
 

 v 

 

 

 

 

 

 

 

 

Copyright 

by 

Rouzbeh Ghanbarnezhad Moghanloo 

2012 

 

 



 

 vi 

 

The Dissertation Committee for Rouzbeh Ghanbarnezhad Moghanloo 

Certifies that this is the approved version of the following dissertation: 

 

 

Modeling the Fluid Flow of Carbon Dioxide through Permeable Media 

 

 

 

 

 

Committee: 

 

Larry W. Lake, Supervisor 

Steven L. Bryant 

David DiCarlo 

Russell T. Johns 

Kamy Sepehrnoori 



 

 vii 

Modeling the Fluid Flow of Carbon Dioxide through Permeable Media 

 

 

by 

Rouzbeh Ghanbarnezhad Moghanloo, B.S.; M.S. 

 

 

 

Dissertation  

Presented to the Faculty of the Graduate School of  

The University of Texas at Austin 

in Partial Fulfillment  

of the Requirements 

for the Degree of  

 

Doctor of Philosophy 

 

 

The University of Texas at Austin 

May 2012 



 

 viii 

Dedication 

 

I dedicate this dissertation to  

 

My beautiful wife, Maryam, for her love, support, patience, and understanding 

 

 My wonderful parents, Ali and Shahnaz, for their unconditional love and support 

 

and 

 

My lovely Sonia



 

 v 

Acknowledgments 

 

I would like to express my sincere gratitude to my supervising professor, Dr. 

Larry Lake, for his continuous guidance, support, and encouragement. I have learned a 

lot from his profound insight, keen observations, and vast knowledge. I am privileged to 

have had an opportunity to work with him. 

I appreciate the time, valuable comments, and feedback of my committee 

members, Dr. Steve Bryant, Dr. David DiCarlo, Dr. Russell Johns, and Dr. Kamy 

Sepehrnoori.  

I would like to acknowledge the staff of the Petroleum and Geosystems 

Engineering Department at The University of Texas at Austin, Michelle Mason, Joanna 

Castillo, Cheryl Kruzie, Frankie Hart, Mary Pettengill, Shelette Paulino, and Nina 

Schenck for their technical and administrative support. 

Special thanks to my friends Drs. Abraham John, Gholamreza Garmeh, Maylin 

Carrizales, Javad Behseresht, Ahmad Sakhaee Pour, Ashwin Venkatraman, Lokendra 

Jain, and Olaoluwa Adepoju for their valuable technical discussions and suggestions. 

I sincerely thank the financial support provided by the Gas Flooding JIP. 

 

 



 

 vi 

 

Modeling the Fluid Flow of Carbon Dioxide through Permeable Media 

 

 

Rouzbeh Ghanbarnezhad Moghanloo, Ph.D. 

The University of Texas at Austin, 2012 

 

Supervisor:  Larry W. Lake 

 

This dissertation presents analytical solutions to address several unresolved issues on 

the modeling of CO2 flow in permeable media. Analytical solutions are important as 

numerical simulations do not yield explicit expressions in terms of the model parameters. 

In addition, simulations that provide the most comprehensive solutions to multiphase 

flow problems are computationally intensive. Accordingly, we address the following 

topics in this dissertation. 

The method of characteristics (MOC) solution of the overall mass conservation 

equation of CO2 in two-phase flow through permeable media is derived in the presence of 

compressibility. The formally developed MOC solutions rely on the incompressible fluid 

and rock assumptions that are rarely met in practice; hence, the incompressible 

assumption is relaxed and the first semi-analytic MOC solution for compressible flow is 

derived. The analytical solution is verified by simulation results.  
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Fractional flow theory is applied to evaluate the CO2 storage capacity of one-

dimensional (1D) saline aquifers. Lack of an accurate estimation of the CO2 storage 

capacity stands in the way of the fully implementation of CO2 storage in aquifers. The 

notion of optimal solvent-water-slug size is incorporated into the graphical solution of 

combined geochemical front propagation and fractional flow theory to determine the CO2 

storage capacity of aquifers. The analytical solution is verified by simulation results.  

The limits of the Walsh and Lake (WL) method to predict the performance of CO2 

injection is examined when miscibility is not achieved. The idea of an analogous first-

contact miscible flood is implemented into the WL method to study miscibly-degraded 

simultaneous water and gas (SWAG) displacements. The simulation verifies the WL 

solutions. For the two-dimensional (2D) displacements, the predicted optimal SWAG 

ratio is accurate when the permeable medium is fairly homogeneous with a small cross-

flow or heterogeneous with a large lateral correlation length (the same size or greater than 

the interwell spacing). We conclude that the WL solution is accurate when the mixing 

zone grows linearly with time.  

We examine decoupling of large and small-scale heterogeneity in multilayered 

reservoirs. In addition, using an analytical solution derived in this research, the fraction of 

layers in which the channeling occurs is determined as a function of the Koval factor and 

input dispersivity.  

We successfully present a simulation configuration to verify the off-diagonal elements 

of the numerical dispersion tensor. Numerical dispersion is inevitably introduced into the 

finite difference approximations of the 2D convection-dispersion equation. We show that 
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the off-diagonal elements of the numerical dispersion tensor double when the flow 

velocity changes with distance. In addition, the simulation results reveal that the flow 

becomes more dispersive with distance travelled if there is convective cross-flow. In 

addition, local mixing increases with the convective cross-flow between layers. 

A numerical indicator is presented to describe the nature of CO2 miscible 

displacements in heterogeneous permeable media. Hence, the quantitative distinction 

between flow patterns becomes possible despite the traditionally qualitative approach. 

The correlation coefficient function is adopted to assign numerical values to flow 

patterns. The simulation results confirm the accuracy of the descriptive flow pattern 

values.  

The order-of-one scaling analysis procedure is implemented to provide a unique 

set of dimensionless scaling groups of 2D SWAG displacements. The order-of-one 

scaling analysis is a strong mathematical approach to determine approximations that are 

allowed for a particular transport phenomenon. For the first time, we implement the 

scaling analysis of miscible displacements while considering effects of water salinity, 

dissolution of CO2 in the aqueous phase, and complex configurations of injection and 

production wells. 
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 Chapter 1: Introduction 

 

This dissertation is divided into two parts. The method of characteristics (MOC) solutions 

of the mass conservation equation under incompressible/compressible flow and their 

applications in reservoir engineering are discussed in Part I.  

Chapter 2 gives the development of the MOC solution in the presence of 

compressibility. The following hypothesis is tested: if the compressibility can be properly 

represented by constant values, then the MOC solution of the mass conservation equation 

can properly predict the performance of compressible flows. 

Chapter 3 determines the CO2 storage capacity of aquifers using fractional flow 

theory. The following hypothesis is verified: if the capillary snap-off phenomenon can be 

properly captured through hysteresis between the relative permeability curves of 

imbibition and drainage displacements, then the CO2 storage capacity of one-dimensional 

aquifers can be determined using fractional flow theory. 

In Chapter 4, the Walsh and Lake method is applied to predict the performance of 

degraded miscible displacements through implementing the idea of analogues first-

contact-miscible flood. The following hypothesis is verified: if the corresponding 

degraded miscible residual oil saturation is known, the Walsh-Lake method applies to 

solvent floods in which miscibility does not completely develop (because of the 

dispersion and/or insufficient local pressure). 

Part II of this dissertation describes the impact of dispersion on the performance 

of miscible displacement in the presence of large-scale heterogeneity.  
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Chapter 5 examines decoupling of the local heterogeneity and permeability 

variation in multi-layered reservoirs in the absence of cross-flow between layers. The 

following hypothesis is verified: if the large- and local-scale heterogeneities can be 

decoupled properly, their representing parameters will be scale-independent. 

Chapter 6 presents a specific simulation configuration is examined successfully to 

verify the off-diagonal coefficients. Furthermore, the numerical dispersion coefficients 

are derived when flow velocity varies with distance and verified with simulation. In 

addition, simulation results in Chapter 6 suggest that the flow becomes more dispersive 

with distance travelled if there is convective cross-flow. In addition, local mixing 

increases with the convective cross-flow between layers (Chapter 6). 

Chapter 7 introduces a flow regime indicator that eliminates the need for different 

terminology to describe the nature of a miscible displacement such as dispersive, gravity 

override, and channeling. The following hypothesis is verified: if the development pattern 

of the mixing zone is known, then interplay between effects is summarized into a single 

numerical value called the flow pattern value. 

Chapter 8 presents the contributions and the recommendations for future research. 

In addition, a unique set of dimensionless scaling groups are obtained for degraded CO2 

miscible displacements using order-of-one scaling analysis in Appendix C. 
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Chapter 2: Applying the Method of Characteristics to Model the Flow 

of Compressible CO2 in Aquifers 

Deep aquifers are attractive geological formations for the injection and long-term 

storage of CO2. This chapter presents the first semi- analytic solution of two-phase 

compressible flow in permeable media using method of characteristics (MOC). For the 

first time, the method of characteristics is used to solve the overall composition balance 

equation of CO2 with no restriction on the compressibility. The following assumptions 

are considered: one-dimensional (1D), two-phase flow (aqueous and gaseous), a small 

compressibility of fluids and rock, and mutual solubility of CO2 and water in the aqueous 

and gaseous phases.  

A simulation approach is used to verify the derived analytical solutions. The 

simulation models consist of a vertical injection well and a producer located at the ends 

of a 1D grid. The pace at which specific gas saturations propagate along the permeable 

medium are compared with the gas saturation profiles obtained when no compressibility 

is involved. 

The results suggest that the velocity of a wave, which is associated with the 

transport of a certain mass of CO2 along the permeable medium, is a function of the gas 

saturation, compressibility of the rock and fluids, and the pressure gradient. The results 

suggest that the wave velocity will only be a function of the gas saturation and pressure 

gradient if the compressibility of the rock is negligible compared to that of CO2. Hence, 

the‎ waves’‎ velocity‎ will‎ only‎ depend‎ on‎ saturation,‎ as‎ is‎ for‎ an incompressible flow 

system, when changes in pressure gradient are minimal.  
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Thus, this section explains how fast a compressible CO2 plume will travel along 

the aquifers length. In practice, the fate of the injected CO2 plume is essential to 

determine the storage capacity of aquifers and to evaluate the risk associated with the 

CO2 sequestration projects. 

2.1 INTRODUCTION 

Despite extensive research on the analytical modeling of CO2 sequestration in 

deep saline aquifers, CO2 has been always considered as an incompressible fluid. 

Analytical solutions are interesting, as numerical simulations do not yield explicit 

expressions in terms of the model parameters. Furthermore, simulations that provide the 

most comprehensive solutions to multiphase flow problems are computationally 

intensive. 

We derive the method of characteristics (MOC) solution of the overall 

composition balance equation of CO2 to model 1D two-phase flow in the horizontal 

direction in the presence of compressibility. In the following study, the incompressible 

assumption is relaxed as there is no incompressible fluid in practice. With zero 

compressibility, it is impossible to inject more than the discharge rate in an aquifer. Thus, 

the total flow velocity (gaseous + aqueous) stays constant with distance when 

compressibility is absent; on the contrary, it can vary in the presence of compressibility. 

The continuity equation necessitates this argument as described in the remainder of this 

chapter.  

However,‎ the‎ gas‎ density‎ may‎ still‎ be‎ considered‎ “constant”‎ along‎ a‎ vertical‎

cross-section owing to the interplay between compressibility and thermal expansion 
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(Juanes, 2010). This is because the temperature affects CO2 density and, thus, CO2 

storage capacity. All other conditions being equal, the storage capacity is less for deeper 

formations with a high temperature owing to the geothermal gradient. On the contrary, 

the capacity is increased for larger CO2 density as is in deep aquifers because of the 

pressure gradient. Thus, for shallower depths, the storage capacity is smaller as a result of 

lower pressure and lower CO2 density. Bachu (2003) showed that the effects of 

compressibility and thermal expansion counteract each other and yield a constant CO2 

density across the depth of the aquifer.  

The process considered here is based on the following premises: (1) the aquifer is 

assumed as a 1D uniform and homogeneous medium; (2) the aquifer is initially filled 

with water; (3) the outlet boundary of the aquifer is modeled through a production well 

with a constant pressure constraint; (4) two-component two-phase flow takes place; (5) 

neither sorption nor reaction occurs; (6) the fluids and rock compressibilities are 

represented by constant values; (7) the phases are, thermodynamically, in equilibrium 

everywhere; (8) dispersive transport and the capillary effects are negligible; (9) injection 

takes place using either a constant bottomhole pressure or a constant rate constraint; and 

(10) mutual solubility of CO2 and water occurs in the aqueous and gaseous phases, 

respectively. We also assume that the Riemann problem boundary conditions apply: 

uniform initial saturation and the step-wise changes of the injection condition at the 

origin of the distance-time plot. 

The pressure disturbance created at the injection inlet travels through the 

permeable medium. We treat the pressure propagations as two distinct categories: 
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pressure waves accompanied by the changes in saturation and those traveling fast without 

coupling with the saturation change. As will be described later, the injection and the 

production rates will become equal when the fast pressure disturbance, which is not 

associated with the saturation change, reaches the distant boundary of the permeable 

medium. This fast pressure disturbance is followed by the coupled saturation and 

pressure front traveling from the injection well into the aquifer. The fast disturbance is 

mainly dominated by the pressure disturbance while the slower one is caused by sharp 

changes in both pressure and saturation. In addition, a third pressure wave starts traveling 

from the producer toward the injector when the injected CO2 breaks through. 

We derive an expression for the velocity of the coupled propagation of the 

saturation and pressure front that can be solved semi-analytically. The pressure field 

obtained from finite-difference/streamline simulations is incorporated into the analytical 

expression from which saturation is determined. See Vasco (2011) for more information 

on the coupled propagation of saturation and pressure front.  

Even though flow is never limited to 1D in CO2 injection applications, the insight 

obtained from the MOC solution derived in this study can be effectively incorporated 

with streamline simulations. In other words, the pressure field can be calculated through 

streamline representations of the flow in heterogeneous reservoirs and from that, 

saturation is determined analytically using the analytical solution derived in this study. 

For more details on the coupling of streamline simulations and 1D theoretical solutions, 

see Batycky (1997), Thiele (1994), and Jessen et al. (2002). 
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2.2 THE METHOD OF CHARACTERISTICS 

The method of characteristics (Courant and Hilbert, 1962) is a robust technique to 

solve first-order, strictly hyperbolic, partial differential equations (PDE) such as the mass 

conservation equation. The goal of method of characteristics (MOC) is to convert the 

original PDE into a set of ordinary differential equations (ODE) along certain curves 

called characteristics. For a detailed description on MOC applications to chromatography 

problems associated with binary displacements see Rhee et al. (1986). 

In general, the conservation equations are nonlinear. The nonlinearity in the mass 

conservation equation lies in the relationship between the overall flux and the overall 

concentration of each component. If the coherent condition applies, these wave velocities 

become constant; hence, the flow problem will be solved through finding those overall 

concentrations‎and‎the‎associated‎waves’‎velocities.‎The‎MOC‎solution‎is‎a‎unique‎set‎of‎

overall concentration waves traveling through distance and time (independent variables). 

To restore the solution uniqueness, some additional reasoning called velocity constraints 

and entropy conditions often are applied; see Helfferich (1970) and Lake (1989).  

2.3 CONCEPT OF COHERENCE 

The notion of coherence was originally developed in 1963 by Helfferich to 

provide insight into multicomponent fixed-bed chromatography. The concept of 

coherence describes a state in which the velocity of waves that are associated with 

dependent variables becomes the same at any point within the problem domain. In other 

words, a complete set of compositions (dependent variables in this study) travel together 

in the same direction and the same velocity if the wave is coherent (Hankins et al., 2004). 
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Incorporating the concept of coherence into problems, which involve wave propagation, 

yields a robust solution. Using the method of characteristics, Helfferich (1981) showed 

that implementing uniform initial and boundary conditions (called Riemann problem 

conditions) leads to solutions that can be described using coherent waves. Major 

extensions were performed to apply the coherence into enhanced oil recovery (EOR) 

applications (Helfferich, 1981; Lake, 1989).  

2.4 THE MOC SOLUTION WHEN NO COMPRESSIBILITY IS INVOLVED 

To evaluate the MOC solution when compressibility is present, it is worthwhile to 

compare it with the solution in which no compressibility is considered. Hence, we first 

assume that fluid properties and pore space are independent of the pressure changes and 

consider the following premises for Part I: (1) the aquifer is assumed as a 1D uniform and 

homogeneous medium; (2) the aquifer is initially filled with water; (3) the outlet 

boundary of the aquifer is modeled through a production well with a constant constraint; 

(4) two-component two-phase flow takes place; (5) neither sorption nor reaction occurs; 

(6) the phases are thermodynamically, in equilibrium everywhere; (7) dispersive transport 

and the capillary effects are negligible; (8) a constant mutual solubility of CO2 and water 

occurs in the aqueous and gaseous phases, respectively (displacement along a tie-line); 

(9) the phase compositions, viscosities, and densities are fixed and the relative 

permeabilities depend only on the saturations. 

The overall mass conservation equations for (1) water and (2) CO2 components 

under no sorption or chemical reaction can be written as (Dumore, 1984; Lake, 1989):  
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   

1 1G H

1 1 11 1 2 12 1 11 1 2 12 2S (1 S ) u u
0,

t x

              
 

 
    (2.1) 

   

2 2G H

1 1 21 1 2 22 1 21 1 2 22 2S (1 S ) u u
0,

t x

              
 

 
    (2.2) 

where‎ ωij represent the mass fraction of component i in phase j. The sum of mass 

fractions of component i over all phases is equal to one. We sum Eqs. (2.1) and (2.2) 

under the assumption of incompressible fluids and constant pore space to obtain the 

equation of continuity (the conservation of total mass): 

 

tu

1 2

d
u u 0,

dx
            (2.3)

 

where ut is the total local flow velocity ( gas + water). Equation (2.3) implies that total 

flow velocity is constant with distance when no compressibility is involved.  

Rewriting Eqs. (2.1) and Eq. (2.2) in terms of Gi and Hi, gives 

1 1G H
0.

t x

 
 

 
          (2.4) 

2 2G H
0.

t x

 
 

 
          (2.5) 

where Gi and Hi show the accumulation and flux terms in the overall mass conservation 

of component i. Lake (1989) showed that the overall compositional equations expressed 

in terms of fractional flow terms can be obtained from Eqs. (2.4) and (2.5): 

1 1

D D

C F
0.

t x

 
 

 
          (2.6) 

2 2

D D

C F
0,

t x

 
 

 
          (2.7) 
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where Ci is the overall volume fraction of component i given by 

pN

i ij j

j 1

C C S


                           i=1, 2 and j=1, 2      (2.8) 

and Cij is the volume fraction of component in in phase j; Fi is the overall volumetric flow 

of component i given by 

pN

i ij j

j 1

F C f


        i=1, 2         (2.9) 

D

x
x

L
  .          (2.10) 

tot

D

u t
t

L



.          (2.11) 

Considering the fact that Fi is only a function of Ci (because the phase compositions, 

viscosities, and densities are fixed and the relative permeabilities depend only on the 

saturations), Eqs. (2.6) and (2.7) can be written as 

1 1 1

D 1 D

C dF C
0

t dC x

 
 

 
.         (2.12) 

2 2 2

D 2 D

C dF C
0

t dC x

 
 

 
.         (2.13) 

However, we keep only one of the Equations (2.12) and (2.13) and discard the other one, 

because there are only two components and the summation of C1 and C2 becomes unity. 

As C2 is only a function of xD and tD, we can write the following expression for the total 

derivative of C2 over smooth changes (considering that C2 is at least piecewise 

continuous over xD and tD domains): 

2 2

2 D D

D D

C C
dC dt dx 0

t x

 
  
 

.         (2.14) 
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Therefore, the ordinary derivative of C2 becomes 

2 2 D 2 D

D D

dC C dt C dx
0

d t d x d

 
  

    
,        (2.15) 

where is parametric parameter. A term by term comparison of Eq. (2.12) with Eq. 

(2.15) indicates that  

2dC
0

d



 .          (2.16) 

Ddt
1.0

d



.          (2.17) 

D 2

2

dx dF

d dC



.          (2.18) 

Equations(2.16), (2.17), and (2.18)  are known as the characteristic equations. The 

elimination of   from the characteristics equations yields a relationship between xD and 

tD; hence, the graphical representation of the solution in the distance-time plot occurs on 

the characteristic curve along which C2 is constant (note that 2dC
0

d



). Note that the 

solution of Eq. (2.16) shows that the C1 is fixed along the characteristics as its derivative 

is zero; furthermore, the solution of Eq. (2.17) implies that tD is equal to η and, thus, they 

can be used interchangeably. 

From this representation, it follows the wave velocity associated with a constant 

concentration, C2, in distance-time space is 

 
2

D 2

C

D 2

dx dF
|

dt dC
 .          (2.19) 

Differentiation of Eq. (2.9) with respect to C2 shows that 
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2 2

22 21

2 2

dF df
(C C )

dC dC
   .         (2.20) 

Applying the chain rule and differentiation of Eq. (2.8) with respect to S2, give, 

2 2 2 2

22 21

2 2 2 2

dF df dS df
(C C )

dC dS dC dS

 
   

  .    

   (2.21) 

Thus, the velocity at which a specific overall volume fraction of component 2 propagates 

in a semi-miscible displacement is equal to the corresponding saturation wave velocity as 

if the displacement is completely immiscible.  

It is important to distinguish the difference between the flow velocity and the 

wave velocity; the former is the total volumetric flow rate of all phases per unit area, 

whereas the latter is the velocity at which a given composition travels along the 

permeable medium.  

2.5 THE MOC SOLUTION WHEN COMPRESSIBILITY IS CONSIDERED 

In this section, the overall mass conservation equation of CO2 is solved by the 

method of characteristics when there is no restriction involved for compressibility. 

Despite Part I, we lift the restrictions on compressibility and the dependency of the 

fluids’‎ properties‎ on pressure. In‎ other‎words,‎ fluid’s‎ volume‎ and‎ the‎ pore‎ space‎may‎

change as local pressure varies. All other assumptions apply accordingly. 

As will be discussed, two various pressure disturbances are formed and 

propagated through the permeable medium before the injected fluid breaks through: fast 

and slow; however, only one of those pressure disturbances (slow) is associated with the 

saturation change.  
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2.5.1 The General Form of the Solution  

We apply the method of characteristics to solve the overall mass conservation 

equation of CO2, Eq. (2.5). Thus, the definitions of G2 and H2 become 

 2 2 1 21 2 2 22G 1 S S        ,        (2.22) 

22 1 21 1 2 22H u u     .         (2.23) 

Incorporating‎ the‎ Darcy’s‎ law‎ into‎ the‎ definition‎ of‎ H2 while discarding the capillary 

pressure term gives 

 2 2 1 21 2 2 22G 1 S S       ,        (2.24) 

r1 r2
2 1 21 2 22

1 2

kk P kk P
H

x x

    
       

      
.       (2.25) 

Note‎that‎we‎incorporate‎the‎negative‎sign‎in‎Darcy’s‎law‎into‎the‎definition‎of‎the‎

pressure gradient and the absolute (positive) value of pressure gradient is used through 

derivations in the remainder of this section. 

Furthermore, we introduce the exponential form of gas-water relative permeability into 

the expression of H2 (Lake, 1989): 

n n

1 1r 2 2r

1r 2r 1r 2r

2 1 21 2 22

1 2

S S S S
k k

1 S S 1 S SP P
H

x x

       
      

                 
   

   
   
   

.    (2.26) 

The substitution of S1, and considering that the fluid saturations sum to unity, yields 

n n

2 1r 2 2r

1r 2r 1r 2r

2 1 21 2 22

1 2

1 S S S S
k k

1 S S 1 S SP P
H

x x

        
      

          
        

   
   
   
   

.    (2.27) 
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We assume that H2 and G2 are functions of time and distance through their dependencies 

on saturation and pressure: 

2 2H f (S ,P)
,         (2.28) 

2 2G f (S ,P)
.         (2.29) 

The derivative of H2 with respect to G2 can be written as  

2

2 2 2 2

2 2 2 S 2P

H H S H P

G S G P G

      
    

       .

       (2.30)  

Furthermore, we assume that under specific conditions that will be discussed later in the 

verification part (section 2.6), H will be only function of G; thus, Eq. (2.5) can be written 

as: 

2 2 2

2

G dH G
0

t dG x

 
 

 
.
         (2.31) 

The substitution of Eq. (2.30) into Eq. (2.31) gives 

2 2 2 2 2

2 2 2

G H S H GP
0

t S G P G x

     
   

       .

       (2.32) 

Furthermore, the ordinary derivative of G2 becomes 

2 2 2G dt G dGdx

t d x d d

 
 

    
,        (2.33) 

where is a variable. A term by term comparison of Eq. (2.32) with Eq. (2.33) yields the 

characteristics equations as 

2dG
0

d


 ,
          (2.34) 
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dt
1.0

d


 ,
          (2.35) 

2

2

dx dH

d dG



.

          (2.36) 

Note that the solution of Eq. (2.34) shows that the G2 is fixed along the characteristics as 

its derivative is zero; furthermore, the solution of Eq. (2.35) implies that t is equal to η 

(assuming the integral constant to be zero) and, thus, they can be used interchangeably. In 

addition, Eq. (2.36) indicates that the wave velocity associated with specific mass of CO2, 

G2, in distance-time space is equal to the derivative of H2 with respect to G2. However, 

there is no explicit expression of H2 as a function of G2; therefore, we use the chain rule 

to take this derivative as shown in Eq. (2.30). 

Thus, the differentiation of Eq. (2.27) with respect to s2 gives 

 
 

 
 

n 1 n 12 1 21 22

2 1r 2 2 2rn n

2 1 21r 2r 1r 2r

H n nk P k P
1 S S S S

S x x1 S S 1 S S

         
        

            .   

(2.37) 

Furthermore, the differentiation of Eq. (2.27) with respect to pressure yields 

n n

2 2 1r 1 2 1r

1 21 21

1r 2r 1 1 1r 2r

n n

21 2 1r 2 2 2r

1 22

1r 2r 1 1r 2r 2

P

H 1 S S d 1 S Sk k Px

P 1 S S P dP 1 S S x

d 1 S S d S Sk P k P

dP 1 S S x dP 1 S S x

   
                         

               
 

            
        

              

n n

22 2 2r 2 2r

2 2 22

1r 2r 2 1r 2r 2

1 2
n n

2 1r 2 1r

1 21 2 222 2

1r 2r 1r 2r1 2

P

d S S S Sk P k x

dP 1 S S x 1 S S P

1 S S S SP PP P
k k

1 S S x 1 S S x



   
                     

             
 
 

    
             

      
         

 . 

 (2.38) 
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Similarly, the differentiation of Eq. (2.24) with respect to saturation and distance gives 

2
1 21 2 22

2

G

S


     


 ,       (2.39) 

 2 21 1

2 1 2 21

2 22

2 22 2 2 2 1 21 2 2 22

G d d
(1 S ) 1 S

P dP dP

d d d d
S S (1 S ) S

dP dP dP dP

  
       



   
          

.

     (2.40) 

 

The substitution of Eqs. (2.37), (2.38), (2.39), and (2.40) into Eq. (2.36) yields 

 

    

 .  

           (2.41) 

Equation (2.41) shows the velocity of CO2 waves traveling through the aquifer. In the 

following sections, we restrict our solution to special cases with additional assumptions 
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to the derivative of pressure gradient and also the derivative of equilibrium concentration 

(ω21) with respect to pressure. 

2.5.2 Constant Mutual Solubility (Displacement Along a Single Tie Line) 

Typical phase diagram for a binary mixture (water-CO2) consists of several tie 

lines, each connecting the equilibrium concentrations (solubility values in this study). If 

the displacement occurs across a tie line, solubilities stay constant. Thus, we apply the 

same treatment as used in the previous section except that the derivative of mass fraction 

terms (ω21 and‎ω22) with respect to pressure becomes zero . 

Taking derivative of Eq. (2.27) with respect to saturation gives 
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  (2.42) 

       

Taking derivative of Eq. (2.42) with respect to pressure yields 
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   (2.43) 

                

Taking derivative of Eq. (2.24) with respect to saturation gives 
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2
1 21 2 22

2

G

S


     


.         (2.44) 

Taking derivative of Eq. (2.24) with respect to pressure gives 

 2 1 2
2 21 2 22 2 1 21 2 2 22

G d d d d
1 S S (1 S ) S

P dP dP dP dP

    
             

 .   
 (2.45) 

Therefore, the velocity of waves (associated with certain mass of CO2) traveling along a 

tie-line has the form of 
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           (2.46) 

2.5.3 No Mutual Solubility 

Next, we investigate the solution for cases in which the solubility of components 

is negligible. Thus, the definitions of G2 and H2 become 

2 2 2G S 
,          

(2.47) 

22 2H u 
.
          (2.48) 

Substitution of ρ2 into Eq. (2.47) gives 

2 2 2G S  .          (2.49) 

Substitution of ρ2 and u2 into Eq. (2.48) gives 
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r2
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x

 
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   .

         (2.50) 

Introducing the exponential form of the gas-water relative permeability into Eq. (2.50),  
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Thus, derivitives of H2  with respect to pressure and saturation become 
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           (2.53)  

Similarly, for G2, 
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  (2.55)  

Therefore, the wave velocity becomes 
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(2.56)

 

Rearranging,
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                . (2.57)

 

The above equation suggests that the velocity of CO2 waves are a function of saturation, 

pressure gradient, compressibilities, and the derivative of pressure gradient. In addition, it 

is often difficult to analytically determine the derivative of pressure gradient with respect 

to pressure during displacement. Therefore, we limit our analysis to cases in which the 

change in pressure gradient is minimal and, thus, its derivative vanishes. 
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2.5.4 Locally Constant Pressure Gradient and No Mutual Solubility 

We limit our analysis to circumstances in which the pressure gradient 

varies insignificantly at upstream of the gas front; consequently, Eq. (2.57) can be 

expressed as 
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           . (2.58) 

Furthermore, if we neglect the variation of viscosity with pressure, Eq. (2.58)becomes 
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           (2.59) 

In addition, the compressibility of fluids at a constant temperature is defined by the 

relative change in volume per unit pressure variation: 

j
Temp

1 V
c .

V P

 
   
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         (2.60) 

In terms of density, the fluid compressibility at constant temperature, T, can be expressed 

as 

j
Temp

1
c .

P

 
  
  

         (2.61) 

However, it is customary to report z, the gas compressibility factor, in the tables; hence, a 

relation between c and z is needed for the gas phase. Following from the real gas law: 
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PV zRT.           (2.62) 

Differential form of the above equation for an isothermal process is expressed as 

VdP PdV RTdz.           
(2.63) 

Rearranging, 
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dP dP
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         (2.64)

 

Dividing Eq. (2.64) by V gives 
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         (2.65)

 

Rearranging, 
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Incorporating Eq. (2.60) into Eq. (2.66) gives 

j

1 RT dz
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 

         (2.67)

 

j

1 1 dz
c .

P z dP
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         (2.68)

 

j

1 d ln z
c .

P dP
 

         (2.69) 

Eq. (2.69) shows the relation between z and c. We also consider the compressibility of 

pore space at constant temperature, T, as 

r
Temp

1
c .

P

 
  
  

         (2.70) 

Incorporating the definitions of rock and fluid compressibility into Eq.(2.59), yields 
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Rearranging Eq. (2.71) yields the final form of the wave velocity as 
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        

   
       

   (2.72) 

The above equation suggests the velocity of the CO2 waves is a function of saturation, 

rock and CO2 compressibility, and the pressure gradient; however, the velocity of the 

CO2 wave is only a function of saturation in the absence of compressibility.  

If the rock compressibility is negligible compared to that of CO2, the gas 

compressibility is canceled from the second term in Eq.(2.72); Therefore, the wave 

velocity will be only a function of the gas saturation and the pressure gradient. Hence, for 

a constant pressure gradient when the rock compressibility is negligible, the wave 

velocity only depends on gas saturation as is for incompressible fluids.  

2.6 VERIFICATION 

We first verify the assumption under which H is only function of G. We consider 

(1):constant compressibility values of 1.69 E-4 and 5E-5 (1/psi) for the gaseous phase 

and the rock; (2) uniform initial pressure and temperature values of 2000 psi and 150°F 

are assumed; (3) the exponent of relative permeability model (n) and the residual 

saturations are 2 and 0.2, respectively; (4) uniform porosity and the permeability values 

of 0.3 and 100 md; and (5) no mutual solubility in the following examples.  
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Using equations (2.22) and (2.23), H and G are calculated for the range of 

pressure between 2000 <P< 3000 psi and saturations between 0.2 <Sg<0.8 (Figure 2.1). It 

is clear from the figure that for every G there is one and only one value of H assigned 

along each curve that represents constant pressure gradient; In other words, H is only 

function of G along those curves even though pressure and saturation are varying. Hence, 

H will be only function of G if the pressure gradient is constant. 

