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Two graphene layers placed in close proximity offer a unique system to inves-

tigate interacting electron physics as well as to test novel electronic device concepts.

In this system, the interlayer spacing can be reduced to value much smaller than that

achievable in semiconductor heterostructures, and the zero energy band-gap allows the

realization of coupled hole-hole, electron-hole, and electron-electron two-dimensional

systems in the same sample. Leveraging the fabrication technique and electron trans-

port study in dual-gated graphene field-effect transistors, we realize independently

contacted graphene double layers separated by an ultra-thin dielectric. We probe

the resistance and density of each layer, and quantitatively explain their dependence

on the backgate and interlayer bias. We experimentally measure the Coulomb drag

between the two graphene layers for the first time, by flowing current in one layer

and measuring the voltage drop in the opposite layer. The drag resistivity gauges

the momentum transfer between the two layers, which, in turn, probes the interlayer

electron-electron scattering rate. The temperature dependence of the Coulomb drag

above temperatures of 50 K reveals that the ground state in each layer is a Fermi liq-

uid. Below 50 K we observe mesoscopic fluctuations of the drag resistivity, as a result

vii



of the interplay between coherent intralayer transport and interlayer interaction. In

addition, we develop a technique to directly measure the Fermi energy in an electron

system as a function of carrier density using double layer structure. We demonstrate

this method in the double layer graphene structure and probe the Fermi energy in

graphene both at zero and in high magnetic fields. Lastly, we realize dual-gated

bilayer graphene devices, where we investigate quantum Hall effects at zero energy

as a function of transverse electric field and perpendicular magnetic field. Here we

observe a development of ν = 0 quantum Hall state at large electric fields and in high

magnetic fields, which is explained by broken spin and valley spin symmetry in the

zero energy Landau levels.
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Chapter 1

Introduction

After the first experimental discovery of its isolated form in 2004 [10], graphene,

a single layer to few layers of carbon atoms sp2-bonded in a honeycomb lattice, has

been attracting not only physicists, but also device engineers who are eager to take

advantage of its favorable properties in electronic devices. The most exciting aspect

of graphene is its high mobility, which can, in principle, lead to high-speed field-effect

transistors (FET). Carrier mobility in graphene is shown to reach 1,000,000 cm2/Vs

for levitated samples at low temperatures [11] and over 10,000 cm2/Vs for samples

supported on SiO2 even at room temperature [12], which is about ten times higher

than Si metal-oxide-semiconductor field-effect transistors (MOSFET), making it a

potential high-mobility channel replacement for Si. Also, graphene is an intrinsically

two-dimensional material. The planar nature of graphene enables the immediate

application of highly developed planar process technology of today’s semiconductor

industry onto graphene-based device fabrication.

Device engineer’s dream of building a graphene-based logic switch with ul-

timate high mobility and atomically thin body, however, is challenged by a high

OFF-state current and non-saturating drain current observed in graphene devices be-

cause graphene is a zero-bandgap semiconductor or semi-metal. The Klein tunneling

phenomenon, which is of a great interest to physicists [13], allows Dirac Fermions
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in graphene [14] to tunnel through barriers, preventing the implementation of PN

junctions. Nevertheless, the unique bandstructure, transport properties and ther-

momechanical stability make graphene a very promising material for high frequency

FETs for analog and RF applications [15] and ‘beyond complementary metal-oxide-

semiconductor (CMOS)’ nanoelectronic devices such as the bilayer pseudo-spin field-

effect transistor (BiSFET) [2].

1.1 Overview

The purpose of this dissertation is to describe the author’s experimental explo-

ration carried out in two different graphene device structures: (1) dual-gated graphene

transistors; and, (2) double layer graphene heterostructures. Realization of the dual-

gated graphene FET structure was initially motivated by the necessity of local gate

control. Most of the early graphene experiments were performed in devices with

a single, global back gate, which limits the number of gates to one per substrate

[10]. To fabricate a local top gate, a uniform gate dielectric deposition technique on

graphene preferably with high dielectric constant (κ) is essential. However, it turned

out to be difficult due to the chemical inertness of graphene’s basal plane. We devel-

oped a technique to deposit a high-κ dielectric layer on the surface of graphene by

atomic layer deposition (ALD) using an intentional nucleation layer and fabricated

dual-gated single layer graphene FETs. The carrier mobility in graphene is primar-

ily dominated by the extrinsic impurity scattering such as charged impurities in the

dielectric [16]. Transport study and simple device modeling show that the impact

of a top-gate dielectric stack on the transport characteristics is minimal, which en-
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Dual gated!graphene!device Graphene!double!layer!heterostructure

Figure 1.1: Two graphene device structures studied in this dissertation: a dual-gated
single and bilayer graphene device (left), and double layer graphene heterostructure
(right). Graphene is placed on a dielectric (grey)/back gate (black) stack and con-
tacted/gated by metal (yellow).

sures that the dielectric layer does not significantly increase the carrier scattering,

and consequently degrade the device characteristics [17]. The dielectric deposition

technique, understanding of the electrostatics of the dual-gated system and simple

analytical model we developed provide essential fundamentals to realize and study

advanced graphene devices, such as double layer graphene systems.

Graphene AB-stacked bilayer, consisting of two closely coupled graphene layers

with AB stacking, is an interesting material because of its transverse electric field (E

field) tunable bandgap [18, 19]. Using this property, researchers have demonstrated

higher on/off ratio graphene transistor [20], which is highly desirable for logic de-

vice applications. In a perpendicular magnetic field (B field), the density of states

of bilayer graphene is quantized into discrete and degenerate energy levels, called

Landau levels [21]. Interestingly, the zero-energy Landau levels in graphene bilay-

ers are eight-fold degenerate, originated from two-spin, two-valley and two-orbital
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degeneracy. Using a dual-gated bilayer graphene FET, where we can independently

control the transverse E field and density with two gates, we experimentally observe

the lifting of spin and valley degeneracy as a function of E field and B field [9, 22].

Double layer graphene heterostructures, where two graphene single layers are

placed in a close proximity but electrically isolated, provide a fascinating test ground

for interacting electron physics and novel device concepts. Using the dielectric depo-

sition technique and graphene transfer technique, we demonstrate the double layer

graphene devices and experimentally measured the Coulomb drag between carriers

in two graphene layers for the first time [3]. We show that the Coulomb drag in

graphene follows a temperature and carrier density dependence consistent with the

Fermi liquid regime at temperatures higher than 50 K, while random drag fluctu-

ations become dominant at temperatures below 50 K. The fluctuations result from

the interplay between phase-coherent intralayer transport and interlayer interaction.

The Coulomb drag provides key insight into the interaction between the two layers,

as well as information on the ground states in individual graphene layers.

Careful modeling of the double layer structure led us to develop a technique

to directly measure the relative Fermi energy in an electron system [4]. The principle

of our technique is that when one graphene layer is at its charge neutrality point, the

interlayer bias applied to the graphene layer is equal to the opposite layer’s Fermi

energy in units of eV. This method shares its basic principle with Kelvin probe mea-

surement, using one of the two layers as a resistively detected Kelvin probe [23]. To

demonstrate this method, we probed the Fermi energy as a function of carrier density

in graphene at zero and in high magnetic fields using graphene double layer het-

erostructures. We showed that the Fermi velocity, Landau level spacing, and Landau
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level broadening in graphene are accurately determined by our technique.

1.2 Outline

This dissertation is organized as follows. Chapter 2, Chapter 3 and Chap-

ter 4 are focused on graphene double layer devices. Chapter 2 covers fabrication,

layer characterization and modeling of graphene double layer system. In Chapter

3, the history and Boltzmann transport theory of Coulomb drag phenomenon, and

Coulomb drag measurements performed in graphene double layers in average drag

regime and fluctuation regime are discussed in detail. In Chapter 4, we describe

a novel method to measure Fermi energy as a function of density using one of the

graphene layers as a carrier density sensor in graphene double layers. The principle

of the technique and the relative Fermi energy in graphene measured in zero and high

magnetic fields are presented. In Chapter 5, spin-polarized to valley-polarized transi-

tion at ν = 0 quantum Hall states (QHS) in a dual-gated bilayer graphene structure

is presented. Fabrication, characterization, quantum Hall effects, and broken sym-

metry states caused by different mechanisms are discussed. Finally, in Chapter 6 the

conclusions are summarized, and future studies are suggested.
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Chapter 2

Graphene Double Layers

In this chapter, we discuss the fabrication and characterization of graphene

double layer structure where two graphene single layers are independently contacted,

positioned at close proximity and separated by an ultra-thin dielectric to prevent

direct conduction between the layers. The motivation and advantages of studying

graphene double layer system are first presented, followed by the experimental re-

alization, layer density and resistivity characterization. We develop a simple model

to explain layer density dependence on back gate and interlayer biases, which shows

excellent agreement with experimental observation. The model serves as a powerful

tool to analyze the Coulomb drag data in Chapter 3 and to develop a Fermi energy

measurement technique in Chapter 4.

2.1 Introduction

Double layer systems formed by two layers of carriers in close proximity are a

fascinating test ground for electron physics. In certain conditions, a layer degree of

freedom in the system leads to ground states with no counterpart in the single layer

case. In particular, the prospect of electron-hole-pair (indirect exciton) formation

[24, 25] and dipolar superfluidity [26] has fueled the research of electron-hole double

layers in GaAs/AlGaAs heterostructures [27, 28].
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Graphene is a particularly interesting material to explore interacting double

layers [29]. The flexible density control and the high Fermi energy as well as the

intrinsically two-dimensional nature make graphene greatly advantageous in access-

ing interesting phenomena both experimentally and theoretically. The bandstruc-

ture of graphene featuring a zero energy bandgap and symmetric conduction and

valence band enables seamless layer density control without excessive electric fields.

As demonstrated in Chapter 2.4.2, layer densities as well as carrier type can be tuned

by gate and interlayer bias in graphene double layers. This allows experimental explo-

ration of physical quantities as a function of top and bottom layer density, which is not

easily achievable in semiconductor quantum wells mainly due to absence of ambipolar

contacts and difficulty in gating. The large Fermi energy in graphene favors corre-

lated electron states at elevated temperatures, making mesoscopic physics accessible

at higher temperatures than in other systems [30, 31] . The truly two-dimensional

nature of graphene simplifies the experimental analysis and theoretical study because

the consideration of finite layer thickness is not required, unlike in semiconductor

quantum wells. With all these advantages, it is highly desirable to experimentally

explore graphene double layers and extend our understanding of the electron-electron

interactions and mesoscopic phenomena in two-dimensional systems.

Another important motivation which fueled the research on graphene double

layer is the theoretical prediction that the graphene double layer system may work as

a transistor which is expected to outperform current Si-based transistors. Using the

graphene double layer structure, Banerjee et al. proposed a new type of transistor,

called Bilayer pseudoSpin Field-Effect Transistor (BiSFET), which is expected to op-

erate at lower voltage and lower power than currently possible with Complementary
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Figure 2.1: (a) Schematic representation of a BiSFET, (b) circuit model, and (c)
expected interlayer current-voltage (I-V) characteristics for the BiSFET. Adapted
from Ref.[2].
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Metal-Oxide-Semiconductor (CMOS) Field-Effect Transistors (FETs) [2]. The basic

principle of BiSFET operation is as follows. In normal conditions and the interlayer

resistance is very high in BiSFET since two graphene layers are separated by a thin,

but highly insulating dielectric layer [Figure 2.1(a)]. Under certain conditions, elec-

trons in one layer and holes in the other layer can make pairs resulting in electron-hole

pairs/exciton condensates (Bosons) [30], which dramatically lower the interlayer re-

sistance. Using this phenomenon, one can operate a graphene double layer system

as a transistor. Since the condensation condition can be easily broken by small volt-

age bias, the interlayer current (I) vs voltage (V) curve shows negative differential

resistance behavior [Figure 2.1(c)]. The theoretical prediction of electron-hole pair-

ing and feasibility of the novel device idea provide strong motivation to experimental

realization and exploration of such system.

Here, we describe the fabrication of an independently contacted graphene dou-

ble layer, and characterize the system by transport measurements.

2.2 Realization of Graphene Double Layers

In this section, we discuss the fabrication process of our independently con-

tacted graphene double layers in detail. The realization of independently contacted

graphene double layers requires two crucial ingredients: (1) an ultrathin, yet highly in-

sulating, dielectric layer on graphene to separate the two layers; (2) a method to align

and position another graphene layer on a pre-existing graphene device with minimum

or no degradation in material quality for the second layer. To produce the double

layer structure, we start from a standard back-gated single layer graphene device on
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Figure 2.2: Optical micrograph and schematic representation (bottom) of the fabri-
cation process of an independently contacted graphene double layer (BiSFET2). (a)
A bottom-gated single layer graphene device with Hall bar geometry and with Al2O3

interlayer dielectric on top. (b) Top graphene layer is detached from a separate sub-
strate and transferred onto the pre-established device. (c) e-beam lithography and
metal deposition define top layer contacts. The scale bars in all panels are 10 µm.
Adapted from Ref.[3].

SiO2/Si substrate and deposit thin Al2O3 layer by first depositing an Al nucleation

layer, followed by atomic layer deposition (ALD) [Figure 2.2(a)], and then transfer

another graphene captured in poly(methyl methacrylate) (PMMA) membrane onto

the bottom graphene layer [Figure 2.2(b)]. Top layer contacts defined by standard

electron beam (e-beam) lithography and metal deposition complete a graphene dou-

ble layer device [Figure 2.2(c)]. The further details of each step are discussed in the

following subsections.
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2.2.1 Back-gated graphene device

The first step in fabrication of a graphene double layer device is to establish

a back-gated single layer graphene device. Graphene flakes used in this study are

mechanically exfoliated from natural graphite (NGS Naturgraphit GmbH) onto a 280-

300 nm thick SiO2 dielectric, thermally grown on a highly doped Si substrate with

an As doping concentration of ∼1020cm−3 (Addison Engineering Inc.) as illustrated

in Figure 2.2. We put a small graphite piece on the low-tack semiconductor tape

(Ultratape), and peel it off as many times as possible. Then, we place the tape on

the SiO2/Si substrate, apply some pressure, and detach the tape to transfer thin

graphite flakes onto the substrate. Now, we can bring the substrate to an optical

microscope and inspect the surface until we hunt a usable single layer graphene flake.

This technique is widely used and thin graphene sheets down to single layer of high

quality can be found. The 280-300 nm thick SiO2 is chosen to maximize the contrast

between the graphene flake and substrate [32]. A brief O2 plasma cleaning of SiO2

surface before exfoliation helps adhesion between graphene and SiO2.

E-beam lithography, metal liftoff and etching step are used to define a Hall

bar on the bottom layer as exemplified in Figure 2.4. A single e-beam resist layer

with 4% 996K PMMA is spin-coated on the surface at low final spin-speed as well

as low acceleration rate in order to minimize damage on graphene flake; otherwise,

graphene samples are easily ruptured at this step. An e-beam evaporator (CHA

Industries), or thermal evaporator (Denton Vacuum, LLC) is used to deposit metal

contacts consisted of a 50 nm-thick Ni or a combination of 5-nm Cr and 40-nm Au.
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Figure 2.3: Mechanical exfoliation of graphene flakes from a natural graphite chunk
onto a SiO2 substrate.

Figure 2.4: Optical images of the bottom layer graphene in BiSFET15 as-exfoliated
(left) and after Hall bar device fabrication (right). The scale bar is 20 µm which
applies for both panels. Large numbers and a cross in the left panel and small crosses
in the right panel serve as alignment markers for e-beam lithography steps.
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2.2.2 Interlayer dielectric

Direct deposition of high-κ dielectric materials, such as Al2O3 and HfO2,

on graphene by H2O-based ALD is difficult because of the hydrophobic nature of

graphene basal plane. Y. Xuan et al. reported that a trial to grow high-κ Al2O3

layer on a HOPG surface by ALD leads to a selective growth only at the steps be-

tween graphite layers, where the broken carbon bonds along the terraces serve as 1D

nucleation center to initiate ALD process [33]. Therefore, some groups tested func-

tionalization of graphene’s surface to achieve dielectric layer growth on graphene by

ALD [15, 34–37].

Our approach in enabling high-κ dielectric layer to grow on graphene by ALD

is to provide intentional nucleation sites on the inert surface of graphene. We deposit

a single or a few atomic layers of Al layer on the surface of graphene by e-beam

evaporation prior to the Al2O3 layer growth by ALD, as illustrated in Figure 2.5. A

thin and uniform Al layer covering the target graphene surface introduces plenty of

homogeneous nuclei and allows subsequent Al2O3 film growth. The growth of Al2O3

on graphene by out technique is verified by atomic force microscope [Figure 2.6, right

panel], and the complete oxidation of the nucleation layer is also confirmed by X-ray

photoelectron spectroscopy.

