all alternative tasks that can be done for customer i

δj Duration for performing task j, for all j ∈ JI(i), i = 1, 2 … n

A1. Algorithm 1

Logic of Algorithm 1: The algorithm begins from the first customer and follows

the customer order of the sequence. If the service resource comes to any customer before

than the earliest start time of the operation v, and operation w is not available, then it

returns infeasible otherwise it selects the one of the tasks that has the maximum duration.

Let set A be the set of customers that traveling option is available. The durations

are represented with δv(i) and δw(i) for the task v(i) that has time window and w(i) that has

not time window of customer i. Also ∆ represents the current time (the time that resource

comes to that customer) and select(1,…,n) holds the solution vector.

1 begin procedure

 165

2 ∆ = 0

3 for i = 1 to n do

4 if ∆ ≥ γv(i) or Ai ∈ then

5 select (i) = argmax {δv(i), δw(i)}

6 ∆ = ∆ + max {δv(i), δw(i)}

7 else

8 select (i) = infeasible

9 exit procedure

10 end if

11 end for

12 end procedure

Proposition 2.5 (related part): Consider the task assignment problem under zero cost

function with n customers. Assume that each customer i requires two operations, v(i) and

w(i), and only one of the operations, v(i), restricted with the earliest start time. If waiting

is not allowed and the tasks without time window restrictions, w(i), are not available for

some customers, Algorithm 1 solves the problem in O(n).

Proof: The problem has only earliest start time requirements. The algorithm begins from

the first customer and follows the customer order of the sequence. It chooses task with

maximum duration (among available ones) for each customer. If the resource comes to

any customer before the earliest start time of its operation and task w is not available, the

problem is infeasible because we cannot come to that step later than that time.

Otherwise, selection will give the feasible (so the optimal) solution.

The algorithm has “for” loop for customers. In each iteration, selection, assigning

and summation operations are done in O(1). Therefore, the algorithm 1 solves this

problem in O(n).

 166

A2. Algorithm 2

Logic of Algorithm 2: In the initialization part, the algorithm finds the minimum

possible cycle completion time for the given customer sequence (by selecting tasks with

minimum duration). The algorithm begins from the first customer and follows the

customer order of the sequence. At customer i, if the completion time is smaller than the

latest start time of the operation v(i), the resource performs a task with minimum duration

for that customer. Otherwise, the algorithm checks the time that the resource is available

for that customer. If the time is earlier than the latest start time of the operation v(i), the

algorithm chooses the operation v(i); else the problem is infeasible. The algorithm

updates the candidate completion time and rescans all the customers. It stops either

infeasibility is found or there is no change in the candidate completion time.

Let T represents the candidate completion time for the given sequence. The

durations are represented with δv(i) and δw(i) for the task v(i) that has time window and w(i)

that has not time window of customer i. Also ∆ represents the current time (the time that

resource comes to that customer) and select(1,…,n) holds the solution vector.

1 begin initialization

2 T = 0 // T represents candidate completion time

3 for i = 1 to n do

4 T = T + min {δv(i), δw(i)} // minimum possible completion time

5 select (i) = argmin {δv(i), δw(i)} // do the task with minimum duration

6 end for

7 old T = T

8 end initialization

 167

9

10 begin procedure

11 flag = false // indicator whether candidate completion

time

12 while flag = false do // changed or not

13 ∆ = 0

14 for i = 1 to n do

15 if T < βv(i) then

16 ∆ = ∆ + min {δv(i), δw(i)}

17 else

18 if ∆ ≤ βv(i) then

19 T = T + δv(i) − δselect (i)

20 select (i) = v(i) // do the operation related task for customer i

21 ∆ = ∆ + δv(i)

22 else

23 select (i) = infeasible // infeasibility detected

24 exit procedure

25 end if

26 end if

27 end for

28 if T = old T then // no changes detected

29 flag = true // exit while and procedure

30 end if

31 old T = T

32 end while

 168

33 end procedure

Proposition 2.6 (related part): Consider the task assignment problem under zero cost

function with n customers. Assume that each customer i requires two operations, v(i) and

w(i), and only one of the operations, v(i), restricted with the latest start time. Algorithm 2

solves the problem under no-waiting assumption in O(n2).

Proof: The problem has only latest start time constraints. The initialization finds the

minimum possible completion time T without considering any time window constraints.

At line 19, the algorithm updates the candidate completion time T. Observe that if δv(i) ≤

δw(i), T remains same and if δv(i) > δw(i), T increases. However T will never decrease.

Therefore, the algorithm terminates in finite time.

At the beginning, we choose the smallest T and at each iteration, we update T

whenever T is greater than βv(i) and v(i) is not selected. That means the algorithm

increases the T value only if it has to increase it. Therefore, whenever the algorithm

comes to step i, the current candidate T cannot be lower. It concludes that if ∆ > βv(i), the

problem should be infeasible detected at line 23. Otherwise, select (1 … n) will give the

feasible solution.