To verify Eq.(2.72), we use a simulation approach. The simulations are performed 

using‎ STARS,‎ CMG’s‎ three-phase multicomponent simulator. We choose STARS as 

assigning and changing the fluid properties (density, viscosity, and compressibility) are 

simple in it. The simulation model consists of two vertical wells located at the ends of a 

1D grid with 1000 grid blocks. The top and bottom of the model are no flow boundary 

conditions. The injection well is assigned either a constant bottomhole pressure of 3000 

psi (pressure constraint) or constant rate of 140 reservoir barrels per day (rate constraint). 

However, we consider a constant pressure constraint for the production well located at 

the end of model.  

According to Eq. (2.72), the wave velocity will be only a function of the gas 

saturation if the change in the pressure gradient is negligible. However, displacing CO2 

has larger mobility (an order of magnitude) than the resident brine. This yields two 

regions with considerably different pressure drops along the aquifer length: (1) across the 

mixture of CO2 and brine flowing upstream of the gas front and (2) across the resident 

brine downstream of the front. The latter yields the flow of resident brine toward the 

outlet boundary (Figure 2.8). Therefore, we investigate the wave propagation for three 



 

 26 

different cases with the end-point mobility ratios (M°) of 0.1, 1, and 10. The end-point 

mobility ratio is defined as the ratio of the mobility of the injected phase to the the 

resident fluid when the end-point relative permeability values are used. We do not realize 

the end-point mobility ratios of 0.1 and 1 in practice for the CO2 storage in an aquifer; 

however, the examples are for verification of the analytical solutions derived in this study 

that may be used for other applications. 

2.6.1 The End-Point Mobility (M°) Ratio of 10 

The first case we study is an isothermal CO2 injection into an aquifer initially 

filled with water while M°=10. Figure 2.2 shows the pressure profile at the early stage of 

the displacement. The pressure perturbation travels very fast owing to small 

compressibility of the resident water and the rock (see early jumps in the pressure curve 

in Figures 2.5 and 2.6). Figure 2.2 can be translated into the propagation of the 

compressible zone along the aquifer. Similar to Bourdarot (1998), we define the 

compressible zone as part of the aquifer affected by the pressure perturbations as it 

travels along the permeable medium. When the compressible zone reaches the outlet 

boundary, the pressure perturbation vanish. The pressure perturbation travels very fast 

such that when it hits the outlet boundary, the injected gas has not gone far from the 

injector. Figure 2.3 illustrates the local flow velocity of the resident fluid as a function of 

distance at early times. The resident fluid moves toward the producer because of the local 

pressure gradient induced by the pressure wave. The velocity of the resident water 

changes significantly with distance at early stages of displacement because of the 

compressibility of water and the rock. 
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Figure 2.4 indicates the local fluid velocity at the inlet and outlet of the aquifer; 

i.e. grid blocks 1 and 1000. When the fast pressure pulse diminishes at around 92 days, 

the flow rates become equal at the two ends. Similar behavior is observed for other grid 

blocks. 

The saturation and the local pressure at the mid-point of the aquifer (grid block 

500) obtained from the simulation are shown in Figure 2.5. Note that a rapid increase in 

the local pressure occurs soon after the start of injection as the pressure wave passes 

through that grid block. This change in pressure (starts after day 10) is followed by the 

coupled saturation and pressure changes at around 13000 days. Note that there is another 

change in the pressure curve that occurs after the gas breakthrough at around 26000 days.  

Figure 2.6 indicates‎the‎pressure‎and‎saturation‎changes‎at‎the‎aquifer’s‎mid-point 

(grid block 500) when the injection well is assigned the pressure constraint. A similar 

behavior is observed for the pressure and saturation changes as Figure 2.5. An early 

pressure jump at 40 days followed by the coupled saturation and pressure changes at 

7400 days is realized at the‎aquifer’s‎mid-point. In addition, a late pressure change occurs 

at 12400 days that is created because of the gas breakthrough.  

Figure 2.7 shows the pressure and saturation profiles depicted at 5450 days. The 

coupled front propagates along the permeable medium and displaces the resident water. 

The injector is assigned the rate constraint in this example. Furthermore, two saturation 

shocks are observed in the saturation profile: a leading shock accompanied by the 

pressure change and a trailing shock with zero velocity connecting the gas saturation of 

0.8 to 0.75. The saturation of the leading front occurs at 0.44.  
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Figure 2.8 also suggests that there is constant pressure drops upstream and 

downstream of the gas front. Figure 2.8 shows the pressure gradient obtained from the 

simulation as a function‎of‎the‎aquifer’s‎length‎depicted‎at‎10000‎days.‎For‎this‎example,‎

the injector is assigned the constant rate constraint. Except for the gas front location, the 

pressure gradient curve is continuous over the length of the aquifer. However, upstream 

of the gas front, the pressure gradient varies linearly with distance at the slope of 5E-6 

(psi/ft
2
). This very small slope favors our assumption of the constant pressure gradient; 

As a result, the term consists the derivative of pressure gradient in Eq. (2.57) will be two 

orders of magnitude smaller than the other terms using the slope obtained from Figure 

2.8. For more details about the pressure change along aquifer see Oruganti (2010). 

Oruganti (2010) semi-analytically studied the evolution of over pressure for CO2 

injection for different boundary conditions: constant pressure, no-flow and infinite acting 

boundary. 

Figure 2.9 illustrates the solution route (wave velocities and associated saturations 

and the pressure gradients) obtained semi-analytically from Eq. (2.72). The pressure 

gradient at each location is obtained from the simulation and is incorporated into Eq. 

(2.72). Inserting compressibility values for the gas and the rock, we solve Eq. (2.72) for 

saturation. Note that we choose just the saturation values that are bounded between zero 

and one as the values beyond this range is non-physical. Starting from initial condition 

(I), the solution route consists of a shock between I and point A followed by spreading 

waves connecting A to B and eventually a trailing shock from B toward injection 
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condition (J). This solution route is consistent with saturation profile in Figure 2.9 

obtained from the simulation. 

Furthermore, Figure 2.10 implies that the wave velocity along the solution route 

decreases monotonically from I to J. This observation is consistent with the entropy 

condition as described in Lake (1989). The solution route intersects the curves along 

which the absolute pressure gradient is constant. Larger pressure gradients occur 

downstream of the gas front filled with water; because the resident brine has less mobility 

compared to the upstream fluids.  

At early stage of displacement, fast pressure waves occur along which only 

pressure disturbance is traveling; they are not accompanied by the change in saturation 

and, consequently, all are located along y-axis; i.e. no saturation change is associated.  

However, another set of pressure waves travel at later times that are associated 

with change in saturation. The change in saturation, though, is not continuous; in this 

example, we have two separate saturation jumps (shocks) consistent with figures 2.7 and 

2.9. 

2.6.2 The End-Point Mobility (M°) Ratio of 1 

Next, we study an isothermal injection of a hypothetical gas into a permeable 

medium initially filled with a resident fluid such that M°=1. The saturation and the 

pressure changes at the mid-point of the aquifer (grid block 500) obtained from the 

simulation are shown in Figure 2.11. Note that pressure changes at that grid block occur 

soon after the start of injection. The early change in pressure (with a peak at 24 days) is 
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followed by the coupled saturation and pressure changes at around 17500 days. There is 

another change in the pressure that occurs after the gas breakthrough at 35500 days.  

Figure 2.12 indicates the pressure and saturation changes when the injection well 

is assigned the constant pressure constraint of 3000 psi. A similar characteristic is 

observed for the pressure and saturation change as in Figure 2.11. An early pressure 

increase occurs at 16 days and the coupled saturation and pressure changes reach the 

aquifer’s‎ mid-point at 2850 days. Furthermore, a late pressure change occurs at 5850 

days created because of the gas breakthrough.  

Figure 2.13 shows the pressure and saturation profiles depicted at 8200 days. The 

coupled front propagates along the permeable medium and displaces the resident water. 

Note that the injector is assigned the constant rate constraint. Furthermore, only one 

saturation shock is observed that is accompanied by the pressure change. The front 

saturation occurs at 0.66. 

Figure 2.14 illustrates solution route obtained semi-analytically from Eq. (2.72). 

The pressure gradient at each location is obtained from the simulation and is incorporated 

into Eq.(2.72). The solution route consists of a shock between I and point A followed by 

spreading waves connecting A to J. The wave velocity along the solution route decreases 

monotonically from I toward J. The solution route intersects the curves along which the 

absolute pressure gradient is constant. Therefore, pressure gradients are small in general.  

2.6.3 The End-Point Mobility (M°) Ratio of 0.1 

Finally, we study an isothermal injection of a hypothetical gas into a permeable 

medium initially filled with a resident fluid such that M°=0.1. The saturation and the 
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pressure changes at the mid-point of the aquifer (grid block 500) obtained from the 

simulation are shown in Figure 2.15. Note that pressure changes at that grid block occur 

soon after the start of injection. The early change in pressure (with a peak at around 32 

days) is followed by the coupled saturation and pressure changes at around 19500 days.  

Figure 2.16 indicates the pressure and saturation changes when the injection well 

is assigned the constant pressure constraint. A similar characteristic is observed for the 

pressure and saturation change as Figure 2.14. An early pressure increase occurs at 8 days 

and‎ the‎ coupled‎ saturation‎ and‎ pressure‎ changes‎ reach‎ the‎ aquifer’s‎mid-point at 5450 

days.  

Figure 2.17 shows the pressure and saturation profiles depicted at 9500 days. The 

coupled front propagates along the permeable medium and displaces the resident water. 

Note that the injector is assigned the constant rate constraint. Also note that only one 

saturation shock is observed that is accompanied by the pressure change. The front 

saturation occurs at 0.78. 

Figure 2.18 illustrates solution route obtained semi-analytically from Eq. (2.72). 

The pressure gradient at each location is obtained from the simulation and is incorporated 

into Eq.(2.72). The solution route consists of a shock between I and point A followed by 

spreading waves connecting A to J. The wave velocity along the solution route decreases 

monotonically from I toward the injection condition, J. The solution route intersects the 

curves along which the absolute pressure gradient is constant.  
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2.6.4 Impact of Rock Compressibility 

Next, we evaluate the impact of rock compressibility on the wave velocity using 

Eq.(2.89). As it was mentioned in the previous section, the wave velocity is expected to 

be indifferent with respect to fluid compressibility if the rock compressibility is 

negligible compared to that of fluid. To test this hypothesis, we consider four cases with 

different fluid compressibility values and no rock compressibility. The objective is to 

show that all cases produce the same saturation profile at a given time. We assign the 

constant injection rate constraint and the end point mobility ratio of 10. We keep the 

other properties as the previous examples. 

Figure 2.19 shows the cumulative produced fluid as a function of time. Note that 

the amount of water discharged from the aquifer is not the same for all cases. This is 

because of the compressibility of the gas. Hence, we cannot use dimensionless time as 

defined by Lake (1989), because the injection and production rates are no longer equal 

owing to the gas compressibility. Hence, we use actual time in days in our analysis rather 

than the dimensionless form of it. 

We set 1,000,000 reservoir barrels as the reference volume and determine the time 

required for each case to produce this amount. Figure 2.20 compares the saturation 

profiles depicted as a function of distance. As shown, all curves coincide demonstrating 

that the fluid compressibility becomes unimportant in the absence of rock 

compressibility; this is in agreement with the theory as described in the previous sections. 

Furthermore, Figure 2.21 compares the saturation profiles depicted at different 

times representing the production of the same amount of fluid for three cases. In two 
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cases, the rock compressibility is in the same order as the gas (only to verify the 

prediction of the analytical solution); therefore, different values of the gas compressibility 

yield different wave velocities as the compressibility terms are not dropped from 

Eq.(2.72). However, in the third case no compressibility is involved and the saturation 

profile is behind the two others.  

2.6.5 IMPACT OF INITIAL GAS SATURATION 

In this section, the impact of a non-zero initial gas saturation is investigated on the 

saturation profile while all other parameters are the same as the simulation model used in 

the part 2.6.1 of this dissertation.  

Figure 2.22 shows the changes in saturation and pressure as a function of distance 

(normalized by the aquifer length) depicted at 5000 days obtained from the simulation. 

Two saturation shocks are observed: a leading shock accompanied by the pressure change 

and a trailing shock with zero velocity connecting the gas saturation of 0.8 to 0.75. The 

saturation of the leading front occurs at 0.34 (located at xD=0.36) accompanied by the 

pressure shock. 

Figure 2.23 shows pressure gradient as a function of saturation obtained from 

simulation when initial gas saturation is 0.2 (Sg =0.2). Similar behavior Figure (2.10) is 

observed : at early stage of displacement, fast pressure waves occur along which only 

pressure disturbance is traveling. These fast pressure waves are followed by slow 

pressure waves that are associated with the change in saturation.  
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2.6.6 IMPACT OF LARGE COMPRESSIBILITY 

In this section, the impact of a larger gas saturation (100 times greater than CO2 is 

investigated on the saturation profile while all other parameters are the same as the 

simulation model used in the part 2.6.5 of this dissertation. \ 

Figure 2.24 shows pressure gradient as a function of saturation obtained from 

simulation when initial gas saturation is 0.2 (Sg =0.2) and the compressibility of gas is 

100 times greater than CO2. Despite Figure (2.23), fast pressure waves reduce the initial 

gas saturation (as a result of large gas compressibility and more sensitivity to pressure 

drop) as it travels along the length of the aquifer. These fast pressure waves are followed 

by slow pressure waves that are similar to those in Figure (2.23). However, the gas 

saturation vanishes downstream of the slow pressure waves because of the large gas 

compressibility in this case.  

Figure 2.25 illustrates the changes in saturation and pressure as a function of 

distance (normalized by the aquifer length) depicted at 2500 days obtained from the 

simulation. Three distinct regions are identified (1): initial condition, where pressure and 

saturation occur at their original values; (2) region under influence of the fast pressure 

waves, where the gas saturation decreases because of the applied pressure disturbance; 

and (3) Buckley and Leverett solution. The saturation of the leading front occurs at 0.39 

(located at xD=0.23) accompanied by the slow pressure wave. 

Figure 2.26 shows the changes in saturation and pressure as a function of distance 

(normalized by the aquifer length) depicted at 8000 days obtained from the simulation. 

Fast‎ pressure‎ waves‎ have‎ reached‎ upon‎ the‎ aquifer’s‎ outlet‎ boundary‎ and,‎ hence,‎ no‎
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initial condition is realized. Because of the large gas compressibility, the initial gas have 

been pushed toward the producer by the fast pressure wave. The saturation of the leading 

front occurs at 0.39 (located at xD=0.63) accompanied by the slow pressure wave. 

2.7 DISCUSSION AND CONCLUSIONS 

The main outcome of the analytical developments presented here is the MOC 

solution for two-phase, two-component flow with constant compressibility values. Semi-

analytical solutions, Equations (2.41), (2.46), and (2.72) are introduced to determine the 

wave velocity for different cases. Furthermore, semi-analytical solutions, Eqs (2.89) and 

(2.90), are introduced to evaluate the velocity of the saturation waves. The simulation 

results confirm the accuracy of Eq.(2.72).  

1. The velocity of the saturation waves increases when the pressure gradient 

increases despite when the compressibility is absent.  

2. The wave velocities increase from J to I, consistent with the entropy condition as 

defined to evaluate the MOC solutions in incompressible displacements. 

3. If the pressure gradient for each location is known from the simulation, the 

saturations can be determined accurately using the solutions derived in this work. 

4.  The wave velocity becomes independent of the fluid compressibility in the 

absence of the rock compressibility. 

5. The simplicity of the solution yields an efficient and quick method to investigate 

how fast CO2 propagates along the aquifer length. 

6. For very large gas compressibility values (100 times greater than CO2), fast 

pressure wave reduces the initial gas saturation (because of the compression) as it 
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travels through the aquifer. The fast pressure wave pushes the bulk of compressed 

gas toward the outlet of the aquifer. As a result, the initial existing gas is 

compressed nearby the producer.  

 

NOMENCLATURE 

P= pressure, psi 

Fi= overall flux of component i 

Hi=mass flux of component i 

Gi=mass of component i in the bulk volume 

fj= fractional flow of phase j 

Ci= overall concentration of component i 

cr= isothermal rock compressibility  

cij=volume fraction of component i in phase j 

ωij=mass fraction of component i in phase j 

cw= isothermal compressibility of the resident water 

Sj= saturation of phase j 

xD== dimensionless distance  

tD== dimensionless time  

ρj= density of phase j, lb/ft
3
 

µj=viscosity of phase j, cp 

k= permeability, md 

L=aquifer length, ft 

M°= End point mobility ratio 

V= volume, ft
3
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Figure 2.1: H as a function of G for various pressure gradients. 
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Figure 2.2: Pressure profiles (pressure as a function of distance normalized by the length 

of the aquifer) at early times of the displacement obtained from simulation. 

Note that when the pressure disturbance reaches the outlet boundary after 92 

days, steady-state condition is established temporarily with respect to time 

(orange curve); however, this state is disrupted later by propagation of the 

coupled saturation and pressure front as two different pressure gradients are 

realized (see Figure 2.8). The pressure constraint is applied for the injector 

in this example. 
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Figure 2.3: Local flow velocity as a function of distance (normalized by the length of the 

aquifer) for early stages of the displacement obtained from the simulation. 

When the compressible zone reaches the outlet boundary, steady-state 

condition is established temporarily with respect to time (orange curve); 

however, this state is disrupted by propagation of the coupled saturation and 

pressure front as two different pressure gradients are realized. Each curve in 

this plot corresponds to the similar curve in Figure 2.2. 
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Figure 2.4: Local flow velocity at the two ends of the aquifer. When the fast pressure 

perturbation hits the outlet boundary (after 92 days), the flow velocity 

becomes equal at the injector and the producer. The injector is assigned the 

pressure constraint in this example. 
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Figure 2.5: The‎saturation‎and‎pressure‎changes‎that‎occur‎at‎the‎aquifer’s‎mid-point 

obtained from the simulation. For this example, the injector is assigned the 

constant rate constraint and M°=10. There are three points at which the 

slope of pressure curve changes but only one of them (at 13000 days) is 

coupled with the saturation shock. The early pressure jump occurs only after 

10 days injection. The late pressure change that occurs at around 26000 days 

is related to the gas breakthrough.
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Figure 2.6: The‎ saturation‎ and‎ pressure‎ changes‎ occur‎ at‎ the‎ aquifer’s‎mid-point (grid 

block 500) obtained from the simulation. For this example, M°=10 and the 

injector is assigned the constant pressure constraint of 3000 psi. There are 

three points at which the slope of pressure curve changes but only one of 

them is coupled with the saturation shock (at 7400 days). The late pressure 

change that occurs at around 12500 days is related to the gas breakthrough.  
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Figure 2.7: The changes in saturation and pressure as a function of distance (normalized 

by the aquifer length) depicted at 5450 days obtained from the simulation. 

For this example, the constant rate constraint is assigned to the injector and 

M°=10. Two saturation shocks are observed: a leading shock accompanied 

by the pressure change and a trailing shock with zero velocity connecting 

the gas saturation of 0.8 to 0.75. The saturation of the leading front occurs at 

0.44 (located at xD=0.21) accompanied by the pressure shock. 
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Figure 2.8: Pressure gradient (obtained from the simulation) as a function of the aquifer’s 

length depicted at t=10000 days. For this example, the constant rate 

constraint is assigned to the injector and M°=10. Except for the gas front 

location, the pressure gradient curve is continuous over the length of the 

aquifer. However, the upstream of the gas front, the pressure gradient varies 

linearly with distance at the slope is 5E-6 psi/ft
2
. 
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Figure 2.9: Solution route obtained semi-analytically from Eq.(2.72) when the injector is 

assigned a constant rate. The pressure gradient at each location is obtained 

from the simulation and is incorporated into Eq. (2.72). The solution 

consists of a shock between I and point A followed by spreading waves 

connecting A to B and eventually a trailing shock from B toward injection 

condition (J). Note that saturation residuals are 0.2. The wave velocity along 

the solution route decreases monotonically from I to J. For this example, the 

constant rate constraint is assigned to the injector and M°=10. Therefore, 

larger pressure gradient occurs downstream of the gas front located at point 

A.  
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Figure 2.10: Pressure gradient as a function of saturation obtained from simulation. At 

early stage of displacement, fast pressure waves occur along which only 

pressure disturbance is traveling. These fast pressure waves are followed by 

slow pressure waves that are associated with the change in saturation. For 

this example, the constant rate constraint is assigned to the injector and 

M°=10. 
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Figure 2.11:‎ The‎ saturation‎ and‎ pressure‎ changes‎ that‎ occur‎ at‎ the‎ aquifer’s‎mid-point 

(grid block 500) obtained from the simulation. For this example, the 

constant rate constraint is assigned to the injector and M°=1.0. There are 

three points at which the slope of pressure curve changes but only one of 

them is coupled with the saturation shock (at 17500 days). 
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Figure 2.12: The saturation and pressure changes occur at the aquifer’s mid-point (grid 

block 500) obtained from the simulation. For this example, M°=1 and the 

constant pressure constraint is assigned to the injector. There are three 

points at which the slope of pressure curve changes but only one of them is 

coupled with the saturation shock (at 2850 days).  
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Figure 2.13: The changes in saturation and pressure as a function of distance (normalized 

by the length of the aquifer) depicted at 8200 days (obtained from the 

simulation). In this example, the constant rate constraint is assigned to the 

injector and M° =1. Note that only one saturation shock. The saturation of 

the gas front occurs at 0.66 (which is located at xD=0.24). 
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Figure 2.14: Solution route obtained semi-analytically from Eq. (2.72) when the injector 

is assigned a constant rate. The pressure gradient at each location is obtained 

from the simulation and is incorporated into Eq. (2.72). The solution 

consists of a shock between I and point A followed by spreading waves 

connecting A to J along the orange curve. Note that saturation residuals are 

0.2. The wave velocity along the solution route decreases monotonically 

from I to J. For this example, the constant rate constraint is assigned to the 

injector and M°=1. Therefore, pressure gradients are small in general.  



 

 51 

 

Figure 2.15: The‎ saturation‎ and‎ pressure‎ changes‎ that‎ occur‎ at‎ the‎ aquifer’s‎mid-point 

(grid block 500) obtained from the simulation. For this example, the 

constant rate constraint is assigned to the injector and M°=0.1. There are 

two points at which the slope of pressure curve changes but only one of 

them is coupled with the saturation shock (at 19500 days).  
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Figure 2.16: The‎ saturation‎ and‎ pressure‎ changes‎ occur‎ at‎ the‎ aquifer’s‎ mid-point 

obtained from the simulation. For this example, M°=0.1 and the constant 

rate constraint is assigned to the injector. There are two points at which the 

slope of pressure curve changes but only one of them (at 5450 days) is 

coupled with the saturation shock.  
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Figure 2.17: The changes in saturation and pressure as a function of distance (normalized 

by the length of the aquifer) depicted at 9500 days (obtained from the 

simulation). For this example, the constant rate constraint is assigned to the 

injector and M° = 0.1. Note that only one saturation shock occurs. The 

saturation of the gas front occurs at 0.78 (which is located at xD=0.25). 
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Figure 2.18: Solution route obtained semi-analytically from Eq. (2.72) when the injector 

is assigned a constant rate. The pressure gradient at each location is obtained 

from the simulation and is incorporated into Eq. (2.72). The solution 

consists of a shock between I and point A followed by spreading waves 

connecting A to J along the orange curve. Note that saturation residuals are 

0.2. The wave velocity along the solution route decreases monotonically 

from I to J. For this example, the constant rate constraint is assigned to the 

injector and M°=0.1. Therefore, pressure gradients are small in general.  
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Figure 2.19: Cumulative volume of the produced water as a function of time for cases 

with different fluid compressibility values of 0.0001, 0.001, 0.01 and zero 

(incompressible). Curves representing the fluid compressibility of 0.0001 

and incompressible fluid coincide. 
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Figure 2.20: Saturation profiles depicted at the corresponding time to production of 1E+6 

barrels of water. All curves coincide showing that fluid compressibility is no 

longer a factor to determine the wave velocity in the absence of rock 

compressibility. 
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Figure 2.21: Saturation profiles depicted at the corresponding time to production of 2E+6 

barrels of water. Note that despite Figure 2.20, saturation profiles do not 

coincide as (in this example) the rock compressibility is in the same order of 

the gas compressibility; hence, different values of the gas compressibility 

yield different wave velocities as the compressibility terms are not dropped 

from Eq. (2.72). The rock compressibility is 0.00001 (1/psi). However, the 

green curve shows the case in which no compressibility involved. 
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Figure 2.22: The changes in saturation and pressure as a function of distance (normalized 

by the aquifer length) depicted at 5000 days obtained from the simulation. 

For this example, the constant rate constraint is assigned to the injector, 

initial gas saturation is 0.2, and M°=10. Two saturation shocks are observed: 

a leading shock accompanied by the pressure change and a trailing shock 

with zero velocity connecting the gas saturation of 0.8 to 0.75. The 

saturation of the leading front occurs at 0.34 (located at xD=0.36) 

accompanied by the pressure shock. 
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Figure 2.23: Pressure gradient as a function of saturation obtained from simulation when 

initial gas saturation is 0.2 (Sg =0.2). Similar behavior Figure (2.10) is 

observed : at early stage of displacement, fast pressure waves occur along 

which only pressure disturbance is traveling. These fast pressure waves are 

followed by slow pressure waves that are associated with the change in 

saturation. For this example, the constant rate constraint is assigned to the 

injector and M°=10. 
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Figure 2.24: Pressure gradient as a function of saturation obtained from simulation when 

initial gas saturation is 0.2 (Sg =0.2) and the compressibility of gas is 100 

times greater than CO2. Despite Figure (2.23), fast pressure waves reduce 

the initial gas saturation (as a result of large gas compressibility and more 

sensitivity to pressure drop) as it travels along the length of the aquifer. 

These fast pressure waves are followed by slow pressure waves that are 

similar to those in Figure (2.23). However, the gas saturation vanishes 

downstream of the slow pressure waves because of the large gas 

compressibility in this example. For this example, the constant rate 

constraint is assigned to the injector and M°=10. 
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Figure 2.25: The changes in saturation and pressure as a function of distance (normalized 

by the aquifer length) depicted at 2500 days obtained from the simulation. 

For this example, the constant rate constraint is assigned to the injector, 

initial gas saturation is 0.2, the gas compressibility is two orders of 

magnitude greater than CO2, and M°=10. Three distinct regions are 

identified (1): initial condition, where pressure and saturation occur at their 

original values; (2) region under influence of the fast pressure waves, where 

the gas saturation decreases because of the applied pressure disturbance; and 

(3) Buckley and Leverett solution. The saturation of the leading front occurs 

at 0.39 (located at xD=0.23) accompanied by the slow pressure wave. 

 



 

 62 

 

Figure 2.26: The changes in saturation and pressure as a function of distance (normalized 

by the aquifer length) depicted at 8000 days obtained from the simulation. 

For this example, the constant rate constraint is assigned to the injector, 

initial gas saturation is 0.2, the gas compressibility is two orders of 

magnitude greater than CO2, and M°=10. Fast pressure waves have reached 

upon the aquifer’s‎ outlet‎ boundary‎ and,‎ hence,‎ no‎ initial‎ condition‎ is‎

realized. Because of the large gas compressibility, the initial gas have been 

pushed toward the producer by the fast pressure wave. The saturation of the 

leading front occurs at 0.39 (located at xD=0.63) accompanied by the slow 

pressure wave. 
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Chapter 3: Applying Fractional Flow Theory to Determine the CO2 

Storage Capacity of an Aquifer 

In this chapter, fractional flow theory is used to determine the CO2 storage 

capacity of an aquifer. Capillary snap-off and dissolution into the aqueous phase are two 

major trapping mechanisms of the CO2 sequestration in intermediate time-scales (Juanes 

et. al 2010).  

In practice, numerical simulations are used to assess the storage capacity of a 

geological formation and to evaluate various trapping mechanisms; however, the 

simulations are complex and time-consuming as the mechanisms act simultaneously with 

various rates on different time-scales. Furthermore, these simulations require detailed 

inputs and, hence, are limited to site-specific studies.  

We adopt the notion of the optimal solvent-water-slug size (see Chapter 4) and 

use the graphical solution of multiple geochemical front propagation and fractional flow 

theory developed by Noh et. al (2007) to determine the CO2 storage capacity. In this 

work, the storage capacity is limited to capillary snap-off and dissolution trapping 

mechanisms. The optimal slug size should represent the CO2 storage capacity of the 

aquifer as injecting larger slugs causes the CO2 to breakthrough at the distant boundary 

and injecting smaller slugs leaves the aquifer unfilled. These cases represent overcapacity 

and under-capacity storage, respectively. We use numerical simulation to verify the 

accuracy of the predicted optimal slug size and simulation results confirm the accuracy of 

the predicted values.  
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In practice, the proposed method provides an efficient screening method to assess 

the CO2 storage capacity of aquifers. Moreover, it significantly reduces the simulation 

costs while providing useful insight. 

3.1 INTRODUCTION    

CO2 capture and geological storage (CCGS) is a promising method for long-term 

storage of CO2 to mitigate its accumulation in the atmosphere and, thus, detrimental 

impacts on the climate. However, a general lack of knowledge about storage capacity of 

deep saline aquifers stands in the way of an immediate full-scale implementation of 

CCGS (IPCC, 2005; Bradshaw et al., 2007). In this study, we focus on the storage 

capacity of saline aquifers as they are widely distributed (Bachu et al., 1994). 

The evaluation of the CO2 storage capacity in deep saline aquifers is very 

complex as there are multiple trapping mechanisms acting simultaneously at different 

rates.  In the context of CO2 storage in aquifers, the involved trapping mechanisms are: 

1. Structural (hydrodynamic) trapping, where the upward migrating buoyant CO2 is 

suppressed by an impermeable cap rock (Bachu et al., 1994) 

2. Capillary snap-off trapping, where injected CO2 breaks up into immobile ganglia 

(Kumar et al., 2005; Juanes et al., 2006) 

3. Solubility trapping, where CO2 dissolution occurs in the resident aqueous phase 

(Ennis-King and Paterson, 2005; Riaz et al., 2006) 

4. Mineral trapping, where dissolved CO2 reacts with rock minerals and yields 

carbonate mineral precipitation (Gunter et al., 1997) 
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5. Local capillary trapping, where upward migrating CO2 is accumulated beneath a 

region with a higher capillary entry pressure than average (Saadatpoor et al., 

2010) 

This study focuses on two trapping mechanisms that are likely to be effective on 

an intermediate time-scale: capillary snap-off and dissolution trapping (Sifuentes et al., 

2009; Juanes et al., 2010). Injected CO2 in an aquifer displaces the resident water under a 

drainage mechanism (assuming the gas phase is non-wetting), while resident or post-

injection water displaces CO2 through an imbibition process. The hysteresis in gas 

relative permeability that manifests the snap-off trapping mechanism occurs at the pore-

scale. In addition, CO2 dissolves into brine at any contact between the aqueous and gas 

phases. 

Numerical simulations calculate the CO2 capacity with reasonable accuracy; 

however, large scale simulations are time-consuming as they require detailed geological 

information about the aquifer. Szulczewski et al. (2009) introduced an analytical model 

to predict the basin-scale CO2 storage capacity of an aquifer while considering gravity 

override and capillary trapping; however, their model does not account for the solubility 

of CO2 in the brine nor mineral trapping. 

We adopt the notion of the optimal solvent-water slug size and use the graphical 

solution of combined geochemical front propagation and fractional flow theories (Noh et 

al., 2007) to define the CO2 storage capacity of aquifers.  According to Walsh and Lake 

(1989), the optimal solvent slug size expressed in total pore volume (P.V.), occurs when 
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the fastest waves of the chase water (the imbibition front in our study) and injected CO2 

(drainage front) coincide at the outlet boundary (distant boundary of the aquifer). 

The objective of this study is to determine the largest (optimal) slug of CO2 such 

that no CO2 breakthrough occurs while the aquifer is filled to its capacity. Hence, all 

other slug sizes are unfavorable except the optimal as they either yield over- or under-

capacity conditions. Hence, the optimal slug size represents the CO2 storage capacity of 

the aquifer because of capillary and dissolution mechanisms. To verify the analytical 

solution, we compare the analytical and the simulation results. 

 

3.2 DESCRIPTION 

We study a pair of consecutive displacements: injection of CO2 into an aquifer to 

displace resident water (drainage process) followed by injection of post-flood aqueous 

phase to displace CO2 (imbibition process). These processes are studied under the 

following assumptions, of which most are common in the fractional flow theory: 

1. The flow is one-dimensional‎(1D)‎governed‎by‎Darcy’s‎law‎for‎multiphase‎flow.‎ 

2. Large-scale capillary effects associated to the flow (appeared in the mass 

conservation equation) and dispersion are negligible, i.e., conservation of an 

individual component leads to a first-order strictly hyperbolic partial differential 

equation. However, local-scale capillary effect because of the snap-off process is 

modeled using relative permeability hysteresis. 

