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Simulation is often used in research and industry as a low cost, high efficiency

alternative to real model testing. Simulation has also been used to develop

and test powerful learning algorithms. However, optimized values in simu-

lation do not translate directly to optimized values in application. In fact,

heavy optimization in simulation is likely to exploit the simplifications made

in simulation. This observation brings to question the utility of learning in

simulation.

The UT Austin Villa 3D Simulation Team developed an optimization

framework on which a robot agent was trained to maximize the speed of

an omni-directional walk. The resulting agent won first place in the 2011

RoboCup 3D Simulation League.

This thesis presents the adaptation of this optimization framework to
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learn parameters in simulation that improved the forward walk speed of the

real Aldebaran Nao. By constraining the simulation with tree models learned

from the real robot, and manually guiding the optimization based on testing

on the real robot, the Nao’s walk speed was improved by about 30%.
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Chapter 1

Introduction

In 2004, the UT Austin Villa team published a paper [7] showing how machine

learning can be used on a quadrupedal robot called the Sony Aibo to improve

its walk speed significantly. These robots were used in the RoboCup soccer

competition and clearly outmatched the best hand-tuned walk routines. Since

then, the RoboCup legged competition has moved to using the Aldebaran

Nao robots. In contrast to the four legged Aibos, these robots are bipedal

and come with all of the challenges expected from walking on two legs. Chief

among these challenges is the observation that these robots are unstable, fall

easily, and break frequently. While the Aibos were able to try a large range of

parameters to improve their walk, the same could not be done on the Naos, as

a poor choice of parameters could cost several thousands of dollars in damage.

In 2011, the UT Austin Villa team once again used machine learning

to outdo the competition in the RoboCup 3D simulation league [9] Using the

CMA-ES evolutionary learning algorithm and using Condor to perform large-

scale distributed computing, the team was able to run thousands of simulated

trials to find parameter values that transformed a relatively slow walk into the

fastest simulated walk for the Nao in the world. In simulation there is little

cost to running and testing an instance of parameter values, and these tests

can be run in much less time. In addition, by utilizing Condor, it was possible

to run up to 150 robust tests simultaneously and have them complete in less
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than twenty minutes. It is therefore tempting to utilize the same infrastructure

to improve the walk of the real robot.

Unfortunately, to do so is no simple task. Even when using the same

code base, to simply take the same parameters that are optimized for simula-

tion and run them on the robot would achieve little more than a broken robot.

The simulated model of the robot is imperfect, and the simulation environ-

ment poorly represents the robotics laboratory. More importantly, the physics

engine in the simulator, while considered quite good, simply does not produce

the same results as the real world.

The work of this thesis is an attempt compensate for these deficiencies in

order to use simulation to find parameter values that improve the walk speed of

the Nao. By constraining the simulation sufficiently and manually guiding the

optimization framework, this project has succeeded in producing parameters

that create a walk that is as stable as the original and walks forward about

30% faster.

This thesis is organized as follows: The next chapter describes the

background information required to understand the major work of this thesis.

Chapter 3 gives describes the changes that were required to achieve the pre-

viously mentioned results. Chapter 4 provides a discussion on these changes

and the concept of learning in simulation, relating to similar work. Finally,

chapter 5 concludes.
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Chapter 2

Background Information

2.1 Nao

Figure 2.1: Aldebaran Nao

The Aldebaran Nao is built in the likeness of a small human and stands

a little more than half a meter tall. It has twenty five degrees of freedom,

eleven of which are in the pelvis and legs, with which this project is concerned.

There is one camera on the Nao’s forehead and another where the mouth would
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be. Additionally, the Nao has foot pressure sensors, two gyro-meters, and an

accelerometer.

The UTCS robotics laboratory is in the basement of a building on cam-

pus and is shielded from most outside lighting and disturbances. The robot

walks on a thin green carpet field with white duct taped lines marking the

typical soccer boundaries.

