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This thesis provides a partial classification of all 3-stranded pretzel

knots K = P (p, q, r) with unknotting number one. Scharlemann-Thompson,

and independently Kobayashi, have completely classified those knots with un-

knotting number one when p, q, and r are all odd. In the case where p = 2m,

we use the signature obstruction to greatly limit the number of 3-stranded

pretzel knots which may have unknotting number one. In Chapter 3 we use

Greene’s strengthening of Donaldson’s Diagonalization theorem to determine

precisely which pretzel knots of the form P (2m, k,−k − 2) have unknotting

number one, where m ∈ Z, m > 0, and k > 0, odd. In Chapter 4 we use Don-

aldson’s Diagonalization theorem as well as an unknotting obstruction due to

Ozsváth and Szabó to partially classify which pretzel knots P (2, k,−k) have

unknotting number one, where k > 0, odd. The Ozsváth-Szabó obstruction is

a consequence of Heegaard Floer homology. Finally in Chapter 5 we explain

why the techniques used in this paper cannot be used on the remaining cases.
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Chapter 1

Introduction

A knot K is an embedding of a circle into a 3-manifold M . We will only

consider knots embedded into S3. A diagram of K, DK , is a projection of K

onto a plane such that the overcrossing and undercrossing at each crossing are

distinguished. There is an infinite number of knot diagrams for every knot.

Figure 1.1 shows two such diagrams of the trefoil:

(a) (b)

Figure 1.1: Two diagrams of the trefoil.

Two knot diagrams represent the same knot if they are ambient isotopic. The

knots represented by two knot diagrams DK and D′K are ambient isotopic if

and only if they are connected by a sequence of moves called Reidemeister

moves.

In order to show two knot diagrams represent different knots, however,
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one cannot simply appeal to knot diagrams. Instead we use knot invariants.

A knot invariant is an algebraic quantity, such as a number, polynomial, or

homology theory, assigned to a knot diagram that only depends on the knot

represented by the diagram. Examples of knot invariants include knot signa-

ture, Alexander polynomial, Jones polynomial, and knot Floer homology. If

the values of a knot invariant are different for two different diagrams, then the

diagrams represent two different knots.

One such knot invariant is the unknotting number. The unknotting

number of K, u(K), is the minimal number of times a knot must cross it-

self in order to unknot it. Equivalently, let DK be a knot diagram, and

u(DK) be the minimal number of times the diagram must cross itself in or-

der to unknot it. We can then define the unknotting number as u(K) :=

min{u(DK)|DK is a diagram of K}. Although it is easy to understand, com-

puting the unknotting number can be quite difficult. For example, in [26]

Stoimenow shows that the knot 1436750 has a 14-crossing diagram with un-

knotting number 2 (Figure 1.2(a)), as well as a 14-crossing diagram with un-

knotting number 1 (Figure 1.2(b)).

The unknotting crossing in Figure 1.2(b) can be found in [26].

Even more striking is the example by Bleiler in [1] (and independently

Nakanishi in [18]). All minimal crossing diagrams of the knot 108 have un-

knotting number three (see Figure 1.3(a)), but 108 has a 14-crossing diagram

for which the unknotting number is two (see Figure 1.3(b)).

Finding an upper bound for u(K) can be done by computing the un-
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(a) (b)

Figure 1.2: Two 14-crossing diagrams of the knot 1436750.

(a) (b)

Figure 1.3: Two diagrams of the knot 108.

knotting number for well chosen diagrams. For example, from the diagram in

Figure 1.4 we can show u(11328) ≤ 2.

However, unless one can find a diagram DK such that u(DK) = 1, find-

ing a lower bound can be difficult. A classical lower bound for the unknotting

number is given by |σ(K)| ≤ 2u(K) (see [16]), where σ(K) is the signature of

K. Similar results use the 4-ball genus of a knot, namely g4(K) ≤ 2u(K) (see

3



Figure 1.4: The knot 11328

[16]), and Rasmussen’s s-invariant, namely |s(K)| ≤ 2u(K) (see [23]).

Much more is known about topological obstructions to a knot hav-

ing unknotting number one. Given a knot K ⊂ S3, let Σ(K) be the double

branched cover of S3 branched along K. An important obstruction in this

paper is the Montesinos trick: if u(K) = 1 then Σ(K) arises as a half integral

surgery on some knot κ ∈ S3, ie Σ(K) ∼= S3
D/2(κ), where D = | det(K)| [14].

In particular, if u(K) = 1, then H1(Σ(K)) is cyclic [17]. In [25], Scharlemann

shows that unknotting number one knots are prime. There is also a linking

form obstruction due to Lickorish [12].

This work was motivated by the following question: Which algebraic

knots, in the sense of Conway, have unknotting number equal to one? A com-

plete treatment of algebraic knots can be found in [27] and [6]. The three

distinct types of algebraic knots are 2-bridge, large algebraic, and Montesinos

length 3. They are characterized by their double branched covers. To wit, if

K is 2-bridge then Σ(K) is a lens space; if K is large algebraic then Σ(K) is a
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graph manifold, which is toroidal; and if K is Montesinos length 3 then Σ(K)

is a Seifert fibered space over S2 with three exceptional fibers. Kanenobu and

Murakami describe in [9] those 2-bridge knots with unknotting number one.

Gordon and Luecke describe in [6] all large algebraic knots with unknotting

number one in terms of the algebraic tangles of K. The double branched cover

of a Montesinos knot of length 3, however, is neither a lens space nor toroidal,

so the results of [9] and [6] do not apply. It is then natural to ask:

Question 1.0.1. Which Montesinos knots of length three have unknotting

number one?

Torisu gives a conjecture to the above question in [28]. Using the no-

tation therein,

Conjecture 1.0.2 (Torisu). Let K be a Montesinos knot of length three. Then

u(K) = 1 if and only if K = M(0; (p,−r), (q, s), (2mn ± 1, 2n2)), where p, q,

r, s, m, and n are non-zero integers, m and n are coprime, and ps− rq = 1.

The conjecture would be true if it were known that a standard diagram

of K = M(0; (p,−r), (q, s), (2mn ± 1, 2n2)) realizes the unknotting operation

for knots with u(K) = 1. The theorem would also be true if the Seifert

Fibering Conjecture is true.

Conjecture 1.0.3 (Seifert Fibering Conjecture). For a knot K ⊂ S3 which is

neither a torus knot nor a cable on a torus knot, only integral slopes can yield

a Seifert fibered space under Dehn surgery.
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For the time being we have only Torisu’s Theorem:

Theorem 1.0.4 (Torisu). Let K be a Montesinos knot of length three and

suppose the unknotting operation is realized by a crossing change in a standard

diagram. Then u(K) = 1 if and only if K = M(0; (p,−r), (q, s), (2mn ±

1, 2n2)), where p, q, r, s, m, and n are non-zero integers, m and n are coprime,

and ps− rq = 1.

We focus on a subset of Montesinos knots of length three called pretzel

knots of length three. In chapters 3 and 4, respectively, will prove the following

theorems:

Theorem 3.0.1. Let K = P (2m, k,−k − 2) be a three stranded pretzel knot,

where m ∈ Z andm > 0. If u(K) = 1, then up to reflection K = P (2m, 1, 3).

Theorem 4.1.1. Let K = P (2, k,−k) be a three stranded pretzel knot and

k > 3. If k is a prime power, then u(K) > 1.

We should note that our results can be viewed as a partial proof to

Conjecture 1.0.2.
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Chapter 2

Preliminaries

2.1 Pretzel Knots

A pretzel link of length n, K = P (a1, a2, . . . , an), where ai ∈ Z, is a link

which has the following form:

ana2a1

Figure 2.1: The pretzel knot P (a1, a2, . . . , an).

In Figure 2.1, a1 is negative whereas a2 and an are positive. Pretzel knots

of length one are unknots. Pretzel knots of length two are 2-bridge knots.

From [9], it follows that the only such knots with unknotting number one are

pretzels P (k, 3 − k) where k ∈ Z. Pretzel knots of length four or greater are

large algebraic knots. In [15], Motegi shows that no pretzel knots of length four
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or greater (and more generally, no Montesinos knot of length four or greater)

have unknotting number one.

Let K = P (p, q, r) denote the 3-stranded pretzel link with p, q, and r

half twists, as in Figure 2.2(a). The knot K = P (p, q, r) is a knot if at least

two of {p, q, r} are odd. Otherwise it is a link. If any of p, q, or r equals ±1,

the corresponding pretzel link P (p, q, r) is a 2-bridge link. Since unknotting

number one 2-bridge links are already known, we restrict ourselves to |p|, |q|,

|r| > 1. All 3-stranded pretzel links satisfy the following relations:

P (p, q, r) = P (r, p, q) P (p, q, r) = P (q, p, r) P (p, q, r) = P (−p,−q,−r),

(2.1)

where K is the mirror image of K. Clearly u(K) = u(K), and so without loss

of generality we can assume at least two of {p, q, r} are positive.

p q r

(a)

X2X0 X1

(b)

Figure 2.2: (a) The pretzel link P (p, q, r), where p is negative and q, r are
positive. (b) A pretzel link with shaded regions X0, X1, and X2.

Next we reduce the number of 3-stranded pretzel knots which might

have unknotting number one by using ‘classical’ techniques. When p, q, and r

8



are all odd, K is a genus one knot. Scharlemann and Thompson showed in [24]

(and independently Kobayashi in [10]) which genus one knots have unknotting

number one. As a corollary, they show a genus one 3-stranded pretzel knot

P (p, q, r) has unknotting number one if and only if the set {p, q, r} contains one

of ±{1, 1} or ±{3,−1}. Note that these knots are 2-bridge. Most 3-stranded

pretzel knots with an even strand, however, are not genus one, and so [24]

(and [10]) does not apply. Therefore we consider 3-stranded pretzel knots of

the form K = P (2m, q, r), m ∈ Z and q, r odd.

Recall from Chapter 1 that the signature of a knot gives a lower bound

for the unknotting number: |σ(K)| ≤ 2u(K). In [5], Gordon and Litherland

prove that the signature of a knot can be computed from any regular projection

of K. In particular, the signature of a knot can be computed from the signature

of a Goeritz matrix of K, G(DK), plus a certain correction term, µ(DK). Given

these quantities, Gordon and Litherland show:

Theorem 2.1.1 (Gordon-Litherland). σ(K) =Sign(G(DK))− µ(DK).