3. The fractional flow of each phase does not depend on a position other than 

through a saturation change. 
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4. There are two flowing phases (the aqueous and non-aqueous phase).  

5. Mixing in the fluid phases is ideal, i.e., we assume constant partial molar volume 

and no change in total volume upon mixing and transfer of components from one 

phase to another. 

6. Fluid viscosities, aquifer pore space, and densities are independent of pressure. 

Relative permeabilities are monotonic and differentiable with respect to 

saturation. 

7. Local-equilibrium applies. 

8. Neither sorption nor any chemical reaction occurs. 

9. Injected CO2 is saturated with the brine, i.e., no water vaporization occurs. 

Figure 3.1 shows a schematic of a typical gas saturation profile for a brine displacing 

CO2 as followed by an imbibition displacement. If unsaturated CO2 is injected, the 

residual water around the injection well is vaporized into the gaseous phase. Eventually, 

if the injection lasts long enough, region J (dry region) develops (Zuluaga, 2008).  

 

3.3 MATHEMATICAL MODEL 

The governing equations are the material balances for each component i: 

i i

D D

C F
0,

t x

 
 

 
         (3.1) 

where Ci and Fi represent the cumulative storage and flux capacities, respectively. 

Furthermore, tD, dimensionless time, is the amount of injected fluid expressed in pore 

volumes and xD is the dimensionless distance normalized by the length of the aquifer.  
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For our specific case, the overall composition and fractional flux of CO2 are 

2 2 2

2 2 2

CO g CO ,g aq. CO ,g

CO g CO ,g aq. CO ,g

C S C S C

.
F f C f C

  



 


       (3.2) 

Using the method of characteristics, Noh et al. (2007) derived an analytical 

solution for 1D, two-phase, semi-miscible displacement. In their solution, CO2 displacing 

water and vice versa are considered as semi-miscible displacements, because of the 

substantial solubility of CO2 and water in the aqueous and gaseous phases, respectively. 

The solution occurs in the form of spreading or sharpening waves; for step-change 

boundary conditions the sharpening waves is also known as shock (Figure 3.1). The 

drainage part of the gas saturation profile (between regions I and J) consists of two 

shocks: at the leading edge between I and II and at the trailing edge between J and II; a 

series of spreading waves connect the two shocks. During drainage, the gaseous phase 

displaces the resident brine while CO2 dissolves into the brine (semi-miscible). The 

specific velocity of the leading shock (fastest wave of the injected CO2) is obtained as 

(Noh et al., 2007): 

I II

2

2 2
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2 2

D
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g II II
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




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 
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 
 
 
 

      (3.3) 

The fractional flux of the gaseous phase is defined as 
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g
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

         (3.4) 

where Ng is the buoyancy number.The buoyancy number is the ratio of gravity to viscous 

forces defined as: 

raq. w g
g

aq inj.

k ( )gsin
N

u

  



       (3.5) 

In this study, we use the end-point buoyancy number; i.e. the end-point relative 

permeability value is used in Eq. (3.5). For horizontal displacements where Ng is zero, the 

graphical interpretation of Eq. (3.5) is a tangent line emanating from the retardation point 

( I IID  , I IID  ) to the drainage fractional flow curve (Figure 3.2).  

The imbibition displacement is extended between two shocks: a leading and a 

trailing shock. Note that we distinguish between drainage and imbibition displacements 

through hysteresis between the relative permeability curves. As ground water flow or 

post-flood injected water displaces the plume of CO2, a leading shock separates region J 

from III and a trailing shock occurs between III and K (Figure 3.1). However, we discard 

region J as the injected gas is saturated with repect to water (assumption 9). Furthermore, 

we replace region II with a sharpening wave associated with the average saturation of gas 

behind the CO2 front (S
II

g|Ave.). In other words, we assume an analogous constant-state 

region (Lake 1989) with saturation equal to the S
II

g|Ave downstream of the imbibition 

displacement. Therefore, the shock between region III and the surrogate constant-state 

region represents the fastest sharpening wave of the imbibition. The specific velocity of 
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the imbibition front (νCw) is the slope of the tangent line emanating from S
II

g|Ave located on 

the imbibition fractional flow curve (Figure 3.2). 

Figure 3.3 shows the typical form of the method of characteristics (MOC) 

solution when CO2 displacing water is followed by an aqueous phase. The slope of each 

line on the distance-time diagram is the specific velocity of the concentration attributed to 

that wave.  

Based on the location where the fastest wave of chase water intersects the fastest 

wave of the injected CO2, three possibilities exist. Figure 3.4 indicates an over-capacity 

condition‎ in‎ which‎ the‎ imbibition‎ front‎ with‎ specific‎ velocity‎ of‎ νcw intersects the 

drainage‎ front‎ with‎ the‎ velocity‎ of‎ νcs beyond the aquifer length. In other words, the 

imbibition front does not catch-up to the fastest drainage wave within the aquifer length; 

there is more CO2 injected than the aquifer CO2 capacity. 

Figure 3.5 shows the optimal condition that takes place when the two shocks 

coincide at the outlet, i.e., they breakthrough simultaneously. The dimensionless optimal 

CO2 slug size is then calculated as 

DS
cs cw

1 1
t . 

 
         (3.6) 

 

The suggested CO2 slug size is expressed as the fraction of the aquifer P.V.; it can also be 

interpreted as the storage efficiency defined by Bachu et al. (2007). When fractional flow 

solution of a displacement only consists of a single shock (so called piston-like 

displacement), the dimensionless optimal slug size will be approximately equal to the 

uniform gas saturation behind the front;‎νcw is‎ususally‎much‎larger‎than‎νcs implying that 



 

 71 

imbibition shock travels fatser than the drainage front; hence, the second term in Eq. (3.6) 

becomes negligible compared to the first term. Furtheremore, νcs can be expressed as: 

upstream downstream

cs upstream downstream upstream

f f 1 0
.

S S S 0

 
  

 
      (3.7)

 
Substitution of Eq. (3.7) into Eq.(3.6) yields that the dimensionless optimal slug size will 

be approximately equal to the uniform gas saturation behind the front (S
upstream

) for a 

piston-like displacement. 

Figure 3.6 illustrates an under-capacity condition for which the imbibition front 

catches up with the fastest drainage shock within the aquifer length; hence, part of the 

aquifer remains unfilled.  

In addition, the injected CO2 has a lower density compared to the resident brine 

and tends to migrate upward; hence, displacement of the resident brine often occurs along 

a path deviated from the horizontal direction and, consequently, a non-zero buoyancy 

number is often required in Eq.(3.4). The graphical procedure to determine the specific 

velocity of the drainage front in non-horizontal displacements differs from the horizontal 

displacement as sufficiently large buoyancy numbers (slowly upward migration of CO2) 

are characterized by gas fractional flows greater than unity (Figure 3.7). Therefore, the 

graphical solution may involve no tangent lines as they would lead to non-physical 

results. The physical explanation of gas fractional flows greater than unity is 

countercurrent flow that would occur under certain initial and injection conditions. For 

more details on modeling the gravity-dominated flow in a permeable medium, see Walsh 

(1991). 
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For sufficiently large buoyancy numbers, the gas fractional flow curve intersects 

the line representing fg = 1 at two points with different saturations; hence, a uniform CO2 

saturation occurs behind the drainage front that represents the lower saturation. Following 

from Walsh (1991), the uniform saturation behind the front is determined from Eq.(3.4) 

for fg=1.0: 

raq. g
g

rg aq.

k
1 1 N k .

k


  


        (3.8)

 
Substitution of Eq. (3.5) into Eq. (3.8) gives 
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w g

u
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       (3.10) 

From Eqs. (3.9) and (3.10), the gas relative permeability value and the corresponding 

uniform gas saturation behind the front is obtained for cases with extremely large 

buoyancy numbers. The specific velocity of the drainage front is equal to the slope of a 

line connecting the retardation point and upstream
gS . 

3.4 SIMULATION APPROACH 

To verify the analytical solution, we perform a set of 1D displacement simulations and 

present the comparison between the results. There are 256 equal grid blocks in the x-

direction. 

Figure 3.8 shows the relative permeability functions used in the simulations. As it 

was mentioned earlier, local capillary effect is represented by dissimilar relative 
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permeability curves for drainage and imbibition displacements. Furthermore, the porosity 

and the permeability of all models are 0.15 and 500 md, respectively. All simulation 

models are initially fully saturated with brine; the outlet of the models is maintained at 

constant bottomhole pressure of 2300 psi representing the pressure support. However, the 

injection well (for both CO2 and the post-flood displacements) is assigned a constant rate 

constraint.  

The temperature and the salinity of the base‎case‎model‎are‎130˚F‎and‎5000‎ppm,‎

respectively. The PVT properties of gas and brine (density, viscosity, solubility, and the 

gas compressibility factor z) are calculated internally in the numerical simulator by the 

Peng-Robinson equation-of-state. The viscosity of brine and CO2 is 0.517 and 0.052 cp, 

respectively. 

For the base case model and a retardation factor of -1.03, a specific velocity of 

0.196 is obtained through emanating a tangent line to the gas fractional flow curve. The 

tangent line intersects the gas fractional flow curve at Sg=0.42; however, the specific 

velocity of the imbibition front is obtained through extending a line from (0.52, 0.92) to 

(0.29, 0.06); the specific velocity of the imbibition front becomes 3.55 in this example 

(Figure 3.2). 

The CO2 storage capacity of the aquifer is 0.226 of the aquifer P.V. from  

Eq.(3.6). Under such circumstances, the drainage and the imbibition shocks collide at the 

outlet. In the simulations, this situation is translated into the maximal injected CO2 slug 

expressed in terms of the aquifer P.V. that yields no CO2 produced at the outlet.  
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Figure 3.9 illustrates the gas saturation profiles obtained by the simulations for 

three cases: (1) under capacity, (2) over capacity, and (3) optimum at the specified time. 

The injected CO2 is spanned over the entire aquifer owing to the capillary snap-off and 

the dissolution trapping mechanisms while neither is produced at the optimal condition. 

For the under-capacity case, a relatively small amount of CO2 is spanned over the entire 

length of the aquifer and is entirely trapped. Figure 3.10 confirms that the CO2 slug size 

of 0.225 is the largest that yields no free gas at the outlet consistent with the value 

obtained from Eq.(3.6). 

Tables 3.1 through 3.3 list the results of the sensitivity analysis conducted to 

study the effects of different water salinities, aquifer pressure, and temperatures on the 

CO2 storage capacity. The storage capacity varies by changing the CO2 solubility as 

observed in previous studies (Kumar et al., 2005). The solubility increases by decreasing 

the salinity of the aqueous phase and by increasing the aquifer pressure and temperature. 

However, the solubility trapping is slow and time-dependent as it is a function of the 

amount of mixing that occurs between the free-gas and the CO2-unsaturated aqueous 

phase; therefore, it contributes less in the early stage of the CO2 sequestration (less than 

10% in this study).  

Next, we investigate the effect of buoyancy on the storage capacity of vertically 

gravity-dominated displacements. We use the base case model tilted 90 degree such that 

the injection well is located at the bottom and the outlet at the top. Smaller injection rates 

than that of the base case model is used to study gravity-dominated displacements. Figure 

3.11 indicates the CO2 storage capacity as a function of the buoyancy number. The 
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capacity decreases as the buoyancy number increases consistent with the simulation 

results obtained by Ide et al. (2007). The results imply that greater gas saturation during 

the drainage process (smaller buoyancy number) yields larger trapped gas after 

imbibition displacement (Figure 3.12). The simulation results confirm the storage 

capacities obtained from the graphical procedure. 

 

3.5 CONCLUSIONS 

The main outcome of the analytical developments presented here is a procedure that 

predicts the CO2 storage capacity of aquifers owing to capillary snap-off and dissolution:  

• The predicted CO2 storage capacity of a saline formation obtained from the 

fractional flow theory is consistent with the simulation results. 

•  The simplicity of the analytical solution yields an efficient and quick method to 

investigate the impact of uncertainty in the parameters (such as the gas solubility 

and various levels of hysteresis) on the CO2 storage capacity. 

• Using the proposed graphical solution provides a dimensionless CO2 storage 

capacity with respect to the size of the closed aquifers; this overcomes the scale-

dependency of the previous solution as addressed by Juanes (2010). 
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3.6 NOMENCLATURE 

Ng= buoyancy number 

ppm= parts per million 

I IID  = retardation factor 

Fi= overall flux of component i 

fj= fractional flow of phase j 

Ci= overall concentration of component i 

Sj= saturation of the phase j 

tD= dimensionless time; injected volume expressed in the aquifer P.V. 

Uinj=injection volumetric rate (ft
3
/d) 

tDs= CO2 slug size expressed in the aquifer P.V.  

νCw= the specific velocity of the imbibition front 

νCS= the specific velocity of the drainage front 

II
gS =the gas saturation behind the gas front

 

μj= the viscosity of phase i (cp) 

ρj= the mass density of phase j (lb/ft
3
) 

g=standard gravity constant (32.174 ft/s
2
) 

α=aquifer dip angle 

k= permeability (md) 

krj=the relative permeability of phase j 

xD= dimensionless distance 
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SUBSCRIPTS 

aq= the aqueous phase 

g= the gaseous phase 

SUPERSCRIPTS 

-= upstream 

 += downstream 

 

 Table 3.1- Sensitivity analysis on the salinity of the brine 

Brine 

salinity, 

ppm 

Retardation 

factor 

CO2 storage 

capacity 

CO2 mole 

fraction in 

aqueous phase 

1000 -1.032 0.225 0.021 

5000 -1.033 0.225 0.021 

10000 -1.035 0.225 0.020 

20000 -1.039 0.223 0.020 

30000 -1.042 0.223 0.019 

40000 -1.044 0.223 0.018 

50000 -1.045 0.223 0.018 

 

 Table 3.2- Sensitivity analysis on the aquifer pressure; T=130 °F 

Aquifer 

pressure, psi 

Retardation 

factor 

CO2 storage 

capacity 

CO2 mole fraction 

in the aqueous 

phase 

μCO2, 

cp 

1600 -1.028 0.21 0.019 0.040 

2000 -1.032 0.223 0.021 0.046 

2600 -1.033 0.225 0.021 0.051 

3000 -1.042 0.23 0.022 0.063 

3500 -1.048 0.235 0.023 0.069 
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 Table 3.3- Sensitivity analysis on the aquifer temperature 

Aquifer 

temperature,‎˚F 

Retardation 

point 

Co2 storage 

capacity 

CO2 mole 

fraction in the 

aqueous phase 

μCO2, 

cp 

100 -1.041 0.235 0.024 0.067 

110 -1.041 0.23 0.023 0.062 

120 -1.040 0.227 0.022 0.056 

130 -1.033 0.225 0.021 0.051 

140 -1.031 0.225 0.021 0.049 

150 -1.029 0.223 0.020 0.044 
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Figure 3.1: Schematic of the gas saturation profile in a set of semi-miscible displacements 

where injected CO2 is followed by an aqueous phase. Five distinct regions 

occur at the early stage of the displacement: (1) region I is the initial 

condition with 100% water saturation; (2) part II is a drainage semi-miscible 

displacement, where a gaseous phase displaces an aqueous phase with the 

mutual solubility of CO2 and water; (3) section J is the CO2 injection 

condition; (4) part III is similar to region II, but is an imbibition 

displacement of a gaseous phase displaced by an aqueous phase; (5) K 

illustrates the post-CO2  water injection that represents an imbibition 

displacement. The imbibition displacement occurs because of either water 

injection or regional ground flow that pushes the CO2 slug further into the 

aquifer. S
II
g|Ave represents the average gas saturation of region II. 
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Figure 3.2: Graphical procedure to predict the CO2 storage capacity of the aquifer. The 

slope of a tangent-line emanating from the retardation point (fw, Sw)=(-1.03,-

1.03) to the drainage fractional flow curve of the gaseous phase is Vcs and 

the slope of the tangent line is from S
II

g|Ave. to the imbibition curve 

determines Vcw; note that the retardation point is located on the extension of 

the tangent line and has not been illustrated in this plot. Using Eq. (3.6), 

only 0.226 of the aquifer P.V. will be occupied by the trapped CO2; trapped 

CO2 occurs in the form of the capillary residual (snap-off) and dissolution 

trapping.  
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Figure 3.3: Typical form of the method of characteristics (MOC) solution when CO2 

displacing water is followed by an aqueous phase. The slope of each line on 

the distance-time diagram is the specific velocity of the concentration 

attributed to that wave.  

 

 

 

 

 

 

 



 

 82 

 

 

 

Figure 3.4: Over-capacity‎ condition:‎ the‎ imbibition‎ front‎ with‎ specific‎ velocity‎ of‎ νcw 

intersects‎ the‎ drainage‎ front‎ with‎ the‎ velocity‎ of‎ νcs beyond the aquifer 

length. In other words, the imbibition front does not catch-up to the fastest 

drainage wave; there is more CO2 injected than the aquifer capacity. 
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Figure 3.5: The optimal condition: the imbibition front catches-up to the fastest drainage 

shock at the aquifer outlet boundary and leaves behind all injected CO2 

trapped.  
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Figure 3.6: Under-capacity condition: the imbibition front catches-up to the fastest 

drainage shock within the aquifer length. Part of the aquifer is unfilled.  
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Figure 3.7: Gas fractional flow curves for different values of buoyancy number 
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Figure 3.8: Relative permeability curves for the aqueous and gaseous phases. The pink 

line is the imbibition curve. 
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Figure 3.9: Gas saturation profile for three possible conditions at tD=0.5. The red curve 

illustrates the optimal condition for which injected CO2 is trapped evenly 

along the aquifer. The over capacity condition (green line) leads to gas 

production at the outlet; however, the drainage front never reaches the 

outlet, if a smaller CO2 slug size than the optimal is injected; i.e., the aquifer 

will not be filled to its capacity. Therefore, simulation results suggest that 

the CO2 storage capacity of the aquifer is 0.225 of the aquifer pore volume. 

There is a slow dissolution shock at the rear of the CO2 plume 

corresponding to dissolution of the previously capillary-trapped CO2 into the 

fresh injected water. 
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Figure 3.10: The cumulative CO2 production for the optimal and above optimal cases. 

Simulation results show that the largest slug of CO2 that yields no free gas at 

the outlet is equal to 0.225 of the aquifer P.V. Injecting larger slugs than the 

optimal (red curve) leads to the production of CO2; in other words, the 

presence of CO2 in the form of free gas at the outlet indicates that the 

aquifer capacity is smaller than the injected volume.  
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Figure 3.11: CO2 storage capacity as a function of the buoyancy number. The storage 

capacity of the aquifer decreases as the displacement becomes more gravity-

dominated. 
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Figure 3.12: Gas saturation profiles during the drainage displacement (CO2 displacing the 

brine) for different buoyancy numbers. A larger buoyancy number yields 

smaller gas saturation and eventually smaller residuals, because of the 

capillary trapping mechanism. Saturation profiles are depicted at different 

times. 
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Chapter 4: Applying Fractional Flow Theory Under the Loss of 

Miscibility  

 

This chapter examines the limits of the Walsh and Lake (WL) method to predict 

the performance of solvent-flood when miscibility is not achieved. Despite extensive 

research on the applications of fractional flow theory, the prediction of flow performance 

under the loss of miscibility has not been investigated generically. 

We introduce the idea of an analogous first-contact miscible (FCM) flood to study 

miscibly-degraded simultaneous water and gas (SWAG) displacements using the WL 

method. Furthermore, numerical simulation is used to test the WL solution on a one oil-

solvent pair. In the simulations, the loss of miscibility (degradation) is attributed to either 

flow-associated dispersion or insufficient pressure to develop the miscibility.  

One-dimensional (1D) SWAG injection simulations suggest that results of the 

WL method and the simulations are consistent when miscibility degradation is small. For 

the two-dimensional (2D) displacements, the predicted optimal SWAG ratio is accurate 

when the permeable medium is fairly homogeneous with a small cross-flow or 

heterogeneous with a large lateral correlation length (the same size or greater than the 

interwell spacing).  

The results suggest that the accuracy of the WL solution improves as cross-flow is 

reduced. In addition, linear growth of the mixing zone with time is observed in cases for 

which the predicted optimal SWAG ratio is consistent with the simulation results. Hence, 

we conclude that the WL prediction is accurate when the mixing zone grows linearly with 

time.  
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4.1 INTRODUCTION 

Despite large microscopic displacement efficiency, miscible gas injection has 

small volumetric sweep efficiency (Stalkup, 1983; Gardner et al., 1981). On the other 

hand, injecting water in alternating slugs or simultaneously with gas forms a more stable 

displacement front. In principle, the co-injection of water and gas is expected to integrate 

the benefits of both miscible gas injection and water flooding. One of the important 

SWAG injection parameters is the optimal SWAG ratio (SWAG ratio is defined as the 

ratio of the injection rate of water to that of the solvent). 

In practice, SWAG parameters are determined through numerical simulations. 

However, depending on the size and the complexity of the reservoir models, simulations 

are often time-consuming, yet there is no alternative. Therefore, the motivation of this 

study is to examine the accuracy of a theoretical method to reduce simulation costs. 

Buckley and Leverett (1942) proposed the fractional flow theory, later used by 

Welge et al. (1961) to study miscible gas injections. SWAG injection is essentially the 

multicomponent and multiphase displacement of resident oil and water by a mixture of 

injected solvent and water. Extensive literature is available on the applications of the 

fractional flow theory to predict the displacement performance of multicomponent 

multiphase flow through a permeable medium (LaForce et al., 2010). Helfferich (1981) 

introduced the general theory of multicomponent and multiphase flow in permeable 

media through incorporating the theories of multicomponent chromatography (1970) and 

fractional flow. Pande et al. (1987) showed that the 1D fractional flow solution of 



 

 93 

immiscible displacements can be used to reproduce qualitatively the displacement 

performance of 2D flow with non-communicating layers.  

Applying the fractional flow theory, Koval (1963), Todd and Longstaff (1972), 

Fayers et al. (1994), and Cheng et al. (2002) introduced empirical models to estimate the 

displacement performance of multidimensional miscible injections. However, fractional 

flow solutions of miscible floods are typically obtained using simplifying assumptions. 

One of the most restrictive assumptions is that the partitioning coefficients between the 

phases, K-values, are constant and independent of the compositions within phases. This 

assumption is reasonable for low pressures (i.e., pressures far below minimum miscibility 

pressure (MMP) and pressures at which no critical locus appears in the mixture-phase-

behavior diagram. However, the assumption is inaccurate for the degraded miscible 

displacements, considered in this study, in which the K-values are inevitably changing. 

If the corresponding degraded miscible residual oil saturation, Sorm, is known, it is 

proposed that the WL method will be applicable to solvent floods, in which miscibility 

does not completely develop due to dispersion and/or insufficient local pressure. The 

objective of this work is to verify the hypothesis for 1D and 2D displacements. 

Furthermore, we investigate the nature of degraded 2D miscible displacements for which 

the predicted optimal SWAG ratio is consistent with the simulation results. 
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4.2 THE WALSH AND LAKE METHOD 

4.2.1 The Method of Characteristics 

The method of characteristics (MOC) is a mathematical technique to solve first-

order strictly hyperbolic partial differential equations (PDE) such as the mass 

conservation equations. The goal of MOC is to convert the original PDE to a set of 

ordinary differential equations (ODE) along certain curves called characteristics. The 

mass conservation equation of component i in the form of fractional flow terms in 1D 

flow with no chemical reaction involved can be written as 

i i

D D

C F
0 ,

t x

 
 

 
  i=1,2,..,Nc,      (4.1) 

where Ci and Fi are the overall concentration and overall flux of component i, 

respectively. Lake (1989) discussed how Eq. (4.1) is derived from the general mass 

conservative equation and from the definitions of dimensionless time and position. In 

general, the conservation equations are nonlinear. The nonlinearity in the mass 

conservative equation lies in the relationship between the overall flux and the overall 

concentration of each component. Applying the WL assumptions (listed in Section 4.2.2), 

Eq. (4.1) converts to the following equation: 

j j

D D
,

s f
0

t x

 
 

 
  j=1,2,..,NP,      (4.2) 

where sj and fj are the saturation and fractional flow of phase j, respectively.  
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4.2.2 The WL Method 

Applying the fractional flow theory, Walsh and Lake (1989) introduced a method 

to analyze the displacement of oil by a FCM solvent in the presence of an immiscible 

aqueous phase (Figure 4.1). The WL solution provides an elegant insight into the 

behavior of complex solvent floods. Some of the practical results of their work are: (1) 

the extension of the concept of optimum water-solvent ratio to arbitrary initial and 

injection conditions such that the optimal water-solvent ratio yields the maximum 

displacement efficiency while using the minimum amount of solvent. The SWAG ratio, 

upon which the solvent and water saturation waves move together, is the optimum for 

secondary displacements (Caudle and Dyes, 1959); no mobile water initially exists in the 

secondary displacements. (2) The development of the notion of optimum water-solvent 

slug size such that the optimal slug size occurs when the chase water and the solvent 

coincide at the producer (simultaneous breakthrough). They showed that the optimal 

solvent-water slug size can be expressed in reservoir pore volumes and can be 

approximated by the dimensionless solvent breakthrough (BT) time. Oil recovery is 

adversely affected by smaller slugs than by the optimum, because of the trapping of the 

oil by the chase water (Walsh, 1989). 

Similar to all theoretical methods, the WL method rests on a set of simplifying 

assumptions. In this section, we itemize these assumptions. Most of these assumptions 

are commonly used in the fractional flow theory: 

 The flow is 1D and governed by‎Darcy’s‎law‎for‎multiphase‎flow.‎ 
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 Capillary and dispersion effects (dissipation) are negligible, i.e., the conservation of 

an individual component leads to a first-order, strictly hyperbolic PDE. 

 The permeable medium is homogeneous. Fractional flow does not depend on position 

other than through a saturation change. 

 The oil and solvent are first-contact miscible.  

 There are two flowing phases (the aqueous and non-aqueous phase) and three 

components (water, solvent, and hydrocarbon). The aqueous and non-aqueous phases 

are immiscible. 

 Mixing in the non-aqueous phases is ideal, i.e., constant partial molar volume and no 

change in total volume upon mixing. 

 Viscosities depend only on compositions. Relative permeabilities are monotonic and 

represented by differentiable curves. 

 All fluids are incompressible as is the pore volume. 

 The local thermodynamic equilibrium applies; i.e., mass fractions of solvent are 

related through thermodynamic equilibrium relations. 

 Step changes at the origin boundary condition (x = 0) apply; i.e., initial saturations are 

uniform and the injection conditions change step-wise at the origin. 

We compare the WL solution with simulation results of the same displacement 

while relaxing the above assumptions.  
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4.3 MISCIBILITY DEGRADATION 

Miscibility degradation is the consequence of dispersion and insufficient local 

pressure to attain miscibility between the oil and gas. 

The minimum pressure required to achieve multi-contact miscibility between the 

oil and gas at a given reservoir temperature is known as the minimum miscibility pressure 

(MMP). To achieve high displacement efficiency, the pressure in the reservoir should be 

maintained at or above MMP. In many practical situations, the gas injection is carried out 

at pressure slightly above MMP. However, the pressure decreases with distance traveled. 

Thus, at some point far from the injection well, the pressure may decline below the 

reservoir MMP, reducing the displacement efficiency. 

On the other hand, several authors have shown that the oil recovery on the field-

scale depends on the level of dispersion (Arya et al., 1988; Johns et al., 1993; Walsh and 

Orr, 1990; Haajizadeh et al., 1999; Solano et al., 2001). Reservoir mixing drives the 

composition route further away from the critical locus into the two-phase region(s) and 

reduces the local displacement efficiency. In addition, Lantz (1971) showed that even 

when the conservation equation is dispersion-free,‎ an‎ additional‎ source‎of‎ “superficial”‎

dispersion (numerical dispersion) arises owing to the finite difference (FD) 

approximation. The numerical dispersion, which is the manifestation of inaccuracies 

involved in the FD approximations of spatial and temporal derivatives, can be suppressed 

(though not eliminated). This can be carried out using very accurate approximations of 

the derivatives and taking more grid blocks. 
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4.4 SIMULATION MODEL DESCRIPTIONS 

We use the oil produced from the Welch field (Taylor et al., 1998) with the API 

gravity of 32 and pure CO2 as the solvent in this study. Lower mole fractions of methane 

(5%) and heavy components, C30
+
, compared to that of intermediate components, C4-C16, 

make the oil a good candidate for CO2 flooding.‎Winprop,‎CMG’s‎PVT‎analysis‎software‎

package, is used to calculate fluid properties according to the Peng-Robinson equation-

of-state (EOS). Furthermore, we use the PVT laboratory test data to determine the EOS 

parameters (Tables 4.1 through 4.3). Figure 4.2 and Table 4.3 show the relative 

permeability data and the fluids properties used to construct the fractional flow curves. 

For heterogeneous models, the permeability heterogeneity is characterized by the 

Dykstra-Parsons coefficient of variation (VDP) and the dimensionless correlation length in 

the longitudinal direction (λxD). The dimensionless correlation length in the transverse 

direction (λzD) is set to 0.2. The permeability fields, which are log-normally distributed, 

are generated using the FFTsim code (Jennings et al., 2002). For all cases, porosity is 

uniformly distributed.  

The‎ simulations‎ are‎performed‎using‎GEM,‎CMG’s‎general‎EOS‎compositional‎

reservoir simulator. The simulation models consist of two vertical wells located at the 

ends of a 2D cross-sectional grid with constant grid block sizes in the x- and z-directions. 

The tops and bottoms of the models are no flow boundaries. The injection well is 

assigned a constant total injection rate and the production well operates at constant 

pressure. However, CO2 and water injection rates are specified to design various SWAG 

ratios.  
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The miscibility degradation at a constant level of dispersion is defined as the 

lowest pressure observed in the reservoir normalized by MMP; in this study, the 

miscibility degradation is expressed as producer’s bottomhole pressure divided by MMP 

that consequently increases toward the producer. In the simulations, dispersion is mainly 

assigned through input (physical) dispersivity as the numerical dispersion is minimized 

by taking small grid blocks and also by adjusting the maximum time step. Equation (4.3) 

indicates how the Peclet number (Npe), attributed to the numerical dispersion, is 

correlated with the number of grid blocks in the flow direction as 
 
  
 

j

j

df

dS
 , which is equal 

to 1, and 




 
 
 
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t

x
, which remains less than 0.01 in the simulations (Stalkup, 1983): 
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4.5 ONE-DIMENSIONAL SIMULATION RESULTS 

To verify the hypothesis in 1D degraded miscible displacement, we define an 

analogous FCM flood such that its associated residual oil saturation is the same as the 

remaining oil saturation in the original degraded miscible flood. We use a fine simulation 

grid (512×1×1) to reduce the numerical dispersion as described in the previous section. 

The remaining oil saturation is taken as the saturation behind the solvent front (Sorm). 

However, Sorm in a degraded miscible displacement varies with time; thus, our simulation 
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results reveal that Sorm does not change significantly after 2 pore volume injections for the 

degradation levels considered in this study (Figure 4.3).  

Figure 4.4 illustrates how the degraded miscible residual oil saturation varies as a 

function of the miscibility degradation for different dispersion levels. The resulting Sorm 

(the oil saturation left behind after 2 pore volume injection) is normalized by the 

waterflood residual oil saturation, Sorw. Figure 4.4 also shows that as the miscibility 

degradation increases (equivalently, the‎producer’s‎bottomhole‎pressure‎is‎reduced),‎ the‎

corresponding Sorm increases. The latter is observed for all dispersion levels considered in 

this study. In addition, the results are in agreement with the experimental results by 

Lange (1998).  

Figure 4.5 shows how Sorm changes as a function of the miscibility degradation for 

secondary displacements where initially there was no mobile water. Figure 4.5 illustrates 

the same trend as Figure 4.4, indicating that much oil remains as miscibility degradation 

increases. The blue shaded zone in Figure 4.4 shows the range of miscibility degradation, 

where the WL method is applicable as the corresponding Sorm , which is less than Sorw.  

Therefore, we conclude that the residual oil saturation after a degraded miscible 

flood is correlated with the level of miscibility degradation. Larger miscibility 

degradation leads to greater residual oil saturation behind the solvent front. No excess oil 

will be recovered for a very large miscibility degradation level when compared to an 

immiscible displacement. 

Next, we construct the WL solution for each example using the corresponding 

Sorm. The corresponding Sorm to the given miscibility degradation level is read from 
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Figures 4.5 and 4.6 and incorporated into the WL graphical method. The initial and 

injection conditions of each example is also incorporated into the WL plots. Figure 4.6 

demonstrates the WL procedure for a degraded miscible SWAG displacement using an 

analogous FCM flood with an equivalent residual oil saturation of Sorm. 

