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One of the most important predictions of General Relativity, Einstein’s

theory of gravity, is the existence of gravitational radiation. The strongest

source of such radiation is expected to come from the merging of black holes.

Upgrades to large ground based interferometric detectors (LIGO, VIRGO,

GEO 600) have increased their sensitivity to the point that the first direct

observation of a gravitational wave is expected to occur within the next few

years. The chance of detection is greatly improved by the use of simulated

waveforms which can be used as templates for signal processing. Recent ad-

vances in numerical relativity have allowed for long stable evolution of black

hole mergers and the generation of expected waveforms.

openGR is a modular, open framework black hole evolution code devel-

oped at The University of Texas at Austin Center for Relativity. Based on the
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BSSN (strongly hyperbolic) formulation of Einstein’s equations and the mov-

ing puncture method, we are able to model the evolution of a binary black hole

system through the merger and extract the gravitational radiation produced.

Although we are generally interested in binary interactions, openGR is capable

of handling any number of black holes. This work serves as an overview of the

capabilities of openGR and a demonstration of the physics it can be used to

explore.
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Chapter 1

Introduction

One of the most important predictions of general relativity, Einstein’s

theory of gravity, is the existence of gravitational radiation. In the linearized

theory of general relativity, this radiation exists as a traveling wave solution to

the Einstein field equations and is represented as a small perturbation hµν to a

flat background metric ηµν . These perturbations are generated by a changing

quadrupole moment I:

hµν =
2G

c4r
¨Iµν . (1.1)

In the case of two compact objects in circular orbit with orbital frequency forb,

the gravitational waves produced have a strain h of

h ≈ 4π2GMR2f 2
orb

c4r
(1.2)

where M is the reduced mass of the system, R is the separation of the two

objects, and r is the distance from the source to the detector. Since black holes

have very small radii compared to other objects of the same mass, they are

able to orbit much closer together than other objects, resulting in very large

orbital frequencies (forb). As such, binary black hole mergers are expected

to be the strongest sources of gravitational radiation. In other words, black
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hole mergers produce gravitational waves with a comparatively large strain h

relative to waves produced by other objects.

Upgrades to large ground based interferometric detectors (LIGO [1],

VIRGO [2], GEO 600 [3]) have increased their sensitivity to the point that the

first direct observation of a gravitational wave is expected to occur within the

next few years. To aid in signal processing, the signals from these detectors

are analyzed using the process of matched filtering. Matched filtering uses

simulated waveforms as templates, which greatly enhances the signal to noise

ratio and thus improves the chance of detection. Use of these simulated wave-

forms also allow for improved parameter estimation such as mass ratio and

spin. These waveforms are generated using numerical relativity simulations.

Significant advances in numerical relativity came in 2005 when Frans

Pretorius was the first to successfully simulate a full orbit of two black holes

and extract the gravitational radiation produced using generalized harmonic

coordinates [4]. Shortly thereafter, two groups (University of Texas at Brownsville

and NASA Goddard Space Flight Center) both had similar success using an

approach based on the moving puncture method and the BSSN formulation of

general relativity [5, 6]. Since then, several other groups have developed their

own black hole simulation codes, including the University of Texas at Austin’s

development of openGR.

openGR is a framework used for large numerical black hole simulations.

It has been developed at The University of Texas at Austin Center for Rela-

tivity over the past decade, beginning with Matt Anderson’s work [7]. Based
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on the BSSN (strongly hyperbolic) formulation of Einstein’s equations and

the moving puncture method, openGR can be used to model the evolution of

a binary black hole system through the merger and extract the gravitational

radiation produced. One of the main differences between openGR and other

numerical relativity codes is that openGR is based on the SAMRAI (Structure

Adaptive Mesh Refinement Application Infrastructure) library [8] while most

other codes are based on Cactus Code. The finite-differencing scheme used in

openGR is accurate to fourth order (second order at the boundaries). Although

the work discussed in this paper focuses on binary black hole mergers and the

resulting gravitational radiation, openGR is capable of evolving any general

relativistic spacetime. As the name suggests, openGR is an open source code

available for download at http://wwwrel.ph.utexas.edu/openGR.

openGR has finally been developed to a point that all of its capabilities

are functional and it can now be used for scientific research. This paper begins

with an overview of the theoretical background upon which openGR is based,

starting with Einstein’s general theory of relativity (Chapter 2). Chapter 3 dis-

cusses the puncture method, which openGR uses to stably evolve a black hole.

Chapter 4 explores the wave extraction and demonstrates how information

about gravitational radiation is extracted from the spacetime. Gravitational

wave detection is discussed in Chapter 5, including the role numerical relativ-

ity plays in detection efforts. Chapter 6 focuses on numerical methods and

details the computational framework upon which openGR is built. The dis-

cussion of scaling in Chapter 7 provides an overview of how the code performs

3



as simulations grow larger. Memory use, performance, and convergence are

also detailed in this chapter. Finally, Chapter 8 presents a series of results

that demonstrate openGR’s capabilities and provide examples of the types of

problems it can be used to study.

1.1 Conventions

In this paper the following conventions are used (unless otherwise specified):

• Metric signature: (−,+,+,+)

• Greek indices (µ, ν, . . . ) span 0, 1, 2, 3.

• Latin indices (i, j, k, . . . ) span 1, 2, 3.

• Geometric units: G = c = 1

• Distances and times are given in terms of the ADM mass M :

– Distance: d =M ⇒ d = GM
c2

– Time: t =M ⇒ t = GM
c3

• Covariant derivative operator: ∇

• Vectors indicated with an arrow: ~v

• Determinant of the 3-metric gij : g

• Determinant of the 4-metric gµν : g

4



Chapter 2

3+1 Numerical Relativity

2.1 General Relativity

The fundamental equations in general relativity are the the Einstein

field equations, given by

Gµν = 8πTµν . (2.1)

Gµν is the Einstein tensor and Tµν is the stress-energy Tensor. The Einstein

tensor can be expanded as

Gµν ≡ Rµν −
1

2
gµνR. (2.2)

The Ricci curvature tensor Rµν is a contraction of the Riemann tensor Rα
βγδ

on the first and third indices:

Rµν ≡ Rα
µαν = Γα

µν,α − Γα
µα,ν + Γα

βαΓ
β
µν − Γα

βνΓ
β
µα (2.3)

where

Γα
βγ =

1

2
gαδ(gβδ,γ + gγδ,β − gβγ,δ) (2.4)

is the Christoffel symbol of the second kind.

It can be shown that a certain combination of covariant derivatives of

the Riemann tensor vanish:

Rα
βµν;λ +Rα

βλµ;ν +Rα
βνλ;µ = 0. (2.5)
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These are known as the Bianchi identities. One important consequence comes

from contracting them twice, which reveals the fact that the Einstein tensor

has vanishing divergence

Gµ
ν;µ = 0 (2.6)

If we consider the vacuum case, Tµν = 0 and the Einstein equations

(Eq. (2.1)) become

Gµν = 0. (2.7)

The field equations can be decomposed into four constraint equations

G0µ = 0 (2.8)

and six evolution equations

Gij = 0. (2.9)

It is worth noting that the constraint equations remain satisfied under the

action of the evolution equations.

In numerical relativity we want to look at the dynamics of the gravi-

tational field as it changes in time. This can be achieved by decomposing the

field equations into spatial and temporal parts, typically referred to as a 3+1

split. The ADM formalism provides a method by which to achieve this split.

2.2 ADM Formalism

The Einstein field equations discussed in the previous section are pre-

sented in a covariant form, which makes no distinction between space and

6



time. While this is important from a theoretical perspective, it does not allow

us to investigate the evolution of the gravitational field in time. We want to

formulate this evolution as an initial value or Cauchy problem. That is, given

initial and boundary conditions we can then use the fundamental equations

to evolve the system forward in time. To do this we need to re-formulate

Einstein’s equations with a clear separation between time and space. This is

known as the 3+1 formalism of general relativity.

Consider a spacetime with metric gαβ that is globally hyperbolic, mean-

ing it has a Cauchy surface. As such, it can be completely foliated into three

dimensional hypersurfaces in such a way that each of these hypersurfaces is

spacelike. Consider two adjacent hypersufaces Σt and Σt+dt. The geometry

of the spacetime between these hypersurfaces can be determined using three

pieces:

1. The 3-metric gij that measures proper distance within the hypersurface:

dl2 = gijdx
idxj. (2.10)

2. The lapse α that relates the proper time dτ between the hypersufaces as

measured by observers moving in a direction normal to the hypersurfaces

(Eulerian observers) to the coordinate time dt:

dτ = αdt. (2.11)

3. The shift vector βi that gives the relative velocity between the Eulerian

7



observers and the lines of constant spatial coordinates:

xit+dt = xit − βidt. (2.12)

Figure 2.1: The definition of the lapse α and shift βi shown in terms of their
relation to two adjacent hypersurfaces. [9]

The lapse α and the shift βi are gauge functions, meaning they are

freely specifiable and depend on the choice of coordinates chosen. The metric

in terms of these quantities is:

ds2 = (−α2 + βiβ
i)dt2 + 2βidtdx

i + gijdx
idxj. (2.13)

This gives:

gµν =

(

−α2 + βkβ
k βi

βj gij

)

, (2.14)

gµν =
1

α2

(

−1 βi

βj gij − βiβj

)

(2.15)

The unit normal vector to the spacial hypersufaces, nµ, is given by

nµ = (
1

α
,
−βi

α
), (2.16)

8



nµ = (α, 0). (2.17)

By definition, the unit normal vector corresponds to the 4-velocity of the Eu-

lerian observers. This can be expressed in terms of the lapse α and coordinate

time t as

nµ = −α∇µt (2.18)

where the minus sign ensures that ~n points forward in time.

From the definiton of the shift (Eq. (2.12)) we find that

βi = −α(~n · ∇xi) (2.19)

As defined, the βi are scalars and can be used to define a 4-vector ~β whose

componets are (0, βi). This 4-vector is orthogonal to ~n and we can then use

the vectors ~n and ~β to construct a time vector ~t defined as

t = αnµ + βµ. (2.20)

When considering the curvature of the hypersurfaces created by the

foliation of spacetime, we need to make a distinction between the intrisic cur-

vature of the hyperfurfaces, which comes from their internal geometry, and the

extrinsic curvature which is associated with the way in which these surfaces

are immersed in a four-dimensional spacetime. The intrinsic curvature can be

calculated using the three-dimensional Riemann tensor defined in terms of the

3-metric gij. The extrinsic curvature gives a measure of the change in the unit

9



normal vector nµ as it is parallel-transported from one point on the hypersur-

face to another. This is a much more useful quantity for our purposes. It is

given by

Kµν − (∇µnν + nµn
α∇αnν) (2.21)

It can be seen that Kµν is a purely spatial tensor, i.e. nµKµν − nνKµν = 0.

This means that K00 = K0i = 0, so we will generally deal with Kij.

2.2.1 Evolution Equations

As noted above, Einstein’s field equations in vacuum (Eq. (2.7)) lead to

a set of six evolution equations (Eq. (2.9)). These equations are second order

in gij. We can now write these evolution equations as 12 first order equations

in terms of gij and Kij:

∂tgij = −2αKij + Lβgij (2.22)

∂tKij = −∇i∇jα + α(Rij − 2KikKK
k
j +KKij) + LβKij (2.23)

where

Lβgij = βkgij,k + gkjβ
k
,i + gikβ

k
,j (2.24)

LβKij = βkKij,k +Kkjβ
k
,i +Kikβ

k
,j. (2.25)

2.2.2 Contraint Equations

In addition to the evolution equations noted in the previous section, the

vacuum field equations (Eq. (2.7)) lead to a set of four constraint equations

(Eq. (2.8)). These can be divided into the Hamiltonian constraint (G00 = 0)
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and three momentum constrains (G0i = 0). Like the evolution equations, in

the ADM formalism the constraint equations can now be written in terms of

the 3-metric gij and the extrinsic curvature Kij:

Hamiltonian constraints: (3)R +K2 −KijK
ij = 0 (2.26)

Momentum constraints: ∇jK
ij −∇iK = 0. (2.27)

2.2.3 The Conformal Transverse-Traceless Decomposition

In order to more easily solve the constraint equations, we need to get

them into a form where they can be solved using numerical methods. To

do this we follow the approach known as the conformal transverse-traceless

decomposition developed by York and Piran [10]. This consists of converting

the constraint equations into elliptic equations for four potentials, φ and wi.

Since these potentials will be solved for iteratively, an initial guess is needed

for the metric gij and extrinsic curvature Kij. The potentials appearing in the

elliptic equations of the conformal transverse-traceless decomposition relate

trial fields, indicated by an overhead tilde, to the solved fields. The trace

of the extrinsic curvature, K = Ki
i, is left unchanged by this method (i.e.

K = K̃). The four potentials modify only the trace free parts of the extrinsic

curvature:

Aij = Kij −
1

3
gijK. (2.28)
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The relations between the four potentials, trial fields, and solved fields are:

gij = φ4g̃ij (2.29)

Aij = φ−10(Ãij + ( ˜lw)ij) (2.30)

where

( ˜lw)ij ≡ ∇̃iwj + ∇̃jwi − 2

3
g̃ij∇̃kw

k. (2.31)

The conformal factor φ and the vector potential wi are solved for using

the elliptic equations:

∇̃2φ =
1

8

[

R̃φ+
2

3
K̃2φ5 − φ−7

(

Ãij + ( ˜lw
ij
)(

Ãij + ( ˜lw)ij

)

]

(2.32)

∇̃j( ˜lw)
ij =

2

3
g̃ijφ6∇̃jK̃ − ∇̃jÃ

ij. (2.33)
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Chapter 3

Puncture Method

One of the difficulties in simulating black holes numerically is dealing

with the singularity. One way this challenge can be handled is by essentially

removing the region around the holes from the computational domain, a tech-

nique known as excision. The idea is that as long as the excised region lies

within the apparent horizon of the black hole then no information should be

able to propagate outward from within the black hole. Due to numerical error,

this is not entirely true in practice. Additionally, openGR is not stable using

excision and ADM evolution, though excision has been shown to successfully

simulate black hole mergers using other formulations of General Relativity

[11].