2.2 HTWK Walk Engine

Parameter Description
angleXScale Scale for sensor value of body roll.
angleYOffset Offset for sensor value of body pitch.
angleYScale Scale for sensor value of body pitch.
startLength Used in calculating initial ramp up.
numFrames Number of frames to take two steps.
swing Amplitude of the swing calculation.
knee Base of the leg lifting calculation.
vShort Factor for the leg lifting calculation.
aShort Amplitude of the leg lifting calculation.
oShort Offset of the leg lifting calculation.
balanceGyro1 Factor for body pitch in calculating hip pitch.
balanceGyro2 Factor for body pitch in calculating knee pitch.
balanceGyro3 Factor for body roll in calculating hip roll.
balanceGyro4 Factor for body roll in calculating ankle roll.
vSwing Factor for the swing calculation.
oSwing Offset for the swing calculation.
speed Minimum speed of the walk.

Table 2.1: The HTWK walk parameters examined this project.

The Naos come equipped with Aldebaran’s own closed-source walk en-

gine. However, there have been several projects and papers over the last few

years which have produced faster and more robust walks for the RoboCup

competitions. This is a challenging feat, and while the UT Austin Villa team
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also created a customized walk for the Nao, it was deemed too unstable, and

the default walk was used in RoboCup 2011.

This year, the team has ported a walk from the German HTWK team

and improved on it. A detailed description of this walk is described in [2].

Seventeen parameters from this walk were examined (Table 2.1). A phase of

the walk is the time it takes the robot to take two steps, and is measured

by the numFrames parameter. A step consists of three components. The

first component is shifting the center of mass. Then, the back leg is lifted

by bending according to the knee, vShort, oShort, and aShort parameters.

Finally, the lifted leg is swung forward according to the swing, vSwing and

oSwing parameters. The speed parameter determines the minimum speed

of the walk. The rest of the parameters scale and offset the sensor values

of the gyro-meters, which are used as the closed loop component during the

calculations of the three components.

2.3 SimSpark

RoboCup 3D simulation league uses the SimSpark multi-agent simulator, which

was designed by the RoboCup initiative. The physics engine that the simula-

tor uses is called the Open Dynamics Engine (ODE) which has both rigid body

dynamics and collision detection. While ODE is quite good at these tasks, it

has several shortcomings. For example, there is no friction model on hinges in

ODE, and so no friction acts on the simulated robot’s joints [1].

Every 20 milliseconds, the physics simulator takes a step and sends

sensor information to the simulated agent. At that point, the behavior code

can use the sensor information to determine the robot’s next action. To walk,

the behavior sends the walk engine a walk request, which uses the sensor

information to determine the next desired joint commands. To achieve these

joint angles, torques values are calculated on each joint, which are then sent

back to the simulator.

The simulated agent was originally based on an older model of the Nao,
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Figure 2.2: Simulated Nao agent

and so some of the dimensions and masses were incorrect. Also, the details in

the model of the Nao is greatly approximated. For example, in the feet, where

an accurate model would be the most important to accurately simulated a

walk, the foot model looks more like perfectly rounded shoes, in comparison

to the oddly shaped feet of the real robot. The simulated laboratory is a

completely flat surface on which the robot walks, which is a poor representation

of the green carpet used in the lab.

2.4 Optimization Framework

This is a brief summary on how the UT Austin Villa 3D Simulation team was

able to use machine learning to create the fasted simulated walk for the Nao

in the world. For a complete paper on the topic, see [9].

The walk engine for the agent has a component which parses parameter

values from a file. These parameters correspond to the seventeen parameters

described for the HTWK walk. However, the machine learning algorithm is

blind as to what these parameters actually do.

By some manual trial and error, a robust optimization routine called

OmniWalk was created for the simulation. The routine consists of a series of
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targets to which the agent attempts to walk towards, with a time limit on each

target. The targets are always relative to the agent’s position and orientation,

so failing to reach a previous target does not affect the next target. To get to

a target, the agent is ordered to move in the forward and side directions at a

constant speed towards the target. Since the agent’s walk is omni-directional,

it is not evaluated on which way it is facing, only how close it comes as to

the target. However, it was assumed that the agent would walk faster facing

forward, and so the agent is also made to always turn towards the target.

A trial is seven consecutive runs of the same optimization routine. At

the end of each trial a fitness score is assigned, which is used to rank how good

one instance of parameter values is compared to another. The team decided to

use the covariance matrix adaptation evolution strategy (CMA-ES) algorithm,

implemented in Java, to perform the optimization. A full description of CMA-

ES is provided at the end of this section. For each generation, CMA-ES

produces a population size of parameter samples to evaluate and waits for the

results, which it then uses to determine what to try in the next generation.