After confirming the uniform growth of Al2O3 on graphene, we deposit a 4- to

8-nm thick Al2O3 on the back-gated single layer graphene device using our technique

[17]. First we deposit a 1- to 2-nm Al interfacial layer by e-beam evaporator, and

trasfer the graphene device into our ALD chamber (Savannah, Cambridge Nano Tech

Inc.) ex-situ. Alternating H2O and Al2O3 precursor steps corresponding to the target
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Figure 2.5: Introducing a thin layer of Al by e-beam evaporation provides nucleation
sites on graphene for subsequent ALD growth.

thickness (0.92 nm/cycle) are performed to grow 3- to 5-nm-thick Al2O3 [Figure 2.2

(a)]. Graphene top-gated devices with ultrathin, 2.5 nm Al2O3 (1.5 nm Al + 1.2

nm Al2O3 by ALD) were demonstrated without significant interlayer leakage current,

evincing the scalability of this technique.

2.2.3 Top graphene layer fabrication

In the previous section we prepared a back-gated single layer graphene Hall

bar with a thin Al2O3 dielectric layer grown by ALD, which will be used as a bottom

graphene layer in a graphene double layer structure. Now, we prepare the second, top

graphene layer on a separate SiO2/Si substrate by mechanical exfoliation. Then we

apply a few micron-thick PMMA film on the substrate and cure it. Next, the PMMA

film capturing the graphene layer and some alignment marks are detached from the

host substrate using an NaOH etch [38], forming a free-standing membrane. The

membrane is placed face down on the substrate containing the bottom graphene layer

[Figure 2.2 (b)] and aligned with it. A drop of deionized water is used as a lubricant

to prevent damage of graphene layers during the transfer and alignment process. The
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Figure 2.6: Optical microscopy of a single layer graphene flake with 20-nm Al2O3

layer grown by the technique (left), and atomic force microscopy of the same sample
at the step between graphene and SiO2 (right).

alignment is done manually with tweezers under the optical microscope. After the

water completely dries, the transferred PMMA film adheres tightly on the surface.

Using the as-transferred PMMA as an e-beam resist, a Hall bar device is subsequently

defined on the top layer [Figure 2.2 (c)]. A stylus profilometer (Veeco Dektek 150) is

used to measure the thickness of the PMMA film. If the PMMA film is too thick to

perform normal e-beam lithography, we etch PMMA film with O2 plasma until the

thickness becomes less than 1 µm.

2.2.4 Sample statistics and summary

A total of sixteen back-gated, independently contacted graphene double layers

have been fabricated in this study. Samples show mobilities between 5,400 and 11,000
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Figure 2.7: PMMA membrane detached from the substrate. Most of the graphene
flakes exfoliated on the original substrate are captured in the PMMA film and de-
tached. Large and thick graphene flakes are visible as black dots. A thin cover glass
with a hole is used to handle the film to prevent any strain or damage.
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Figure 2.8: A top graphene layer captured in PMMA film is transferred and aligned
with the bottom graphene layer. BiSFET6 (top left), BiSFET8 (top right), BiSFET12
(bottom left) and BiSFET13 (bottom right). The red guideline marks the selected
edge of the transferred graphene layer for visibility. The scale bar is 10 µm.
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Figure 2.9: Back-gated graphene double layer devices: BiSFET6 (top left), BiSFET8
(top right), BiSFET12 (bottom left) and BiSFET13 (bottom right). Various device
designs are used. The red (blue) dashed contour marks bottom (top) graphene layer,
and red (blue) dots indicate bottom (top) contacts. The scale bar is 10 µm.
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cm2/Vs for the bottom layer, 4,500 and 10,000 cm2/Vs for the top layer, and interlayer

leakage resistance higher than 1 GΩ if measureable. The high mobility of the top layer

confirms that the manual transfer process does not significantly degrade the quality of

graphene. These structures are markedly different from graphene bilayers exfoliated

from natural graphite consisting of two graphene monolayers in Bernal stacking [21].

We will discuss graphene AB-stacked bilayers in Chapter 5.

2.3 Layer Characterization and Modeling

We now turn to the individual layer characterization. Top (ρT ) and bottom

(ρB) layer resistivities measured as a function of VBG in three different graphene

double layer devices at T = 300 K are shown in Figure 2.10. We probe layer re-

sistivities using small signal, low frequency lock-in techniques, and the potential of

the both layers is held at zero (ground) for this measurement. The dependence of

ρB on the applied VBG shows ambipolar conduction and a finite resistance at the

charge neutrality (Dirac) point, consistent with the expected response of gated single

layer graphene where the dominant scatters are the charged impurities present in

the dielectric [39] and/or at the interface between graphene and substrate as further

discussed in Figure 2.12 [16]. More interestingly, the top layer resistivity also changes

as a result of the applied VBG. This observation indicates an incomplete screening of

the gate-induced electric field by the bottom layer; the electric field originated from

the back gate is not entirely screened by the bottom layer and partially reaches to

the top layer to modulate top layer density and, consequently, layer resistivity. This

effect is most pronounced in the vicinity of the bottom layer’s charge neutrality point,
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Figure 2.10: ρB (red) and ρT (blue) vs VBG measured at T = 300 K and in various
devices: BiSFET5(top left), BiSFET4 (top right), and BiSFET6 (bottom right).

a consequence of the reduced density of states in graphene. As we show below, we

can quantitatively explain the VBG dependence of layer densities and resistivities.

2.3.1 Layer density modeling: single layer graphene

We first analyze and model the layer density dependence on VBG in a back-

gated graphene single layer in order to understand that in a double layer graphene

device. Let us assume that we have a back-gated single layer graphene whose carrier

density (n) can be controlled by an applied bias on the metallic back gate (VBG) as
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Figure 2.11: Schematic representation of a back-gated graphene structure and equiva-
lent circuit. The orange arrows demonstrate electric field originated from the Si back
gate when positive VBG is applied and graphene layer is grounded.

shown in Figure 2.11. Regarding this system as a parallel plate capacitor, the layer

density in graphene and VBG can be related as:

VBG =
en

CBG
. (2.1)

Here we assume that the work function difference between single layer graphene (4.5

- 4.8 eV [40]) and the highly doped Si gate is zero, and graphene is at its charge

neutrality point when VBG = 0 V. If there are practically infinite electron states

available in graphene at zero energy as in a metal plate, the above equation is correct,

and the carrier density will be simply proportional to the applied VBG. However, it

is not the case for an atomically thin graphene layer where the density of states is

limited.

Due to the Pauli’s exclusion principle, only one electron can occupy a certain

quantum state. If all the electron states available at the given energy are fully occu-

pied, then the system’s Fermi energy needs to be increased to allow electrons occupy
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the higher energy states. This effect can be included in Equation 2.1 by adding the

Fermi energy term:

VBG − EF

e
=

en

CBG

, (2.2)

where EF denotes the Fermi energy of the channel material. In other words, one needs

to pay some penalty, Fermi energy or surface potential, to induce charge carriers when

only a limited number of states are available. Most of the electric fields are screened

by the graphene layer while the rest penetrates through the graphene layer and sets

the surface potential of graphene at EF/e. This phenomenon of a quantum origin can

be modeled as a series capacitance, named quantum capacitance [41] in the equivalent

circuit as shown in Figure 2.11.

The quantum capacitance is a conceptual capacitance adopted to explain the

change of surface potential or Fermi energy in the host material at a certain charge

carrier density. By definition, CQ is directly proportional to the density of states in

the host material, and CQ in graphene can be written as:

CQ = e2D (E) =
2

π(~vF )
2E =

2e2

~vF
√
π

√
n, (2.3)

where D (E) = (2/π(~vF )
2)E = (2/~vF

√
π)
√
n is the density of states in graphene.

Equation 2.2 can be rearranged to explicitly contain CQ as illustrated in Figure 2.11:

VBG =

(

1

CBG

+
1

CQ,Eq

)

en, (2.4)

where the equivalent quantum capacitance CQ,Eq is half of CQ due to the integration:
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Figure 2.12: Conductivity and resistivity curves of single layer graphene with (blue)
and without the presence of charged impurities (red). In realistic graphene devices
placed on the non-ideal substrates, we expect to measure blue curves.

CQ,Eq =
e2

~vF
√
π

√
n. (2.5)

Equation 2.4 provides interesting observations: (1) the effect of quantum ca-

pacitance is negligible when CQ is much larger than the geometrical capacitance, CBG

in this case; (2) when CQ is small, equivalently when the density of states is small,

CQ affects the electrostatic profile in the system significantly. Therefore, following

the
√
n dependence, the effect of CQ is maximized near the charge neutrality point

in graphene, while the effect becomes insignificant at higher density.

Equation 2.2 as well as EF = ~vF
√
πn in graphene provides an analytical

solution of n as a function of VBG [9]:

n [VBG] =





√

(

~vF
√
πCBG

2e2

)2

+
CBG

e
VBG − ~vF

√
πCBG

2e2





2

. (2.6)
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With this analytical expression, we can calculate the layer density at VBG, and we

can also calculate layer resistivity ρ using the following equation [17]:

ρ =
1

√

n2 + n2
0eµ

. (2.7)

where µ is the layer mobility, n0 represents the residual carrier concentration in

graphene layer generated by charged impurities in the vicinity of the graphene channel

[42], which should converge to zero for disorder-free graphene layer [16]. Figure 2.12

describes the effect of n0 on the conductivity or resistivity of graphene: the minimum

conductivity or maximum resistivity value is limited to a finite value by the existence

of n0.

We model the total resistance Rtotal of a graphene channel by extending Equa-

tion 2.7. By separating the total resistance into a contact resistance Rcontact and

channel resistance Rchannel = Nsq/
√

n2 + n2
0eµ, we obtain:

Rtotal = Rcontact +
Nsq

√

n2 + n2
0eµ

, (2.8)

where the number of squares Nsq=L/W is defined by length (L) and width (W) of

the channel. Equation 2.8 can be utilized to extract relevant device parameters such

as Rcontact, n0and µ by fitting with the experimental data [17].

2.3.2 Layer density modeling: double layer graphene

Based on the understanding of the back-gated structure, we continue our dis-

cussion to understand the layer density dependence on VBG in a graphene double
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Figure 2.13: Schematic of a graphene double layer structure and equivalent circuit
when both graphene layers are grounded. The quantum capacitances, CQ,T and CQ,B,
allow the finite surface potential in graphene layers.

Figure 2.14: Band diagram across the graphene bilayer heterostructure at VBG = 0
V (left), and at a positive VBG (right). Both layers are assumed to be at the charge
neutrality point and aligned with the back gate Fermi level at VBG = 0 V. Adapted
from Ref.[3].
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layer structure, where a dielectric and another graphene layer is deposited on the top

of the back-gated single layer [Figure 2.13]. Figure 2.14 illustrates the band diagram

of the graphene bilayer at VBG = 0 V. For simplicity, the gate Fermi energy and the

charge neutrality point in the two layers are assumed to be at zero energy. Once a

finite VBG is applied, finite charge densities are induced in both top (nT ) and bottom

(nB) layers. We obtain two equations from the band diagram, which provides nB and

nT at the given VBG. As we discussed in the previous section, the difference between

the gate and bottom layer Fermi level is distributed partly across the SiO2 dielectric

and partly on the Fermi energy of the bottom graphene layer:

eVBG − EF (nB) =
e2 (nB + nT )

CSiO2

, (2.9)

where EF (n) = ~vF
√
π n is the Fermi energy in graphene measured with respect

to the charge neutrality point at a carrier density n, e is the electron charge, vF =

1.1 × 106m/s is the Fermi velocity in graphene, and CSiO2
denotes SiO2 dielectric

capacitance per unit area. nB,T and EF (n) are positive when the carriers are elec-

trons, and negative when the carriers are holes. Compared to Equation 2.2, we have

an additional nT term because now we have another graphene layer to screen the

gate-induced electric fields. Similarly, the Fermi energy difference between the two

layers is responsible for the potential drop across the Al2O3 interlayer dielectric:

EF (nB) =
e2nT

CAl2O3

+EF (nT ) , (2.10)

where CAl2O3
is the Al2O3 dielectric capacitance per unit area. This equation is

exactly the same form with Equation 2.2 if EF (nB) is replaced with eVBG, which
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indicates that the bottom layer’s surface potential works just as a gate bias to the

top layer. Equations 2.9 and 2.10 can be solved self-consistently to determine nB and

nT as a function of VBG.

Once we obtain nB and nT as a function of VBG, we can calculate ρB and ρT

using the following equation [17]:

ρB,T =
1

√

n2
B0,T0 + n2

B,T eµB,T

, (2.11)

where µB(µT ) is the bottom (top) layer mobility, nB0(nT0) represents the residual

carrier concentration in bottom (top) layer generated by charged impurities. Figure

2.15 data show a good agreement between the measured layer resistivities and den-

sities (symbols) in BiSFET2 and the calculations (solid lines) with nB0 =3.8 × 1011

cm−2, nT0 = 6.3 × 1011 cm−2, µB = 5,500 cm2/Vs, µB = 4,500 cm2/Vs, VDirac,TL

= -0.6 V and VDirac,BL = −12 V, where VDirac,BL indicates the position of nB = 0

point expressed in VBG and VDirac,TL is the position of nT = 0 point in terms of the

top layer voltage. This confirms that the asymmetric and weak dependence of the

top layer resistivities on VBG observed in Figure 2.10 and Figure 2.15, is, in fact, an

expected response originated from the quantum capacitance in the bottom layer. The

layer mobilities, determined from Hall measurements, are µB = 5,400 cm2/Vs and µT

= 4,500 cm2/Vs at T = 4.2 K.
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Figure 2.15: (a) Layer resistivities and (b) densities vs VBG measured at T = 4.2
K in BiSFET2. Depending on VBG, both electrons and holes can be induced in
the bottom layer; the top layer consistently contains electrons in the available VBG

window, owing to unintentional doping. Experimental data (shapes) and calculation
(lines) show excellent agreement. Adapted from Ref.[3].

2.4 Layer Characterization with an Applied Interlayer Bias

2.4.1 Measurement setup

We have so far discussed the layer density and resistivity as a function of a

single back gate bias, VBG. This significantly limits our measurement range in terms

of layer densities because it is impossible to control layer densities in top and bottom

layer separately. Here we introduce an interlayer bias technique which enables inde-

pendent layer density control. We use an acoustic transformer (Jensen Transformers,

model: SUB-BB) to isolate one layer and apply a DC bias to the layer while the

other layer is maintained at ground potential. This configuration allows simultaneous

measurement of the top and bottom layer resistivity as a function of back gate bias

and the interlayer bias, using small signal, low frequency lock-in techniques and with
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Figure 2.16: Schematic representation of a double layer graphene device, and mea-
surement configuration. Lower right: optical micrograph of a complete device, BiS-
FET12. The red (blue) contour marks the bottom (top) layer. The scale bar is 5 µm.
Adapted from Ref.[4].

two lock-in amplifiers (Stanford Research Systems, SR-830). In all the interlayer bias

measurements discussed in this dissertation, we ground the bottom layer (VBL = 0)

and apply an interlayer bias to the top layer (VTL) as shown in Figure 2.16. We inves-

tigate three samples, BiSFET8, BiSFET11 and BiSFET12 for the discussion in this

section, and focus on data collected from BiSFET12 with a 7.5 nm thick Al2O3 inter-

layer dielectric and an interlayer resistance larger than 1 GΩ. Both layer mobilities

are 10,000 cm2/Vs at 0.4 K confirmed by Hall measurements.

Data in Figure 2.18 show the longitudinal resistivity of the bottom (ρB) and

top (ρT ) layer measured as a function of VTL, and at different VBG values. For

simplicity VBG and VTL are referenced with respect to the bias values at which both

layers are at the Dirac point: VBG = 8 V, VTL = -0.01 V. The data ρB,T vs VTL
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Figure 2.17: Layer resistivity measurement setup using an isolation transformer,
which isolates the top layer from the rest of the circuit. A DC bias, VTL, can be
applied to the top layer.

exhibit the symmetric, ambipolar transport characteristic typical in graphene [16],

and with a charge neutrality point which is VBG dependent.

The shift of the charge neutrality point of the bottom layer as a function of

VBG is explained by picturing the bottom layer as a dual-gated graphene single layer,

with the Si substrate as a bottom gate and the top graphene layer serving as a top

gate. In fact, the slope of the charge neutrality point of bottom layer in the VBG

and VTL plane provides is equal to the ratio between the back gate and top graphene

gate capacitance, −CSiO2
/(CAl2O3

‖ CQ,T ). Using this expression, we can determine

CQ,T from the observed slope and, consequently, the density of states in the top layer

since CQ = e2D(E) [43]. Now we can explain that the non-linear slope found near

the zero voltage point, where the charge neutrality points of both layers are crossing,

results from the reduced CQ,T at low nT . At high nT , where CQ,T ≫ CAl2O3
the
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expression is approximated to be −CSiO2
/CAl2O3

. With CSiO2
= 12 nF/cm2, we can

determine the interlayer dielectric capacitance to be CAl2O3
= 340 nF/cm2, which is

also confirmed by Hall measurements. The non-linearity found near the zero voltage

point, where the charge neutrality point of both layers are crossing, results from the

reduced quantum capacitance in the top graphene, providing the information on top

layer’s density of states.