In recent years another approach to handling black hole singularities,

known as the puncture method, has been developed by Campanelli [5]. This

approach has proven to be very successful for stably evolving binary black hole

mergers[6]. We follow the method outlined by Brügman, et al. [12].
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3.1 Initial Data

For our initial geometry used to implement the puncture method, we

adopt Brill-Lindquist wormhole topology[13] with N + 1 asymptotically flat

ends and thus N “throats”. We can use this geometry to model N black hole

initial data. The spatial metric gij is related to the conformal metric g̃ij via

an initial conformal factor ψ0:

gij = ψ4g̃ij. (3.1)

Prior to solving the initial constraint equations, the conformal background

metric is chosen to be flat (g̃ij = δij).

The conformal extrinsic curvature is split into trace and trace-free parts:

Kij = ψ−2Aij +
1

3
gijK (3.2)

where K is the trace of the extrinsic curvature (K = gijKij) and Aij is trace-

free. We also impose maximal slicing, K = 0, which decouples the Hamiltonian

and momentum constraints. Linear and angular momentum are inserted via

the momentum constraints, which can be written as

∂jAij = 0 (3.3)

and allow for Bowen-York solutions[14] for any number of black holes. These

solutions are of the form

Aij =
3

2r2
[Pinj + Pjni − (gij − ninj)Pan

a] +
3

r3
(ǫabi Sanbnj + ǫabj Sanbni) (3.4)
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where ni is radial normal vector, ǫijk is the three dimensional Levi-Civita

tensor and Pi and Si are the linear and angular momentum of the black hole,

respectively. For the case of multiple black holes, the extrinsic curvature is

simply given by the sum of the contributions from each hole.

The Hamiltonian constraint is an elliptic equation in terms of the con-

formal factor, which has a solution of the form[15]

ψ = u+
N
∑

i=1

Mi

2|r − ri|
. (3.5)

This solution is just a superposition of the solutions for the single black hole

case plus a correction term u, which we must solve via

∇2u+
1

8
ψ5KijK

ij = 0. (3.6)

It has been shown that the solution to Eq. (3.6) exists and is unique[15].

Additionally, since we have removed the singularities in Eq. (3.6), the solution

is regular at the black holes, making it solvable numerically.

3.2 BSSN Formulation

In the puncture method, the initial data is evolved using the strongly

hyperbolic BSSN formulation [16, 17]. The standard BSSN variables are φ, g̃ij,

Ãij, K, and Γ̃i, and are related to those in the conformal transverse-traceless

15



decomposition by:

φ = lnψ0 (3.7)

Ãij = ψ−6Aij (3.8)

Γ̃i = −∂j g̃ij (3.9)

where g̃ij and K are unchanged.

The BSSN variables are evolved using the following evolution equations:

∂0φ = −1

6
αK (3.10)

∂0g̃ij = −2αÃij (3.11)

∂0Ãij = e−rφ[−∇i∇jα + αRij ]
TF + α(KÃij − 2ÃikÃ

k
,j) (3.12)

∂0K = −∇i∇iα + α(ÃijÃ
ij +

1

3
K2) (3.13)

∂tΓ̃i = g̃ij∂j∂kβ
i +

1

3
g̃ij∂j∂kβ

k + βj∂jΓ̃
i − Γ̃i∂jβ

i +
2

3
Γ̃i∂jβ

j

−2Ãij∂jα + 2α(Γ̃i
jkÃ

jk + 6Ãij∂jφ− 2

3
g̃ij∂jK). (3.14)

where ∂0 = ∂t−Lβ, ∇i is the covariant derivative with respect to the physical

metric gij, and “TF” indicates the trace-free part of the expression with respect

to the physical metric (XTF
ij = Xij − 1

3
gijX

k
k). The lie derivatives of the non-

tensoral quantities are[5]:

Lβφ = βk∂kφ+
1

6
∂kβ

k (3.15)

Lβ g̃ij = g̃ij∂kg̃ij + g̃ik∂jβ
k + g̃jk∂iβ

k − 2

3
∂kβ

k (3.16)

LβÃij = Ãij∂kÃijÃik∂jβ
k + Ãjk∂iβ

k − 2

3
Ãij∂kβ

k (3.17)
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The Ricci tensor Rij is:

Rij = R̃ij +Rφ
ij (3.18)

R̃ij = −1

2
g̃lm∂l∂mg̃ij + g̃k(i∂j)Γ̃

k + Γ̃kΓ̃(ij)k

+g̃lm(2Γ̃k
l(iΓ̃j)jm + Γ̃k

imΓ̃klj) (3.19)

Rφ
ij = −2∇̃i∇̃jφ− 2g̃ij∇̃k∇kφ+ 4∇̃iφ∇jφ− 4g̃ij∇̃kφ∇̃kφ (3.20)

where ∇̃ is the covariant derivative with respect to the conformal metric g̃ij.

It has been shown [9] that when evolving Eqs. (3.10 - 3.14) greater

stability is achieved by enforcing the algebraic constraints det(g) = 1 and

Tr(Aij) = 0. We do this after every PVODE iteration. Additionally, whenever

Γ̃i appears undifferentiated we substitute Γ̃i = −∂j g̃ij. If Γ̃i is differentiated

we leave it unchanged.

3.3 Gauge Conditions

To allow the punctures to move (the so-called moving-puncture method),

we use the covariant form of “1+log” slicing [18] for the lapse:

(∂t − βi∂i)α = −2αK. (3.21)

For the shift, we use a modified Γ̃-driver condition[6]:

(∂t − βi∂i)β
i =

3

4
Bi (3.22)

(∂t − βi∂i)B
i = (∂t − βi∂i)Γ̃

i − ηBi. (3.23)
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In our case, η = 1, but it can also be greater than 1. It has been shown [19]

that the BSSN equations with the above gauge choices are strongly hyperbolic

and yield a well-posed initial value problem.
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Chapter 4

Gravitational Wave Extraction

The presence of gravitational radiation associated with strong and

changing gravitational fields is one of the most significant predictions of general

relativity. Upgrades to existing interferometric detectors should allow direct

observation of a gravitational wave in the very near future. As such, simula-

tion of gravitational radiation is a particularly important aspect of numerical

relativity because the numerical predictions of gravitational wave signals can

be used as templates that can greatly improve the chances of a detection.

This chapter serves as an introduction to the method by which we extract

gravitational radiation from a simulation.

There are two main approaches to gravitational wave extraction. Origi-

nally, extraction was accomplished using various perturbation methods (Regge-

Wheeler [20], Zerilli [21], Teukolsky [22]) which depend on knowledge of the

background metric. But for simulations involving strong gravitational fields

the background metric is generally not known. For example, when modeling

merging black holes we do not know the final mass or spin of the merged hole

a priori, so we need to use a method that does not depend on the background

metric to extract the gravitational waves. In this chapter will present an ap-
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proach that permits gravitational wave extraction without a priori knowledge

of the background metric. We start with the Newman-Penrose formalism [23]

which introduces five complex scalars, known as Weyl scalars, that contain

all the necessary information about the curvature of spacetime. When these

scalars are computed for a particular tetrad class, the Quasi-Kinnersley frame,

they take on physical meaning. One scalar in particular, Ψ4, contains the infor-

mation about the gravitational radiation. We will then compute Ψ4 in terms

of scalar quantities, making it coordinate independent. Ψ4 can then be decom-

posed into various modes and used to calculate the total energy, momentum,

and angular momentum being carried away by the gravitational radiation.

Currently, the Weyl scalars are computed within openGR and are out-

put on spheres of specified radii (Secs. 4.1 - 4.9). However, the spherical

harmonic decomposition of Ψ4 (Sec. 4.11) is performed using post-processing

scripts courtesy of Uli Sperhake. The calculation of energy, momentum, and

angular momentum (Sec. 4.12) is also performed using this set of scripts.

These calculations will be incorporated into openGR in the future.

4.1 Tetrad Formalism

In developing the Newman-Penrose formalism, we want to work with a

basis that is coordinate-independent. Consider a set of four linearly indepen-

dent basis vectors ~e(a) at every point in space. The Latin index in parentheses

identifies the vector, and for this chapter we will change the usual convention

and allow Latin characters inside parentheses to be (0, 1, 2, 3). These vectors
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satisfy

~e(a) · ~e(b) = e(a)µe
µ

(b) = η(a)(b), (4.1)

where η(a)(b) is a constant matrix independent of the position in spacetime. In

this case the set of vectors {~e(a)} is known as a tetrad. Additionally, η(a)(b) are

just the components of the metric tensor in the tetrad basis. In the case that

the tetrad is orthonormal, η(a)(b) is just the Minkowski metric tensor.

Since the vectors {~e(a)} are linearly independent, the matrix η(a)(b) can

be inverted, with inverse η(a)(b) such that

η(a)(c)η(c)(b) = δ
(a)
(b) . (4.2)

η(a)(b) is also used to raise and lower tetrad indices, e.g.:

~e(a) = η(a)(b)~e(a). (4.3)

From this we find

~e(a) · ~e(b) = δ
(a)
(b) . (4.4)

When we express the tetrad vector ~e(a) in terms of the coordinate basis {~eµ}

we can see

e
(a)

µ
e

µ

(a) = δµµ. (4.5)

Eqs. (4.4) and (4.5) can be written together as:

e
µ

(a) e
(b)

µ
= δ

(b)
(a), (4.6)

e
µ

(a) e
(a)

ν
= δµν . (4.7)
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From this, we determine that we can recover metric components in the coor-

dinate frame in terms of the tetrad vector using:

gµν = e(a)µe
(a)

ν
= η

(a)(b)
e(a)µe(b)ν . (4.8)

As an example, let us consider the Schwarzschild metric:

ds2 = −
(

1− 2M

r

)

dt2 +

(

1− 2M

r

)−1

dr2 + r2
(

dθ2 + sin2θdφ2
)

. (4.9)

A straightforward choice for the tetrad in this case is:

eµ(0) =

(

1− 2M

r

) 1

2

(dt)µ , (4.10)

eµ(1) =

(

1− 2M

r

)− 1

2

(dr)µ , (4.11)

eµ(2) = r (dθ)µ , (4.12)

eµ(3) = r sinθ (dφ)µ . (4.13)

4.2 The Newman Penrose Formalism

4.2.1 Null Tetrads

The Newman Penrose formalism consists of constructing a tetrad of null

vectors. We start with an orthonormal tetrad {~e(a)} so that η(a)(b) corresponds

to the Minkowski metric tensor. We can then use Eq. (4.8) to write the

spacetime metric as

gµν = −e(0)µe(0)ν + e(1)µe(1)ν + e(2)µe(2)ν + e(3)µe(3)ν . (4.14)

We typically chose eµ(0) as the unit normal vector to the spacial hypersurfaces,

eµ(1) as the radial unit vector in spherical coordinates, and (eµ(2),e
µ

(3)) as unit
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vectors in the angular directions, which are found by performing a Gram-

Schmidt orthogonalization procedure. We can see these choices reflected in

Eqs. (4.10 - 4.13).

Once we have an orthonormal basis we now construct our null tetrad

{~e(a)} = {l, k,m, m̄}. The vectors l and k are real, and m and m̄ are complex,

with the bar denoting the complex conjugate. The vectors that make up the

tetrad are:

lµ =
1√
2

(

eµ(0) + eµ(1)

)

, (4.15)

kµ =
1√
2

(

eµ(0) − eµ(1)

)

, (4.16)

mµ =
1√
2

(

eµ(2) + ieµ(3)

)

, (4.17)

m̄µ =
1√
2

(

eµ(2) − ieµ(3)

)

. (4.18)

These four vectors have the orthogonality properties

lµl
µ = kµk

µ = mµm
µ = m̄µm̄

µ = 0, (4.19)

lµm
µ = lµm̄

µ = kµm
µ = kµm̄

µ = 0, (4.20)

lµk
µ = −mµm̄

µ = −1. (4.21)

Using this null tetrad of vectors, η(a)(b) becomes

η(a)(b) = η(a)(b) =









0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0









, (4.22)

and the spacetime metric gµν is

gµν = −lµkν − kνlν +mµm̄ν + m̄µmν . (4.23)
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4.2.2 Weyl Tensor and Weyl Scalars

Now that we have introduced a tetrad of null vectors, we can calculate

scalar quantities which contain all of the curvature information we are inter-

ested in. We start by writing the Riemann tensor in the tetrad formalism:

R(a)(b)(c)(d) =
1

2
(η(a)(c)R(b)(d) − η(b)(c)R(a)(d) − η(a)(d)R(b)(c) + η(b)(d)R(a)(c))

− 1

6
(η(a)(c)η(b)(d) − η(a)(d)η(b)(c))R + C(a)(b)(c)(d), (4.24)

where R(a)(b) is the Ricci tensor, R is the Ricci scalar, and C(a)(b)(c)(d) is the

Weyl tensor. We will consider the vacuum case in which both the Ricci tensor

and the Ricci scalar vanish, leaving the Weyl tensor equal to the Riemann

tensor. Given the symmetries of the Riemann tensor (and hence the Weyl

tensor), the Weyl tensor has 10 independent components and contains all of

the curvature information about the vacuum spacetime. These 10 independent

components can be written in terms of 5 complex scalars, known as the Weyl

scalars. They expressed as follows:

Ψ0 ≡ C(1)(3)(1)(3) = Cαβµνl
αmβlµmν , (4.25)

Ψ1 ≡ C(1)(2)(1)(3) = Cαβµνl
αkβlµmν , (4.26)

Ψ2 ≡
1

2
(C(1)(2)(1)(2) + C(1)(2)(3)(4))

=
1

2
Cαβµν(l

αkβlµkν + lαkβmµm̄ν), (4.27)

Ψ3 ≡ C(1)(2)(4)(2) = Cαβµνl
αkβm̄µkν , (4.28)

Ψ4 ≡ C(2)(4)(2)(4) = Cαβµνk
αm̄βkµm̄ν . (4.29)
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Like the Riemann tensor, these scalars contain all of the curvature

information about the spacetime. Additionally, since they are scalars they

do not depend on the choice of coordinates. They do, however, depend on

the particular tetrad of null vectors that is chosen, as will be shown in the

following sections.