The algorithm has for loop with n iterations. In each iteration, comparison,

selection, assigning and summation operations are done in O(1). “While loop” occurs

whenever T is changed. It changes whenever select(i) is assigned to v(i) at step i. Once it

is assigned, it would not change anymore for step i. Therefore, the algorithm has at most

n iterations in “while” loop. It concludes that the algorithm 2 solves this problem in

O(n2). □

 169

A3. Algorithm 3

Logic of Algorithm 3: The algorithm begins from the first customer and follows

the customer order of the sequence. If the service resource comes to a customer before

than the earliest start time of some operations, the algorithm excludes the tasks that

contain those operations. If there are no tasks left, then the algorithm returns infeasible

otherwise it selects the task (among available ones) that has the maximum duration.

Let ∆ represent the current time (the time that resource comes to that customer)

and select(1… n) holds the solution vector. Let set P represent the available operations

whenever the service resource comes to customer location (∆≤kγ) and P` represents the

unavailable operations (∆>kγ). Also, let Q holds the tasks that contain only available

operations.

1 begin procedure

2 ∆ = 0

3 for i = 1 to n do

4 { })(,|: iKIkkP k ∈∆≤= γ

5 { })(,|:` iKIkkP k ∈∆>= γ

6 { }`)(),(|: PJKjPJKjjQ ∉∈=

7 if ∅≠Q then

8 { }Qjiselect j ∈= |maxarg)(δ

9 { }Qjj ∈+∆=∆ |maxδ

10 else

11 select (i) = infeasible

12 exit procedure

13 end if

14 end for

 170

15 end procedure

Proposition 2.7 (related part): Consider the task assignment problem under zero cost

function with n customers. Let { }|)(|maxmax iKIk
i

= and { }|)(|maxmax iJIj
i

= . If there

are only earliest start time restrictions for all operation k and waiting is not allowed,

Algorithm 3 solves the problem in O(nkmaxjmax).

Proof: The problem has only earliest start time constraints. The algorithm chooses task

with maximum duration among available ones for each customer. Therefore, if ∅=Q

for some customer i (there is no task available at time ∆), clearly the problem is infeasible

because we cannot come to that step later than ∆. Otherwise, select (1 … n) will give the

feasible (so the optimal) solution.

The algorithm has “for” loop for customers. The construction of the set Q is

bottleneck at each iteration. We need to include the tasks of all operations in set P and to

exclude the tasks of each operation in set P`. Each operation may have maxj tasks and set

P may have maxk operations. Therefore, the algorithm 3 solves this problem in

O(nkmaxjmax). □

A4. Algorithm 4

Logic of Algorithm 4: In the initialization part, the algorithm finds the minimum

possible completion time for the given customer sequence (by selecting tasks with

minimum duration) and assigns this length as a candidate completion time. The

algorithm begins from the first customer and follows the customer order of the sequence.

At each customer, it finds the required operations. (Operation is required if the latest

start time is earlier than the candidate completion time.) The algorithm checks the time

that the resource is available for that customer. If the time is earlier than the latest start

time of all required operations, the algorithm chooses minimum duration task that

 171

contains all the required operations; else the problem is infeasible. The algorithm updates

the candidate completion time (by summing duration of selected tasks) and rescans all the

customers. It stops either infeasibility is found or there is no change in the candidate

completion time.

Let T represents the candidate completion time for the given sequence. Let ∆

represent the current time (the time that resource comes to that customer) and select(1 …

n) holds the solution vector. Let set P(i) represents the required operations (Tk <β) for

customer i and P`(i) shows the operations of currently selected task for customer i.

1 begin initialization

2 T = 0 // T represents candidate completion

time

3 for i = 1 to n do

4 { })(|min iJIjTT j ∈+= δ // minimum possible completion time

5 select (i) = { })(|minarg iJIjj ∈δ // do the task with minimum duration

6 end for

7 old T = T

8 end initialization

9

10 begin procedure

11 flag = false

12 while flag = false do

13 ∆ = 0

14 for i = 1 to n do

15 { })(,|:)(iKIkTkiP k ∈<= β //required operations

16 { }))((|:)`(iselectKJkkiP ∈= //operations in the selected task

 172

17 if ∅=)`(\)(iPiP then

18)(iselectδ+∆=∆

19 else

// if (current time is less than the latest start time of all required operations) and

// (there is a task that contains all required operations)

20 if { })(|min iPkk ∈≤∆ β and ∅≠








∈∈
∈
I

)(

)(),(|
iPk

kJKjiJIjj then

21








∈∈=
∈
I

)(

)(),(|minarg:
iPk

j kJKjiJIjjob δ

22 T = T + δtask − δselect (i)

23 select (i) = task

24 ∆ = ∆ + δtask

25 else

26 select (i) = infeasible

27 exit procedure

28 end if

29 end if

30 end for

31 if T = old T then // no changes detected

32 flag = true // exit while and procedure

33 end if

34 old T = T

35 end while

36 end procedure

 173

Proposition 2.8 (related part): Consider the task assignment problem under zero cost

function with n customers. Let { }|)(|maxmax iKIk
i

= and { }|)(|maxmax iJIj
i

= . If there

are only latest start time restrictions for all operation k, Algorithm 4 solves the problem

under no-waiting assumption in O(n|K|kmaxjmax).

