
Copyright

by

Johnathan Andrew York

2011

The Dissertation Committee for Johnathan Andrew York

certifies that this is the approved version of the following dissertation:

Multiple Personality Integrated Circuits and the Cost

of Programmability

Committee:

Derek Chiou, Supervisor

Brian Evans

Craig Chase

Thomas Gaussiran

David Pan

Keshav Pingali

Multiple Personality Integrated Circuits and the Cost

of Programmability

by

Johnathan Andrew York, B.S., M.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May 2011

Acknowledgments

This dissertation required the support of many colleagues, family, friends, and well-

wishers. I am grateful both for those listed below and those who go unsung.

Firstly, my wife Rosa provided encouragement, proofreading, and undeserved

patience over many years. My adviser Derek served as an appreciated voice of

experience and wisdom, ensuring that abstract notions never strayed far from the

realm of the tangible (written word). The late Margarida Jacome served ably in

the early years of this effort as both adviser and creative crucible. Her knowledge

and willingness to argue energetically about the way the design process “should be”

shaped my thinking about this work and will not be forgotten.

My parents, John and Betty, were my first “reference librarians” and pro-

vided a fertile environment in which a young engineer could prosper. My brothers,

Richard and Robert, have served faithfully as co-conspirators and able instructors in

humility. My daughter Abigail provided immeasurable motivation upon her arrival.

Finally, my many colleagues and friends at ARL:UT have provided encour-

agement, opportunity, and flexibility over the last decade. I surely would not have

attended, nor persevered, in graduate school without their gracious support.

Johnathan Andrew York

The University of Texas at Austin

May 2011

iv

Multiple Personality Integrated Circuits and the Cost

of Programmability

Publication No.

Johnathan Andrew York, Ph.D.

The University of Texas at Austin, 2011

Supervisor: Derek Chiou

This dissertation explores the cost of programmability in computing devices as

measured relative to fixed-function devices implementing the same functionality

using the same physical fabrication technology. The central claim elevates pro-

grammability to an explicit design parameter that (1) can be rigorously defined,

(2) has measurable costs amenable to high-level modeling, (3) yields a design-space

with distinct regions and properties, and (4) can be usefully manipulated using

computer-aided design tools. The first portion of the the work is devoted to laying

a rigorous logical foundation to support both this and future work on the subject.

The second portion supports the thesis within this established logical foundation,

using a specific engineering problem as a narrative vehicle. The engineering prob-

v

lem explored is that of mechanically adding a useful degree of programmability into

preexisting fixed-function logic while minimizing the added overhead. Varying cri-

teria for usefulness are proposed and the relative costs estimated both analytically

and through case-study using standard-cell logic synthesis. In the case study, a

methodology for the automatic generation of reconfigurable logic highly optimized

for a specific set of computing applications is demonstrated. The approach stands

in contrast to traditional reconfigurable computing techniques which focus on pro-

viding general purpose functionality at the expense of substantial overheads relative

to fixed-purpose implementations.

vi

Contents

Acknowledgments iv

Abstract v

Chapter 1 Introduction 1

1.1 Background . 2

1.2 State of the art . 4

1.3 Thesis Statement . 6

1.4 Approach . 7

Chapter 2 Problem Definition 10

2.1 Computation Model . 11

2.1.1 Choosing an Abstraction Level 11

2.1.2 Formalism . 12

2.1.3 Functionality . 14

2.1.4 Multiplexers and the Supremum 16

2.2 Evaluation Metrics . 18

2.2.1 Delay . 19

2.2.2 Energy . 20

vii

2.2.3 Area . 21

2.2.4 Leakage . 23

2.2.5 Multiplexers . 23

2.3 Placement and Wires . 24

2.3.1 Placement . 24

2.3.2 Wires . 26

2.3.3 Rent’s Rule and Wirelength Estimation 27

2.3.4 Realization Space Properties 30

Chapter 3 Theoretical Development 31

3.1 Defining Programmability . 32

3.1.1 Side-by-Side Realization . 34

3.1.2 Resource Sharing . 35

3.2 Generalized Programmable Interconnect 44

3.2.1 Definition . 45

3.2.2 Multiplexer Elimination . 45

3.2.3 Completeness . 48

3.3 Programmability: a priori and a posteriori 50

3.3.1 Formal Definition . 51

3.3.2 Naive Solution . 52

3.3.3 Desirable Properties . 52

3.4 Programmability Overheads . 55

3.4.1 Multiplexer Insertion . 56

3.4.2 Topological Costs . 58

3.4.3 Shared Component Inefficiencies 75

3.5 Design Space Regions . 76

viii

3.5.1 Guideline Criteria . 79

3.5.2 Region Discussions . 85

3.6 Summary . 88

Chapter 4 Experimental Validation 90

4.1 Merging Design Tool . 91

4.1.1 Overall Flow . 91

4.1.2 Optimization Strategies . 94

4.1.3 Noteworthy Complexities . 95

4.2 FLWR Case-Study . 98

4.2.1 FLWR Overview . 98

4.2.2 Application Details . 101

4.3 ASIC Implementation . 102

4.3.1 Input Circuit Baselines . 102

4.3.2 Output Circuit Unconstrained Synthesis 103

4.3.3 Pareto Synthesis Flow . 106

4.4 FPGA Implemenation . 108

4.5 Revisiting Asymptotic Region Boundary Predictions 111

4.6 a posteriori Progammability . 113

Chapter 5 Prior and Related Work 121

5.1 FPGA Modification Approaches . 122

5.2 High-level Synthesis . 124

5.3 Datapath Merging Problem . 126

5.4 Multi-mode Synthesis . 129

5.5 Reconfigurable Computing . 132

ix

5.6 The Totem Project . 134

5.7 Virtual Reconfigurable Architectures 136

Chapter 6 Conclusion 138

6.1 Contributions and Potential Impacts 139

6.2 Future Work . 141

6.3 Recapitulation . 143

Appendix A Case Study Source Code 147

A.1 CIC . 148

A.2 CORDIC . 152

A.3 CORDIC . 154

A.4 FIR . 155

A.5 heterodyning . 156

A.6 mcu . 157

Appendix B Case Study Dataflow Graphs 163

Bibliography 169

Vita 182

x

Chapter 1

Introduction

1

1.1 Background

Advances made in semiconductor fabrication technology have dramatically reduced

the incremental cost of producing digital computing devices, resulting in non-recurring

engineering costs forming a substantial component of device cost for many Appli-

cation Specific Integrated Circuits (ASICs). Programmable computing devices, in

which the functionality of the device is largely established after fabrication, serve

to amortize the non-recurring engineering costs over many potentially unrelated

applications. Traditional programmable computing devices, including Field Pro-

grammable Gate Arrays (FPGAs) and fetch/execute-style processors, are targeted

at broad application domains and typically incur tremendous area, energy, and delay

overhead relative to ASIC designs implementing the same functionality.

Contemporary literature roughly estimates this overhead at 8-88X in area,

2-14X in delay, and 12-500X in power for FPGAs relative to a standard-cell ASIC

design[56] (shown in Table 1.1). For a variety of reasons, including differing pro-

gramming models, comparisons between processor-style devices and ASIC imple-

mentations are less readily available. However, within the application domain of

high-performance digital signal processing, literature is available demonstrating or-

der of magnitude improvements in energy and delay when moving designs from

microprocessor-style Digital Signal Processors (DSP) to FPGA implementations

[15] [57] [65]. That is, evidence exists that applications implemented in processor-

style DSP architectures incur an even greater overhead than those implemented

in FPGAs. More recent work suggests that while optimizations on processor-style

architectures (e.g. [23],[89]) can improve performance and efficiency dramatically,

“the very low energy costs of actual core [operations] mean that over 90% of the

energy used in these solutions is still ‘overhead’. Achieving ASIC-like performance

2

Delay Power Area

FPGA 6-112 36-5000 116-1276
Standard Cell 3-8 3-10 14.5
Full Custom 1 1 1

Table 1.1: Relative performance measures for FPGAs, Standard Cell, and Full Cus-
tom Integrated Circuits derived from [56]

and efficiency requires algorithm-specific optimizations. [44]”

For a variety of device types, it appears that programmability imparts a

substantial overhead to application implementations. For a research engineer, such

substantial penalties lead naturally to the questions:

• What is the nature of this overhead?

• Is it avoidable, or is it fundamentally inherent in programmable devices?

• Can it be minimized?

• If it can be minimized, how close are modern programmable devices to a

theoretical minimum?

• If it can be minimized, can one describe the degree of “programmability”

of a device in a manner suitable for understanding the trade-offs between

programmability and implementation efficiency?

• What practical applications immediately benefit from answers to these ques-

tions?

3

1.2 State of the art

The notion of programmability has theoretical roots in the study of computational

reducibility. In this field, relationships between computations are studied, and one

computation is said to be reducible to another if the former can be computed by

computing the latter, followed by a de minimis computation specified by the par-

ticular type of reducibility. Notably, reducibility applied to “effectively calculable”

functions led to the the concept of a Universal Turing Machine [86], which estab-

lishes the existence of an upper bound for computability. This powerful proof argues

that even simple machines with suitable external storage can compute anything that

can be computed.

The Universal Turing Machine (UTM) proof implies that the architectural

requirements for a device to be fully programmable are quite weak (perhaps even a 2-

state, 6-rule finite state machine is sufficient when connected to an external memory

[77]). The universal properties of the physically unrealizable UTM are present in

a more tangible analog: the stored-program, von Neumann-style [88, 5] (i.e. fetch-

execute) computer. Despite the theoretical attractiveness of universal computability,

a Turing-completeness definition of programmability ignores practical costs such as

memory required, computational speed, and energy usage.

The physical costs of a realized computation are perhaps most comprehen-

sively considered in the rich field of high-level synthesis, which has been characterized

as the study of “automated generation of the hardware circuit of a digital system

from a behavioral description.” [42]. This ambitious and difficult problem has been

studied as a distinct field for over three decades, with “mixed success”[41], and has

been characterized by a series of generations of researchers, each claiming “to have

got it right” [41]. While a more detailed discussion is left for section 5.2, high-level

4

synthesis is often conceptually considered to have two related optimization subprob-

lems: binding and scheduling. Loosely speaking, these are roughly the decision of

where and when, respectively, each of the components of the overall computation

is physically performed. As might be inferred from the earlier definition, much ar-

chitectural freedom is typically assumed in high-level synthesis, which distinguishes

the approach from the structure imposed in other fields. Also implicit in the high-

level synthesis problem definition is the assumption of a behavioral description of a

specific computational problem present as input. That is, while high-level synthe-

sis may involve the use of reconfigurable hardware, the stated goal is to use said

hardware to implement specific computations and not to generate general-purpose

hardware.