Condor is used to distribute the task of evaluating the population across

different machines on the department clusters. Up to 150 jobs can be run si-

multaneously, and so the population size is always fixed to 150. The framework

will rerun each sample if they fail (for whatever reason) until some minimum

number of trials completed successfully, and the algorithm can move to the

next generation.

This learning framework is very good at finding the parameter values

that will exploit the fact that the agent is in simulation. For example, to move

it’s joints, the agent calculates a torque values for each joint that will achieve

the desired joint command. However, there is no upper bound on this torque

value, and there is no friction model in the joints. Therefore, the learning

framework will exploit the fact that it can move the joints much faster than

would be possible on the real robot. Worse, while the agent is penalized for

falling during the optimization, the real robot is far more unstable than the

simulated one. Subsequently, it is difficult to force the learning framework to
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find a walk optimized for speed that will not make the real robot break its

neck.

2.4.1 CMA-ES

The covariance matrix adaptation evolution strategy (CMA-ES) is described

in detail by Nikolaus Hansen in [5]. This subsection provides a brief summary

of its operation.

Then goal of this algorithm is to optimize a set of parameters by search-

ing the parameter space. CMA-ES is an evolutionary algorithm. It begins with

user-defined initial values and variances for each parameter. Additionally, the

user provides a fixed number of generations and a fixed population size. For

each generation, CMA-ES samples a population from the parameter space

using a multivariate normal distribution, which is defined by a mean and a

covariance matrix. Initially, the mean of the distribution is the initial param-

eters and the covariance matrix is derived directly from the initial variances.

Each of these samples then needs to be evaluated, and a fitness is returned to

CMA-ES.

In order to proceed to the next generation, CMA-ES needs to determine

the new mean and covariance matrix from which to sample. The mean is

shifted from its previous position towards the weighted average of some number

of the top valued samples (usually half). The new covariance matrix is also

derived from these top samples, but is adapted based on the trajectory of the

mean over the past few generations. The new distribution is then re-sampled

for the next generation.

One reason this algorithm is appropriate for this project is that a large

portion of its computation, the evaluation of a population, can be parallelized.

Evaluating each sample of a population can be accomplished using a different

simulation process. Using Condor (see [8]), up to 150 of these processes can

be distributed across the machines in the department cluster. Additionally,

CMA-ES accommodates for parameter spaces which are discontinuous or have
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local optima, as is likely the case for the walk parameters.
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Chapter 3

The Search for Optimized

Parameters

The following subsections each explain the changes made either to the robot

or to the simulator in order to use the parameters learned in simulation to

improve the Nao’s walking speed. For example, the simulated model used

in the previous year’s competition was based on an old version of the Nao,

and so the masses of each component of the robot were updated. However,

most of this work does not attempt to the repair the physics simulation nor

the simulated models and environment. To repair the former would require a

thorough investigation of the Open Dynamics Engine to determine in which

meaningful way it is different from the real world in relation to this problem.

Then, enough expertise would have to be developed about the ODE code base

to correct it and add the missing models. This is certainly doable, as the

ODE is open source, but unfortunately was not in the time constraints of this

project.

Instead, for the most part, a black box approach was taken for the

physics simulator. Given that the physics simulator is inaccurate and can-

not be changed, how can artificial forces be sent to the simulator that will

compensate for its inaccuracies enough to learn a usable optimized walk?
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3.1 Predicting Joint Angles

Figure 3.1: This greatly simplified diagram represents the actions that occur dur-
ing a frame in simulation. First, the physics engine (ODE) updates its state and
informs the RoboCup simulator SimSpark. SimSpark notifies the agent of its sensor
information. During optimization, the agent is also given its ground truth location
to calculate its fitness. The agent’s behavior uses this sensor information to de-
termine its next action and issues a walk request to the motion core. The motion
core passes the walk request, along with the sensor data to the walk engine, which
responds with joint commands. Those joint commands are converted into torques
which will achieve those commands, and finally those torques are sent back to the
physics engine. It is possible to manipulate the joint commands after the walk
engine issues them in order to simulate what would happen on the real robot via
prediction.