By shading and labeling the three regions of the projection of K as in figure

2.2(b), we see a Goeritz matrix of K is

G(DK) =

(
2m+ q −q
−q q + r

)
.

Since G(K) is a 2 × 2 matrix, Sign(G(K)) ∈ {−2, 0, 2}. Since a knot with

unknotting number one must have σ(K) = 0 or ±2, we can restrict µ(K)

to {−4,−2, 0, 2, 4}. According to a result in [5], the correction term µ(K)

9



for a regular projection of P (2m, q, r) equals q + r. Since |p|, |q|, |r| > 1 and

µ(DK) 6≥ 6, q and r cannot both be positive. We can assume q > 0 and r < 0.

Furthremore it follows from our assumption immediately after Equation 2.1

that p = 2m > 0. The reader will note that such knots are nonalternating.

Relabel the knot K = P (2m, k,−k+n), where m ∈ N, k ∈ N odd, and

n ∈ {−4,−2, 0, 2, 4}. A Goeritz matrix of the regular projection of K equals

G(K) =

(
2m+ k −k
−k n

)
.

From this it follows that knots of the form P (2m, k,−k−4), and P (2m, k,−k+

4) with det(K) < 0, have the property |σ(K)| = 4. Therefore these knots do

not have unknotting number one.

Knots which may have unknotting number one fall into 5 distinct cases:

Case 1) If n = −2 then Sign(G(K))=0, and so σ(K) = 2.

Case 2) If n = 0 then Sign((G(K))=0, and so σ(K) = 0.

Case 3) If n = 2 and det(G(K)) < 0 then Sign((G(K))=0, and so σ(K) = −2.

Case 4) If n = 2 and det(G(K)) > 0 then Sign((G(K))=2, and so σ(K) = 0.

Case 5) If n = 4 and det(G(K)) > 0 then Sign((G(K))=2, and so σ(K) = −2.

It follows from [16] that knots with signature equal to ±4 do not have

unknotting number one. Theorem 3.0.1 determines which knots in Case 1

have unknotting number one, and Theorem 4.1.1 partially determines which

knots in Case 2 have unknotting number one.
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2.2 Plumbing Diagrams

Given a knot K = P (p, q, r) ∈ S3 and |p|, |q|, |r| ≥ 2, Σ(K) is a Seifert

fibered space over S2 with three exceptional fibers, S2(p, q, r). In [19], Neu-

mann and Raymond provide a method for constructing a four-manifold X from

a plumbing diagram such that ∂X = Σ(K). First find a continued fraction

expansion for p/(p− 1), q/(q − 1), r/(r − 1):

p

p− 1
= [p1, p2, . . . , pi]

q

q − 1
= [q1, q2, . . . , qj]

r

r − 1
= [r1, r2, . . . , rk],

where

[x1, x2, . . . , xn] = x1 −
1

x2 − 1

... − 1
xn

.

Let G̃(p, q, r) be the weighted graph as in Figure 2.3, where each vertex

v has weight w(v). To associate a smooth 4-manifold X̃ = W (G̃(p, q, r)) to

the graph G̃(p, q, r), start with disk bundles over the 2-sphere, one for each

vertex, of Euler number w(v). Next plumb together those disk bundles which

correspond to adjacent vertices. This manifold has H2(X) free abelian and is

generated by the homology classes [v]. The boundary of the resulting smooth

4-manifold is the double branched cover of K, Σ(K) = ∂(X̃). Furthermore

the intersection form of X̃, given in terms of the basis of spheres used in the

construction, is the incidence matrix of G̃(p, q, r). Explicitly, [v] · [v] = w(v),

[v] · [v′] = 1 if the two distinct vertices are connected by an edge, and 0

otherwise.

11



−qj −q2 −q1 −p1 −p2 −pi

−r1

−r2

−rk

−3

Figure 2.3: A weighted graph G̃(p, q, r).

The obstructions used in the proofs of Theorems 3.0.1 and 4.1.1 require

the manifold X̃ to be negative definite. In order to determine when this is the

case, suppose p, q > 0, r < 0, and consider the continued fraction expansion

of p
p−1

, q
q−1

, and r
r−1

:

p

p− 1
=

p−1︷ ︸︸ ︷
[2, 2, . . . , 2]

q

q − 1
=

q−1︷ ︸︸ ︷
[2, 2, . . . , 2]

r

r − 1
= [1,−r + 1].

The plumbing diagram for X̃ is given by the graph G̃ = G̃(p, q, r), as

in figure 2.4(a). By blowing down the −1 framed vertex of G̃ we obtain the

graph G = G(p, q, r) as in figure 2.4(b).

Although the manifolds W (G̃) and W (G) have identical boundary, the

following lemma of Greene and Jabuka shows why we will use the graph in

Figure 2.4(b).

12



p−1︷ ︸︸ ︷
−2 −2 −2 −2 −2−3−2

−1

r − 1

q−1︷ ︸︸ ︷

(a)

q−1︷ ︸︸ ︷
−2 −2 −2 −2 −2−2

p−1︷ ︸︸ ︷
−2

r

(b)

Figure 2.4: (a) The weighted graph G̃(p, q, r) and (b) the weighted graph
G(p, q, r).

Lemma 2.2.1 (Greene-Jabuka [8]). The incidence matrix of the weighted

graph G from Figure 2.4(b) is negative definite if and only if p, q, and r

satisfy

1

p
+

1

q
+

1

r
> 0.

2.3 Donaldson’s Diagonalization Obstruction

One approach to showing a knot does not have unknotting number

one is due to Cochran-Lickorish (see [3]) and uses Donaldson’s Diagonaliza-

tion Theorem. The obstruction is most easily stated in terms of the Signed

Montesinos Trick [7]:

Proposition 2.3.1 (Signed Montesinos Trick). Suppose that K is a knot with

unknotting number one, and reflect it as necessary so that it can be unknotted

by changing a negative crossing to a positive one. Then Σ(K) = S3
−εD/2(κ) for

some knot κ ⊂ S3, where ε = (−1)σ(K)/2 and D = det(K).
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For any knot K ⊂ S3 and positive integer D = 2n − 1, the space

S3
−D/2(K) is the boundary of an oriented 4-manifold, W . In particular W

is obtained by attaching a handle to K with framing −n and a handle to a

meridian µ of K with framing −2. As knots in ∂B4 = S3, orient K and µ so

they have linking number one. The intersection pairing of W with respect to

the basis of H2(W ), {x, y}, implied by these handle attachments is given by

the negative definite form:

Rn = R =

(
−n 1
1 −2

)
.

For a knot K satisfying the conditions of Proposition 2.3.1, either σ(K) = 0

or σ(K) = 2. If σ(K) = 0, then −Σ(K) = Σ(K) = S3
−D/2(κ), whereas if

σ(K) = 2, then −Σ(K) = S3
−D/2(κ). From Proposition 2.3.1 we conclude the

following:

Proposition 2.3.2. Assume that σ(K) = 2 and K can be unknotted by chang-

ing a negative crossing, or σ(K) = 0 and K can be unknotted by changing

a positive crossing. Then −Σ(K) is the oriented boundary of a compact 4-

manifold WK with negative definite intersection pairing given by Rn.

Now suppose that K is a pretzel knot to which we assign a plumbing

diagram as described in Section 2.2. Furthermore suppose K satisfies Lemma

2.2.1. Then Σ(K) is the oriented boundary of a compact, negative-definite

manifold XK with H2(XK) torsion-free, π1(XK) = 0, and has an intersection

14



pairing which is given in a suitable basis {v1, v2, . . . , vk} by the incidence matrix

of the graph in Figure 2.4(b).

By gluing XK and W along their common boundary we obtain a closed,

smooth, oriented, simply connected, negative-definite manifold, X = XK∪Σ(K)

W . This allows us to use Donaldson’s Diagonalization Theorem:

Theorem 2.3.3 (Donaldson, [4]). Let X be a closed, oriented, simply con-

nected, smooth 4-manifold. If the intersection form QX is negative-definite,

then there exists an integral matrix A such that −AAT = QX .

It is then obvious how to use the obstruction on those knots in Case 1 of

Section 2.1. However, for all pretzel knots P (k,−k−2, 2m) and corresponding

QX there does exist an integral matrix A which satisfies Theorem 2.3.3.

2.4 Heegaard Floer Homology Obstruction

Recent advances in the study of unknotting number come from Hee-

gaard Floer homology. Ozsváth and Szabó developed such an obstruction in

[22]. In this work they showed certain Montesinos knots of length three, in-

cluding 10125 = P (2, 5,−3) and 10126 = P (2, 3,−5), do not have unknotting

number one. Here we give a brief summary of Heegaard Floer homology as

well as their obstruction.

Let Y be an oriented 3-manifold or 4-manifold. The space Spinc(Y ) of

spinc structures on Y is an affine space over the cohomology group H2(Y,Z).

Each spinc structure has a first Chern class, c1(s), in H2(Y ;Z) related by the
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formula c1(s + h) = c1(s) + 2h for any h ∈ H2(Y ;Z). If X is a 4-manifold, an

element v ∈ H2(X,Z) is called characteristic if

〈v, x〉 ≡ 〈x, x〉 (mod 2) for all x ∈ H2(X).

The set of characteristic classes is denoted by Char(X). If we further as-

sume that |H2(X;Z)| is odd, then there is a (non-canonical) bijection between

Spinc(X) and H2(X,Z).

In [20] Ozsváth and Szabó associate to an oriented rational homology

3-sphere Y equipped with a spinc structure s of Y a rational number d(Y, s).

This numerical invariant is called a correction term. Ozsváth and Szabó prove

the following theorem in [20]:

Theorem 2.4.1 (Ozsváth and Szabó). Let Y be a rational homology 3-sphere

that bounds a negative definite 4-manifold X. Then for all s ∈ Spinc(X),

c1(s)2 + b2(X) ≤ 4d(Y, s|Y ) (2.2)

and

c1(s)2 + b2(X) ≡ 4d(Y, s|Y ) (mod 2) . (2.3)

This means the correction terms of Y can be used as an obstruction to

Y bounding a negative definite 4-manifold. A detailed description of how to

compute d(Y, s) can be found in [22]. What follows are the necessary details

for our purposes. Let Y be a rational homology 3-sphere and X a smooth,

simply connected 4-manifold such that ∂X = Y and |H2(Y ;Z)| is odd. After
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fixing a basis for H2(X,Z) we have an isomorphism H2(X,Z) ∼= Zr, where r

is the second betti number of X. Let QX be the matrix of the intersection

pairing of X.