In contrast, the field of reconfigurable computing is concerned with the de-

sign of hardware architectures that can be reconfigured after fabrication to imple-

ment various computations. Reconfigurable computing, discussed more completely

in section 5.5, had its humble birth in the implementation of “low cost/marginal

performance class” [35] of circuitry, as more mundane concerns of testability and

designer effort began to outweigh the incremental fabrication costs of large scale

integrated circuit fabrication. In recent times, reconfigurable computing has ex-

ploded to include large field programmable gate arrays (FPGAs), and a plethora

of academic architectures [45]. The distinguishing characteristic of reconfigurable

computing approaches is the desire to expose hardware structure into the program-

ming model. For example, the “sea of gates” model of FPGAs is exposed directly to

the compiler, which must locate these gates and find physical resources to connect

them together. This stands in contrast to the von Neumann-style approach, which

prefers to expend extensive hardware cost to provide the illusion to the program of

5

general-purpose functional units, large uniform memories (and registers), and serial

execution.

Given their prevalence and importance to computing, von Neumann-style

fetch/execute processors have not been immune from studies of their physical costs.

Among the numerous and incredible developments in computer architecture over the

last century, one innovation is particularly relevant to this effort: data-path acceler-

ators. These accelerator modules are targeted at specific computational fragments,

and are coupled to the fetch/execute computing core in order to dramatically reduce

the cost of the targeted computations. By doing so, the accelerators are able to ex-

ploit the general purpose nature of the fetch/execute core to handle things such as

control flow, in order to simplify the accelerator module. This approach is discussed

more extensively in section 5.3.

1.3 Thesis Statement

Extensive prior work has focused on synthesizing fixed-function logic from behav-

ioral descriptions (e.g. high-level synthesis), improving performance of fetch/execute

style processors (e.g. datapath accelerators), and exposing hardware limitations to

programmers (e.g. reconfigurable computing). The level of programmability of these

platforms is an implicit part of their design, and are effectively fixed for all users

of a given platform. In contrast, this effort hypothesizes that programmability can

be elevated to an explicit design parameter that (1) can be rigorously defined, (2)

has measurable costs amenable to high-level modeling, (3) yields a design-space with

distinct regions and properties, and (4) can be usefully manipulated using computer-

aided design tools.

6

1.4 Approach

To test this abstract hypothesis, a specific and tangible engineering problem has

been selected to serve as a skeleton around which supporting arguments will be

made. Specifically, consider that one

• has a fixed-function circuit implementation of a computation that exceeds a

specific set of performance requirements by some margin,

• wishes to leverage said margin to improve the functionality and flexibility of

the implementation, and

• wishes to do so in a mechanized way with minimal designer intervention.

The work that follows demonstrates an automated methodology for improv-

ing the flexibility of a fixed-function circuit, while minimally degrading performance.

Specifically, it will be shown that one can mechanically introduce a useful level of

programmability into fixed-function logic circuit without incurring substantial over-

head for the added functionality. Furthermore, by doing so one can directly ma-

nipulate programmability to explore a design space between general-purpose and

fixed-function logic, thereby gaining insight into costs of programmability.

To support this thesis, the remainder of this document is structured at a

high-level as follows:

• a rigorous definition of the problem to be solved and brief discussion of relevant

prior work (Chapter 2),

• proposal of varying levels of programmability and development of an analytical

model that predicts the overhead for each (Chapter 3), and

7

• development of automated software and conduct a case-study in the applica-

tion domain of high-performance signal processing (Chapter 4).

• detailed discussion of related and prior work (Chapter 5)

In more detail, chapter 2 will define a model of computation based upon

a hardware logic circuit that will be used throughout the effort. Several physical

costs of computation will be used to evaluate implementations will be evaluated,

including:

• area - the physical size of the computing implementation

• delay - the time taken for the computation to complete

• energy - the energy expended per unit of computation

• leakage power - the energy expended per unit time that the device is powered,

regardless of computations performed.

Chapter 3 will propose several levels of programmability in two major cate-

gories: a priori and a posteriori. In doing so, notions of programmability that are

perhaps familiar, but previously ill-defined will be formalized. A resource sharing

methodology will be examined which, in conjunction with common-sub-expression

elimination, can yield a model for a generalized programmable interconnect. This

generalized programmable interconnect forms a model of programmability based on

the composition of fixed-function components. The overheads that are introduced

when constructing programmable circuits will be examined, followed an argument

for distinct design-space regions that arise from the relative dominance various com-

ponents of these overheads. Techniques for optimal construction of programmable

8

architectures and their relative suitability for the various design-space regions will

complete the chapter.

Chapter 4 will discuss a software tool developed for this effort that generates

programmable circuits meeting the definitions established in chapter 2 and the tech-

niques of chapter 3. A case study will be presented using computations extracted

from a software defined radio application. The resulting costs of programmable cir-

cuits synthesized in a standard-cell ASIC flow will be used to measure overheads

relative to fixed-functionality circuits synthesized in the same flow. Comparison to

the FPGA implementation originally used in the application, including the results

of generating a virtual reconfigurable architecture within the FPGA fabric, will be

presented.

Chapter 5 will discuss relevant prior and related work, while chapter 6 will

summarize the work, enumerate the contributions, and suggest avenues for future

study.

9

Chapter 2

Problem Definition

10

In this chapter, the problem to be solved is defined, and a formalism that will

be utilized in later chapters is described. It should be understood that none of the

individual pieces of the framework presented in this chapter are particularly novel.

To the contrary, it is hoped that they represent an aggregation of assumptions that

are individually well-tested and uncontroversial. Instead, the goal for this chapter

is to produce a model framework that requires a minimal number of assumptions

of the underlying implementation technology. By doing so, an implicit argument is

made that the techniques presented in later chapters are not reliant on the details

of a particular implementation technology, but are instead inherent to a wide range

of physically-realized computations.

2.1 Computation Model

As elaborated in section 1.3, the goal for this effort is to improve the flexibility of a

fixed-function circuit in an automated way. To operate on circuits in an automated

way, it is necessary to formalize the description of a circuit, and define the ways

in which it can manipulated. Such formalization defines a model of computation

in order to allow manipulation of a computation while respecting the semantics

required to preserve behavior.

2.1.1 Choosing an Abstraction Level

Modeling computation is a long studied problem, used in disciplines ranging from

discussion of computability to more pragmatic issues. In the pursuit of ever higher-

level synthesis capability, numerous models of computation have been proposed,

including: finite state automatons, register transfer language, data flow, discrete-

event, and continuous time models. Notably, the purely coordination aspects com-

11

puting have been studied extensively under the umbrella of “coordination languages”

[36]. A key argument underlying the high-level synthesis approach is that higher

levels of abstraction open up larger opportunities for optimization. The reasoning

behind this argument is relatively straightforward: higher levels of abstraction by

definition have less lower-level information and therefore fewer lower-level restric-

tions on optimizations than can be performed. As a result, it is typically argued that

optimization in high-level synthesis should occur at the highest levels of abstraction.

However the stated goal of this effort, to trade performance margin in a fixed

function circuit to gain added flexibility, benefits from having low-level knowledge

of the fixed-function circuit beyond a behavioral description. In particular, to avoid

introducing undue overhead on the fixed function implementation, it is desirable

to retain the low-level structure of said implementation and perform manipulations

at a lower level. As a result, the model of computation chosen is that of a circuit

graph.

2.1.2 Formalism

Definition A circuit is a graph G defined by the tuple consisting of a set of com-

ponents (i.e. graph vertices) and a set of connections between them (i.e. “nets” or

graph edges).

G = (V,E) (2.1)

Definition Each component v ∈ V has an associated set of ports, ports(v). For

later use, define a function component to be the component associated with a port.

That is,

component(p) = v ⇔ p ∈ ports(v). (2.2)

12

In practice each port is typically identified by a name and optional bit selec-

tion. Moreover, each port is defined to be either an input or output port.

∀p ∈ ports(V) : isInput(p) ∨ isOutput(p) (2.3)

isInput(p)⇔ ¬isOutput(p) (2.4)

For simplicity, each component is defined to have one output port. That is,

∀v ∈ V : |p ∈ ports(v) : isOutput(p)| = 1. (2.5)

One can avoid loss of generality by modeling a multiple output component

as a composition of components, specifically one component per output port that

all receive the same set of inputs.

Definition An edge connects between the output port of a component to the input

port of a component. The output port is known as the source, while the input port

is known as the sink of the edge. That is, each edge is defined as a 2-tuple of the

source and sink port.

∀(source, sink) ∈ V : isOutput(source) ∧ isInput(sink) (2.6)

A single output port may be associated with multiple edges, each connecting

to differing input port. Each input port is the sink of at most one edge.

(source, sink) ∈ E → ((source∗, sink)⇒ source∗ = source) (2.7)

13

An example circuit is shown graphically in Figure 2.1.

Figure 2.1: A simple circuit

2.1.3 Functionality

For this effort further knowledge about each component is required, notably a rela-

tion between components indicating that when connected appropriately, one compo-

nent behaves equivalently to another. For example, one instance of an 8-bit adder

component can be substituted for another instance of an 8-bit adder component

without change in functional behavior. However, in place of an equality relation, a

more useful comparison relation is defined instead.

Definition The functionality of a component (or circuit) a is said to be less than

or equal to the functionality of a component (or circuit) b if and only if b can

be substituted for a without change in functional behavior with appropriate port

connections. Symbolically, this is written

a ≤ b. (2.8)

14

For example, an 8-bit unsigned adder might be said to be less than or equal

to the functionality of a 16-bit unsigned adder, because by appropriately connecting

the input ports (in some cases to a constant zero) and the output port (perhaps

leaving the most significant bits unconnected), the 16-bit adder can be substituted

for the 8-bit adder without altering the correct functional behavior of the circuit.

Definition Given a component (or circuit) a, the functionality of the component,

written symbolically as functionality(a), is defined to be the set of all components

(or circuits) that implement strictly equivalent functionality to a. That is, the

following are defined to be true:

a ∈ functionality(a) (2.9)

a ∈ functionality(b)⇔ (a ≤ b) ∧ (b ≤ a) (2.10)

As a result, we can say that

functionality(a) = functionality(b)⇔ (a ≤ b) ∧ (b ≤ a). (2.11)

For convenience, we can also define a functionality relation on the set of

functionalities such that

functionality(a) ≤ functionality(b)⇔ (a ≤ b). (2.12)

Theorem 2.1.1 The functionality relation forms a partial order over the set of all

functionalities F .