4.3 Tetrad Transformations

The tetrad (lµ,kµ,mµ,m̄µ) depends on the choice of the orthonormal

tetrad {~e(a)}. We can apply a combination of a spatial rotation and a Lorentz

boost in a given direction which will change the tetrad while keeping it or-

thonormal. Thus, there are six degrees of freedom corresponding to possi-

ble transformations that will not change the formalism previously discussed.

These transformations are typically separated into three types.

4.3.1 Type I Rotations

Type I rotations leave the vector ~l unchanged:

lµ → lµ, (4.30a)

mµ → mµ + alµ, (4.30b)

m̄µ → m̄µ + ālµ, (4.30c)

kµ → kµ + āmµ + am̄µ + aālµ. (4.30d)
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where a is a complex parameter and ā is its complex conjugate. The Weyl

scalars transform as follows:

ΨI
0 → Ψ0, (4.31a)

ΨI
1 → Ψ1 + āΨ0, (4.31b)

ΨI
2 → Ψ2 + 2āΨ1 + ā2Ψ0, (4.31c)

ΨI
3 → Ψ3 + 3āΨ2 + 3āΨ1 + ā3Ψ0, (4.31d)

ΨI
4 → Ψ4 + 4āΨ3 + 6ā2Ψ2 + 4ā3Ψ1 + ā4Ψ0. (4.31e)

4.3.2 Type II Rotations

A type II rotation leaves the vector ~k unchanged:

lµ → lµ + b̄mµ + bm̄µ + bb̄lµ, (4.32a)

mµ → mµ + bkµ, (4.32b)

m̄µ → m̄µ + b̄kµ, (4.32c)

kµ → kµ, (4.32d)

where b is a complex parameter and b̄ is its complex conjugate. The Weyl

scalars transform under a type II rotation as follows:

ΨII
0 → Ψ0 + 4bΨ1 + 6b2Ψ2 + 4b3Ψ3 + b4Ψ4, (4.33a)

ΨII
1 → Ψ1 + 3bΨ2 + 3b2Ψ3 + b3Ψ4, (4.33b)

ΨII
2 → Ψ2 + 2bΨ3 + b2Ψ4, (4.33c)

ΨII
3 → Ψ3 + bΨ4, (4.33d)

ΨII
4 → Ψ4. (4.33e)

26



4.3.3 Type III Rotations

A type III rotation scales the vectors ~l and ~k while leaving their direc-

tion unchanged, as well as leaving the product lµk
µ unchanged:

lµ → λ−1lµ, (4.34)

mµ → eiθmµ, (4.35)

m̄µ → e−iθm̄µ, (4.36)

kµ → λkµ, (4.37)

where λ and θ are two real parameters. These two parameters, together with

the complex parameters a and b, make up the six degrees of freedom. A

type III rotation can be interpreted as a Lorentz boost in the (~l,~k) plane plus

a rotation in the (~m, ~̄m) plane. As such, type III rotations are commonly

referred to as spin-boost transformations. Under a spin-boost transformation

the Weyl scalars transform as follows:

ΨIII
0 → λ−2e2iθΨ0, (4.38a)

ΨIII
1 → λ−1eiθΨ1, (4.38b)

ΨIII
2 → Ψ2, (4.38c)

ΨIII
3 → λe−iθΨ3, (4.38d)

ΨIII
4 → λ2e−2iθΨ4. (4.38e)
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4.4 Null Tetrads and Null Frames

It is useful to use terminology that makes a clear distinction between

null frames and null tetrads. We define the two as follows:

• A null tetrad is a specific set of two real null vectors ~l and ~k and two

complex conjugate null vectors ~m and ~̄m.

• A null frame is a class of null tetrads connected by a spin-boost (type

III) transformation.

4.5 Curvature Invariants

In general, there are 14 independent invariant quantities which can

be constructed from the Riemann curvature tensor in four dimensions. In

vacuum, only four of these invariants are non-zero. We can express these four

invariants as two complex scalars I and J . These scalars are independent of

both the coordinates and the choice of tetrad. The scalar curvature invariants

I and J can be written in terms of the Weyl tensor as:

I =
1

16

(

C ρσ
µν C µν

ρσ − i C ρσ ∼
µν C µν

ρσ

)

(4.39)

and

J =
1

96
(C ρσ

µν C αβ
ρσ C µν

αβ − C ρσ
µν C αβ ∼

ρσ C µν
αβ ), (4.40)

where ∼C ρσ
µν ≡ 1

2
4εµν

δλCδλσρ is the Hodge dual of the Weyl tensor and 4εµν
δλ

is the four dimensional Levi-Civita symbol. We can also express I and J in
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terms of the Weyl scalars as follows:

I = 3Ψ2
2 − 4Ψ1Ψ3 +Ψ0Ψ4 (4.41)

J = det

∣

∣

∣

∣

∣

∣

Ψ0 Ψ1 Ψ2

Ψ1 Ψ2 Ψ3

Ψ2 Ψ3 Ψ4

∣

∣

∣

∣

∣

∣

. (4.42)

4.6 Principal Null Directions

The path of light emanating from a spherical source and propagating

through curved space will cause the image of the spherical source to be dis-

torted as perceived by a distant observer. The amount of this distortion can

be quantized by

D =
1

2
C(r, θ, φ)r2 (4.43)

where r is the distance to the source and C(r, θ, φ) is the projection of the Weyl

scalar on the tangent plane of the celestial sphere. There are four distortion-

free directions (i.e. D = 0) known as principal null directions [24]. Penrose

showed that these four directions can be found by setting Ψ0 = 0 after a type

II rotation (Eq. 4.33a), i.e.:

ΨII
0 = Ψ0 + 4bΨ1 + 6b2Ψ2 + 4b3Ψ3 + b4Ψ4 = 0. (4.44)

To solve Eq. (4.44) we will follow the method outlined by Gunnarsen [25]. We

begin by introducing a new variable

y = Ψ4b+Ψ3. (4.45)
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Substituting this variable into Eq. (4.44) gives

y4 + 6Hy2 + 4Gy +K = 0, (4.46)

where the coefficients are combinations of the Weyl scalars given by

K ≡ Ψ2
4I − 3H2 (4.47)

H ≡ Ψ4Ψ2 −Ψ2
3 (4.48)

G ≡ Ψ2
4Ψ1 − 3Ψ4Ψ3Ψ2 + 2Ψ2

3, (4.49)

and we use the definitions of the curvature invariants I and J given in Eqs.

(4.41) and (4.42). Solutions of Eq. (4.46) can be expressed in terms of solutions

to the following equation:

λ3 − Iλ+ 2J = 0. (4.50)

This equation has the following solutions:

λ1 = −
(

P +
I

3P

)

, (4.51a)

λ2 = −
(

e
2πi
3 P + e

4πi
3

I

3P

)

, (4.51b)

λ3 = −
(

e
4πi
3 P + e

2πi
3

I

3P

)

, (4.51c)

where

P =
[

J +
√

J2 − (I/3)3
] 1

3

. (4.52)
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From Eqs. (4.51) we determine three new complex variables α,β,γ using the

following:

α2 = 2Ψ4λ1 − 4H (4.53a)

β2 = 2Ψ4λ2 − 4H (4.53b)

γ2 = α2 + β2 + 4H (4.53c)

αβγ = 4G. (4.53d)

The values of α,β,and γ are determined up to a sign by Eqs. (4.53a - 4.53c)

and the sign is determined by Eq. (4.53d). Eqs. (4.51) can be written in terms

of these new variables as:

λ1 =
α2 + 4H

2Ψ4

, (4.54a)

λ2 =
β2 + 4H

2Ψ4

, (4.54b)

λ3 =
γ2 + 4H

2Ψ4

. (4.54c)

We can now write the solutions of Eq. (4.46) in terms of α, β, and γ:

y1 =
1

2

(

α + β + γ
)

, (4.55a)

y2 =
1

2

(

α− β − γ
)

, (4.55b)

y3 =
1

2

(

−α + β − γ
)

, (4.55c)

y4 =
1

2

(

−α− β + γ
)

. (4.55d)

Setting Eqs. (4.54) equal to Eqs. (4.51) yields the final expressions for α,

β, and γ. Once we have those expressions we can now write down the final
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solution of Eq. (4.44), giving us the principal null directions:

b1 = −
Ψ3 +

1
2

(

α + β + γ
)

Ψ4

, (4.56a)

b2 = −
Ψ3 +

1
2

(

α− β − γ
)

Ψ4

, (4.56b)

b3 = −
Ψ3 +

1
2

(

−α + β − γ
)

Ψ4

, (4.56c)

b4 = −
Ψ3 +

1
2

(

−α− β + γ
)

Ψ4

. (4.56d)

4.7 Petrov Classification

We found the principal null directions by solving Eq. (4.44), i.e. finding

its roots. These roots are listed in Eqs. (4.56). Spacetimes can be separated

into different types, known as Petrov Types, based on the number of distinct

roots (and hence principal null directions) in the spacetime. Table 4.1 sum-

marizes the different Petrov classifications. We are particularly interested in

Petrov type I and type D spacetimes, so we will highlight those types.

Petrov Type
I Four distinct principal null directions
II Two coinciding principal null directions
D Two pairs of coinciding principal null directions
III Three coinciding principal null directions
N All four principal null directions coincide

Table 4.1: Table of Petrov Classifications. The Petrov type is determined by
the number of coinciding principal null directions.
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4.7.1 Petrov Type I

In a Petrov type I spacetime there are four distinct principal null direc-

tions. By performing a class II transformation (Eqs. 4.33) followed by a class

I transformation (Eqs. 4.31), it is possible to set two of the Weyl scalars to

zero. In practice will set Ψ1 = Ψ3 = 0 in order to find the transverse frames,

which we will discuss in the following sections.

4.7.2 Petrov Type D

A Petrov type D spacetime has two pairs of coinciding principal null di-

rections. These spacetimes have the relation 27J2 = I3, which is the condition

that distinguishes special Petrov types (II, D, III or N) from the general Petrov

type I. We can perform a transformation such that the null vector ~k points

along one of the principal null directions. This sets Ψ0 = Ψ1 = 0. Pointing

the null vector ~l along the other pair of repeated principal null directions sets

Ψ3 = Ψ4 = 0, leaving only Ψ2 nonzero. It can be shown that Ψ2 contains

all the information about the background. As an example, we note that both

Schwarzschild and Kerr spacetimes are of Petrov type D. For a Schwarzschild

spacetime we find

Ψ
(Schwarschild)

2 = −M
r3
. (4.57)

For a Kerr spacetime we find

Ψ
(Kerr)

2 = − M

(r + ia)3
, (4.58)
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where a is the Kerr spin parameter. A Petrov type D spacetime is also known

as a Kinnersley frame.

4.8 Quasi-Kinnersley Frame

Now that we have calculated the Weyl scalars (Sec. 4.2), we need to

chose an appropriate tetrad such that the scalars contain the expected infor-

mation. In general the information about the spacetime is divided among the

Weyl scalars. However, for tetrads that are infinitesimally close to type D

the scalars Ψ0 and Ψ4 are invariant under both tetrad and gauge transforma-

tions and as such have specific physical meaning: Ψ4 is the outward traveling

gravitational radiation and Ψ0 is the inward traveling radiation. However, we

do not have complete knowledge of the spacetime a priori, as it will change

with time. We will follow the method outlined by Nerozzi [26] in which we

will chose the correct tetrad frame assuming that the spacetime is type D. We

start with three definitions:

1. A transverse frame is a frame in which Ψ1 = Ψ3 = 0. For spacetimes of

type I, Ψ1 and Ψ3 are gauge choices which can be set to zero via tetrad

transformations.

2. A Kinnersley frame for a type D spacetime provides that the two real

null tetrad vectors (~l and ~k) coincide with the two repeated principal

null directions of the Weyl tensor.

3. A quasi-Kinnersley frame for a type I spacetime converges to a Kinners-
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ley frame when S = 27J2

I3
→ 1.The quasi-Kinnersley frame is a transverse

frame with the added condition that as the spacetime converges to a Kin-

nersley frame (S → 1), the Weyl scalars Ψ0 and Ψ4 both tend towards

zero. We introduce a radiation scalar ξ = Ψ0Ψ4 with the condition that

ξ → 0 as S → 1.