The elements in Char(QX) are covectors v ∈ Zr such that vi ≡ QXi,i

(mod 2). The squares of the first chern classes, c1(s)2, are computed using the

pairing induced by Q on H2(X,Z); vTQ−1
X v with our choice of basis. Define a

function

MQ : Z/DZ→ Q (2.4)

MQ(i) = max
(
vTQ−1

X v+r

4

∣∣∣v ∈ Char(Q), [v] = i
)

(2.5)

The expression in (2.4) has a maximum because QX is negative definite. The-

orem 2.4.1 can be restated as

Theorem 2.4.2. Let Y be a rational homology 3-sphere which is the boundary

of a simply connected negative definite 4-manifold X with |H2(Y,Z)| odd. If

the intersection pairing of X is represented in a basis by the matrix QX and

det(QX) = D then there exists a group isomorphism

φ : Z/DZ→ Spinc(Y )

with

MQ(i) ≤ d(Y, φ(i)) (2.6)

MQ(i) ≡ d(Y, φ(i)) (mod 2) . (2.7)

In [22] Ozsváth and Szabó define an L-space as a rational homology

3-sphere with the property rank ĤF (Y ) = |H1(Y )|. Furthermore, a sharp

manifold is defined in [22] by Ozsváth and Szabó as follows:
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Definition 2.4.3 ([22], Definition 2.5). A negative-definite smooth 4-manifold

X with L-space boundary Y is sharp if, for every t ∈ Spinc(Y ), there is some

s ∈ Spinc(X) with s|Y = t and equality holds in the inequality (2.2) and (2.6).

The obstruction then works as follows: given a knot K, we hope to

construct a sharp, negative definite 4-manifold X such that ∂X = Σ(K). If

u(K) = 1, then Σ(K) = S3
D/2(κ). Therefore Σ(K) must bound a 4-manifold

with intersection form R (see Section 2.3). The terms MQ(i) and MR(i) must

satisfy the following conditions:

Theorem 2.4.4 (Ozsváth-Szabó). Let K be a knot with det(K) = D such that

Σ(K) bounds a 4-manifold X with a negative definite plumbing diagram. Let

MQ(Σ(K), s), as in Theorem 2.4.2, be computed using the intersection form of

X. Assume u(K) = 1. Then there exists an isomorphism φ : Z/DZ→ Z/DZ

and ε ∈ {±1} with the properties that for all i ∈ Z/DZ:

−εMQ(φ(i))−MR(i) ≡ 0 (mod 2) (2.8)

−εMQ(φ(i))−MR(i) ≥ 0. (2.9)

where R is the intersection form of the 4-manifold coming from the Montesinos

trick. Furthermore, if Y is an L-space, X is sharp, and |MQ(0)| ≤ 1
2
, then

there is a choice of ε and φ which satisfies (2.8) and (2.9), and the following

symmetry condition:

−εMQ(φ(i))−MR(i) = −εMQ(φ(2l − i))−MR(2l − i) (2.10)

for 1 ≤ i < l when D = 4l − 1 and for 0 ≤ i < l when D = 4l + 1.
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Remark In [22], Theorem 2.4.4 assumes K is alternating, for which

Σ(K) is known to satisfy the aforementioned conditions. To follow the conven-

tion of Ozsváth and Szabó we will let Tφ,ε(i) = −εMQ(φ(i))−MR(i). Equation

2.10 can be restated as:

Tφ,ε(i) = Tφ,ε(2l − i) (2.11)

2.5 A Strengthening of Donaldson’s Obstruction

Using Heegaard Floer homology, Greene strengthened Theorem 2.3.3:

Theorem 2.5.1 (Greene). Suppose K is a knot in S3, Σ(K) is an L-space,

and u(K) = 1. Suppose also that either σ(K) = 0 and K is undone by

changing a positive crossing, or that σ(K) = 2. If XK is a smooth, sharp,

simply connected 4-manifold with rank r negative-definite intersection form

QK, and XK is bounded by Σ(K), then there exists an integral matrix A such

that −AAT = QK ⊕ Rn, and A can be chosen such that the last two rows are

(0, 1, x3, . . . , xr+2) and (1,−1, 0, . . . , 0). Furthermore the values x3, . . . , xr+2

are non-negative integers and obey the condition

x3 ≤ 1, xi ≤ x3 + · · ·+ xi−1 + 1 for 3 < i < r + 2 (2.12)

and the upper right r × r matrix of A has determinant ±1.

We will make use of this theorem in the next section.
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Chapter 3

The Case n = −2

In this chapter we will prove the following theorem:

Theorem 3.0.1. Suppose K = P (2m, k,−k−2), where m ∈ Z, m > 0, k odd,

and k > 0, is a 3-stranded pretzel knot. If u(K) = 1, then K = (2m, 1,−3).

First, observe in Figure 3.1 that knots of the form P (2m, 1,−3) have

unknotting number one:

2m

Figure 3.1: The knot P (2m, 1,−3), with an unknotting crossing circled.

Next, in order to show that all other knots of the form P (2m, k,−k−2)

have unknotting number greater than one, we make use of Theorem 2.5.1. The

manifold XK is constructed from a plumbing diagram as described in Section
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2.2. Using Figure 2.4(b), the diagram in Figure 3.2 describes a manifold XK

such that ∂XK = Σ(K):

−k − 2

−2 −2 −2 −2 −2−2 −2

k−1︷ ︸︸ ︷ 2m−1︷ ︸︸ ︷

Figure 3.2: A weighted graph G̃(2m,−k − 2, k).

In order to use Theorem 2.5.1 we must show three things; 1) Σ(K) is

an L-space, 2) X is negative-definite, and 3) X is sharp. First we use the

following theorem to determine when Σ(K) is an L-space:

Theorem 3.0.2 (Champanerkar-Kofman, [2]). Let L = P (p1, p2,−q) with

p1, p2, q ≥ 2. The space Σ(L) is an L-space if and only if:

(1) q ≥ min{p1, p2} or

(2) q = min{p1, p2} − 1 and max{p1, p2} ≤ 2q + 1.

Corollary 3.0.3. If K = P (2m, k,−k − 2), m ∈ Z, m > 0, and k ≥ 3, then

Σ(K) is an L-space.

Next it is easy to show the following is a corollary of Lemma 2.2.1:

Corollary 3.0.4. Let K = P (2m, k,−k − 2), m ∈ Z, m > 0, k ≥ 3 and k

odd. Then the 4-manifold X described in Figure 3.2 is negative definite.

Proof. Using Lemma 2.2.1, note that:
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1
p

+ 1
q

+ 1
r

= 1
2m

+ 1
k

+ 1
−k−2

> 1
2m

> 0

Finally, in order to show X is sharp, we use a theorem in [21]. Let w(v)

be the weight of each vertex, and d(v) be the number of edges which contain

v. A vertex v is called a bad vertex if w(v) > −d(v).

Theorem 3.0.5 (Ozsváth-Szabó). Let G be a plumbing diagram, and X the

associated 4-manifold. If G is a negative-definite graph with at most 2 bad

points, then X is sharp.

Corollary 3.0.6. The 4-manifold associated with the plumbing diagram in

Figure 3.2 is sharp.

To show the matrix A described in Theorem 2.5.1 does not exist, begin

by writing down the k + 2m + 2 × k + 2m + 2 intersection form of X =

XK ∪Σ(K) WK :
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Q =




−2 1 0 . . . 0
1 −2 1
0 1 −2

. . . 1
...

. . . . . .

1
1 −2 0

0 1 0 −k − 2
−n 1
1 −2




where Qk+2m,k = Qk,k+2m = 1. For our convenience, label the ith row of A as

vi. Using this notation, note that QXi,j
= −(AAT )i,j = −vi · vj.

We now show the matrix A guaranteed in Theorem 2.5.1 does not exist.

Begin by noting that since |vi · vi| = 2 for i 6= k+ 2m and k+ 2m+ 1, k+ 2m

rows of A have exactly two nonzero entries. Without loss of generality, set

v1 = (1,−1, 0, . . . , 0). Making this choice, and taking into considering the two

row conditions of Theorem 2.5.1, forces A to take the following form:

A =




1 −1
1 −1

. . . . . .

1 −1
∗ ∗ . . . . . . ∗ ∗ a b
∗ ∗ . . . . . . ∗ ∗ 1

1 −1




.

Next, let A2m+k+1,1 = α. Since v2m+k+1 · vi = 0 for i = 1, 2, . . . , 2m+ k,

the first 2m+ k terms of v2m+k+1 = α:
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A =




1 −1
1 −1

. . . . . .

1 −1
∗ ∗ . . . . . . ∗ ∗ a b
α α . . . . . . α α 1

1 −1




.

According the Theorem 2.5.1, α = 0 or 1.

a) If α = 0, then v2m+k+1·v2m+k+1 = 1 = n = 1
2
(det(K)+1), and so det(K) = 1.

However, using the Goeritz matrix one can show det(P (2m, k,−k − 2)) =

|k2 + 2k + 4m|, a contradiction.

b) If α = 1, then v2m+k+1 · v2m+k+1 = k + 2m + 1 = n = 1
2
(det(K) + 1),

and so 2k+ 4m+ 1 = det(K) = k2 + 2k+ 4m. This is true only when k2 = 1,

a contradiction.

The reader will note that when k = 1 there exists a matrix A which satis-

fies Theorem 2.5.1, as expected.
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Chapter 4

The Case n=0

4.1 Donaldson’s Theorem and P (2, k,−k)

In this section we will prove the following theorem:

Theorem 4.1.1. Let K = P (2, k,−k) be a three standed pretzel knot and

k > 3. If k is a prime power, then u(K) > 1.