Proof Under the definition above, the functionality relation is reflexive, as a com-

15

ponent can certainly be substituted for itself without change in functional behavior.

It is also transitive, as if a can substitute for b and b can substitute for c without

change in functional behavior, then certainly a can substitute for c without change

in functional behavior. It is also anti-symmetric, in that if two units can be substi-

tuted for each other without any loss of functionality, their functionality must be the

same. Thus the relation(≤) is reflexive, transitive, and anti-symmetric. Therefore

(F,≤) forms a partial order.

2.1.4 Multiplexers and the Supremum

Definition Because functionality relation (F,≤) is a partial order, a unique supre-

mum (also known as “join” or “least upper bound”) for a set of functionalities is

defined. Following the traditional definition, the supremum of a set Z is an element

s such that

• ∀z ∈ Z : z ≤ s, and

• ∀t ∈ T : (∀z ∈ Z : z ≤ t)⇒ s ≤ t.

The former condition requires that s must be substitutable without loss of

functionality for any element in Z. The later requires that if there exists any other

element t that can substitute for all elements in Z, then it must also substitute for

s. If one assumes that strictly increased functionality always incurs equal or greater

costs, one can say that the supremum of a set of functionalities (if it exists) is the

least expensive functionality that can substitute for any functionality in the set.

While the uniqueness of the supremum is guaranteed by definition, the existence of

the supremum is not. However, as will be shown below, there are conditions under

which the supremum is guaranteed to exist.

16

Definition A multiplexer is a component that has a set of input ports referred to

as data ports, an input port referred to as the selection port, and a single output

port. The multiplexer has the property that for each data input port, there exists a

connection to the control input port such that any device connected to the output

port behaves functionally as if it were connected directly to the source of said data

input port.

Theorem 2.1.2 The existence of multiplexer functionality guarantees the existence

of a supremum, and therefore makes (F,≤) a join semi-lattice.

Proof For any set of components, instantiate a multiplexer and one instance of each

component in the set. Now connect the outputs of each of the functional units to

the data ports of the multiplexers. By definition of the multiplexer, there exists an

appropriate connection to the control port of the multiplier such that components

connected to the output port of the multiplexer can be made to behave as if they are

directly connected to any one of the components in the original set. As a result, the

resulting composition can behave identically to any of the original components, and

thus the functionality of this composition is equal to or greater than the functionality

of each of the original components. Thus a supremum is shown to exist for any set

of input components, and (F,≤) is a join semi-lattice.

Restated, provided a multiplexer element exists, it has been shown that for

any set of functionalities it is possible to construct a circuit of equal to or greater

functionality (the supremum) to any functionality in the set. This constructive proof

is shown graphically in Figure 2.2. A curious reader may wonder about the existence

and usefulness of the infimum. The infimum (or greatest upper board) of a set of

functionalities would contain the most functional component possible that cannot

17

implement the functionality of any of the functions in the set. While the engineering

usefulness of the infimum is not clear, it is perhaps useful in defining the topological

characteristics of the functionality space and therefore the applicability of various

optimization techniques based on traversing in that space. A cursory examination

suggests that the existence of an infimum would need to be predicated on far more

complex conditions than the existence of a single component, and this exercise is

left for future work.

Figure 2.2: Construction style used to prove the existence of a supremum for any
set of component (functionalities).

2.2 Evaluation Metrics

In the prior section, a formal definition for a circuit is given. In this section, several

metrics on the set of possible circuits are evaluated, by which a circuit may be

evaluated relative to others. Moreover, a set of properties for these metrics is derived,

which will be used by later work. Particular attention is given to the derivation of

rules for how the overall metrics for a composition relate to the metrics of each

component. While the specific metrics given here are particularly relevant to metal

18

oxide semiconductor fabrication, the manner in which these metrics scale when

components are aggregated into hierarchical structures are perhaps more universal.

Definition Formally a mathematical metric d is a function d : X ×X → <, that

satisfies the conditions

1. d(p, q) > 0 if p 6= q

2. d(p, p) = 0

3. d(p, q) = d(q, p)

4. d(p, q) ≤ d(p, r) + d(r, q), for any r ∈ X [70].

In the context of measuring physical costs, it is desirable to relax the first

constraint (the identity of indiscernibles), such that differing circuits may have iden-

tical physical costs. Such relaxed metrics are referred to as a pseudometric, and

the condition of d(p, q) = 0 defines a metric identification equivalence relation of

equally-costly circuits.

Definition Define the null circuit ∅ to be a circuit with no components and no

edges. The metrics considered here are defined such that d(∅) ≡ 0. This allows use

of short-hand d(x) ≡ d(x, ∅).

2.2.1 Delay

The first pseudometric considered is delay, defined to be the physical time taken

to complete a unit of computation. Each component of a circuit is assumed to be

modeled by an input-independent delay from the last input port being valid to the

result being produced at each output port.

19

Definition The delay metric is defined as a function that maps from the domain

of circuit onto the set of non-negative reals:

delay : V → <+. (2.13)

Physical devices often have varying delays between each input/output port

pair, which can be modeled without loss of generality via aggregations of compo-

nents.

In collections of components, the overall delay depends on the topography

of the connections between components. In a serial composition, the overall delay

is the sum of the individual delays. In parallel composition, the overall delay is the

greater of the composed components. Notably, is it possible for components to not

contribute the overall delay, if they are effectively in parallel with a computation

that takes a longer time. In contrast, components that effectively contribute to the

overall delay (i.e. an incremental change in the delay of said component directly

changes the overall delay) are referred to as residing on the critical-path of the

circuit.

2.2.2 Energy

The second pseudometric considered is energy, defined to be the energy required to

complete a unit of computation. It is assumed that each component of a circuit

can be modeled as having an internal energy dissipation per operation. For the

purposes of this architectural exploration technique, which is focused on how en-

ergy aggregates in collections of components, data-dependent effects on energy are

ignored although the reader is advised that they may be substantial.

Definition The energy metric is defined as a function that maps from the domain

20

of circuits onto the set of non-negative reals:

energy : V → <+. (2.14)

In collections of components, the overall energy is defined to depend solely

on the sum of the individual components. Formally, the energy of a circuit is defined

as

energy((V,E)) ≡
∑
v∈V

energy(V). (2.15)

2.2.3 Area

The third pseudometric considered is area, defined to be the physical space required

to complete a unit of computation. The term area, rather than volume, is adopted

to improve readability in the context of dominant two dimensional fabrication tech-

nologies. It is assumed that each component of a circuit has an area requirement.

However, unlike the other psuedometrics considered, area is not defined to map onto

the set of positive reals. There are often multiple components of area that must be

considered in an implementation, and an excess requirement in any one component

effectively requires padding of the other components. An example of this can be

found in the multiple layer construction in current semiconductor processes. If a

circuit has dense wiring needs on a metal layer, it is commonly necessary to add

additional padding space between circuits on the active layers to allow for this. Thus

the set of non-negative reals does not adequately capture the aggregation effects of

area. To capture this appropriately, the area metric maps to an arbitary metric

space M as defined below.

Definition The area metric is defined as a function that maps from the domain of

21

circuits onto an arbitrary metric space M = (m, d), where m is a set of points, and

d is a metric on m :

area : V →M. (2.16)

Moreover the following conditions must be met:

• There must exist an element 0 in m, that represents the area of the null circuit.

Symbolically

area(∅) ≡ 0. (2.17)

• Elements closer to 0 element are considered to be more desirable. Symbolically

a is more desirable than b iff

d(0, a) < d(0, b). (2.18)

• Each component is assumed to have an area represented by an element in m.

• There must exist an addition function that is valid and closed over all points

in m.

• As a metric space, d must respect the triangle inequality.

Formally, then the total area of a circuit is defined as

area((V,E)) ≡
∑
v∈V

area(V). (2.19)

For optimization, one can then map this total area onto the set of reals via

the metric distance function d.

22

2.2.4 Leakage

The final pseudometric considered is leakage, defined to be the time rate of energy

dissipation required while the circuit is powered.

Definition The leakage metric is defined as a function that maps from the domain

of circuits onto the set of non-negative reals:

leakage : V → <+. (2.20)

In collections of components, the overall leakage is defined to depend solely

on the sum of the individual components. Formally, the total area of a circuit is

defined as

leakage((V,E)) ≡
∑
v∈V

leakage(V) (2.21)

2.2.5 Multiplexers

Based upon the metric definitions above, it is possible to make statements on the

cost of the multiplexer element defined in section 2.1.4.

Definition A 2-input multiplexer, henceforth referred to as MUX2, is defined as to

be a multiplexer as established in section 2.1.4 with 2 input ports.

Theorem 2.2.1 Bounds on the costs of a multiplexer with an arbitrary number of

inputs N can be defined in relation to the costs of a MUX2.

Proof As shown in Figure 2.3, a N-input multiplexer can be realized as a hierar-

chical tree of 2-input multiplexer, and this provides us with a bound for the costs

of the former in terms of the latter. The total delay through the multiplexer tree

23

Figure 2.3: Realization of 8-input multiplexer using 2-input multiplexer elements

2-input N-input

delay delay(MUX2) delay(MUX2)ceil(log2(N))
energy energy(MUX2) energy(MUX2)(N − 1)
area area(MUX2) area(MUX2)(N − 1)

leakage leakage(MUX2) leakage(MUX2)(N − 1)

Table 2.1: Relative costs for a a 2-input multiplexer and resulting bounds on N-input
multiplexer costs

scales as log2(N), while the area, energy, and leakage costs scale with number of

multiplexers required as N − 1. Table 2.1 captures these relative cost bounds.

2.3 Placement and Wires

Definition When computations are realized in a space each component must oc-

cupy a finite region in that space, and each component connected by an edge must

be connected with components that may induce additional costs in terms of delay,

area, energy and leakage. Such components are henceforth referred to as wires.

2.3.1 Placement

Definition A realization space P is a set of elements in which a computation is to

be realized, upon which a metric distance function dist : PxL → < exists, thereby

24

creating a metric space (P, dist).

Definition The placement for a circuit is a function which maps from the set of

components in a circuit to a subset of the realization space. Symbolically

placement : V → {P ′|P ′ ⊂ P}. (2.22)

Definition For a given circuit component, the subspace that it maps to is referred

to as a placement region. It is required that the placement region for each component

be disjoint, or symbolically

∀a, b ∈ V : placement(a) ∩ placement(b) 6= ∅ ⇐⇒ a = b. (2.23)

From this it can then be shown that the placement function is injective. The

placement region of each component is further restricted to be bounded. That is,

for each component v ∈ V there exists some size s ∈ <, such that

∃b ∈ < : ∀placement(v) < b. (2.24)

Definition Each port of a component also has a placement, defined by the port

placement function

portplacement :
⋃
{ports(v)|v ∈ V } → P. (2.25)

Each port is defined to lie within the placement of its associated component.