The WL solution is compared with the numerical results through saturation 

profiles (water, oil, and gas), the optimal SWAG ratio, and the optimal solvent-water slug 

size. Figure 4.7 and Figure 4.8 compare the oil/water/gas saturation profiles for different 

miscibility degradation levels. The results show that predicted profiles are consistent with 

the simulation results only when the peclet number (Npe) exceeds 1025.  

Figure 4.9 shows the recovery curves at the specified miscibility degradation for 

different SWAG ratios. The results indicate that the maximum oil recovery of 88% is 

achieved through the SWAG ratio of 0.5. Therefore, the WL optimal SWAG ratio of 0.51 

is in agreement with the numerical results.  

Furthermore, Figure 4.10 clearly shows that less solvent usage (larger SWAG 

ratios) recovers less oil. This observation points out that the success of degraded miscible 

displacements (even multi-contact miscibility development) depends also on the 

fractional flows of the injected fluids. This observation is consistent with the results of 

LaForce et al. (2009) as they pointed out that miscibility development is a function of 

fractional flow of water .  
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4.6 TWO-DIMENSIONAL SIMULATION RESULTS 

In this section, we examine how the WL solution of a degraded miscible flood 

compares to the simulation results of a 2D displacement with the same level of 

miscibility degradation. The level of degradation is determined through Npe and the ratio 

of producing pressure to MMP.  

A 128 ft ×32 ft vertical cross-section model is used with128 × 32 grid blocks in 

the x- and z-directions, respectively. We consider the following dimensionless scaling 

groups that affect the displacement performance in 2D flow: the effective aspect ratio 

(RL), the Dykstra-Parsons coefficient of variation (VDP), the dimensionless correlation 

length in the x-direction (λxD), the buoyancy number (Ng), and NPe. The effective aspect 

ratio is particularly used to indicate the degree of cross-flow. For more details on the 

definition of permeability heterogeneity see Appendix B. A block of 46 simulation 

models is obtained based on the three-factorial Box-Behnken experimental design (Box 

and Behnken, 1960; Wood et al., 2008). Table 4.5 lists the range of values (levels) used 

for each dimensionless group. As uncertainty inherently increases with heterogeneity, 

each simulation case was repeated three times with different realizations of the 

permeability field to reduce the associated uncertainty. Also, the conclusions made here 

are based on averaging the results of different realizations.  

The initial water saturation map for tertiary SWAG displacements is obtained 

from the secondary displacement of the same simulation model. In other words, the water 

injection is continued until a certain producing water cut is observed at the producer 
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(95% in our study). Next, the most recent saturation map is used as an input saturation for 

the tertiary flood of the same simulation model (Figure 4.10). 

Figures 4.11 through 4.13 illustrate comparisons between the vertically averaged 

saturation profiles predicted by the WL method and those obtained from the simulations. 

In fairly homogeneous cases (VDP = 0.4) with a small cross-flow (small aspect ratios and 

buoyancy numbers), the vertically averaged saturation profile corresponds to the WL 

solution. However, this is not valid for heterogeneous permeable media, as the injected 

fluids do not move at the same velocity in all layers. Therefore, the predicted saturations 

profiles and the vertically averaged saturation profile obtained from simulations agree 

only for homogeneous cases. 

In addition, the optimal solvent-water slug size in the WL method is 

approximated as the solvent dimensionless breakthrough time (BT). Dimensionless time 

is defined as the ratio of cumulative injected volume to total pore volume. The point is 

that total pore volume is swept by the injected fluid in 1D flow. This is not true for 2D 

displacements as a result of incomplete sweep efficiencies. Hence, the WL approximation 

of the optimal slug size cannot be applied for 2D flow. 

Figure 4.14 illustrates a comparison between the predicted optimal slug size 

(0.61) and the recovery curves obtained from the simulation of a moderately homogenous 

model. The oil recoveries are expressed as a fraction of the original oil in-place. Slug 

sizes larger than 0.61 P.V. do not yield an improvement in the oil recovery; however, 

injecting smaller volumes degrades the recovery. We use two passive tracers to examine 

the WL notion of the optimal-solvent slug size in a fairly homogeneous medium with 
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weak cross-flow. Figures 4.15 through 4.17 demonstrate that the tracers simultaneously 

break through, but only when the injected slug size is 0.61 P.V. (optimal) and consistent 

with the WL prediction. 

To determine the optimal SWAG ratio for each case study, we conduct a 

numerical simulation with at least five SWAG ratios. However, the WL definition of the 

optimal SWAG is not appropriate for 2D displacements, because there is no specific 

achievable maximum oil recovery; in fact, SWAG ratios smaller than the 1D optimum do 

not always yield the largest oil recovery in 2D flow as sweep efficiency becomes an 

issue. Therefore, we adapt the concept of optimal SWAG ratio as a SWAG ratio that 

yields the largest oil recovery while using the minimum solvent before the CO2 BT 

occurs. In our study, gas BT is considered as the reference time to compare the oil 

recoveries of 2D displacements; because similarly for 1D flow, the optimal SWAG ratio 

is defined based on the oil recoveries achieved at gas BT in the absence of any 2D flow 

effect. Two-dimensional flow effects are known as viscous fingering, channeling, and 

gravity override that often yield small sweep efficiency. Hence, the difference between 

the predicted optimal SWAG ratio and a SWAG ratio with the largest oil recovery at gas 

BT represents the contribution of the 2D effects (Figure 4.18). A similar argument was 

used by Li et al. (1995) for immiscible floods.  

However, various SWAG ratios yield different gas BTs and a unique BT does not exist 

for all SWAG ratios. Therefore, we consider the latest gas BT time as a reference to 

compare the oil recoveries of cases with different SWAG ratios. Hence, the optimal 

SWAG ratio in 2D displacements is expressed as the SWAG ratio that yields the largest 
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oil recovery. We use percent errors to compare the predicted optimal SWAG ratios with 

the simulation results. The percent error is defined as: 

 

          .  (4.4) 

Figures 4.19 through 4.20 show the percent errors of the optimal SWAG ratios 

obtained from the WL method and the simulations as a function of λxD for different levels 

of dispersion. Each simulation case is conducted with three different dispersion levels 

according to Table 4.5. The percent error of the optimal SWAG ratio decreases as λxD 

increases when RL = 0.1. However, larger dispersion degrades the accuracy of the WL 

solution. In this regard, Figure 4.20 is comparable to Figure 4.19 when RL = 1.0; 

nevertheless, the overall percent errors in Figure 4.20 are larger than Figure 4.19. Strictly 

speaking, a larger cross-flow decreases the accuracy of the WL solution.  

In addition, the difference between the predicted and the optimal SWAG ratio 

obtained from the simulations is erratic with respect to VDP, except for the relatively 

homogeneous cases (VDP = 0.4). Figure 4.21 illustrates the percent error of the optimal 

SWAG ratios as a function of Ng for different levels of RL. Strong gravity cross-flow 

degrades the accuracy of the WL solution for all levels of RL. 

The results suggest that the percent error of the optimal SWAG ratio is less than 

10% for the following:  

a. fairly homogeneous (VDP ≤‎0.4)‎models with small cross-flow 



 

 106 

b. a heterogeneous reservoir for which the longitudinal correlation length is 

of the same size or larger than the interwell spacing (equivalently 

expressed as strictly layered reservoirs). 

4.7 DEVELOPMENT OF THE MIXING ZONE WITH TIME 

We investigate the nature of miscible displacements for which the accuracy of the 

WL solution is examined through the optimal SWAG ratio. The WL method treats the 

SWAG injections as a combination of the miscible waves (gas-oil) and immiscible waves 

(water-oil/solvent) propagating according to the given initial and injection conditions. On 

the other hand, previous studies by Pande et al. (1987), Sorbie et al. (1994), and Li et al. 

(1995) showed that a linear growth of the mixing zone with time will be observed if the 

simulation results are consistent with the fractional flow solutions. Therefore, a similar 

behavior is expected for SWAG displacements when the WL solution is accurate. 

We rerun four of the simulations with an added passive tracer to determine the 

mixing zone (see Chapter 7 for more details on the mixing zone). The predicted optimal 

SWAG ratios for Cases 1 and 2 are in agreement with the simulations despite Cases 3-4. 

The length of the mixing zone within each layer is calculated at five different time steps 

(at various stages of the SWAG displacement). The mixing zone is defined as the 

dimensionless distance between the locations where the dimensionless tracer 

concentration of 0.1 and 0.9 occur (Lake, 1989). 

Figure 4.22 indicates that the lengths of the mixing zone for two layers in Cases 1 

and 2 are strongly correlated with time. However, the problem that arises with this 
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procedure is that each layer should be evaluated individually, which is time-consuming. 

Furthermore, it never provides any general comment into the whole displacement. 

To overcome this deficit, lengths of the mixing zone for all layers of a simulation 

model at time t1 is stored as array x1, at time t2 as array x2, and so on. Next, we adopt the 

notion of the correlation coefficient function as the covariance of x1 and x2 normalized by 

dividing by the variability of x1 and x2 (Jensen et al., 2002); see Figure 4.23 for the 

schematic illustration. The correlation coefficient function of arrays x1 and x2 represents 

the tendency of the mixing zone to grow linearly with time (see Chapter 7 for more 

details). 

Figure 4.24 illustrates the correlation coefficient functions as a function of elapsed 

time for all four cases. The correlation coefficient functions for Cases 1 and 2 stay close 

to unity illustrating a strong linear correlation between the lengths of mixing zones and 

time. This observation suggests that the previous findings regarding the accuracy of 1D 

fractional flow solutions for 2D flows when the mixing zone grows linearly with elapsed 

time, is also valid for the degraded miscible SWAG displacements. On the other hand, 

the correlation coefficient functions for Cases 3 and 4 are much smaller than Cases 1 and 

2; overall, the mixing zones in Cases 3 and 4 do not grow linearly with time, although 

linear growth of the mixing zone may be observed for a few layers. 

4.8 CONCLUSIONS 

We successfully apply the WL method to predict the performance of degraded 

miscible SWAG displacements using the concept of an analogous FCM flood. In 

addition, the notion of the optimal SWAG ratio is modified to account for the 2D flow 
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effects such as viscous fingering and channeling. The WL predicted optimal SWAG 

ratios are accurate for either fairly homogenous permeable media or strictly layered 

reservoirs. Furthermore, the correlation coefficient function of lengths of the mixing zone 

calculated at successive time intervals is introduced as the measure to study the 

development of the mixing zone in 2D displacements. The main conclusions of the study 

are noted below: 

1. The WL solution agrees most with flow in a 2D cross-section when they 

are strictly layered reservoirs. Therefore, previous findings that 1D 

miscible/immiscible fractional flow solutions are accurate for 2D displacements 

when the interwell correlation length of the permeability is very large, is 

extended to SWAG displacements. 

2.  The percent error of the optimal SWAG ratio decreases substantially as 

the permeability correlation length increases; thus, the predicted optimal 

SWAG ratio in a strictly layered reservoir is very close to that of a 

heterogeneous reservoir comprised of isolated layers. 

3. The WL solution is accurate when the mixing zone grows linearly with 

time (i.e., when the mixing zone correlation coefficient is close to unity). 

Therefore, less reservoir mixing improves the accuracy of the WL solution. 

4.9 NOMENCLATURE 

Ng = buoyancy number 

NPe = Peclet number 

Mmp = minimum miscibility pressure  
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P = injection pressure 

Ppm = parts per million 

RL = effective aspect ratio 

So = oil saturation 

Fi = overall flux of component of component i 

fj = fractional flow of phase j 

Ci = overall concentration of component i 

KL = dispersivity coefficient in the longitudinal direction 

L = length of the reservoir 

H = height of the reservoir 

kH = permeability in the horizontal direction 

kV = permeability in the vertical direction 

Sj = saturation of phase j 

Sw = water saturation 

Sg = gas saturation 

Sorw = residual oil saturation after waterflood 

Sorm = residual oil saturation after degraded miscible displacement 

tD = dimensionless time  

ti = time step i  

VDP = the Dykstra- Parson coefficient of variation 

uT = total flow velocity 

xD = dimensionless distance 
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xi =array i consists of  lengths of the mixing zone for each layer of the reservoir at time ti 

λxD =  dimensionless correlation length in the x-direction 

λzD =dimensionless correlation length in the z-direction 

ρh = the correlation coefficient function 

 

 

Table 4.1: Oil compositions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Component 
Mole Fraction, 

% 

C1 4.55 

C2 8.1 

C3 7.98 

IC4 1.69 

nC4 5.49 

IC5 2.71 

nC5 2.69 

C6 7.29 

C7
+
 59.54 
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Table 4.2: Equation-of-state parameters 

Component 
Pc 

(atm) 

Tc 

(°K) 

Accentric  

factor 
Mw 

Vc 

(lit/mol) 

μc 

(cp) 
Omega(A) Omega(B) 

Spec. 

gravity 

** 

CO2 72.8 304.2 0.225 44.01 0.094 0.094 1.045 1.177 0.81 

C1 45.4 190.6 0.008 16.043 0.099 0.099 0.957 0.957 0.30 

C2 48.2 305.4 0.098 30.07 0.148 0.148 0.503 0.503 0.35 

C3 41.9 369.8 0.152 44.09 0.203 0.203 0.653 0.653 0.50 

IC4 36 408.1 0.176 58.12 0.263 0.263 0.997 0.997 0.56 

NC4 37.5 425.2 0.193 58.12 0.255 0.255 0.997 0.997 0.58 

IC5 33.4 460.4 0.227 72.15 0.306 0.306 1.055 1.055 0.62 

NC5 33.3 469.6 0.251 72.15 0.304 0.304 1.055 1.055 0.63 

Group1 32.46 507.5 0.275 86 0.344 0.344 1.055 1.055 0.69 

Group2 10.6 959.0 1.165 550 1.860 1.860 1.055 1.055 0.95 

Group3 26.1 618.6 0.360 127.59 0.571 0.571 1.055 0.959 0.78 

Group4 16.3 791.9 0.683 262.67 1.087 1.087 1.045 1.019 0.88 

 

*Pseudo-component 

**Specific gravity is defined as the liquid density of the component at 60 °F and 1 atm 

divided by the density of water at 60 °F and 1 atm. 

Table 4.3: Binary interaction coefficients 

Component CO2 C1 C2 C3 IC4 nC4 IC5 nC5 G1 G2 G3 G4 

CO2 0.000 0.089 0.130 0.125 0.116 0.116 0.115 0.115 0.115 0.161 0.055 0.087 

C1 0.089 0.000 0.002 0.014 0.015 0.015 0.016 0.016 0.017 0.062 0.027 0.041 

C2 0.130 0.002 0.000 0.000 0.000 0.000 0.062 0.062 0.050 0.050 0.050 0.050 

C3 0.125 0.014 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

IC4 0.116 0.015 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

nC4 0.116 0.015 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

IC5 0.115 0.016 0.062 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

nC5 0.115 0.016 0.062 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

G1* 0.115 0.017 0.050 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

G2* 0.161 0.062 0.050 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

G3* 0.055 0.027 0.050 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

G4* 0.087 0.041 0.050 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Table 4.4: Phase properties 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.5: Range of the dimensionless groups 

 

 

 

 

 

 

 

 

*The effective aspect ratio: V
L

H

kL
R

H k
  

**Peclet number: T

Pe

L

u
N

LK



 

***Buoyancy number: 
o g

g oil gas

o T

k g
N |

u








  
(For more information on the dimensionless scaling groups see Appendix C) 

Phase Density, lb/ft
3
 Viscosity, cp 

Water 62.98 0.51 

Oil  51.45 1.12 

Gas 41.34 0.055 

 Small Intermediate Large 

VDP   0.4 0.65 0.85 

 λxD 0.1 1 10 

RL
*
 0.1 1 10 

Npe
**

 85 140 270 

Ng
***

 0.004 0.02 0.1 
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Figure 4.1: The WL plots: (1) the upper left plot illustrates the solvent-water and water-

oil fractional flow curves. The points representing the initial and injection 

conditions are shown in this plot by I and J; (2) the bottom left is a profile 

plot: the overall concentration of component i versus dimensionless distance 

at a fixed time; (3) the upper right shows a history plot: the overall fractional 

flow of component i at the effluent end of the permeable medium versus 

dimensionless time; (4) The lower right plot demonstrates a time-distance 

diagram. The slope of each line on the latter plot, which is called a 

characteristic, represents the specific velocity. The overall concentration is 

constant along each characteristic line. The viscosities in the WL method are 

evaluated at the average reservoir pressure. Dimensionless time is defined as 

the cumulative volume of the injected fluids (solvent and water) in reservoir 

volumes divided by the total cross-sectional pore volume.  



 

 114 

 

 

Figure 4.2: Relative permeability curves used to construct the WL plots. In the 

simulations, Stone II is used to compute the three-phase relative 

permeabilities. 
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Figure 4.3: Variation of the oil saturation with distance (normalized by the interwell 

spacing) at various stages of the displacement. 
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Figure 4.4: Sorm/Sorw as a function of the miscibility degradation for tertiary 

displacements. For miscibility degradation below 0.5, no advantage is 

obtained from the solvent injection as no reduction in the residual oil 

saturation is observed. The horizontal axis represents the ratio of the 

producer’s‎bottomhole‎pressure‎to‎MMP. 
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Figure 4.5: Sorm as a function of the miscibility degradation for secondary displacements. 

The blue zone illustrates the degraded miscible displacements, for which 

Sorm are smaller than Sorw. The horizontal axis represents the ratio of 

producer’s‎bottomhole‎pressure‎to‎MMP. 
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Figure 4.6: The WL procedure to determine the optimal SWAG ratio for a degraded 

miscible flood. For this tertiary displacement, the predicted optimal ratio is equal to 0.51 

(Walsh and Lake, 1989).  
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Figure 4.7: Saturation profiles (distance is normalized by the interwell spacing) for a 

SWAG displacement with the SWAG ratio of 0.5 at tD = 0.25. P/MMP and 

NPe are set to 0.95 and 1025, respectively. The blue curve represents water 

saturation, the green curve is oil saturation, and the red curve is gas 

saturation. The dashed orange curves show the WL solution. 



 

 120 

 

 

 

 

 

 

 
 

Figure 4.8: Saturation profiles (distance normalized by the interwell spacing) for a 

SWAG displacement with the SWAG ratio of 0.5 depicted at tD = 0.25. 

P/MMP and NPe are set to 0.95 and 240, respectively. The blue curve 

represents water saturation, the green curve is oil saturation, and the red 

curve indicates gas saturation. The dashed orange curves are the WL 

solution. 
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Figure 4.9: Oil recovery curves for 1D degraded miscible displacements with five 

different SWAG ratios. Because of the miscibility degradation (NPe = 512 

and P/MMP = 0.95), the maximum oil recovery never reaches 100%. The 

SWAG ratio of 0.5 gives the largest recovery. The WL optimal SWAG ratio 

for the same displacement is 0.51 consistent with the simulation. 
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Figure 4.10 a: Water 

saturation distribution for 

VDP=0.85‎and‎λXD=0.5 

during water flooding. The 

other dimensionless groups 

are set to their intermediate 

level according to Table 4.5. 

 

Figure 4.10b: Water 

saturation distribution for 

VDP=0.85‎and‎λXD=0.05 

during water flooding. The 

other dimensionless groups 

are set to their intermediate 

level according to Table 4.5. 

 

 

 

Figure 4.10c: Water saturation 

distribution for VDP=0.85 and 

λXD=10 during water flooding. 

The other dimensionless groups 

are set to their intermediate level 

according to Table 4.5. 
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Figure 4.11: A comparison of the WL-predicted (orange curve) and the simulated water 

saturation profiles (distance is normalized by the interwell spacing) for 

different levels of heterogeneity depicted at tD = 0.25. P/MMP and NPe are 

set to 0.95 and 1025, respectively. VDP, Ng,‎λxD, and RL are at their lowest 

level according to Table 4.5. 
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Figure 4.12: A comparison of the WL-predicted (orange curve) and the simulated oil 

saturation profiles (distance is normalized by the interwell spacing) for 

different levels of heterogeneity depicted at tD = 0.25. P/MMP and NPe are 

set to 0.95 and 1025, respectively. VDP, Ng,‎λxD, and RL are at their lowest 

level according to Table 4.5. 
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Figure 4.13: A comparison of the WL-predicted (orange curve) and the simulated gas 

saturation profiles (distance is normalized by the interwell spacing) for 

different levels of heterogeneity at tD = 0.25. P/MMP and NPe are set to 0.95 

and 1025, respectively. VDP, Ng,‎λxD, and RL are at their lowest level 

according to Table 4.5. 
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Figure 4.14: Oil recovery curves for four different slug sizes; slug sizes larger than 0.61 

P.V. do not affect the oil recovery. For all four cases, P/MMP and NPe are 

set to 0.95 and 1025, respectively; VDP,‎λxD, Ng and RL are at their lowest 

level according to Table 4.5.  
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Figure 4.15: Concentration history plots for the tracer component in the chase water and 

solvent. The plot shows that injecting a smaller solvent-water slug size (0.4) 

than the optimal (the WL prediction is 0.61) yields an ear;ier chase water 

breakthrough than the solvent. P/MMP and NPe are set to 0.95 and 1025, 

respectively; VDP, Ng,‎λxD, and RL are at their lowest level according to 

Table 4.5. 
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Figure 4.16: Concentration history plots for the tracer component in chase water and 

solvent. The plot shows that the optimal water-solvent slug size (0.61) yields 

simultaneous breakthroughs of the solvent and chase water. P/MMP and NPe 

are set to 0.95 and 1025, respectively; VDP, Ng,‎λxD, and RL are at their 

lowest level according to Table 4.5. 



 

 129 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 4.17: Concentration history plots for the tracer component in chase water and 

solvent. The plot shows that injecting a larger solvent-water slug size (0.8) 

than the optimal size (0.61) yields a delayed breakthrough for the chase 

water tracer. P/MMP and NPe are set to 0.95 and 1025, respectively; VDP, 

Ng, λxD, and RL are at their lowest level according to Table 4.5. 
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Figure 4.18: Oil recovery curves for a 2D displacement with five different SWAG ratios. 

The plot illustrates that the SWAG ratio=0.5 (the WL optimal SWAG 

ratio=0.51) yields the largest recovery. Before the earliest gas BT, the 

recovery curves are almost identical. P/MMP and NPe are set to 0.95 and 

1025, respectively; VDP, Ng,‎λxD, and RL are at their intermediate level 

according to Table 4.5. 
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Figure 4.19: Percent errors of the optimal SWAG ratios for all 2D cases as a function of 

the dimensionless correlation length of the permeability at three different 

levels of dispersion when RL=0.1. 



 

 132 

 

Figure 4.20: Percent errors of the optimal SWAG ratios for all 2D cases as a function of 

the dimensionless correlation length of the permeability at three different 

levels of dispersion when RL=1.0. 
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Figure 4.21: Percent error of the optimal SWAG ratios as a function of the end-point 

buoyancy number( the end-point relative permeability values are used) for 

fairly homogenous cases (VDP =0.4) at different levels of RL. As Ng° 

increases, the percent error increases. The Peclet number is 270. 

 

 

 

 

 

 

 

 

 

 



 

 134 

 

 

Figure 4.22: Lengths of the mixing zone as a function of the dimensionless time. The plot 

illustrates the linear growth of the mixing zone for two layers of the case 

study 1, for which the predicted optimal SWAG ratio agrees with the 

numerical results. The lengths of the mixing zone are linearly correlated 

with elapsed time.  
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Figure 4. 23: The schematic demonstrates the arrays of the lengths of the mixing zone for 

a‎reservoir‎with‎32‎layers‎and‎the‎correlation‎coefficient‎function,‎ρh, 

between the arrays.  
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Figure 4.24: Correlation coefficient function of the length of the mixing zone as a 

function of time. The overall trend shows the linear growth of the mixing 

zone with time for Cases 1 and 2 as the corresponding correlation 

coefficient functions stay close to unity; in addition, a non-linear correlation 

between the lengths of the mixing zone and time is observed for Cases 3 and 

4. 
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Chapter 5: Decoupling of Large- and Small-Scale Heterogeneities in 

Multi-Layered Reservoirs with No Cross-Flow 

This section examines the decoupling of the local heterogeneity and permeability 

variation in multi-layered reservoirs in the absence of cross-flow between layers. 

Dispersion caused by local velocity gradients, locally heterogeneous streamline lengths, 

mechanical dispersion, and diffusion in permeable media, degrades displacement 

efficiency (as detailed in Chapter 4). Dispersivity, as the measure of dispersion, 

represents how far tracer particles stray from the path of the fluid carrying them. In other 

words, tracer particles are gradually spread in all directions around the mean path of flow.  

Dispersivity is often obtained from matching the concentration history of tracer 

tests with a linear one-dimensional (1D) solution of the convection-diffusion (CD) 

equation. However, convective spreading caused by permeability variations seems to 

dominate when the 1D solution of the CD equation is used to interpret the tracer test 

results in heterogeneous permeable media (John, 2008). The impact of convective 

spreading, which is caused by widely varying breakthrough times of tracer in different 

layers, is similar to dispersive mixing (dilution) as they both cause dissipation. However, 

convective spreading is a reversible phenomenon whereas diffusive transport is not (John, 

2008). 

In this study, the growth of vertically averaged concentrations is formulated 

through incorporating dispersivity and the permeability variation. This approach uses the 

Koval heterogeneity factor to replace the need for scale-dependent transmission 

dispersivities; hence, the vertically averaged concentration in layered media is obtained 

using dispersivities no larger than input values in this Chapter.  

We use a simulation approach to verify the analytical solution derived in this 

study. The simulation models consist of a vertical injection well and a producer located at 
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the ends of 2D heterogeneous reservoirs. The injection and production wells are assigned 

a constant rate and a constant bottomhole pressure constraint, respectively. Numerical 

dispersion is minimized through simulations and a constant physical (input) dispersivity 

is used for all grid blocks. The tracer concentrations at grid blocks located at specific 

distances from the injection well are used from the simulation results to calculate the 

corresponding vertically averaged concentration. The vertically averaged concentration 

from simulation is compared with the average concentration obtained from an analytical 

solution. Moreover, the simulation results match the analytical solution. 

We conclude that scale-dependent dispersivity at the field-scale represents the 

lack of knowledge about the heterogeneity involved in the system we are simulating. 

Details that are averaged when using a macroscopic approach manifest themselves as an 

apparent scale-dependent dispersivity caused by velocity variations at the local-scale. In 

fact, scale-dependent dispersivity in heterogeneous permeable media represents a naive 

treatment of multi-dimensional displacements with the 1D solution of the CD equation. 

In this study, dispersivity becomes scale-independent when all involved heterogeneities 

are modeled explicitly. 

The results suggest that the analytical solution accurately predicts the vertically 

averaged tracer concentration in heterogeneous reservoirs in the absence of cross-flow. 

Furthermore, the impact of heterogeneity and dispersivity on the length of the mixing 

zone within each layer of reservoir is evaluated. From that, we determine the fraction of 

layers in which the mixing zone grows faster than that of the dispersive flow regime as a 

function of the Koval factor and input dispersivity. The transition between channeling 

and dispersive flow regimes is clearly shown in the examples. For more details about 

definition of flow regimes, see Chapter 7. 
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5.1 INTRODUCTION 

The impact of mixing on miscible displacements has been studied in reservoir 

engineering for decades. However, dispersive transport in heterogeneous permeable 

media has not yet been understood thoroughly; this issue is severe for layered reservoirs 

as the flow becomes pre-asymptotic regime (non-Fickian/non-Gaussian; see Chapter 6 for 

the definition of Fickian regime). As long as the asymptotic behavior is not reached in a 

heterogeneous permeable medium, the convection-diffusion (CD) equation does not hold. 

The Fickian model for dispersion assumes a dispersive flux proportional to the 

concentration gradient with a constant proportionality (dispersivity) independent of time 

and space. 

Despite the vast amount of literature on dispersion, the current practice of using a 

1D solution of the CD equation to determine dispersivity is not appropriate for 

heterogeneous reservoirs especially when considerable autocorrelation is present for 

permeability. In other words, changes in the dispersivity with distance indicate an 

inevitable consequence of using a 1D solution of the CD equation to treat multi-

dimensional flow. For instance, convective spreading caused by local-scale variations of 

velocity plays an important role when the 1D solution of the CD equation is used to 

interpret the tracer test in heterogeneous permeable media.  

The convective spreading is incorporated into dispersive mixing to yield very 

large values of dispersivity obtained in the field-scale. We can distinguish between the 

convective spreading and dispersive mixing mechanisms as the convective spreading is a 

reversible phenomenon whereas diffusive transport is not. For more detail about 

spreading and mixing and how mixing in the small-scale can lead to significant dilution 

at the large-scale, see John (2008).  



 

 140 

Gelhar and Axness (1981) used spectral methods to generate permeability fields 

and studied the interplay between dispersion and the permeability variability in stratified 

permeable media. They found that dispersive transport exhibits non-Fickian behavior for 

a stratified medium in early time and asymptomatically approaches Fickian dispersive 

transport at late time if there is cross-flow between layers. Matheron and DeMarsily 

(1980) show that cross-flow between layers would restore Fickian transport, 

asymptomatically, at late time. Furthermore, Lake and Hirasaki (1981) studied dispersion 

in stratified formations and concluded that transverse dispersion between layers yields an 

average longitudinal dispersion coefficient asymptotically. 

Several review papers present measured dispersivities over a wide range of length 

scales (Schulze-Makuch, 2005; Vandeborght and Vereecken, 2007; Zhou et al., 2007). In 

all of these datasets, the longitudinal dispersivity increases with distance traveled. 

Furthermore, Su et al. (2005) used a dispersivity coefficient that varies with time to 

match concentration history plots; however, this lacks a clear physical explanation. 

Greenkorn et al. (1983) discussed the scaling of mixing during miscible displacement in 

heterogeneous permeable media. 

In addition, Coats et al. (2009) used a constant physical scale-independent 

dispersivity to account for pore-scale heterogeneity and additional scale-dependent 

dispersivity reflecting permeability heterogeneity. The latter is used as a fitting parameter 

to match concentration history plots. 

In this section, an analytical solution for the averaged tracer concentration in 

layered permeable media is presented. We restrict our analysis to tracer flow with a 

mobility ratio of one and no cross-flow between layers. We assume horizontal 

permeability to be a random variable with a log-normal distribution. Furthermore, we 

evaluate the impact of heterogeneity and dispersivity on the growth of the mixing zone 
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within each. Also, the fraction of layers in which the mixing zone grows faster than that 

of the dispersive flow regime, is determined as a function of the Koval factor and input 

dispersivity.  

 

5.2 PROBLEM STATEMENT 

Figure ‎4.1 indicates a stratified permeable medium that consists of an ensemble of 

n layers with different properties: permeability, thickness, and porosity separated by thin 

barriers that yield no vertical permeability. The cumulative flow capacity F and 

cumulative storage capacity C at a given vertical cross-section is defined as (Lake, 1989) 

  ,  l =1,2,…n‎(number‎of‎layers)    (5.1)  

where k and tH  are the arithmetic average permeability and total thickness of the given 

cross-section. Therefore, 

  ,         (5.2) 

where   is the arithmetic average porosity for that cross-section.‎From‎Darcy’s‎law,‎the‎

interstitial velocity of a passive tracer through each layer is represented by the ratio of 

permeability to porosity of the same layer l
l

l

k
r
 

 
 

. If we rearrange the interstitial 

velocity of flow in all layers in decreasing order of rl, Fl represents the fraction of flow at 

a velocity greater or equal to rl. Similarly, Cl indicates the associated pore volume with 

the fraction of flow that travels at the velocity of rl or faster. From the definition, the 

derivative of a continuous F with respect to C at any given Cl is the interstitial velocity 

1







n
l l

l t

h
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H

1


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l l

l t

k h
F
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within the corresponding layer divided by the arithmetic average of interstitial velocity of 

the whole ensemble. 

The approximate solution of the CD equation in 1D flow that describes the 

conservation of the injected component (tracer) through an isothermal miscible 

displacement has the form of (Lake, 1989) 

 

   ,        (5.3)  

where αD is the dimensionless dispersivity normalized by the length of the permeable 

medium; equivalently, we can use the inverse of the Peclet number (NPe
-1

) instead of αD. 

The above solution is derived considering the following premises: incompressible fluid 

and‎pore‎space,‎ideal‎mixing,‎single‎phase‎flow,‎the‎same‎dispersivity‎(α)‎for‎all‎layers,‎

and semi-infinite medium assumptions. 