We will show that Theorem 2.4.4 and Theorem 2.3.3 can be used as

an unknotting number one obstruction for those knots described in Theorem

4.1.1. Begin by constructing the plumbing diagram described in Section 2.2,

in particular the diagram described in Figure 2.4(b). Associate to the diagram

the 4-manifold X, and let QX be the intersection form of X.

k−1︷ ︸︸ ︷

−2 −2 −2−2

−k

−2

Figure 4.1: A weighted graph G(2,−k, k).

In order to use Theorems 2.4.4 and 2.3.3, we must show three things;
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1) Σ(K) is an L-space, 2) X is negative-definite, and 3) X is sharp. We can

show these conditions are met using the techniques in Section 3.

Corollary 4.1.2. If K = P (2, k,−k) and k ≥ 3, then Σ(K) is an L-space.

Corollary 4.1.3. Let K = P (2, k,−k), k ≥ 3 and k odd. Then the 4-manifold

X described in Figure 4.1 is negative definite.

Corollary 4.1.4. The 4-manifold associated with the plumbing diagram in

Figure 4.1 is sharp.

Now we have shown pretzel knots in Theorem 4.1.1 satisfy the neces-

sary conditions. To prove Theorem 4.1.1 we first show there exists a φ and ε

which satisfy (2.8) and (2.9). Then we will show that these φ and ε are unique

for prime k, and finally they fail condition (2.11).

First we mimic the proof of Theorem 3.0.1 to prove the following

Lemma:

Lemma 4.1.5. If K = P (2, k,−k) has unknotting number one, and k ≥ 3 is

odd, then it must be undone by changing a negative crossing.

Proof. First recall from the plumbing construction above that Σ(K) = ∂X,

and the intersection form of X is negative definite. Next, from Proposition

2.3.2 if K can be unknotting by changing a positive crossing, then −Σ(K) is

the boundary of a negative-definite 4-manifold. Therefore we can glue X and

WK together along Σ(K) to form a closed 4-manifold with negative-definite

intersection form Q. Therefore there must exist an integral k+4×k+4 matrix
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A such that −AAT = Q.

Similar to Section 3, the matrix A must have the form:

A =




−1 1
−1 1

−1 1
. . . . . .

...
...

... −1 1
−1 1

a a a . . . a b b c c
d d d . . . d d d 1

1 −1




Denote the rows by vi, with a total of k+ 4 rows. Then −vk · vk+2 = 1,

so b = a− 1. Then vk+2 · vk+2 = k implies

ka2 + 2(a− 1)2 + 2c2 = k (4.1)

whence evidently we must have a = −1, 0, 1 (else the LHS is too big). We split

the cases:

1. If a = −1, then from (4.1) we have 2c2 + 8 = 0.

2. If a = 0, then from (4.1) we have 2c2 +2 = k. Since k is odd, this cannot

happen.

3. If a = 1, then c = 0 (from (4.1)). Since vk+2 · vk+3 = 0, d = 0. The fact

that vk+3 · vk+3 = n yields us n = 1, so k2 = 1, contradicting k ≥ 3.

This completes the proof.
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Corollary 4.1.6. If K = P (2, k,−k) has unknotting number one, then ε = −1

in Theorem 2.4.4.

4.2 The values MQ

Using the Goeritz matrix of P (2, k,−k), it is easy to see | det(K)| = k2.

Therefore for knots of the form P (2, k,−k), each characteristic covector v

corresponds to an element i ∈ Z/k2Z according to the incident matrix Q of

G̃(2, k,−k). In order to determine which vectors v ∈ Char(Q) correspond to

which i ∈ Z/k2Z, we prove the following proposition:

Proposition 4.2.1. Let K = P (2, k,−k), k odd, k ≥ 3. If v = (v1, . . . , vk+2) ∈

Char(Q), then [v] = v1 + 2v2 + · · ·+ kvk + k2+k
2
vk+1 + k2+k+2

2
vk+2 (mod k2).

Proof. Up to an ordering of the vertices of Figure 4.1, the incidence matrix of

G̃(2, k,−k) is

Q =




−2 1

1
. . . . . .
. . . −2 1

1 −2 1
1 −2 1 1

1 −2 0
1 0 −k




.

Row operations of Q correspond to linear combinations of relations of the

group H2(Σ(K),Z). Using this we can simplify Q:
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−→




−2 1
−3 1
...

. . .

−k 1
k − 1 −2 1 1

0 1 −2 0
0 1 −k




−→




−2 1
−3 1
...

. . .

−k 1
−k − 1 0 1 1
k −2 0
k −k




−→




−2 1
−3 1
...

. . .

−k 1
−k − 1 0 1 1
−k − 2 2
k −k




.

Add k+1
2

copies of the k + 1 row to the k + 2 row.




−2 1
−3 1
...

. . .

−k 1
−k − 1 0 1 1
−k − 2 2
−k2−k−2

2
1




−→




−2 1
−3 1
...

. . .

−k 1
k2−k

2
0 1

k2

−k2−k−2
2

1




.
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The calculations of MQ rely heavily upon the matrix Q−1.

Proposition 4.2.2. If the matrix

Q =




−2 1

1
. . . . . .
. . . −2 1

1 −2 1
1 −2 1 1

1 −2 0
1 0 −k




,

then

Q−1 =
−1
k2




k2 − k + 2 . . . 3k − 2 2k k 2

...
. . .

...
...

...
...

4k − 4 . . . (k − 2)(3k − 2) 2k(k − 2) k(k − 2) 2(k − 2)

3k − 2 · · · (k − 1)(3k − 2) 2k(k − 1) k(k − 1) 2(k − 1)

2k · · · 2k(k − 1) 2k2 k2 2k

k · · · k(k − 1) k2 k2 k

2 · · · 2(k − 1) 2k k k + 2




.
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Of particular interest are the diagonal entries of Q−1. Note that:

(−k2)Q−1
i,i =





ik2 − i2k + 2i2 if 1 ≤ i ≤ k
k2 if i = k + 1

k + 2 if i = k + 2.
(4.2)

Theorem 4.2.3. Let K, Q, Tφ,ε be as in Section 2.4. Then φ ∈ Aut(Z/k2Z),

x 7→ k2−k−4
2

x is an automorphism such that Tφ,−1(2) = MQ(φ(2))−MR(2) ≥ 2.

Proof. According to [22] the vector (5,−2) corresponds to the element 2 ∈

Z/k2Z. Using Equation 2.4 we see that MR(2) = −8
k2

. According to proposi-

tion 4.2.1 the vector v = (0, . . . , 0, k − 4) corresponds to k2 − k − 4 in Z/k2Z.

Therefore [v] = φ(2). Finally using equation (2.4),

MQ(φ(2)) ≥ vTQ−1v+(k+2)
4

=
−1

k2
(k+2)(k−4)2+(k+2)

4

= 1
4k2

(−k3 + 6k2 − 32 + k3 + 2k2)

= 2k2−8
k2

Therefore MQ(φ(2))−MR(2) ≥ 2k2−8
k2
− −8

k2
= 2, as desired.

According to the symmetry condition of Theorem 2.4.4, Tφ,ε(2) =

Tφ,ε(2l − 2), where l depends on det(G(K)) = k2. For odd k, k2 = 4l + 1,

and so l = k2−1
4

.
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Theorem 4.2.4. Let K, G, TG,ε be as above. Then φ ∈ Aut(Z/k2Z), x 7→
k2−k−4

2
x is an automorphism such that Tφ,−1

(
k2−5

4

)
= MQ

(
φ
(
k2−5

2

))
−γD

((
k2−5

2

))
=

0 .

The proof comes in 3 parts. First, we will show Tφ,−1

(
k2−5

4

)
is an even

integer greater than zero. Next, in Section 4.3 we show that the vector v in

Theorem 4.2.4 maximizes vTQ−1v over all v ∈ Char(Q) and [v] ≡ 1
4
(k2 + 5k+

20) (mod k2). Finally, in Section 4.4, we show that φ is the only automorphism

of Z/k2Z such that Tφ,ε(2) is even.

First we consider the case when k ≡ 3 (mod 4). According to [22],

the vector (−5, 0) corresponds to the element k2−5
2

and MR

(
k2−5

2

)
= k2−25

2k2
.

Let v =
(
0, . . . , 0,−2, 0, . . . , 0, 13−k

2

)
, where v 3k+3

4
= −2. Then note that the

following are equal:

[v] =
(

13−k
2

) (
k2+k+2

2

)
+
(

3k+3
4

)
(−2)

= 1
4
(−k3 + 12k2 + 5k + 20)

≡ 1
4
(−k3 + 5k + 20) (mod k2)

= 1
4
(−k3 − k2 + k2 + 5k + 20)

= −k2
(
k+1

4

)
+ 1

4
(k2 + 5k + 20)

≡ 1
4
(k2 + 5k + 20) (mod k2),
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φ
(
k2−5

2

)
=

(
k2−5

2

)(
k2−k−4

2

)

= 1
4
(k4 − k3 − 9k2 + 5k + 20)

= 1
4
(−k3 + 5k + 20) + k2

(
k2−9

4

)

≡ 1
4

(−k3 − k2 + k2 + 5k + 20) (mod k2)

≡ k2
(−k−1

4

)
+ 1

4
(k2 + 5k + 20) (mod k2)

≡ 1
4
(k2 + 5k + 20) (mod k2).

Finally, note that

MQ

(
φ
(
k2−5

2

))
≥ vTQ−1v+(k+2)

4

= −k−50/k2+(k+2)
4

= k2−25
2k2

In the case k ≡ 1 (mod 4), a similar argument holds.

4.3 Equality in Theorem 4.2.4

Theorem 4.2.4 is not complete until we show equality. The vector v ∈

Char(Q) which achieves the maximum in (2.4) has the form v = (v1, v2, . . . , vk+2),

where vi = −2 or 0 for i = 1, 2, . . . , k+ 1, and vk+2 = −k,−k+ 2, . . . , or k−2.