That is,

∀v ∈ V : p ∈ ports(v) =⇒ portplacement(p) ∈ placement(v). (2.26)

25

2.3.2 Wires

Definition A circuit component w is said to be a wire if and only if it possesses all

of the following properties:

1. Two ports - ports(w) = {i, o} such that isInput(i) and isOutput(o) are true.

2. Transparency - The correct operation of the circuit is maintained if the ports

sunk by o were directly connected to the port sourcing i.

3. Length-dependent costs - The cost of the is dependent solely on the type of

wire and a single parameter `(w) ∈ <. For any given type of wire, the wire

can be shortened or extended without limit and the cost of a given wire is

dependent solely upon and monotonically1 increases with the parameter `(w).

Definition A circuit is said to be realized if and only if all of the following conditions

are met:

1. All non-wire components are connected solely via wire components

(source, sink) ∈ E =⇒

isWire(component(source)) ∨ isWire(component(sink)). (2.27)

2. All connected sources and sinks are placed together

∀(source, sink) ∈ E : portplacement(source) = portplacement(sink).

(2.28)

1In many cases, the cost of a wire increases linearly. However, in contemporary fabrication tech-
nologies, wires are often separated by distances well below a wavelength of the signal transmitted,
and therefore wires act as physically distributed capacitors in which propagation delay increases
quadratically with length.

26

3. There exists a placement into a realizable space (P, dist) such that the length

of a wire is defined by the placement

∀v ∈ V : isWire(v) =⇒

`(v) = dist(portplacement(input(v)), portplacement(output(v))). (2.29)

2.3.3 Rent’s Rule and Wirelength Estimation

In the prior section, the notion of a wire and physically realizable circuit were

formally introduced. Notably, in recent fabrication technologies, the cost of wires

has become an increasingly large portion of the overall cost of circuits [47]. As a

result, this cost has come under increasing study, including statistical estimation.

One particular insight developed in the course of this study, Rent’s rule, yields

particularly useful insights.

Hagen, et al [43] note that Rent’s rule is an empirical relation first observed

by E.F. Rent in the late 1960’s, that

reflects a power-law scaling of the number of external terminals of

a given subcircuit with the number of modules in the subcircuit. Specifi-

cally,

T = k · Cp (2.30)

where T is the average number of external terminals (pins) in a

subcircuit or partition; k is Rent’s constant, a scaling constant which

empirically corresponds to the average number of terminals per module;

C is the number of modules in the subcircuit (or partition); and p is the

Rent parameter or Rent exponent, with 0 ≤ p ≤ 1.

27

Figure 2.4: Graphical Representation of Rent’s Rule. The left shows pin count
plotted logarithmically against number of modules, where the slope respents the
Rent exponent p. The right shows an example of circuits with random (p = 1) and
highly structured logic (p = 0).

This is captured graphically in Figure 2.4. Notably, when the number of

pins (T) is plotted against the number on a logarithmic scale, as in the left side of

Figure 2.4, the slope of a fitted line is the Rent exponent p for the circuit. On

the right side, one can see that each of the square modules have 4 pins, thereby

resulting in a corresponding point of (T,C) = (4, 1). In the top half, indicative of

random, unrelated logic, the aggregate of two modules has 8 external pins, yielding

a corresponding point of (T,C) = (8, 2). In contrast, when related logic is grouped

together, as is typical in highly structured circuits, the aggregate of two modules

again has 4 external pins, yielding a point of (T,C) = (4, 2). By examining these

two pairs of points in the context of equation 2.30, one can find that Figure 2.4

illustrates the two extremes of Rent exponent, p = 0 and p = 1.

In practice, the Rent exponent p is likely to be a value in between these

extremes. A regular two dimensional array such as a RAM or tiled array logic

28

is likely to have an exponent of 0.5, as the number of external pins (along the

perimeter) increases as the square root of the number of cells (or area). This holds

more generally, with the Rent exponent related to a fractional dimensionality for

circuits.

Landman and Russo [58] observed that the Rent parameter depends both

upon the circuit structure and the partitioning algorithm used. Hagen, et al [43]

extended this concept to yield the notion of an “intrinsic Rent parameter” defined

to be the lowest Rent parameter possible for any given circuit. Thus, the Rent

parameter can be used as an evaluation metric both for partitioning, and as a

metric for circuit placement difficulty.

Donath [29] formulated an upper bound on expected average interconnec-

tion length on both linear and square placement topologies based upon partitioning

techniques. He noted that for large circuits, the average wire length R is related to

the Rent exponent p and the number of circuit components C, as follows

R ∼

Cp−0.5 for p > 0.5

logC for p = 0.5

f(p) for p < 0.5,

(2.31)

where f(p) is an unspecified function of only p.

This upper bound establishes a statistical relationship between the number

of gates in a circuit, the circuits Rent exponent, and a wirelength. This work has

been expanded to include expectations for the statistical wirelength distribution [30].

Notably, Stroobandt [82] provided an explanation for the observation of Donath that

average wirelength deviates from the upper bound by approximately a factor of 2.

If one considers that a 2D plane assumed by Donath has an effective Rent

29

exponent of 0.5 (i.e. perimeter = area0.5), the three sections of the Donath equation

above correspond to the cases of when the circuit to be implemented has greater,

equal, and lesser asymptotic connectivity needs than the realization space. This

relationship has been noted by other authors and applied in other contexts. For

example, DeHon [27] has used this observation to optimize for area efficiencies in

FPGA interconnect designs

2.3.4 Realization Space Properties

Two properties of a realization space as defined in section 2.3 are defined here for

later use.

Definition A realization space is said to have the property of translation-invariant

costs if the cost of a realized (i.e. placed) circuit is invariant to the position in the

realization space. That is, provided the realization space is large enough, multiple

copies of a realizable circuit can be placed in the space, and the costs of each copy

are identical. Note that many implementation technologies possess this property,

including 2D lithographically produced integrated circuits and tile-based FPGAs.

Definition A realization space is said to have the property of 2D Rent’s rule wiring

costs if the average interconnect length R between aggregated components with an

intrinsic Rent parameter of p follows the relationship of equation 2.31.

30

Chapter 3

Theoretical Development

31

This chapter begins by arguing for a specific definition of programmability.

From this definition a model of programmability based on the assembly of fixed-

function components with multiplexer “glue” will be proposed and rigorously de-

fined. This model and the resulting design-space will be explored theoretically, with

formal mechanisms for traversing between points within the design-space. From

these mechanisms the extent of the design-space will be explored, and points and

properties of interest will be identified. The chapter concludes by examining the

interactions between the proposed model and the fabrication models developed in

Chapter 2. From this interaction, distinct design-space regions are identified based

on the relative magnitude of various cost components. Each design-space region will

be discussed and optimization strategies suitable for each will be suggested.

3.1 Defining Programmability

In the author’s experience, the term programmability is widely understood but used

only informally. To avoid ambiguity and confusion in the remainder of this work, a

more rigorous definition for this term will be developed and justified. As the question

at hand is one of definition of a word with use beyond a specific technical field, a

dictionary is a useful authoritative starting point. The Oxford English Dictionary

describes the term “programmable” as “capable of being assigned a function by

the user” [2]. Albeit pedantic, in this author’s experience ambiguity arises when

ascribing meaning to the word “a” of this definition. The Oxford English Dictionary

provides several definitions for the indefinite article “a”, two of which are particularly

relevant:

• “referring to something not specifically identified [...] but treated as one of a

class: one, some, any1”, and

32

• “in a more definite sense: one, a certain, a particular1.” [2]

Correspondingly, in the author’s experience, two lines of reasoning prevail

about the definition of programmability:

• a device is programmable if it is capable of being assigned any function by the

user, or

• a device is programmable if it is capable of being assigned a particular function

by the user.

The former definition is perhaps an implied reference to the universality of

Universal Turing Machine discussed in Section 1.2. Under this definition a device

would be programmable if and only if it is Turing-complete. However appealing,

this definition is unsatisfying for this author, as it both contradicts common usage

of the term, and is unsuitably rigorous for engineering usage due to the impracti-

cality of constructing the infinite-length tape that is critical to Turing-equivalence.

Certainly one would consider early 4-bit microprocessors with kilobits of RAM pro-

grammable, yet such machines would not qualify under a rigorous application of this

definition. Carrying out this definition to its logical conclusion, one is faced with

unsatisfying questions of the form: how much memory is required for a device to be

programmable? Under this definition, it would seem that no physically realizable

device can be said to be programmable.

In contrast, the latter definition permits realizable devices and is therefore

arguably more useful in an engineering context. Rather than requiring an implied

form of Turing-completeness, a device is said to be programmable if it can be as-

signed a particular function, and is distinguished from a fixed-function device by the

1Emphasis added

33

ability to be assigned more than one function. It is this definition that will serve as

the basis for this document, and upon which stronger properties will be defined.

Definition A device is said to be programmable if and only if it is capable of being

assigned more than one function.

This definition necessarily relies upon a contextual definition of the term

“function”. Thus the property of being programmable is not an intrinsic property

of a device, but is instead a property of how a device is used.

3.1.1 Side-by-Side Realization

In section 3.1, it was argued that a device is programmable if it can be assigned

more than one function. Based upon this definition, and the definitions of Chapter

2, one can show that given a set of circuits and the multiplexer element defined in

Section 2.1.4, one can create a single programmable circuit capable of being assigned

to any of the input circuits tasks via a construction of the form shown in Figure 3.1.

Theorem 3.1.1 (Side-by-side Realization) Given any set of circuits, and the exis-

tence of a multiplexer element, one can construct a programmable circuit capable of

being assigned the function of any of the input circuits.

Proof Proof follows in a similar form to that of Theorem 2.1.2, as each individual

circuit is merely an aggregation of components.

Moreover, one can bound the overhead of this construction. Based on the

rules of section 2.2, provided the multiplexer select signals change infrequently, one

can say that the delay of the programmable circuit is equal to the cost of the original

circuit plus the delay needed to reach the repositioned inputs, the multiplexer delay,

34

Figure 3.1: Conceptual diagram of naive side-by-side realization. The circuit on
the right can be said to be programmable because it can be assigned to any of the
functions of the circuits A..Z on the left

and the delay incurred in the wire needed to reach the multiplexer. The area incurred

is the sum of the area of each of the input circuits, plus that of the multiplexer and

the wires needed to reach the multiplexer. Naively, the energy is also equal to the

sum of the energy of each of the input circuits plus that of the multiplexer and wires.