On the other hand, the dependence of the ρT vs VTL data on VBG is more

subtle, and implies an incomplete screening of the back gate electric field by the bot-

tom layer as discussed in the previous section. A large portion of the electric field

originated from the back gate will be screened by the bottom layer, while the remain-

ing portion penetrates the bottom layer and reaches to the top layer, modulating the

position of the top layer charge neutrality point. With the interlayer bias, it will be

clearly shown that the amount of the electric field penetrating the bottom layer is

directly dependent on the Fermi energy in the bottom layer.

2.4.2 Layer density modeling with an interlayer bias

The interlayer bias term can be added in Equations 2.9 and 2.10 to quantita-

tively explain the top (nT ) and bottom (nB) layer carrier density dependence on VBG

and VTL using a modified band diagram model. Figure 2.19 shows two examples of

band diagrams in the graphene double layer, at finite VBG and VTL = 0 V [Figure

2.19 (left)], as well as finite VTL and VBG = 0 V [Figure 2.19 (right)]. For simplicity

the back gate Fermi energy and the two graphene layers’ charge neutrality points

are assumed to be aligned at VBG = 0 V and with both layers at ground potential.
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Figure 2.18: Layer resistivities as a function of VTL and VBG measured at T = 0.4 K
(BiSFET12).
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Figure 2.19: Band diagram of a graphene double layer under an applied back gate
(left) or interlayer bias (right). Adapted from Ref.[4].

In Figure 2.19 (right) the VTL bias is assumed to be positive, resulting in electrons

(holes) induced in the bottom (top) layer. We emphasize that no assumptions are

made with regard to the EF dependence on nB and nT , and this model should work

for any combination of top and bottom layer materials.

From the band diagram, we write the applied VBG as the sum of the potential

drop across the SiO2 dielectric and the Fermi energy of the bottom layer:

eVBG=
e2(nB + nT )

CSiO2

+ EF (nB) , (2.12)

which is equivalent to Equation 2.9. The effect of interlayer bias will be indirectly

included through the term, nT . The difference between EF (nB) and applied VTL bias

is the sum of the potential drop across the Al2O3 dielectric and the Fermi energies of

the two layers:
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Figure 2.20: Calculated layer densities using the band diagram model, plotted in VBG

and VTL plane with CSiO2
= 12 nF/cm2, CAl2O3

= 340 nF/cm2 and vF = 1.1 × 106

m/s.

EF (nB)− eV TL =
e2nT

CAl2O3

+ EF (nT ). (2.13)

By solving Equations 2.12 and 2.13 self-consistently with the theoretical EF (n)

for single layer graphene, EF (n) = ~ vF
√
π n , where vF = 1.1 × 106 m/s is the

Fermi velocity in graphene, the carrier densities in top and bottom graphene layer

can be calculated. Figure 2.20 shows the top (right panel) and bottom (left panel)

layer density calculation results in contour plots. We present both hole and electron

density with a positive sign for better visibility. The position of the charge neutrality

lines in Figure 2.18 and zero density lines in Figure 2.20 shows an excellent agreement,

indicating that the model describes well the layer density dependence on back gate

and interlayer biases in the double layer system.
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2.4.3 Layer density modeling with residual carrier density

We can improve the accuracy of the density model by including the effect of

the residual carrier density in the top (nT0) and bottom (nB0) layers. Due to the

electric-hole puddles, the finite conductivity present even at the charge neutrality

point can be modeled using a residual carrier density [16]. The non-zero carrier

density at charge neutrality point alters not only the conductivity profile, but also

density of states or quantum capacitance CQ in a graphene layer. Xia et al. directly

measured CQ in graphene and showed that inclusion of the residual carrier density

explains the constant and finite CQ measured near the charge neutrality well [44].

To account for the effect of the residual carrier density in our model, we include

the parameters nB0 and nT0 in the EF expression:

E∗
F [nB,T ] =

e2nB,T

1
2
C∗

Q

= ~vF
√
π

nB,T
(

n2
B,T + n2

B0,T0

) 1

4

, (2.14)

where C∗
Q = 2e2/

(

~vF
√
π
√

(

n2
B,T + n2

B0,T0

)

1

4

)

. This expression allows E∗
F [nB,T ] =

0 at nB,T = 0, and E∗
F [nB,T ] ≈ EF [nB,T ] at nB,T ≫ 0 as shown in Figure 2.21

where the Fermi energy calculated as a function of layer density at different residual

carrier densities are plotted. By substituting the modified Fermi energy expression

into Equations 2.12 and 2.13, we obtain the following equations:

VBG =
e (nB + nT )

CSiO2

+
E∗

F (nB)

e
, (2.15)

E∗
F (nB)

e
− VTL =

e nT

CAl2O3

+
E∗

F (nT )

e
. (2.16)
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Figure 2.21: Fermi energy in graphene E∗
F [nB,T ] = ~vF

√
πnB,T/

(

n2
B,T + n2

B0,T0

)
1

4 as
a function of layer density at different residual carrier density n0 values.

By solving these two equations self-consistently, we can calculate layer densities in-

cluding the impact of finite residual carrier densities on EF (n) in both layers.

2.5 Conclusion

We fabricate graphene double layer devices, measure each layer’s resistivity

and density and develop a simple model to explain layer densities and resistivities

dependence on VBG and VTL. Both layers show high mobility values which are com-

parable to single layer graphene devices fabricated on SiO2 substrate. The results

confirm that the transfer process does not degrade the top layer’s quality. A good

understanding of each layer’s characteristic serves as a cornerstone for analyzing in-

teresting phenomena in the graphene double layer system in the following chapters.
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Chapter 3

Coulomb Drag in Graphene Double Layers

In this chapter, we discuss the Coulomb drag phenomenon between electrons

residing in a graphene double layer system consisting of two, independently contacted

graphene single layers separated by an ultrathin dielectric. We provide a general

overview on the history and physics of Coulomb drag and report experimental ob-

servation of Coulomb drag in graphene for the first time. At temperatures higher

than 50 K, the Coulomb drag follows a temperature and carrier density dependence

consistent with the Fermi liquid regime. As the temperature is reduced, the Coulomb

drag exhibits giant fluctuations with increasing amplitude, thanks to the interplay

between coherent transport in the graphene layer and interaction between the two

layers.

3.1 Coulomb Drag: Overview

Electron-electron interaction is responsible for fascinating effects in condensed

matters, and provides a research area of great interest both theoretically and ex-

perimentally. It plays a leading role in phenomena ranging from high-temperature

superconductivity and the fractional quantum Hall effect, to Wigner crystallization,

the Mott transition and Coulomb gaps in disordered systems. However, probing
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electron-electron interaction by transport measurements is difficult because electron-

electron interaction has only an indirect effect on the transport properties in single

layer structures. This is a direct consequence of the momentum and total current

conserving nature of the electron-electron interaction in perfectly pure, translation-

ally invariant systems. For example, the average total current probed by transport

measurement is unaffected by electron-electron momentum transfer since the total

momentum is conserved.

In spite of the above argument, direct measurement of the electron-electron

interaction is possible if one considers a system consisted of two closely coupled layers.

Although total momentum in the system is conserved, that within an individual layer

is not necessarily conserved. This is the principle that led theorists to investigate an

effect which became known as Coulomb drag. The idea of measuring Coulomb drag

as a direct probe of electron-electron interaction in a double layer system was first

suggested by Pogrebinskii in 1977 [45] and later by Price in 1983 [46]. They predicted

that for two conducting systems separated by an insulator, there will be a drag of

carriers in one layer due to the direct Coulomb interaction with the carriers in the

other layer. The fundamental importance of the Coulomb drag measurement lies in

the fact that it probes the interlayer scattering rate directly.

Hubner and Shockley carried out the earliest drag-like experiment, who mea-

sured phonon-assisted electron-electron scattering in Si n-p-n vertical junction in 1960

[47]. While the measurement set up was identical, the mechanism of electron-electron

scattering was not Coulomb-originated because of the large layer separation, ∼100

µm.

Improvement in molecular beam epitaxy (MBE) technology and device fabrica-
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tion technique enabled the realization of independently contacted and closely spaced

GaAs/AlGaAs double layer heterostructures, and new transport measurements such

as Coulomb drag became possible. The first drag measurements in the modern for-

mat were performed in 1989 by Solomon et al. at IBM [48], who measured the

Coulomb drag currents induced in a 100-nm-thick, three-dimensional GaAs gate by

the drive current in two-dimensional channel in GaAs substrate. In 1991, Gramila et

al at Bell Laboratories measured the Coulomb drag effect between two separate two-

dimensional layers for the first time [49]. They found that the magnitude, sign, tem-

perature and barrier thickness dependence of the observed drag to be in a reasonable

agreement with Coulomb drag theory derived by MacDonald et al. using Boltzmann

transport theory. Sivan et al. first investigated the Coulomb drag between electrons

and holes in 1992 [50], reporting an order of magnitude larger momentum transfer

rate than theory predicted. This experiment was the first one seeking evidence for

exciton formation and condensation using Coulomb drag as a probing tool; however,

unambiguous signature of electron-hole pairing was not found.

The Coulomb drag measurement in double layer structures is similar to a

typical four-point resistance measurement, in which a current is driven through two

wires and the voltage drop in the same layer is measured using the other two wires.

In the Coulomb drag measurement, the drive current (Idrive, I2) is still driven through

two wires in one layer (drive layer, active layer or layer 2); however, the longitudinal

voltage drop (Vdrag, V1) is measured in the opposite layer (drag layer, passive layer or

layer 1) as illustrated in Figure 3.1. If there is no interaction between the layers, there

would be no voltage drop measured in the drag layer which is electrically isolated from

the drive layer.
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Figure 3.1: Graphical representation of a Coulomb drag experiment. Adapted from
Ref.[5].

The electrons or holes in one layer can feel the screened Coulomb potential

due to the electrons or holes in the other layer. The net result of this interaction is

that the carriers in the drive layer try to transfer a portion of the momentum they

have to the carriers in the other layer. This means that if we open the circuit in the

drag layer, a small pile up of charge occurs in one end of the layer, which results in a

voltage appearing across the drag layer. This is the Vdrag we measure experimentally.

In the linear response regime, we can define a drag resistance as:

ρdrag =
W

L

V1
I2
. (3.1)

We define the sign of drag resistivity as positive when the electric fields in both layers

are in the same direction. Since drag carriers are always swept away in the direction

in which drive layer carriers moves, the sign of Vdrag is negative when the carrier

types in two layers are of the same type, and Vdrag becomes positive when two layers

have different type of carriers [Figure 3.2].
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Figure 3.2: Sign of Vdrag corresponding to carrier types in double layers. A positive
(negative) Vdrag is measured when both layers have opposite (identical) carrier types.

3.2 Boltzmann Transport Analysis of Coulomb Drag

The first full derivation of a Coulomb drag equation using Boltzmann trans-

port theory was published by Jauho and Smith in 1993 [51]. While the Boltzmann

approach is semi-classical and unable to capture higher order quantum effects, Boltz-

mann transport analysis of Coulomb drag provides a transparent origin of the terms

appearing in the resultant equation such as temperature, interlayer separation and

carrier densities. Therefore, it is instructive to study the Coulomb drag theory using

Boltzmann formalism. Alternative approaches of the problem were reported by the

collective excitation approach [52], the Green’s function formalism starting from the

Kubo formula [53, 54] and memory function formalism [55].

3.2.1 Boltzmann transport equation

The Boltzmann transport equation describes the evolution of the non-equilibrium

distribution function, f(r, k, t), as a function of time. The distribution function rep-
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resents the probability of finding a carrier with crystal momentum, k, at location r,

at time t. Since the distribution function provides each and every particle’s position

and momentum as a function of time, various macroscopic quantities of interest, such

as carrier density, current density and kinetic energy density, can be obtained from it.

The way one can derive the distribution function is to solve the Boltzmann transport

equation.

Let us first derive the Boltzmann transport equation in the general form. In

the absence of collisions, the particle conservation requires that:

f (r+ dr,v + dvt+ dt) = f (r,v, t) . (3.2)

In the presence of collisions, events which can change the momentum of a particle, but

not its position at the given time, the consequent change in the distribution function

must be equal to the change by collisions:

f (r+ dr,v + dv, t+ dt)− f (r,v, t) = dt

(

δf

δt

)

col

. (3.3)

By taking the infinitesimal limit, we obtain the Boltzmann transport equation:

δf

δt
+
δf

δr
v +

dk

dt

δf

δk
=

(

δf

δt

)

col

, (3.4)

and in the three-dimensional form,

δf

δt
+ v · ∇rf + a · ∇vf =

(

δf

δt

)

col

. (3.5)
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The Boltzmann transport equation cannot be solved analytically in most of

the cases, and several approximations are made to solve the equation. One method to

simplify the Boltzmann transport equation is to linearize it and restrict the changes

in the distribution function to small deviations from equilibrium:

f (k) = f ◦ (k) + ∆f (k) , (3.6)

where f ◦ (k) represents the equilibrium distribution function (Fermi-Dirac distribu-

tion) and the change in the distribution function, ∆f (k), is assumed to be small.

Another technique is the relaxation time approximation which will be discussed in

the later subsection. We will use the linearization and relaxation time approximation

in the following chapters to derive the expression for the Coulomb drag resistivity.

3.2.2 Interlayer momentum transfer rate

The momentum transfer rate from the drive layer to the drag layer, dP/dt, is

equal to the total force applied on the carriers in the drag layer due to the induced

electric field in the drag layer, E1:

dP

dt
= n1eE1. (3.7)

By definition, the drag resistivity is expressed as follows:

ρdrag =
W

L

V1
I2

=
E1

J2
=

E1

σ2E2

=
1

σ2E2n1e

dP

dt
, (3.8)
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where E1,2 is the electric field, J1,2 is the current density, σ1,2 is the resistivity in the

corresponding layer. Equation 3.8 indicates that we can obtain the expression for

ρdrag by knowing the explicit expression for n1eE1 and, consequently, dP/dt. This

can be done by solving the Boltzmann transport equation, Equation 3.4, for the drag

layer, layer 1.

Since no current is flowing in the drag layer, the electron distribution is taken to

be the equilibrium one, the Fermi-Dirac distribution. Then, the Boltzmann transport

equation for the drag layer (layer 1) becomes:

dk1

dt

δfk1
δk1

=

(

δfk1

δt

)

col

. (3.9)

Since

~
dk1

dt
= −eE1, (3.10)

Equation 3.9 becomes:

(−e)E1

~

δfk1
δk1

=

(

δfk1

δt

)

col

. (3.11)

Now we define x axis along the direction of current flow and y axis to be orthogonal

to x axis. If we multiply both sides of Equation 3.11 by k1x and sum over the states

k1σ1, we obtain:

2

∫

dk1

(2π)2
k1x

(−e)E1

~

δ

δk1x
f ◦
k1
=
∑

σ1

∫

dk1

(2π)2
k1x

(

δfk1

δt

)

col

, (3.12)
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and after partial integration the left side becomes:

2

∫

dk1

(2π)2
k1x

(−e)E1

~

δ

δk1x
f ◦
k1
=
eE1n1

~
=
1

~

dP

dt
. (3.13)

Therefore,

dP

dt
=~

∑

σ1

∫

dk1

(2π)2
k1x

(

δfk1

δt

)

col

. (3.14)

Substituting Equation 3.14 into Equation 3.8, we obtain the expression for ρdrag:

ρdrag=
~

σ2E2n1e

∑

σ1

∫

dk1

(2π)2
k1x

(

δfk1

δt

)

col

. (3.15)

Now, we need to derive an explicit form for the collision rate term to calculate the

drag resistivity.