The arithmetic average of the tracer concentration over a vertical cross-section at 

the distance of xD from the injector and at the given time tD is determined as 

,
1

 l

n

D l
l

D
t

c h

c
H

 ,        (5.4) 

where ,D lc , the dimensionless concentration at each layer, is defined as 

1
1

2 2
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where βl is the fraction of injected volume that enters into layer l. Furthermore, αD,l is the 

inverse Peclet number of layer l. However, we assume that the Peclet number is the same 

for all layers in the remainder of this chapter. There is no viscous cross-flow between 

layers and, thus, the fluid injected in any layer stays within the same layer. Traditionally, 

the above system of equations should be solved numerically to obtain the Dc  for a given 

tD and xD. However, we incorporate the notion of cumulative flow and storage capacities 

into Eq. (5.4) to find an analytical solution for Dc . 

Considering the tracer flow assumptions (mobility ratio of unity and matched 

density), in addition to no vertical communication, βl can be interpreted as the fraction of 

injected volume entering the layer l at the inlet face. The volume injected in each layer 

remains in the same layer throughout flow as there is no convective cross-flow between 

layers. Therefore, F can be translated as the cumulative distribution function of β when F 
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is a continuous function of C. Hence, the derivative of F with respect to C calculated at Cl 

will be equal to βl (Jensen et al., 2002). 

We propose the following analytical solution for the tracer concentration at a 

layer with cumulative storage capacity of C: 

|
1

| 1
2

2 |

  
  

   
  

  
  

D C D

D C

D C D

dF
x t

dCc erf
dF

t
dC

       (5.5) 

Equation (5.5) is obtained from substitution of  l Dt by |C D
dF

t
dC

 
 
   

in the 1D solution 

of the CD equation. 

The dimensionless mixing zone within each layer is defined as the distance 

between locations where the dimensionless concentrations of 0.1 and 0.9 occur. 

Following Lake (1989), 

   
0.1 0.9

| | | ,
D D

D C D C D Cc c
x x x

 
         (5.6) 

where |D Cx  is distance in the layer with the cumulative storage capacity of C. Also, 

|D Cx  represents length of the mixing zone normalized by the length of permeable 

medium. 

To calculate the mixing zone, we invert Eq. (5.3) for  
0.1

|
D

D C c
x to yield 

   1

0.1
| 2 0.2 | | .

D
D C D C D C Dc

F F
x erfc t t

C C





  
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    (5.7) 

Similarly, we determine  
0.9

|
D

D C c
x  and substitute into Eq.(5.6); hence, 
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| 3.625 | .

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

D C D C D

F
x t

C
        (5.8) 

5.3 DERIVATION 

In this section, we determine the vertically averaged dimensionless concentration 

of traced as a function of xD, tD, HK, and αD. The integration of |D Cc over an interval [C1, 

C2] yields the vertically averaged concentration (according to the integral mean value 

theorem): 

 

  .         (5.9) 

Thus, the first step to solve Eq. (5.9) is to determine the derivative of F with respect to 

C,
dF

dC
. Using the Koval (1963) heterogeneity factor, the following relationship between 

F and C holds true: 

 

  .         (5.10) 

where Hk is the Koval heterogeneity factor. Inverting Eq. (5.10) gives 

 

    

Hence, F can be expressed as 

   .        (5.11) 

Differentiation of F with respect to C yields an expression for 
dF

dC
as 
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                                .                         (5.12) 

All terms on the right side of Eq. (5.12) are positive; hence, the square root of 
dF

dC
 can be 

expressed as 

 1 ( 1)
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dC H C
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.           (5.13) 

The next step is to insert Eq. (5.13) into Eq. (5.5) to determine the integration of 

the numerator of Eq.(5.9). However, there is no analytical solution for Eq. (5.9) in the 

standard integral tables. Therefore, we use the method of variable transformation (the 

substitution rule) and consider the argument of the error function as interim variable z: 

2
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Rearranging Eq. (5.14) gives 
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However, there are two roots (described below) and the non-negative solution of the 

quadratic equation (because 
dF

dC  
is always positive) that represent a proper relation 

between the newly defined variable z and
dF

dC
. The general form of the solution of Eq. 

(5.15) is defined as 
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where 
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Further investigation shows that the root with a positive square root of the discriminant 

always leads to the non-negative solution. Therefore, 

 

     (5.17) 

. 

Next, we insert Eq. (5.17) into Eq. (5.13) to determine the relation between cumulative 

storage capacity C and z:
 

 

    (5.18)  

. 

Rearranging Eq. (5.18) yields an expression for the cumulative storage capacity as a 

function of xD and tD: 

 

.   (5.19) 
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Also, we recast the integral in the numerator of Eq. (5.9) using the variable 

transformation. To determine the derivative with respect to the newly defined variable, 

we use the chain rule as 

 

    .       (5.20) 

To evaluate the above equation, we must determine the derivative of C with respect to 
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Still, there is no general equation for the integral in the numerator of Eq.(5.20): 
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Using integration by parts, which is based upon the product rule for 

differentiation, we rearrange the right side of Eq. (5.22) as 
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           (5.23) 

Furthermore, the solution for the integral A on the right side of Eq. (5.23) can be 

expressed as 

 

 

 

D D
D D

2

2
D D D D

D D D D D D

2
2 D D

D D D D D D

z t
t

t z t x t z t x t z
dz .

t x
t z t z t x

 
  

      
  
  
      
  

 

     

   .        (5.24) 

 



 

 150 

Also, the derivative of the complementary error function is determined as 

2( ( )) 2  


zd Erfc z
e

dz .         (5.25)
 

Therefore, Eq. (5.23) is written as 
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Finally, we insert Eq. (5.26) back into Eq.(5.20): 
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where, 2F1 is the first hypergeometric function (Gauss's hypergeometric function) that 

arises in physical problems (Barnes, 1908). In general form, the first hypergeometric 

function for arbitrary parameters a, b, and c and variable z is expressed as 
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    (5.28) 

Furthermore, z1 and z2 (interim variables) are determined through Eq. (5.13) and Eq. 

(5.14) as 
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Basically the flow becomes 1D when the Koval heterogeneity factor tends to unity. we 

can show analytically that the proposed analytical solution reduces to 1D solution of CD 

equation when the Koval factor becomes unity. Inserting HK=1.0 into Eq. (5.13) yields 
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Inserting Eq. (5.30) into Eq.(5.5) yields Eq.(5.3), which is 1D solution of CD equation. 

Furtheremore, the length of the mixing zone becomes zero as αD tends to zero in Eq. (5.8) 

and the displacement within each layer turns into piston-like displacement.  
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In addition, we compare concentrations obtained from Eq. (5.27) with those obtained 

from the 1D solution of CD equation for HK=1.001. We compare the concentrations as a 

function of dimensionless distance at the fixed tD=0.5 for two values of αD: 0.01 and 1E-

10. Figure 5.2 compares the concentrations obtained from Eq. (5.27) and those of the 1D 

solution of CD equation when HK=1.001 and αD =1E-2. Both curves coincide illustrating 

that Eq. (5.27) produces the same result as the 1D solution of CD equation when HK tends 

toward unity. 

Figure 5.3 compares the concentrations obtained from Eq. (5.27) and those of the 

1D solution of CD equation when HK=1.001 and αD =1E-10. Both curves coincide 

showing that Eq. (5.27) produces the same result as the 1D solution of CD equation when 

HK tends toward unity. 

Similarly,  

5.4 MIXING ZONE ANALYSIS 

In this section, we evaluate the growth of mixing zone within layers of a 

heterogeneous reservoir without cross-flow. Figure 5.4 shows the map of tracer 

concentrations of 0.1 and 0.9 depicted at tD=0.5 for each layer (which is represented by 

C) as a function of distance from the injector. In these examples αD = 0.0001. The 

distance is normalized by the length of the permeable medium. The flow occurs basically 

in 1D when Hk is one. These curves are obtained from Eq. (5.5) for various values of HK. 

A comparison between the lengths of the mixing zone, which is the distance between cD = 

0.1 and cD = 0.9, for different cases reveals that the mixing zone shrinks as Hk increases; 

however, the length of the mixing zone does not decrease uniformly within all layers. 
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Note that each layer of the permeable medium is represented by the corresponding 

cumulative storage capacity.  

The length of the mixing zone reaches a maximum at C = 0.3 when Hk is 100. 

This is an interesting observation as it illustrates a distinct transition of flow patterns over 

the range of 0.2 < C < 0.4. A small fraction of injected volume enters into layers with a 

larger cumulative storage capacity (C > 0.4) and, hence, small dimensionless length of 

the mixing zone is expected from Eq. (5.8). Furthermore, most of the injected fluid gets 

into layers with a smaller cumulative storage capacity (C < 0.2); hence, the flow pattern 

within these layers is no longer dispersive; instead, channeling occurs as will be 

discussed in the next section. Note that a larger cumulative storage capacity represents 

smaller conductivity and vice versa. For more information regarding the flow patterns, 

see Chapter 7.  

Figure ‎4.5 compares the lengths of the mixing zone at tD = 0.5 for two cases: Hk 

=1 and Hk = 10 when αD is equal to 0.0001. The length of the mixing zone is obtained 

from Eq. (5.8). The length of the mixing zone is constant for Hk = 1 as it represents 1D 

flow. However, the mixing zone grows differently within layers when Hk = 10. It grows 

faster than Hk = 1 within layers represented by a cumulative storage capacity smaller than 

0.25. Larger flow velocity in those layers yields the channeling flow regime as will be 

discussed in the next section. Less injected fluid permeates into layers, which is 

represented by larger cumulative storage capacity values; thus, the dispersive transport 

dominates over the convective flow. 
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Figure ‎4.6 compares the lengths of the mixing zone at tD = 0.5 for two cases: Hk = 

1 and Hk =100 when αD is equal to 0.0001. The length of the mixing zone is obtained 

from Eq. (5.8). The mixing zone grows differently within layers when Hk = 100. It grows 

faster than Hk = 1 within layers represented by a cumulative storage capacity smaller than 

0.10. Larger flow velocity in those layers indicates the channeling flow regime as 

discussed in the next section. Less injected fluid flows into layers represented by a larger 

cumulative storage capacity, and, consequently, dispersive transport dominates over the 

convective flow. 

Figure 5.7 illustrates the cumulative flow capacity as a function of dimensionless 

lengths of the mixing zone depicted at tD=0.5 for two cases: Hk =1 and Hk =100 when αD 

= 0.0001. The length of the mixing zone is obtained from Eq. (5.8). For the case of HK = 

100, the mixing zone grows faster than HK=1.0 (in large fraction of bulk flow~0.92) 

because the flow is convection-dominated. Analyzing Figures 5.7 and 5.8 reveals that 

92% of flow passes through only 10 % of the whole reservoir thickness when HK=100 

and αD = 0.0001. 

Figure ‎4.8 shows the map of tracer concentrations of 0.1 and 0.9 depicted at 

tD=0.5 for each layer (which is represented by C) as a function of distance from the 

injector. In these examples αD = 0.01. The distance is normalized by the length of the 

permeable medium. These curves are obtained from Eq. (5.5)for various values of HK. 

The lengths of the mixing zone are an order of magnitude larger than those depicted at 

Figure ‎4.4, consistent with Eq. (5.8). Similar to Figure ‎4.4, the mixing zone shrinks as Hk 

increases; however, the length of the mixing zone does not decrease uniformly within all 
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layers. Across layers that are represented by a cumulative storage capacity greater than 

0.4, the concentration of 0.9 does not occur except at xD = 0.0 when Hk = 100 (i.e., small 

fraction of injected volume enters into the corresponding layers). However, a sufficient 

amount of the injected volume flows into layers represented by a smaller cumulative 

storage capacity (C < 0.4); thus, different flow patterns occur within layers as discussed 

in the next section. 

Figure ‎4.9 compares the lengths of the mixing zone at tD=0.5 for two cases: Hk = 

1 and Hk = 10 when αD is equal to 0.01. The length of the mixing zone is obtained from 

Eq. (5.8). The mixing zone grows differently within layers when Hk = 10. Similar to 

Figure ‎4.5, it grows faster than Hk = 1 within layers represented by a cumulative storage 

capacity smaller than 0.25. Larger flow velocity in those layers indicates the channeling 

flow regime as discussed in the next section. Less injected fluid gets into the layers, 

represented by larger cumulative storage capacity values; consequently, the dispersive 

transport dominates over the convective flow. 

Figure ‎4.10 compares the lengths of the mixing zone at tD=0.5 for two cases: Hk = 

1 and Hk =100 when αD is equal to 0.01. The length of the mixing zone is obtained from 

Eq. (5.8). The mixing zone grows differently within layers when Hk =100. Similar to 

Figure ‎4.6, it grows faster than Hk =1 within layers represented by a cumulative storage 

capacity smaller than 0.10. Larger flow velocity in those layers indicates the channeling 

flow regime as discussed in the next section. Less injected fluid gets into the layers, 

represented by a larger cumulative storage capacity; thus, the dispersive transport 

dominates over the convective flow. 
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5.5 CONCENTRATION HISTORY PLOTS  

 In this section, we evaluate the change in concentration with time at a fixed 

location within different layers of a heterogeneous reservoir without cross-flow. Figure 

5.11 shows the concentration history plots (concentrations as a function of time) when Hk 

=1 for three different values of αD, depicted at xD = 0.5. Larger spreading occurs as αD 

increases, consistent with Eq. (5.3). 

Figure ‎4.12 shows the concentration history plots for selected layers (represented 

by various cumulative storage capacities) depicted at xD = 0.5 when Hk = 10 and αD = 

0.01. Furthermore, a comparison between the curves reveals that less spreading occurs 

for C = 0.1; however, Figure ‎4.9 indicates that the mixing zone grows faster for small 

cumulative storage capacity than for 1D dispersive flow. Therefore, the flow regime must 

have changed to channeling in which the mixing zone develops faster (proportional to 

time) rather than the square root of time as is in the dispersive flow pattern. 

Figure ‎4.13 shows the concentration history plots for selected layers (represented 

by various cumulative storage capacity values) depicted at xD=0.5 when Hk = 100 and αD 

= 0.01. Less conductivity occurs the larger the cumulative storage capacity is and, thus, 

the concentration curve starts at a later time. For C = 0.8, the tracer has not arrived at xD = 

0.5 even after 10 pore volume (P.V.) injection. Furthermore, a comparison between the 

curves reveals that less spreading occurs for C = 0.1; however, Figure ‎4.10 indicates that 

the mixing zone grows faster within layers represented by a small cumulative storage 

capacity rather than 1D dispersive flow if compared at the same time. Therefore, the 

channeling flow regime occurs within those layers because the mixing zone develops 
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faster (proportional to time) rather than the square root of time as in the dispersive flow 

pattern. Despite the case in which Hk = 10, the injected fluid does not breakthrough 

within all layers when Hk = 100 at the specified time and location. This is explained by 

the greater level of the permeability heterogeneity when Hk = 100. Furthermore, if we use 

Eq. (5.3) to determine the apparent dispersivity for each layer of this example, different 

values will be obtained despite the fact that all layers are assigned the same dispersivity 

value; this clearly demonstrates how the treatment of 2D displacement with the 1D 

solution of the CD equation can be misinterpreted. 

Figure ‎4.14 shows concentration history plots for selected layers (represented by 

cumulative storage capacities of 0.1, 0.3, and 0.5) depicted at values depicted at xD = 0.5 

when Hk = 10 and αD = 0.0001. In general, less spreading occurs compared to Figure 

‎4.12. Less conductivity is present the larger the cumulative storage capacity is and, thus, 

the concentration curve starts at a later time.  

Figure ‎4.15 shows concentration history plots for selected layers (represented by 

cumulative storage capacities of 0.1, 0.3, and 0.5) values depicted at xD = 0.5 when Hk = 

100 and αD = 0.0001. In general, less spreading occurs compared to Figure ‎4.13. Less 

conductivity is present the larger the cumulative storage capacity is; therefore, the 

concentration curve starts at a later time. For C = 0.8, the tracer has not arrived at xD = 0.5 

even after 10 P.V. injection. Furthermore, a comparison between the curves reveals that 

less spreading occurs for C = 0.1; however, Figure ‎4.6 indicates that the mixing zone 

grows faster for a small cumulative storage capacity rather than for 1D dispersive flow. 

Therefore, the flow regime must have changed to channeling, in which the mixing zone 
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develops faster (proportional to time) compared to the square root of time as in the 

dispersive flow pattern. Despite the case in which Hk = 10, the injected fluid does not 

breakthrough within all layers when Hk = 100 at the specified time and location. This is 

explained by the greater level of permeability heterogeneity in the latter case. 

5.6 VERTICALLY AVERAGED CONCENTRATIONS AS A FUNCTION OF DISTANCE  

In this section, we evaluate the change in the vertically averaged concentration 

with distance at a fixed time in a heterogeneous reservoir without cross-flow. Figure ‎4.16 

shows the vertically averaged concentration as a function of dimensionless distance 

(normalized by the length of the permeable medium) using Eq. (5.27); the concentration 

profile is depicted at tD = 0.5 and the Koval heterogeneity as a factor of one. As αD 

decreases, less dispersion and less spreading occurs. The results are consistent with the 

1D solution of Eq. (5.3), as HK = 1 represents the no-flow channeling effect.  

Figure ‎4.17 indicates the vertically averaged concentration as a function of 

dimensionless distance (normalized by the length of the permeable medium) using Eq.  

(5.27); the concentration profile is depicted at tD = 0.5 and the Koval heterogeneity factor 

of 10. As αD decreases less dispersion and less spreading occurs. As a result of the flow 

channeling that occurs (because of a large Koval factor), less sweep efficiency is realized 

(for more details, see Chapter 7). 

Figure ‎4.18 shows the vertically averaged concentration as a function of 

dimensionless distance (normalized by the length of the permeable medium) using Eq. 

(5.27); the concentration profile is depicted at tD = 0.5 and the Koval heterogeneity as a 

factor of 100. Similar to Figure ‎4.17, less sweep efficiency is realized. Furthermore, in 

the presence of large permeability heterogeneity, the impact of dispersivity becomes 

insignificant. 
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5.7 VERIFICATION  

A simulation approach is used to verify the hypothesis for stratified 

heterogeneous permeable media with no cross-flow between layers. The simulations are 

performed‎ using‎ GEM,‎ CMG’s‎ general‎ equation-of-state compositional reservoir 

simulator. The simulation models consist of vertical injectors and producers located at the 

ends of a 2D grid with constant grid block sizes in the x- and z-directions. The permeable 

medium is initially filled with water and a passive tracer (tagged water) is injected to 

measure local mixing (Lake, 1989). The top and bottom of the models are no-flow 

boundaries. The injection and production wells are assigned a constant rate and a constant 

bottomhole pressure constraint, respectively. The bottomhole pressure for the producer is 

set to the initial pressure and the injection rate is 0.27 P.V. per day. Table 5.1 details the 

other properties of the models. In addition, simulations are continued until tD = 3. 

Heterogeneous permeability fields with the log-normal distribution are generated using 

the FFTsim code (Jennings et al., 2002). Furthermore, a uniform porosity of 0.14 is 

considered.  

Simulation models consist of 1024 x 32 grid-blocks in the x- and z-directions. The 

length and width of the models are 128 and 3.2 feet, respectively. Furthermore, the 

effective aspect ratio, a measure of viscous cross-flow between layers (RL), set to zero to 

represent no convective cross-flow between layers (see Appendix C for more details on 

the dimensionless scaling groups).  

Equation (5.31) shows the Peclet number attributed to numerical dispersion for 

two-phase flow (Orr, 2007). Considering no input physical dispersivity, the Peclet 
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number attributed to the longitudinal numerical dispersivity is 2847, ( Num

L =0.045 ft), as 

df j

dS j

 
 
 
 
 
   

is equal to one (tracer flow) and ΔtD is 0.001 in the simulations. 

1
2

.
| ( )

j j

j j

df df

dS dS


 


Num

-1 D D

pe

D

x Δt
N

x
.       (5.31) 

An input longitudinal physical dispersivity of 1.45 ft is added to each grid block so 

that the total dispersivity increases to 1.495 ( Num Phys

L L   =1.495 ft); therefore, the Peclet 

number is now reduced to 86. 

Figure ‎4.19 indicates the flow velocity for selected grid blocks located at different 

layers as a function of time. Following from the continuity equation for incompressible 

fluid, the velocity at which fluids pass through each grid block (at any time) is the same 

as the velocity that occurs across the layer. Furthermore, flow velocities though different 

layers of the permeable medium are constant values with time as a constant rate is 

injected and no convective cross-flow occurs between layers. 

The tracer concentrations at grid blocks located at equally spaced vertical cross-

sections are used to determine the vertically averaged concentration. Next, the vertically 

averaged concentrations obtained from the simulations are compared with the values 

obtained from Eq. (5.27) at different times. Dimensionless time used in Eq. (5.27) 

corresponds to the injected pore volume as the injected volume divided by the 

formation’s‎pore‎volume. Solver, Microsoft
®
 Excel’s‎optimization‎tool,‎is‎used‎to‎match‎

the average concentrations at each distance from the injector. The objective function is to 

minimize the squared differences between the simulation results and the analytical 
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solution; this can be performed by changing the Koval heterogeneity factor (HK) and 

dispersivity value (αD) in Eq. (5.27) (Figure ‎4.20 through Figure ‎4.25).  

Using Eq.(5.27) with input dispersivity values, we could match simulation results 

when the permeability fields has small correlation length; however, as Figure ‎4.26 

indicates, scale-dependent dispersivities are needed to match the simulation results with 

Eq.(5.3). In other words, scale-dependent dispersivity is not required to describe the 

displacement performance if large- and small-scale heterogeneities are properly 

incorporated as in Eq.(5.27).  

Figure ‎4.27 shows the optimized Koval factor values obtained separately at each 

distance while dispersivities are limited to the input value. An average constant value of 

5.3 for the Koval factor is proper to describe the displacement using Eq.(5.27).  

Figure ‎4.28 compares the dispersivity required to match the simulation results 

using Eq. (5.27) with those obtained from Eq. (5.3) when the permeability distribution 

has a large correlation length. A similar observation to the previous example is obtained 

as the average concentration is well-matched with input dispersivity.  

Figure ‎4.29 illustrates the Koval factors used to match the simulation 

concentrations at each distance. A comparison between Figure ‎4.28 and Figure ‎4.29 

indicate that a larger HK is needed to match the simulation results using Eq.(5.27); this is 

expected because of a larger permeability dimensionless correlation length and more 

channeling in the second example. However, the Koval factor used to match the 

concentrations varies with distance in this example; it initially increases then decreases 

afterward. This observation can be explained as flow becomes more dispersive further 
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from the injection well when the permeability is highly correlated with distance (See 

Chapter 6 for more details).  

5.8 DISCUSSION 

In this study, we decouple the convective spreading from local-scale 

heterogeneity for heterogeneous reservoirs with no cross-flow between layers. In other 

words, the need for scale-dependent dispersivity is replaced by the Koval factor to match 

the vertically averaged concentration over a cross section. Our results are consistent with 

Coats et al. (2009) as they used scale-independent dispersivity and a fitting parameter to 

match concentration history plots using a 1D solution of the CD equation. However, we 

incorporate the Koval factor (large-scale heterogeneity measure) into the commonly used 

solution of the CD equation instead of a fitting parameter. In the present study, transverse 

dispersivity is ignored; however, transverse dispersion in layered systems may play an 

important role as described by Lake and Hirasaki (1981). 

 

5.9 CONCLUSIONS  

We conclude that details averaged when using a macroscopic approach manifest 

themselves as an apparent convective spreading dispersivity. This section illustrates that 

scale-dependent (transmission) dispersivity caused by permeability variation, which are 

observed in the field-scale, can be replaced by the Koval factor. Hence, the impact of 

convective spreading can be eliminated by incorporating the Koval factor into the 

commonly used solution of the CD equation. In other words, if all heterogeneities are 
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modeled explicitly there would be no need for scale-dependent dispersivity. Below is a 

summary of this chapter: 

 An analytical solution is developed and examined to characterize the dispersive 

transport in layered heterogeneous reservoirs with weakly/significantly correlated 

permeability. The analytical solution is constructed assuming no cross-flow 

between layers.  

 The vertically averaged concentrations obtained from the derived analytical 

solution greatly match the simulation results while using scale-independent 

dispersivity. 

 The fraction of layers in which the mixing grows faster than the dispersive flow 

regime is determined as a function of the Koval factor and input dispersivity. 

Fewer layers are invaded by the injected fluid for reservoirs with large Koval 

factor as more channeling occurs. 

 

5.10 NOMENCLATURE 

αL = dispersivity in the longitudinal direction 

αD = dimensionless dispersivity equivalent to the inverse of the Peclet number 

αHK= input dispersivity required to match Eq. (5.27) with the simulation results 

αInput= simulation input dispersivity 

NPe
-1

=inverse of the Peclet number 

DL =the longitudinal dispersion coefficient 

αT = dispersivity in the transverse direction 
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NPe = Peclet number 

β = fraction of the injected fluid entering each layer 

RL = effective aspect ratio 

cD = dimensionless concentration of component i 

C = cumulative storage capacity 

tD== dimensionless time (injected pore volume)  

VDP= the Dykstra-Parson coefficient of permeability variation 

xD = dimensionless distance 

λxD = dimensionless autocorrelation length in the x-direction 

λzD =dimensionless autocorrelation length in the z-direction 

ΔtD = the maximum dimensionless time step in the simulation 

fj = fractional flow of phase j 

Ht=total thickness 

hl = thickness of layer l 

HK = Koval factor 

Sj = saturation of phase j 

 = porosity 

F = cumulative flow capacity 

z = interim variable 

t = time 
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1. 1 

2. 2 

3. 3 

4. 4 

 

Table ‎4.1: Simulation model properties 

Dimensionless 

Scaling Group 

First Example Second Example 

VDP 0.8 0.8 

λxD 0.05 10 

RL
*
 0.0 0.0 

NPe
**

 86 86 

 *The effective aspect ratio:  z

L

x

kL
R

H k
 

**Input Peclet number: T

Pe

x

u
N

LK



 

(See Appendix C for more details on dimensionless scaling groups) 
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Figure ‎4.1: Schematic of a 2D heterogeneous reservoir with no convective cross-flow 

between layers. The reservoir layers are separated by thin impermeable 

layers (blue strata). 
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Figure ‎4.2: A comparison between the concentrations obtained from Eq. (5.27) and the 

1D solution of CD equation when HK=1.001‎and‎αD =1E-2. 
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Figure ‎4.3: A comparison between the concentrations obtained from Eq. (5.27) and the 

1D solution of CD equation when HK=1.001‎and‎αD =1E-10. 
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Figure ‎4.4: The map of tracer concentrations of 0.1 and 0.9 within each layer (obtained 

from Eq. (5.5) depicted at tD=0.5 as a function of distance from the injector. 

Solid and dashed lines represent concentrations of 0.9 and 0.1, respectively. 

In‎these‎examples‎αD = 0.0001. The distance is normalized by the length of 

the permeable medium. 
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Figure ‎4.5: A comparison of the lengths of the mixing zone (normalized by the length of 

the reservoir) for all layers depicted at tD=0.5 when‎αD is equal to 0.0001. 

Two examples are considered: Hk =1 and Hk =10. The length of the mixing 

zone is obtained from Eq. (5.8). The larger the HK, the more convection-

dominated the flow is and, consequently, the mixing zone grows faster (with 

time) rather than the squared root of time 
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Figure ‎4.6: A comparison of the lengths of the mixing zone (normalized by the length of 

the reservoir) for all layers depicted at tD=0.5‎when‎αD is equal to 0.0001. 

Two examples are considered: Hk =1 and Hk =100. The length of the mixing 

zone is obtained from Eq. (5.8). The larger the HK, the more convection-

dominated the flow is and, consequently, the mixing zone grows faster (with 

time) rather than the squared root of time 
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Figure ‎4.7: Cumulative flow capacity as a function of dimensionless lengths of the 

mixing zone (normalized by the length of the reservoir) at tD=0.5 for two 

cases: Hk =1 and Hk =100‎when‎ αD is equal to 0.0001. The length of the 

mixing zone is obtained from Eq. (5.8).For the case of HK=100, the mixing 

zone grows faster than HK=1.0 (in large fraction of bulk flow~0.92) because 

the flow is convection-dominated.  
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Figure ‎4.8: The map of tracer concentrations of 0.1 and 0.9 within each layer (obtained 

from Eq. (5.5) depicted at tD=0.5 as a function of distance from the injector. 

Solid and dashed lines represent concentrations of 0.9 and 0.1, respectively. 

In‎these‎examples‎αD = 0.01. The distance is normalized by the length of the 

permeable medium. 
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Figure ‎4.9: A comparison of the lengths of the mixing zone (normalized by the length of 

the reservoir) for all layers depicted at tD=0.5‎when‎αD is equal to 0.01. Two 

examples are considered: Hk =1 and Hk =10. The length of the mixing zone 

is obtained from Eq.(5.8). The larger the HK, the more convection-

dominated the flow is and, consequently, the mixing zone grows faster (with 

time) rather than the squared root of time. 
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Figure ‎4.10: A comparison of the lengths of the mixing zone (normalized by the length of 

the reservoir) for all layers depicted at tD=0.5‎when‎αD is equal to 0.01. Two 

examples are considered: Hk =1 and Hk =100. The length of the mixing zone 

is obtained from Eq. (5.8). The larger the HK, the more convection-

dominated flow is and, consequently, the mixing zone grows faster (with 

time) rather than the squared root of time 
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Figure ‎4.11: Concentration history plots when Hk =1‎ for‎ three‎ different‎ values‎ of‎ αD 

depicted at xD=0.5.‎Larger‎spreading‎occurs‎as‎αD increases, consistent with 

the 1D solution of the CD equation. 
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Figure ‎4.12: Concentration history plots for selected layers (represented by cumulative 

storage capacities of 0.1, 0.5, and 0.7) depicted at xD=0.5 when Hk = 10 and 

αD = 0.01. 
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Figure ‎4.13: Concentration history plots for selected layers (represented by cumulative 

storage capacities of 0.1, 0.3, and 0.8) depicted at xD=0.5 when Hk = 100 

and‎αD = 0.01. 
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Figure ‎4.14: Concentration history plots for selected layers (represented by cumulative 

storage capacities of 0.1, 0.3, and 0.5) depicted at xD=0.5 when Hk = 10 and 

αD = 0.0001. 
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Figure ‎4.15: Concentration history plots for selected layers (represented by cumulative 

storage capacities of 0.1, 0.3, and 0.5) depicted at at xD=0.5 when Hk = 100 

and‎αD = 0.0001. 
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Figure ‎4.16: Vertically averaged concentration as a function of dimensionless distance 

(normalized by the length of the permeable medium) obtained from 

Eq.(5.27); the concentration profile is depicted at tD=0.5 and the Koval 

heterogeneity‎of‎one.‎As‎αD decreases, less spreading occurs. 
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Figure ‎4.17: Vertically averaged concentration as a function of dimensionless distance 

(normalized by the length of the permeable medium) obtained from 

Eq.(5.27); the concentration profile is depicted at tD=0.5 and the Koval 

heterogeneity is HK=10.‎As‎αD decreases, less spreading occurs. 
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Figure ‎4.18: Vertically averaged concentration as a function of dimensionless distance, 

(normalized by the length of the permeable medium) obtained from 

Eq.(5.27); the concentration profile is depicted at tD=0.5 and HK=100. In the 

presence of large permeability heterogeneity (HK =100), the impact of 

dispersivity becomes insignificant. 
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Figure ‎4.19: Flow velocity for selected grid layers as a function of time. There are 32 

layers in this example; flow velocities though different layers of the 

permeable medium stay constant with time as in individual grid blocks, 

because of the incompressible displacement without cross-flow. 
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Figure ‎4.20: Comparison of theoretical and simulation results for vertically averaged 

concentrations along a cross-section located at xD=0.1 at different times. 

VDP=0.8 and‎λxD=0.05 for this example. The Koval factor used to match 

concentrations is 5.1. 
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Figure ‎4.21: Comparison of theoretical and simulation results for vertically averaged 

concentrations along a cross-section located at xD=0.4 at different times. 

VDP=0.8 and‎λxD=0.05 for this example. The Koval factor used to match 

concentrations is 5.4. 
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Figure ‎4.22: Comparison of theoretical and simulation results for vertically averaged 

concentrations along a cross-section located at xD=0.9 at different times. 

VDP = 0.8 and‎λxD = 0.05 for this example. The Koval factor used to match 

concentrations is 5.4. 
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Figure ‎4.23: Comparison of theoretical and simulation results for vertically averaged 

concentrations along a cross-section located at xD=0.1 at different times. 

VDP=0.8 and‎λxD=10 for this example. The Koval factor used to match 

concentrations is 6.3. 
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Figure ‎4.24: Comparison of theoretical and simulation results for vertically averaged 

concentrations along a cross-section located at xD=0.4 at different times. 

VDP=0.8 and‎λxD=10 for this example. The Koval factor used to match the 

concentrations is 7.3. 
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Figure ‎4.25: Comparison of theoretical and simulation results for vertically averaged 

concentrations along a cross-section located at xD=0.9 at different times. 