Proof: The problem has only latest start time constraints. The initialization finds the

minimum possible completion time T without considering any time window constraints.

At line 22, the algorithm updates the candidate completion time T. We come to that step

whenever another operation is needed to be done. Therefore the new selected task should

have higher duration time than the previous one. In other words, T will never decrease.

Therefore, the algorithm terminates in finite time.

At the beginning, we choose the smallest T and at each iteration, we update T

whenever another operation is needed to be done. That means the algorithm increases the

T value only if it has to increase it. Therefore, whenever the algorithm comes to

customer i, the current candidate T cannot be lower. It concludes that if

{ })(|min iPkk ∈>∆ β the problem should be infeasible detected at line 26. Otherwise,

select(1 … n) will give the feasible solution.

The algorithm has “for” loop with n iterations. In each “for” loop iteration, the
construction of set I

)(

)(
iPk

kJK
∈

is bottleneck at lines 20 and 21. Each operation may have

maxj tasks and set P(i) may have maxk operations. Therefore “for” loop runs in

O(nkmaxjmax).

 “While loop” occurs whenever T is changed. It changes whenever an additional

operation is needed to be done. Once the operation is an element of the set P(i), it will

always be an element of it (because T does not decrease). Therefore, the algorithm has at

 174

most |K| “while” iterations. It concludes that the algorithm 4 solves this problem in

O(n|K|kmaxjmax). □

 175

B. NP HARDNESS OF THE PTA PROBLEM IN APPLICATION

The Periodic Task Assignment [PTA] problem in application described in Chapter

4 is in the category of difficult problems, so called NP-Hard problems. In fact, the well-

known 3-partition problem can be written as an instance of the PTA problem.

The 3-partition problem is NP-Hard in the strong sense. (See Karp, 1972 and

Garey and Johnson, 1979.) We will show that the 3-Partition problem can be

polynomially reducible to the PTA problem. First, we will give the definition of the 3-

partition problem.

3-Partition: Given positive integers a1,…,a3q, b such that

24

b
a

b
j <<

and

qba
t

j
j =∑

=

3

1

.

Do there exist q pair-wise disjoint 3 element subsets }3,..,1{ qSi ⊂ such that

ba
iSj

j =∑
∈

 for i=1,…q?

Proposition 1: The 3-Partition problem is polynomially reducible to a periodic task

assignment problem [PTA].

Proof: We represent the 3-Partition problem as an instance of the PTA problem. Our aim

is getting an optimal solution for the resulted PTA problem with zero optimal value. We

take the following sequence as a PTA instance:

• A sequence consisting of 3 different customers: Customer A, B, and C. First part

of the sequence has q subcycles that consists of 3B and 1A customers (B

customers are the first ones). Second part of the sequence has also q subcycles

 176

with one C and one A customers (C customers are the first ones). The sequence

consists of m = 6q steps.

• Customer A and C require only one operation and customer B requires 3q

operations.

• Each operation is included in only one task, and each task includes only one

operation.

The construction of the PTA instance:

• The duration time for performing task j for customer A is zero and for customer C

is b.

• The duration time for performing task j for customer B is aj, j = 1, 2, …,3q.

• αk = qb and τk is very big number for all operation k of customer B.

• αk =τk = b for the operation of customer A and for the operation of customer C.

• ckt is one for all operation k and time t in case of due date violation.

We have the following observations in this PTA problem instance:

• Customer C appears q times and each time b units spend on these steps. Then, the

completion time should be at least qb.

• Customer B appears 3q times and it requires 3q operations with αk = qb. Since

completion time is at least qb, each operation should be done exactly once to not

to get any penalty.

• We know that qba
t

j
j =∑

=

3

1

 and we have q sub-cycles regarding customer B. If the

summation of the task durations of 3-customer B in one sub-cycle is less than b,

B B B A ------------------------- B B B A

First cycle

C A A C -----

q cycles
q cycles

 177

there will be another cycle where the summation of durations of 3-customer B in

that cycle is greater than b. However, we have αk = τk = b, as the due date for the

operation of customer A. To not to pay any penalty, the summation of the task

durations of 3-customer B in each cycle should be exactly b.