To find the quasi-Kinnersley frame in a type I spacetime we start by performing

a type I rotation followed by a type II rotation:

Ψ0 → Ψ I

0 = Ψ0,

Ψ1 → Ψ I

1 = Ψ1 + āΨ0,

Ψ2 → Ψ I

2 = Ψ2 + 2āΨ1 + ā2Ψ0,

Ψ3 → Ψ I

3 = Ψ3 + 3āΨ2 + 3ā2Ψ1 + ā3Ψ0,

Ψ4 → Ψ I

4 = Ψ4 + 4āΨ3 + 6ā2Ψ2 + 4ā3Ψ1 + ā4Ψ0,

Ψ I

0 → Ψ II

0 = Ψ I

0 + 4bΨ I

1 + 6b2Ψ I

2 + 4b3Ψ I

3 + b4Ψ I

4 , (4.59)

Ψ I

1 → Ψ II

1 = Ψ I

1 + 3bΨ I

2 + 3b2Ψ I

3 + b3Ψ I

4 ,

Ψ I

2 → Ψ II

2 = Ψ I

2 + 2bΨ I

3 + b2Ψ I

4 ,

Ψ I

3 → Ψ II

3 = Ψ I

3 + bΨ I

4 ,

Ψ I

4 → Ψ II

4 = Ψ I

4 .
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Given the definition above, we set Ψ II
1 = Ψ II

3 = 0 and plug this into the above

rotation equations. We are then left to solve the following

Ψ3 + 3āΨ2 + 3ā2Ψ1 + ā2Ψ0 +
b (Ψ4 + 4āΨ3 + 6ā2Ψ2 + ā3Ψ1 + ā4Ψ0) = 0,

(4.60a)

Ψ1 + āΨ0 + 3b (Ψ2 + āΨ1 + ā2Ψ0)+
3b2 (Ψ3 + 3āΨ2 + 3ā2Ψ1 + ā3Ψ0)+

b3 (Ψ4 + 4āΨ3 + 6ā2Ψ2 + 4ā3Ψ1 + ā4Ψ0) = 0.
(4.60b)

For a Petrov type I spacetime b has the following form:

b = − Ψ3 + 3āΨ2 + 3ā2Ψ1 + ā2Ψ0

Ψ4 + 4āΨ3 + 6ā2Ψ2 + ā3Ψ1 + ā4Ψ0

. (4.61)

Substituting this into Eq. (4.60b) we obtain a sixth order polynomial for ā:

P6ā
6 + P5ā

5 + P4ā
4 + P3ā

3 + P2ā
2 + P1ā

1 + P0 = 0, (4.62)

whose coefficients Pn are given by:

P6 = −Ψ3Ψ
2
0 − 2Ψ3

1 + 3Ψ2Ψ1Ψ0, (4.63)

P5 = −2Ψ3Ψ1Ψ0 −Ψ2
0Ψ4 + 9Ψ2

2Ψ0 − 6Ψ2Ψ
2
1, (4.64)

P4 = −5Ψ1Ψ4Ψ0 − 10Ψ3Ψ
2
1 + 15Ψ3Ψ2Ψ0, (4.65)

P3 = −10Ψ4Ψ
2
1 + 10Ψ2

3Ψ0, (4.66)

P2 = 5Ψ3Ψ0Ψ4 + 10Ψ1Ψ
2
3 − 15Ψ1Ψ2Ψ4, (4.67)

P1 = 2Ψ3Ψ1Ψ4 +Ψ2
4Ψ0 − 9Ψ2

2Ψ4 + 6Ψ2Ψ
2
3, (4.68)

P0 = Ψ1Ψ
2
4 + 2Ψ3

3 − 3Ψ2Ψ3Ψ4. (4.69)

Although Eq.(4.62) is sixth order, there are only three transverse frames due

to the the degeneracy of ~l and ~k. An exchange of ~l and ~k produces an exchange
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in the Weyl scalars given by

Ψ0 ↔ Ψ̄4,

Ψ2 ↔ Ψ2, (4.70)

Ψ4 ↔ Ψ̄0.

If we also exchange ~m and ~̄m accordingly, then the complex conjugation is

unnecessary. In this case we have simply switched which scalars contain the

inward and outward radiation. Thus we see that there are three transverse

frames for a Petrov type I spacetime, and we will find that one of them is the

quasi-Kinnersley frame. We also note that once we find the parameter a from

the solution of Eq. (4.62), ā, b can be calculated. We will focus our attention

on solving for a, which is done in the following section.

4.9 Finding the Quasi-Kinnersley Frame

In terms of the parameters α, β, and γ, the solutions for the three

transverse frames are given by

ā I

± =
1

2α

[

β γ
√

(α 2 − β 2) (α 2 − γ 2)
]

, (4.71a)

ā II

± =
1

2 β

[

α γ
√

(β 2 − α 2) (β 2 − γ 2)
]

, (4.71b)

ā III

± =
1

2 γ

[

αβ
√

(γ 2 − α 2) (γ 2 − β 2)
]

. (4.71c)

The ± is due to the degeneracy in ~l and ~k. It is necessary to determine which

of these frames corresponds to the quasi-Kinnersley frame. To do so, we need

to satisfy the criteria S → 1 as ξ → 0. It can be seen that S → 1 =⇒ P →
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3
√
J =⇒ 3

√
J →

√
I. Using Eq. (4.51), we find λ behaves in the following

way:

λ1 → −2

√

I

3
, (4.72a)

λ2 →
√

I

3
, (4.72b)

λ3 →
√

I

3
. (4.72c)

Ψ2 in the three frames then has the value:

Ψ I

2 =
λ1
2
, (4.73a)

Ψ II

2 =
λ2
2
, (4.73b)

Ψ III

2 =
λ3
2
. (4.73c)

The radiation scalar ξ then becomes:

ξ I =
(λ2 − λ3)

2

4
, (4.74a)

ξ II =
(λ1 − λ3)

2

4
, (4.74b)

ξ III =
(λ1 − λ2)

2

4
. (4.74c)

Eqs. (4.72) show that the equations for ξ in the case S → 1 are

ξ I → 0, (4.75a)

ξ II → 3 I

4
, (4.75b)

ξ III → 3 I

4
. (4.75c)

Thus, we determine that the transverse frame I is the quasi-Kinnersley frame.
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4.10 Ψ4 in Terms of Scalar Quantities

This section describes the treatment for computing Ψ4 in openGR, fol-

lowing the procedure outlined by Nerozzi [27]. We can construct the electric

and magnetic parts of the Weyl tensor as follows:

Eαγ = −Cαβγδe
µ

(0)e
ν
(0), (4.76)

Bαγ = −1

2
4εµναβCαβµνe

µ

(0)e
ν
(0), (4.77)

where we recall e(0)µ is the unit normal vector on the spatial hypersurface first

used in Eq. (4.14) and 4εµναβ is the four dimensional Levi-Civita tensor. The

Weyl scalars can now be written in terms of the electric and magnetic parts

of the Weyl tensor as follows:

Ψ0 = −(Eβγ − iBβγ)m
βmγ, (4.78a)

Ψ1 = −(Eβγ − iBβγ)m
βeγ(1), (4.78b)

Ψ2 = −(Eβγ − iBβγ)e
β

(1)e
γ

(1), (4.78c)

Ψ3 = −(Eβγ − iBβγ)m̄
βeγ(1), (4.78d)

Ψ4 = −(Eβγ − iBβγ)m̄
βm̄γ. (4.78e)

After finding a frame in which Ψ1 = Ψ3 = 0, Eq. (4.78e) can be written as

follows

(Ψ4)TF =
Ey − Ex

2
+ i

Bx − By

2
, (4.79)

where “TF” denotes the transverse frame. After calculating the eigenvalues of

the electric and magnetic parts of the Weyl tensor, the Weyl scalar Ψ4 can be
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expressed in terms of a magnitude and phase given by

Re[(Ψ4)TF ] = −
√
3|E| sin

(

ΘE +
2kπ

3

)

, (4.80)

Im[(Ψ4)TF ] =
√
3|B| sin

(

ΘB +
2kπ

3

)

, (4.81)

In general k can assume values {−1, 0, 1}, but it is set to 0 in openGR. The

magnitudes E and B are given by

|E| =

√

EαβEαβ

6
, (4.82a)

|B| =

√

BαβBαβ

6
, (4.82b)

and the phases ΘE and ΘB are

ΘE =
1

3
arccos

[

√
6

(

EαβE
β
γE

γα

[Eαβ]
3

2

)]

, (4.83a)

ΘB =
1

3
arccos

[

√
6

(

BαβB
β
γB

γα

[Bαβ]
3

2

)]

. (4.83b)

Notice that all of the E and B terms in Eqs. (4.82) and (4.83) have summations

that leave only scalar quantities in these expressions. We use these terms to

express the Weyl scalar Ψ4 in terms of scalar quantities.

4.11 Decomposition of Ψ4 by Spherical Harmonics

In this chapter the decomposition Ψ4 by spherical harmonics is dis-

cussed, in accordance with the discussion by Walter [28]. Since the gravita-

tional field has spin weights ±2, we will project Ψ4 on the spherical harmonics

of the same spin-weights. More specifically, we will focus on the spherical
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harmonic with spin-weight s = −2. By doing so we are able to calculate the

contributions of the individual l,m modes. The scalar product of Ψ4 and Y
−2
lm

gives

Alm = 〈Y −2
lm ,Ψ4〉 =

∫ 2π

0

∫ π

0

Ψ4Ȳ
−2
lm sin θdθdφ. (4.84)

where Y s
lm are the spin-weighted spherical harmonics given by

Y s
lm(θ, φ) = (−1)s

√

2l + 1

4π
dlm(−s)(θ)e

imφ. (4.85)

Above, dlms(θ) are the Wigner d-functions, which are defined as follows:

dlms(θ) =

C2
∑

t=C1

(−1)t[(l +m)!(l −m)!(l + s)!(l − s)!]
1

2

(l +m− t)!(l − s− t)!t!(t+ s−m)!

(

cos θ

2

)2l+m−s−2t(
sin θ

2

)2t+s−m

, (4.86)

where C1 = max(0,m− s) and C2 = min(l +m, l − s).

4.12 Energy, Momentum, and Angular Momentum

The gravitational radiation emitted by a system carries away energy

and momentum. This is the mechanism by which orbiting black holes undergo

inspiral and, ultimately, merger. This section follows the discussion by Walter

[28] and presents the calculation of energy and momentum carried by gravita-

tional radiation. The rate at which energy and momentum are radiated can
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be written in terms of the Weyl scalar Ψ4 as follows:

dE

dt
= lim

r→∞

[

r2

16π

∫

Ω

∣

∣

∣

∣

∫ t

−∞

Ψ4dt

∣

∣

∣

∣

2

dΩ

]

, (4.87)

dPi

dt
= − lim

r→∞

[

r2

16π

∫

Ω

li

∣

∣

∣

∣

∫ t

−∞

Ψ4dt

∣

∣

∣

∣

2

dΩ

]

, (4.88)

dJz
dt

= − lim
r→∞

{

r2

16π
Re

[

∫

Ω

(

∂φ

∫ t

−∞

Ψ4dt

)

(

∫ t

−∞

∫ t′

−∞

Ψ̄4dtdt
′

)

dΩ

]}

,

(4.89)

where li = (− sin θ cosφ,− sin θ sinφ,− cosφ). By expanding Ψ4 in terms of

the l and m modes, the expression for rate of energy radiated is simplified.

The energy radiated in the individual modes is found to be:

dE

dt
= lim

r→∞





r2

16π

∣

∣

∣

∣

∣

∫ t

−∞

∑

l,m

Al,mdt

∣

∣

∣

∣

∣

2


 . (4.90)

Typically, most of the energy is radiated in the l = 2,m = ±2 modes.

The total amount of energy in a spacetime is given by the ADM Energy,

also known as the ADM Mass MADM [12]. The energy in the spacetime is

computed within a sphere Sr of radius r as

E(r) =
1

16π

∫

Sr

√
ggijgkl(gik,j − gij,k)dSl. (4.91)

To account for the fact that the boundaries of the simulations do not extend

out to spatial infinity, the ADM Energy is found by taking the limit of E(r)as

r goes to infinity, i.e.:

MADM = lim
r→∞

E(r).
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Similarly, the linear momentum Pi and angular momentum Ji are also calcu-

lated within the sphere of radius r as:

Pi(r) =
1

8π

∫

Sr

√
g(Kj

i − δjiK)dSj, (4.92)

Ji(r) =
1

8π
ε k
ij

∫

Sr

√
gxj(Km

k − δmkK)dSm. (4.93)

where the three dimensional Levi-Civita tensor ε ijk is a contraction of the four

dimensional Levi-Civita tensor 4εαβγδ :

ε ijk ≡ 4εαβγδ n̂ δ (4.94)

= x̂ i ·
(

x̂ j × x̂ k
)

=
√
g [1 2 3] ijk , (4.95)

and [123] ijk is equal to:

[123] ijk =







+1 for (i, j, k) ∈ {(1, 2, 3) , (3, 1, 2) , (2, 3, 1)} ,
−1 for (i, j, k) ∈ {(1, 3, 2) , (2, 1, 3) , (3, 2, 1)} ,
0 for any other combination.

(4.96)

The total linear and angular momentum is then found by taking the limit of

Pi(r) and Ji(r), respectively, as r → ∞:

Pi = lim
r→∞

Pi(r),

Ji = lim
r→∞

Ji(r).
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Chapter 5

Gravitational Wave Detection

Although there is strong indirect evidence that gravitational waves ex-

ist, a wave has never been detected. Direct detection would unequivocally

prove the existence of gravitational waves and would validate Einstein’s the-

ory of general relativity. Direct detection is expected to occur within the next

few years and will most likely be achieved by large ground based interferomet-

ric detectors such as LIGO [1].

5.1 LIGO

The Laser Interferometer Gravitational Wave Observatory (LIGO) is a

US-based collection of three physical gravitational wave detectors in two lo-

cations: Hanford, Washington and Livingston, Louisiana. Conceptually, each

detector is a large Michelson interferometer comprised of two large vacuum

tubes at right angles to each other with mirrored test masses suspended at

the ends. In reality, each detector is a modified Michelson interferometer

with additional test masses used to create Fabry-Perot cavities and introduce

power-recycling, both of which increase the sensitivity. However, for simplicity

sake, only a basic Michelson interferometer will be described. In a Michelson
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interferometer, a laser beam is split at the intersection of the two arms, sent

down the arms, reflected off the mirrors at the ends, and returned back to the

intersection where the beam is re-combined. The arm lengths can be precisely

arranged such that when the beams from the two arms re-combine they per-

fectly interfere. If the length of one of the arms changes relative to the other

arm, the beams will no longer be perfectly out of phase when they re-combine

and therefore will not perfectly interfere. Without perfect destructive inter-

ference the excess light can be detected with a photodetector. A gravitational

wave passing through the detector would have the effect of changing the arm

lengths, resulting in a signal which would be detected by the photodetector.