However, with proper operand isolation techniques, the unused circuitry can remain

idle. As a result, the overall energy is that of the selected circuit plus that of the

multiplexer and wires. A similar argument applies to leakage and power gating.

3.1.2 Resource Sharing

The side-by-side realization of the prior section is inefficient when, as is common,

there are portions of circuitry that can be shared between the various circuits.

Because only a single circuit of Figure 3.1 is active at a time, one may reduce the

area by sharing various components between circuits.

Definition Consider that each circuit is composed of individual components. By

35

merging similar components from differing input circuits into a single component

capable of implementing the functionality of either (see section 2.1.3), one can share

the component thereby potentially saving area and reducing wiring costs. This

manipulation is known as resource sharing.

Resource sharing has the effect of pushing multiplexers from the extrema

deeper into the circuits. For example, consider the two circuits shown in Figure 3.2.

They can be implemented into a programmable circuit in a side-by-side realization as

shown in Figure 3.3. However, one can also consider merging component Mul 2 and

Mul B into a shared component. As shown in Figure 3.4, by introducing appropriate

multiplexers into the circuit, and broadcasting the result of the shared unit to all

possible destinations, one can continue to implement the same functionality, but

with a single multiplier (Mul 2B in this case). This example highlights general rules

for component sharing while preserving functional correctness that are captured in

the following theorem.

Theorem 3.1.2 Functionally equivalent behavior is preserved across a resource

sharing manipulation if and only if all of the following conditions are met:

• each input port of the resulting shared component must have connectivity, if

needed via an inserted multiplexer2, to the driver of the corresponding input

ports on each original component participating in the sharing,

• each output port of the resulting shared component must have connectivity to

the components driven by the output port on each original component partici-

pating in the sharing, and

2connected in such a manner that the appropriate input can be selected

36

Figure 3.2: Programmable Interconnect Example: The input circuits

37

Figure 3.3: Programmable Interconnect Example: Side-by-Side Realization

38

Figure 3.4: Programmable Interconnect Example: Merge Mul 2 and Mul B into a
shared Mul 2B

39

• the resulting shared component has functionality equal to or greater than the

supremum of the set of resources to be shared.

Proof It will first be shown that functionally equivalent behavior is preserved if the

conditions are met, then the converse will be shown.

If the first condition is met, then by the definition of a multiplexer, there

must exist some connection to the multiplexer selection ports such that the circuit

has equivalent behavior to the original circuit. If the third condition is met, the

definition of equal to or greater functionality ensures that there exists some port

connections to the shared component that provides equivalent behavior to any of

the original unshared components. Finally, downstream components must behave

equivalently, because they are required to be connected to the shared component

by the second condition. As a result, there must exist a set of connections to the

multiplexer control port such that the overall circuit has equivalent behavior.

The inverse will now be proven by showing that if any one condition is not

met, then functionally equivalent behavior is not preserved. For the first condition, if

there exists an input port of the resulting shared component that isn’t connected to

the driver of a corresponding input port, then there can exist a circuit in which that

input was needed by the shared component for equivalent behavior, and therefore

equivalent behavior cannot be preserved. For the second condition, a similar proof

applies to the equivalent behavior of downstream devices if an output port is not

connected. For the third condition, if there exists a component in the set to be

shared that has greater functionality than the resulting shared device, then there

must exist a circuit whose behavior the shared circuit is not equivalent to.

Because both the implication and inverse were shown to be true, the bicon-

ditional theorem must be true.

40

Figure 3.5: Programmable Interconnect Example: Circuit resulting from merging
multiple components

The first rule implies that given a component with a set of input ports N

that is to be shared between a set of circuits K, one can state that one needs at

most |N | |K|-input multiplexers to preserve functional correctness. This merging

process can be applied multiple times, as demonstrated in Figure 3.5. The binding,

or selection of which components to merge can be described as a collection of sets,

in which components in each set, at most one from each original circuit, are to be

shared. Based upon the example of Figure 3.5, several definitions will be made.

Definition The selection inputs to the multiplexer elements collectively define the

task description within the context of a particular programmable device. In this

41

sense, the inputs to the multiplexer selection elements define a program to be exe-

cuted by the device.

Definition A device’s programming function maps from the set of functionalities

it can be assigned to the set of programs that configure it to execute those function-

alities.

If N circuits were merged, the multiplexer selection inputs can be encoded

in log2(N) bits. However, often the number of multiplexers exceeds log2(N), as is

the case in Figure 3.5. Notice that while the two circuits to be implemented were of

the form (A+B) ∗ (C ∗D) and ((A+B) ∗C) +D, by appropriately configuring the

three multiplexers, one can also implement circuits of the form (A + B), (C + D),

(A+B) ∗ C. In this sense, one might view the co-domain as larger than the image

of the intended programming function. However, the domain of the programming

function is defined to be the set of functionalities that can be assigned, which leads

to the following definition.

Definition The set of functionalities realizable by a device is referred to as the

device’s programmability domain.

Notice that the ability to execute additional unintended functionalities is not

present in the side-by-side circuit of Figure 3.3. In the terminology of Section 2.1.3,

the circuit of Figure 3.5 is strictly greater in functionality than the circuit of Fig-

ure 3.3. That is, resource-sharing in this example has the effects of (1) increasing

the number of multiplexers, (2) decreasing the overall area3, and (3) increasing pro-

grammability. This last observation leads to the following theorem and corollary.

3provided that multiplexers are smaller than the adders and multiplier eliminated via sharing

42

Theorem 3.1.3 Resource sharing manipulations may result in an increase in func-

tionality, but never in a decrease in functionality.

Proof Because behavior is preserved by definition in a resource sharing manipula-

tion, the functionality of the resulting circuit must be greater than or equal to the

original circuit. Thus resource sharing manipulations never decrease functionality.

Moreover, as the example in Figure 3.5 shows, the functionality of the resulting

circuit may increase.

Corollary 3.1.4 In the absence of subgraph isomorphisms between original circuits,

resource sharing manipulations will tend to increase functionality.

Proof Based on the conditions of Theorem 3.1.2, multiplexers are required to be

inserted in resource sharing manipulations to preserve functional correctness in the

absence of subgraph isomorphisms. Moreover, in the absence of subgraph isomor-

phisms, the number of these multiplexers is likely to scale asymptotically linearly

with the total number of input ports on components that are shared and thereby

linearly with the number of shared components (M) times the average number of

input ports (N). For K merged circuits, K-input multiplexers will be required,

and thus the number of configuration options scales as KMN , while the number of

configuration options (and similarly the number of distinct functionalities) for the

side-by-side realization scales as only K. While not all configuration options are

valid or distinct, in the absence of subgraph isomorphisms, as the number of shared

resources (M) rises, it is apparent that so too does the functionality of the resulting

circuit.

Based upon the allowance in Theorem 3.1.3 for both strictly preserving and

strictly increasing functionality across a resource sharing manipulation, two distinct

43

inverse manipulations can be defined.

Definition Resource replication is a transformation in which a component whose

output fans out to multiple sinks is replaced by replicated components, one per sink.

This manipulation is the inverse operation of resource sharing. Much as multiplex-

ers may be inserted during resource sharing, any interconnect multiplexers sourcing

the component’s inputs that are redundant after the transformation may optionally

be eliminated. Such elimation may reduce the functionality of the circuit. Similarly,

much as resource sharing allows the shared component to be strictly greater in func-

tionality of any original components, in resource replication each of the replicated

components may be specialized and have strictly less functionality than the original.

If during the manipulation, functionality is strictly preserved, this is referred

to as complete resource replication. If functionality is strictly decreased during the

resource replication, thereby corresponding to a strict increase in the associated

resource sharing manipulation, this is referred to as incomplete resource replication.

3.2 Generalized Programmable Interconnect

While the techniques of the prior section were described ostensibly for the purposes

of resource sharing, the result of the manipulations is a set of multiplexers and wires

that connect fixed-function components in a manner that results in a programmable

circuit. This connectivity will be referred to as a programmable interconnect, and

will now be generalized to create methodology for modeling programmable devices

via the composition of fixed-function components.

44

3.2.1 Definition

Definition A programmable interconnect is a collection of components that provide

programmable connectivity between components. Notably, no computation is done

in the interconnect. Instead, the sole function of the interconnect is to route data

values from the output ports of components to the input ports of components.

Theorem 3.2.1 Given a programmable interconnect, equivalent connectivity can be

constructed solely out of multiplexers and wire components. Such a programmable

interconnect is refereed to as a multiplexer-based programmable interconnect.

Proof By definition, the sole function of a programmable interconnect is to route

input values to output values. Given a set of potential connectivity for each sink,

one can envision constructing a connected multiplexer with an input connected via

a wire to each potential source. Because of the properties of multiplexers and wires,

there must exist some connection to the selection pins of the multiplexer such that

resulting sink will behave as if it were connected directly to a specified source. By

repeating this for all sinks, one can yield equivalent behavior of the overall circuit.

3.2.2 Multiplexer Elimination

Section 3.1.2 describes a resource sharing manipulation and demonstrates that this

manipulation tends to increase functionality. In this section, a manipulation will

be described that decreases functionality. Consider the case of merging the two

circuits in Figure 3.6. Note that they are isomorphic to more clearly illustrate the

functionality reduction, however strict isomorphism is not required.

Figure 3.7 shows a potential merging of the two circuits of Figure 3.6. In this

circuit, pairs AddA/Add1 and SubB/Sub1 have been merged (or bound) together.

45

Figure 3.6: Two example (isomorphic) circuits to be merged.

However, note that Mux1 and Mux3 are redundant, as are Mux2 and Mux4. To

improve resource usage, one might consider removing these redundant pairs, as

shown in Figure 3.8. However, this decreases functionality. For example, the circuit

of Figure 3.7 is capable of implementing the functions W = A+D,X = C−D, but

this cannot be configured in the circuit of Figure 3.8.

Theorem 3.2.2 Multiplexer elimination within a multiplexer-based programmable

interconnect does not increase functionality, but may decrease it.

Proof Multiplexer elimination strictly decreases the number of multiplexers, thereby

reducing the number of configuration options, and thus potentially the functionality

of the circuit. Because after sharing the configuration options present multiplexers

is a subset of those present prior, functionality will not increase. However, as shown

in the example of Figure 3.8, functionality may decrease.

Definition Multiplexer elimination induces multiple fan-out from multiplexers within

a programmable interconnect. The inverse manipulation, termed multiplexer repli-

cation, reduces fan-out. An interconnect composed exclusively of multiplexers with

46

Figure 3.7: A merging of the circuits in Figure 3.6. Pairs AddA/Add1 and Sub-
B/Sub1 have been merged together. Observe that Mux1 and Mux3 are possibly
redundant, as are Mux2 and Mux4.