When the robot is issued a joint command, it is desirable that both the

simulated agent and actual robot end up with the same joint configuration.

That way, if the physics simulation is at least accurate enough to determine

if a joint configuration is stable or not, then it should be able to determine if

the robot will stand or not during optimization.

The real robot receives a new frame on which to perform calculations

and send joint commands every 10 milliseconds, while the frame rate of the

simulation is 20 milliseconds. Special code is added to the simulated agent to

account for this discrepancy. At each frame, the walk engine determines the

next set of joint angles that it would like the robot to achieve and requests

that these angles be achieved in the minimal amount of time.
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It was clear from the beginning that the joint angles achieved between

each frame is different on the simulator from the real robot. The walk devel-

oped by the UT Austin Villa team for the previous year’s competition was

quite stable in simulation, while the same code and parameters on the real

robot did not walk nearly so well. If nothing else, the real world physics

appears much more random than in the ODE.

The approach taken to resolve this issue was to discover a mapping

from the robot’s current state and joint commands to the resulting joint angles

using machine learning. Theoretically, if this mapping was accurate enough,

it could be forcefully simulated during optimization. After optimization, since

the walk would change as parameters were optimized, the mapping may have

to be relearned using the current best parameter values. The walk would

improve iteratively, first improving the simulator by walking on the robot,

and then improving the robot by optimizing parameters on the simulator. A

diagram of this process is provided at the end of this chapter.

For these experiments, the head and arm angles of the robot were fixed,

and so only the 12 joints of the hips and legs were of interest (There are

only 11 degrees of freedom since the hip joints move together). The robot

was ordered to walk forward for some period of time. At every other frame

(to compensate for the difference in frame rate), the robot would record its

current state, which is its joint angles and center of mass, and the next set of

joint commands. These make 27 inputs and 12 output joints.

The open source machine learning framework Weka was used to esti-

mate this mapping. Various algorithms were tried, and the M5P tree regres-

sion algorithm was chosen as a tradeoff between runtime and prediction error.

This algorithm produces a binary tree model. Details on how this model is

constructed and evaluated are provided at the end of this section.

The algorithm for evaluating the models on a set of inputs was rewritten

from scratch and incorporated into the simulated agent’s code. After the walk

engine determined which joint commands to send, the model for each joint is

applied to learn which joint angles would be expected on the real robot. With
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Class Runtime (s) RAE (%) RRSE (%)
SimpleLinearRegression 0.35 21.7 25.5
LinearRegression 1.18 16.0 17.6
LeastMedSq 169.0 16.9 19.2
PaceRegression 2.21 15.9 17.5
MultilayerPerceptron 376 12.9 14.2
DecisionStump 1.82 56.8 57.5
M5P 37.3 11.6 16.3
REPTree 3.68 12.4 14.5
IBk 128.9 12.3 16.6
RegressionByDiscretization 20.2 16.7 18.1

Table 3.1: These regression classes were tested with the joint command to joint
value data using ten fold cross validation. Here only one joint, HipYawPitch, is
presented since this joint was consistently the most inaccurately predicted. RAE
stands for relative absolute error, and RRSE is root relative squared error.

this information, it was easy to estimate the difference between the model’s

prediction and the output joint angles calculated by the physics engine. Every

joint angle had at least a 0.1 radian difference from the expected value at

nearly every frame.

The first attempt at correcting this error was simply to forcefully change

the joint commands to the predicted joint angles, with the expectation that

the torques calculated to achieve the requested joint commands were relatively

accurate. This expectation turned out to be true. Many of the expected values

were achieved much more closely than before, though still with some significant

error.

Still, the predicted joint angles were noisy in comparison to the smooth

joint commands from the walk engine. The noise level of the real robot’s

movement fell somewhere between these two values. The solution was to find

a balance between trying to simulate the real robot’s movements and keeping

to the walk engine’s original plan. By trial and error, a componentization of

the original commands and expected joint angles was found that was both

smoother and had a minimal error between the expected and actual output
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angles. The new commands were the sum of 70% of the original commands,

and 30% of the expected angles.