• Since the operation of customer A should be done in every b units of time, there is

no waiting to not to pay any penalty, even if the waiting is allowed.

Therefore, the solution with zero cost function honor that the summation of the durations

of 3-customer B in each cycle should be exactly b and each duration time aj, j = 1, …,3q

appears once. Since each set, indices and parameters in the PTA has at most O(q) items,

the reduction will take polynomial time. □

Corollary 2: The periodic task assignment problem is NP-Hard in the strong sense.

Furthermore, there is no ε-approximate heuristic that runs in polynomial time for the

PTA problem unless P = NP for any ε > 0.

Proof: Since the optimal objective value is zero for the PTA problem in the proof of

Proposition 1, any ε-approximate heuristic should provide a solution that has zero

objective value. This means that the heuristic solves the problem in polynomial time so P

= NP. □

In the next result, the well-known knapsack problem is written as an instance of

PTA problem where no customer is visited twice. (See Karp (1972) for the knapsack

problem.)

Knapsack Problem: Let N be the number of items and i be the index of each item, i = 1,

2 … N. Each item i has the following attributes:

ci Cost of item i if it is selected, for all i = 1, 2 … N

ai size of item i for all i = 1, 2 … N

 178

Let b represent the limit that we need to satisfy, i.e. capacity of knapsack. Each

item i has the following decision variable:

Xi = 1 if item i is selected and 0 otherwise, for all i = 1, 2, …, N

The Knapsack problem can be formulated as an integer program:

[KP] Maximize ∑
=

N

i
ii Xc

1

 s.t.: bXa
N

i
ii ≤∑

=1

 =iX 0 or 1, for all i = 1, 2 … N

Proposition 3: The knapsack problem [KP] is polynomially reducible to the PTA problem

where no customer is visited twice [TA].

Proof: We will convert the general knapsack problem to a task assignment instance. The

construction of the TA instance for the indices and sets is as follows:

• A route consisting of N + 1 customers. In other words, n = N + 1

• Each customer i requires only two operations say vi and wi for i = 1 … N and

customer N + 1 requires only one operation vN+1

• Two tasks are available for each customer i = 1 … N. Each task contains one

operation. For simplicity, say task vi includes operation vi and wi includes

operation wi for i = 1 … N. Customer N + 1 has one task called vN+1

The construction of the TA instance for the parameters is as follows:

• Duration time for performing task vi is ai and zero for task wi, for i = 1, 2 … N.

Also duration time for performing task vN+1 is b+1

• αk = b and τk is very big number for all operation k of customer i = 1, 2 … N+1

• ikb cc = for operation k = vi at time b and 0=ktc for the other times for customer

i = 1, 2 … N. There will be no cost related to operation wi for customer i = 1, 2 …

N.

 179

• ∑
=

+=
N

i
ikb cc

1

1 for operation k = vN+1 at time b and 0=ktc for the other times

In this instance, the cost function value of operation vN+1 at time b is very high so this task

should be done before than its due date b. Since we know that the duration of the task

vN+1 is b+1, all the operation vi for customer i = 1, 2 … N have due and pay penalty ci if

they are not performed. We have the following observations in this TA problem

instance:

• The flow constraints (2a) and (2b) try to reach last customer before or at time b by

selecting either task vi or wi. (Also, the service provider can wait in intermediate

steps but the result is also true even if the waiting is not allowed.)

• Duration of tasks vi are equal to ai for all steps and duration of tasks wi are zero,

for i =1 … N. Therefore the feasible solution selects the subset of tasks vi and the

duration of selected vi’s cannot exceed period b.

• If the solution does not select to do operation vi, (equivalently selects to do

operation wi) we will pay ci at the end for this operation.

• If the solution does not choose any of the operation vi, total cost would be ∑
=

N

i
ic

1

.

We can define a new decision variable to capture these observations better:

 Yi = 1 if task vi selected and 0 if task wi is selected, for all i = 1 … N

Therefore we can rewrite the task assignment problem as:

 Obj1 = Minimize ∑∑
==

−
N

i
ii

N

i
i Ycc

11

 s.t.: bYa
N

i
ii ≤∑

=1

 =iY 0 or 1, for all i = 1, 2 … N.

 180

In the objective function, the first term is constant and does not affect the solution

so we can exclude it during the solution process. Also, recall that ZZ maxmin −=− .

Therefore, we can equivalently write the above formulation as:

 Obj2 = Maximize ∑
=

N

i
ii Yc

1

 s.t.: bYa
N

i
ii ≤∑

=1

 =iY 0 or 1, for all i = 1, 2 … N.

There is a one-to-one relation between objectives of these two formulations which is:

Obj1 = − (Obj2 −∑
=

N

i
ic

1

).