VDP=0.8 and‎λxD=10 for this example. The Koval factor used to match 

concentrations is 5.4. 
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Figure ‎4.26: The ratio of dispersivity values, which are used in Eq. (5.27) and Eq. (5.3) to 

match the simulation results, to the input dispersivity as a function of xD. 

The graph clearly shows that dispersivity is not scale-dependent when Eq. 

(5.27) is used. VDP=0.8 and‎λxD=0.05 for this example. 
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Figure ‎4.27: The Koval factor values used in Eq. (5.27) to match the simulation results. 

VDP=0.8 and‎λxD=0.05 for this example. Each point in this figure 

corresponds to a point in Figure ‎4.26. 
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Figure ‎4.28: The ratio of dispersivity values ,which are used in Eq. (5.27) and Eq. (5.3) to 

match the simulation results, as a function of xD. The graph clearly indicates 

that dispersivity is not scale-dependent when Eq. (5.27) is used. VDP=0.8 and 

λxD=10 for this example. 
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Figure ‎4.29: The Koval factor values used in Eq. (5.27) to match the simulation results. 

VDP =0.8‎and‎λxD =10 for this example. Each point in this figure corresponds 

to a point in Figure ‎4.28. 
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Chapter 6: Evaluation of Local Mixing in Heterogeneous Reservoirs 

Dispersive mixing degrades field-scale miscible displacements through the 

dilution of the injected solvent. In this chapter, we derive and verify the numerical 

dispersion coefficients when flow velocity varies along the distance travelled. Numerical 

dispersion is associated with the truncation error inevitably introduced into the finite 

difference approximations of the conservation equations.  

We derive the finite difference form of the convection-dispersion equation to 

determine the numerical dispersion coefficients when flow velocity varies with travelled 

distance. The off-diagonal elements of the numerical dispersion tensor double when the 

flow velocity changes with distance. In addition, a specific simulation configuration is 

presented to verify the derived coefficients. 

The second part of this chapter examines how local mixing changes as the 

convective cross-flow increases. We apply two methods to determine the local mixing: 

the method developed in Chapter 5 and the conventional method of matching the 

concentration history of a grid block to the 1D solution of the convection-dispersion 

equation. The two-dimensional (2D) simulation models, used in this study, consist of an 

injector and a producer. Our simulation results indicate that the magnitude of the local 

mixing increases as cross-flow increases. Hence, flow manifests more dispersive 

behavior as cross-flow increases.  
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6.1 INTRODUCTION 

The inaccurate modeling of dispersion in miscible displacements yields an 

inaccurate prediction of oil recoveries (Garmeh et al., 2010). Dispersion in permeable 

media is a dilution process caused by molecular diffusion, velocity gradients at the pore-

scale level, locally heterogeneous streamline lengths, and mechanical mixing in pore 

bodies. Also, dispersive mixing degrades the displacement performance in field-scale 

miscible floods (Haajizadeh and Fayers, 2000; Walsh and Orr, 1990; Johns et al., 2002; 

Jessen et al., 2002, and Chapter 4 of this dissertation).  

Taylor (1922, 1953, and 1954) explains the fundamentals of dispersion; an 

extension of his dispersion theory to permeable media is described in detail by Perkins 

and Johnston (1963), Greenkorn and Kessler (1969), Bear (1972), and Lake and Hirasaki 

(1981). 

The dispersive flux is defined as the flux of component i in phase j with respect to 

volume-averaged velocity (Darcy velocity) because of dispersion. Dispersion flux is 

often represented by the Fickian form: 

 .     ijj j ijDijj S K
,
        (6.1) 

where ij  is the mass fraction of component i in phase j and, consequently, j ij  is the 

mass concentration of component i expressed per pore volume. Hence, the overall 

dispersive flux of component i becomes 
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 
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               j=1,2, ..NP          (6.2)  

The dispersion coefficient includes both molecular diffusion and mechanical spreading 

(Aronofsky and Heller, 1957). If x and y represent a 2D coordinate system, the dispersion 

tensor of component i in phase j, ijK , may be expressed as 


xx xy

ij

yx yy

K K

K

K K
   .

         (6.3) 

Following Bear (1972), the elements of the dispersion tensor for a homogeneous, 

isotropic permeable medium are defined as 

2 2  
 

 

ij l xj t yj
xx

jj

D u u
K

S u
,

        (6.4) 

2 2  
 

 

ij l yj t xj
yy

jj

D u u
K

S u
,

        (6.5) 

   
 



l t yj xj
xy yx

jj

u u
K K

S u
,

         (6.6) 

where l is called the longitudinal (parallel to bulk flow) dispersivity and t is known as 

the transverse (perpendicular to bulk flow) dispersivity; both l and t  are often 
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assumed to be phase-independent, i.e., dispersivity is considered the same for all phases. 

ijD is the effective binary diffusion coefficient of component i in phase j. Also,  is the 

tortuosity factor that accounts for the reduction in diffusive flux caused by the tortuous 

paths traced by particles of component i. 

If interstitial velocity is greater than 3 cm/day, the longitudinal dispersion 

coefficient, Kxx, can be written as (Lake, 1989) 

 


xx L

u
K

.

                                          (6.7) 

Numerical solutions to the conservation equations are usually obtained through 

finite difference methods. Hence, the numerical solutions are always affected by the 

truncation error associated with the differencing schemes. Lantz (1971), Fanchi (1983), 

and Yang (1990) showed that the truncation error introduces additional second-order (in 

some cases even first-order) terms in finite difference representations of the mass 

conservation equation; in practice, as Yang (1990) pointed out,  the flow velocity rarely 

remains constant with distance because of the cross-flow between layers or the 

compressibility of fluids.  Hence, we determine and verify the numerical dispersion 

coefficients when the flow velocity varies with distance. 

The main objectives of this chapter are: (1) to derive numerical dispersion 

coefficients when the flow velocity changes with distance and verify them and (2) 

evaluate the local mixing when the convective cross-flow varies. 
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6.2. PART I: 

6.2.1 The Convection-Diffusion Equation 

The 2D convection-diffusion (CD) equation describes the mass conservation of 

the tracer component. Assuming constant porosity (incompressible pore space), the two-

dimensional CD equation becomes 

    2 2

2 2

1 1 yx

xx yy

uu
K K

t x y x y

      
   

       ,

        (6.8)  

where ω is the mass of the displacing component expressed per unit pore volume. In 

addition, we assume that the principal axes of dispersion and permeability tensors 

coincide. The cross-derivatives are not included in Eq. (6.8) and, hence, we assume that 

the corresponding coefficients are zero (i.e., the off-diagonal elements of the physical 

(input) dispersion tensor are zero).  

The variation of the flow velocity with distance caused by cross-flow between 

layers is considered in the present work. It is customary to inject a conservative (passive) 

tracer into the permeable medium and match the concentration history with a one-

dimensional (1D) solution of the CD equation to determine dispersivity as a matching 

parameter to fit the concentration history plots. 

6.2.2 Finite Difference Form of the CD Equation 

Most partial differential equations (PDE) cannot be solved analytically. Hence, 

numerical solutions are often used to convert PDEs to algebraic equations. The algebraic 

equations can then be solved by direct or iterative methods. The essence of numerical 
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methods for PDEs lies in converting the derivative terms to "finite differences." An 

explicit difference form of Eq. (6.8) can be written as  

   2 2 1 1
t xx x yy y x x x x y y y yK K u u u u               

  .
  (6.9) 

Finite difference schemes commonly used to approximate the derivatives are 

forward, backward, and central differences. A forward difference uses the function values 

at x and (x+h): 

   h f f x h f x   
,        

(6.10) 

where h is the spacing. Thus, the gradient of function in the x direction at (x+h) can be 

linearly approximated by 

 
 



 
 

  

x h x x h x

x h

f f f ff

x x h x h .

      (6.11) 

This is a reasonable approximation when h is small. Similarly, a backward 

difference uses the function values at x and (x-h): 

      h f f x f x h
.
        (6.12) 

Thus, 

 
 



 
 

  

x h x x x h

x h

f f f ff

x x h x h .       

(6.13)

 

Finally, the central difference is given by 

,
2 2

h
h h

f f x f x
   

       
   

       (6.14) 

and, hence, the gradient of function in the x-direction at (x+h/2) becomes 
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(6.15) 

Using‎ Taylor’s‎ series‎ of‎ expansion,‎ the‎ forward‎ difference‎ form‎ of‎ the‎ time‎

derivative in Eq. (6.9) becomes 

 
22 3

2 32 3
t

tt
...

t ! !t t

     
     

   .
       (6.16)  

In addition, the first-order distance derivatives in Eq. (6.9) are approximated as 

 
22 3

2 32 3
x

xx
...
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Similarly, the second-order distance derivatives are approximated as 
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The substitution of Eqs. (6.16) through (6.22) into Eq.(6.9), while retaining terms 

only through the second-order differentials, yields 
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  (6.23)  

Next, the second-order time derivative term on the left side of Eq. (6.23) is 

substituted by equivalent terms to determine the numerical dispersion coefficients. The 

equivalent terms of the second-order time derivative is determined by taking the 

derivative of Eq. (6.8) with respect to time: 
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     (6.24)  

Next, the differentiation of Eq. (6.8) with respect to x gives 
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Also, the differentiation of Eq. (6.8) with respect to y gives 
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After eliminating 
2

t x

 

 
 and

2

t y

 

 
 between Eqs. (6.24) through (6.26), the second-

order time derivative term is expressed as 
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           (6.27)   

Finally, the substitution of Eq. (6.27) into Eq. (6.23) yields the expressions for the 

longitudinal, transverse, and the off-diagonal elements (cross-term dispersion 

coefficients) as 
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These elements are coefficients of the second-order‎derivatives‎of‎ω‎with‎respect 

to distance in Eq. (6.27). Two principal axes (longitudinal and transverse directions) and 

two off-diagonal directions are considered for dispersive transport through a 2D 

permeable medium. Following Fanchi (1983), equations (6.28) through (6.30) indicate 

numerical dispersion coefficients along the principal (longitudinal and transverse) and the 

cross-term axes, where the concentration gradient and the mass transfer direction are not 

collinear. A comparison of the numerical dispersion terms defined by Fanchi 

(1983),
2 2

  
 
 

y xu u t
, and Eq. (6.30) suggests a larger cross-term coefficient (multiplied by 

a factor of two in this study). Thus, the numerical cross-term elements of the numerical 

dispersion tensor double when velocity varies along principal axes (as in this study).  

To verify the derived off-diagonal elements of the numerical dispersion tensor, a 

simulation model with a specific configuration is required to prevent the interference of 

the longitudinal dispersion. Convective flow in the diagonal and transverse directions 

should be suppressed; otherwise, the longitudinal dispersion will interfere the length of 

mixing zone in any direction that flow occurs. However, the convective flow cannot be 

prevented when the coordinate system of the simulation model coincides with the 

principal axes of the permeability. 

 

 

 



 

 205 

Figure 6.1 shows a schematic of a composite simulation model consisting of a 

thin 2D model (flow strip) attached to another permeable medium (base). The simulations 

are performed‎ using‎ GEM,‎ CMG’s‎ general‎ equation-of-state compositional reservoir 

simulator. The objective is to evaluate dispersivity in the diagonal direction of a thin 

permeable medium (the flow strip) under two conditions: (1) when flow velocity changes 

with distance and (2) when flow velocity is constant along the flow strip. 

We make the simulation models such that flow takes place only along the 

diagonal direction (45° with respect to the x-direction). Elementary geometry then 

suggests that cross-term dispersion will be collinear with the coordinate system. 

However, we must assure that the direction of flow is fixed during the displacement; 

therefore, the permeability in the x-direction of grid blocks in the base is assigned three 

orders of magnitude smaller than those in the flow strip (Figure 6.1). Hence, the cross-

term dispersion can be assessed through monitoring the growth of the mixing zone along 

the y-direction. 

Two simulation models (Model 1 and Model 2) are used to evaluate the cross-

term dispersivities. All parameters are the same for both models except that the thickness 

of grid blocks in the flow strip changes in Model 2 while it is fixed in Model 1. The 

change in the thickness of grid blocks yields the variation of local velocity with distance.  

Figure 6.2 shows the variation of the grid thickness in Model 2. Thus, total pore volume 

of the flow strip is kept the same for both models. Note that the grid thickness in the z-

direction is uniform for Model 1. 
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The permeable medium is homogenous and initially filled with water and a tracer 

component is injected to measure local mixing. The simulation models consist of an 

injector and a producer that are operating under the constant bottomhole pressure 

constraint. Therefore, the pressure drop across the flow strip always remains constant. 

However, the grid thickness and, consequently, the flow velocity vary with distance in 

Model 2. Figure 6.3 shows how the velocity changes with distance in Model 2, because 

of the variation in the thickness of grid blocks in the flow strip. As inferred from Figure 

6.3Figure , no significant flow occurs in the base permeable medium. 

Figure 6.4 compares the injection and production rates for both models. Injection 

and production rates are the same and remain constant with time for each model; 

however, the rates are larger (by a factor of 1.17) in Model 1 compared to Model 2. 

Figure 6.5 illustrates the tracer concentration in Model 1 after 1465 days. The 

length of the mixing zone in the y-direction represents the magnitude of dispersion in the 

cross-direction. Furthermore, the transverse dispersion is lessened by reducing the 

permeability in the x-direction of the base by three orders of magnitude compared to that 

of the flow strip. Note that for our geometry, the transverse dispersion coincides with line 

x = y (the bisector of the angle between x- and y-axes). 

Figure 6.6 shows the tracer concentration in Model 2 after 1715 days; note that 

the concentration profiles are depicted at the same dimensionless time (injected P.V.). A 

visual comparison of Figures 6.5 and 6.6 suggests that a larger mixing zone occurs in the 

diagonal direction of Model 2 compared to Model 1 (see Appendix A for more details on 

the mixing zone). This can be explained only through a larger dispersivity in the diagonal 
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direction of Model 2 compared to Model 1 as both Figures are depicted at the same 

dimensionless time. 

In addition, Figure 6.7 compares the cumulative distribution function of the 

lengths of the mixing zone obtained in the y-direction for both models at the same 

dimensionless time. As inferred from the plot, the mode of distribution for Model 1 

corresponds to the mixing zone length of 82 ft compared to that of 115 ft for Model 2; 

hence, the ratio of the lengths of the mixing zone in Model 2 to that of Model 1 is 1.40 

(~ 2 ). As the mixing zone is proportional to K (see appendix A), the dispersivity of 

Model 2 should be twice as large as in Model 1, consistent with Eq.(6.30). 

The remainder of this chapter evaluates the change in local mixing caused by the 

convective cross-flow. 

6.3. PART II: 

A simulation approach is used to evaluate local mixing in heterogeneous 

permeable media when cross-flow between layers varies. The simulations are performed 

using GEM. Two-dimensional simulation models consist of an injector and a producer 

and have constant grid block sizes in the x- and y-directions. The permeable medium is 

initially filled with water and a passive tracer is injected to measure local mixing. The top 

and bottom of the models are no flow boundaries. The injector is assigned a constant rate 

whereas the producer is operating under a constant bottomhole pressure. Figure 6.8 

shows the log-normally-distributed permeability field generated using the FFTsim code 

(Jennings et al., 2002). Furthermore, a uniform porosity of 0.14 is considered.  
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Three simulation models are used to evaluate local mixing caused by cross-flow. 

They consist of 128 × 32 grid-blocks in the x- and y-directions. The length and width of 

the models are 1280 and 320 feet, respectively. All other parameters of the simulation 

models (as described in Table 6.1) are the same except for the effective aspect ratio (RL); 

the effective aspect ratio is the ratio of the transverse to longitudinal velocity. Three 

values of RL are examined for the purpose of this Chapter: 0, 0.126, and 10 and the ratio 

of permeability in y- to x-direction was adjusted, accordingly. 

Equation (6.30) shows the Peclet number attributed to the numerical dispersion 

for two-phase flow (Orr, 2007). The Peclet number attributed to numerical dispersivity 

becomes 250, ( Num

L =5.086 ft), as 
df j

dS j

 
 
 
 
 
   

is equal to one (tracer flow), and ΔtD is 0.001 in 

the simulations. 
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-1 D D

Pe

D

x Δt
N

x
        (6.30) 

In addition, an input longitudinal dispersivity of 5.0 ft is added so that total 

dispersivity (numerical + physical) of each grid block becomes equal ( Num Phys

L L   = 

10.086 ft); consequently, the corresponding Peclet number  is now reduced to 125.  

In addition, the simulation continued long enough (10 P.V.) to provide enough 

data to construct the concentration history plots. The local mixing is determined either 

through matching the concentration history of the tracer to the solution of a 1D 

convection-dispersion equation (Eq. A-7) or based on the method developed in Chapter 5. 
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The level of mixing that occurs in a heterogeneous reservoir is widely debated; 

however, it is well understood that reservoir mixing is sensitive to permeability 

heterogeneity. Considering a set of ten equally-spaced cross-sections along the permeable 

medium, we calculate the local mixing for grid blocks located on them (Figure 6.9). Note 

that the principal axes of dispersivity and the permeability coincide in this study. 

Figures 6.10 shows the concentration history plots obtained from grid blocks 

located on the third cross-section (as shown in Figure 6.9) when RL=0.126. 

Using Eq. (A-11) to match the concentration history plots, we get the longitudinal 

dispersivity for each grid block (output dispersivity) from Eq. (A-11). The slope of lines 

in Figure 6.11 is used to calculate the Peclet number and, consequently, the dispersivity 

for each grid block located on the third cross-section. Note that the xD term, which is used 

in Eq. (A-11) to determine the output dispersivity of a grid block, is the dimensionless 

distance from the injector; hence, xD is equal to 0.5 for grid blocks located on the third 

cross-section, etc. Furthermore, dimensionless time used in Eq. (A-11) corresponds to the 

ratio of the cumulative amount of fluid injected at any time to the fraction of total pore 

volume constrained between the injector and that cross-section; hence, the dimensionless 

time used in Eq. A-11 for grid blocks located on the third cross-section, is equal to (tD / 

0.3), etc. Similarly, Figures 6.12 through 6.25 illustrated the concentration history curves 

and the corresponding calculated dispersivity values for different RL’s.‎ 

Figure 6.26 shows the calculated dispersivity as a function of distance, 

normalized by the length of the reservoir, when RL = 0.126. The black circles  represents 

the dispersivity values calculated as if there is only one large grid block covering the 
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whole cross-section. Note that the local mixing at each grid block is much smaller than 

the averaged value represented by the black circles. Furthermore, the results suggest that 

the dispersivity increases with distance travelled. 

Figure 6.27 shows the calculated dispersivity as a function of distance, 

normalized by the length of the reservoir, when RL = 10. The averaged dispersivity (black 

circles) in this case is in the same order as the local mixing calculated at each grid block 

indicating that larger local mixing is realized with greater convective cross-flow between 

layers. Furthermore, the results suggest that the dispersivity increases with distance 

travelled. 

Figure 6.28 shows ddispersivity values used in Eq. (5.27) to match the 

concentration history plots. The graph clearly indicates that larger dispersivity is needed 

when the cross-flow increases and the concentration history curves are easily matched 

with the dispersivity equal to the input value. 

Figure 6.29 shows the koval heterogeneity values used in Eq. (5.27) to match the 

concentration history plots. The graph clearly indicates that smaller koval factor is 

needed when the cross-flow increases indicating that flow becomes more dispersive with 

distance travelled if there is convective cross-flow. Furthermore, the results suggest that 

the dispersivity increases with distance travelled. 
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6.4 DISCUSSION AND CONCLUSIONS 

The expressions for the numerical dispersion coefficients associated with the 

finite- difference form of the CD equation is presented and tested when velocity varies 

with distance. Oscillatory velocity may occur because of the cross-flow between layers in 

heterogeneous permeable media or the compressibility of fluids (Yang, 1990). The latter 

was not discussed in this study; however, the off-diagonal elements of the numerical 

dispersion tensor were shown to double when the flow velocity changes with distance. A 

specifically designed simulation model confirms the greater off-diagonal numerical 

dispersion coefficient when the flow velocity varies.  

Furthermore, the simulation results in Part II indicate that the flow becomes more 

dispersive with distance travelled if there is convective cross-flow. In addition, local 

mixing increases with the convective cross-flow between layers. In the examples shown 

in this Chapter, no significant transverse dispersion is present. 

6.5 NOMENCLATURE 

αL = dispersivity in the longitudinal direction 

Kxx = longitudinal dispersion coefficient 

αT = dispersivity in the transverse direction 

Kyy = transverse dispersion coefficient 

Dcross = off-diagonal element of numerical dispersivity tensor 

tD = dimensionless time defined as the ratio of cumulative amount of fluid injected at 

 any time to total pore volume 

xD = dimensionless distance 
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sj = saturation of phase j 

 = porosity 

ν = interstitial velocity 

ux = Darcy velocity in the x-direction 

uy = Darcy velocity in the y-direction 

τ = tortuosity factor 

var = variance 

t = time 

JDi = overall dispersive flux of component i 

JDij = dispersive flux of component i in phase j 

ΔtD = maximum time step in the simulation 

fj = fractional flow of phase j 

sj = saturation of phase j 

NPe = Peclet number 

λyD = dimensionless correlation length in the y-direction 

RL = effective aspect ratio 

VDP = Dykstra-Parson coefficient of variation 
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1. 1 

2. 2 

3. 3 

4. 4 

5. 5 

6. 6 

Table ‎6.1: The properties of the simulation model in Part II 

Dimensionless 

Scaling Group 

Value 

VDP 0.8 

λxD 0.15 

λyD 0.1 

NPe
*
 125 

*Peclet number caused by total dispersivity: T
Pe

xx

u
N

LK

  

(For more details on the dimensionless scaling groups see Appendix C)
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Figure 6.1: Schematic of a composite simulation model used in Part I to investigate the 

dispersivity term in the cross-direction of a thin 2D model (flow strip) 

attached to another permeable medium (base). Bulk flow occurs only across 

the flow strip as the permeability in the x-direction of the base is three-order 

of magnitude smaller than that of the flow strip. The flow strip consists of at 

least two grid blocks in the transverse direction.  
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Figure 6.2: The map of grid block thickness (ft) in Model 2. The thickness of grid blocks 

in the flow strip changes along the z-direction.  
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Figure 6.3: Map of flow velocity (ft/d) in Model 2. The flow velocity changes with 

distance because of the variation in the thickness of the grid block located in 

the flow strip. Note that the permeability in the x-direction is reduced by a 

factor of 0.001 for the grid blocks located in the base permeable medium. 
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Figure 6.4: Injection and production rates expressed in reservoir volumes per day for 

Model 1 and Model 2. The injection and production rates are equal and 

constant with time for each model. 
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Figure 6.5: Dimensionless tracer concentration in Model 1 after 1465 days. 
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Figure 6.6: Dimensionless tracer concentration in Model 2 after 1715 days. 
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Figure 6.7: Cumulative distribution functions of the mixing zone length obtained in the y-

direction at the same dimensionless time. As inferred from the plot, the 

mode of the distribution for Model 1 corresponds to the mixing zone length 

of 82 ft compared to that of 115 ft for Model 2. 
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Figure 6.8: Permeability field (md) used in Part II. VDP and‎λxD are 0.8 and 0.15, 

respectively. 
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Figure 6.9: Permeability field (md) used in Part II. VDP and‎λxD are 0.8 and 0.15, 

respectively. 
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Figure 6.10: Concentration history plots for all grid blocks located at xD = 0.3 when 

RL=0.126. The dimensionless time represents the fraction of total pore 

volume constrained between the injector and the third cross-section. 
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Figure 6.11: 1

DErfc (2c ) as a function of 
 D D

D

x t

t


 obtained from Figure 6.10. The 

longitudinal dispersion coefficient for each grid block is obtained from the 

slope of the corresponding line constructed on this plot; for this plot, xD =0.3 

and tD|cross-section = (tD/0.3) are used in Eq. (A-11). 
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Figure 6.12: Concentration history plots for all grid blocks located at xD = 0.5 when 

RL=0.126. The dimensionless time represents the fraction of total pore 

volume constrained between the injector and the fifth cross-section. 
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Figure 6.13: 1

DErfc (2c ) as a function of 
 D D

D

x t

t


 obtained from Figure 6.12. The 

longitudinal dispersion coefficient for each grid block is obtained from the 

slope of the corresponding line constructed on this plot; for this plot, xD =0.5 

and tD|cross-section = (tD/0.5) are used in Eq. (A-11). 
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Figure 6.14: Concentration history plots for all grid blocks located at xD = 0.7 when 

RL=0.126. The dimensionless time represents the fraction of total pore 

volume constrained between the injector and the seventh cross-section. 
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Figure 6.15: 1

DErfc (2c ) as a function of 
 D D

D

x t

t


 obtained from Figure 6.14. The 

longitudinal dispersion coefficient for each grid block is obtained from the 

slope of the corresponding line constructed on this plot; for this plot, xD =0.7 

and tD|cross-section = (tD/0.7) are used in Eq. (A-11). 

 



 

 229 

Figure 6.16: Concentration history plots for all grid blocks located at xD = 0.9 when 

RL=0.126. The dimensionless time represents the fraction of total pore 

volume constrained between the injector and the ninth cross-section. 
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Figure 6.17: 1

DErfc (2c ) as a function of 
 D D

D

x t

t


 obtained from Figure 6.16. The 

longitudinal dispersion coefficient for each grid block is obtained from the 

slope of the corresponding line constructed on this plot; for this plot, xD =0.9 

and tD|cross-section = (tD/0.9) are used in Eq. (A-11). 
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Figure 6.18: Concentration history plots for all grid blocks located at xD = 0.3 when 

RL=10. The dimensionless time represents the fraction of total pore volume 

constrained between the injector and the third cross-section. 
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Figure 6.19: 1

DErfc (2c ) as a function of 
 D D

D

x t

t


 obtained from Figure 6.18. The 

longitudinal dispersion coefficient for each grid block is obtained from the 

slope of the corresponding line constructed on this plot; for this plot, xD =0.3 

and tD|cross-section = (tD/0.3) are used in Eq. (A-11). 
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Figure 6.20: Concentration history plots for all grid blocks located at xD = 0.5 when 

RL=10. The dimensionless time represents the fraction of total pore volume 

constrained between the injector and the fifth cross-section. 
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Figure 6.21: 1

DErfc (2c ) as a function of 
 D D

D

x t

t


 obtained from Figure 6.20. The 

longitudinal dispersion coefficient for each grid block is obtained from the 

slope of the corresponding line constructed on this plot; for this plot, xD =0.5 

and tD|cross-section = (tD/0.5) are used in Eq. (A-11). 



 

 235 

 

 

Figure 6.22: Concentration history plots for all grid blocks located at xD = 0.7 when 

RL=10. The dimensionless time represents the fraction of total pore volume 

constrained between the injector and the seventh cross-section. 
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Figure 6.23: 1

DErfc (2c ) as a function of 
 D D

D

x t

t


 obtained from Figure 6.22. The 

longitudinal dispersion coefficient for each grid block is obtained from the 

slope of the corresponding line constructed on this plot; for this plot, xD =0.7 

and tD|cross-section = (tD/0.7) are used in Eq. (A-11). 
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Figure 6.24: Concentration history plots for all grid blocks located at xD = 0.9 when 

RL=10. The dimensionless time represents the fraction of total pore volume 

constrained between the injector and the ninth cross-section. 
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Figure 6.25: 1

DErfc (2c ) as a function of 
 D D

D

x t

t


 obtained from Figure 6.24. The 

longitudinal dispersion coefficient for each grid block is obtained from the 

slope of the corresponding line constructed on this plot; for this plot, xD =0.9 

and tD|cross-section = (tD/0.9) are used in Eq. (A-11). 
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Figure 6.26: Calculated output dispersivity as a function of distance when RL=0.126. The 

black solid points represent the corresponding dispersivity obtained from the 

cup- mixing concentrations as a function of xD. 
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Figure 6.27: Calculated output dispersivity as a function of distance when RL=10. The 

black solid points represent the corresponding dispersivity obtained from the 

cup- mixing concentrations as a function of xD. 
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Figure 6.28: The ratio of dispersivity values, which are used in Eq. (5.27) to match the 

concentration history plots, to the input dispersivity as a function of xD. The 

graph clearly indicates that larger dispersivity is needed when the cross-flow 

increases. 
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Figure 6.29: The Koval heterogeneity factor values used in Eq. (5.27) to match the 

concentration history plots. The graph clearly indicates that smaller Koval 

factor is needed when the cross-flow increases. This observation is expected 

based‎on‎the‎Taylor’s‎theory.‎ 
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Chapter 7: Numerical Indicator for Flow through Heterogeneous 

Permeable Media 

This chapter details a numerical indicator to examine the nature of miscible 

displacements in heterogeneous permeable media. We evaluate miscible displacements 

using assigned numerical values to their governing flow regimes. Previous studies state 

that the competition between effects is the cause of developing various types of flow 

regimes (dispersive, fingering, gravity override, and channeling). However, the 

distinction between the flow patterns is only possible qualitatively (visually) so far; 

hence, the current identification method fails to properly characterize displacements with 

a similar flow pattern. Furthermore, we cannot use visual identification to evaluate the 

displacement performance of miscible floods, quantitatively. 

We adopt the correlation coefficient function and use the progression of the 

mixing zone to assign a numerical value to the flow pattern. The correlation coefficient 

function of the lengths of the mixing zone calculated between two different times 

represents the tendency of the mixing zone to propagate linearly with time. Also, we 

demonstrate that the correlation coefficient function of the squared length of the mixing 

zone corresponds to the linear growth with the square root of time. Using the arithmetic 

average of the correlation coefficient functions over successive time intervals, we 

introduce a flow regime value to study the nature of miscible floods. We use a simulation 

approach to verify it and find that the numerical values assigned to the flow patterns are 

consistent with the visual identification.  



 

 244 

We conclude that flow pattern value is an effective measure of mixing zone 

development in heterogeneous permeable media. Furthermore, we demonstrate that the 

development pattern of the mixing zone can be monitored quantitatively. This is 

especially important in the prediction of displacement performance when cross-flow is 

small. In this study, we investigate the relation between flow pattern values and the 

displacement performance of miscible floods.  

7.1 INTRODUCTION 

Miscible gas flooding has proven to be one of the few cost-effective enhanced oil 

recovery techniques in the last decade. However, the success of miscible floods is often 

limited by poor volumetric sweep efficiency owing to the adverse viscosity ratio, the 

density difference between the solvent and the oil, and reservoir heterogeneity. The 

volumetric sweep efficiency is defined as the fraction of oil contacted by the displacing 

fluid (Lake, 1989). On the contrary, the fraction of oil not contacted by the displacing 

agent is called the missing oil; the latter notation is used mostly in this study. The 

interplay of effects (heterogeneity, unmatched density/viscosity, and effective aspect 

ratio, RL,) often reduces the volumetric sweep efficiency and yields specific types of flow 

regimes such as viscous fingering, channeling, and gravity override. Field observations 

indicate that varying the well spacing (between an injector and a producer) often changes 

flow patterns and, consequently, affects the amount of missing oil.  

The first study of viscous fingering is attributed to Hill (1952). Waggoner et al. 

(1992) studied the miscible flow regimes through permeable media under the vertical 

equilibrium (VE) condition and introduced the channeling flow regime. They 
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summarized that the competition between various effects is why different types of flow 

regime occur. Chang et al. (1994) and Sorbie et al. (1994) extended the work of 

Waggoner et al. to unmatched density and non-VE displacements, respectively. Li et al. 

(1994) introduced a Buckley-Leverett flow pattern for immiscible displacements when RL 

becomes negligible. However, these classifications are of little use (limited solely to the 

definition) without a way to quantify them. 

Despite different terminology, all flow patterns that reduce the volumetric sweep 

efficiency exhibit a similar propagation characteristic: the solvent front travels linearly 

with time. However, dispersive flow prevails under certain circumstances and results in 

the growth of the mixing zone with Time . This delays the solvent breakthrough time 

(BT) and increases the vertical sweep efficiency. The mixing zone is defined as the 

dimensionless distance between the locations where the dimensionless solvent 

concentrations of 0.1 and 0.9 occur (Lake, 1989). The objective of this work is to assign 

numerical values to the flow patterns of miscible displacements in heterogeneous 

permeable media. 

7.2 DESCRIPTION 

In general, the following flow patterns are known for miscible displacements: 

1. Fingering that is caused by an adverse mobility ratio, yields oil bypassing and, 

consequently, is considered an unfavorable flow regime. 

2. Gravity override that represents oil bypassing due to the density difference 

between the oil and the injected gas and is considered an unfavorable flow 

pattern. 
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3. Channeling because of the permeability heterogeneity that yields oil bypassing 

and is considered an unfavorable flow pattern. 