3.2.3 Collision term calculation

3.2.3.1 Intralayer scattering

It is informative to calculate the collision term in a single layer before we dis-

cuss the double layer case. In a single layer, we can construct the collision integral

by considering the phase space restrictions to scattering, along with the scattering

probability, Ωk→k′ . Ωk→k′ dk
′

indicates the probability per unit time that an elec-

tron in a state k will be scattered into a state with the same spin, contained in an

infinitesimal element dk
′

around k
′

. The probability per unit time of an electron in
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a state k, leaving dk via collisions is the sum of all the probabilities for the electron

existing in a state k to scatter into a certain state k
′

which is empty :

(

δf(k)

δt

)

out

= −f (k)
∫
(

1

2π

)d

Ωk→k
′

(

1− f(k
′

)
)

dk
′

. (3.16)

The probability per unit time of an electron in a state k
′

, leaving dk
′

via collisions is

the sum of all the probabilities for the electron existing in a state k
′

to scatter into

the state k which is empty :

(

δf(k)

δt

)

in

= (1− f(k))

∫
(

1

2π

)d

Ωk
′→kf(k

′

)dk
′

. (3.17)

Therefore, the total change in the distribution function by the collisions in a single

layer is:

(

δf(k)

δt

)

col

=

(

δf(k)

δt

)

out

+

(

δf(k)

δt

)

in

=

∫
(

1

2π

)d
[

Ωk
′→k (1−f (k)) f(k

′

)−Ωk→k
′f(k)(1−f(k′

))
]

dk
′

, (3.18)

where d= 2 for a Coulomb drag system where each layer is regarded as a mathematical

two-dimensional plane.

3.2.3.2 Interlayer scattering

We are interested in the scattering events between charged particles in different

layers. By applying the similar approach we used for the single layer scattering
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case, we can derive the collision term for the interlayer scattering events. Since two

incoming momenta (k1,k2) and two outgoing momenta (k1′ ,k2′ ) are involved in the

double layer case, the scattering probability, Ω, is now a function of four momenta,

and the occupancy of all four states must be taken into account. In addition, energy

and momentum conservation need to be enforced by delta functions. The collision

term for interlayer electron-electron scattering including spin summations is:

(

δf(k1)

δt

)

col

=
∑

σ
1
′ σ

2
σ
2
′

∫

dk1
′

(2π)2

∫

dk2

(2π)2

∫

dk2
′

(2π)2
Ω (k1,k2→k1

′ ,k2
′ )

×S
(

fk1
, fk2

, fk
1
′
, fk

2
′

)

δ (k1+k2−k1
′−k2

′ ) δ
(

εk1
+εk2

−εk
1
′
−εk

2
′

)

, (3.19)

where S function is defined as:

S
(

fk1
, fk2

, fk
1
′
, fk

2
′

)

= fk
1
′
fk

2
′
(1− fk1

) (1− fk2
)− fk1

fk2

(

1− fk
1
′

)(

1− fk
2
′

)

,

which explains the occupancy of in-flow and out-flow states. It is noteworthy that at

the same distribution case (f1 = f2), such as the equilibrium state (fi = f◦i ), there is no

net flow of probability around a closed cycle of states, S = 0. Therefore, momentum

transfer from the drive layer to the drag layer arises because of the asymmetry of the

electron distribution of one layer relative to the other layer.

3.2.3.3 S function

In the following paragraphs, it will be shown that S function in Equation 3.19

can be approximated by:
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S
(

fk1
, fk2

, fk
1
′
, fk

2
′

)

≈ f ◦
k1
f ◦
k2
(1−f ◦

k1
)(1−f ◦

k1
)[ψk

1
′
−ψk1

+ψk
2
′
−ψk2

], (3.20)

where ψ, a slowly varying function of energy, is a deviation function that describes

how different the distribution function is from the equilibrium distribution, and f ◦ is

the equilibrium, Fermi-Dirac, distribution function.

First, we linearize the distribution function f with the assumption of weak

interlayer scattering; the distribution function is not too much deviated from the

equilibrium. From Equation 3.6, the following approximations can be derived:

f=f ◦+∆f ≈ f ◦+
δf ◦

δε
(−kBT ψ (ε))=f ◦+f ◦ (1−f ◦)ψ (ε) , (3.21)

and similarly,

f

1−f ≈ f ◦

1−f ◦
+

f ◦

1−f ◦
ψ (ε) . (3.22)

Second, another equation useful to simplify S is obtained from the energy

conservation:

(

f ◦
k1

1−f ◦
k1

)(

f ◦
k2

1−f ◦
k2

)

=

(

f ◦
k
1
′

1−f ◦
k
1
′

)(

f ◦
k
2
′

1−f ◦
k
2
′

)

. (3.23)

Substituting Equations 3.21, 3.22 and 3.23 into the expression of S function,

we can rearrange S as follows:
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S
(

fk1
, fk2

, fk
1
′
, fk

2
′

)

= fk
1
′
fk

2
′
(1− fk1

) (1− fk2
)− fk1

fk2

(

1− fk
1
′

)(

1− fk
2
′

)

= (1− fk1
) (1− fk2

)
(

1− fk
1
′

)(

1− fk
2
′

)

×
[(

fk
1
′

1−fk
1
′

)(

fk
2
′

1−fk
2
′

)

−
(

fk1

1−fk1

)(

fk2

1−fk2

)

]

= (1− fk1
) (1− fk2

)
(

1− fk
1
′

)(

1− fk
2
′

)

×
(

f
◦

k1

1−f ◦
k1

)(

f ◦
k2

1−f ◦
k2

)

×
[(

1 + ψk
1
′

)(

1 + ψk
2
′

)

− (1 + ψk1
) (1 + ψk2

)
]

.

We may ignore the higher order terms of ψ because the deviation function assumed to

be a small correction to the equilibrium distribution. Then we obtain the simplified

result which is the same with Equation 3.20:

S
(

fk1
, fk2

, fk
1
′
, fk

2
′

)

≈ f ◦
k1
f ◦
k2

(

1−f ◦
k
1
′

)(

1−f ◦
k
2
′

)

[ψk
1
′
−ψk1

+ψk
2
′
−ψk2

].

By substituting Equation 3.20 into Equation 3.19 and omitting the integration

with k
′

2 due to the momentum conservation gives:

(

δf(k1)

δt

)

col

=
∑

σ
1
′ σ

2
σ
2
′

∫

dk1
′

(2π)2

∫

dk2

(2π)2
Ω (k1,k2→k1

′ ,k2
′ )

× f ◦
k1
f ◦
k2

(

1−f ◦
k
1
′

)(

1−f ◦
k
2
′

) [

ψk
1
′
−ψk1

+ψk
2
′
−ψk2

]

× δ
(

εk1
+εk2

−εk
1
′
−εk

2
′

)

. (3.24)
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3.2.3.4 Deviation function

Now, we derive the explicit expression of the deviation function, ψ, using the

relaxation time approximation. If we assume the dominant scattering mechanism is

weak impurity scattering in the layer, not the interlayer electron-electron scattering,

the distribution function of the drive layer is close to the equilibrium one, and we can

use single layer Boltzmann equation to describe the dynamics of the drive layer in

the relaxation time approximation:

F2

~

δfk2

δk2

= eE2

1

~

δε

δk2

δf ◦
k2

δε
= eE2v2

δf ◦
k2

δε
=

△f(k2)

τ2
≈

δf◦

k2

δε
(−kBT ψk2

)

τ2
,

where E2is the electric field in the drive layer, directed along the x-axis, and τ2 is

an energy-independent momentum relaxation time, which determines the electron

mobility, µ2 = eτ2/m. If we determine the direction of the current to be parallel to

x-axis, then we can express the deviation function of the drive layer as:

ψk2
= − 1

kBT
τ2ev2xE2. (3.25)

The drag layer’s deviation function is zero because there is no current flow in the drag

layer, and therefore the distribution function is the equilibrium one:

ψk1
= 0,

fk1
= f ◦

k1
.
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From the momentum conservation, we obtain:

v2x−v2′x=v1x−v1′x =
~

m
(k1x−k1′x) ,

assuming the effective mass in both layers are identical. Now, further simplification

can be made with:

ψk
1
′
−ψk1

+ψk
2
′
−ψk2

=
~τ2eE2

kBT m
(k1′x−k1x) . (3.26)

Substituting Equation 3.26 into Equation 3.24 provides the following equation:

(

δf(k1)

δt

)

col

=
~τ2eE2

kBT m

∑

σ
1
′ σ

2
σ
2
′

∫

dk1
′

(2π)2

∫

dk2

(2π)2
Ω (k1,k2→k1

′ ,k2
′ )

× f ◦
k1
f ◦
k2

(

1−f ◦
k
1
′

)(

1−f ◦
k
2
′

)

(k1′x−k1x)

× δ
(

εk1
+εk2

−εk
1
′
−εk

2
′

)

. (3.27)

3.2.4 Coulomb drag resistivity

Now, we can substitute Equation 3.27 into Equation 3.15 to have:

ρdrag =
~

σ2E2n1e

∑

σ1

∫

dk1

(2π)2
k1x

(

δfk1

δt

)

col

=
~

σ2E2n1e

e~2E2τ2
4mkBT

∑

σ1σ
1
′ σ

2
σ
2
′

∫

dk1

(2π)2

∫

dk1
′

(2π)2

∫

dk2

(2π)2
Ω (k1,k2→k1

′ ,k2
′ )

× f ◦
k1
f ◦
k2

(

1−f ◦
k
1
′

)(

1−f ◦
k
2
′

)

× k1x (k1′x−k1x)× δ
(

εk1
+εk2

−εk
1
′
−εk

2
′

)

.
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We can simplify the equations in the following manner. First, the spin summation

provides a factor of 4, not 16, because the spin state in each layer must be the same.

Second, the symmetry of the integrand with respect to the interchange of k1 and

k1′and the independence of the relaxation rate on the direction of electric field either

along the x- or y-axis provides another equality:

k1x (k1′x−k1x) = k1′x (k1x−k1′x) = −1

2
(k1′x−k1x)

2 ≡= −1

4
(k1

′−k1)
2= −q2

4
,

where q = k1
′ − k1 = k2 − k2

′ is the transferred momentum for the particle in the

drive layer to one in the drag layer. Third, if we assume that the scattering amplitude,

Ω, depends only on the transferred momentum q and not on the specific momentum

values of k1,k1′ , k2 and k2′ , then the integral over k1′ can be replaced by an integral

over q:

ρdrag = − ~

σ2E2n1e

e~2E2τ2
4mkBT

∫

dq

(2π)2

∫

dk1
′

(2π)2

∫

dk2

(2π)2
Ω (q)q2

× f ◦
k1
f ◦
k2

(

1−f ◦
k1+q

)

(

1−f ◦
k
2
′−q

)

× δ(εk1
+εk2

−εk1+q−εk2−q). (3.28)

Further simplification of the expression is possible using the following three

identities:
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δ
(

εk1
+εk2

−εk1+q−εk
2
′−q

)

=~

∫ ∞

−∞

dω δ (εk1
−εk1+q − ~ω) δ (εk2

−εk2−q + ~ω),

f ◦ (ε) [1− f ◦ (ε+ ~ω)] =
f ◦ (ε)− f ◦ (ε+ ~ω)

1− exp
(

− ~ω
kBT

) ,

[

1− exp

(

− ~ω

kBT

) ] [

1− exp

(

~ω

kBT

) ]

= −4sinh2

(

~ω

2kBT

)

.

After substituting the three identities, the Coulomb drag expression becomes:

ρdrag = − ~

σ2E2n1e

e~3E2τ2
4mkBT

∫

dq

(2π)2
Ω (q)q2

∫

dω
1

sinh2
(

~ω
2kBT

)

×
[
∫

dk1

(2π)2
(f ◦

k1
−f ◦

k1+q)δ (~ω−εk1
+εk1+q)

]

×
[∫

dk2

(2π)2
(f ◦

k2
−f ◦

k2−q)δ (~ω+εk2
−εk2−q)

]

. (3.29)

It is convenient to express Equation 3.29 in terms of the two-dimensional susceptibility

function χk1
(q, ω) defined by:

χk1
(q, ω)= −

∫

dk1

(2π)2

f ◦
k1
−f ◦

k
1
′

εk1
−εk

1
′
+ ~ω+iδ

.

Using the above equation, it can be shown that:

∫

dk1

(2π)2
(

f ◦
k1
−f ◦

k1+q

)

δ (~ω−εk1
+εk1+q) =

1

π
Imχk1

(q, ω) ,

and
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∫

dk2

(2π)2
(

f ◦
k2
−f ◦

k2−q

)

δ (~ω+εk2
−εk2−q) = −1

π
Imχk2

(q, ω) .

Substituting these results into Equation 3.29 and observing the integrand is an even

function of ω, we finally obtain the general formula of Coulomb drag resistivity:

ρdrag= − ~
3

2π2e2kBT

1

n1n2

∫

dq

(2π)2
Ω (q) q2

∫

dω
Imχk1

(q, ω) Imχk2
(q, ω)

sinh2
(

~ω
2kBT

) .

(3.30)

The different terms in this equation can be interpreted as following: (1) q2 – mo-

mentum transfer between the layers; (2) Ω (q) – the effective interaction; and (3)
∫

dω
Imχk1

(q, ω) Imχk2
(q, ω)

sinh2
(

~ω
2kBT

) – phase-space.

3.2.5 Analytical formula for weak-coupling limit

In most cases, Equation 3.30 needs to be evaluated numerically. To obtain fur-

ther insight of the Coulomb drag phenomenon, we follow Jauho et al. [51] and extract

an analytical result for sufficiently low temperatures (T ≪ TF ) and small momentum

transfer cases (q ≪ kF ) via the following approaches: (1) Imχ is approximated by

its low frequency expansion; (2) the interaction potential was determined from Pois-

son’s equation for a point source situated in one of the two layers and screened by

both layers; (3) the static screening of this potential is treated in the Thomas-Fermi

approximation, which assumes momentum transfer wave vectors q will be less than

the Thomas-Fermi screening wave vector qTF appropriate to two-dimensions.
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Imχ (q, ω) ≈ m2

2π~3kF

ω

q
,whenT ≪ TF,

If the two layers assumed to be identical, then we can perform the integration.

1

kBT

∫ ∞

0

dω
[Imχk2

(q, ω)]2

sinh2
(

~ω
2kBT

) =
(kBT )

2m4

3~9k2F

1

q2
.

It is the result of this integral which provides the dominant temperature dependence

of Coulomb drag, ρdrag ∝ T 2. The scattering probability is obtained from the effective

interaction by use of the Born approximation, or equivalently the golden rule:

Ω (q) =
2π

~
|eφ (q)|2,

where eφ (q) is the Fourier component of the screened Coulomb interaction between

the layers. eφ (q) for two-dimensional electron gas with a finite thickness is derived in

[51]. Since a graphene sheet can be assumed as a zero-thickness mathematical plane,

eφ (q) for graphene double layers reduces to that of the screened Coulomb interaction

between charge densities localized at the two quantum wells of zero thickness:

eφ (q) =
2πe2

κ

q

2q2TF sinh qd + (2q qTF + q2) exp qd
,

where κ is the dielectric constant and qTF is the Thomas-Fermi screening wavevector.

Here we assume the identical dielectric medium surrounds the two electron layers for

simplicity; we refer to [56] for the case with different dielectric mediums. When q is

comparable to or smaller than d−1, we may neglect the second term in the denominator

and the equation further simplifies into:
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eφ (q) ≈ πe2

κ

q

q2TF sinh qd
.

Then the remaining integration becomes:

∫ ∞

0

dq q|eφ (q)|2=3π2e4

2κ2
1

q2TF

1

d4
ζ (3) ,

where qTF is the Thomas-Fermi screening wavevector, ζ is the Riemann zeta function

and ζ(3) ∼= 1.2 . Therefore, the final drag resistivity, ρdrag, can be expressed as

ρdrag= − hπζ(3)(kBT )
2

32 EF
2(qTFd)

2 (kFd)
2 . (3.31)

Again, this analytical result is valid for sufficiently low temperatures (T ≪ TF ) and

small momentum transfers (q ≪ kF ).

EF D(E) D0 = D(EF ) kF qTF

MLG ~vF
√

4πn
gsgv

gsgvE
2π(~vF )2

√
gsgvn√
π~vF

√

4πn
gsgv

√
gsgvπne2

2ǫπ~vF

BLG and 2DEG 2π~2n
m∗gsgv

gsgvm∗

2π~2
gsgvm∗

2π~2

√

4πn
gsgv

gsgvm∗e2

4πǫ~2

Table 3.1: Elementary electronic quantities in monolayer graphene (MLG), bilayer
graphene (BLG) and two-dimensional electron gas (2DEG). EF , D(E), kF and qTF

represent the Fermi energy, density of states, Fermi wavevector and Thomas-Fermi
screening wavevector, respectively. D0 = D(EF ) is the density of states at the Fermi
energy, and ǫ is the dielectric permittivity. All quantities are in SI unit. Expressions
in cgs unit can be found in Ref.[1].
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3.2.6 Analytical formula for drag in graphene

While the nonlinear susceptibility for graphene is quite different from that for

a regular two-dimensional electron gas, we can show that the analytical expression of

drag resistivity calculated for the regular two-dimensional electron gas in Equation

3.31, which is valid for low temperatures T ≪ TF = εF/kB and high density and/or

large interlayer separation kFd ≫ 1, has the same form with the drag in graphene in

the same regime. Using Table 3.2.6 [57], we can substitute the appropriate quantities

into Equation 3.31 and obtain the drag resistivity in single layer graphene as a function

of d, nB,T and T:

ρdrag= −hζ (3) ǫ
2

32 e6
1

d4
(kBT )

2

n
3/2
B n

3/2
T

, (3.32)

where ǫ is the dielectric permittivity. This analytical expression is useful because the

strong inverse dependence on d and the symmetry under layer interchange are clearly

identified, and it also predicts clear dependence of ρdrag on temperature, density and

layer separation. We will use this result to compare our experimental measurements

in the following chapters.