A schematic illustration of a LIGO interferometer is shown in Fig. 5.1.

Figure 5.1: Schematic view of a LIGO detector [29].
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Using this configuration, the fractional change in arm length, or strain,

can be measured with extremely high accuracy. Figure 5.2 shows the strain

sensitivity achieved by LIGO for each of the first five science runs. In the fifth

science run (S5), completed in 2007, LIGO achieved its design sensitivity with

a peak of 3× 10−23/
√
Hz in the 100Hz− 200Hz frequency range.

Using Eq. (1.2) we determine that this peak sensitivity coincides with

the strain that is expected to be produced by two 1− 2 solar mass black holes

or neutron stars undergoing inspiral and merger at a distance of about 15MPC

from Earth. From the number of such objects that are believed to exist within

the volume of space out to 15MPC, LIGO expected a detection rate of up

to 1/yr. As such, the fact that LIGO has not detected anything yet is not

surprising. To have a good chance at detecting a gravitational wave, LIGO’s

sensitivity has to be improved, which is the goal of Advanced LIGO.

Advanced LIGO [31] is the name given to the next generation of grav-

itational wave detectors at LIGO facilities. Upgrades to the existing LIGO

detectors are currently underway and are expected to be completed by 2014.

Once completed, the initial sensitivity of LIGO will be improved by about a

factor of 10, increasing the volume of observable space by a factor of 1,000.

Consequently, the expected rate of detection will increase substantially. Over

the course of a year, Advanced LIGO can expect to see up to 40 neutron star

inspiral events, 30 black hole binary mergers, and 10 mixed black hole-neutron

star inspirals. Given these numbers, hopes are very high that a direct detec-

tion will be made once the upgraded detectors come on-line. Even with the
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Figure 5.2: LIGO strain sensitivity for science runs S1 - S5 [30].

increased sensitivity, though, the chance of detection is greater still with the

use of data analysis techniques such as matched filtering.

5.2 Matched Filtering

The chances of finding a signal in noisy data is greatly increased if we

know what signal to expect. Matched filtering is the process of searching for

a signal in noisy data by passing the data through a filter K(t), which uses

the expected signal as a template. For a detailed treatment of this process,

see Fazi [32]. The output Z of the filter K(t) gives a measure of the likelihood
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that a given signal is present in the data. It is given by

Z(t) ≡
∫ ∞

−∞

K(t)s(t)dt. (5.1)

We want to select the filter K(t) such that Z will be large if a signal is

present and small if it is not. It can be shown that for signals of known form

in colored Gaussian noise this is accomplished by using a filter of the following

form:

K̃(f) = C
h̃(f)

Sn(f)
, (5.2)

where h̃(f) is the Fourier transform of the signal and Sn(f) is the power

spectrum.

Starting from the initial equation for the filter output, Eq. (5.1), and

allowing the signal to occur at an unknown time t, the filter output is then a

function of t and can be expressed as a convolution as follows:

Z(t) = C

∫ ∞

−∞

K(t− t′)s(t′)dt′, (5.3)

where C is a constant determined in the derivation of the filter. Using the

convolution theorem this can be expressed as

Z(t) = C

∫ ∞

−∞

s̃(f)K̃∗(f)e2πiftdf, (5.4)

where ∗ denotes a complex conjugate. By substituting the expression for the

optimal filter, Eq. (5.2), we get

Z(t) = C

∫ ∞

−∞

s̃(f)h̃∗(f)e2πift

Sn(|f |)
df. (5.5)
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A threshold for a signal could be put directly on Z, but instead Z is

first normalized by the variance of the filter, σ2, given by:

σ2 = 2

∫ ∞

−∞

h̃(f)h̃∗(f)

Sn(|f |)
df, (5.6)

where the constant C above is set to 2. The signal to noise ratio (SNR) of the

normalized output of the optimal filter is defined by the quantity ρ(t), given

as follows:

ρ(t) =
|Z(t)|
σ

. (5.7)

A threshold value, ρ0, is then chosen which determines whether or not a signal

is present, i.e.:

ρ ≥ ρ0 → signal is present

ρ < ρ0 → signal is not present

With this procedure there is the possibility of false alarm or false dis-

missal, i.e., when ρ ≥ ρ0 and no signal is present, or when ρ < ρ0 but a signal

is actually present, respectively. Thus, the threshold ρ0 must be chosen care-

fully. To help determine this threshold and to test the entire data analysis

pipeline, simulated waveforms are injected into real data to see if they can be

detected. This process is discussed in the following section.

5.3 NINJA

The Numerical INJection Analysis (NINJA) project [33] is a collabo-

ration between the numerical relativity and gravitational wave data analysis
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communities. The purpose of NINJA is to test the existing gravitational wave

data analysis pipeline using simulated numerically generated waveforms in-

serted into real detector data. This provides a test of whether a signal will

be detected with the current data analysis procedure and using the existing

gravitational waveform template bank. These tests can also be used to help

determine the threshold SNR that constitutes a detection, as described in

Section 5.2.

The parameter space needed to cover every possible binary black hole

interaction is huge and completely infeasible to simulate directly. Varying

parameters such as spin, mass ratio, and momentum all produce different

interactions and, hence, different gravitational waveforms. Since numerical

relativity simulations are very computationally expensive, this parameter space

cannot be investigated simply by brute force. Instead, detailed analysis is done

to determine if a signal will be detected using the current template bank or if

new templates are needed. For example, when looking at the effect of spin on

the template bank, Frei [34] found that a surprisingly high number of signals

with spin were detected using the template bank that did not include spin.

However, the parameters of the holes (spin, mass ratio, etc.) were recovered

much more accurately using templates that did include spin. Using this type

of analysis, the effectiveness of the existing template bank can be evaluated

and new templates can be generated if necessary.

If it is determined that a new template is needed, new templates can

be created using interpolation. In most cases gravitational waveforms vary in
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a regular manner in response to changing a parameter. This allows the use

of interpolation between existing waveforms without loss of accuracy, avoiding

the need to run lengthy full numerical relativity simulations. If a full simulation

is necessary, a request can be made to the numerical relativity community to

produce the waveforms needed.
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Chapter 6

Computational Framework

There are three main elements of the computational framework upon

which openGR is built: the SAMRAI library[8] and the two packages PVODE

and KINSol, which are distributed as part of the SUNDIALS suite. SAMRAI

provides a framework for adaptive mesh refinement while PVODE and KINSol

are used to solve the hyperbolic (time evolution) and elliptic (constraints)

equations, respectively. SAMRAI comes with some C++ wrappers for the

otherwise independent PVODE and KINSol packages so that they are fully

embedded in the SAMRAI framework. openGR is an additional piece of C++

code that provides the physics associated with the problem we want to solve.

Given the modular design of openGR one can solve differing sets of evolution

or constraint equations simply by setting the number of variables to solve and

providing the right-hand-sides of the evolution and constraint equations.

6.1 The SAMRAI Library

The SAMRAI C++ library provides an adaptive mesh refinement

(AMR) framework that can be used for numerical relativity simulations. The

computational grid is implemented as a collection of structured grid compo-
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nents. The adaptive mesh refinement structure is a hierarchy of levels with

different resolutions nested within the SAMRAI framework (Fig. 6.1). Each

level is divided in a series of rectangular patches that are assigned to the

different processors used in the numerical simulation.

Figure 6.1: Example of a grid with mesh refinement. Finer level grids are
nested within coarser levels.

The intrinsic C++ design of the SAMRAI library provides significant

flexibility by allowing the user to treat some features as a “black box” or to

make modifications as necessary. All the fundamental features of SAMRAI are

defined as object oriented classes whose key functions are declared as virtual

and can be inherited and overwritten by the user.

A specific example demonstrating SAMRAI’s flexibility is the refine-

ment operation between different levels to fill the ghost zones of a finer level
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using interpolation from the coarser one. SAMRAI comes with a simple lin-

ear interpolation algorithm as the default. In openGR, we need to utilize

higher order interpolation since the finite differences are calculated at fourth

order in space. The flexibility of SAMRAI allows the user to inherit the class

RefineOperator and overwrite the function refine, introducing higher order

stencils for interpolation.

Just like the RefineOperator class, all the key ingredients of the AMR

framework can be inherited and modified. For example, SAMRAI and openGR

currently use uniform load balancing to share the workload among processors,

but there are plans to modify this feature to introduce a more adapted and op-

timized load balancing scheme that should improve the code efficiency. SAM-

RAI allows such modifications to be made in a straightforward way, making

the code improvements easy to design and apply. Moreover, the main SAM-

RAI library only needs to be compiled once, even if we plan to modify some

key features of the basic library. Using this C++ capability of inheriting an

existing class to modify the functions we want, the new functions are present

in our code and re-compiling the basic library is not necessary.

6.2 PVODE

Einstein’s equations generate a set of hyperbolic evolution equations.

To solve these evolution equations we use a mixed Adams-Bashforth Adams-

Moulton method implemented by PVODE. PVODE is a general purpose solver

for systems of ordinary differential equations (ODEs). It allows the use of a
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mixed Adams-Moulton Adams-Bashforth method. This is often referred to as

a “predictor-corrector”: an Adams-Bashforth method is used to calculate the

solution y at timestep n (predictor), then an Adams-Moulton method is used

to improve the value (corrector). PVODE is used to solve the initial value

problem

ẏ = f(t, y), y(t0) = y0. (6.1)

The Adams-Bashforth Adams-Moulton predictor-corrector method is devel-

oped by integrating Eq. (6.1) on both sides and replacing the integral with a

quadrature formula:

y(t)− y(t0) =

∫ t

t0

f(τ, y(τ)) dτ, (6.2)

y(t) ≈ y(ti) +
k
∑

j=0

Ajf(tj, y(tj)), (6.3)

where ti ≤ t0 < t1 < · · · < tk ≤ t, and Aj are the appropriate quadrature

coefficients.

In general the initial value problem of Eq. (6.1) can be solved using a

linear multistep method of the form [35]

K1
∑

i=0

αn,iyn−i +∆t

K2
∑

i=0

βn,iẏn−1 = 0, (6.4)

where ∆t = tn − tn−1 is the timestep and yn is the computed approximation

of y(tn), the exact solution of Eq. (6.1) at tn. The coefficients αn,i and βn,i

are uniquely determined by a particular integration formula, the history of the

size of the timestep, and the normalization αn,0 = −1. Setting K1 = 1 and
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K2 = q − 1 yields the general Adams-Moulton Formula. The variable q is the

order of integration.

The Adams-Bashforth Adams-Moulton predictor-corrector method is a

combination of the Adams-Bashforth method and the Adams-Moulton method.

The Adams-Bashforth method is an implicit method obtained by setting βq =

0 in the Adams-Moulton formula. It can be written in the form

yn = yn−1 +∆t

q−1
∑

i=0

βif(tn−1, yn−i). (6.5)

By fixing q the order of the method is determined and the coefficients βi can

be determined using the Lagrange formula for polynomial interpolation:

βq−i−1 =
(−1)i

i!(q − i− 1)!

∫ 1

0

q−1
∏

i=0

(u+ i)du, (6.6)

where i = 0 . . . q − 1. For example, a fourth order Adams-Bashforth method

equation has coefficients βi = [−3
3
, 37
24
,−59

24
, 55
24
]. The procedure for calculat-

ing coefficients for the Adams-Moulton method is similar and also uses the

Lagrange formula for polynomial interpolation.

Setting βq = 0 to obtain the Adams-Bashforth method implies that this

method is implicit, while the Adams-Moulton method is explicit. This also

implies that a q-step Adams-Moulton method is of order q + 1 while a q-step

Adams-Bashforth scheme is of order q.

The Adams-Moulton method is generally more accurate than Adams-

Bashforth method due to the fact that it is implicit. However, it also proves to

be more computationally expensive since solving an implicit problem requires

56



more advanced numerical techniques. Since the Adams-Bashforth part of the

predictor-corrector calculates the solution at timestep n, the Adams-Moulton

part is no longer implicit and can be solved using functional iteration until a

specified convergence tolerance is met.

PVODE enables the use of the Adams methods up to twelfth order

in time. As noted above, a q order Adams-Bashforth method requires q

timesteps, but when the simulation starts only one timestep is available. This

problem is solved by varying the order of the method and the size of the

timesteps. Initially the simulation uses first order Adams-Bashforth and very

small timesteps. The order and the size of the timestep are slowly increased

until the desired integration order is reached.

Compared to the standard Runge-Kutta scheme used for time integra-

tion in most other numerical relativity codes, the Adams-Moulton Adams-

Bashforth method used by openGR proves to be more accurate and stable due

to the implicit nature of the Adams-Moulton method. However, this implicit

nature also makes it more computationally demanding in both memory alloca-

tion and efficiency. The need to keep information of twelve previous timesteps

significantly increases the memory storage of the program. Moreover, we are

unable to use AMR technologies like Berger Oliger because of the variability

of the timestep. All of the AMR levels must evolve using the same timestep,

which results in a less efficient code. We made this tradeoff of efficiency in

exchange for more stability and accuracy.
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6.3 KINSol

The ADM decomposition of Einstein’s equations introduces a set of el-

liptic equations, the constraint equations, defined on each spatial hypersurface.

These constraint equations must be solved in order to obtain well defined ini-

tial data that are solutions of Einstein’s equations. Moreover, these constraint

equations can be used to perform constrained evolution, which is the practice

of periodically correcting the evolved variables. The constraint equations are

a set of non-linear algebraic equations which can be solved using Newton’s

method. The problem can be stated as follows: given n unknowns with n real

valued functions,

F(x) =











f1(x)
f2(x)
...

fn(x)











(6.7)

where x = (x1, x2, . . . , xn), a vector s = (s1, s2, . . . , sn) is sought such that

F(s) = 0. (6.8)

An inexact Newton method is applied to find the solution of Eq. (6.8), using

the following iteration scheme:

1. Set x0 as initial guess

2. For n = 0, 1, 2 . . . until convergence do:

(a) Solve J(xn)δn = −F(xn)

(b) Set xn+1 = xn + δn
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(c) Test for convergence

where J(xn) is the system Jacobian. A Krylov method is used to solve the

equation in step 2, requiring only the matrix vector product J(u)v, which is

approximated by

J(xn)vn ≈ F(xn + σvn)− F(xn)

σ
, (6.9)

where xn is the current approximation and σ is a scalar chosen to minimize

the numerical error.