Therefore, optimal solution of one of them is also an optimal solution to the other

one. Finally, observe that the second formulation is equal to the knapsack problem. Since

each set, indices and parameters in TA has at most O(N) items, the reduction will take

polynomial time. □

 181

References

Abdekhodaee, A. H., A. Wirth, H. S. Gan. 2006. Scheduling two parallel machines with a

single server: the general case. Computers and Operations Research 33 994–

1009.

Acharya S. 1998. Broadcast Disks: Dissemination-Based Management for Asymmetric

Communication Environments. Ph.D. Dissertation, Brown University. Available

at www.bell-labs.com/~acharya.

Agnihothri, S. R., U. S. Karmarkar. 1992. Performance evaluation of service territories.

Operations Research 40(2) 355–366.

Ahuja, R. K., K. C. Jha, J. Liu. 2007. Solving real-life railroad blocking problems.

Interfaces to appear.

Ahuja, R. K., J. Liu, J. B. Orlin, D. Sharma, L. A. Shughart. 2005. Solving real-life

locomotive scheduling problems. Transportation Science 39 503–517.

Ahuja, R. K., T. L. Magnanti, J. B. Orlin. 1993. Network Flows: Theory, Algorithms, and

Applications. Prentice Hall, New Jersey.

Ahuja, R. K., J. B. Orlin. 1991. Distance-directed augmenting path algorithms for

maximum flow and parametric maximum flow problems. Naval Research

Logistics Quarterly 38 413-430.

Anily, S., J. Bramel. 2000. Periodic scheduling with service constraints. Operations

Research 48(4) 635-645.

Anily, S., C. A. Glass, R. Hassin. 1998. The scheduling of maintenance service. Discrete

Applied Mathematics 82 27-42.

Anily, S., C. A. Glass, R. Hassin. 1999. Scheduling of maintenance services to three

machines. Annals of Operations Research 86 375–391.

 182

Armstrong, R., S. Gao, L. Lei. 2008. A zero-inventory production and distribution

problem with a fixed customer sequence. Annals of Operations Research 159

395-414.

Assad, A. A. 1978. Multicommodity network flows: A survey. Networks 8 37-91.

Assad, A. A. 1980. Models for rail transportation. Transportation Research A 14 205–

220.

Assad, A. A., B. L. Golden. 1995. Arc routing Methods and Applications. M. O. Ball, T.

L. Magnanti, C. L. Monma, G. L. Nemhauser, eds. Handbooks in OR & MS, Vol.

8. Elsevier Science B.V., The Netherlands, 375-483.

Ball, M. O. 1988. Allocation/Routing: Models and Algoritmhs. B. Golden, A. Assad, eds.

Vehicle routing: Methods and Studies. North-Holland, New York, NY, 199-221.

Bar-Noy, A., R. Bhatia, J. S. Naor, B. Schieber. 2002. Minimizing service and operation

costs of periodic scheduling. Mathematics of Operations Research 27 518–544.

Barnhart, C., C. A. Hane, E. L. Johnson, G. Sigismondi. 1995. A column generation and

partitioning approach for multi-commodity flow problems. Telecommunication

Systems 3 239-258.

Barnhart, C., C. A. Hane, P. H. Vance. 2000. Using branch-and-price-and-cut to solve

origin-destination integer multicommodity flow problems. Operations Research

48 318–326.

Barnhart, C., H. Jin, P. H. Vance. 2000. Railroad blocking: A network design application.

Operations Research 48 603–614.

Beltrami, E., L. Bodin. 1974. Networks and vehicle routing for municipal waste

collection. Networks 4(1) 65-94.

 183

Berry, P. M. 1993. Uncertainty in scheduling: Probability, problem reduction,

abstractions, and the user. IEE Colloquium on Advanced Software Technologies

for Scheduling Digest no: 193/163.

Bodin, L. D. 1990. Twenty years of routing and scheduling. Operations Research 38(4)

571-579.

Bodin, L. D., G. Fagan, L. Levy. 1992a. The GEOMOD system. Proc. USPS Advanced

Technology Conference, Vol. 1. United States Postal Service, 413-418.

Bodin, L. D., G. Fagan, L. Levy. 1992b. Vehicle routing and scheduling problems over

street networks. Proc. USPS Advanced Technology Conference, Vol. 2. United

States Postal Service, 625-641.

Bodin, L. D., S. J. Kursh. 1979. A detailed description of a computer system for the

routing and scheduling of street sweepers. Operations Research 26(4) 525-537.

Brännlund, U., P. O. Lindberg, A. Nou, J. E. Nilson. 1998. Railway timetabling using

Lagrangian relaxation. Transportation Science 32 358–369.

Campbell, K. C. 1996. Booking and revenue management for rail intermodal services.