3.3 Coulomb Drag Measurement in Graphene Double Layers

Coulomb drag measurements provide key insight into the physics of the graphene

double layer system [48, 49]. A current (Idrive) flown in one (drive) layer leads to a

momentum transfer between the two layers, thanks to the interlayer electron-electron

interaction. To counter this momentum transfer, a longitudinal voltage (Vdrag) builds
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Figure 3.3: Drag voltage measurement setup. Low frequency AC voltage from lock-in
amplifier and a large ballast resistor, RB, are connected to form a current source. The
drag voltage is measured in the passive (drag) layer, which can be grounded either at
contact A or B. The carriers in both layers are exemplified to be electrons.

up in the opposite (drag) layer [Figure 3.3]. The polarity of Vdrag depends on the

carrier type in the two layers and is opposite (same) polarity as the voltage drop in

the drive layer when both layers have the same (opposite) type of carriers. The drag

resistivity is defined as ρdrag = (W/L)Vdrag/Idrive, where L and W are the length and

width of the region where drag occurs.

3.3.1 Coulomb drag measurement setup

Now we focus on the drag measurement setup as illustrated in Figure 3.3. We

take low-frequency AC voltage from a lock-in amplifier and connect it to a large ballast

resistor RB which makes the combination as a constant current source. By connecting

the resistance of interest at one terminal of the ballast resistor and grounding the other
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Figure 3.4: Drag consistency check to detect interlayer leakage current. If there is a
leakage path, the sign reversal in the drag signal occurs when the grounding terminal
in the drag layer is swapped, for example from C1 (left panel) to C2 (right panel).
Adapted from [6].

terminal, we can supply a constant drive current, Idrive, through the drive layer. We

probe the drag voltage, Vdrag, in the drag layer using the preamplifier in the lock-in

amplifier. In most measurements, we use 1 V AC voltage with the frequency of 7 - 17

Hz and a 10 MΩ ballast resistor to supply 100 nA drive current. Since the maximum

resistivity value of high quality graphene single layers is in a few kΩ range, and the

actual layer resistance, which depends on the device dimension, is also lower than a

few tens of kΩ, the constant current supply is ensured regardless the layer resistivity

change in the drive layer.

3.3.2 Consistency check

The consistency check of the drag signal is necessary to confirm if the measured

voltage drop in the drag layer originates from the electron-electron scattering between

the layers or from any other spurious mechanisms such as interlayer leakage current.

If the drive current leaks between the layers, a finite voltage due to current flow in

the drag layer will be measured in addition to the Coulomb drag voltage, preventing
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an accurate drag resistivity measurement.

To check the presence of leakage currents, we alter the grounding points in

the drag layer, for example from C1 (left panel) to C2 (right panel) in Figure 3.4,

and compare the voltage drops between the two measurements. While the voltage

drop generated by the Coulomb drag, Vdrag, will not change its sign because it is

determined by the carrier type and direction of the drive current, any voltage drop in

the drag layer induced by leakage current (from the drive layer to the drag layer due to

direct leakage, tunneling and/or capacitive coupling) will change the sign depending

on the position of the grounding points. Therefore, the measured voltage drop when

the contact C1 (C2) in the drag layer is grounded, Vmeasured,C1(C2), can be expressed

as:

Vmeasured,C1 = Vdrag + Vleakage,

Vmeasured,C2 = Vdrag − Vleakage.

Thus, by shifting the point at which the drag layer is voltage-referenced, we can

verify if the measured voltage was affected by leakage profile in the system or not.

An example of the consistency check performed in BiSFET2 is shown in Figure 3.5.

The drag resistances measured as a function of VBG at combinations of different drive

current directions, VBG sweep directions and grounding configurations are overlapped

well to each other, indicating that there is little leakage current measured with the

drag signal.

If ρdrag values measured at different grounding configurations are different,
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Figure 3.5: Optical micrograph of BiSFET2 (left). The top layer (yellow dashed line)
is 24 µm long and 7.5 µm wide and the bottom layer (red dashed line) is 51 µm
long and 14 µm wide. Coulomb drag resistances vs VBG measured at T = 300 K
and at different measurement configurations are shown in the right panel. Various
consistency checks, such as swapping reference points in the drag layer, changing VBG

sweep directions and altering drive current directions, are performed to ensure the
validity of the Coulomb drag signal.
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then we can even out the contribution of the interlayer leakage in Vdrag by averaging

different measurements:

Vdrag,avg=(Vmeasured,C1+Vmeasured,C2) /2. (3.33)

The assumption in Equation 3.33 is that the spurious component changes its sign

but not the magnitude as the grounding configuration changes. One must under-

stand that the pure drag component in Vdrag cannot be recovered by Equation 3.33

unless the leakage/tunneling paths are symmetrically positioned between the voltage

probes. Since it is very difficult to analyze the exact interlayer leakage profile in prac-

tical devices, we abandon the devices with significant inconsistency observed during

the consistency check. Instead, we use Equation 3.33 to verify the accuracy of the

drag measurement and obtain an error bar. The example of the inconsistent ρdrag

measurements with different ground points and averaged value is shown in Figure 3.6.

The consistency check is performed each and every time we measure the

Coulomb drag. Separate DC leakage current measurements are performed for all

the samples, confirming us the graphene double layer samples we explore show the

interlayer resistance larger than 1 GΩ regardless the device dimensions and applied

biases.

3.3.3 Coulomb drag in graphene double layers

Now we are ready to analyze our Coulomb drag data. After standard consis-

tency checks, the drag resistivity ρdrag along with the layer resistivities ρT and ρB vs
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Figure 3.6: Top: contact numbering marked on the optical micrograph of BiSFET12.
Red (blue) numbers indicate bottom (top) layer contacts. Bottom: ρdragvs top layer
bias, VTL, measured with different grounding configurations at T = 0.4 K in BiS-
FET12. 100 nA drive current flows from contact 10 to contact 5 in the top layer, and
the voltage drop in drag layer is measured between contact 11 and 3.
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VBG measured at T = 250 K in BiSFET6 is shown in Figure 3.7. The charge neutral-

ity (Dirac) points of both layers are captured in the experimentally accessible VBG

window in this device. Consequently, depending on the VBG value, we can probe the

Coulomb drag at three different regimes: a hole-hole double layer for VBG < −15V ,

an electron-hole double layer for −15V < VBG < 2V , and an electron-electron double

layer for VBG > 2V . The dependence of ρB and ρT on VBG shown is also in good

agreement with the model presented in Figure 2.14, which also provided the estimated

layer densities marked in Figure 3.7.

Consistent with the above argument on the carrier type dependence of the sign

of Coulomb drag, ρdrag is positive in the electron-hole double layer regime, negative in

the hole-hole or electron-electron regime, and changes sign when either the top or the

bottom layer are at the charge neutrality point. The amplitude of ρdrag is maximum

near the charge neutrality point at the bottom layer both positive and negative cases,

and decreases as layer density of the bottom layer increases. This observation can be

explained based on our derivation of Equation 3.32 in Chapter 3.2,

ρdrag= −hζ (3) ǫ
2

32 e6
1

d4
(kBT )

2

n
3/2
B n

3/2
T

.

For two closely spaced graphene layers when the ground state of each layer is a Fermi

liquid, ρdrag depends on each layer’s density as ∝ 1/n3/2, on temperature as ∝ T 2,

and interlayer distance as ∝ 1/d4 at weak coupling limit, kFd ≪ 1. Let us study

temperature and density dependence of ρdrag in more detail.
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Figure 3.7: Coulomb drag in graphene. Layer resistivities (ρB,T ) and ρdrag vs layer
densities (nB,T ) and VBG for BiSFET6 measured at T = 250K. We have three different
regimes: hole-hole, hole-electron and electron-electron, which show the corresponding
signs of ρdrag. Adapted from Ref.[3].
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Figure 3.8: Temperature dependence of Coulomb drag in graphene. ρdrag vs VBG at
different T values, from 250 to 77 K. The inset shows the maximum ρdrag values vs
T 2 in the electron-hole and electron-hole regimes. Adapted from Ref.[3].

Figure 3.9: Relative Coulomb drag amplitude vs T2 in BiSFET6. The black line
represents theoretical T2 dependence, and the red line represents the experimentally
determined ratio. The x-axis is labeled by corresponding temperature.
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3.3.3.1 Temperature dependence of drag resistivity

Figure 3.8 data show ρdrag vs VBG measured for BiSFET6 for T values between

77 and 250 K. The ρdrag ∝ (kBT )
2 dependence, which stems from Pauli’s exclusion

principle, restricts the phase space where electron-electron scattering can occur. The

T2 dependence describes the available phase space for electrons to be scattered into,

which in turn is dependent on the broadening of the Fermi distribution function in

each layer. At zero temperature the electrons in a conductor will occupy energy states

up to the Fermi level EF , and the states with E > EF remain vacant. Therefore,

ρdrag will be zero at T = 0 K. As temperature increases, the distribution of occupied

states changes in accordance with the Fermi-Dirac distribution function and the state

occupancy fluctuates greatly near EF , making ideal conditions for scattering to occur:

the process requires occupied states and empty states on the order of kBT from each

other. The occupied states provide the electrons initially needed to participate in

the scattering event while the empty states provide somewhere for these electrons to

eventually scatter into.

The maximum absolute value of ρdrag at each temperature is plotted in the

inset of Figure 3.8. At temperatures between 70 and 100 K, the T2 dependence is

followed closely and softens for T > 100K for both electron-hole drag and electron-

electron drag. To further verify the temperature dependence, we define an error

function,

error(c, d) =
∑

VBG

(ρdrag,ref [VBG]−c×ρdrag[VBG−d])2, (3.34)
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and find an relative amplitude ratio, c, and VBG offset, d, which minimize the error.

The c value obtained from the fitting indicates the relative ratio of drag amplitude

increase to the reference drag signal as we raise the sample temperature. The result

shown in Figure 3.9 clearly shows that T2 dependence matches well at temperatures

below 100K, and becomes significantly weakened as temperature further increases.

The temperature dependence of Coulomb drag at temperatures lower than 50 K is

difficult to probe due to mesoscopic fluctuations which develops at low temperatures.

We will discuss the Coulomb drag fluctuations in graphene double layers further in

Section 3.3.4.

3.3.3.2 Density dependence of drag resistivity

Figure 3.7 data show that the magnitude of ρdrag decreases with increasing

nB and nT . However, it is difficult to study the density dependence of ρdrag here

because both nB and nT are changing simultaneously as VBG changes. We achieved

the independent control of nB and nT by applying an interlayer bias to the top layer

and using it as a top-gate to control layer densities in the two layers as discussed in

Chapter 2.4. Figure 3.10 shows ρdrag plotted in the plane of nT and nB at different

temperatures using the interlayer bias technique. We extract the ρdrag cuts along the

line where the two layers have equal density of carriers, nT= nB, and present the

results in Figure 3.11.

We check the power law dependence of ρdrag on layer densities, ρdrag ∝ nα
B nα

T ,

predicted in the Boltzmann transport theory of Coulomb drag in Figure 3.11, where

we show |ρdrag| vs |nT | in a log-log plot. The linear dependence of ρdrag on layer density
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at high density limit both in electron-electron and hole-hole drag clearly confirms the

power law dependence. The exponent we extract by linear fitting is α = −0.9 ± 0.1

which is larger than the expected value, α = −1.5 in Equation 3.32, and depends little

on temperature. A possible explanation for this discrepancy is that Equation 3.32 is

valid for high densities and/or large interlayer spacing such that kF ·d ≫ 1; for Figure

3.11 data, kF · d ≤ 1 (kF · d ∼= 1 at n = 5×1011 cm−2) at all layer densities and kF · d

is equal to or smaller than 3 (kF · d ∼= 3 at n = 5×1012 cm−2) in all measurements

we performed. Carrega et al. [58] reviewed recent theory works on Coulomb drag

in graphene [5, 56, 57, 59, 60] and suggested the density exponent of α = −1.5 in the

weak coupling limit, kF ·d ≫ 1 and α = −0.5 in the strong coupling limit, kF ·d ≪ 1.

Our measurement is performed in neither of limits; we are in the regime between the

two different limits, and, therefore, the exponent presumably lies in between -0.5 and

-1.5. The discrepancy in the drag magnitude, which is ∼ 102 times lower than the

value Equation 3.32, may be explained by the similar argument. Further theoretical

work and numerical calculation will be needed to clearly explain these discrepancies.

3.3.3.3 Drag resistivity at zero layer density

Figure 3.8 data show a smooth crossover for ρdrag through 0, from the electron-

hole to the electron-electron regime [blue (shaded) corridor], and Figure 3.10 data also

show zero drag points when the carriers change from electron-electron to hole-hole.

The zero drag resistivity measured at the charge neutrality point of either drive or

drag layer results from the electron-hole symmetry at εF= 0; (1) if the drive layer

is at the charge neutrality point, the thermally generated electrons and holes, which
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Figure 3.10: Contour plots of ρdrag measured as a function of nT and nB at T = 242
K (left), 166 K (top right) and 81 K (bottom right) in BiSFET12.
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Figure 3.11: ρdrag vs layer densities at different temperatures measured in BiSFET12
(left). Since ρdrag values are taken at nB = nT points, negative ρdrag is measured as
expected. The right panel shows |ρdrag| vs |nT | of the identical data in a log-log plot,
where the linear dependence indicates the power law dependence. Both electron-
electron and hole-hole drag resistivities are drawn in the same graph, showing the
similar density dependence. Blue lines show the linear fitting results, whose slopes
provide the exponent.
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are exactly the same amount, transfer equal and opposite momentum to the drag

layer carriers, leading to zero drag resistivity. (2) If the drag layer is at the charge

neutrality point, the momentum transferred from the drive layer will be again equal

and opposite direction and ρdrag = 0.

The smoothness of the crossover can be explained by the coexistence of electron

and hole puddles near the charge neutrality point, which generate drag electric fields

of opposite sign, and cancel the ρdrag. We expect the slope of the transition to be

sharper in cleaner samples with lower charged impurity concentration, and therefore

with less electron-hole puddles.

3.3.4 Mesoscopic fluctuations in Coulomb drag

We observe a macroscopic-to-mesoscopic transition in the drag resistance for

temperatures lower than 50 K as shown in Figure 3.12. As T is reduced, the ρdrag data

start to develop fluctuations superposed on the average ρdrag vs VBG dependence of

Equation 3.32, which is valid for average drag at higher temperatures. The fluctuation

is fully reproducible in different measurements in the same cool down as shown in

Figure 3.13, differentiating itself from the trivial electrical noise.

3.3.4.1 Phase coherence length

The important length scale to understand drag fluctuations is the phase coher-

ence length, Lϕ, which defines the distance that carriers can travel without losing their

phase memory by inelastic scattering events such as in electron-electron and electron-

phonon scattering events. At low enough temperatures, the density of phonons is
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Figure 3.12: ρdrag vs VBG measured for T ≤ 77 K in BiSFET6. As T is reduced,
mesoscopic fluctuations develop and fully obscure the average drag. The traces are
shifted for clarity; the horizontal dashed lines indicate 0 Ω for each trace. Adapted
from Ref.[3].
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Figure 3.13: Reproducibility of drag fluctuation: ρdrag vs VBG at T = 0.3 K in
BiSFET10: the forward sweep (red line) and backward sweep (blue line). A slight
shift of one trace relative to the other is caused by the sweep rate which was slightly
faster than the lock-in integration time.
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Figure 3.14: ρdrag vs B measured at T = 0.3 K in BiSFET8, showing drag fluctuations
as a function of magnetic field. Inset: Autocorrelation of the main panel data. The
bottom (top) layer is the drive (drag) layer. Adapted from Ref.[3].

small and electron-electron interaction is the dominant dephasing mechanism [61]. In

this condition the phase coherence length can be increased to the value significant to

the sample dimension and electron waves traveling along different paths can interfere

[Figure 3.16] creating interesting transport phenomena such as universal conductance

fluctuations [62].