4. Dispersive that is in favor as it reduces the oil bypassing caused by the above 

patterns. 

The first three categories manifest inefficient recovery and early solvent 

breakthrough; conversely, the dispersive flow yields late solvent breakthrough. The 

principal distinction between channeling and the two other unfavorable flow patterns is 

that gravity overrides and fingering becomes dispersive when the oil and gas properties 

(density and viscosity) match; this is not true for channeling as it is caused by the 

inherent permeability variation of the system. The unfavorable flow patterns represent 

linear propagation of the gas front with time despite the dispersive regime for which the 

mixing zone grows with Time (favorable). The growth of the mixing zone with the 

square root of time also may be interpreted as the growth of the squared length of the 

mixing zone with time. Thus, regardless of the causes, the unfavorable flow regimes 

represent the same flow pattern for the mixing zone growth.  

Suppose x1 is the length of the mixing zone at time t1 and x2 is the length of the 

mixing zone at time t2. The the correlation coefficient function (Appendix B) of x1 and x2 

over the time domain represents how strongly x1 and x2 are correlated with respect to 

time. 

As the first step is to assign a numerical value to a flow pattern, we store lengths 

of the mixing zone in all layers of a two-dimensional (2D) model at time t1 (after solvent 
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injection) as array x1, at time t2 as array x2, and so on. See Figure ‎7.1and Figure ‎7.2 for 

the schematic illustration of the approach. 

The correlation coefficient function of arrays x1 and x2 represents the tendency of the 

mixing zone to grow linearly with time (unfavorable). Similarly, the correlation 

coefficient function of arrays x'1 and x'2 represents the tendency of the mixing zone to 

grow linearly with Time (favorable). Next, we take the average of the correlation 

coefficients calculated over equal time intervals. The average correlation coefficient 

functions of arrays x1 and x2 imply the tendency of the mixing zone to linearly grow with 

time. Similarly, the average correlation coefficient functions of arrays x'1 and x'2 imply 

the tendency of the mixing zone to linearly grow with Time . The ratio of the average 

correlation coefficient functions is defined as the flow pattern value. The flow pattern 

value falls in three possible ranges: 

  

 

 

 

 

 

       .                (7.1) 

The unfavorable type of flow will be dominant if the ratio is greater than unity; 

conversely, the miscible displacement yields a better sweep efficiency when the ratio is 

smaller than one. Both favorable and unfavorable flow patterns occur and neither is 

  

  

  

  

  

  

x|mix zone

2

x|mix zone

x|mix zone

2

x|mix zone

x|mix zone

2

x|mix zone

Average Average( )
1

Average( ')Average

Average Average( )
1

Average( ')Average

Average Average( )
1

Average( ')Average













    
 



 
 



  
  

 




 

 248 

dominant. However, the logarithm of the above ratio is used to represent the flow pattern 

in this study. 

7.3 VERIFICATION 

We use a simulation approach to compare the flow pattern values and visual 

identification. To be consistent with the literature, the simulation cases presented in 

Sorbie et al. (1992) are used to evaluate the proposed flow pattern values. Table ‎7.1 

shows the properties of the simulation models. The FFTsim code (Jennings et al., 2002) 

is used to generate heterogeneous permeability filed for each example. Furthermore, for 

all case studies, porosity is uniformly distributed.  

  The simulations are performed‎ using‎ GEM,‎ CMG’s‎ general‎ equation-of-state 

compositional reservoir simulator. The simulation models consist of two vertical wells 

located at the ends of 2D cross-sectional grid with constant grid block sizes in the x- and 

z-directions. The top and bottom of the models are no flow boundaries. Both wells 

operate under a constant rate constraint. Furthermore, single component oil and a first 

contact miscible solvent are used. The solvent viscosity, the transverse permeability, and 

the physical dispersivity are adjusted to maintain the specified values for the mobility 

ratio, the effective aspect ratio (RL), and the Peclet number (Npe) in each example.  

  In addition, the dispersion levels are mainly determined based on the input 

physical dispersivities in the simulations as the numerical dispersion is reduced by 

choosing small grid blocks and adjusting the maximum time step. Equation (7.2) shows 

the Peclet number attributed to the numerical dispersion for two-phase flow. The 
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numerical dispersion is inversely correlated with the number of grid blocks in the flow 

direction as 
 
  
 

j

j

df

dS
is equal to one and 



 
 
 

D

D

Δt

x
 is kept less than 0.01 in this study:

  

1
2

Num.
| ( )

j j

j j

df df

dS dS


 



-1 D D

pe

D

x Δt
N

x
.       (7.2) 

Table 7.2 compares the visual identification with the calculated pattern values. As 

the governing flow pattern becomes more dispersive, the corresponding numerical value 

increases, and vice versa. Figure ‎7.3 illustrates the solvent breakthrough time (BT) 

(expressed in reservoir pore volumes) as a function of the assigned numerical values. 

Overall, the trend implies that larger numerical values tend to have more unfavorable 

flows and premature BT; in contrast, smaller numerical values have more favorable flows 

that lead to negative values and, consequently, late BT.  

Overall, the results do not strongly support a one-to-one functionality between BT 

and the flow regime. This non-unique relation is because of the evolution of the mixing 

zone that occurs during displacements. Cross-flow between the layers explains why the 

flow pattern varies with time. Figure ‎7.4 and Figure  indicate different stages of the 

miscible displacement for two cases with small (RL=1.0) and large cross-flows, 

respectively; large cross-flows imply the vertical equilibrium (VE) condition (Lake, 

1989). Under the VE condition in a heterogeneous permeable medium, the injected fluid 

instantaneously communicates between the layers (to reach an equilibrium condition with 

respect to the pressure drop); this affects the pace at which the mixing zone grows within 

each layer and eventually leads to erratic flow patterns.  
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In contrast, if we limit the analysis to the blue points on Figure ‎7.3 that represent 

displacements with weak cross-flow between layers, a strong co-relation between the 

flow pattern and the corresponding BT exists; in other words, the flow pattern in which 

the mixing zone develops does not change when RL is small. 

Figure ‎7.5 shows the missing oil as a function of flow regime. The similar 

discussion as the BT applies where a strong co-relation exists only when RL becomes 

small. Thus, larger flow regime values correspond to more missing oil when a weak 

communication is present between the layers.  

In addition, we can predict the displacement performance of miscible 

displacements when RL becomes negligible if the governing flow pattern is known. To 

determine the flow pattern value, the simulation should be conducted to identify the 

mixing zone development pattern; however, the simulation needs to be conducted only 

for a few time steps as the flow regime will not change when cross-flow between layers is 

not present. 

7.4 CONCLUSIONS 

We successfully implement numerical values to present flow patterns that occur during 

miscible displacements in heterogeneous permeable media. The main conclusions of the 

study are: 

1. The numerical value assigned to the flow patterns is the most succinct form 

of describing miscible displacements in heterogeneous permeable media. It 

accounts for the interplay of effects by capturing all of them into a single 
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parameter and facilitates the development of the co-relations for the missing 

oil/breakthrough time. 

2. The numerical values attributed to the flow patterns provide a better 

understanding of flow than the visual method by evaluating various stages of 

the miscible displacements; Furthermore, it enables us investigate the 

evolution of the mixing zone during the displacements. 

3. Strong co-relations are observed between the flow pattern values and the 

missing oil/ breakthrough time when the reservoir layers exhibit poor vertical 

communications. 

7.5 NOMENCLATURE 

fj=   fractional flow of phase j 

Sj= saturation of phase j 

RL= effective aspect ratio :kv/kh  where L and h are the length and the width of the 

cross-section and Kv and kh are vertical and the longitudinal permeability, 

respectively 

NPe= Peclet number:ν/LKl , where ν and Kl are interstitial velocity and the longitudinal 

dispersion coefficient, respectively. 

tD== dimensionless time  

ti= time step i , where i=1,2,3,... 

VDP= the Dykstra- Parson coefficient of variation 

xD= dimensionless distance 

xi=array i consists of  lengths of the mixing zone for each grid layer of the model at ti 
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λxD=  dimensionless correlation length in the x-direction 

λzD= dimensionless correlation length in the z-direction 

ρh= the correlation coefficient function 

M°= mobility ratio 
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Table ‎7.1: Specifications of the simulation models (Sorbie et al., 1994) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Run V DP λ XD λ ZD M ˚ R L N Pe

1 0.5 0.024 0.024 1 1 80

2 0.5 0.024 0.024 10 1 80

3 0.5 0 0 1 6 240

4 0.85 0 0 1 6 240

5 0.5 0 0 10 6 240

6 0.85 0 0 10 6 240

7 0.85 0 0 10 19 240

8 0.85 0 0 10 30 240

9 0.85 0 0 10 60 240

10 0.833 0.025 0.025 1 1 160

11 0.833 0.025 0.025 1 60 160

12 0.941 0.025 0.025 1 1 160

13 0.941 0.025 0.025 1 60 160

14 0.833 0.025 0.025 3 1 160

15 0.833 0.025 0.025 3 60 160

16 0.941 0.025 0.025 3 1 160

17 0.941 0.025 0.025 3 60 160

18 0.718 0.05 0.05 3 1 160

19 0.718 0.05 0.05 3 60 160

20 0.865 0.05 0.05 3 1 160

21 0.865 0.05 0.05 3 60 160

22 0.757 0.1 0.1 3 1 160

23 0.4 0.025 0.025 10 1 160

24 0.4 0.025 0.025 10 60 160

25 0.6 0.025 0.025 10 1 160

26 0.6 0.025 0.025 10 60 160
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Table ‎7.2: A comparison between visual identification and the flow pattern-assigned 

values. F, C, and D represent fingering, channeling, and dispersive flow 

regimes, respectively (Sorbie et al., 1994) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Run Numerical value Visual identification 

11 -0.0948 D 

21 -0.0823 D 

10 -0.0589 D? 

4 -0.0570 D 

26 -0.0430 D 

13 -0.0413 D 

24 -0.0292 D 

3 -0.0276 D 

18 -0.0200 D 

1 -0.0171 D 

15 -0.0118 D 

9 -0.0043 D 

5 0.0019 F 

14 0.0100 F/D? 

25 0.0120 F 

2 0.0237 F 

6 0.0271 F 

17 0.0439 D? 

7 0.0514 F/D 

23 0.0758 F 

19 0.0828 D/C? 

16 0.0841 C? 

8 0.0903 F-D 

12 0.1243 C? 

20 0.2197 C 

22 0.392441974 C 
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Figure ‎7.1: The‎correlation‎coefficient‎function,‎ρh, of the lengths of the mixing zone for 

a reservoir with 32 layers  
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Figure ‎7.2: The‎correlation‎coefficient‎function,‎ρh, of the squared lengths of the mixing 

zone for a reservoir with 32 layers  
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Figure ‎7.3: The plot illustrates the solvent dimensionless BT expressed in the reservoir 

pore volumes as a function of flow pattern values. The results are erratic except for small 

cross-flow where a strong correlation exists. As the pattern value increases, an earlier 

breakthrough occurs and, consequently, a poor displacement performance is realized 

(unfavorable)   
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Figure ‎7.4:  Evolution of the mixing zone in Run 17 under the VE condition; the rate at 

which the mixing zone grows varies during the displacement 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The solvent concentration 

profile at tD=0.14 

The solvent concentration 

 profile at tD=0.27 

The solvent concentration profile 

at tD=0.42  
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Figure 7.5: The development of the mixing zone in Run 22 with small cross-flow for the 

pace‎at‎which‎the‎mixing‎zone’s‎growth‎stays‎almost‎constant‎during‎the‎

displacement 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The solvent concentration 

profile at tD=0.14 

The solvent concentration profile at 

tD=0.27  

The solvent concentration profile at 

tD=0.42 
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Figure ‎7.5: The missing oil (the remaining oil after 0.7 pore volume solvent injection) as 

a function of flow pattern values; a strong correlation exists only when the cross-flow 

becomes small. 
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Chapter 8: Contributions and Recommendations 

This chapter lists the main contributions of research described in this dissertation 

and offers recommendations for future research. 

8.1 MAJOR CONTRIBUTIONS 

 The method of characteristics (MOC) solution of the mass conservation 

equation of a component in two-phase flow through permeable media is 

derived in the presence of compressibility (Chapter 2).  

 A graphical procedure is proposed to evaluate the CO2 storage capacity of a 

one-dimensional (1D) saline aquifer because of the capillary and dissolution 

trapping mechanisms (Chapter 3). 

 The Walsh and Lake (WL) method is extended to predict the displacement 

performance of degraded miscible floods in the presence of weak cross-flow 

(Chapter 4).  

 We decouple the convective spreading from local-scale heterogeneity for 

heterogeneous reservoirs with no cross-flow between layers. In addition, an 

analytical solution is derived to determine the averaged concentration as a 

function of the problem parameters. Furthermore, the fraction of layers in 

which the mixing grows faster than the dispersive flow regime is determined 

analytically as a function of the Koval factor and input dispersivity (Chapter 

5).  
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 The numerical dispersion coefficients are determined when flow velocity 

varies with distance. The off-diagonal elements of the numerical dispersion 

tensor double when the flow velocity changes with distance. A specific 

simulation configuration is examined successfully to verify the off-diagonal 

coefficients (Chapter 6).  

 The flow becomes more dispersive with distance travelled if there is 

convective cross-flow. In addition, local mixing increases with the convective 

cross-flow between layers (Chapter 6). 

 A numerical indicator is presented to examine the nature of miscible 

displacements in heterogeneous permeable media (Chapter 7).  

 

8.2 RECOMMENDATIONS FOR FUTURE WORK 

The following is a list of topics for future research to expand the technical work 

presented in this dissertation: 

 Extension of the derived MOC solution in Chapter 2 to  

o multicomponent multiphase flow 

o reactive flow 

 Extension of the graphical method presented in Chapter 3 in the presence of 

compressibility 

 Extension of the WL method in the presence of compressibility 

 Decoupling of large- and small-scale heterogeneity in the presence of cross-flow 

using a similar treatment as in Chapter 5. 
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Appendix A: Convection-Diffusion equation  

A dimensionless form of the one-dimensional CD equation can be written as (Lake, 

1989) 
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where dimensionless parameters for the equation are defined as 
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where cD is the dimensionless concentration normalized to the initial-injection 

concentration difference, tD is the dimensionless time (P.V. injected), xD is the 

dimensionless distance (normalized by the length of the reservoir), Kxx is the longitudinal  

dispersion coefficient, and NPe is the Peclet number. The Peclet number is the ratio of 

convective to dispersive transport. Thus, for large Peclet numbers, convective transport 

dominates over dispersive mixing, and for small Peclet numbers, dispersive mixing 

prevails.  
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As discussed in Chapter 6, from Eq. (6.7) for larger interstitial velocity than 3 cm/day, 

Eq. (A-5) can be written as 
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         (A-6)

 

Furthermore, the exact solution of Eq. (A-1) under the following boundary and initial 

conditions becomes 
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where erfc is the complementary error function given by 
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However, an approximate commonly-used solution of Eq. (A-1) is expressed as 
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Equation (A-9) can be used to determine local mixing (dispersivity) from the 

concentration history plots. Knowing the dimensionless concentrations as a function of 
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dimensionless time and distance, we determine αD from Eq. (A-9). To do so, we 

rearrange Eq. (A-9) as 
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Furthermore, incorporating Eq. (A-6) into Eq. (A-10) yields 
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Hence, the longitudinal dispersion coefficient can be obtained from the slope of lines 

constructed on the plot of  1

Derfc 2c as a function of D D

D

x t

t


.  

In addition, the solution of 2D convection-diffusion equation (Eq. (6.8)) subject to the 

instantaneous point source for a homogenous permeable medium is given as   
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  
,     (A-12) 

where c0 is the tracer concentration at the source point and A is the volume per length of 

the‎source.‎Furthermore,‎ν‎is‎the‎magnitude‎of‎total‎velocity. 

The mixing zone length at any direction is determined through finding the distance 

between the locations where D
0

c
c 0.1

c
   and D

0

c
c 0.9

c
  occur. Hence, we evaluate 
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the mixing zone along the line x = y (the bisector of the angle between x- and y-axes) 

using Eq. (A-12). 

From Eq. (A-12), the location where
0

c
0.1

c


 
occurs along the bisector is obtained: 

   
   

 0.1D

L T2 2
T L T T L L T

c
T L

4 0.1 t K K
tK K t K K K ln 4K K t

A
x | .

k K

 
       

 
 




   

           

(A-13)

 
 

Similarly, for Dc 0.9  

   
   

 0.9D

L T2 2
T L T T L L T

c
T L

4 0.9 t K K
tK K t K K K ln 4K K t

A
x | .

k K

 
       

 
 



   

           

(A-14) 

          

In addition, if the longitudinal and transverse dispersion coefficients are assumed to be 

the same, the length of the mixing zone along the diagonal direction becomes 

   2 2 2 24 0.9 tK 4 0.1 tKt t
x 2Kt ln 2Kt ln

4 A 4 A

     
         

    .  

(A-15) 

The first term under radical sign in Eq. (A-15) can be eliminated in comparison with the 

second term as A is very small and the second term under the radical sign becomes much 

larger than the first term. Hence, 
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   4 0.9 tK 4 0.1 tK
x 2Kt ln 2Kt ln

A A

    
       

         (A-16) 

Rearranging, 

     x K 2t ln 11.3t ln K ln A K 2t ln 1.25t ln K ln A              
  (A-17) 

lnK and lnA are usually very small compared to ln(11.3t) and ln(1.25 t); therefore, the 

length of the mixing zone along the diagonal direction (line x = y) is proportional to the 

square root of the dispersion coefficient, 

x K .
          

(A-17) 
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Appendix B: Heterogeneity 

With the probability distribution function f(z), known for a continuous random 

variable Z, the r
th

 moment is defined as 

r

r z f (z)dz





  
,
         (B-1) 

where r is a non-negative integer. Hence, the first non-centered moment (i.e., r = 1) is 

referred to as the expected value of E(Z) defined as 

E(Z) z f (z)dz





 
.
         (B-2) 

Similarly, the second-order centered moment, known as the variance, becomes 

2Var(Z) (z E(Z)) f (z)dz





          (B-3) 

or 

 
22Var(Z) E(Z ) E(Z) 
.
        (B-4) 

In addition, the auto-covariance is a measure of how strongly a property Z (e.g., 

permeability) at location xi is related to Z at location xj. In a spatially correlated medium, 

a strong relationship is expected for xi and xj that are close together. The auto-covariannce 

between data Zi and Zj is defined as 

i j i j i jCov(Z , Z ) E(Z Z ) E(Z )E(Z ) 
.
       (B-5) 
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The correlation length is a measure of the auto-correlation extension so that a data set 

with a large range is strongly auto-correlated. As λxD and λzD approach zero, auto-

correlation vanishes in both the longitudinal and transverse directions, respectively. 

The auto-correlation coefficient between data Zi and Zj is the auto-covariance of Zi and Zj 

normalized by dividing by the variability of Zi and Zj (Jensen et al., 2002): 

i j

i j 2

i j

Cov(Z ,Z )
(Z ,Z )

Var(Z )Var(Z )
 

   ,

        (B-6) 

where Cov(Zi,Zj) and Var(Zi) are the auto-covariance and variance, respectively.  

Furthermore, the semi-variance (generalized variance) is defined as  

2

i j i j2 (Z , Z ) E(Z Z )  

.
        (B-7) 

Assuming second-order stationary holds, all moments are invariant under translation 

and become independent of position. Therefore, the auto correlation and semi-variance 

measures become a function of a single argument: 

i i k

i i k

i i k

(Z ,Z ) (k) (k h)

Cov(Z ,Z ) Cov(k) Cov(k h)

(Z ,Z ) (k) (k h)







     

  

     

 ,      (B-8) 

where k h is the separation distance/lag distance. Second-order stationary allows a 

graphical representation of the autocorrelation measures. Furthermore, a simple 

relationship between the auto-covariance and the semi-variance is possible as 

2(h) cov(h)   

.
         (B-9) 
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Heterogeneity and variability are often used interchangeably. Heterogeneity is the 

property of the permeable medium that causes the flood front to distort and spread as the 

displacement proceeds. As permeability heterogeneity increases, distortion increases. 

The common measure of permeability variation used in the petroleum industry is VDP, the 

Dykstra-Parsons coefficient (Dykstra and Parsons, 1950): 

50% 16%

DP

50%

k k
V

k




 ,        (B-10) 

where k50% is the median of permeability distribution and k16% is the permeability value 

that is one standard deviation below k50%. VDP is zero for homogeneous reservoirs and 

one‎ for‎ the‎ hypothetical‎ “infinitely”‎ heterogeneous‎ reservoir.‎ VDP is also called the 

coefficient of permeability variation; other definitions of VDP involving permeability-

porosity ratios are possible (Lake, 1989). 
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Appendix C: Scaling Analysis for Simultaneous Water-and-Gas 

Injection 

This chapter presents the order-of-one o(1) scaling analysis and provides a unique set of 

dimensionless scaling groups to assess the displacement performance of simultaneous 

water and gas (SWAG) injection. For the first time, we consider the effects of water 

salinity, the dissolution of solvent in the aqueous phase, and the complexity of injection 

and‎production‎wells’‎configuration on the performance of miscible displacement; we can 

study their impacts on the performance of miscible displacements through a comparison 

of the obtained dimensionless groups.  

Generally speaking, o(1) scaling analysis is useful when the objective is to 

identify approximations that are allowed for a particular transport phenomenon. The 

outcome of this study helps reduce the required number of parameters to be considered in 

the design process of SWAG injections. 

We implement the o(1) scaling analysis into the system of governing equations 

using an eight-step procedure described by Krantz (2007). Each variable in the system of 

equations is replaced by an appropriate scale and reference factors. We further determine 

the scale and reference factors by ensuring that the resulting dimensionless scaling groups 

remain within o(1). 

Our analysis suggests that o(1) scaling yields a unique set of 45 independent 

dimensionless groups for a three-phase five-component SWAG displacement in a two-

dimensional anisotropic permeable medium. Through this study, several new 
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dimensionless groups are identified such as the salinity number, compressibility group, 

density-molecular weight group, viscosity-molecular weight and perforation groups. 

MATHEMATICAL BASIS OF SCALING ANALYSIS 

Scaling analysis is an application of a subset of the Lie group theory. In mathematics, 

group theory concerns the algebraic structures known as groups. Algebraic structures are 

defined as one or some sets (a collection of distinct objects), closed under one or more 

operations satisfying some axioms (from which other statements are logically derived). 

Furthermore, in mathematics, a set is defined to be closed under an operation if the 

performance of that operation on members of the set always produces a unique member 

of the same set; for more details on the Lie group theory, see Steeb (2007). 

The basic idea in o(1) scaling analysis is to substitute dependent/independent 

variables in the governing equations with new terms. Therefore, a prerequisite of the 

scaling process is knowledge of the governing equations. The scaling yields interesting 

insight into the relations between the parameters and variables without solving the 

equations. The non-dimensionalizing process yields a system of dimensionless equations 

representing the minimum parametric description of the process; i.e., the solution will be 

only a function of the dimensionless independent variables and the dimensionless groups 

generated by the scaling process. 
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Figure C.1: Schematic of the displacement configuration (line-drive type) used by Wood 

et al. (2006) 
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Figure C.2: Schematic of the SWAG displacement considered in this study 

 

ASSUMPTIONS 

In this chapter, SWAG scaling analysis will be presented through a stepwise 

procedure under the following premises: 

1. Two-dimensional homogeneous, constant dip angle, anisotropic permeable 

medium (Figure C.2). 

2. The model includes an injection well and a producer well, which may have a 

different orientation rather than just being parallel with the z-direction. 

3. The injection and production wells can be partially perforated.  
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4. The injection well is assigned a constant rate.  

5. The producer operates under a constant bottomhole pressure constraint. 

6. Five components exist: two in the aqueous phase, two in the oleic phase, and one 

solvent (e.g., CO2). 

7. The oil consists of pseudo-components 3 and 4. Component 3 (light oil 

component) may partition into the solvent phase, but component 4 (heavy oil 

component) always stays in the oil phase. 

8. Both the injected and the resident water may contain some salinity. 

9. No water vaporization into the solvent phase occurs. 

10. The solubility of the solvent (e.g., CO2) in the aqueous phases occurs. 

11. The maximum of three phases can exist simultaneously: the aqueous phase 

(subscript 1), oil phase, (subscript 3), and the solvent phase (subscript 2). 

12. No sorption and no chemical reaction occur. 

13. The pore space is assumed to be incompressible; i.e., rock compressibility is 

assumed to be negligible. 

14. Hydrodynamic dispersion is assumed to have the Fickian form; furthermore, 

molecular diffusion is negligible compared to the mechanical dispersion. 

FORMULATION 

The first step of scaling analysis is to determine the dimensional-describing equations 

(mass conservation equations) and their initial, boundary, and auxiliary conditions. The 

formulation for the mass conservation for simultaneous injection of CO2 and water 

contains two fundamentally different forms: overall composition balances and the phase 
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conservation equations. We consider the overall mass conservation equation for Nc-1 

components, the continuity equation, and Np-1 phase conservation equations; Nc and Np 

are the number of components and the phases, respectively. It is required to ensure that 

the problem is completely determined. Two-dimensional five-component three-phase 

flow is governed by the following conservation, continuity, and constitutive equations. 

Overall composition balances 

The overall composition of component i represents the sum of component i in all phases. 

In this study, there are four overall compositional equations that are independent: 
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To facilitate the derivation procedure, we consider ij j ijc    for the remainder of this 

study. Hence, cij is defined as the mass of component i per volume of phase j.  

Phase conservation equations 

There are two independent phase conservation equations as 

1 1 1 X1 1 Z1

m21

( S ) ( U ) ( U )
r ,

t x z

     
   

  

       
(C-5)

 

2 2 2 X2 2 Z2

m22 m32

( S ) ( U ) ( U )
r r ,

t x z

     
    

         (C-6)
 

where rmij represents the rate of mass transfer between phases owing to condensation and 

vaporization. 

Continuity equation 

The continuity equation as the sum of all phase conservation equations is expressed as 

 1 2 2 3 31 1 X1 2 X2 3 X3 1 Z1 2 Z2 3 Z3
S S S ( U U U ) ( U U U )

0.
t x z

           
   
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(C-7)

 

Initial condition 

The initial oil saturation in the reservoir is known; in addition, we assume that there is no 

solvent phase (gaseous phase) initially present in the reservoir. Moreover, the salinity of 

the resident brine and the composition of pseudo-component 4 (heavy oil) are known. 

Hence, 
I

51 51

I
43 43

I
3 3
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@ t 0 x,z

S S
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  
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



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Injection composition  

At the injection inlet, we assume that the salinity of the injected water and the 

composition of the solvent in the gaseous phase are known. 

 
J

1 1 151 51

2 2 122

d Sin x (d w )Sin
@ and t 0 .

d Cos z (d w )Cos1.0

       
 

           (C-9) 

 

Definition of mass fraction and saturation 

Following the definition, the summation of mass fractions (ωij) within each phase 

becomes unity; likewise, phase saturations add to one:  
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Determined initial and injected phase viscosities  

In‎ addition,‎we‎ assume‎ that‎ the‎ fluids’‎viscosities‎ are‎known‎at‎ the‎ initial‎ and‎ injected‎

conditions: 

I

1 1

I

3 3
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@t 0
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@t 0&injector.

   

   
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(C-11)
 

Salting-out effect 

We assume that the salinity can be present in both injected and the resident aqueous 

phases. Furthermore, the solubility of injected solvent (CO2) in water is considered as one 

of the miscibility-degrading factors as it reduces the solvent efficiency to extract oil.  
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The impact of an aqueous electrolyte phase on the solubility of a non-electrolyte gas is 

reported as the Sechenov salting-effect. The aqueous electrolyte may increase the gas 

activity coefficient and, thus, reduce the gas solubility. This phenomenon is called salt-

out. The salt-in process is a similar phenomenon, but with an inverse impact that reduces 

the gas activity coefficient and increases the gas solubility. Sechnov (1889) proposed the 

following general empirical equation: 

Pure

sal sal

brine

H
log( ) K M ,

H


         (C-12)
 

where Hbrine and Hpure are Henry constants for brine and pure water, respectively. Ksal is 

the Sechnov coefficient and M is the molality of the salt (solute). 

 

 Effect of pressure on the solubility of the solvent in the aqueous phase 

The experimental results indicate that the solubility of CO2 in an aqueous phase increases 

linearly with gas pressures greater than 2000 psi (Kumar, 2004; Hangx, 2005). Hence, the 

volume of dissolved CO2 is linearly correlated with the gas pressure: 

21

2

2

AP +B,





         
(C-13)

 

where 21

2




 is the 2Vol.dissolvedCO

Mass Water
 . Experimental results show that for T=160°F, A and B 

are 0.0016048 and 21.6, respectively. However, similar results are obtained for different 

temperatures. Therefore, the differential form of Eq. is expressed  as 
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 Top and bottom no flow boundaries 

 

jZ PU 0 where j 1,.., N @ z 0,z H x, t , where t 0 .     

    (C-15) 

No flow boundary condition is applied at the bottom of the reservoir; therefore, 

1Z 2Z 3ZU U U 0 @ z 0 x, t ,where t 0 .           
(C-16)
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Likewise, the top of the reservoir is subjected to the no flow boundary condition: 

1Z 2Z 3ZU U U 0 @ z H x, t ,where t 0 .           
(C-18)
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 Constant pressure producer constraint 

We assume a constant bottomhole pressure constraint for the producer. 



 

 281 

3 3

j wf j 3

4 4 2

L (d w2)Sin x L d Sin
P P gC os (H d Cos Z) @ and t 0,

d Cos z (d w )Cos

      
       

      

           (C-20)
 

where the average density is the flux average density in the production well: 
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 Capillary pressure equation 

Using the Leverett J-function, a dimensionless function, the capillary pressure between 

phases are considered as 

j k jk PP P j(S) where j,k 1,..N and j k.
k


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 Constant rate injector 

We further assume a constant rate constraint for the injector. Hence, the following 

relations between injection rates are defined: 
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Furthermore, 
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where WR is the WAG ratio defined as the ratio of injected water to that that of the gas 

phase expressed in reservoir units. 
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 Darcy’s law 

We‎assume‎that‎Darcy’s‎law‎is‎valid‎for‎multiphase‎flow: 

j rj j Pu k ( Pj g) where j 1,..N ,     

      

(C-25)
 

where, 
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(C-26)

 

 Initial reservoir pressure 

An initial pressure of Pi is considered for the oil phase at the datum z=0: 

3P Pi @ t 0 and z 0.           
(C-27)

 

 Relative permeability 

A typical form of relative permeability models consists of a constant endpoint, krj°, 

multiplied by an arbitrary dimensionless function of saturation as 

rj rj D j Pk k f (s ) where j 1,..N . 

        (C-28)
 

 Fluid viscosity 

We consider a constant value for viscosity of the aqueous phase and variable viscosities 

for the oil and gas phases. The viscosity of gas phase is usually much smaller than that of 

liquid phase; hence, the gas will tend to dominate the flow if it becomes 

mobile g gcritS S . However, the gas phase viscosity increases as the miscibility 

develops owing to the dissolution of oil component into the gaseous phase. The viscosity 

of gas phases increases until the gas and oil viscosities become equal. This is where 
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miscibility has been achieved. Therefore, we consider the following relation for the gas 

viscosity: 

2,g 2 2 3,g 3 3

2

2 2 3 3

M M
.

M M
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 

    
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  
         

           (C-29)
 

In this study, SWAG injection is considered as an isothermal process; therefore, we take 

the pure viscosity of components (
i,g

 ) as a parameter, not a variable.  

On the other hand, the oil phase viscosity varies because of the mass transfer between 

phases. We consider the following logarithmic mixing rule for the oil viscosity: 

         
cN 4

o i i,o i,3 i,o 23 2,o 33 3,o 43 4,o

i 1 i 2

ln x ln ln ln ln ln .    

 

             
  (C-30)

 

The pure viscosity of each component in the oleic phase 
i,o

 can be measured directly or 

estimated from the existing correlations or tables. 

 Relations between mole and mass fractions 

The mole fraction of component i in phase j has the following relation with the mass 

fraction of that component in the same phase: 

j

ij ij

i

M
,

M
  

          (C-31)
 

where the oil and gas average molecular weights are defined as 

3 23 2 33 3 43 4M M M M ,                
(C-32)
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2 22 2 32 3M M M .              
(C-33)

 

 

 Mass Density 

Liquid densities (water and oil) are obtained through the concept of an ideal mixture: 

aq

oil

N

51i1 11 21

i 11 i,w 11 51 21

N

i3 23 33 43

i 13 i,3 2,3 3,3 4,3

1
,

1
.