It is not practical to determine [w] for all w ∈ Char(Q) and then compute MQ

for all w such that [w] = 1
4
(k2 + 5k + 20) (mod k2), and hope that vector w

which achieves the maximum is indeed v. Instead, first note that maximizing

MQ is equivalent to maximizing vTQ−1v. Next let w(i) = (0, . . . , 0,−k + 2i).
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Then

[v]− [w(i)] ≡ 1
4
(k2 + 5k + 20)− (−k + 2i)

(
k2+k+2

2

)
(mod k2)

= 1
4
(k2 + 5k + 20) + k2

(
k+1

2

)
− ik2 + k − ik − 2i

≡ 1
4
(k2 + 5k + 20) + k − ik − 2i (mod k2)

= 1
4

(k2 + 9k + 20− 4ik − 8i)

We only need to consider i = 0, 1, . . . , k − 1. It will be helpful to set

i = k+9+4j
4

, so j = −k−9
4
, −k−5

4
, . . . , 3k−13

4
, 3k−9

4
. By doing so we can rewrite

[v]− [w(i)] =

(−k(2j + 1)− 4j + 1

2

)

From this we can construct Table 4.1:

For each i under consideration, [w(i)] 6= [v]. However changing the jth entry

of w(i) adds 2j to the value of [v] − [w(i)] for j = 1, 2, . . . , k, and changing

the k + 1 entry from 0 to −2 adds k to the value of [v]− [w(i)]. By changing

the right entries of v we can obtain many vectors v′ such that [v] = [v′].

However explicitly computing v′TQ−1v′ for every such v′ is unreasonable. The

following two lemmas greatly reduce the number of vectors which much be

checked against vTQ−1v.

Lemma 4.3.1. Let v, w ∈ Char(Q), where vi = wi for i = 1, 2, . . . , k + 2

except vm = vn = −2 and vm+1 = vn−1 = 0, whereas wm = wn = 0 and
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i −k + 2i j [v]− [w(i)](mod k2)

0 −k −k−9
4

k2+9k+20
4

1 −k + 2 −k−5
4

k2+5k+16
4

...
...

...
...

k+5
4

−k+5
2

−1 k+5
2

k+9
4

−k+9
2

0 −k+1
2

k+13
4

−k+13
2

1 −3k−3
2

k+17
4

−k+17
2

2 −5k−7
2

...
...

...
...

k − 1 k − 2 3k−13
4

−3k2+9k+24
4

k k 3k−9
4

−3k2+5k+20
4

Table 4.1:

wm+1 = wn−1 = −2 for m,n such that n−m ≥ 3, n ≤ k. Then [v] = [w] and

(−k2)vTQ−1v < (−k2)wTQ−1w.

Proof. It is easy to see that [v] = [w]. To show the inequality we must consider

two types of terms, (−k2)v2
nQn,n and (−k2)vmvnQm,n, n 6= m. First, recall the

diagonal entries of (−k2)Q−1
i,i = ik2 − i2k + 2i2 for 1 ≤ i ≤ k. Then note:

−k2(Q−1
m,m +Q−1

n,n) = (m+ n)k2 − (m2 + n2)(k)+
+2(m2 + n2),

and

35



−k2(Q−1
m+1,m+1 +Q−1

n−1,n−1) = (m+ n)k2 − (m2 + n2 + 2m− 2n+ 2)(k)+
+2(m2 + n2 + 2m− 2n+ 2),

and so

−k2[(Q−1m,m +Q−1n,n)− (Q−1m+1,m+1 +Q−1n−1,n−1)] = (−2n+ 2m+ 2)k + 2(2n− 2m− 2)
= 2k(−n+m+ 1)− 4(−n+m+ 1)
= (2k − 4)(−n+m+ 1)
< 0,

and therefore (−k2)(Q−1
m,m +Q−1

n,n) < (−k2)(Q−1
m+1,m+1 +Q−1

n−1,n−1).

Next we consider terms of the form vmvnQm,n, m 6= n. This term is

non-zero when vm = vn = −2, so we need only consider the value of (−k2)Q−1
m,n.

First observe (−k2)Q−1
m,n < (−k2)Q−1

m+1,n−1.

Next we consider what happens when m < m+ 1 < l < n− 1 < n and

vl 6= 0. Therefore:

• (−k2)Q−1
m,l < (−k2)Q−1

m+1,l and

• (−k2)Q−1
l,n < (−k2)Q−1

l,n−1

Finally consider what happens when l < m and vl 6= 0. Unlike before,

(−k2)Q−1
m,l > (−k2)Q−1

m+1,l. However note that Q−1
m,l, Q

−1
m−1,l, Q

−1
n−1,l, Q

−1
n,l all lie

on the same row of Q−1. Since the terms of the columns (and rows) of Q−1

decrease at a constant rate for i ≤ k, (−k2)Q−1
l,m + (−k2)Q−1

l,n = (−k2)Q−1
l,m+1 +

(−k2)Q−1
l,n−1. A similar thing happens when n < l and vl 6= 0.
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Lemma 4.3.2. Let v, w ∈ Char(Q), where vi = wi for i = 1, 2, . . . , k + 2

except wj = −2 and wj−1 = w1 = 0 whereas vj−1 = v1 = −2 and vj = 0 for

j ≤ k. Then [v] = [w] and wTQ−1w < vTQ−1v.

Proof. It is easy to see that [v] = [w]. To show the inequality we must consider

terms of the form v2
mQm,m 6= 0 and terms of the form vmvnQm,n, m 6= n. First,

recall from the matrix Q−1 that (−k2)Q−1
i,i = ik2 − i2k + 2i2 for 1 ≤ i ≤ k.

Then note:

(−k2)Q−1
n,n = nk2 − kn2 + 2n2

and

(−k2)Q−1
n−1,n−1 + (−k2)Q−1

1,1 = (n− 1)k2 − (n2 − 2j + 1)k + (k2 − k + 2)+
+2(n2 − 2n+ 1),

= nk2 − kn2 + 2nk − 2k + 2n2 − 4n+ 4

and so

(−k2)[Q−1
n,n −

(
Q−1
n−1,n−1 +Q−1

1,1

)
] = nk2 + 2n2−

−(nk2 + 2nk − 2k + 2n2 − 4n+ 4)
= −2nk + 2k + 4n− 4
= ((2k − 4)(1− n))
< 0

Next we consider terms of the form vmvnQm,n, m 6= n. First (−k2)vm−1

v1Q
−1
m−1,1 > 0, whereas 0 · wmQ−1

m,l = 0.

Finally suppose vl 6= 0, l 6= 1,m,m+1. If 1 < l < m, then (−k2)Q−1
m,l >

(−k2)Q−1
m+1,l, and consequently (−k2)Q−1

m,l+(−k2)Q−1
1,l > (−k2)Q−1

m+1,l. On the

other hand if m+ 1 < l, then (−k2)Q−1
1,l + (−k2)Q−1

m,l = (−k2)Q−1
m+1,l.
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Corollary 4.3.3. The vector v which maximizes vTQ−1v over all [v] = n ∈

Z/k2Z with fixed vk+2 is the vector with vk = · · · = vl = −2, at most one

v1, . . . , vl−1 = −2, where l = 2, 3, . . . , or k, and vk+1 = 0 or −2, depending

vk+2.

We will use w′(i) to be the unique vector which satisfies Lemma 4.3.3. Next

we need to determine the minimal number of entry changes to w(i) so that

[w′(i)] = [v]. First assume j is odd. We can create Table 4.2 and Table 4.3:
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Table 4.2: k ≡ 7 (mod 8)

i −k + 2i j [v]− [w(i)](mod k2) C(w(i)) L(w(i))

1 −k + 2 −k−5
4

k2+5k+12
4

− −

3 −k + 6 −k+3
4

k2−3k−4
4

− −
...

...
...

...
...

...
k+5

4
−k+5

2
−1 k+5

2
− −

k+13
4

−k+13
2

1 −3k−3
2

1 3k+3
4

k+21
4

−k+21
2

3 −7k−11
2

= −2k + −3k−11
2

2 3k+11
4

...
...

...
...

...
...

k − 2 k − 4 3k−17
4

−3k2+9k+36
4

− −

k k 3k−9
4

−3k2+k+20
4

− −

Here, C(w(i)) is the minimal number of changes to w(i) so that [w′(i)] =

[v]. Similarly, L(w(i)) is the guaranteed leftmost term of w′(i) which is non-

zero. The fourth and sixth columns are only true for certain j and k. For

example when j = 3 and k = 7, the sixth column claims that the leftmost non-

zero term is w8, which is false. The numbers in the sixth column,
3k+ 1

2
(j2+4j+1)

4
,

only hold true when

6k + j2 + 4j + 1

8
≤ k − j − 1

2
, (4.3)

which can we rewritten as

j ≤
√

2k + 19− 4. (4.4)
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Table 4.3: k ≡ 3 (mod 8)

i −k + 2i j [v]− [w(i)](mod k2) C(w(i)) L(w(i))

0 −k −k−9
4

k2+9k+20
4

− −

2 −k + 4 −k−1
4

k2+k+4
4

− −
...

...
...

...
...

...
k+5

4
−k+5

2
−1 k+5

2
− −

k+13
4

−k+13
2

1 −3k−3
2

1 3k+3
4

k+21
4

−k+21
2

3 −7k−11
2

= (−2k) +
(−3k−11

2

)
2 3k+11

4
...

...
...

...
...

...

k − 3 k − 6 3k−21
4

−3k2+13k+44
4

− −

k − 1 k − 2 3k−13
4

−3k2+5k+28
4

− −

If condition (4.4) is true then w 6k+j2+4j+1
8

= −2 in step 4. Otherwise

w 6k+j2+4j+1
8

= 0. Step 3 of (4.5) will increase the approximation of (−k2)
(
vTQ−1v − wTQ−1w

)
whenever −k + 2i > 0, or equivalently j > k−9

4
, and

decrease when j < k−9
4

. Finally note that j < 3
4
k for all relevant k. Therefore

there are only 7 cases to check:

Case 1 0 < k−9
4
≤
√

2k + 19− 4 ≤ j < 3
4
k

Case 2 0 < k−9
4
≤ j <

√
2k + 19− 4 < 3

4
k

Case 3 0 < j < k−9
4
≤
√

2k + 19− 4 < 3
4
k

Case 4 0 <
√

2k + 19− 4 < k−9
4
< j < 3

4
k

Case 5 0 <
√

2k + 19− 4 < j < k−9
4
< 3

4
k

Case 6 0 < j <
√

2k + 19− 4 < k−9
4
< 3

4
k

Case 7 j < 0
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Cases 1, 2, and 3 only hold when k−9
4
≤
√

2k + 19−4, which is true for k ≤ 27.