The phase coherence length can be determined by calculating autocorrelation

function of σdrag [B], the drag conductivity fluctuation measured as a function of

applied transverse magnetic field, and extracting a correlation magnetic field. The

autocorrelation function, C [∆B], of a discrete function, σdrag [B], is defined as:

C [∆B] =
∑

B

σdrag [B] σdrag [B +∆B].
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Figure 3.15: Phase coherence length Lϕ determined as a function of VBG in BiSFET8
at T = 0.3 K.

An example of measured drag fluctuations as a function of magnetic field and

the autocorrelation function are plotted in Figure 3.14. The correlation field, Bc,

is defined as the half-width at half-height, C [∆Bc] = C [0] /2, corresponding to the

magnetic field required to increase the flux passing through a coherent area by one

flux quantum:

Bc =
h

eLϕ
2 .

Figure 3.14 data reveal a correlation field Bc = 47mT , which corresponds to a phase

coherence length Lϕ =
√

h/eBc = 300 nm. Similar measurements performed in the

same sample at different back gate biases provide the range of phase coherence length

Lϕ = 600 ± 300 nm. The value extracted from ensemble average measurements

using scanning gate microscopy was consistent with the value determined from our
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Figure 3.16: (Top) Electrons can take different trajectories when passing through a
disordered two-terminal sample. If phase coherence is maintained, they can interfere.
(Bottom) When the sample dimension is larger than the phase coherence length, the
sample can effectively be regarded as a network of coherent regions of Lϕ

2 and the
conductance variance of ∆G. Adapted from Ref.[7].

measurements [63].

3.3.4.2 Universal conductance fluctuations

Drag fluctuation represents the counterpart of universal conductance fluctua-

tion in Coulomb drag [64, 65] sharing the same origin. Universal conductance fluc-

tuations are random fluctuations of the conductance as a function of magnetic field,

chemical potential, and impurity configuration by a universal amount g =e2/h, which

is independent of sample size and degree of disorder [62]. This phenomenon is a con-

sequence of interference between the various trajectories that electrons can take when

traveling in a sample as shown in the top panel of Figure 3.16. Then a variance of

the conductance fluctuation under the condition that the sample is diffusive, l ≪ L,

and at low temperatures, Lϕ > L:
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∆G∼
(

e2

h

)2

.

At finite temperatures, phase coherence may not be maintained over the entire

sample (Lϕ < L) so that electrons lose its phase coherence before it reaches to the

end of the channel. Then the sample can be regarded as a network of phase coherent

regions, Lϕ
2, and each region display a variance of ∆G∼

(

e2

h

)2

as shown in Figure

3.16 (bottom). In this case, the variance of the fluctuation will be a classical average

of the network of resistors with the effect of thermal broadening of the Fermi-Dirac

distribution:

∆G∼
(

e2

h

)2(
Lϕ

L

)2(
LT

Lϕ

)2

=

(

e2

h

)2(
LT

L

)2

,

where LT =
√

~D/kBT is the thermal length. The above relations equally apply to

the Coulomb drag fluctuations which share the fundamental principle with universal

conductance fluctuations.

3.3.4.3 Giant magnitude of drag fluctuations

There is an important difference between universal conductance fluctuations

and drag fluctuations. While universal conductance fluctuations only add small vari-

ance in the average value of the conductance, the drag fluctuations can be larger than

the average drag in scale and even change the sign of the Coulomb drag randomly.

Price et al. first reported reproducible fluctuations of the drag turn out to be much

larger than its average value at very low temperatures, T < 1 K, in GaAs/AlGaAs
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double layers [66]. This result is consistent with our observation in graphene double

layers, where the amplitude of drag fluctuations becomes comparable to or one to two

orders of magnitude larger than that of the average drag resistivity.

Price et al. [64] proposed a plausible qualitative explanation for the four orders

of magnitude higher enhancement in drag fluctuations than the theoretical prediction

reported in [67] with the assumption of diffusive motion of interacting electrons. The

British group argued that the giant drag fluctuations are caused by large momentum

transfers between two electrons interacting at a small distance, and at such short range

interactions it is the local electron properties of the layers that determine electron-

electron interaction. The fluctuations of local density of states are known to exceed

those of global density of states by a factor of g = e2/h [65], and, therefore, the

drag fluctuations are greatly enhanced. To elaborate the interlayer electron-electron

interaction will be limited to two electrons located at a small distance ∆r in the order

of the layer spacing d, because the longer range interactions at distances ∆r ≫ d will

be screened by other electrons. The smallest distance in which electrons in different

layers can interact is d and the interlayer momentum transfer, q, is limited by q < 1/d,

which originated from the fundamental quantum mechanical uncertainty principle,

∆r∆q ∼ 1. To generate the giant drag fluctuations, the large momentum transfer is

necessary and ∆r needs to be small; the two electrons interact at a distance ∆r that is

smaller than the average impurity separation, ∆r < l. At such a small distance, it is

the local properties of the layers that determine electron-electron interaction, not the

global properties averaged over the entire sample. As a result, larger fluctuation in

the local density of states creates electron-hole asymmetry, and this greatly enhances

the drag fluctuation through the nonlinear susceptibility term in Equation 3.30.
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Figure 3.17: Drag conductivity variance vs T measured in BiSFET12 is plotted in a
log-log plot. Each variation value is determined in wide range of layer densities using
a few tens of thousands data points.

The authors insisted that a temperature dependence of drag fluctuations cre-

ated by such mechanism is uniquely given by:

〈

σdrag
2
〉

∝















T−1 if T < ~

kBτ

T−4 if T > ~

kBτ

where drag conductivity, σdrag, is σdrag ≈ ρdrag/ρTρB and 〈σdrag2〉 is the variance of

σdrag.

In our measurements, the mean free path in each layer l = (h/2e2
√
π)µ

√
n

is 50 nm ≤ l ≤ 130 nm, and the transition temperature Tt = ~/kBτ separating the

two regimes is 70 K ≤ Tt ≤ 170 K. Since the drag fluctuations become very small

at these high temperatures, it is difficult to separate the fluctuation component and

study the temperature dependence of drag fluctuations in the regime of T > Tt. In
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Figure 3.17, 〈σdrag2〉 as a function of temperature is plotted with T dependence guide

lines corresponding to T < Tt regime (blue lines) and T > Tt regime (green lines).

More data will be needed to verify if our data support Price et al.’s explanation or

not.

3.3.4.4 Onset temperature of drag fluctuation

The ρdrag fluctuations become noticeable below 77 K and fully obscure the

average diffusive drag below 20 K in our graphene double layers [Figure 3.12]. This

manifestation of mesoscopic physics at elevated temperatures is closely related to the

high Fermi energy, EF , in graphene, roughly ten times higher than that in semicon-

ductor heterostructures. Narozhny et al. [67] defined the critical temperature, T ∗ as

the temperature at which the crossover from the average Coulomb drag regime to the

fluctuation regime occurs. They suggested that it is proportional to EF , T
∗ ∝ EF ,

supporting the observation of drag fluctuations at high temperatures in graphene.

3.4 Conclusion

Interesting observations on the drag fluctuation results in graphene which are

not understood at present or require more careful work are summarized as follow-

ing: (1) density dependence of ρdrag fluctuation - drag fluctuation amplitude reaches

a maximum near the charge neutrality point of the layers and slowly decrease as

layer densities increase [Figure 3.18]; (2) drag layer density dependence of fluctua-

tions - drag resistivity fluctuates strongly depending on the drag layer density, but
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Figure 3.18: Contour plot of ρdrag mapped in the plane of nT and nB measured in
BiSFET8 at 4.2K (left) and a ρdrag trace along the constant bottom density line, at
nB = - 5 × 1011 cm−2, (right) marked by a dashed line in the left panel. The bottom
(top) layer is the drive (drag) layer.
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Figure 3.19: σdrag as a function of nT and nB measured at 0.4K in BiSFET12 The drag
layer is the bottom layer (left) or top layer (right) in each measurement, respectively.
The fluctuation patterns are parallel to the constant density lines of the drag layer.

insensitive on the drive layer density. When drive layer and drag layer are swapped,

line-shaped fluctuation patterns observed in one measurement setup is orthogonal to

those measured in the other setup as shown in Figure 3.19.

In summary, we probe the Coulomb drag in independently contacted graphene

double layers. At elevated temperatures, the drag resistance dependence on density

and temperature is consistent with the Fermi liquid theory. At reduced temperatures,

the drag exhibits mesoscopic fluctuations that obscure the average drag, a result

of the interplay between electron-electron interaction and phase-coherent intralayer

transport.
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Chapter 4

Direct Measurement of Fermi Energy in Graphene

Using a Double Layer Heterostructure

The Fermi energy is a fundamental property of an electron system, which is

closely related to the host material’s density of states, energy band structure and

electron interaction effects. In this chapter, we introduce a technique which allows

a direct measurement of the relative Fermi energy in an electron system using a

graphene double layer structure. We demonstrate this method by measuring the

Fermi energy in a graphene single layer as a function of density, at zero and in high

magnetic fields, and determine the Fermi velocity, Landau level spacing and Landau

level broadening in graphene.

4.1 Introduction

The Fermi energy or density of states of a two-dimensional electron gas is

key to understand electron transport properties and phenomena at strong magnetic

fields such as the quantum Hall effect. A number of thermodynamic properties can

be measured to extract the density of states in an electron system. By applying a

heat pulse or heat flux of a short duration and probing the temperature change in the

sample, Gornik et al. [68] andWang et al. [69] measured the magnetic-field-dependent
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specific heat, Celectron, for two-dimensional electrons in GaAs/AlGaAs multilayers and

extracted its density of states using the relation:

Celectron =

∫

E
df(E)

dT
D (E) dE,

where f(E) is the Fermi-Dirac distribution function, T is the temperature and

D(E) is the density of states. Eisenstein et al. [70] measured the magnetization

in GaAs/AlGaAs single and multilayer heterostructures by a torsional technique to

observe the shape and amplitude of density of states in magnetic fields. Capacitive

techniques such as magnetocapacitance [71] and compressibility [72] measurement can

also be utilized to probe the density of states in an electron system. The thermody-

namic compressibility, K, is simply related to the total energy Etot (per unit area),

chemical potential, µ, and carrier density n of the system:

K−1=n2 δ
2Etot

δn2 =n2 δµ

δn
= n2D(E)−1.

In the case of graphene, the limited sample size significantly restricts the den-

sity of states measurement. In spite of the recent advances in graphene growth tech-

niques, graphene samples of the highest quality are still manually obtained by me-

chanical exfoliation from graphite crystals, and the dimension of typical graphene

devices is in micrometer scale [10]. Therefore, specific heat measurement and mag-

netization measurement are exceedingly difficult, and the accuracy of compressibility

[73, 74] measurement is limited. Ponomarenko et al. [75] fabricated giant graphene

capacitors (∼ 100 µm × 100 µm) using very large graphene flakes to obtain reliably

high capacitance signals, however, the measured density of states suffered from the
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macroscopic charge inhomogeneity. The density of states measured by other capaci-

tive measurement technique [43] did not agree well with the theory.

In this chapter, using a double layer device structure where graphene is one of

the layers we describe a technique which allows a direct measurement of the relative

Fermi energy in an electron system which is independent of the sample size. Our

technique shares its basic principle with the Kelvin probe measurement [23]. As shown

in Figure 4.1, when two materials with different work functions are placed in close

proximity and connected by a wire, charge carriers will transfer from the smaller work

function material to the larger. This creates the electric field between the surfaces

and contact potential difference (CPD) which corresponds to the difference between

the work functions. By applying an external DC bias to counter this potential and

simultaneously monitoring the charge transfer, the CPD, and therefore work function

difference, can be measured. In the practical instruments, a mechanically vibrating

tip is used to find the charge-free voltage [Figure 4.2]. We found that in the double

layer structure, where one of the layers is a single layer graphene, a graphene layer

can be used as a charge-free point detector and replace the vibrating probe by simply

measuring its layer resistivity and find the charge-neutrality point. We demonstrate

this technique by probing the Fermi energy in graphene both at zero and in high

magnetic fields, showing the accurate determination of the Fermi velocity, Landau

level spacing, and Landau level broadening in graphene.
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Figure 4.1: Basic principle of the Kelvin probe measurement.

Figure 4.2: Typical setup of the Kevin probe measurement.
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4.2 Fabrication

Graphene double layer heterostructures, where two independently contacted

graphene single layers are placed in a close proximity but electrically isolated by thin

interlayer dielectric, are briefly revisited as shown in Figure 4.3. First, we mechani-

cally exfoliate the bottom graphene layer from natural graphite onto a 285 nm thick

SiO2 dielectric, thermally oxidized on a highly doped Si substrate. The degenerately

doped Si substrate will be used as a bottom-gate electrode. Standard e-beam lithog-

raphy, 50 nm thick Ni or 5 nm thick Cr and 40 nm thick Au deposition followed by

lift-off, and O2 plasma etching are used to define a Hall bar device. A 4 to 9 nm top

Al2O3 dielectric layer is deposited on the bottom layer by atomic layer deposition

using e-beam evaporated Al as a nucleation layer [17]. The dielectric film thickness

grown on graphene is further verified by transmission electron microscopy in multiple

samples. To fabricate the graphene top layer, another graphene single layer is me-

chanically exfoliated on a similar SiO2/Si substrate. After spin-coating poly(methyl

methacrylate) (PMMA) on the top layer and curing, we etch the underlying substrate

with NaOH, and detach the graphene layer along with some alignment markers cap-

tured in the PMMA membrane. The membrane is transferred onto the bottom layer

device and aligned under the optical microscope. A Hall bar geometry is patterned

on the top layer, and metal contacts are subsequently defined, completing the double

layer graphene device [Figure 4.3].
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Figure 4.3: Fabrication of a graphene double layer heterostructure. Optical images are taken from BiSFET2.
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4.3 Fermi energy measurement using a graphene double layer

structure

4.3.1 Principle

A closer examination of the top layer charge neutrality point dependence on

VBG and VTL provides the principle of Fermi energy measurement using a double layer

heterostructure. If the top layer is at the charge neutrality point, setting nT = 0 in

Equation 2.13 yields:

EF,B (n)

e
=VTL. (4.1)

This equation contains a simple, yet remarkable result. The interlayer bias required

to bring the top layer to the charge neutrality point is equal to the Fermi energy of the

opposite layer, in units of eV. Consequently, tracking the top layer charge neutrality

point in the VBG-VTL plane, results in a measurement of the bottom layer Fermi

energy as a function of VBG. Furthermore, setting nT = 0 in Equation 2.9, and using

Equation 4.1 allows for nB to be determined as a function of VBG and VTL along the

top layer charge neutrality line:

VBG−VTL=
enB

CSiO2

. (4.2)

Equations 4.1 and 4.2 provide a direct measurement of the bottom layer Fermi energy

as a function of density.
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Figure 4.4: Fermi energy as a function of density in the bottom graphene layer of BiS-
FET12 (right) extracted from the top layer resistivity measurement (left). Adapted
from Ref.[4].

4.3.2 Fermi energy measurement in graphene

To demonstrate the technique, we show the Fermi energy in the bottom

graphene layer EF,B as a function of nB [right panel, Figure 4.4], determined by

Equations 4.1 and 4.2 using the data in the left panel of Figure 4.4. The EF values

are in an excellent agreement with the EF,B(n) = ~vF
√
πnB dependence expected

for the linear energy-momentum dispersion of graphene, and with an extracted Fermi

velocity of vF = 1.15×108 cm/s. This method is powerful because EF (n) in a mate-

rial of interest is measured by simply probing a remote graphene layer’s resistivity.

We can picture this technique as a resistively-determined Kelvin probe, since the top

graphene layer serves as a replacement of the mechanically vibrating tip to detect the

charge-neutrality point.
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4.3.3 Fermi energy measurement in high magnetic fields

Application of a magnetic field to conductors causes the charge carriers to

circulate in cyclotron orbits with discrete and degenerate energy levels, called Landau

levels. In the following we show that the above method applies equally well to measure

the Fermi energy or density of states in an electron system at high magnetic fields,

allowing a direct measurement of Landau level energies and broadening. In Figure

4.5 we show the contour plots of ρT (top panel) and ρB (bottom panel) measured as

a function of VBG and VTL in an applied perpendicular magnetic field B = 8 T at

T = 0.4 K. Both layers show quantum Hall states marked by vanishing resistivities

at filling factors υ= 4(N + 1/2), consistent with those of monolayer graphene [14, 76].

The integer N represents the Landau level index. The top panel of Figure 4.6 shows

a staircase dependence of the top layer charge neutrality point on VBG and VTL.

Similarly to Figure 4.4, substituting eVTL with EF,B at the top layer charge neutrality

line in Figure 4.5 (left panel) provides a mapping of EF,B as a function of VBG. To

visualize this, the top layer charge neutrality line in the VBG-VTL plane as shown

in Figure 4.6(a) (top panel) is superposed with the ρB contour plot of Figure 4.6(a)

(bottom panel), which shows staircase-like increments of EF,B coinciding with the

bottom layer quantum Hall states.