Figure 3.8: Circuit of Figure 3.7, except with redundant pairs Mux1/Mux3 and
Mux2/Mux4 eliminated

47

a fan-out of one is said to be fully replicated, and via inductive application of Theo-

rem 3.2.2 can be shown to have the greatest possible functionality for a given binding

of application components.

Theorem 3.2.3 Resource sharing among the fixed-function units preserves or in-

creases functionality, while resource sharing amongst the programmable interconnect

strictly decreases functionality.

Proof Note that multiplexer elimination is a form of resource sharing distinguished

by sharing interconnect resources, instead of the application components. Given this

observation, the stated duality follows by simple aggregation of Theorems 3.2.2 and

3.1.2.

3.2.3 Completeness

In prior sections, two invertible manipulations have been examined: resource sharing

amongst application components, and resource sharing amongst interconnect com-

ponents. This section will show that the complete design space of multiplexer-based

interconnects can be traversed via these two invertible manipulations alone.

Theorem 3.2.4 For any given multiplexer-based programmable interconnect con-

necting application components, there exists a series of multiplexer replication ma-

nipulations followed by a series of resource replication manipulations that yield a

side-by-side realization of the programmability domain of the original circuit.

Proof A constructive proof will be given. For each multiplexer in the programmable

interconnect with a fan-out greater than one, perform a multiplexer replication.

Repeated application yields a fully replicated design point, with a (possibly triv-

ial) multiplexer tree driving every input of every application component. For each

48

n-input multiplexer present in the programmable interconnect, construct n side-

by-side circuit realizations, each connecting the respective input of the multiplexer

to the output of the multiplexer. By repeated application of this resource replica-

tion manipulation, a side-by-side realization of the programmability domain of the

original circuit will be constructed.

Note that functionality is preserved during each manipulation and therefore

inductively the resulting circuit also preserves functionality. Note further that the

resource replication manipulations move multiplexers from the circuit internals to

the output. Through exhaustive application, the only interconnect multiplexer re-

maining will be at the output, thereby forming a side-by-side construction as shown

in Figure 3.1. Thus it has been shown that the circuit resulting from the described

manipulations is of side-by-side format and preserves the functionality of the original

circuit.

Corollary 3.2.5 For any given multiplexer-based programmable interconnect con-

necting application components, there exists a set of resource sharing manipulations

followed by a set of multiplexer elimination manipulations that can yield the speci-

fied programmable interconnect from a side-by-side realization of each of the circuits

within its programmability domain.

Proof Because each individual manipulation is invertible and does not decrease

functionality, proof follows via the reverse sequence of Theorem 3.2.4.

While Theorem 3.2.4 as written is only valid for side-by-side realization of

all of the circuits within a given programmability domain, by incompletely (see

definition 3.1.2) expanding the combinatorial interactions between multiplexers, it

is possible to selectively cull various options within the side-by-side realization.

49

Such a selective expansion decreases the functionality of the resulting side-by-side

realization. Thus, it can be shown that a series of manipulations exists between any

programmable interconnect and side-by-side realization, without requiring that the

side-by-side realization cover the entire programmability domain.

Theorem 3.2.6 Any possible multiplexer-based programmable interconnect can be

yielded by manipulating a side-by-side realization of the desired functionality via a

series of resource sharing manipulations followed by a series of multiplexer elimina-

tion manipulations.

Proof As explained above, this follows from Theorem 3.2.5 and the selective appli-

cation of incomplete resource replication.

Corollary 3.2.7 For any cost function, the optimal multiplexer-based programmable

interconnect can by yielded by manipulating a side-by-side realization via a series

of resource sharing manipulations followed by a series of multiplexer elimination

manipulations.

Proof Since the optimal multiplexer-based programmable interconnect is by defi-

nition a multiplexer-based interconnect, then by Theorem 3.2.6, the series of ma-

nipulations must exist.

3.3 Programmability: a priori and a posteriori

While the data path merging approach yields a circuit capable of implementing the

functionality of any of the input circuits specified prior to circuit synthesis, this

provides only a subset of the benefits traditionally associated with a programmable

device. Often, the benefit of a programmable device is that it can be used to

50

implement functionality not envisioned at the time the device was designed (e.g.

bug fixes, or feature enhancements). It is convenient to study these two design

problems separately. The former problem, that of designing a device to implement

a specific set of functions known prior to design time will be referred to as the a

priori design problem. The latter problem, that of designing a device to be capable

of being assigned a function not envisioned until after design time, will be referred

to as the a posteriori design problem.

The a priori problem is addressed via data path merging techniques of Sec-

tions 3.1.2, and optimization techniques of section 5.3. In contrast, the a posteriori

problem will be addressed in this section.

3.3.1 Formal Definition

The distinguishing characteristic of the a posteriori problem is to design for the

implementation of functionality which cannot be precisely described at design-time.

However, often some information about this functionality is available as design-time,

and so it is useful to use stochastic terminology to formally define the a posteriori

problem.

Consider the set of all possible functionalities that one may want to assign to

a programmable device. Assume further that one can assign a probability of imple-

mentation to each of those functionalities. We can then define the programmability

domain of the a posteriori problem as the set of functionalities with non-zero prob-

ability of being assigned to the device. The a posteriori design problem is then

that of finding a circuit capable of implementing each of the functionalities in the

programmability domain.

One may also consider for each possible solution to the a posteriori design

51

problem, there exists a function, referred to as the cost profile function, that maps

from the programmability domain to the cost metric space of section 2.2, and yields

the cost of implementing the functionality of point in the particular solution circuit.

One could then consider that there is an optimization cost function mapping from

the set of cost functions to the set of reals. The a posteriori optimization problem is

then that of finding the circuit capable of implementing each of the functionalities

in the problem domain, with the cost profile function having the minimum cost.

3.3.2 Naive Solution

Given the formal definition of the prior section, a straightforward approach to solving

the a posteriori problem is to enumerate circuits that will implement each of the

required functions and merge them using the a priori techniques of of Sections 3.1.2

and 5.3. This will generate a programmable circuit capable of implementing any of

the functionality in the programmability domain via the configuration of appropriate

multiplexers, thereby creating a solution to the a posteriori problem.

While this approach is simple, it may not be practical in the case of a pro-

grammability domain with high cardinality. Higher-level approaches are therefore

advantageous and will be examined in Section 3.3.3.

3.3.3 Desirable Properties

When one thinks of a programmable architecture capable of implementing arbitrary

computations, one typically envisions particular characteristics. Several of these

characteristics are now formalized for later use.

We begin with properties of the computational primitives:

• Compositional Universality - The property that any computable function can

52

be computed by appropriate composition of the available computational primi-

tive elements. This condition is easily satisfied, for example, via the availability

of a NAND primitive.

• Function Coverage - The property that, via suitable composition of primitives,

one can implement any function mapping from the set of possible data values

to the set of possible data values. As an example, one could envision that a

machine with operating on multi-bit words, but only bit-wise NAND operators

would not satisfy this condition, as one could not propagate the carry bits

needed for addition within words. In that case, each bit position would be an

separate partition.

• Standard-completeness - Decades of experience have resulted in programmers

expecting specific sets of computational primitives to be available. Notably,

the C language standard [50] defines no less than 14 distinct primitives: (e.g.

bitwise negation, logical negation, multiplication, division, modulo, addition,

subtraction, bitwise-shift left, bitwise-shift right, arithmetic shift-right, equal-

ity, bitwise and, bitwise or, and bitwise xor). While a subset of these primitives

are necessary to implement arbitrary binary functions (i.e. and/or/xor/not),

and a subset are necessary to implement bitwise connectedness (shifts), others

are arguably convenience functions expected to be present.

We now consider properties of the interconnect between computational prim-

itives:

• Instance Connectedness - The property that the output from any primitive

instance can be used as the input to any other primitive instance. This corre-

sponds to the property of strong connectedness in the interconnect.

53

• Class Connectedness - The property that arbitrary connections can be made

between classes of primitive components. That is, for any pair of primitives a

and b, there exists a path in the programmable interconnect from a primitive

of equal or greater functionality of a to the input of a primitive of equal

or greater functionality b. This is a related, but weaker version of Instance

Connectedness, as it is satisfied even if only a single instance of each class of

primitives is strongly connected.

• No Coupling - The property that the output of any primitive instance can be

connected to any other primitive instance, without requiring the connection

of any other pair of primitive components. For a more familiar analogy, in

a microprocessor, one can typically multiply registers A and B together and

place to result in register C without being required to corrupt register D in

order to do so.

• Bounded Coupling - The property that any primitive instance can be con-

nected to any other primitive instance, without requiring more than a finite

and bounded number of additional connections. For a familiar analogy, in a

microprocessor, if we need to do addition, we may be required to alter the

(carry) flag register, but it is possible to do addition without modification of

unrelated registers.

• Constant access - The property that arbitrary data values defined a posteriori

can be encoded and later used as the input to any computational primitive.

These properties will be used in Chapter 4 to evaluate the programmability

of circuits produced experimentally.

54

3.4 Programmability Overheads

In the prior sections, a model of programmability has been developed in which

a collection of fixed-function components are connected by a programmable inter-

connect. This model, while certainly not unique, underlies the construction of a

large body of programmable devices: FPGAs, the datapath of microprocessors, and

coarse-grained reconfigurable logic.

This section is intended to provide insight into the costs of programmability

within a multiplexer-based programmable interconnect model, especially the asymp-

totic scaling of costs as the number of implemented functionalities increases. To do

so in a manner independent of the peculiarities of specific circuits, a parametrized

stochastic approach is pursued. The specific approach selected, based upon “Rent’s

rule” [58], is well known in the EDA community [16] and has proved useful in

quantifying circuit characteristics in order to estimate features including wirelength

distributions[30, 24] and average wirelengths [29, 82]. These results have in turn

been used to estimate critical-path lengths, dynamic-power dissipation, and die ar-

eas [25]. Among the parameters used are:

• C - the number of components in a circuit (or subset thereof),

• p - the Rent exponent,

• k - the average number of terminals per component,

• α - the fraction of terminals that are inputs (related to the average fanout f

by the equation α = f/(f + 1) [24]), and

• ncp - the number of components in the critical path.

Further, several parameters are defined specific to this effort:

55

• N - the number of circuits being merged. In effect, this is the number of

distinct functionalies required in the programmability domain of a generated

device.