While this method worked well for simply walking forward, it was nec-

essary to have the robot perform actions similar to whatever the simulated

agent might perform. As discussed in the next section, the simulation’s opti-

mization routine was required to be able to walk forward and turn. Turning in

simulation incorrectly caused the robot to fall since the models were only based

on forward walking data. To get data relevant to diverse types of movements,

the walk requests issued while the simulation was running the OmniWalk opti-

mization routine were recorded and re-run on the robot. The models produced

proved to be more robust, and did not cause the agent to fall while turning in

any direction.

3.1.1 Description of M5P

It is worthwhile to look at how M5 trees are created and evaluated in order

to understand why they are the appropriate choice for this data set. For each

joint, a database of training data is provided from the robot, which has 27

inputs (12 joint commands + 12 joint angles + 3 center of mass), and a single

output (the observed joint angle in the next frame). A detailed description on

how M5 builds its models is available in its introductory 1992 paper [11], as

well as in [14]. What follows is a brief summary of those description.

Conceptually, the M5 tree is a discrete decision tree that utilizes linear

regressions at the leaves instead of constant values. Given a set of inputs, the

output value can be predicted by traversing the tree to its leaves and then

applying the linear function present at that leaf. To traverse the tree, at each

node, the value of a selected input is compared to a learned constant, and the

tree is traversed to the left if the input is less than that constant, otherwise to

the right.

Building the model tree consists of three steps: Building the tree, prun-

ing the tree, and smoothing the leaves. To build the tree, start with a root
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node, which covers all of the training data, and split the node on the input

which will reduce the error by the greatest amount. The split value for each

input is the value which would minimize the variation of the training data

down each branch. The error is defined as the resulting standard deviation,

and the reduction in error can be calculated using the formula:

reduction = sd(T )−
∑

i

|Ti|
|T |
∗ sd(Ti)

Here, T is the training set at the current node and Ti is the training

set that would remain if input i were split. M5 stops splitting when either the

variance of the training set at an input is sufficiently small, or when there are

too few remaining data instances.

To prune the tree, M5 begin by building linear regressions on every

node of the tree, and compares the estimated error of the node with that of

the linear model. If the error of the linear model is reduced, the tree is pruned

at that node.

Finally, the linear models are smoothed to correct for the discontinuities

between the leaves. The Weka implementation of smoothing is different from

that described by Quinlan, and is more similar to that described in [6], though

a detailed explanation is missing.

3.2 Narrowing the Optimization

The original routine used in optimizing the walk parameters in simulation was

called the OmniWalk routine. The simulated agent was ordered to walk to a

series of targets relative to its current position for some fixed time. After the

time elapses, the parameters were assigned a fitness depending on the agent’s

distance to the target. If the agent’s distance increased, the parameters were

assigned a negative fitness.

Having the real robot fall was costly and highly undesirable. Once the

port of the HTWK walk had matured, it was possible have the robot walk
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Figure 3.2: The simulated agent is ordered to go to a relative target for a fixed time,
and then is assigned a fitness based on the distance to that target.

forwards and turn at half speed without falling. Therefore, both the real and

simulated robots were capped at half speed.

Still, the real robot could not move sideways without falling, and yet

the OmniWalk optimization routine required an omni-directional walk. So

the optimization routine was changed to remove this requirement. Given a

target, the robot was ordered to always turn towards the target at a speed

proportional to the rotational distance to the target. If the robot was less

than 45 degrees from the target, it was then also ordered to walk forward

while still turning.

Now the robot could perform the two consecutive iterations of the Om-

niWalk routine and gather sufficient data for the M5P algorithm to perform

well. The generated models forced the movement in simulation to have a falling

rate more similar to that of the robot. At the same time, as will be explained

in the following section, this method allowed the optimization to select several

parameter sets which improved the walking speed of both the simulated agent

and the robot.

The original OmniWalk routine required the robot to move to many
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different types of targets with the hopes of developing a robust walk for playing

soccer. For example, it was desirable for the robot to be able to go to a target,

and then quickly change to another target behind it without falling due to

its momentum. However, after several trials, it was found that the complete

OmniWalk routine was inappropriate for this experiment. The robot was

measured in how fast it could walk forward, and it would only add noise to

attempt to learn additional actions. The routine was stripped down to only a

single target directly in front of the robot at a farther distance than could be

possibly reached.