Figure 4.6(b) shows EF,B vs nB at B = 8 T determined by tracking the top layer

charge neutrality line in the VTL-VBG plane in Figure 4.6 (a), and using Equations

4.1 and 4.1 to convert VTL and VBG into EF,B and nB, respectively. Figure 4.6(b)

also shows ρB vs EF,B, determined by tracking the bottom layer resistivity along the

top layer charge neutrality line [dash-dotted line of Figure 4.6(a)]. Figure 4.6(b) data
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Figure 4.5: ρB (left) and ρT (right) contour plots measured as a function of VBG and
VTL at B = 8T, and T = 0.4 K in BiSFET12.

manifestly show the staircase-like behavior expected for the Fermi level dependence

on density for a two-dimensional electron system in a perpendicular magnetic field.

The peaks in the ρB vs EF,B data of Figure 4.6(b), corresponding to the Fermi level

lying in the LL center and probing extended states, correlate with plateaus in the

EF,B vs nB, associated with the large LL density of states. The peaks in the ρB vs

EF,B data of Figure 4.6(b) provide a direct measurement of the LL energy.

Figure 4.7 summarizes the bottom graphene layer LL energy as a function

of index (N) at B = 8 T. The experimental data is in excellent agreement with

the theoretical dependence EN = ±vF
√

2~eB |N |, corresponding to a Fermi velocity

vF = 1.17×108cm/s, a value less than 2 % different than the Fermi velocity determined

at B = 0 T using Figure 2.18 data.

In Figure 4.8 we compare the EF,B vs nB data determined experimentally at B

= 8 T, with calculations. Assuming a Lorentzian distribution of the disorder-induced
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Figure 4.6: (a) ρT (top) and ρB (bottom) contour plots measured as a function of
VBG and VTL at B = 8 T, and T = 0.4 K in BiSFET12. Both layers show quantum
Hall states marked by vanishing longitudinal resistance at filling factors ν = ± 2, 6,
10, consistent with monolayer graphene. The top layer charge neutrality line (dashed
line) shows a staircase-like dependence, with the steps matching the bottom layer
quantum Hall states. (b) ρB (blue line, top axis) vs EF,B= eVTL, and EF,B vs nB (red
line, bottom axis) determined from the top layer charge neutrality line of panel (a).
The EF,B values at the peak position of ρB provide the center positions of Landau
levels. Adapted from Ref.[4].
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Figure 4.7: Landau level energy in monolayer graphene as a function of index (N).
The symbols are experimental data determined from the EF,B positions at the ρB
peaks in Figure 4.6(b). The solid line is the theoretical ±vF

√

2~eB |N | dependence
using vF = 1.17× 108 cm/s. Adapted from Ref.[4].

LL broadening, the density of states D(E) writes:

D (E)=
4e

h
B
∑

N

1

π

γN

(E−EN )
2+γN 2

(4.3)

with γN being the broadening of the Nth LL. The carrier density (n) dependence on

EF in the limit T = 0 K is:

n (EF ) =

∫ EF

0

D (E) dE. (4.4)

Using Equations 4.3 and 4.4, the best fit to EF ,B vs nB data is obtained for

γN= 6.5 meV, and γ0= 14 meV for |N | > 0. The summation in Equation 4.3 does not

converge if carried out to infinity, and a high-energy cutoff is customarily used. For

the calculations of Figure 4.8 we used |N | ≤ 100 in Equation 4.3, corresponding to a 1
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Figure 4.8: EF,B vs nB at B = 8 T and at T = 0.4 K in BiSFET12. In the left
panel, the symbols represent experimental data, and the solid (red) line is a fit as-
suming a Lorentzian broadening in each Landau level. The best fit is obtained with
γN= 6.5 meV for |N | > 0, γ0= 14 meV, and with vF = 1.17 × 108 cm/s . The
lower inset shows the EF vs nB data, and the lines are calculations with different
γ0= 14 meV (red line) and γ0= 6.5 meV (blue line). The right panel shows the ex-
tracted density of states corresponding to the best fit line in the left panel.
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eV cutoff energy; increasing the cutoff LL index to 1,000 will change the best fit value

by less than 0.5 meV. The lower inset of Figure 4.8 (left panel) shows a comparison of

the EF ,B vs nB experimental data with calculations using the same broadening for the

N = 0 LL as the upper and lower LLs, γN= 6.5 meV. The larger broadening of the N

= 0 LL by comparison to the other LLs is an interesting finding. A theoretical study

[77], which examined the impact of static disorder on LL broadening in graphene

without considering interaction showed that the N = 0 LL broadening is the same

as for the other LLs. On the other hand electron-electron interaction can impact the

broadening of the fourfold degenerate N = 0 LL, and experimental data on exfoliated

graphene on SiO2 substrates show a splitting of the N = 0 LL in high, B = 45 T

magnetic fields [78], explained as a many-body effect.

Lastly, we note that a Gaussian-shaped Landau level density of states yields

worse fits to the Figure 4.8 data, by comparison to the Lorentzian shape density

of states. Scanning tunneling microscopy [79, 80], and compressibility studies in

graphene [73] also favor the Lorentzian LL line shape by comparison to the Gaussian

one. A recent theoretical study argues that LL local density of states has a Lorentzian

line shape while the total density of states is Gaussian [81]. Presumably, the sample

size examined here, defined by a 4 µm Hall bar width coupled with the 8 µm top layer

contact spacing is sufficiently small such that the Lorentzian LL line shape dominates.

4.3.4 Fermi energy measurement at non-zero top layer density

We introduced a method to calculate the Fermi energy of the bottom layer

at the points where the top layer is at its charge neutrality point, nT=0. Here, we
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will prove that at any set of constant nT points we can use the principle of the Fermi

energy measurement technique, and extract the Fermi energy.

If the top layer density is fixed at a certain value, nT=n
∗
T , Equations 2.12 and

2.13 yield:

eVBG=
e2 nB

CSiO2

+ eVTL + C1, (4.5)

EF (nB) =eVTL + C2, (4.6)

where C1 = e2 n∗
T/CSiO2

+ e2n∗
T/CAl2O3

+ EF (n∗
T ) and C2=e

2n∗
T/CAl2O3

+EF (n∗
T )

are both constant at a given nT=n
∗
T . This set of equations can be interpreted as

follows: if one tracks the points with a constant density of any value, then we can

calculate the bottom layer’s Fermi energy using Equations 4.5 and 4.6 with additional

constant terms. Since C1 and C2 are required to be constant at a fixed top layer

density, Equations 4.5 and 4.6 after constant compensation for C1 and C2 provide

the Fermi energy as a function of layer density just as Equations 2.12 and 2.13. This

observation further extends our method by enabling the Fermi energy measurement

at any constant nT points.

This extension of the technique is particularly useful when the experimental

access of nT = 0 points is difficult due to the practical limitations. For example, when

the charge neutrality point in a device is away from the zero bias point, a high back

gate and interlayer bias are necessary to examine the region where nT = 0, which

can be potentially destructive to the device. Therefore, in some cases, it is better to

track a non-zero, constant top layer density points and calculate the Fermi energy in

the bottom layer.
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Figure 4.9: ρxx vs VTL and VBG at T = 17 mK and at B = 18 T measured in
BiSFET11. The quantum Hall states distinguished with a vanishing resistivity are
marked with the corresponding filling factors.

Figure 4.9 shows a longitudinal resistivity of BiSFET11 measured at T = 17

mK and B = 18 T, with the absolute charge neutrality point, where nT = nB = 0,

positioned at VBG = +40 V and VTL=−1.2 V . Due to the large shift of the absolute

zero density point, the points where nT = 0 are located at large negative VTL (red

peak region in Figure 4.9). Instead of tracking the nT = 0 points, we follow the points

where the filling factor υ = −4 (nT = −1.74 × 1012 cm−2 at B = 18 T) marked by

the green peak region in the center of the contour plot [Figure 4.9] and calculate the

Fermi energy using Equations 4.5 and 4.6. The results obtained at B = 10, 14 and

18 T are shown in Figure 4.10. Again, the staircase-like dependence of the Fermi

energy as a function of the bottom layer density corresponding to the LL formation

at high magnetic fields are observed (green line), evincing that our technique extends

to non-zero top layer density points as well as at higher magnetic fields. Similar
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fitting as demonstrated in Figure 4.8 is performed to Figure 4.10 data and shown

as red dashed lines in Figure 4.10. Consistent with the previous finding, N = 0 LL

is broader than all other LLs at all the magnetic fields we probe. One interesting

observation is that the broadening of zeroth LL is 30 % smaller at 18 T compared

to that at lower magnetic fields, while the broadening of N = 0 LLs stays at similar

value. Further experimental investigation is required to draw a conclusion on the

magnetic field dependence of LL broadening.

4.4 Conclusion

In summary, we present a method to determine the Fermi energy in a two-

dimensional electron system, using a graphene double-layer heterostructure. The

graphene gate serves as not only a gate to control the densities in the channel but

also a sensor to detect the charge-free point which is corresponding to the maximum

resistance point of the graphene gate. We illustrate this technique by probing the

Fermi energy in single layer graphene at zero and in a high magnetic fields, and

determine with high accuracy the Fermi velocity, Landau level spacing, and Landau

level broadening.
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Chapter 5

Spin-polarized to Valley-polarized Transition in

Graphene Bilayers at ν = 0 in High Magnetic

Fields

In this chapter, we investigate the ν = 0 quantum Hall state (QHS) in dual-

gated graphene bilayers, and analyze its dependence on transverse electric (E) and

perpendicular magnetic field (B). The dual-gated structure enables the independent

control of E field and layer density in graphene bilayers. The longitudinal resistivity

ρxx measured at ν = 0 shows an insulating behavior which is strongest in the vicinity

of E = 0, as well as at large E fields. At a fixed perpendicular magnetic field, the ν =

0 QHS undergoes a transition as a function of the applied E, marked by a minimum,

temperature-independent ρxx. This observation is explained by a transition from a

spin-polarized ν = 0 QHS at small E fields to a valley(layer)-polarized ν = 0 QHS

at large E fields. The E field value at which the transition occurs follows a linear

dependence on B.

5.1 Introduction

Graphene bilayers [8, 21] represent an attractive system for electron physics

and potential device application. This system exhibits a transverse electric field tun-

able bandgap [18, 19], as evidenced by angle-resolved photoemission [82] and transport
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measurements [83, 84]. In a perpendicular magnetic field, the electrons occupy quan-

tized and degenerate energy levels, Landau levels (LLs). Graphene bilayers show

quantum Hall states at integer filling factors (ν) multiple of four [8, 83], owing to

spin and valley degeneracy [Figure 5.1]. Interestingly, without an applied E field (E

= 0) the ε = 0 Landau levels in graphene bilayers show an eight-fold degeneracy

at the charge neutrality point (zero density), namely two orbital LLs (N = 0, 1)

along with their respective double spin and valley degeneracy. Here, we show that

spin and valley degeneracy of the graphene bilayer’s ε = 0 LLs can be lifted by ap-

plied E field and B field, leading to broken symmetry QHSs. An applied B field lifts

the spin degeneracy thanks to the Zeeman splitting, while an applied E field lifts

the valley degeneracy [19]. Broken symmetry states were experimentally observed in

single-gated suspended [85] and supported [86] graphene bilayers, and explained by

electron-electron interaction effect [87].

We investigate dual-gated graphene bilayers, a device geometry which allows

independent control of the total density and transverse electric field. At a fixed

perpendicular magnetic field, we observe the emergence of a QHS at filling factor

ν = 0 in the presence of a transverse electric field, evinced by a large longitudinal

resistivity (ρxx) with an insulating behavior, consistent with the opening of a gap

between the electron and hole bands. Interestingly, as the B field is increased we

observe a developing ν = 0 QHS at E = 0, explained by the Zeeman splitting of

the Landau levels at zero energy. As a function of E, the ν = 0 QHS undergoes a

transition from spin polarized at small E fields, to valley(layer)-polarized at large E

fields.
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Figure 5.1: Integer quantum Hall Effect in graphene bilayer. Plateaus in Hall con-
ductivity σxyoccur at values (4e

2/h)N , where N is an integer, e2/h the conductance
quantum and 4 the double spin and double valley degeneracy. The distance between
steps along the concentration axis is defined by the degeneracy 4e2B/h on each Lan-
dau level. Adapted from Ref.[8].

5.2 Realization of a Dual-gated Graphene Bilayers

Our samples consist of natural graphite mechanically exfoliated on a 300 nm

SiO2 dielectric layer, thermally grown on a highly doped n-type Si substrate, with an

As doping concentration of ∼ 1020 cm−3. Optical inspection and Raman spectroscopy

are used to identify graphene bilayer flakes for device fabrication. We define metal

contacts using electron beam (e-beam) lithography followed by 50 nm Ni deposition

and lift-off [Figure 5.2]. A second e-beam lithography step followed by O2 plasma

etching is used to pattern a Hall bar on the graphene bilayer flake. To deposit the

top gate dielectric, we first deposit a 2-nm-thick Al layer as a nucleation layer for

the atomic layer deposition of Al2O3 [17]. The sample is then transferred ex-situ to

an atomic layer deposition chamber. X-ray photoelectron spectroscopy and electrical
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Figure 5.2: Optical micrograph of a dual-gated graphene bilayer, sample K24, before
(left) and after (right) top gate deposition. Both scale bars are 3 µm. Adapted from
Ref.[9].

measurements confirm the Al layer is fully oxidized in the presence of residual O2

during evaporation, and the exposure to ambient O2 [88]. Next, a 15-nm-thick Al2O3

film is deposited using trimethyl aluminum as the Al source and H2O as oxidizer,

followed by the Ni top gate deposition [Figure 5.2].

5.3 Characterization

5.3.1 Transport characteristics at zero magnetic field

Longitudinal (ρxx) and Hall (ρxy) resistivity measurements are performed down

to a temperature of T = 0.3 K, and using standard low-current, low-frequency lock-in

techniques. Three samples, labeled as K24, K18, and N046, with mobilities of 1500

- 2400 cm2/Vs were investigated in this study, all with similar results. We use Hall

measurements to determine the total carrier density (ntot) as a function of top (VTG)

and back (VBG) gate voltages, and the corresponding capacitance values. Equally

relevant here is the transverse electric field, which induces an imbalance between the

bottom (nB) and top (nT ) layer densities. Up to an additive constant, ntot and E are
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Figure 5.3: Contour plot of ρxx measured as a function of VTG and VBG in sample
K24. The right and top axes represent the density change for the back and top gates,
respectively. Adapted from Ref.[9].
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related to VTG and VBG by

ntot = (CBGVBG + CBGVBG)/e,

and

E = (CBGVBG − CBGVBG)/2ǫ0,

where e is the electron charge, and ǫ0 is the vacuum dielectric permittivity. To

calculate the E field we offset VTG and VBG by the gate biases required to reach ntot

= 0 and E = 0. The CTG values for our samples range between 225 and 270 nF/cm2,

with a dielectric constant k = 4.2 - 5.

In Figure 5.3 we show ρxx measured as a function of VTG and VBG in sample

K24, at T = 0.3 K. The diagonals of constant CBGVBG + CBGVBG represent the

loci of constant ntot and varying E, while diagonals of constant CBGVBG − CBGVBG

define the loci of constant E at varying ntot. The diagonal of ntot = 0 is defined

by the points of maximum ρxx measured as a function of VTG at fixed VBG values.

In order to determine the VTG and VBG values at which ntot = 0 and E = 0, we

consider ρxx measured along the diagonal ntot = 0. The ρxx shows a minimum and

increases markedly on both sides, thanks to the transverse electric field induced band-

gap opening [18, 19, 84]. The minimum ρxx on the ntot = 0 diagonal defines the E =

0 point. Having established a correspondence between (VTG, VBG) and (ntot, E), we

characterize the bilayers in terms of ntot and E in the remainder.
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Figure 5.4: (a) ρxx vs ntot, and (b) ρxy vs ntot measured at B = 18 T and T = 0.3 K,
for different E field values in sample K24. (c) σxy vs ntot corresponding to panels (a,
b) data, at different E values, and at B = 18 T and T = 0.3 K. The traces are shifted
horizontally for clarity. Adapted from Ref.[9].
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5.3.2 Quantum Hall Effects in dual-gated graphene bilayers

In Figure 5.4(a) and (b), we show ρxx vs ntot and ρxy vs ntot, respectively,

measured at fixed E field values, at B = 18 T and T = 0.3 K in sample K24. These

data are measured by simultaneously sweeping VTG and VBG, such that E remains

constant. The data show QHSs marked by vanishing ρxx at integer filling factors

multiple of four, consistent with the four-fold degeneracy associated with spin and

valley of each Landau level [8, 21]. Using the measured ρxx and ρxy, we determine the

Hall conductivity (σxy) via a tensor inversion, σxy=ρxy/(ρ
2
xx+ρ

2
xy). Figure 5.4(c) data

show σxy vs ntot, measured at B = 18 T and T = 0.3 K, and for different values of E.