The particular elliptic solver used by KINSol is based on the Krylov

procedure for systems of non-linear equations. The method starts with an

initial guess x0 for the system, and in the following k iterations produces an

approximate solution xk from a Krylov space generated by a vector b,

κ(A, b) = span{b, Ab, . . . , Ak−1b} (6.10)

KINSol uses the Generalized Miniminum RESidual method (GMRES) to ob-

tain the solution for a linear system of equations

Ax = b, (6.11)

(which, in our case, is represented by the equation J(xn)δn = −F(xn)).

After an initial solution x0 is chosen, the residual r0 = b−Ax0 is com-

puted. The Krylov space is then generated using the Arnoldi method, which

basically consists of a Gram-Schmidt orthonormalization of the basis vectors.
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The first step in generating the Krylov space is to compute a normalized ver-

sion of the residual r0 given by v1 = r0/‖r0‖. The iteration will then proceed

through the following steps:

• Compute the coefficients hi,j = (Avjvi)

• Add one orthonormal vector vj+1 = Avj

j
∑

i=1

hi,jvi to the Krylov series,

• Form an approximate solution xk = xk−1+Vkyk and then repeat iteration

until convergence is met.

The procedure implemented in the KINSol package describes what is done in a

single refinement level. To adapt and optimize the procedure for a multi-level

simulation, we adopt the following strategy:

1. Solve the elliptic system of equations on the coarsest level using Robin

boundary conditions until tolerance is reached.

2. A prolongation operator (see the next section for the description of re-

striction and prolongation) is used to interpolate the solution on the next

finer level in the grid, including the ghost zones.

3. Solve the finer level and go back to step 2 until the finest level is solved.

6.4 Restriction and Prolongation

The presence of a multi-resolution grid introduces the issue of com-

municating information between different levels of resolution. To accomplish

60



this we need to two operators: (1) a restriction operator I2hh that copies data

from a finer to a coarser level and (2) a prolongation operator Ih2h that per-

forms the opposite procedure. In particular, we need restriction at the end

of each PVODE iteration to copy data from the more accurate finer levels to

the coarser levels. Since we are using node-centered data the fine data lies

directly on top of the coarse data so the fine data can be directly copied to the

coarse level and no interpolation is necessary. When solving the initial data

we start by solving the coarsest level and then prolongation and interpolation

are used to fill in the domain of the next finer level. During time evolution,

prolongation is only necessary to fill the ghost zones of each level (except the

coarsest one).

SAMRAI handles the geometry of the system once the position of each

level is defined within the hierarchy of the grid. The prolongation and re-

striction performed by SAMRAI is performed using only a first order inter-

polation operator. However, this operator is defined in the context of a C++

object (RefineAlgorithm) that the user can inherit and modify. This is ex-

actly what we do in openGR by using the two classes RefineAlgorithm and

CoarsenAlgorithm, in which we inherit the basic SAMRAI C++ class and

define alternative operators that perform interpolation up to 6th order. The

order of the interpolation is specified in the parameter file.
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6.5 Outer Boundary Conditions

Since we are modeling an extended physical space with a limited compu-

tational domain, we need to enforce boundary conditions at the outer bound-

ary. We use different boundary conditions during the time evolution and the

constraint solver. These boundary conditions are applied to the coarsest level

in the AMR grid, as that is the only level that extends all the way to the outer

boundary.

6.5.1 Sommerfield Boundary Conditions

For the time evolution we implement Sommerfeld radiative boundary

conditions. These allow outward propagating waves to leave the domain, avoid-

ing back-reflection which would introduce errors into the spacetime. Each

variable u is evolved using the equation

∂u

∂t
= −u− u0

r
+ ni∂iu, (6.12)

where ni is the normal to the sphere r = const given by ni = −[x
r
, y
r
, z
r
] and

u0 is the value of the field in the flat limit. We assume u0 = 0 for all the fields

except gxx, gyy and gzz.

6.5.2 Robin Boundary Conditions

For the constraint solver we instead use Robin boundary conditions.

These assume that the variables fall off as some power of r such that

∂

∂r
[rn(u− u0)] = 0, (6.13)
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where n is the power of the radial fall-off of a given variable. This leads to the

following conditions:

ui,j,k = 1 + (ui−1,j,k − 1)
ri−1,j,k

ri,j,k
. (6.14)

6.6 Adaptive Mesh Refinement

openGR is a fully AMR-enabled code that allows all the refinement lev-

els to be moved during the simulation. The user can decide which refinement

levels are fixed and which are free to move. In general, different refinement

levels can be very nonuniform and change over time. SAMRAI allows for a

very general definition of where the refinement should take place by means

of the function ApplyGradientDetector. However, it is too computationally

expensive to dynamically determine where refinement should occur using gra-

dients or other such measures. Instead we employ a straightforward “moving

boxes” method in which the uniform nested boxes grid as shown in Fig. (6.1)

is maintained over much of the domain and only the finest few levels are free

to move to track the positions of the holes (Fig. (6.2)). The shape of these

adaptive refinement levels remains constant unless they move close enough to-

gether to merge into a single box (Fig. (6.2(b))). The boxes track the positions

of the holes by integrating in time the shift vector βi, since in the puncture

approach the velocity of the holes satisfies the following equation

∂xi

∂t
= −βi(xi). (6.15)
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(a) (b)

Figure 6.2: Zoomed in view of the grid in the region of the holes. The finest
two levels track the positions of the holes. In Fig. 6.2(b) the coarser of the two
levels moved close enough together to be combined into one box by SAMRAI.

Eq. (6.15) is then integrated using a second order Runge-Kutta time inte-

grator. Once the position of the two black holes is known at a time step,

SAMRAI re-arranges the grid according to this position, and makes use of the

prolongation and restriction operator to update the solution on the new grid

structure.
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Chapter 7

Scaling, Performance, and Convergence

This chapter will investigate matters of performance and accuracy. We

want to understand how well openGR performs as we change the number of

points in a grid and the number of processors used to carry out a simulation.

The following discussion looks at two different types of scaling (strong and

weak) to get a sense of how openGR scales as well as how the network over-

head increases with larger jobs. Memory use is also outlined as it is typically

the limiting factor on large simulations. Actual performance is also briefly

discussed to provide a sense of how long simulations take to run. Finally, the

accuracy of the code is demonstrated by running convergence tests.

7.1 Scaling

Scaling describes how much faster the code runs as the number of pro-

cessors is increased. We can relate the time it takes to run a simulation

(wall-clock time) to the number of processors by

t = anb, (7.1)
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where t is the wall-clock time, n is the number of processors, and a and b are

parameters. Taking the log of both sides yields

log t = log a+ b log n. (7.2)

Here we have a clear linear relationship on a log-log plot, where log a is the

intercept and b is the slope. Comparing two simulations using Eq. (7.1) we

find:

t2
t1

=

(

n2

n1

)b

. (7.3)

To measure the scaling properties of openGR we set up a series of jobs detailed

in Table 7.1. Since a majority of a simulation is spent doing the evolution,

we will only consider the time spent in PVODE (used for the evolution in

openGR). All scaling runs were performed on TACC supercomputer Ranger.

Job A B C D
Points / Level 403 803 1603 3203

Refinement Levels 9 9 9 9
Domain ±100M ±200M ±400M ±800M

Coarse Resolution 5M 5M 5M 5M
Fine Resolution 5M

256
5M
256

5M
256

5M
256

Table 7.1: Configurations used for scaling runs. In all cases the hole is located
at the origin and has mass M. The domain is increased proportionally to the
number of points per level to keep the spatial resolution consistent for each
job.

As will be seen below, we only considered the case of a single punc-

ture. Having a second puncture only changes the finest two levels of the grid,

and looking at the results obtained by Walter [28] we see that no significant

difference is found in the scaling results for two punctures as compared to a
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single puncture. Although actual simulations use AMR, for the purposes of

scaling we will also only consider fixed mesh refinement (FMR). The AMR

routine is a trivial calculation and introduces very little extra computational

overhead. In addition, for time considerations we will not evolve the system

long enough for the hole to move an appreciable distance so we can restrict

our configurations to FMR without any significant loss of validity.

7.1.1 Strong Scaling

Strong scaling is a measure of the speed-up time achieved by running

the same job on a larger number of processors. Ideally, if we double the

number of processors used, the wall-clock time should be cut in half. From

Eq. (7.3) we can see that this would correspond to a slope of −1 on a log-

log plot, giving t ∝ 1
n
. In practice, this does not actually happen because

of the overhead required for interprocessor communication. The number of

points that each individual processor works on is padded by a few points

in each direction, known as the ghostzones. As the number of processors

is increased, the portion of the job that each processor performs is decreased,

but the communication overhead per processor stays the same. Eventually, the

size of the computational domain that a processor is handling approaches the

size of the ghostzone cells and more time is spent performing communication

overhead than is spent actually doing calculations. At this point there is no

further performance gained by increasing the number of processors. This would

correspond to a slope of 0 on a log-log plot. If you then continue to increase the
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number of processors the time spent communicating between processors will

become greater than the time spent doing calculations and the performance is

worse than it was was with fewer processors. This corresponds to a positive

slop on a log-log plot.

7.1.2 Single Puncture Unigrid Strong Scaling

To perform a unigrid job the same configurations listed in Table 7.1 are

used but with only a single level, i.e. Job A consists of a single grid containing

403 points, etc. Comparing these unigrid results to those obtained with FMR

allow us to understand how much performance is being affected by having

multiple refinement levels. Strong scaling results for jobs run on a unigrid

domain are shown in Fig. 7.1. All jobs were run out to a time of 5M . A

summary of results is shown in Table 7.2.

We can see that for all unigrid jobs the slope is relatively close to the

average of -0.54, however they are also rather far from the ideal slope of -1.

We conclude that for a unigrid domain the scaling is very consistent, although

less than ideal.

Strong Scaling: Single Puncture Unigrid

Job A B C D

Processor Range 16 - 128 16 - 128 16 - 512 128-512
Slope -0.48 -0.50 -0.58 -0.61

Average Slope -0.54

Table 7.2: Summary of strong scaling results for a unigrid single puncture.
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Figure 7.1: Strong scaling for a single puncture in a unigrid domain. All jobs
were run out to a time of 5M .

7.1.3 Single Puncture FMR Strong Scaling

Scaling results from full FMR simulation more closely resemble a typ-

ical configuration used in production runs. Strong scaling results for a single

puncture in a nine level FMR grid are shown in Fig. 7.2

For a single puncture with nine levels of FMR we find varying scaling

performance depending on the job being run. Curve A has a slope of -0.34

over a processor range of 16-64, while curve D has a slope of -0.83 over a

processor range of 1024 - 4096. The average of the slope of all four curves is

-0.59. We conclude that for nine levels of FMR, openGR scales better as the

number of points is increased. Having a large number of points ensures that
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Figure 7.2: Strong scaling for a single puncture with nine levels of FMR.

the time spent doing calculations is significantly longer than the time spent

on communication between processors.

Strong Scaling: Single Puncture FMR

Job A B C D

Processor Range 16 - 64 16 - 512 128 - 1024 1024-4096
Slope -0.34 -0.54 -0.64 -0.83

Average Slope -0.59

Table 7.3: Summary of strong scaling results for single puncture with nine
levels of FMR.

7.1.4 Weak Scaling

Weak scaling provides a measure of how much performance is affected

by interprocessor communication. This is accomplished by increasing both
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the overall size of a job and the number of processors such that the number

of points per processor is unchanged. The domain is also extended so that

the spatial resolution of each job is identical. For example, Job B has double

the number of points in each dimension as Job A, and thus has 8× as many

total points. If Job B were run on 8× as many processors as Job A, the time

it takes to run both of these Jobs should be equal, corresponding to a slope

of 0 on a log-log plot. Of course in practice this does not happen and this is

directly attributable to the overhead required for the communication between

processors. Looking at the deviation from ideal allows us to put limits on the

size of job that can be run.

7.1.5 Single Puncture Unigrid Weak Scaling

We again start by looking at the unigrid case. Weak scaling results for

a single puncture run on a uniform grid are shown in Fig. 7.3. The label of

each line denotes the job and number of processors of the first data point on

that line. Each subsequent point on the line corresponds to a job with 8× as

many points per level and 8× the number of processors. For example, the first

point on A16 is job A run on 16 processors. The second data point is Job B

run on 128 processors, followed by Job C run on 1024 processors.

Similar to the strong scaling results for the unigrid domain, the weak

scaling results are very consistent through a processor range of 16 - 2048 pro-

cessors. The average slope of all the curves is 0.26. This is less than ideal

scaling (which would be a slope of 0), but is reasonable.
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Figure 7.3: Weak scaling for a single puncture in a unigrid domain. The label
of each line denotes the job run and the number of processors of the leftmost
data point on the line. Each subsequent data point on a line represents an
increase in the number of points per level by a factor of 8 and an 8× increase
in the number of processors. For example, the first point on line A16 is Job
A run on 16 processors. The second point is Job B run on 128 processors,
followed by Job C run on 1024 processors.

Weak Scaling: Single Puncture Unigrid

Job A16 A64 B16 B64

Processor Range 16 - 128 512 - 2048 16 - 1024 64-512
Slope 0.25 0.30 0.28 0.22

Average Slope 0.26

Table 7.4: Summary of weak scaling results for a unigrid single puncture.