• β - the fraction of multiplexers that need to be inserted to maintain func-

tional correctness. Recall from section 3.1.2 that, in the case of topological

similarities, multiplexers may not be required in certain resource sharing ma-

nipulations.

Theorem 3.2.6 shows that given any set of functionalities, there exists a

multiplexer-based programmable interconnect constructed via a series of resource

sharing and multiplexer elimination manipulations from a side-by-side realization of

those functionalities. Theorems 3.1.2 and 3.2.2 provide restrictions on how these two

types of manipulations impact the programmability domain and the construction

of these devices. Notably, Theorem 3.1.2 provides three conditions for preserving

equivalent behavior across resource sharing manipulations. The overheads inher-

ent in programmable interconnect in terms of these three conditions will now be

considered.

3.4.1 Multiplexer Insertion

The first condition of Theorem 3.1.2 states that for a resource sharing manipulation

to be functionality-preserving “each input port of the resulting shared component

must have connectivity, if needed via an inserted multiplexer, to the driver of the

corresponding input ports on each original component participating in the sharing.”

This condition implies the insertion of multiplexers, potentially one for each

input port. From the parameters defined in the introduction to this section, we

can compute the number of multipliers needed as the average number of input

56

ports (αk) per component, times the fraction of multiplexers needed (β), times the

number of components is the resulting programmable. Thus the number of N -input

multiplexers needed can be estimated by αkβC. However, this model is difficult

to utilize because the number of inputs needed for each multiplexer increases as

the number of required functionalities increases (N). This effect causes the average

number of terminals per gate (k) and fraction of input terminals (α) to vary with

N . Theorem 2.2.1 allows an alternate path allowing simpler computations: in place

of introducing each N -input multiplexer, consider the introduction of assemblies

composed of (N − 1) 2-input multiplexers. Based on this derivation, the number of

2-input multiplexers inserted design can be computed as:

Mprogrammable(α, k, β, C,N) = αkβC(N − 1). (3.1)

Based on Table 2.1, the worst-case overhead due solely to the inserted mul-

tiplexer components can be estimated as follows:

• ∆delay = delay(MUX2)ncpceil(log2(N)),

• ∆energy = energy(MUX2)Mprogrammable,

• ∆area = area(MUX2)Mprogrammable, and

• ∆leakage = leakage(MUX2)Mprogrammable.

In practice, the energy and leakage costs of the multiplexers can be substan-

tially reduced through proper operand isolation and power gating techniques.

57

3.4.2 Topological Costs

The second condition of Theorem 3.1.2 states that for a resource sharing manip-

ulation to be functionality-preserving, “each output port of the resulting shared

component must have connectivity to the components driven by the output port

on each original component participating in the sharing.” This requirement induces

overhead relative to a fixed-function equivalent due towires needed implement alter-

native functionalities. As wiring costs are intimately related to component place-

ment, discussion of placement will be performed first. Two cases will be considered:

1) a placement derived from an existing privileged functionality placement, and 2)

free placement.

First, consider a placement derived from a privileged functionality (i.e. pre-

scribed placement). In the application of adding functionality to an existing fixed-

function design with minimal impact, one might choose to largely reuse the place-

ment of the fixed-function design. One might further envision placing components

for alternative functionalities entirely adjacent to the existing fixed-function design.

The only components needed to be inserted topologically inside of the fixed func-

tion design being 2-input multiplexers to inject alternative signals when needed,

and buffers to extract needed signals from the fixed function circuit. By doing so,

provided that the buffers and 2-input multiplexers are small relative to the fixed

function circuitry, both the topology and size of the fixed function circuit remain

largely unchanged. As a result, impact to the privileged fixed-function circuit is

minimal at the expense of the performance of the alternate functionality. Such a

case is theoretically straight-forward, and of limited academic curiosity.

In contrast, consider the case where the placement of resulting programmable

circuit is allowed to vary. Such flexibility provides the potential for greater perfor-

58

mance of the alternate functionality, and integrates easily with existing EDA tool

flows at the unplaced netlist level. A disadvantage of this flexibility is the potential

for negative impact on the original fixed-function circuit, and so these overheads

will be considered here in greater detail.

To understand wiring overheads, Rent’s rule will be utilized. The reader is

referred to section 2.3.3 for background information on Rent’s rule and its applica-

bility to placement and wire-length estimation.

Intrinsic Rent Exponent for Side-by-Side Realizations

As noted by Hagen, et al [43], partitioning-derived Rent parameters for a circuit

provide means for estimating the number of wires that will cross between recursive

partitions of a given circuit. This knowledge can be used to estimate wirelength

distributions[30], including average wirelengths [29, 82] without circuit placement.

However, it will be utilized here to estimate the wiring overhead caused by merged

disinct designs via resource sharing manipulations.

Theorem 3.4.1 For side-by-side realizations, neglecting the influence of the output

multiplexer, the intrinsic Rent parameter of the overall circuit is bound to less than

the maximum intrinsic Rent parameter of any individual circuit.

Proof Since the intrinsic Rent parameter is defined as “the minimum Rent param-

eter attained over all hierarchical decompositions of a given circuit” [43], the exis-

tence of an intrinsic Rent parameter for each of the circuits to be merged guarantees

the existence of a corresponding hierarchical decomposition following the statisti-

cal relationship of equation 2.30. Conversely, to demonstrate an upper bound on

the intrinsic Rent parameter of the merged circuit, it is sufficient to demonstrate

59

the existence of hierarchical decomposition following the statistical relationship of

equation 2.30.

Such a decomposition can be made by first partitioning the overall circuit

into its composing circuits. Because the circuit is a side-by-side realization, ne-

glecting this output multiplexer, this partitioning can be made with zero edge cuts.

Further, because zero edges cross the partition, this partition cannot increase the

Rent parameter of the overall circuit. Recursive partitioning can then proceed for

each circuit individually that must necessarily exist to satisfy the intrinsic Rent

statistic given for each circuit individually.

Now consider the Rent parameter of the specified decomposition. The Rent

parameter is a statistical relationship between the number of external terminals and

size of the partition when sampled over a hierarchical decomposition. In the specified

decomposition of the side-by-side realization, the original partitions (i.e. samples)

from each circuit have been preserved and aggregated together. As a result, for

a given partition size, the number of external terminals can in no case be larger

than any of the original circuits. As a result, the intrinsic Rent statistic for the

side-by-side realization cannot be any larger than that of the original circuits.

Note that the theorem above neglects the influence of the output multiplexer.

To include the effects of the output multiplexer, one can first partition the output

multiplexer into a separate partition, and then proceed with the decomposition as

described above. In this case, the output multiplexer partition becomes a single

sample in determination of the intrinsic Rent parameter statistic. Application of

the law of large numbers yields the following corollary.

Corollary 3.4.2 For sufficently large input circuits, the intrinsic parameter of the

side-by-side realization will approach a value no larger than the maximum intrinsic

60

Figure 3.9: Circuit of Figure 3.3 with a partition boundaries for an example hierar-
chical decomposition shown as dashed lines

Rent parameter of any individual circuit.

Maximal Resource Sharing

In the prior section, it shown that a side-by-side realization has an intrinsic Rent

exponent no larger than the intrinsic Rent exponent of any input circuit. In this

section, a similar upper bound will be shown for realizations that incorporate re-

source sharing and multiplexer elimination manipulations to achieve the property

of maximal resource sharing.

Definition For any set of circuits composed of components with homogeneous func-

61

Figure 3.10: Circuit of Figure 3.9, following a resource sharing manipulation involv-
ing Mul 2 and Mul B. Partition boundaries for the example hierarchical decomposi-
tion of Figure 3.9 are shown as dashed lines. Boundary-crossing connectivity needed
for the merge has been highlighted.

62

tionalities, a programmable implementation of these circuits is said to have the prop-

erty of maximal resource sharing if the cardinality of components in the realization

is no greater than that of the largest circuit in the set.

To simplify the discussion, the restricted problem of homogeneous compo-

nents will be considered first. In this restricted problem, all components of all

circuits to be realized have identical functionality and therefore can be bound in-

discriminately. While this simplified problem is of theoretical use in this section,

it also has direct practical applications for traditional look up table-based FPGA

architectures.

Theorem 3.4.3 For any set of circuits composed of components with homogeneous

functionalities, there exists a multiplexer-based programmable interconnect that pos-

sesses an intrinsic Rent exponent no greater than the greatest intrinsic Rent expo-

nent of any single circuit in the set. Moreover, if the partitions of the hierarchical

decompositions associated with the intrinsic Rents exponent for each circuit are bal-

anced in size, then the resulting interconnect possesses the maximal resource sharing

property.

Proof Consider a set of circuits I, that that individually satisfy Rent’s equation 2.30

as follows

Ti = ki · Cpii for all i ∈ I. (3.2)

Here for circuit i, Ti is the average number of external terminals (pins) in a

subcircuit or partition; ki is Rent’s constant, a scaling constant which corresponds

to the average number of terminals per module; Ci is the number of modules in

the subcircuit (or partition); and pi is the Rent parameter or Rent exponent, with

63

0 ≤ pi ≤ 1. For simplicity in notation, this derivation assumes that the average

number of terminals per module ki is constant for each circuit4, or symbolically,

ki = k for all i ∈ I.

By definition, the existence of an intrinsic Rent exponent for a circuit implies

the existence of a hierarchical decomposition of that circuit that follows the rela-

tionship of equation 3.2. Based upon the existence of this decomposition for each

circuit in I, a multiplexer-based programmable implementation can be constructed

that satisfies equation 2.30 with a p no greater than

max
i
pi. (3.3)

To construct this implementation, first construct a binding by simultaneously

traversing the hierarchical decompositions of each circuit and binding the partitions

at each level with partitions from corresponding levels from each circuit. For ex-

ample, consider the hierarchical decompositions of the circuits shown in Figure 3.9.

In this example one might initially bind Add 3 with Add C, and the set {Add 1,

Mul 2}, with the set {Add A, Mul B }. Proceeding down a hierarchy level, one

might then bind Add 1 with Add A and Mul 2 with Mul B. If the partitions are

balanced at each level5, then the resulting binding satisfies the maximal resource

sharing property.

With the binding established, the construction of a programmable implemen-

4This assumption can be made without loss of generality. Variation of ki, the average number
of terminals per module, between circuits corresponds to differing levels of granularity implicit in
the term “module”. By pre-clustering “modules” together in circuits with low ki, one decreases the
effective granularity of those circuits, thereby increasing ki to match the other circuits. Moreover,
in the datapath merging application even this accommodation is unlikely to be needed, as good
candidates for datapath merging will tend to be built from the same library of underlying modules,
and will therefore tend to have a similar ki.