Interestingly, significantly increasing the time limit for this target had

a negative effect. The likely reason is that as the simulation runs longer,

the cumulative error between the simulation and robot will increase until the

simulation can no longer reflect what will happen on the robot. The total walk

time used was about fifteen seconds.

3.3 Selecting the Right Parameters

To test its actual walk speed, the robot was placed in front of the goalie box

and ordered to walk towards a ball directly in front of it. The forward speed

was set to 50%, and the angular speed to the percentage bearing of the ball.

If the robot did not see the ball at any particular frame, he was ordered to

continue the previous motion. Once the robot stepped with either foot onto

the center line of the field, it was ordered to stop and record the time it had

been walking. The forward distance to walk was 238 cm. The speed of each

parameter set reported here is the average of five trials. If during a trial robot

fell or skewed off course, that trial was retried. The original walk speed using

this method was measured to be 11.9 cm/s.

The work described in the previous sections successfully constrained

CMA-ES to select some parameters that could be run on the real robot. Many

of these parameters were generated within the first ten generations of optimiza-

tion. However, even within these ten generations, many parameters still caused
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Figure 3.3: To evaluate the robot, it was placed in the position shown in this image
and was ordered to walk towards the orange ball. Once it reached the center line of
the field, it was ordered to stop, at which point it recorded its own walking time.

the robot to become unbalanced, and most of them did little to actually im-

prove the robot’s walk speed. Even though the search space was constrained,

it was still too large. What the algorithm needed now was guidance.

The top one or two parameters from each of the first ten generation

were tested, and fortunately, more than one were found to perform faster than

the original walk. After manually analyzing the parameters, it was found

that seven of the parameters, namely the four balancegyro parameters and

the three angle parameters, left the robot unbalanced when changed. This

is likely due to the inaccuracies in the simulation’s gyro-meter sensor model.

Therefore, these parameters were removed from the optimization.

One parameter in particular appeared to increase the robot’s walk
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speed, which was the swing parameter, which controls the amplitude of the

swinging foot. Visually, it could be observed that increasing this parameter

caused the robot to swing its lifted foot further and take larger steps. To bias

the optimization towards using this parameter the initial variance for this pa-

rameter was doubled in the CMA-ES algorithm. Finally, the parameters that

performed the best (13.8 cm/s) were set to be the new initial parameters for

CMA-ES.

The optimization was re-run for ten generations with these changes.

Now resulting parameters were more often than not balanced, and often no-

tably better than the original walk. The best actual parameters (14.6 cm/s)

were selected from the top valued parameters that the optimization generated,

and were used as the new initial parameters for another round of optimization.

Unfortunately, while this produced many parameters that performed similarly,

none were found that performed significantly better.

The joint learning module in Weka was re-run using data collected while

using the current best parameters. Using the new joint models, several better

parameter sets were found (15.9 cm/s). This process was repeated with the

new best parameters. Unfortunately this did not generate faster parameters.

However, since many of the parameters generated were similar to the best, one

was found that performed a little slower than the previous best (15.6 cm/s), but

appeared as stable as the original. Since these parameters were particularly

stable, it was possible to increase the robot’s walk speed to 75%, which is

the speed used during games with the original parameters. At this speed,

the original parameters were measured at 13.5 cm/s. The final optimized

parameters were measured at 17.1 cm/s.
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Figure 3.4: The above loop was completed 4 times (though one iteration skipped
the Weka step). The loop started with the OmniWalk in simulation. The simulation
walked to a series of targets and wrote down each of its received walk requests. Those
requests were rerun on the robot, which collected data on its joint commands and
the resulting angles. That data was passed to a module build on Weka which built
tree models using the M5P algorithm. These models are used to predict joint angles
in the simulation. The optimization algorithm CMA-ES was run in simulation,
and the computation was distributed to 150 machines using Condor. The best few
optimized parameters were tested on the actual robot. The best of those parameters
was loaded back into simulation, and the process was repeated.
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Chapter 4

Discussion on Simulation

Learning

This chapter discusses the fundamental differences between the simulation

and the robot, and examines the validity of the approach taken in this thesis.

Additionally, similar work in the field of learning in simulation and using

simulation to predict real applications is discussed. Finally, this section gives

a brief summary of other approaches taken in this project and attempts to

explain why they did not succeed.