7.1.6 Single Puncture FMR Weak Scaling

As noted before, the full FMR configuration is a more realistic repre-

sentation of a typical configuration used for full-scale runs. Fig. 7.4 shows
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weak scaling results for a single puncture with nine levels of FMR.
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Figure 7.4: Weak scaling for a single puncture with nine levels of FMR. The
label of each line denotes the job run and the number of processors of the
leftmost data point on the line. Each subsequent data point on a line represents
an increase in the number of points per level by a factor of 8 and an 8× increase
in the number of processors. For example, the first point on line A16 is Job
A run on 16 processors. The second point is Job B run on 128 processors,
followed by Job C run on 1024 processors.

Weak scaling for a single puncture with nine levels of FMR is very good

over a large processor range, from 16 to 4096 processors. The average slope

of the four curves over this range is 0.13. Again this is larger than the ideal

of 0, but this shows that communication between processors does not hurt

performance very much.

Given the results shown in Sections 7.1.2 - 7.1.6 we conclude that in-
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Weak Scaling: Single Puncture FMR

Job A16 A64 B16 B64

Processor Range 16 - 1024 64 - 4096 16 - 1024 64 - 4096
Slope 0.09 0.20 0.09 0.12

Average Slope 0.13

Table 7.5: Summary of weak scaling results for single puncture with nine levels
of FMR.

terprocessor communication is not a significant bottleneck and that openGR

scales well provided an appropriate number of processors is chosen for a par-

ticular grid layout.

7.2 Memory Use

Memory is the primary bottleneck when running large jobs on openGR,

even when using large supercomputers. All results obtained in this work were

run on the Ranger supercomputer at the Texas Advanced Computing Center

(TACC), which has 2GB of memory per processing core. The limits on job

size are demonstrated by revisiting the scaling runs presented in section 7.1.

When running on multiple processors, SAMRAI divides the grid into

patches to distribute the computation among processors. Currently openGR

uses a uniform load balancing strategy in which SAMRAI divides each level

into a number of patches equal to the number of processors being used. If

possible, SAMRAI creates patches that are all the same size on any given

level so that every processor has the same number of points to handle. This

is not always possible, and when it is infeasible SAMRAI divides the grid up
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as evenly as possible. Each patch is also padded with “ghostzones,” which

are the points used for interprocessor communication. These ghostzones will

not be taken into account when computing the limits on a job size but will be

discussed in section 7.2.1 below.

When trying to determine job size limits, we look at runs that ap-

proach the memory capacity. Table 7.6 details several runs for Job C and Job

D for the Unigrid domain outlined in Table 7.1. Job D was unable to run on

Single Puncture Unigrid

Job # Points # Processors #Points
Processor Result

C 4,096,000 16 63.53 Successfully Ran
D 32,768,000 64 803 Failed
D 32,768,000 128 63.53 Successfully Ran

Table 7.6: Details of successful and unsuccessful runs for single puncture uni-
grid Jobs C and D.

64 processors, with 803 points allocated per processor (excluding ghostzones).

However, Job D was able to run on 128 processors, with 63.53 points allocated

per processor. Job C, with the same number of points per processor, success-

fully ran on 16 processors. Note that the number of points on a processor is

obviously always a whole number, but the decimal number comes from the

fact that for SAMRAI to achieve optimal load balancing the patches will not

all be a perfect cube and so the number of points on each processor is not

exactly identical. From the numbers depicted in Table 7.6 we conclude that

jobs can be run with a maximum number of points per processor in the range

of 653 − 753.
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A similar analysis to that performed above was done for single puncture

FMR Job C and Job D. Table 7.7 details these runs. Job C with 9 levels of

Single Puncture FMR

Job # Points # Processors #Points
Processor Result

C 36,864,000 64 83.23 Failed
C 36,864,000 128 663 Successfully Ran
D 294,912,000 512 83.23 Failed
D 294,912,000 1024 663 Successfully Ran

Table 7.7: Details of successful and unsuccessful runs for single puncture FMR
Jobs C and D.

FMR was unable to run on 64 processors. Job D run on 512 processors also

failed. Both of these configurations would require 83.23 points per processor,

which was already shown to be too large in the unigrid case. Job C was able to

run on 128 processors, as was Job D on 1024 processors. These configurations

both had 663 points allocated per processor. These numbers are consistent

with those obtained in the unigrid case, and we can now conclude that the

largest job we can run is somewhere in the range of about 703−753 points per

processor.

7.2.1 Ghostzones

Ghostzones are the regions around each patch that are used for commu-

nication between processors. Each patch is padded on all sides by a slab which

is 4 points thick. For example, a cubic patch of 403 points has ghostzones with

402×4 points on all six sides. Table 7.8 details the number of ghostzone points

used in Job D with a single puncture in a unigrid domain.
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Ghostzones for Single Puncture Unigrid Job D

# Processors #Points
Processor

#Ghostzone Points
Patch

#Ghostzone Points
#Compute Points

128 63.53 45.93 0.38
512 403 33.73 0.60
1024 31.73 28.83 0.75
4096 203 21.33 1.21

Table 7.8: Details of the ghostzones used in Job D for a single puncture in a
unigrid domain. Although the ghostzone points are not arranged in a cube,
they are expressed as a cube to get a sense of the size relative to the number
of compute points. Note: Only the jobs run on 512 and 4096 processors have
a layout in which all patches are perfect cubes.

Table 7.8 demonstrates that when Job D is run on 128 processors on

a unigrid domain, every patch has just under 40% as many ghostzone points

as the number of points used for computation. Obviously this is a larger

percentage than we want, but we will have to settle for this until openGR

is run on a computer with more memory than Ranger. As the number of

processors is increased this ratio gets larger, and for 4096 processors there are

actually more ghostzone points than there are compute points. As the ratio of

ghostzone points to compute points gets larger, the scaling performance clearly

gets worse, as can be seen in Fig. 7.1. It is clear that any performance gained

by increasing the number of processors is lost once the number of ghostzone

points approaches the number of compute points, which is seen as a leveling

out or upward turn of the curves in Figs. 7.1 and 7.2.

Obviously we would like to minimize the ratio of ghostzone points to

compute points. This is achieved by making the size of a patch (or number of

points per processor) as large as possible. Unfortunately, due to the memory
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limitations outlined in section 7.2, Job D run on 128 processors is almost as

large of a patch size as can be used ( 65 points/processor), which means the

ratio of ghostzone points to compute points will not be much lower than 0.38.

Although the current state regarding memory use is less than ideal,

there is a potential solution that will enable the use of more memory per

processor. Ranger is divided up into nodes that have 16 processors and 32GB

of memory (hence, 2GB of memory per processor). We can get more memory

per processor by using less than 16 processors per node. For example, if we

use only 8 processors per node, those 8 processors have access to all 32GB

of memory on the node, so now each processor has 4GB of memory available

to it. This allows the creation of patches with more points, thus reducing

the ratio of ghostzone points to compute points. We are currently testing the

performance improvement by using this type of configuration.

7.3 Performance

To get a sense of how long computations actually take we refer to Fig.

7.2. Job B is a typical configuration which would be used for long production

runs. Job A is somewhat coarse, which allows for faster evolution, but is

also less accurate. For high accuracy runs a configuration such as Job C is

most appropriate. Job D is generally higher resolution than we would use

with any regularity, unless we specifically wanted to look at certain features

with extremely high accuracy. To look at performance we will consider only

the optimal configurations of Jobs A, B, and C, i.e. we will use the points
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at which there is no significant improvement in performance by increasing

the number of processors. Since each of these runs was evolved to a time of

t = 0.5M we can calculate the rate of evolution in M/hr. A summary of

evolution rates is shown in Table 7.9.

Job A B C
# Processors 64 128 512

Evolution Rate [M/hr] 3.9 1.8 1.1
Time required for 200M evolution [days] 2.1 4.6 7.6

Table 7.9: Rate of evolution of optimal configurations for Jobs A, B, and C.

Note that as mentioned above, the rates listed are not necessarily the

fastest that can be achieved, but increasing speed would come at the expense

of a significant increase in CPU time. For instance, running job B on 512

processors instead of 128 gains about a 50% improvement in performance with

a 400% increase in computational expense.

Since we need to run a simulation long enough to allow for the gravi-

tational radiation to propagate out to the wave zone (r = 60M − 100M), we

typically need to evolve the system to a time of about 200M . For Job B, this

would take about 41
2
days. Job A would take a little over 2 days to run out to

t = 200M , while Job C would take over a week. In light of this, we strive to

improve performance in any way possible and we will continue to do so into

the future.
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7.4 Convergence

In addition to benchmarking the performance of openGR, we also need

to ascertain its accuracy. To do this we perform a straightforward convergence

test. This consists of running the same initial configuration on three different

resolution grids, which we refer to as coarse, medium, and fine. We then

compare the values of a particular variable along a straight line in each of the

three simulations. Table 7.10 details the configurations for a single puncture

FMR convergence test.

Coarse Medium Fine
Points / Level 403 603 803

Refinement Levels 8 8 8
Domain ±100M ±100M ±100M

Outer Boundary Resoltion 5M 10M
3

5M
2

Puncture Resolution 5M
128

5M
192

5M
256

Table 7.10: Configurations used for convergence tests. In all cases the hole is
located at the origin and has mass M.

To compare values from different resolutions, we need to appropriately

scale them to ensure consistency. We compute a scaling ratio R as follows:

R =
(Pm

Pf
)d
[

( Pc

Pm
)d − 1

]

(Pm

Pf
)d − 1

, (7.4)

where P is the number of points along the line in one dimension, the subscript

of P denotes the coarse, medium, and fine configurations, and d is the order,

which in this case is 4. Notice that when the ratio Pc

Pm
is equal to the ratio

Pm

Pf
(for example, using grids which have 403, 803, and 1603 points per level,
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respectively), Eq. 7.4 reduces to

R =

(

Pm

Pf

)d

. (7.5)

We then look at a particular value for the coarse and fine configurations and

compare against the medium configuration. For example, looking at the con-

formal factor φ we would calculate:

∆cm = |(φm − φc)|/R (7.6a)

∆fm = |(φf − φm)|. (7.6b)

Figure 7.5 shows the results of a convergence test performed at t = 30M . For

perfect convergence the two lines would exactly overlap. We see very good

convergence demonstrated out to x = 60M , particularly close to the hole (as

x → 0). We see less overlap further from the hole, but this is to be expected

since the resolution is coarser due to the FMR grid structure.
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Figure 7.5: Results of a convergence test at time t = 30M . Plotted above
are the Hamiltonian constraint, the conformal factor, and the x momentum
constraint.
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Chapter 8

Results

This chapter presents results from various simulations that demon-

strate the capabilities of openGR. Specifically, it discusses a quasi-circular

orbit (QC0), which undergoes inspiral, merger, and ringdown, and a straight

infall from rest resulting in a head-on collision of the two holes. This chapter

also shows how the dynamics of these cases are affected when spin is added to

the holes. Finally, A comparison between an eccentric merger and a scattering

interaction is shown. In all cases the gravitational radiation generated by the

interaction is calculated.

8.1 QC0

Modeling quasai-circular orbits has become a standard test for numer-

ical relativity because such models produce very regular waveforms while ex-

hibiting all three stages of a binary black hole interaction: inspiral, merger,

and ringdown. We use the parameters from the QC sequence given by Baker

[36], which were adapted from Cook [37]. These parameters are summarized

in Table 8.1.

Snapshots of the lapse α are shown in Fig. 8.1 at various stages during
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QC0

Initial Positions (±1.169M, 0, 0)
Initial Momenta (±0.333M, 0, 0)
Initial Spins (0, 0, 0)

Masses 0.453M
Physical Domain ±160M

# Refinement levels 9
# Moving levels 2
Coarse Resolution 4M

Fine Resolution M
64

Table 8.1: Summary of parameters used for QC0 simulation.

the evolution. The three stages of black hole interactions can be seen: inspi-

ral, merger and ringdown. Inspiral (Figs 8.1(a) - 8.1(c)) is when the physical

separation of the holes decreases as they orbit one another due to energy and

momentum being radiated away. Once the separation of the holes decreases

enough to the point that the holes share a common horizon, they are in the

merger phase (Fig. 8.1(d)). After the merger a single distorted black hole

remains. This black hole then begins to ringdown, during which time it con-

tinues to radiate until all the asymmetries are removed (Figs. 8.1(e) - 8.1(f)).

After the merger is complete a single symmetric black hole remains.

The trajectories of the holes for the entire simulation are shown in

Fig. 8.2. The dots plotted along the curve correspond to the positions at 5M

intervals in time.

We can visualize the gravitational radiation being emitted by looking

at snapshots of the real part of Ψ4(2, 2) (scaled by the extraction radius) at

various times during the evolution, shown in Figure 8.3.
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(a) t = 0M (b) t = 8M

(c) t = 16M (d) t = 24M

(e) t = 32M (f) t = 40M

Figure 8.1: Full simulation of QC0. The lapse α is shown for different times in
the evolution. The three stages of evolution can clearly be seen: inspiral (Figs.
8.1(a) - 8.1(c)), merger (Fig. 8.1(d)), and ringdown (Figs. 8.1(e) - 8.1(f))
Movie at: http://wwwrel.ph.utexas.edu/Members/gmcivor/openGR/qc0_alpha.mp4
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Figure 8.2: Trajectory of the holes in the x− y plane for QC0. The points on
the curves represent the positions of the holes at 5M intervals in time.

To generate a gravitational waveform, the Weyl scalar Ψ4 is integrated

on a sphere (weighted by spherical harmonics). We want to do this far away

from the holes so that the weak field limit applies. That is, the radiation is

propagating on a flat background. Fig. 8.4 shows the waveform of the real

part of Ψ4 (l = 2,m = 2) (scaled by the extraction radius) plotted for various

radii.

In an effort save time, some simulations were run on a more coarse grid

than was used for QC0 (Table 8.1). In order to understand how the resolution

affects the accuracy of the waveform, we perform a simulation of QC0 on the

coarse grid and compare the results to that obtained using the fine grid. Fig.