Unpublished Ph.D. Dissertation, Department of Systems Engineering, University

of Pennsylvania, Philadelphia, PA.

Campbell, J. F., A. Langevin. 2000. Roadway snow and ice control. M. Dror, ed. Arc

Routing: Theory, Solutions and Applications. Kluwer, 389–418.

Castro, J. 2000. A specialized interior-point algorithm for multicommodity network

flows. Siam Journal of Optimization 10(3) 852-877.

Cordeau, J. F., P. Toth, D. Vigo. 1998. A survey of optimization models for train routing

and scheduling. Transportation Science 32 380–404.

Crainic, T. G., J. A. Ferland, J. M. Rousseau. 1984. A tactical planning model for rail

freight transportation. Transportation Science 18 165–184.

 184

Crainic, T. G., A. Frangioni, B. Gendron. 2001. Bundle based relaxation methods for

multicommodity capacitated fixed charge network design. Discrete Applied

Mathematics 112 73–99.

Crainic, T. G., J. M. Rousseau. 1986. Multicommodity, Multimode Freight ransportation:

A General Modeling and Algorithmic Framework for the Service Network Design

Problem Transportation Research B 20 225–242.

Dekker, R., F. A. van der Duyn Schouten, R. E. Wildeman. 1997. A review of multi-

component maintenance models with economic dependence. Mathematical

Methods of Operations Research 45 411–435.

Desrosiers, J., Y. Dumas, M. M. Solomon, F. Soumis. 1995. Time constrained routing

and scheduling. M. O. Ball et al., eds. Network Routing. Elsevier, 35–139.

Dial, R. 1969. Algorithm 360: Shortest path forest with topological ordering.

Communications of ACM 12 632-633.

Dijkstra, E. 1959. A note on two problems in connexion with graphs. Numeriche

Mathematics 1 269-271.

Drummond, M., J. Bresina, K. Swanson. 1994. Just-in-case scheduling. Proceedings of

the Twelfth National Conference on Artificial Intelligence (AAAI-94) 1098-1104

AAAI Press/MIT Press, Menlo Park, CA.

Duffuaa, S.O., M. Ben-Daya. 1994. An extended model for the joint overhaul scheduling

problem. International Journal of Operations and Production Management 14

37–43.

Erera, A. L., J. C. Morales, M. W. P. Savelsbergh. 2005. Robust optimization for empty

repositioning problems. Unpublished manuscript.

Farvolden, J. M., W. B. Powell. 1994. Subgradient methods for the service network

design problem. Transportation Science 28 256–272.

 185

Federgruen, A., J. Meissner, M. Tzur. 2007. Progressive interval heuristics for multi-item

capacitated lot-sizing problems. Operations Research 55(3) 490–502.

Federgruen, A., M. Tzur. 1994a. Minimal forecast horizons and a new planning

procedure for the general dynamic lot sizing model: Nervousness revisited.

Operations Research 42 456–469.

Federgruen, A., M. Tzur. 1994b. The joint replenishment problem with time-varying

parameters: Efficient, optimal and ε-optimal solutions. Operations Research 42

1067–1087.

Ford, L. R., D. R. Fulkerson. 1958. A suggested computation for maximal

multicommodity network flows. Management Science 5 97-101.

Garey, M. R., D. S. Johnson. 1979. Computers and Intractability – A Guide to the Theory

of NP-Completeness. W. H. Freeman and Company, San Francisco.

Ghosh., S. 1996. Guaranteeing fault tolerance through scheduling in real-time systems.

PhD thesis, University of Pittsburg.

Golden, B. L., R. Wong. 1981. Capacitated arc routing problems. Networks 11 305–315.

Grigoriev, A., J. van de Klundert, F. C. R. Spieksma. 2006. Modeling and solving the

periodic maintenance problem. European Journal of Operational Research 172

783-797.

Haghani, A. E. 1987. Rail Freight Transportation: A Review of Recent Optimization

Models for Train Routing and Empty Car Distribution. Journal of Advanced

Transportation 21 147–172.

Haghani, A. E. 1989. Formulation and solution of a combined train routing and makeup,

and empty car distribution model. Transportation Research B 23 433–452.

Haque, L., M. J. Armstrong. 2007. A survey of the machine interference problem.

European Journal of Operational Research 179 469-482.

 186

Hariga, M. 1994. A deterministic maintenance scheduling problem for a group of non-

identical machines. International Journal of Operations and Production

Management 14 27–36.

Hart, E., P. Ross. 1999. An immune system approach to scheduling in changing

environments. W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M.

Jakiela, R. E. Smith, eds. Proceedings of the Genetic and Evelutionary

Computation Conference (GECCO-99) Morgan Koufman, 1559-1565.