Figure 5.4(a) data show an increasing ρxx at ntot = 0 with increasing E, translating

into a Hall conductivity plateau at σxy = 0 [Figure 5.4(c)], which signals a developing

QHS at ν = 0 at large E.

The ν = 0 QHS in graphene bilayers at large E fields is explained as follows.

In an applied perpendicular B field the energy spectrum consists of the four-fold spin

and valley degenerate LLs. At E = 0 an eightfold degenerate LL, i.e., the spin and

valley degenerate N = 0 and N = 1 LLs, exists at zero energy, ε = 0, the electron-

hole symmetry point [8, 21]. The N = 0 and N = 1 LL wave functions are layer

polarized, and can be indexed by the layer degree of freedom, in addition to spin. In

an applied transverse E field the eightfold degenerate LL at ε = 0 splits into two four-

fold degenerate LLs, separated by the same energy gap (∆), which exists between the

electron and hole bands at B = 0 [83, 89]. The higher (lower) energy LLs correspond

to the spin degenerate N = 0 and N = 1 LLs residing in the layer with higher (lower)

on-site energy.
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Figure 5.5: ρxx vs E measured at ntot = 0 (ν = 0) at different values of the perpendicular B field, and
temperature. At B = 0, ρxx shows an exponential dependence on E, as well as an insulating behavior at finite
E, a consequence of the E field induced band-gap opening in the bilayer. In a perpendicular B field, the onset
of the exponential dependence of ρxx vs E (black arrow), which marks the E field induced splitting of the LLs
at ε = 0, increases with the B field. As the B field increases, ρxx vs T shows an insulating state centered at E
= 0, indicating a developing ν = 0 QHS at E = 0 (red arrow). Adapted from Ref.[9].

110



Figure 5.5 data show ρxx vs E measured at different T values, at ntot = 0.

The data are collected by sweeping VTG and VBG in opposite directions, with sweep

rates proportional to CTG, and CBG, respectively. At B = 0, the ρxx shows a nearly

exponential increase with E, combined with an insulating behavior, a consequence

of the E field induced band-gap opening. The T dependence of the ρxx is weaker

than the exponential, ∝ e∆/2kBT , expected for a band insulator, and instead follows

more closely a ∝ e(T0/T )1/3 dependence, attributed to variable range hopping between

disorder-induced states in the gap [90, 91].

In a perpendicular magnetic field, the ρxx vs E data also show an exponential

divergence at finite E values, consistent with the E field induced splitting of the =

0 LLs. However, a closer examination of the ρxx vs E data in high B fields reveals

an interesting trend. Let us first consider Figure 5.5 data collected at the highest

temperature, T = 20 K. Unlike the B = 0 case, the onset of the ρxx divergence

occurs at a finite E field, which also increases with B, indicating the E field induced

LL splitting is suppressed for small transverse E fields. This observation is a direct

consequence of the N = 0 and N = 1 LLs being layer polarized. Let us assume the

transverse E field is applied such that the on-site energy of electrons of the top layer

is higher than that on the bottom layer. At filling factor ν = 0 the N = 0 and N = 1

LLs of the bottom layer will be fully occupied, while the N = 0 and N = 1 LLs of the

top layer will be empty. Such LL occupancy will innately place more electrons in the

bottom layer, setting up an internal electric field which opposes the externally applied

E field. The magnitude of the internal electric field is related to the LL degeneracy

as
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Eint= (
4e2

h
B)/2ǫ0. (5.1)

Further examination of Figure 5.5 data reveals another interesting finding. In

high B fields, ρxx shows an insulating state centered at E = 0, which becomes more

pronounced with increasing the B field. This signals a splitting of the ε = 0 LLs,

and consequently a developing ν = 0 QHS at E = 0, which is attributed to the spin

splitting of the N = 0 and N = 1 LLs. As the E field increases, ρxx decreases, and the

insulating state weakens. At a fixed B field, the ρxx vs E data show a temperature-

independent minimum at a critical field Ec. For fields higher than Ec, the ρxx shows

a diverging dependence on E, a consequence of the E field induced splitting of the N

= 0 and N = 1 LLs. The Ec field marks a transition at ν = 0, from a spin-polarized

QHS at small E fields to a valley(layer)-polarized QHS at large E fields, in agreement

with several recent theoretical studies which examined the ν = 0 phase diagram as a

function of transverse E field, and considering the electron-electron interaction [92–

94]. We remark that the ρxx vs E data in Figure 5.5 are symmetric for both negative

and positive E fields, which indicates the disorder in both layers is similar.

Figure 5.6(a) shows qualitatively the expected dependence of the N = 0 and

N = 1 LL energies on the E field. In the absence of spin splitting [Figure 5.6(a), left

panel], the LL layer degree of freedom remains degenerate at finite E field, owing to

the LL layer polarization. In the presence of spin splitting [Figure 5.6(a), right panel],

the spin down LLs of both layers are occupied, while the spin up LLs are empty. An

applied E field increases (reduces) the energy of the top (bottom) layer LLs, which

cross at a field Ec. Figure 5.6(b) data summarize the Ec vs B data measured for three

samples, marked by different symbols. We employ two criteria to define Ec using
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K24

K18

N046

Figure 5.6: (a) LL energy vs E dependence neglecting (left panel) and including
(right panel) the electron spin. The light (red) and dark (blue) lines denote the
LLs corresponding to the bottom and top layer, respectively. In the absence of spin
splitting, the LLs at ε = 0 remain degenerate owing to layer polarization (left panel).
When spin (Zeeman) splitting is considered, the ν = 0 QHS undergoes a transition at
a critical electric field (Ec) from spin polarized at small E to layer (valley) polarized
at large E. (b) Ec vs B measured in three different samples. The dashed and dotted
lines represent Eint and EZ calculated using Equation 5.1, respectively. Adapted from
Ref.[9].
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Figure 5.5 data. The open symbols in Figure 5.6(b) indicate the onset of the ρxx

divergence at high E fields, shown as black arrows in Figure 5.5. The closed symbols

in Figure 5.6(b) represent the E fields at which ρxx is temperature-independent, and

are marked by circles in Figure 5.5. Both criteria yield similar Ec values, with slightly

higher values for the first criterion. It is instructive to compare the experimental Ec

values with two simple calculations. The first is the electric field (Eint) required to

split the N = 0, 1 LLs when the layer polarization is taken into account [Equation

5.1]. The second is the electric field EZ at which the electron Zeeman energy (∆Z) is

equal to the on-site energy difference between the layers:

EZ=gµBB/d. (5.2)

The EZ values calculated assuming a g factor of 2, and an interlayer distance d = 3.4

Å, are represented by the dotted trace in Figure 5.6(b); µB is the Bohr magneton.

Neglecting interaction, the ν = 0 QHS undergoes a transition from spin to valley

polarized at an E field equal to EZ . Examination of Figure 5.6 data shows that Ec is

much larger than EZ , and comparable albeit larger than Eint.

We discuss the role of Zeeman splitting on the spin-to-valley-polarized tran-

sition. Using ρxx vs E at different B fields, measured at a 48◦deg angle between the

normal to the sample plane and the magnetic field, we extracted a set of Ec vs B val-

ues similar to Figure 5.6(b) data, but with a 1.5 times larger Zeeman splitting. We

find that the Ecvalues remain independent of the in-plane component of the magnetic

field, and are determined only by the B field perpendicular to the sample.

Last, one question arises with the exfoliated graphene bilayers is whether the
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Figure 5.7: Contour plot of σxx in B and E field plane measured at ε = 0 and T
= 0.3 K (left panel). The color map is chosen to exaggerate the boundary between
the insulating states with different symmetry breaking mechanisms. The regions of
the layer-polarized and spin-polarized QHSs are clearly captured. The gap opening
at each polarization case and possible mechanism are illustrated in the right panel,
where T(B) stands for the top (bottom) layer in a graphene AB-bilayer and up or
down arrows indicate corresponding spin directions, respectively.
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edges of the graphene flake are homogeneously bilayer or not. It is plausible that

the two layers may not necessarily terminate at the same position, leading to single

layer edge states and consequently single layer-like magnetotransport in high magnetic

fields. To test if the edge states affects Figure 5.5 and 5.5 data, we probed both as

exfoliated samples (K24), and samples (K18, N046) where an O2 plasma etch was

used to pattern Hall bars, and where both layers terminate at the same position.

The main finding in this study is summarized in Figure 5.7, which shows the

contour plot of σxx in B and E field plane at ε = 0 and T = 0.3 K (left panel) and

illustration of valley-polarized and spin-polarized QHSs (right panel). The blue area

in the left panel of Figure 5.7 indicates the low σxx region, equivalently high ρxx

region, where a ν = 0 QHS develops due to the symmetry breaking. The regions

of high conductance (red area in the left panel of Figure 5.7) mark the transition

between the low and high E field ν = 0 QHSs. The layer-polarized phase is stabilized

at high E fields and spin-polarized phase at high B fields, which is consistent with our

discussion about the different mechanisms of broken symmetry phases. The linear

dependence of Ec on B field is clearly visible in Figure 5.7.

Several theory groups studied the spin-to-valley polarized transition at ν = 0

in graphene bilayers. Gorbar, Gusynin, and Miransky [92] predict a first-order phase

transition from spin to valley polarized at an E field of ∼= 1 mV/nm× B [T] . A similar

linear Ec vs B dependence is found in two other studies [93, 94], but at a larger Ec field,

of ∼= 9 mV/nm× B [T] . Töke and Falḱo [94] suggest an intermediate, compressible

phase between the spin- and valley-polarized ν = 0 QHSs, with the spin-polarized

phase collapsing at relatively small electric fields. Figure 5.5 data show that the spin-

polarized phase remains gapped at all fields except for in the vicinity of Ec. A closely
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similar system to the ν = 0 QHS in graphene bilayers is the ν = 2 QHS in double

layer GaAs/AlGaAs heterostructures [95]. Depending on the balance between the

Zeeman energy, on-site layer energy difference (∆), and the tunneling energy (∆t),

the ν = 2 QHS can be either spin or layer polarized, with an intermediate canted spin

phase [96, 97]. The Hartree-Fock theory of the ν = 2 QHS [97] shows a first-order

transition from spin to layer polarized when the exchange energy equals the direct

(Hartree) energy, a limit reached when d is much smaller than the magnetic length

(lB =
√

h/eB). The d ≪ lB is satisfied up to the highest magnetic fields here,

as d = lB = 0.07 at B = 30 T, rendering the ν = 0 QHS in graphene AB bilayers

equivalent with the ν = 2 QHS in double quantum wells, in the limit of zero tunneling

(∆t = 0), and small Zeeman energy (∆Z). Interestingly, the d/lB ∼= 0 limit in GaAs

double quantum wells cannot be reached because of limitations associated with finite

well and barrier widths, finite tunneling, and carrier density.

A similar transition at ν = 0 as a function of transverse electric field was

reported in dual-gated, suspended graphene bilayers [98]. Weitz et al. probed at

much lower E fields and up to 5.5 T and also in single-gated, supported graphene

bilayers formed on SiC [22]. Although the sample mobilities, the range of E fields,

and magnetic fields explored in Ref.[98] are very different, remarkably the linear Ec

vs B dependence is in good agreement with the results of this study.

5.4 Conclusion

In summary, the ν = 0 QHS in dual-gated graphene bilayers in a high magnetic

field reveals two regimes: at E = 0, as a result of the spin splitting, and at large E fields
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when the system is layer polarized. The ν = 0 QHS undergoes a transition from spin-

to valley(layer)-polarized QHS at a critical electric field (Ec), which depends linearly

on B, with a slope of 12− 18 (mV/nm)T−1. Our data, interpreted in the framework

of existing theories, suggest the exchange and direct energies are comparable at zero

filling factor.
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Chapter 6

Conclusion

6.1 Summary

In this dissertation we discussed the realization of graphene double layer het-

erostructures, where we observed interesting magnetotransport and Coulomb drag

phenomena. Key breakthroughs in fabrication techniques such as dielectric deposition

technique on graphene and graphene transfer process, which enabled the advanced

graphene double layer structures, were described in detail. The simple dielectric de-

position technique provided an ultra-thin and highly insulating interlayer insulator

in double layer graphene devices. Precise and damage-free graphene transfer and

alignment technique was also crucial to the realization of double layer graphene de-

vices. We extended our understanding of the system by proposing a model to explain

layer density and resistivity dependence on applied gate biases, which showed an ex-

cellent agreement with the experiments. In this graphene double layer system, we

measured the Coulomb drag in graphene for the first time, and studied carrier type,

temperature and density dependence of the drag resistivity. The history and physics

of this interlayer electron-electron interaction induced phenomena were studied in de-

tail. At low temperatures, the drag resistance featured random and giant fluctuations

superposed on the average drag signal as a signature of macroscopic-to-mesoscopic

transition. The possible mechanism of the fluctuations were examined and compared
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with our results. We also introduced a method to measure the relative Fermi energy

as a function of layer density in one layer of the double layer system by employing the

opposite graphene layer as a charge detection sensor. We demonstrated the method

by measuring the Fermi energy in graphene at zero and high magnetic fields. Lastly,

we fabricated dual-gated bilayer graphene devices and investigated quantum Hall ef-

fects and broken symmetry states in the system. The zero energy Landau levels in

graphene bilayer are known to be eight-fold degenerate, and theoretical study showed

that the degeneracy can be lifted upon applying transverse electric field and perpen-

dicular magnetic field. We focused on the ν = 0 quantum Hall state and observed a

gap opening at large electric fields and in high magnetic fields, which is explained by

broken spin and valley spin symmetry in the zero energy Landau levels.

6.2 Future Work

One future research effort could be further exploration of a signature of electron-

hole pairing in the independently contacted graphene double layer system using the

Coulomb drag measurement and/or interlayer tunneling current measurement as a

probing tool will be interesting. To date we have not observed a clear evidence of

electron-hole condensation in our double layer system. Multiple device and measure-

ment parameters need to be tuned in order to find the optimal condition at which

electron-hole pairing may be observed: device parameters such as spacing between

layers, d, and dielectric constant of the interlayer dielectric, κ, and measurement pa-

rameters such as charge carrier density in each layer, nB and nT , and measurement

temperature, T. The range of parameters we have explored are summarized in Figure
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Figure 6.1: Schematic of a graphene double layer system, and various experimental
parameters we have investigated to observe electron-hole pairing.

6.1.

The best and ultimate device structure to search for electron-hole pairs in

graphene double layers will be suspended double layer structures, where both graphene

layers are levitated but still in very close proximity. This structure will guarantee the

highest mobility in both layers [99] and ideal low-κ environment [100] to minimize

the extrinsic screening of the medium embedding the layers. The fabrication process

to achieve levitated double graphene layers, placed in only 1-2 nm apart [101] while

not touching to each other, is by no means trivial. Also if realized, extreme care

during the measurement must be taken. However, there is no fundamental limitation

to fabricate this structure. Transitional device structures such as air-gapped double

layer with no interlayer dielectric, and partially or singly suspended graphene double
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layers will provide good testbeds for this formidable, but interesting challenge. The

fabrication of top gate will widen the layer density range one can explore by reducing

the excessive electric field applied across the ultra-thin interlayer dielectric.

Further investigation of the Coulomb drag in graphene double layers will be

useful. While our data showed a qualitative agreement with the existing theory, the

amount of experimental data obtained is still limited due to the technical reasons:

tremendous time required to collect the small-scale Coulomb drag signals without

noise and with high resolution in the wide range of layer densities, at various tem-

peratures. More experimental data to validate the observed behavior and to explain

other effects originating from different drag mechanisms still remain to be established.

Efforts for quantitative explanation of the average drag resistivity and fluctuations

will also be worthwhile.

The idea of using a graphene layer as a gate and charge sensor to measure

the Fermi energy of the underlying electron system can be extended into various

practical applications. If one builds a system with a movable and suspended graphene

tip with two contacts, it can function as a scanning Kelvin probe system to measure

surface potential with spatial resolution only limited by the size of the graphene. This

system can also be used to measure the Coulomb drag and excitonic condensation

if the surface of a suspended graphene device can be scanned by the graphene tip.

The interlayer distance can be tuned as one desires. In transport measurements, if

a graphene gate is deposited instead of a metal gate, one can apply electric field to

the channel of interest and measure the Fermi energy of the channel at the same time

using the graphene gate: we can certainly call it as a graphene smart gate.
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