8.5 shows rRe[Ψ4](2, 2) for various extraction radii calculated on the coarse and
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(a) t = 40M (b) t = 60M

(c) t = 80M (d) t = 100M

(e) t = 120M (f) t = 140M

Figure 8.3: Full simulation of QC0. The product rRe[Ψ4](l =
2,m = 2) is shown for different times in the evolution. Movies
at: http://wwwrel.ph.utexas.edu/Members/gmcivor/openGR/qc0_rpsi4re.mp4 and

http://wwwrel.ph.utexas.edu/Members/gmcivor/openGR/qc0_rpsi4re_3d.mp4

87

http://wwwrel.ph.utexas.edu/Members/gmcivor/openGR/qc0_rpsi4re.mp4
http://wwwrel.ph.utexas.edu/Members/gmcivor/openGR/qc0_rpsi4re_3d.mp4


rΨ4(2,2)

-0.01

-0.005

 0

 0.005

 0.01

 0  50  100  150  200

r = 40.0M

r*Re[Ψ4](2,2)

-0.01

-0.005

 0

 0.005

 0.01

 0  50  100  150  200

r = 60.0M

-0.01

-0.005

 0

 0.005

 0.01

 0  50  100  150  200

r = 70.0M

-0.01

-0.005

 0

 0.005

 0.01

 0  50  100  150  200

r = 80.0M

-0.01

-0.005

 0

 0.005

 0.01

 0  50  100  150  200

t

r = 90.0M

-0.01

-0.005

 0

 0.005

 0.01

 0  50  100  150  200

t

r = 100.0M

Figure 8.4: The real part of Ψ4 (l = 2,m = 2) scaled by the extraction radius
shown for various extraction radii. The wave is clearly propagating outward
and maintaining its shape very well.
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fine grids. The two waveforms agree very well for r = 40M due to the fact that

the fine and coarse configurations have similar spatial resolution at that radius

(2M and 2.5M , respectively). Beyond that, the coarse grid has significantly

lower resolution than the fine grid (5M and 2M , respectively). This results in

an artificial damping of the radiation on the coarse grid. Given the excellent

agreement between the two waveforms at r = 40M , results obtained using the

coarse grid are perfectly valid when extracted at this radius. Outside of this

we have to be mindful that error is being introduced due to the coarseness of

the grid.
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Figure 8.5: Comparison of coarse and fine resolution for QC0 wave extraction.
rRe[Ψ4](2, 2) is shown for various extraction radii. The two waveforms agree
very well for r = 40M because of similar spatial resolution between the two
files at that radius. Further out the coarse grid becomes appreciably more
coarse than the fine grid, and a clear difference in waveforms is seen.
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8.2 Equal Mass Head-On Collision from Rest

Another standard test case of numerical relativity is the simulation of

two equal mass black holes undergoing infall starting from rest. Table 8.2

details the parameters used for the simulation.

Equal Mass Head-On Collision from Rest

Initial Positions (±1.5M, 0, 0)
Initial Momenta (0, 0, 0)
Initial Spins (0, 0, 0)

Masses 0.464M
Physical Domain ±200M

# Refinement levels 8
# Moving levels 2
Coarse Resolution 5M

Fine Resolution 5M
128 ≈ M

26

Table 8.2: Summary of parameters used for Equal Mass Head-On Collision
from Rest.

Fig. 8.6 shows rRe[Ψ4](2, 2) for various radii. As we saw earlier in Fig.

8.5, the shape of the wave is changing at different radii due to error introduced

by the coarse grid.
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Figure 8.6: The product rRe[Ψ4](2, 2) shown for two holes undergoing infall
from rest.
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8.3 QC0 with Spin

To model QC0 with spin, we add spin to the QC0 simulation to see how

the spin affects the dynamics of the interaction and the radiation produced.

Table 8.3 summarizes the parameters used to carry out the simulation of QC0

with spin. The black hole parameters are the same as those used earlier for

QC0 (Table 8.1) with the addition of spin, and the grid configuration is that

used for the case of straight infall (Table 8.2).

QC0 with Spin

Initial Positions (±1.169M, 0, 0)
Initial Momenta (±0.333M, 0, 0)
Initial Spins (0, 0,±0.6)

Masses 0.453M
Physical Domain ±200M

# Refinement levels 8
# Moving levels 2
Coarse Resolution 5M

Fine Resolution 5M
128 ≈ M

26

Table 8.3: Summary of parameters used for QC0 simulation with spin added.

Fig. 8.7 shows the trajectories of the holes in the x − y plane for

QC0 with spin. As before, the dots plotted along the curve correspond to the

positions at 5M intervals in time.

Comparing Fig. 8.7 to Fig. 8.2 it is clear that the addition of spin

changes the dynamics of the interaction. However, this could be the result of

the initial data solver. Since the initial data solver is not fully implemented

to utilize the multi-grid setup, we do not get the benefit of the accuracy of

the finer levels. As such, errors generated by the initial data on the coarse
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Figure 8.7: Trajectory of the holes in the x − y plane for QC0 with spins
a = ±0.6. The points along the curves represent the positions of the holes at
5M intervals in time.

level will be propagated onto the finer levels. This is generally not an issue,

but holes with spin are a much more complicated initial configuration than

those without spin, particularly when they are close together. Further testing

is required to understand the interaction shown in Fig. 8.7.

We also want to see the effect spin has on the radiation produced. Fig.

8.8 shows a comparison of the QC0 waveform extracted at r = 40M with and

without spin. Much like the trajectory, we see a significant difference in the

appearance of the waveform. Again, this could be due to the errors introduced

by the initial data solver.

Comparing this to waveforms produced by Campanelli [38], it is sur-
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Figure 8.8: The product rRe[Ψ4(2, 2)] extracted at r = 40M shown for QC0
and QC0 with spin a = ±0.6.

prising to see such a big difference in our waveform with spin as compared to

the waveform produced without spin. This indicates that what we are seeing

is, in fact, a result produced by the initial data. One thing to note, however,

is that the ringdown phase of the interaction starting from about t = 100M is

similar with and without spin. This further indicates that no serious issue ex-

ists, but rather that the initial data is not very accurate for this configuration.

This is not all that surprising given the close proximity of the holes.

New tests are currently underway which set the locations of the holes

further apart at the start of the simulation. This should yield better initial

data and resolve any discrepancies we are seeing when comparing to other

work.
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8.4 Head-On Collision with Spin

To make one final comparison we will revisit the equal mass head-on

collision from rest, but add spin to both holes. The configuration is exactly

the same as shown in Table 8.2 with the addition of the initial spin of a = 0.8

in the z direction (i.e. spin = (0, 0, 0.8)). Fig. 8.9 shows the x positions of

both of the holes as a function of time. The difference in time it takes to merge

in the two scenarios can clearly be seen; the spin interaction slows down the

merger.
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Figure 8.9: Comparison of the x position vs. time for two holes with and
without spin starting from rest at x = ±1.5M . The spin interaction clearly
slows down the merger.

Fig. 8.10 shows the waveform extracted at r = 40M for the equal mass

head-on collision, comparing the cases with and without spin.
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Figure 8.10: The real part of rΨ4 shown for a head-on collision from rest with
and without spin.

We can see that for the case with spin the waveform is slightly stretched

out and has a larger amplitude, but the shape is generally the same as in the

case without spin. As with the QC0 case with spin, we have to question the

accuracy of the initial data. However, in this case (as compared to QC0) the

holes are further apart and have no initial velocity, conditions which should

lead to better behaved initial data. Given that, it is not surprising that the

difference in spinning versus non-spinning waveforms is not as drastic as those

differences shown for QC0.

97



8.5 Scattering Interaction

This section moves beyond simple test cases and highlights an example

problem that warrants further investigation: scattering interactions. Specifi-

cally, scattering interactions provide an example of how varying one parameter

(in this case the initial momentum in the x direction) can lead to very differ-

ent interactions. Table 8.4 summarizes the parameters used in the two initial

configurations that demonstrate this principle.

Eccentric Merger and Scattering Interaction

Merger Scatter
Initial Positions (±1.5M, 0, 0) (±1.5M, 0, 0)
Initial Momenta (±0.4M,±0.8M, 0) (±0.6M,±0.8M, 0)
Initial Spins (0, 0, 0)

Masses 0.464M
Physical Domain ±200M

# Refinement levels 8
# Moving levels 2
Coarse Resolution 5M

Fine Resolution 5M
128 ≈ M

26

Table 8.4: Summary of parameters used for an eccentric merger and a scatter-
ing interaction. All parameters are identical except for the initial momentum
in the x direction.

Fig. 8.11 shows the trajectories for the two cases with initial parameters

summarized in Table 8.4. Fig. 8.11(a) shows an eccentric orbit that ends with

a merger of the two holes. In Fig. 8.11(b), which also starts as an eccentric

orbit, it is clear that changing the momentum causes the holes not to merge,

but instead to undergo a scattering interaction in which they are left unbound

and move away from each other. It should be noted that the initial parameters
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(Table 8.4) were chosen somewhat arbitrarily and are not intended to be ideal.

Rather, they are a simple demonstration of the very different behavior that

can be achieved with a small change in one parameter.
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(a) Eccentric merger trajectory in the x−y plane.
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(b) Scattering interaction trajectory in the x − y

plane.

Figure 8.11: Trajectories of the holes in the x − y plane for an ec-
centric merger and a scattering interaction. The points on the curves
represent the positions of the holes at 5M intervals in time. Movies
at: http://wwwrel.ph.utexas.edu/Members/gmcivor/openGR/scatter1_alpha.mp4

and http://wwwrel.ph.utexas.edu/Members/gmcivor/openGR/scatter2_alpha.mp4
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By precisely tuning parameters such as momentum, very complicated

interactions can be achieved in which the holes undergo a series of close orbits

as well as large orbits before finally merging or scattering apart. This type of

trajectory is known as “zoom-whirl” by Pretorius and Khurana [39] and Healy

et al. [40]. Similar behavior was also found by Washik et al. [41], who refer

to it as “splash-skip.” Using openGR, we would like to build on these efforts

and perform a parameter investigation in the region of the merger/scattering

boundary. By performing a systematic analysis on parameters such as initial

momentum and initial separation we can determine the threshold of these

parameters that lead to merger. We can also investigate the effect spin will

have on these thresholds. Additionally, the gravitational radiation from these

interactions will be studied to understand how these threshold parameters

are reflected in the waveforms. A simple example how these parameter are

reflected in the waveform is shown in Fig. 8.12.

Fig. 8.12 shows the waveform extracted at r = 40M for an eccentric

merger and a scattering interaction. The two initial configurations (outlined in

Table 8.4) are very similar, with the momentum of one case adjusted slightly

to produce a scattering interaction instead of a merger. Accordingly, the

waveforms are very similar during the early part of the interaction. As one

might expect given the differences in trajectories, the waveforms vary greatly

later in the interaction. The very end of the eccentric merger waveform is

particularly interesting, as it apparently exhibits some sort of excitation or

ringing. The simulation ended at that point, but if run longer we would
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Figure 8.12: The real part of rΨ4 shown for an eccentric merger and a scat-
tering interaction. The two initial configurations are very similar, with the
momentum of one case adjusted slightly to give a scattering interaction in-
stead of a merger. As such, the waveforms are very similar during the early
part of the interaction.

expect to see ringdown occur shortly thereafter.

It should be noted that the waveform for the scattering interaction

should be considered suspect after about t = 70M . Since the holes are moving

apart one would not expect to see such variation in the radiation. We believe

that these variations are due to the fact that the holes are moving outward,

toward the region in which the radiation is being extracted. Additionally, the

momentum in this case is very large, so the holes are trailing right behind the

waves and moving almost as fast. As such, the gravitational wave signal is

very noisy. Future analysis will use more carefully chosen parameters and the
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radiation will be extracted at a radius further from the origin, which should

minimize these noisy effects and yield much cleaner waveforms.

102



Chapter 9

Conclusion

After the collective efforts of many people over the past decade, openGR

is now fully functional and ready to be used for full-scale scientific research.

After a major overhaul in which the code was re-organized to improve read-

ability as well as eliminate redundant calculations, certain features that used

to work were broken, such as the moving boxes. I worked to restore the moving

boxes as well as ensure the conversion from coordinate space to grid points

was done correctly. Other pieces of openGR, such as wave extraction, were

partially implemented in the past but never completely operational. After

running many test cases I was able to isolate and repair the issue and now the

wave extraction is fully implemented and producing the first ever waveforms

generated by openGR, as shown in Chapter 8.

Part of the development of openGR that takes a significant amount of

time, but is not at all reflected in the results, is debugging, particularly as it

pertains to grid configurations. I spent a considerable amount of time running

jobs attempting to find stable grid layouts and better understand how to get

SAMRAI to operate as optimally as possible. Although this is an ongoing

endeavor, we now understand the nuances of this process better than ever
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before.

One aspect that sets openGR apart from other black hole codes is ac-

curacy. openGR is fourth-order accurate in both space and time while most

other codes are second-order in time. This yields high accuracy and very good

convergence. Another way in which openGR differs from other numerical rel-

ativity codes is the use of the SAMRAI library. We have shown that openGR

provides good scaling to very large number of processors. As simulations get

pushed to higher resolution this will prove to be a very useful quality.

This is an exciting time for those involved in numerical relativity and

gravitational wave physics. Advances in numerical relativity that have oc-

curred in the past decade now allow for long stable evolution of countless

initial configurations of black holes. With upgrades currently underway, Ad-

vanced LIGO will improve on the strain sensitivity of initial LIGO by a factor

of 10. Advanced LIGO, which has an expected completion of 2014, has the

potential to have upwards of 100 gravitational wave detections per year. For

the first time, openGR is now in a state in which it can be used to make

significant contributions to that effort.

I am very confident that openGR will join the ranks alongside other

established black hole simulation codes and will be widely accepted and used

by the numerical relativity community.
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