Holte, R., L. Rosier, I. Tulshinsky, D. Varvel. 1992. Pinwheel scheduling with two

distinct numbers. Theoretical Comput. Sci. 100 105-135.

Ibaraki, T., S. Imahori, M. Kubo, T. Masuda, T. Uno, M. Yagiura. 2005. Effective local

search algorithms for routing and scheduling problems with general time-window

constraints. Transportation Science 39 206–232.

Ioachim, I., S. Ge´linas, J. Desrosiers, F. Soumis. 1998. A dynamic programming

algorithm for the shortest path problem with time windows and linear node costs.

Networks 31 193–204.

Jamil, M., R. Batta, D. M. Malon. 1994. The traveling repairperson home base location

problem. Transportation Science 28(2) 150-161.

Jha, K. C., R. K. Ahuja, G. Sahin. 2008. New approaches for solving the block-to-train

assignment problem. Networks 48-62.

Johnson, D. B. 1977. Efficient shortest path algorithms. J. ACM 24 1-13.

Jones, K. L., I. J. Lustig, J. M. Farvolden, W. B. Powell. 1993. Multicommodity network

flows: The impact of formulation on decomposition. Mathematical Programming

62 95-117.

Karp, R. M. 1972. Reducibility among combinatorial problems. R. E. Miller, J. W.

Thatcher, eds. Complexity of Computer Computations. Plenum Press, New York.

 187

Kaufman, L., F. Plastria, S. Tubeeckx. 1985. The zero-one knapsack problem with

equality constraint. European Journal of Operational Research 19 384-389.

Keaton, M. H. 1989. Designing optimal railroad operating plans: Lagrangian relaxation

and heuristic approaches. Transportation Research B 23 415–431.

Keaton, M.H. 1992. Designing optimal railroad operating plans: A dual adjustment

method for implementing Lagrangian relaxation. Transportation Science 26 262–

279.

Kennington, J. L. 1978. A survey of linear cost multicommodity network flows.

Operations Research 26 209-236.

Kenyon, C., N. Schabanel, N. Young. 2000. Polynomial-time approximation scheme for

data broadcast. ACM Symposium on Theory of Computing 32 659–666.

Kenyon, C., N. Schabanel. 2003. The data broadcast problem with non-uniform

transmission times. Algorithmica 35 146-175.

Koulamas C. P. 1996. Scheduling two parallel semiautomatic machines to minimize

machine interference. Computers and Operations Research 23 945–56.

Kraft, E. R. 1998. A reservation-based railway network operations management system.

Unpublished Ph.D. Dissertation, Department of Systems Engineering, University

of Pennsylvania, Philadelphia, PA.

Kwon, O. K., C. D. Martland, J. M. Sussman. 1998. Routing and scheduling temporal

and heterogeneous freight car traffic on rail networks. Transportation Research E

34 101–115.

Lenstra, J. K., A. H. G. Rinnooy Kan. 1981. Complexity of vehicle routing and

scheduling problems. Networks 11(2) 221-227.

Leon, V. J., S. D. Wu, R. H. Storer. 1994. Robustness measures and robust scheduling for

task shops. IIE Transactions 26(5) 32-43.

 188

Leus, R., W. Herroelen. 2004. Robust and reactive project scheduling: a review and

classification of procedures. International Journal of Production Research 42

1599-1620.

Levy, L., L. Bodin. 1988. Scheduling a postal carriers for the United States Postal

Service: An application of arc partitioning and routing. B. Golden, A. Assad, eds.

Vehicle routing: Methods and Studies. North-Holland, New York, NY, 359-394.

Li, L. Y. O., R. W. Eglese. 1996. An interactive algorithm for vehicle routing for winter

gritting. Journal of the Operational Research Society 47 217–228.

Marin A., J. Salmeron. 1996. Tactical Design of Rail Freight Networks. Part I. Exact and

Heuristic Methods. European Journal of Operational Research 90 26–44.

Marin A., J. Salmeron. 1996. Tactical Design of Rail Freight Networks. Part II. Local

Search Methods with Statistical Analysis. European Journal of Operational

Research 94 43–53.

Martinelli, D. R., H. Teng. 1996. Optimization of Railway Operations using Neural

Networks. Transportation Research C 4 33–49.

McKay, K. N., F. R. Safayeni, J. A. Buzacott. 1998. Task-shop scheduling theory. What

is relevant? Interfaces 18(4) 84-90.

Mok, A., L. Rosier, I. Tulshinsky, D. Varvel. 1989. Algorithms and complexity of the

periodic maintenance problem. Microprocessing and Microprogramming 27 657-

664.

Newton, H. N., C. Barnhart, P. M. Vance. 1998. Constructing railroad blocking plans to

minimize handling costs. Transportation Science 32 330–345.

Nozick, K., E. K. Morlok. 1997. A model for medium-termoperations planning in an

intermodal rail-truck service. Transportation Research A 31 91–107.