4.1 Assessment of the Approach

There are thousands of ways in which the simulation performs differently from

reality. However, the interest of this thesis is to improving the forward walk

speed of the robot by exclusively changing the walk engine parameters. There-

fore, the only differences which are of concern fall into the following two cate-

gories.

There are differences that produce parameters that make the robot fall,

but not the simulation. Given a command, the simulation will produce dif-

ferent joint angles than the real robot. Even if these angles were the same,

the physics simulator may determine that a particular joint configuration does
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not make the robot fall, when in reality it does. The robot used in these

experiments had one leg weaker than the other, which is not modeled in sim-

ulation and yet may cause it to fall. To avoid such differences, the simulator

can be constrained to perform only actions which are known to be stable in

both mediums. This was done by reducing the walk to 50%, removing side-

way movement from the OmniWalk optimization, and removing parameters

from the optimization which unbalanced the robot. Using the learned joint

models in simulation also succeeded in adding noise, which constrained the

optimization from following some paths that exploit a particular feature of

simulation.

The other category of differences are those which improve the walk

speed of the simulation, but not of the robot. The purpose of the learned joint

models was to force the simulation to act more similarly to the real robot.

This was seen to have had some effect when better parameters could not be

found until these models were used and subsequently updated. However, this

method still produced quite a few parameters that performed well or poorly in

simulation, but had the opposite effect on the robot. Manual intervention was

necessary to discover which parameters improved both walks, and guide the

optimization to use these parameters on a subsequent run of the optimization.

The change presented which produced the least positive result was to

match the masses of the simulated parts of the agent to those of the robot.

While this may have increased the accuracy of simulation by some amount, it

did not directly attack either of the two previously mentioned differences.

4.2 Related Work

Simulation has been used as a tool for modern research and development.

Stefan H. Thomke [13] describes how simulation has been used for crash testing

in the automobile industry for over a decade. Building real models for crash

testing is much more expensive and time consuming than building a model in

simulation. Additionally, real models are limited in value since they are often
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built after the automobile’s design can no longer be changed, and due to the

large number of possible crash scenarios. Using simulation for the Nao provides

the same benefits. However, in industry humans typically learn by iterating

in simulation in order to modify their design on the product. In contrast, this

project does not make any manual changes to the Nao, but seeks to guide the

simulation to improve it automatically.

Simulation has been recently used in robotics research to develop and

test new algorithms such as for path planning models [15]. In particular, learn-

ing has been used in the development of learning algorithms for applications

such as for modeling robots with many sensors and actuators [10], and in 1990

for learning evasive maneuvers in flight simulation [4]. Intuitively, learning in

simulation lends itself well towards active learning, when a database of train-

ing data in unavailable. However, there is fewer literature examining the use

of results obtained from simulation learning in the real world.

The price of the convenience of simulation is its inaccuracy. As Erann

Gat puts it, “You cant do science about robots without firing up a robot”

[3]. In his 1995 paper, Gat claims that in order for simulation to be useful,

the results of simulation must be tested on the real robot. This is similar

to the iterative approach of this thesis. The simulation’s optimization must

be somehow guided by performance on the real robot, and in this case the

guidance is manual.

This manual guidance can be seen as an ad-hoc approach to demon-

stration learning, described by Stefan Schaal in 1997 [12] Schaal makes the

observation that unlike classical reinforcement learning algorithms, humans

and animals use prior knowledge to learn a new task. Schaal’s description of

“extracting a policy” for Q-learning is similar in nature to manually selecting

a parameter sample which works well on both the robot and simulation and

feeding it to CMA-ES as the initial parameters.
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4.3 Failed attempts

There are certainly other methods to accomplish the goals of this thesis. This

section is reserved for methods that did not.

4.3.1 Predicting Joint Commands

To constrict the joint angles to those on the simulator, the joint commands

were set to some fraction of the expected output angles from the M5 models

and the original commands. The resulting angles were closer to the prediction.

Still, they were not quite as accurate as could be desired.

An attempt was made to fix this by adding an inverse mapping from

output joint angles to input joint commands. The same 27 inputs and 12

outputs were recorded on the simulator as on the real robot, but the out-

put joints were switched with the input joint commands. This data was run

through Weka’s M5P algorithm to produce inverse models.