Tables 4.6, 4.7, 4.8, 4.9, 4.10, and 4.11 are Tables 4.2 and 4.3 for k = 7, 11, 15,

19, 23, and 27. In each case the w which minimizes (−k2)wTQ−1w is w = v,

as claimed.

Still the vectors w′(i) = (w′1(i), . . . , w′k+2(i)) can be too complicated to

compute w′(i)TG−1w(i) without a computer. Therefore we will estimate the

value of vTG−1v − w′(i)TG−1w(i) in five steps:

Step 1) (−k2)(vTQ−1v) = (k3 − 6k2 + 32)

Step 2) −(k2)(wk+2(i))Q−1
k+2,k+2(wk+2(i)) = −(k3 +2k2−4ik2−8ik+4i2k+8i2)

Step 3) twice the sum of the terms of the form −(−k2)w′l(i)Q
−1
l,k+2w

′
k+2(i), l 6=

k + 2

Step 4) the sum of the terms of the form −(−k2)w′l(i)Q
−1
l,l w

′
l(i), l 6= k + 2

Step 5) twice the sum of the terms of the form −(−k2)w′l(i)Q
−1
l,hw

′
h(i), l < h, h 6= k+2

(4.5)

Case 4 First compute steps 1 and 2:
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(−k2)
(
vTQ−1v − w(i)TQ−1w(i)

)
= (k3 + 50)− (−k + 2i)2(k + 2)

= k3 + 50− (k3 + 2k2 − 4ik2)−
−(−8ik + 4i2k + 8i2)

= 4ik2 − 4i2k − 2k2 + 8ik − 8i2 + 50

= 4
(
k+9+4j

4

)
k2 − 4

(
k+9+4j

4

)2
k − 2k2+

+8
(
k+9+4j

4

)
k − 8

(
k+9+4j

4

)2
+ 50

= 3
4
k3 + 2jk2 − 4j2k + 4k2 − 14jk−
−8j2 − 45

4
k − 36j + 19

2
.

(4.6)

When k−9
4
< j we must take into account step 3. Given j, the w which

minimizes (−k2)wTQ−1w has at least j+1
2

entries equal to −2. Therefore we

can overestimate the value of step 3:

−
(

2(−2)(−k + 2i)
∑ j−1

2
l=0 2(k − l)

)
= 8(−k + 2i)

(∑ j−1
2

l=0 k −
∑ j−1

2
l=0 l

)

= 8
(
−k + 2

(
k+9+4j

4

)) (
k j+1

2
− j2−1

8

)

= 8
(−k+9+4j

2

) (
4kj+4k−j2+1

8

)

= −2jk2 +
17

2
j2k − 2j3 − 2k2 + 26jk − 9

2
j2 +

35

2
k + 2j +

9

2
(4.7)

When
√

2k + 19 − 4 < j, w 6k+j2+4j+1
8

= 0, so for step 4 we can assume

wk = wk−1 = · · · = wk− j−1
2

= −2. An underestimate of step 4 is:
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−(−2)2 ·
j−3
2∑

l=0

(−k2)Q−1
k−l,k−l = −4 ·

j−3
2∑

l=0

(l + 2)k2 − (l2 + 4l)k + 2l2

= −4
((

j2+4j−5
8

)
k2 −

(
j3+6j2−37j+30

24

)
k +

+
(
j3−6j2+11j−6

12

))

= −1

2
j2k2 +

1

6
j3k−2jk2 + j2k− 1

3
j3 +

5

2
k2− 37

6
jk+2j2 +5k− 11

3
j3 +2 (4.8)

Finally we need to include some terms from step 5 into the approx-

imation. Since w has at least j−1
2

consecutive entries equal to −2, the en-

tries Q−1
k−1,k, . . . , Q

−1

k−1− j−5
2
,k− j−5

2

along the superdiagonal (and subdiagonal)

contribute to the approximation. To simplify calculation and ensure the esti-

mation is not too large (in absolute value):

−2
(

(−2)(−2)
∑ j−5

2
i=0 Q

−1
k−1−i,k−i

)
< −8

∑ j−5
2

i=0 Q
−1
k−1,k

= −8
(
j−3

2

)
(2k2 − 2k)

= −8jk2 + 24k2 + 8jk − 24k

(4.9)

By combining (4.6), (4.7), (4.8), and (4.9) we obtain the estimate:
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−k2(vTQ−1v − wTQ−1w) ≤ −1
2
j2k2 + 1

6
j3k + 3

4
k3 − 10jk2+

+11
2
j2k − 7

3
j3 + 57

2
k2 + 83

6
jk−

−21
2
j2 − 51

4
k − 113

3
j + 16

= 1
8
j2k(−k + 4

3
j) + 11

2
j2k(− 1

31
k + 1)+

+(−3
4
k + 16)− 49

248
j2k2 + 3

4
k3−

−10jk2 + 57
2
k2 + 83

6
jk

< 1
8
j2k(−k + 4

3

(
3k−9

4

)
)− 49

248
j2k2+

+3
4
k3 − 10

(
k−7

4

)
k2 + 57

2
k2 + 83

6
jk

< −3
8
j2k − 49

248
j2k2 − 7

4
k3 + 46k2 + 83

6
jk

< jk
(
− 49

248
(5)(31) + 83

6

)
+

+k2
(
−7

4
(31) + 46

)

< 0

Case 5 Since j < k−9
4

, −k + 2i < 0, step 3 decreases the value of the

approximation. In case 4 the value of step 3 was positive, and therefore made

(4.7) an overestimation. In this case the value of step 3 is negative so we must

be sure not to take away too much from the estimation. To do this we only

consider the j−1
2

consecutive −2s which appear in w.

−2(−2)(−k + 2i)
∑ j−3

2
l=0 2(k − l) = 8(−k + 2i)

(∑ j−3
2

l=0 k −
∑ j−3

2
l=0 l

)

= 8
(
−k + 2

(
k+9+4j

4

)) (
k j−1

2
− j2−4j+3

8

)

= 8
(−k+9+4j

2

) (
4kj+4k−j2+4j−3

8

)

= −2jk2 +
17

2
j2k − 2j3 − 2k2 + 24jk +

7

2
j2 +

39

2
k + 12j − 27

2
(4.10)
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The approximation resulting from combining (4.6), (4.8), (4.10), and

(4.9) is

−k2(vTQ−1v − wTQ−1w) ≤ −1
2
j2k2 + 1

6
j3k + 3

4
k3 − 10jk2+

+11
2
j2k − 11

3
j3 + 57

2
k2 + 35

4
jk−

−5
2
j2 − 43

4
k − 83

3
j − 2

≤ 1
24
j2k (−k + 4j) + jk

(
−11

8
k + 11

2
j
)

+
+3

4
k3 − 69

8
jk2 + 57

2
k2 + 35

4
jk−

−11
24
j2k2

≤ 1
24
j2k
(
−k + 4

(
k−11

4

))
+ 3

4
k3 − 69

8
jk2+

+jk
(
−11

8
k + 11

2

(
k−11

4

))
+ 57

2
k2 + 35

4
jk−

−11
24
j2k2

≤ −11
24
j2k − 121

8
jk − 11

24
j2k2 + 3

4
k3−

−69
8
jk2 + 57

2
k2 + 35

4
jk

≤ −11
24
k2(
√

2k + 19− 4)2 + 3
4
k3−

−69
8

(
√

2k + 19− 4)k2 + 57
2
k2 − 51

8
jk

≤ −11
24
k2(2k + 35− 8

√
2k + 19) + 3

4
k3−

−69
8
k2
√

2k + 19 + 69
2
k2 + 57

2
k2

≤ −1
6
k3 − 119

24
k2
√

2k + 19 + 1127
24
k2

< −1
6
k2(31)− 119

24
k2
√

2(31) + 19 + 1127
24
k2

< 0

Case 6 Since j ≤
√

2k + 19− 4, w 6k+j2+4j+1
8

= −2.
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−(−2)(−2)

((
6k+j2+4j+1

8

)
k2 −

(
6k+j2+4j+1

8

)2

k + 2
(

6k+j2+4j+1
8

)2
)

=

= 1
16
j4k + 1

4
j2k2 + 1

2
j3k − 1

8
j4 − 3

4
k3 + jk2 − 3

8
j2k−

−j3 − 17
4
k2 − 11

2
jk − 9

4
j2 − 23

16
k − j − 1

32
.

(4.11)

The approximation resulting from combining (4.6), (4.8), (4.10), (4.9),

and (4.11) is:

−k2(vTQ−1v − wTQ−1w) < 1
16
j4k − 1

4
j2k2 + 2

3
j3k − 1

8
j4 − 9jk2 + 41

8
j2k−

−14
3
j3 + 97

4
k2 + 13

4
jk − 19

4
j2 − 195

16
k − 86

3
j − 65

32

< 1
16
j2k(2k + 35− 8

√
2k + 19)− 1

8
j2k2+

+2
3
jk(2k + 35− 8

√
2k + 19)− 9jk2+

+41
8
j2k + 97

4
k2 + 13

4
jk

< −1
2
j2k
√

2(31) + 19− 1
4
j2k2 + 319

12
jk + 117

16
j2k−

−16
3
jk
√

2(31) + 19− 23
3
jk2 + 97

4
k2

< −9
2
j2k − 1

4
j2k2 − 48jk − 23

3
jk2 + 117

16
j2k+

+97
4
k2 + 319

12
jk

< (− 1
10
j2k2 + 45

16
j2k) + (− 3

20
j2k2 − 23

3
jk2+

+97
4
k2)− 257

12
jk

< (−31
10
j2k + 45

16
j2k) + (−27

20
k2 − 23k2 + 97

4
k2)

< 0

Case 7 When j < 0, [v] − [w(i)] is odd. So unlike the previous six

cases, wk+1 = −2, which adds k to the value [v] − [w(i)]. When j = −k−5
4
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(resp. −k−9
4

), setting wk+1 = −2 changes [v] − [w(i)] to −3k2+9k+12
4

(resp.

−3k2+13k+20
4

), which is less than the value of [v]− [w(i)] when i = k− 2 ( resp.

i = k − 3). Therefore when j = −k−5
4

(resp. −k−9
4

), there are 1
2

(
3k−21

4

)
(resp.