 189

Orlowski, S. 2009. Optimal Design of Survivable Multi-Layer Telecommunication

Networks. Unpublished Ph.D. Dissertation, Mathematik und Naturwissenschaften

der Technischen, Universitat at Berlin, Germany.

Ouorou, A., P. Mahey, J.-Ph. Vial. 2000. A survey of algorithms for convex

multicommodity flow problems. Management Science 46(1)126-147.

Pioro, M., D. Medhi. 2004. Routing, Flow, and Capacity Design in Communication and

Computer Networks. Elsevier, San Francisco.

Riccio, L. J. 1984. Management science in New York’s Department of Sanitation.

Interfaces 14(2) 1-13.

Riccio, L. J., A. Litke. 1986. Making a clean sweep: Simulating the effects of illegally

parked cars on New York City’s mechanical street-cleaning efforts. Operations

Research 34(5) 661-666.

Sadeh, N., S. Otsuka, R. Schelback. 1993. Predictive and reactive scheduling with the

MicroBoss production scheduling and control system. Proceedings of the IJCAI-

93 Workshop on Knowledge-Based Production Planning, Scheduling, and

Control 293-306.

Schabanel, N. 2000. The data broadcast problem with preemption. 17th International

Symposium on Theoretical Aspects of Computer Science: Lecture Notes in

Computer Science 1770 181–192.

Stadtler, H. 2003. Multilevel lot sizing with setup times and multiple constrained

resources: Internally rolling schedules with lot-sizing windows. Operations

Research 51 487–502.

Stecke, K. E., J. E. Aronson. 1985. Review of operator/machine interference models.

International Journal of Production Research 23 129–151.

 190

Stricker, R. 1970. Public sector vehicle routing: The Chinese postman’s problem.

Unpublished Masters Thesis, Massachusetts Institute of Technology, Cambridge,

Mass.

Su, S. I. (I.) 1992. The general postman problem-Models and Algorithms. Unpublished

Ph.D. Dissertation, Collage of Business and Management, University of

Maryland, Md.

Suerie, C., H. Stadtler. 2003. The capacitated lot-sizing problem with linked lot sizes.

Management Science 49 1039–1054.

Tagmouti, M., M. Gendreau, J. Y. Potvin. 2007. Arc routing problems with time-

dependent service costs. European Journal of Operational Research 181 30-39.

Taillard, E. D., P. Badeau, M. Gendreau, F. Guertin, J. Y. Potvin. 1997. A tabu search

heuristic for the vehicle routing problem with soft time windows. Transportation

Science 31 170–186.

Thomet, M. A. 1971. A user oriented freight railroad operating policy, IEEE Transaction

Systems Man Cybernetics 1 349–356.

Van Dyke, C. D. 1992. Trip planning and seamless rail transportation. Proceeding of the

Transportation Research Forum 6 243-263.

Van Dyke, C. D. 1994. Status of trip planning and car scheduling systems in the railroad

industry. Proceedings of the Transportation Research Forum Daytona Beach 218-

235.

Wallace, R. J., E. C. Freuder. 1998. Stable solutions for dynamic constraint satisfaction

problems. Proceedings of the Fourth International Conference on Principles and

Practice of Constraint Programming (CP-98) 447-461.

Wei, W., C. Liu. 1983. On a periodic maintenance problem. Operations Research Letters

2 90-93.

 191

Wu, S.D., E. Byeon, R.H. Storer. 1999. A graph-theoretic decomposition of the task shop

scheduling problem to achieve scheduling robustness. Operations Research 47(1)

113-124.

 192

Vita

Kursad Derinkuyu received his B.Sc. and M.Sc. degrees in Industrial Engineering

from Bilkent University, Ankara, Turkiye, in 2002 and 2004. Derinkuyu continued his

studies as a graduate student in Industrial and Systems Engineering at Lehigh University

and received his second M.Sc. degree in 2006. During his graduate studies at Bilkent and

Lehigh, he performed research on robust optimization, S-Procedure and its variants.

In the Fall 2006, he joined the graduate program in Operations Research and

Industrial Engineering at the University of Texas at Austin where he pursued his doctoral

studies. Under the supervision of Dr. Anant Balakrishnan and Dr. Erhan Kutanoglu, he

worked on service scheduling and transshipment problems using mathematical

programming and combinatorial optimization. During his doctoral study, he interned at

AMD and BNSF companies to improve supporting tools for production planning and

logistics.

Kursad joined the Industrial Engineering Department of Hacettepe University as a

faculty member in May 2011. He is married and has one daughter.

Permanent address: Hacettepe Universitesi, Endustri Muhendisligi

 06800 Beytepe, Ankara, TURKIYE

This dissertation was typed by the author.