The new walking algorithm went as follows: Given the current state

and walk request from the behavior, the walk engine produces a set of joint

commands. The expected joint angles that would be produced on the real

robot are predicted from models built from data from the real robot. Then, to

achieve those joint angles, the final joint commands were predicted from the

inverse models built from data from the simulation.

Unfortunately, while this method did achieve its goal, it did not work as

desired. The simulated robot was able to match the expected joint angles with

an error of less than 0.1 radians for every joint on nine out of ten consecutive

frames. However, the original joint commands that the walk produced were

very smooth, while the transformed joint commands passed through two layers

of prediction were too noisy. The simulated robot fell more often than the real

robot, even though its input to output mapping of joints appeared to be more

accurate.
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4.3.2 Predicting Joints on the Real Robot

Instead of making simulation more like the real robot, there is also the pos-

sibility to make the robot move more like the simulation. Since (without

prediction), the simulated robot is significantly more stable than the actual

robot, it could be beneficial to mimic its movement. Additionally it may be

possible to use optimized parameters on the real robot if it can walk more like

the simulated robot.

All of the methods previously explained to make the simulation move

like the robot were inverted and tried on the real robot. A mapping of joint

commands to angles was found from simulation data and used to determine

commands for the real robot. Adding an inverse mapping was also attempted,

which introduced too much noise and was discarded. Again, it was found that

a componentization worked the best (0.6 * original + 0.4 * expected).

However, the noise introduced by using prediction had a much greater

impact on the robot than it did in the simulation. While the robot appeared

to be as stable as without prediction, the speed of the walk dropped by about

30%. Also, this method failed to make the robot more stable when using

parameters optimized in simulation, and so it was discarded.

4.3.3 Matching the Frame Rate

By default, the simulator physics takes 20 millisecond steps and interpolates

in between. The agent, therefore, receives a chance to read its sensors and

update its joint torques once every 20 milliseconds. In contrast, the actual

robot gets the same chance every 10 milliseconds, and consequently has twice

the number of frames.

There are several reasons that it would be desirable to have the simu-

lator run at the same frame rate as the real robot. In learning the input to

output joint mappings on the real robot, every other frame must be skipped.

This causes the joint commands to be mapped two frames ahead, which in-

troduces some error. Additionally, there are checks in the code base ensure
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that the sensor and joint command values from the simulator are received at

20 milliseconds instead of 10. These checks would be unnecessary if the sim-

ulator ran at the real robot’s frame rate, and the increased granularity would

put the accuracy closer to that of the real robot.

After some digging in the SimSpark code base, it was possible to in-

crease the frame rate to the desired amount, but unfortunately, it seems that

the simulation environment or the physics engine itself somehow uses the as-

sumption that a step occurs at 20 millisecond intervals, and so this method

was abandoned.

This change, if successful, may have been a step in the wrong direction.

The frame rate is an important component to both the robot and simulation,

and repairing this issue could possibly have made the simulation more accurate.

Yet, it would have still been inaccurate. The question is whether this change

would have made an improvement in simulation become an improvement in

reality, and it is not the belief of the author that this would have been the case.

While this change does improve the accuracy of the simulation, it does little

to constrict it from producing unusable results and does not help to guide the

optimization.
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Chapter 5

Lessons and Conclusion

In this thesis, it was found that learning can be used in simulation to improve

a the values of parameters used on a real robot. However, simulation cannot

be expected to simulate most details properly, especially if the simulation is a

complex combination of parts and layers, as is SimSpark. The key is to focus

on the most abstract notion of what it means to find an improvement. Once

that notion is identified, the simulator must be iteratively constricted, learned

parameters must be tested, and the optimization must be somehow guided

until it is found that improvement in simulation is an improvement in reality.

Improvement in this thesis is to walk faster. In the simulation, it is

possible to indirectly measure improvement by measuring the remaining dis-

tance to a target. Constriction was implemented by predicting and forcing

the agent’s joint angles, slowing down the robot, and by stripping down the

optimization routine to the bear essentials. Testing the output of the opti-

mization iteratively revealed which parameters were more or less appropriate

to optimize. By manually focusing on those parameters and guiding the op-

timization to use previously successful values, parameters were learned that

improved the robot’s forward walking speed by about 30%.
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