1
2

(
3k−25

4

)
) consecutive terms of w equal to −2, namely wk+1, wk, . . . , wk− 3k−25

4

(resp. wk+1, wk, . . . , wk− 3k−29
4

). In general:

If k ≡ 7 (mod 8) ⇒ w has 3k−21
8

+ 1 + i−1
2

consecutive entries equal to −2

⇒ w has at least 4k−8+4j
8

consecutive entries equal to −2.

If k ≡ 3 (mod 8) ⇒ w has 3k−25
8

+ 1 + i
2

consecutive entries equal to −2

⇒ w has at least 4k−8+4j
8

consecutive entries equal to−2.

To estimate (−k2)(vTQ−1v − wTQ−1w) comes in three parts. First

comes from (4.6). The second comes from wk−1 = −2, which decreases the

expression by 4k2. The final part comes from wk = · · · = w 4k+16+4j
8

= −2.

These decrease the expression by:

4 ·
4k−16+4j

8
−1∑

l=0

(−k2)Q−1
k−l,k−l = 4 ·

k+j
2
−3∑

l=0

(l + 2)k2 − (l2 − 4l)k + 2l2

= 4
(
k2+2jk+j2−2k−2j−8

8

)
k2−

−4
(

(k+j)3−3(k+j)2−46(k+j)−168
24

)
k+

+4
(

(k+j)3−15(k+j)+74(k+j)−120
12

)

=
1

3
k4+

1

2
jk3− 1

6
j3k− 1

6
k3+jk2+

3

2
j2k+

1

3
j3− 4

3
k2− 7

3
jk−5j2− 10

3
k+

74

3
j−40

(4.12)
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After combining (4.6), (4.12), and −4k2, and recalling −k
2
< j ≤ −1

and k ≥ 31:

−k2(vTQ−1v − wTQ−1w) < −1
3
k4 − 1

2
jk3 + 1

6
j3k + 11

12
k3 + jk2 − 11

2
j2k−

−1
3
j3 + 4

3
k2 − 35

3
jk − 3j2 − 95

12
k − 182

3
j + 99

2

< −1
4
k3 (k + 2j) + k3

(
− 1

24
k + 11

12

)
− 11

2
j2k+

+j3
(

1
24
k − 1

3

)
+ k2 (j + 1) + 1

96
k2 (k2 − 32) +

+1
8
j3k − 1

96
k (k3 + 12j)− 3j2 − 7k+

+ 1
96

(k4 + 61j)−
(

1
96
k4 + 100

)

< 0

as desired.

Next assume j is even. First construct tables similar to Table 4.2 and

Table 4.3:

Unlike tables 4.2 and 4.3, when j > 0 the value of [v] − [w(i)] is odd.

This means the first entry of w(i) changed to −2 is wk+1. Once again the

fourth and sixth columns are only true for certain j and k. The numbers in

the sixth column, 6k+j2+2j+6
8

only hold true when

1 ≤ 6k + j2 + 2j + 6

8
≤ k − j − 2

2
(4.13)

The right side of the inequality simplifies to

j ≤
√

2k + 11− 3, (4.14)
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Table 4.4: k ≡ 7 (mod 8)

i −k + 2i j [v]− [w(i)](mod k2) C(w(i)) L(w(i))

0 −k −k−9
4

k2+9k+20
4

− −

2 −k + 4 −k−1
4

k2+k+4
4

− −
...

...
...

...
...

...
k+1

4
−k+1

2
−2 3k+9

2
− −

k+9
4

−k+9
2

0 −k+1
2

− −

k+17
4

−k+17
2

2 −5k−7
2

= (−k) + −3k−7
2

2 3k+7
4

k+25
4

−k+25
2

4 −9k−15
2

= (−k) + (−2k) + −3k−15
2

3 3k+15
4

...
...

...
...

...
...

k − 3 k − 6 3k−21
4

−3k2+13k+44
4

− −

k − 1 k − 2 3k−13
4

−3k2+5k+28
4

− −

If condition (4.14) is true then w 6k+j2+2j+6
8

= −2 in step 4. Otherwise w 6k+j2+4j+1
8

=

0. Step 3 of (4.5) will increase the approximation of (−k2)
(
vTQ−1v − wTQ−1w

)

whenever −k + 2i > 0, or equivalently j > k−9
4

, and decrease when j < k−9
4

.

Finally note that j < 3
4
k for all relevant k. This leaves 7 cases to check:

Case 1 0 < k−9
4
≤
√

2k + 11− 3 ≤ j < 3
4
k

Case 2 0 < k−9
4
≤ j <

√
2k + 11− 3 < 3

4
k

Case 3 0 < j < k−9
4
≤
√

2k + 11− 3 < 3
4
k

Case 4 0 <
√

2k + 11− 3 < k−9
4
< j < 3

4
k

Case 5 0 <
√

2k + 11− 3 < j < k−9
4
< 3

4
k

Case 6 0 < j <
√

2k + 11− 3 < k−9
4
< 3

4
k

Case 7 j ≤ 0
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Table 4.5: k ≡ 3 (mod 8)

i −k + 2i j [v]− [w(i)](mod k2) C(w(i)) L(w(i))

1 −k + 2 −k−5
4

k2+5k+12
4

− −

3 −k + 6 −k+3
4

k2−3k−4
4

− −
...

...
...

...
...

...
k+1

4
−k+1

2
−2 3k+9

2
− −

k+9
4

−k+9
2

0 −k+1
2

− −

k+17
4

−k+17
2

2 −5k−7
2

= (−k) + −3k−7
2

2 3k+7
4

k+25
4

−k+25
2

4 −9k−15
2

= (−k) + (−2k) + −3k−15
2

3 3k+15
4

...
...

...
...

...
...

k − 2 k − 4 3k−17
4

−3k2+9k+36
4

− −

k k 3k−9
4

−3k2+k+20
4

− −

Cases 1, 2, and 3 only hold when k−9
4
≤
√

2k + 11−3, which is true for

k ≤ 31. Tables 4.12, 4.13, 4.14, 4.15, 4.16, 4.17, and 4.18 are Tables 4.2 and

4.3 for k = 7, 11, 15, 19, 23, 27, and 31. In each case the w which minimizes

(−k2)wTQ−1w is w = v, as claimed.

Case 4 Since j > k−9
4

, −k+ 2i is positive and we must consider step 3.

Given j, the w which minimizes (−k2)wTQ−1w has at least j+2
2

entries equal

to −2. One of these is the wk+1 entry. Therefore we can overestimate the

value of step 3:
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− (−4)(−k + 2i))
(
k +

∑ j−2
2

l=0 2(k − l)
)

= − (2(−2)(−k + 2i)) k+

+8(−k + 2i)
(∑ j−2

2
l=0 k −

∑ j−2
2

l=0 l
)

= 4k
(
−k + 2

(
k+9+4j

4

))
+

+8
(
−k + 2

(
k+9+4j

4

))
·

·
(
k j

2
− j2−j

8

)

= (−2k2 + 18k + 8jk)+
+(−2jk2 + 17

2
j2k − 2j3+

+35
2
jk − 5

2
j2 + 9

2
j)

= −2jk2 +
17

2
j2k − 2j3 − 2k2 +

51

2
jk − 5

2
j2 + 18k +

9

2
j (4.15)

For step 4 use wk+1 = · · · = wk− j−2
2

= −2,

−(−2)2
(
k2 +

∑ j−2
2

l=0 (−k2)Q−1
k−l,k−l

)
= −4k2 − 4

∑ j−2
2

l=0 (l + 2)k2−
−(l2 + 4l)k + 2l2

= −4k2 − 4
((

j2+6j
8

)
k2−

−
(
j3+9j2−22j

24

)
k +

(
j3−3j2+2j

12

))

−1

2
j2k2 +

1

6
j3k − 3jk2 +

3

2
j2k − 1

3
j3 − 11

3
jk + j2 − 2

3
j (4.16)

Finally we need to include some terms from step 5 into the approxima-

tion. Since w has at least j−2
2

consecutive terms equal to −2, the entries
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Q−1
k,k+1, . . . , Q

−1

k− j−4
2
,k+1− k−4

2

along the superdiagonal (and subdiagonal) con-

tribute to the approximations. To simplify the calculation and to ensure the

estimation is not too large (in absolute value).

−2
(

(−2)(−2)
∑ l−4

2
l=0(−k2)Q−1

k−1−l,k−l

)
< −8

(
Q−1
k,k+1 +

∑ j−4
2

l=1 Q
−1
k−1,k

)

= −8
(
(k2 + ( j−4

2
)(2k2 − 2k)

)

= −8jk2 + 24k2 + 8jk − 32k (4.17)

By combining (4.6), (4.15), (4.16), and (4.17) we obtain the estimate

−k2
(
vTQ−1v − wTQ−1w

)
< −1

2
j2k2 + 1

6
j3k + 3

4
k3 − 11jk2 + 6j2k − 7

3
j3+

+26k2 + 95
6
jk − 19

2
j2 − 101

4
k − 193

6
j + 19

2

< 1
8
j2k(−k + 4

3
j) + 6j2k(− 1

35
k + 1)+

+(−k + 19
2

)− 57
280
j2k2 + 3

4
k3−

−11
(
k−9

4

)
k2 + 26k2 + 95

6
jk

< − 57
280
j2k2 − 2k3 + 203

4
k2 + 95

6
jk

< jk(− 57
280

(7)(35) + 95
6

) + k2(−2(35) + 203
4

)

< 0

Case 5 Since case 3 decreases the approximation we cannot use (4.15).