  




  
   

    

   
   

    




        

(C-34)
 

Since the flow occurs the isothermal condition, the density of component i in the oleic 

phase is only affected by a change in the oleic phase pressure. The following relation 

represents the density variation because of the  pressure change:   

i i (1 c P),            where i=3,4     
(C-35)

 

In addition, the density of water and salt components are assumed to be constant during 

the displacement.  

Gas density can be calculated as: 

2 Gas

2

Gas

P M
.

ZRT
            

(C-36)
 

The gas compressibility factor, Z, is a function of both temperature and pressure. 

However, it will be solely a function of pressure as here we study isothermal gas 

injection. Therefore, 

Temp.cons.

r r rZ f (P ,T ) Z f (P ) ,  

  

           
(C-37)

 



 

 285 

where Pr and Tr are reduced pressure and temperature, respectively. Furthermore, 

rZ Z f (P ).



 

          
(C-38)

 

 Mass transfer between phases 

The following relations represent the mass transfer between phases: 

m21 21 2 22 2 1 21 1

m22 21 2 22 2 1 21 1 23 2 22 2 3 23 3

m32 32 3 33 3 2 32 2

r K ( S S )

r K ( S S ) K ( S S )

r K ( S S ),

     

          

     
     

(C-39)
 

where 
ijK is the mass transfer coefficient of component i in phase j. If the flow becomes 

fully immiscible, the mass transfer terms in the phase conservation equations will be 

zero. 

IMPLEMENTATION OF THE TECHNIQUE 

In step 2, we define a scale and a reference factor for each dependent and independent 

variable. These factors establish linear transformations from dimensional to 

dimensionless space. 

Mass fraction of component i in phase j 
* *

11 112 11D 111

* *

21 212 2D 211

* *

51 512 51D 511

* *

22 222 12D 221

* *

32 322 32D 321

* *

23 232 23D 231

* *

33 332 33D 331

* *

43 432 43D 431

    

    

    

    

    

    

    

     .         

(C-40)
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Average molecular weight of phase j 

* *
1 12 1D 11

* *
2 22 2D 21

* *
3 32 3D 31

M M M M

M M M M

M M M M

  


 


 
.         

(C-41)

 

Mass of component i per volume of phase j 
* *

11 112 11D 111

* *

21 212 2D 211

* *

51 512 51D 511

* *

22 222 12D 221

* *

32 322 32D 321

* *

23 232 23D 231

* *

33 332 33D 331

* *

43 432 43D 431

c c c c

c c c c

c c c c

c c c c

c c c c

c c c c

c c c c

c c c c

  


 


 

  


 


 

  


  .         

(C-42)

 

Mole fraction of component i in phase j 
* *

11 112 11D 111

* *

21 212 2D 211

* *

51 512 51D 511

* *

22 222 12D 221

* *

32 322 32D 321

* *

23 232 23D 231

* *

33 332 33D 331

* *

43 432 43D 431

     

     

     

     

     

     

     

      .         

(C-43)

 

Average molecular weight of phase j 

* *
1 12 1D 11

* *
2 22 2D 21

* *
3 32 3D 31

M M M M

M M M M

M M M M

  


 


 
.         

(C-44)
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Saturation of phase j 

* *

1 12 1D 11

* *

2 22 2D 21

* *

3 32 3D 31

S S S S

S S S S

S S S S

  


 


  .         
(C-45)

 

Density of phase j 

* *

1 12 1D 11

* *

2 22 2D 21

* *

3 32 3D 31

    

    

     .         

(C-46)
 

Density of oil components in the oleic phase  

* *

33 332 33D 331

* *

43 432 43D 431

     

      .         (C-47) 

Phase pressure  

* *

1 12 1D 11

* *

2 22 2D 21

* *

3 32 3D 31

P P P P

P P P P

P P P P

  


 


  .         
(C-48)

 

Darcy velocity in the x-direction  

* *

1X 12X 1XD 11X

* *

2X 22X 2XD 21X

* *

3X 32X 3XD 31X

u u u u

u u u u

u u u u

  


 


  .         
(C-49)

 

Darcy velocity in the z-direction  
* *

1z 12Z 1ZD 11Z

* *

2z 22Z 2ZD 21Z

* *

3z 32Z 3ZD 31Z

u u u u

u u u u

u u u u

  


 


  .         
(C-50)
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Injection rate  

* *

1 12 1D 11

* *

2 22 2D 21

* *

3 32 3D 31

U U U U

U U U U

U U U U

  


 


  .         
(C-51)

 

Independent variables 

* *

2 D 1

* *

2 D 1

* *

2 D 1

x x x x

z z z z

t t t t

  


 


  .         
(C-52)

 

Phase viscosity 
*

1 12 1D

*

2 22 2D

*

3 32 3D

   

   

    .          

(C-53)
 

Mass transfer rate between phases 

m212 m21D m211

m222 m22D m221

m322 m32D m321

* *

m21

* *

m22

* *

m32

r r r r

r r r r

r r r r

  


 


  .         
(C-54)

 

Next, we determine reference factors for all variables (step 3). The parametric 

representation of the governing equations will involve an additional unnecessary 

dimensionless group if this step is not done properly; in other words, non-

dimensionlizing should not change the original form of the equations. Hence, the 

dimensionless form of the variables becomes: 
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Mass fraction of component i in phase j 

*

11 112 11D

*

21 212 2D

*

51 512 51D

*

22 222 12D

*

32 322 32D

*

23 232 23D

*

33 332 33D

*

43 432 43D

   

   

   

   

   

   

   

    .         

(C-55)
 

Phase pressure  

*

1 12 1D wf

*

2 22 2D wf

*

3 32 3D wf

P P P P

P P P P

P P P P

  


 


  .         
(C-56)

 

Density of phase j 

* I

1 12 1D 1

* J

2 22 2D 2

* I

3 32 3D 3

    

    

     .         

(C-57)
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Mass of component i per volume of phase j 

*

11 112 11D

*

21 212 2D

*

51 512 51D

*

12 122 12D

*

22 222 12D

*

32 322 32D

*

23 232 23D

*

33 332 33D

*

43 432 43D

c c c

c c c

c c c

c c c

c c c

c c c

c c c

c c c

c c c

 






 






 

 


 .         

(C-58)
 

Mole fraction of component i in phase j 

*

11 112 11D

*

21 212 2D

*

51 512 51D

*

12 122 12D

*

22 222 12D

*

32 322 32D

*

23 232 23D

*

33 332 33D

*

43 432 43D

   

   

   
   

   

   
   

   

    .         

(C-59)

 

Average molecular weight of phase j 

*
1 12 1D

*
2 22 2D

*
3 32 3D

M M M

M M M

M M M

 






.          

(C-60)

 



 

 291 

Saturation of phase j 

*

1 12 1D 1r

*

2 22 2D

*

3 32 3D 3r

S S S S

S S S

S S S S

  





  .         
(C-61)

 

Density of oil components in the oleic phase  

*

33 332 33D

*

43 432 43D

   

    .         (C-62) 

Darcy velocity in the x-direction  

*

1X 12X 1XD

*

2X 22X 2XD

*

3X 32X 3XD

u u u

u u u

u u u

 





 .         
(C-63)

  

Darcy velocity in the z-direction  

*

1z 12Z 1ZD

*

2z 22Z 2ZD

*

3z 32Z 3ZD

u u u

u u u

u u u

 





 .         
(C-64)

 

Injection rate  

*

1 12 1D

*

2 22 2D

*

3 32 3D

U U U

U U U

U U U

 





 .          
(C-65)

 

Independent variables 

*

2 D

*

2 D

*

2 D

x x x

z z z

t t t

 





 .          
(C-66)
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Phase viscosity 

*

1 12 1D

*

2 22 2D

*

3 32 3D

   

   

    .          

(C-67)
 

Mass transfer rate between phases 

m212 m21D

m222 m22D

m322 m32D

*

m21

*

m22

*

m32

r r r

r r r

r r r

 





 .         
(C-68)

 

In‎ step‎ 4,‎we‎ incorporate‎ scale‎ and‎ reference‎ factors‎ into‎ the‎ variables’‎ expressions‎ to‎

determine dimensionless variables. Next, we introduce the derived dimensionless 

variables into the describing and constitutive equations (step 5). Through this process, we 

use the chain rule to recast the equations in terms of the dimensionless variables; the 

chain rule is used when a derivative of dimensionless variable is involved. Furthermore, 

we divide through by the dimensional coefficient of one of the terms in describing 

equations (step 6). 

Overall composition balance for Component 1 
2 2 2 2 2 2

1 11 1 1 11 X1 1 11 Z1 L X1 T Z1 1 11 L Z1 T X1 1 11

2 2

1 1

( S ) ( U ) ( U ) U U U U
( ) ( ) 0

t x z U Ux z

                    
     

     . 

           (C-69) 

The substitution of ρ1ω11 with c11 yields 

2 2 2 2 2 2

11 1 11 X1 11 Z1 L X1 T Z1 11 L Z1 T X1 11

2 2

1 1

(c S ) (c U ) (c U ) U U c U U c
( ) ( ) 0

t x z U Ux z

        
     

     .  (C-70) 
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Incorporating the dimensionless form of the variables into Eq. gives 

112 112

112 112

112 L 112 T

12 12

112

* * * *

12 1111D 1D 11D

* *

D D2 2

* * * *

X12 Z1211D X1D 11D Z1D

* *

D2 2

* * 2 * * 22 2 2 2
X12 Z12X1D 11D Z1D 11D

* 2 * 2 * 2 * 2

1D 1D2 D 2 D

* *

Z12

c S c S(c S ) (c )

t tt t

c U c U(c U ) (c U )

x zx z

c U c UU c U c
( ) ( )

U Ux U x x U x

c U

  


 

 
 

 

  
 

 

 L 112 T 2

12 12

2 * * 22 2 2 2
X12Z1D 11D X1D 11D

* 2 * 2 * 2 * 2

1D 1D2 D 2 D

c UU c U c
( ) ( ) 0

U Uz U z z U z

  
 

 
.     

(C-71)

 

Dividing through all terms in the equation by the first term gives 

112

112

112 112

112 112

L T

12 12

* * *

2 1111D 1D 11D

* * *

D D2 12

* * * * * *

2 X12 2 Z1211D X1D 11D Z1D

* * * * * *

D12 2 12 2

* * 2 * * 22 2
2 X12 2 Z12XD 11D

* * 2 * 2 * * 2 *

1D12 2 D 12 2

t C S(C S ) (C )

t tt C S

t C U t C U(C U ) (C U )

x zC S x C S z

t U t UU C
( )

US x U x S x U

 


 

 
 

  

 
 
  

L T

12 12

2 2

ZD 11D

2

1D D

* * 2 * * 22 2 2 2
2 Z12 2 X12ZD 11D XD 11D

* * 2 * 2 * * 2 * 2

1D 1D12 2 D 12 2 D

U C
( )

U x

t U t UU C U C
( ) ( ) 0

U US z U z S z U z





  
  
   

.     

(C-72)

 

The following identify scaling groups: 

112 112

112 112

112 L 112 T

112 12 112

*

11D 1D 11 11D

*

D D12

* * * * * *

2 X12 2 Z1211D X1D 11D Z1D

* * * * * *

D12 2 12 2

* * * 2 * * * 22 2
2 X12 2 Z12X1D 11D

* * * 2 * 2 * * * 2

1D12 2 D 12 2

(C S ) S (C )

t tS

t C U t C U(C U ) (C U )

x zC S x C S z

t C U t C UU C
( )

UC S x U x C S x U

 


 

 
 

  

 
 
  

12

112 L 112 T

112 12 112 12

2 2

Z1D 11D

* 2

1D D

* * * 2 * * * 22 2 2 2
2 Z12 2 X12Z1D 11D X1D 11D

* * * 2 * 2 * * * 2 * 2

1D 1D12 2 D 12 2 D

U C
( )

U x

t C U t C UU C U C
( ) ( ) 0

U UC S z U z C S z U z





  
  
    .    

(C-73)

 

The derived dimensionless groups will be 
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L T

12

1

*

11D 1D 11 11D

*

D D12

32

* * * *

2 X12 11D X1D 2 Z12 11D Z1D

* * * *

D12 2 12 2

4

* * 2 * * 22 2
2 X12 2 Z12X1D 11D

* * 2 * 2

1D12 2 D 1

(C S ) S (C )

t tS

t U (C U ) t U (C U )

x zS x S z

t U t UU C
( )

US x U x S

  
  

  

    
    

     

  
  

     12

L T

12 12

5

2 2

Z1D 11D

* * 2 * 2

1D2 2 D

6 7

* * 2 * * 22 2 2 2
2 Z12 2 X12Z1D 11D X1D 11D

* * 2 * 2 * * 2 * 2

1D 1D12 2 D 12 2 D

U C
( )

Ux U x

t U t UU C U C
( ) ( ) 0

U US z U z S z U z

  
 

  

     
     

          .     

(C-74)

 

Overall composition balance for Component 5 
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           (C-75) 

The substitution of ρ5ω51 with c51 yields 
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Incorporating the dimensionless form of the variables into Eq.  gives 

512 512

512 512

512 L 512 T

12 12

512

* * * *

12 1151D 1D 51D

* *

D D2 2

* * * *

X12 Z1251D X1D 51D Z1D

* *

D2 2

* * 2 * * 22 22 2
X12 Z1251D 51DX1D Z1D

* 2 * 2 * 2 * 2

1D 1D2 D 2 D

* *

Z12

c S c S(c S ) (c )

t tt t

c U c U(c U ) (c U )

x zx z

c U c Uc cU U
( ) ( )

U Ux U x x U x

c U

  


 

 
 

 

  
 

 

 L 512 T 2

12 12

2 * * 22 22 2
X1251D 51DZ1D X1D

* 2 * 2 * 2 * 2

1D 1D2 D 2 D

c Uc cU U
( ) ( ) 0

U Uz U z z U z

  
 

 
.     

(C-77)
 

Dividing through all terms in the equation by the first term gives 
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Rearranging the equations gives 
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Identifying dimensionless scaling groups, 
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Overall composition balance for Component 4 
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           (C-81) 

The substitution of ρ3ω43 with c43 yields 
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           (C-82) 

Incorporating the dimensionless form of the variables into Eq.  gives 
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Dividing through all terms in the equation by the first term gives 
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The following identify the scaling groups 
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Overall composition balance for Component 2 
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The substitution of ρ1ω21 and ρ2ω22 with c21 and c22 yields 
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Incorporating the dimensionless form of the variables into Eq.  gives 
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Dividing through all terms in the equation by the first term gives 
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The following identify the scaling groups: 
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Conservation equation for Phase 1 
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Incorporating the dimensionless form of the variables into Eq.  gives 
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Rearranging the equations gives, 
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.  (C-93)  

Dividing through all terms in the equation by the first term gives 
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The following identify the  scaling groups 
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Conservation equation for Phase 2 
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Incorporating the dimensionless form of the variables into Eq.  gives 
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Dividing through all terms in the equation by the first term gives 
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Rearranging the equations gives,
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The following identify the scaling groups 
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Continuity equation 
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Incorporating the dimensionless form of the variables into Eq.  gives 
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Rearranging the equations gives,

 



 

 302 

* * * * I *

12 12 1D 1D 12 11 1D 1 12 1D

* * *

2 D 2 D 2 D

* * J *

22 22 2D 2D 2 22 2D

* *

2 D 2 D

* * * * I *

32 32 3D 3D 32 31 3D 3 32 3D

* * *

2 D 2 D 2 D

* *

12 X12 1D

*

2

S ( S ) S ( ) S (S )

t t t t t t

S ( S ) S (S )

t t t t

S ( S ) S ( ) S (S )

t t t t t t

U ( U

x

       
 

  

    
 

 

       
  

  

  


I *

X1D 1 X12 X1D

*

D 2 D

* * J *

22 X22 2D X2D 2 X22 X2D

* *

2 D 2 D

* * I *

32 X32 3D X3D 3 X32 X3D

* *

2 D 2 D

* * I *

12 Z12 1D Z1D 1 Z12 Z1D

* *

2 D 2 D

* *

22 Z22 2D Z2D

*

2 D

) U (U )

x x x

U ( U ) U (U )

x x x x

U ( U ) U (U )

x x x x

U ( U ) U (U )

z z z z

U ( U )

z z

 


 

    
 

 

    
 

 

    
 

 

  
 



J *

2 Z22 Z2D

*

2 D

* * I *

32 Z32 3D Z3D 3 Z32 Z3D

* *

2 D 2 D

U (U )

z z

U ( U ) U (U )
0 .

z z z z

 



    
  

 

    
(C-101) 

 

Dividing through all terms in Eq. (C-101) by the first term gives 
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The following identify scaling groups 
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Initial condition 

Incorporating the dimensionless form of the variables into the initial condition and 

rearranging them, yields 
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       (C-104) 

Injection composition  

Incorporating the dimensionless form of the variables into injection condition and 

rearranging them, yields 
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Definition of mass fraction and saturation 

Incorporating the dimensionless form of the variables into the corresponding equations 

and rearranging them, yields 
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 
   

 

 
   

 

79 80 81

*

432

33D 43* *

232 232

1.0


















                     

(C-106) 

 

Salting-out effect 

Incorporating the dimensionless form of the variables into Eq.  and rearranging them, 

yields 

brine

sal sal

pure

H
log( ) K M .

H


        

(C-107) 

brine

21

22

sal salfresh water

21

22

log( ) K M .








         

(C-108) 

Since‎χ22=1.0,  

 

brine

21

sal salfresh water

21

log( ) K M ,





        

(C-109) 

where Ksal is the salt-effect parameter and Msal is the molality of the dissolved salt. 

Furthermore, we can rewrite Eq.  as the following‎to‎convert‎the‎molality‎to‎the‎solute’s‎

mole fraction: 
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brine

sal21

51fresh water

21

K
log( ) .

55.55







       
(C-110) 

The Taylor series of expansion for the exponential function, e
x
, is expressed as 

1 2 3
x x x x

e 1 ...
1! 2! 3!

    
        

(C-111) 

Taking the logarithm of Eq.  gives 
brine

sal21

51fresh water

21

K
exp( ) .

55.55







       

(C-112) 

Incorporating Eq.  into Eq.  gives 

512 51D 512 51D 512 51D

* * 2 * 3*

2 3sal sal sal212 21D

*

212 21D

( ) ( )K K K( )
( ) ( ) ( ) ..
55.55 1! 55.55 2! 55.55 3!( )

  
    

    

     
.  (C-113)  

The following identify scaling groups, 

512 51D 512 51D 512 51D

2 382 83 84

* * 2 * 3*
sal sal sal212 21D

*

212 21D

K K ( ) K ( )( )
..

55.55 1! 55.55 2! 55.55 3!( )

 
                 
              
 

     

 

 (C-114)   

 

 

The effect of pressure on the solubility 

Inserting the corresponding scaling and reference factors into Eq. , yields 

 

22

22 2D wf 2D

21D

J*
2212 21D

* *2D ** J
222222 2D 2

* *

212

d

d( )
P A

A
d(P P +P ) d(P )





 
 

 
  
      

  


.     

(C-115) 

 

The following identify the dimensionless scaling groups 
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22

2D

21D

85

J
86

2
2D * * *

22 22

*

212

d

P A

d(P )



 
 
 

 
 
  
        

  
   .       

(C-116)

 

 

Note that the coefficients of Eq.(C-116), A and B, will not be constant for a thick 

reservoir as the temperature difference between the top and bottom of the reservoir is 

substantial. Likewise, coefficients that are not fixed values for cases where CO2 is 

injected at a temperature significantly different from that of the reservoir.  

Top and bottom no flow boundaries 

*
12Z 1ZD

87

*
22Z 2ZD D *

2

*
32Z 3ZD

U U 0

H
U U 0 @ Z x, t , where t 0

Z

U U 0

 



 
     

 



 .    

(C-117) 

 

Constant BHP producer 

We assume a constant bottomhole pressure constraint for the producer. 

3 2 3

j wf j 3

4 4 2

L (d w )Sin x L d Sin
P P gCos (H d Cos Z) @ and t 0,

d Cos z (d w )Cos

      
      

      

          

(C-118)

 
where the average density is the flux average density in the production well: 
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12 1

22 2

*

3 2 2 D 3 *

j wf j 3 2 D*

4 2 D 4 2

* * I *

12 1D wf wf 1D 3 2 D

* * J *

22 2D wf wf 1D 3 2 D

*

32 3

L (d w )Sin x x L d Sin
P P gCos (H d Cos Z) @ and t t 0

d Cos z z (d w )Cos

P P P P ( ) g cos (H d Cos Z Z )

P P P P ( ) g cos (H d Cos Z Z )

P P

       
       

    

          

          

32 3

* I *

D wf wf 1D 3 2 DP P ( ) g cos (H d Cos Z Z ).










          

          

(C-119)

 

Next, 

12 1

12

3 2 3

D* *

2 2 *

j wf j 3 2 D

4 4 2
D* *

2 2

* * I

2 3
1D 1D D* * *

12 2

*

2

2D

L (d w )Sin L d Sin
x

x x
P P g(H d Cos Z) @ and t t 0

d Cos (d w )Cos
z

z z

z g cos H d Cos
P ( ) ( Z )

P Z

z
P

       
    

   
      

     
    

   

       
       

        

 22 2
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32 3
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* J
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22 2 2
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2 3

3D 1D D* * *

32 2 2
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










                         
        
        

            

          

(C-120) 

Therefore, 
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88 89 90

3 2 3
D* * *

2 2 2 *

j wf j 3 2 D91 92
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*
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

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

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(C-121)
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Capillary pressure equations 

21

21

2 1 21

* *

22 2D 12 1D

x

9998

*
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2D 1D 1* *

x22 22

P P j(s)
k
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   
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    .      (C-122) 

Similarly, 

31

101100

*

12

3D 1D 1* *

x32 32

P
(P P ) j(s )

kP P

   
    
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,      (C-123) 

where j(S1) is a dimensionless function of saturations. 

Constant injection rate 

We further assume a constant rate constraint for the injector. Hence, the following 

relations between injection rates are defined: 

J J

1x 1 2x 2 1 1 1

J J
2 2 11z 1 2z 2

u U Cos u U Cos d Sin x (d w )Sin
& @ and t 0.

d Cos z (d w )Cosu U Sin u U Sin

          
  

             

          

(C-124) 

Furthermore, 
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(C-125)

 

Implementing the definition of SWAG ratio, we re-write the equations as 
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(C-126)

 

Next, we substitute the corresponding linear transformation of each variable: 

104

R T
1xD *

R 1x2

105 108

R T 1
1zD * *

R 1z2 2

106

T
2xD *

R 2x2

107

T
2zD *

R 2z2

W U
u Cos

W 1 u

W U d Sin
u Sin x

W 1 u x
@

U Cos 1
u

W 1 u

U Sin 1
u .

W 1 u


  

   
  




              



 
    


  
   

  

109

1 1
D * *

2 2

110 111

2 2 1
D* * *

2 2 2

d Sin w Sin

x x
and t 0

d Cos d Cos w Cos
z

z z z


     

     
    



       

       
     

 



 

 312 

          (C-127) 

 

Darcy equations 

We‎write‎the‎Darcy’s‎law‎for‎multiphase‎flow‎as 

Phase 1: 

113112

* * *

r1 x 12 D 1 1D 12 2
X1D 1D* * * *

12 x12 2 1D D 12

115114

* * *
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k k P f (s ) P g x sin
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     
      

     

     
      

      .    

(C-128) 

 

Phase 2: 

116 117

* * *

r2 x 22 D 2 2D 22 2
X2D 2D* * * *
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* * *
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



     
      
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     
      

      .    

(C-129) 

 

Phase 3: 

120 121

* * *
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X3D 3D* * * *
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* * *
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
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     
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     

     
      

      .    

(C-130) 

Fluid viscosity 

Gas viscosity: 
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2,2 22 2 3,2 32 3

2

22 2 32 3

M M

M M

   

 

   
 

 
.       

(C-131) 

Substituting the scale factors results in 

* *

2,2 222 2 2D 3,2 322 3 3D*

2D 22
*

222 2 2D 3 3 3D
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     
  

   
.     

(C-132) 

Rearranging the equation gives 
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* * * ** *
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  

          
           

                 .  

(C-133) 

Oil viscosity: 

         
cN 4

o i i,o i,3 i,o 23 2,o 33 3,o 43 4,o

i 1 i 2

ln x ln ln ln ln ln    

 

             
. 

(C-134) 

To conduct o(1) scaling analysis and to use linear transformation for this equation, we 

consider the logarithm of the viscosity of pure components in the oil phase ( i,oln  ) and 

viscosity of the oil mixture as new parameters: 

2,o 2,3

2,o 2,3

2,o 2,3

o 3

ln

ln

ln

ln

 

 

 

   


  


  


  

 

  

     3 23 2,3 33 3,3 43 4,3

        
.      

(C-135) 

Substituting the scale factors in Eq. (C-135) results in 
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     * * * *

32 3D 232 23D 2,3 332 33D 3,3 432 43D 4,3

            
.    

(C-136) 

Therefore, 
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Co-relation between mole fractions and weight fractions 

j
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M
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(C-138) 

The mole fraction of component 2 in phase 2 has the following relation with the weight 

fraction of component 2 in that phase: 

22

2D

*

* *
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We define the scaling group as: 
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(C-140) 

Similarly, for the other components: 
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Component 2 in phase 3: 
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Component 3 in phase 2: 
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Component 3 in phase 3: 
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Component 4 in phase 3: 
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Component 1 in phase 1: 
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1 112

M
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Component 5 in phase 1: 
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M
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 
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However, the aqueous, oleic, and gaseous average molecular weights are defined as 

12 1D
112 11D 512 51D 212 21D

*
* * *

1 5 2M M M M M           .     (C-148) 

Defining the scaling groups gives 
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Similarly, 
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232 332 432

3D
23D 33D 43D

32 32 32

145 146144

* * *

1 3 4

* * *

M M M
M

M M M

         
          
           .    
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Mass density 

Liquid densities (water and oil) are obtained through the concept of the ideal mixture: 
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(C-152) 
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(C-153) 

Furthermore,‎we‎assume‎that‎the‎pure‎density‎of‎water‎and‎salt‎(ρ1,W,‎ρ5,W) are fixed for  

oil component 3: 
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Also we consider the oil components 3 and 4 as slightly compressible fluids with a 

constant compressibility factor of c: 

33 33 (1 c P)     .        (C-155) 

Incorporating the dimensionless variables into Eq. (C-155) gives 

* * *

332 33D 33 32 3D(1 cP P )      .       (C-156) 

The following identify the  dimensionless scaling groups, 
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Similarly, for oil component 4: 
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(C-158) 

 

In addition, gas density is calculated as 

2 gas

2

Gas

P M

ZRT
 

.         
(C-159)

 

Incorporating dimensionless variables into Eq. (C-159) gives 
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(C-160) 
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Mass transfer among phases 
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(C-162)

 

Similarly, 
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(C-163)
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          (C-164) 
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Initial and injection conditions 
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(C-165) 

Step 7 determines the scaling factors such that all dimensionless groups remain in 

the same order of magnitude, unity, in our study. This step is a trial-and-error procedure 

through which primary dimensionless groups are set to unity or zero. 

Step 8 is the desired end result of the analysis as the unique minimum primary 

scaling factors based on the problem parameters; this is the critical step. Once the 

primary scaling factors are determined through step 7, the last step is to apply them and 

obtain the remaining dimensionless groups.  

There is no restriction on choosing the primary dimensionless groups as well as 

the value to which we set them except that the remaining scaling groups should stay in 

the same order of magnitude as the primary groups. This is also true when we directly set 

values to primary factors. For instance, we set all 
* * *

j2 ij2 ij2S , (except for i 5),C  equal to 

unity in this study. 

The following dimensionless groups are set to unity:  

2, 45, 72, 73, 74, 82, 86, 87, 102, 103, 112, 116, 120, 131,132, 133, 134, 135, 136, 137, 

139, 142, 146, 147, 150, 154, 156, 158, 162, 168, 173, 175, 176, and 177. 
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The following values are considered for the scaling factors: 
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Also, 
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Incorporating the above scaling factors yields the remaining scaling factors. Also, 

inserting the assigned and the derived scaling factors into the dimensionless groups, the 

dimensionless scaling groups are obtained: 
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The last step of o(1) scaling analysis is to determine the minimum number of 

dimensionless groups describing the process. The scaling analysis produces 

dimensionless parameters that are not always independent. Therefore, we use the same 

method introduced by Shook et al. (1992) to minimize the number of scaling groups.  

We consider all dimensionless groups as a system of equations (G1 through G78). 

Hence, taking the logarithm from both sides of these equations yields a linear system of 

equations. This gives a set of 78 equations in 62 parameters. Furthermore, the elements of 

the resulting matrix are the exponents of the involved parameters in the remaining 78 

dimensionless groups. In addition, the rank of the coefficient matrix is 47, which 

illustrates the minimum number of independent dimensionless groups.   

Now, we use a linear transformation technique to convert the coefficient matrix to 

the reduced form. We use MATLAB
 ®

 to determine the linearly independent 

dimensionless groups as the following:  
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DISCUSSION 

In this study, an eight-step procedure was outlined to determine the minimum parametric 

representation of SWAG displacement for scaling purposes. One of the main features of 

this method is that all derived dimensionless groups are bounded within o(1). Hence, the 

o(1) scaling analysis is used to evaluate the importance of a specific mechanism in a 

particular transport phenomenon. In other words, this procedure is useful when one is 

seeking to determine what approximations are allowed for a particular transport 

phenomenon. For instance, if the magnitude of a dimensionless group that is multiplied 

by the dispersion flux in the describing equations is an order of magnitude smaller than 

the rest of the dimensionless groups (for given parameters), the error incurred from 

dropping the dispersion term will be approximately 10%. This is not something that we 

get through dimensional analysis (e.g., Pi theorem). 

However, in some cases the objective is to obtain a minimum parametric 

representation of the describing equations for dimensional analysis purposes. In fact, 

scaling analysis can be used to resolve the issues encountered when the Pi theorem is 

implemented. For more information, see Krantz (2007). 
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NOMENCLATURE 

r1k  = Water relative permeability 

r2k = Oil relative permeability 

r3k  = Gas relative permeability 

I

51  = Salt mass fraction of the resident aqueous phase 

J

51  = Salt mass fractions of the injected aqueous phase 

I

43  = Initial mass fraction of pseudo-component 4 

cij
 = Mass fraction of component i per pore volume 

L  = Length of the permeable medium 

H  = Height of the permeable medium 

1W = Perforated interval of the injection well 

2W = Perforated interval of the production well 

1d  = The distance between the shallowest perforation of the injection well and the top of 

the reservoir  

2d = The distance between the deepest perforation of the injection well and the bottom of 

the reservoir  

3d = The distance between the shallowest perforation of the production well and the top of 

the reservoir  

4d = The distance between the deepest perforation of the production well and the bottom 

of the reservoir  

 = Deviation of the production well from the z-direction  

= Reservoir dip angle 

 = Deviation of the injection well from the z-direction 

xk = Permeability in the x-direction 

zk = Permeability in the z-direction 
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 = Porosity 

Z = Compressibility factor of the injected gas at Tref and Pref 

R = The universal gas constant 

GasT = Temperature of the injected gas 

RW = SWAG ratio 

j(s) = Leverett J-function 

TU  = Total injection rate (volume-based) 

K

JU = Injection rate of phase k 

saltK  = Sechenov salting-effect parameter  

ijK = Mass transfer coefficient of component i in phase j 

A = Solubility coefficient used in Eq.(C-14) 

 g = Gravitational constant 

jk
 
= Interfacial tension between phase j and k 

c = Isothermal compressibility of the oleic phase 

L  = Longitudinal dispersivity coefficient 

T  = Transverse dispersivity coefficient 

1rS = Irreducible water saturation 

3rS = Residual oil saturation 

gcritS = Critical gas saturation 

I

3 3rS S  = Initial movable oil saturation 

1r 3r1 S S   = Fraction of pore volume that is open to flow 

I

1 = Mass density of the resident aqueous phase 

J

2  = Mass density of the injected gaseous phase 

I

3 = Mass density of the initial oleic phase 

11

 = Mass density of pure water 
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33

 = Mass density of pure light oil in oleic phase (pseudo-component 3) at Tref and Pref 

43

 = Mass density of pure heavy oil in oleic phase (pseudo-component 4) at Tref and Pref 

51

 = Mass density of salt 

1M = Molecular weight of water component 

2M = Molecular weight of the pure solvent 

3M = Molecular weight of the light oil (pseudo-component 3) 

4M = Molecular weight of the heavy oil (pseudo-component 4) 

I

1 = Viscosity of the resident aqueous phase 

I

3 = Initial oleic phase viscosity 

J

2 = Viscosity of the injected gaseous phase 

22

 = Viscosity of the solvent in the gaseous phase 

32

 = Viscosity of the light oil (pseudo-component 3) in the gaseous phase 

43

 = Viscosity of the heavy oil (pseudo-component 4) in the oleic phase 
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