Instead we change (4.15) slightly so that it underestimates the actual contri-

bution of step 3. So we only consider the j
2

consecutive −2s which appear in

w.
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− (2(−2)(−k + 2i))
(
k +

∑ j−4
2

l=0 2(k − l)
)

= 4
((
−k + 2

(
k+9+4j

4

)))
k+

+8(−k + 2
(
k+9+4j

4

)
)·

·
(∑ j−4

2
l=0 k −

∑ j−4
2

l=0 l
)

= −2k2 + 18k + 8jk+
+(−4k + 36 + 16j)·
·
(
j−2

2
k − j2−6j+8

8

)

= −2k2 + 18k + 8jk+
+1

2
(−k + 8 + 4j)·

· (4jk − 8k − j2 + 6j − 8)

−2jk2 +
17

2
j2k − 2j3 + 2k2 + 5jk + 8j2 − 10k + 8j − 32 (4.18)

The approximation of resulting from combining (4.6), (4.16), (4.17),

and (4.18) is

−k2(vTQ−1v − wTQ−1w) ≤ −1
2
j2k2 + 1

6
j3k + 3

4
k3 − 11jk2 + 6j2k−

−7
3
j3 + 30k2 − 14

3
jk + j2−

−213
4
k − 86

3
j − 45

2

< (− 1
24
j2k2 + 1

6
j3k) + (−7

3
j3 + j2)−

−11
24
j2k2 + 3

4
k3 − 11jk2 + 6jk2 + 30k2

< j2k
(
− 1

24
k + 1

6

(
k−9

4

))
− 11jk2 + 6j2k−

−11
24

(2k + 20− 6
√

2k + 11)k2 + 3
4
k3 + 30k2

< (−1
6
(35)k2 + 125

6
k2) + (−45

8
jk2 + 45

8
j2k)+

+(11
4
k2
√

2k + 11− 11
4
jk2)− 21

8
jk2

< 15k2 − 21
8

(9)k2

< 0
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Case 6 Since j ≤
√

2k + 11− 3, w 6k+j2+2j+6
8

= −2.

−(−2)(−2)

((
6k+j2+2j+6

8

)
k2 −

(
6k+j2+2j+6

8

)2

k + 2
(

6k+j2+2j+6
8

)2
)

=

= 1
16
j4k + 1

4
j2k2 + 1

4
j3k − 1

8
j4 − 3

4
k3 + 1

2
jk2 − 1

2
j2k−

= 1
2
j3 − 3k2 − 3

2
jk − j2 − 27

4
k − 3j − 9

2

(4.19)

Equation (4.17) only holds for j > 2, so consider only equations (4.6),

(4.18), (4.16), and (4.19). Then

−k2(vTQ−1v − wTQ−1w) ≤ 1
16
j4k − 1

4
j2k2 + 5

12
j3k − 1

8
j4 − 5

2
jk2 + 11

2
j2k−

−17
6
j3 + 3k2 − 85

6
jk − 28k − 95

3
j − 27

< 1
16
j2k(2k + 20− 6

√
2k + 11)− 1

4
j2k2+

+ 5
12
jk(2k + 20− 6

√
2k + 11)− 5

2
jk2+

+11
2
j2k + 3k2 − 85

6
jk

< −3
8
j2k
√

2(35) + 11− 1
8
(2)2k2 − 35

6
jk−

−5
2
jk
√

2k + 11− 5
3
jk2 + 27

4
j2k + 3k2

< −5
2
jk
√

2k + 11− 5
4
(2)k2 + 5

2
k2 − 35

6
jk−

− 5
12
jk2 + 7

8
j2k + 5

2
jk
√

2k + 11

< jk(− 5
12
k + 7

8

√
3k + 11− 35

6
)

< 0

Case 7 When j ≤ 0, [v] − [w(i)] is even. So unlike the previous six

cases, wk+1 = 0. When j = 3k−13
4

(resp. 3k−9
4

) and wk+1 is changed from a 0

to −2, then value of [v]− [w(i)] changes to −3k2+9k+28
4

(resp. −3k2+5k+20
4

). This
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is less than the value of [v]− [w(0)], so when j = −k−9
4

(−k−5
4

resp.) there are

at least 3k−13
8

(3k−9
8

resp.) consecutive terms of w equal to −2. In general

If k ≡ 7 (mod 8) ⇒ w has 3k−13
8

+ i
2

consecutive entries equal to −2

⇒ w has at least 4k−4+4j
8

consecutive entries equal to −2.

If k ≡ 3 (mod 8) ⇒ w has 3k−9
8

+ i−1
2

consecutive entries equal to −2

⇒ w has at least 4k−4+4j
8

consecutive entries equal to−2.

The estimate of (−k2)(vTQ−1v−wTQ−1w) comes in two parts. The first comes

from (4.6). The second part comes from the 4k−4+4j
8

consecutive entries equal

to −2. These decrease the expression by:

4

4k−4+4j
8

−1∑

l=0

(−k2)Q−1
k−l,k−l = 4

k−3+j
2∑

l=0

(l + 2)k2 − (l2 − 4l)k + 2l2

= 4
(
k2+2jk+j2+4k+4j−5

8

)
k2−

−4
(
k3+3jk2+3j2k+3j3−18k2−36jk−18j2+59k+59j−42

24

)
k+

+4
(
k3+3jk2+3j2k+3j3−6k2−12jk−6j2+11k+11j−6

12

)

=
1

3
k4+

1

2
jk3−1

6
j3k+

16

3
k3+9jk2+4j2k+

1

3
j3−43

3
k2−83

6
jk−2j2+

32

3
k+

11

3
j−2

(4.20)

Combine (4.6) and (4.20), and recall −k
2
< j ≤ 0 and k ≥ 35:
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−k2(vTQ−1v − wTQ−1w) < −1
3
k4 − 1

2
jk3 + 1

6
j3k − 73

12
k3 − 13jk2 − 2j2k−

−1
3
j3 + 49

3
k2 − 1

6
jk − 6j2 − 263

12
k − 119

3
j + 23

2

< −1
3
k4 − 1

2
jk3 − 73

12
k3 − 13jk2 − 23

12
j2k − 1

3
j3+

+(− 1
12
j2k − 1

6
jk)− (−119

6
k − 119

3
j)+

+(−25
12
k + 23

2
) + 49

3
k2

< − 1
12
k4 − 1

2
jk3 − 61

12
k3 − 13jk2 − 20

12
j2k+

+(−k3 + 49
3
k2) + (−j2k − 1

3
j3)+

+(−1
4
k4 − 1

2
jk3)

< − 1
12

(35)k3 + (−61
12
k3 − 61

6
jk2)− 17

6
jk2

< −35
12
k3 − 17

6
jk2

< 0

4.4 The Uniqueness of φ

The final step is to show φ is the automorphism for which Tφ,−1(2)

is even. We compute MQ(v) − γ((a, 0)) and MQ(v) − γ((a,−2)) for a =

0, 1, . . . , 4k. If this value is integral then there may exist an automorphism

which satisfies Theorem 2.4.4. There are four cases to check.

Case 1: MQ(v)− γ((a, 0))
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γ((a, 0)) = 1
4

(
(a, 0)

(
−n 1
1 −2

)−1(
a
0

)
+ 2

)

= 1
4

(
−2a2

2n−1
+ 2
)

= 2p2−2a2

4p2

= p2−a2
2p2

Then MQ(v)−γ((a, 0)) = 2p2−8
p2
− p2−a2

2p2
= 4p2−16+a2−p2

2p2
= a2−16

2p2
+ 3

2
. We

must determine for what p, a does there exist k ∈ Z such that

a2 − 16

2p2
+

3

2
= 2k ⇐⇒ a2 − 16 = p2(4k − 3)⇐⇒ (a− 4)(a+ 4) = p2(4k − 3)

Proposition 4.4.1. Equation (a− 4)(a+ 4) = p2(4k− 3) has no solutions for

p ≥ 5, p prime.

First we will show that either p2|(a− 4) or p2|(a+ 4). Otherwise p|(a− 4) and

p|(a+ 4), and therefore p|8, a contradiction.

Now suppose p2|(a − 4) ⇐⇒ a − 4 = kp2, k ∈ Z. Since a is odd the

equation has no solutions for even k. If k = 1, then a = p2 + 4. Recall that

we only need to consider odd a, 1 ≤ a ≤ p2+1
2

. So a = p2 + 4 falls outside the

bounds of a. The same argument holds for all k > 1.

Finally suppose p2|(a + 4) ⇐⇒ a + 4 = kp2, k ∈ Z. As before the

equation has no solutions for even k. If k ≥ 1, then a = kp2 − 4. If k=1,

then the inequality 1 ≤ p2+1
2
≤ a = p2 − 4 only holds for prime p = 3, which

contradicts the assumptions on p.

Case 2: MQ(v)− γ((a,−2)). Recalling that p2 = 2n− 1,
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γ((a,−2)) = 1
4

(
(a,−2)

(
−n 1
1 −2

)−1(
a
−2

)
+ 2

)

= 1
4

(
−2a2+4a−4n

2n−1
+ 2
)

= −2a2+4a−2
4p2

= −a2+2a−1
2p2

Then MQ(v)− γ((a,−2)) = 2p2−8
p2
− −a2+2a−1

2p2
= a2−2a−15

2p2
+ 2.

As before, we must determine for which p, a does there exist k such

that

a2 − 2a− 15

2p2
+ 2 = 2k ⇐⇒ (a− 5)(a+ 3) = 4kp2

First note that a = 5 is a solution to the equation regardless of the prime

p. If a 6= 5, then either p2|(a − 5) or p2|(a + 3). Otherwise there exists m,

l ∈ Z such that a − 5 = lp and a + 3 = mp. As in case 1, this implies p|8, a

contradiction. Finally neither p2|(a − 5) nor p2|(a + 3) is possible for

a 6= 5 and 1 ≤ a ≤ p2+1
2

, as in case 1.
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)
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m
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Chapter 5

The Remaining Cases

In this section we explain why we are not able to solve the problem in

the remaining cases.

5.1 The Case P (2m, k,−k + 2), det(G(K)) < 0

These knots have signature equal to −2. If we were to use Greene’s

strengthening of Donaldson’s Theorem, we must consider knotsK = P (−2m,−k, k−

2). Unfortunately, the double branched cover of these knots do not bound a

negative definite manifold.

We could use the method described in Chapter 4, however Σ(K) is not

always an L-Space.

5.2 The Case P (2m, k,−k + 2), det(G(K)) > 0

These knots have signature equal to 0. Therefore Greene’s strengthen-

ing of Donaldson’s Theorem would only give us a statement about when the

knot can be unknotted by a positive crossing.

We could use the method described in Chapter 4, however Σ(K) is never
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an L-Space. Furthermore, some knots have determinant one, and therefore

there would be no symmetry obstruction. An example of this is P (8, 5,−3).

5.3 The Case P (2m, k,−k + 4), det(G(K)) > 0

These knots have signature equal to −2. Because of this, the difficulties

in determining unknotting number one for these knots are the same as those

in Section 5.1
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