5In the case of an odd number of components, this requires matching the larger partitions
together and smaller partitions together.

64

Figure 3.11: Circuit of Figure 3.9, shown with bound components grouped by regions
bordered with dashed lines.

tation will now be described. Begin with the side-by side realization of the circuits

as shown in Figure 3.9. Bound components for the ongoing example are shown

grouped with dashed lines in Figure 3.11. Perform resource sharing manipulations

between bound components, sharing inputs and multiplexing outputs as described

in section 3.1.2. As shown explicitly in Figure 3.12, the maximum number of con-

nections (i.e. terminals) needed to a set of shared components is bound to be no

more than the maximum connections needed for any single original component.

By recursively mapping the partitions of the original circuits matched during

the binding process, a hierarchical decomposition of the resulting circuit is created.

65

Figure 3.12: Circuit of Figure 3.11 with resource sharing manipulations shown par-
tially complete. The multiplexers and required fan-outs have been inserted, but the
components themselves have not been merged.

66

Figure 3.13: Circuit of Figure 3.11, shown with hierarchical decompositions from
Figure 3.9 mapped as described in the text.

For each partition at each hierarchical level, the overall number of required external

terminals is no greater than that required for any single circuit in the set I6. See

Figure 3.13 for the mapping of partitions in the case of the example.

With the hierarchical decomposition established, consider individual parti-

tions in the context of equation 2.30. For every partition, the number of terminals in

the shared realization Tshared has been shown to be less than or equal to maxi∈I Ti.

6The necessity of bidirectional connections to achieve this bound is acknowledged. In many
Rent’s rule treatments, this mismatch between inputs and outputs is handled via an α parameter
that is the fraction of terminals that are sink terminals and is related to the average fanout f by
the equation α = f/(f + 1) [24]. Donath notes that since “the range of variation is relatively small
for α, it is a good approximation to assume that variations of α are insignificant.” [29]

67

Moreover, the number of components in each partition must be at least as great

as that of any one of the input circuits. That is, for any partition, the equation

Cshared ≥ maxiCi holds. The potential inequality results from the potential addi-

tion of multiplexers.

By solving equation 2.30 for p we find that

p = logC

(
T

k

)
(3.4)

By considering that Cshared ≥ maxiCi. and Tshared ≤ maxi Ti, it is a simple

algebraic excercise to show that

logCshared

(
Tshared
k

)
≤ logCi

(
Ti
k

)
for all i ∈ I, (3.5)

and therefore that

pshared ≤ max
i∈I

pi. (3.6)

There is a conceptual similarity of the prior proof to the multi-level par-

titioning strategy for the placement problem studied by Breuer [9], Dunlop, and

Kandernighan [31] among many others. In this strategy, a circuit is recursively

partitioned, with the resulting partitions mapped onto partitions of the placement

space. Ultimately a placement of a circuit is derived. From a practical perspective,

the proof above suggests a conceptually similar multi-level partitioning algorithm

for the binding subproblem of datapath merging. From a more abstract perspec-

tive, by creating a mapping between two (or more netlists), the proof also suggests

that multi-level partitioning strategies need not be limited to mapping netlists onto

68

Cartesian spaces. Instead, one can generalize the partitioning-based placement prob-

lem by making the recursive partitioning of the placement space explicit. This, while

useful, should not be surprising as both the placement problem and the wirelength-

minimization binding subproblem of datapath merging are two instances of a more

general topological mapping problem.

Impact on Average Wirelengths

To gauge the impact of introducing programmability into a fixed-function circuit,

consider the case of mergingN random circuits, each with an intrinsic Rent exponent

of pn and a number of components Cn for n ∈ 1..N . Individually, when placed into

a realization space with 2D Rent’s rule wiring costs as defined in section 2.3.3, each

circuit would be expected to have an average interconnect length Rn given by

Rn ∼

Cpn−0.5 for pn > 0.5

logC for pn = 0.5

f(pn) for pn < 0.5,

(3.7)

where f(pn) is an unspecified function of only pn.

Theorem 3.4.3 provides that, in the homogeneous component case, there

exists an resource sharing implementation such that the overall Rent exponent of

the circuit pprogrammable is bounded by

pprogrammable ≤ max
n

pn. (3.8)

A resource sharing implementation, particularly one with maximum resource

sharing property, will possess both additional wires and components (e.g. multiplex-

69

ers) relative to any of the realizable functionalities implemented alone. If one defines

the number of 2-input multiplexers needed as Cαβk(N − 1), where α is the fraction

of terminals that are sinks [29], β is the fraction of multiplexers possible that are

actually inserted, and k is the average number of terminals per component, then

one would expect the number of components in the shared realization Cprogrammable

is the sum of the maximum number of components in any single functionality, plus

the added multiplexers, or

Cprogrammable = (max
n

Cn) + (max
n

Cn)αβk(N − 1)

= (max
n

Cn)(1 + αβk(N − 1)).

(3.9)

Thus we would expect the average wirelength of the resulting circuit to be

bound by

Rn ∼

[(maxnCn)(1 + αβk(N − 1))](maxn pn)−0.5 for (maxn pn) > 0.5

log [(maxnCn)(1 + αβk(N − 1))] for (maxn pn) = 0.5

f((maxn pn)) for (maxn pn) < 0.5.

(3.10)

For a better intuition, consider the case where every functionality has the

same number of components (Cn = C), Rent exponent (pn = p), and has an average

wirelength exactly as predicted by equation 2.31. Define the average wirelength

overhead (Rprogrammable/Rfixed) as the ratio of the resulting average wirelength to

that of input functionalities. Algebraic simplification of the equation above yields

70

Rprogrammable

Rfixed
≤

[(1 + αβk(N − 1))]p−0.5 for p > 0.5

1 + logC [1 + αβk(N − 1)] for p = 0.5

1 for p < 0.5.

(3.11)

Notably, in the case of p < 0.5, which may be encountered in “highly seri-

alized circuitry [that] may be designed with low exponents (as little as 0.47)” [29],

there is no expected overhead in average wirelengths. However the total number of

wires, and therefore total wirelength, will certainly increase. In the case of p = 0.5,

which is typical of regular, planar memory topologies, the average wirelength scales

approximately logarithmically with the number of functionalities to be implemented.

In the common case of p > 0.5, the average wirelength scales in a more complex

manner. Because by definitionα ≤ 1, β ≤ 1, and p ≤ 1, for larger circuits (C ≥ 6),

a simplified but looser bound can be derived from equation 3.11:

Rprogrammable

Rfixed
≤
√

1 + k(N − 1). (3.12)

Because multiplexers with a fixed number of inputs were assumed, k is ap-

proximated as being independent of the number of circuits implemented. With this

assumption the average wirelength in this case scales asymptotically with the num-

ber of functionalities no worse than
√
N , but often much better. For example, even

in the rather pessimistic case of “highly parallel circuitry” with “large exponents

p (as much as 0.75)” cited by Donath [29], an arbitrary average terminal count of

k = 4, an arbitrary average fanout of 4, no multiplexer elimination due to topologi-

cal similarities, and 100 merged functionalities, equation 3.11 estimates an average

71

wirelength of only 3X relative to a fixed-function circuit:

(1 + (0.2)(1.0)(4)(100− 1))(0.75−0.5) = 2.99. (3.13)

Number of Wires

Donath [29] and Davis et al [24] show that the expected total number of wires for a

circuit W with a Rent parameter p, average terminals per component of k, fraction

of terminals that are sinks α, and C number of components is given by

W = αkC(1− Cp−1). (3.14)

This derivation is commonly used with the average wirelength R to estimate

a total wirelength. Following a strategy similiar to that used in the prior section

to estimate average wirelength overhead (Rprogrammable/Rfixed), a derivation for the

wire cardinality overhead (Wprogrammable/Wfixed) will now be shown.

Consider the case of merging N random circuits, each with an intrinsic Rent

exponent of p and a number of components Cn for n ∈ 1..N . As in the prior section,

equation 3.14 can be restated using definitions for Cprogrammable and pprogrammable

from equations 3.9 and 3.8 to arrive at the following bound:

Wprogrammable ≤

αk(max
n

Cn)(1 + αβk(N − 1))

[
1−

(
(max

n
Cn)(1 + αβk(N − 1))

)(maxn pn)−1
]
.

(3.15)

For a better intuition, again consider the case where every functionality has

72

the same number of components (Cn = Cfixed), same Rent exponent (pn = pfixed),

and has an average wirelength exactly as predicted by equation 2.31. Then

Wprogrammable

Wfixed
≤
αkCfixed(1 + αβk(N − 1))

[
1− (Cfixed(1 + αβk(N − 1)))(p−1)

]
αkCfixed(1− C

pfixed−1
fixed)

.

(3.16)

Or following algebraic simplification,

Wprogrammable

Wfixed
≤

(1 + αβk)
[
1− (Cfixed(1 + αβk(N − 1)))(pfixed−1)

]
[
1− Cpfixed−1fixed

] . (3.17)

In the limit of large Cfixed, this simplifies to

Wprogrammable

Wfixed
≤ 1 + αβk(N − 1). (3.18)

Moreover, emperically this remains a fairly good approximation, typically

better than 50% for reasonable values of α, β, and k. From this equation it can

be seen that the total number of wires in a circuit grows asymptotically linearly

with the number of distinct functionalities implemented. Note however, that even

in the pessimistic case, this does not create atypical wiring demands, as the number

of components in the resulting circuit grows linearly as well due to added multi-

plexers. Careful examination of equation 3.14 shows that the total number of wires

is expected to grow linearly with the number of components in the limit of large

numbers of components. That is, the resulting programmable circuit should not be

expected to be unusually difficult to place and route.

73

Heterogeneous Component Case

As a part of the resource sharing manipulations, components from each circuit will

be bound together. Theorem 3.4.3, targeted at circuits with homogenous compo-

nents, selects this binding without regard to the functionality of the components.

Instead, component bindings are selected with regard to satisfying the bound on

the Rent’s rule. It is important to note that such a binding is still feasible, as The-

orem 2.1.2 provides that it is always possible to create a multiplexer-based circuit

that implements any set of functionalities. Figure 3.12 shows how such a circuit

might look. Note that in this figure, adders have only been matched with adders,

and multipliers with multipliers. However, the inserted multiplexers network is such

that this need not be true to maintain correct function of the circuit.

Therefore even in the heterogeneous case, it is possible to obtain a pro-

grammable circuit with Rent exponent bounded similarly to Theorem 3.4.3. How-

ever, such a functionality-agnostic binding is likely to result in binding of compo-

nents with differing functionalities, and there may be a potentially high overhead for

binding them together using the provisions of Theorem 2.1.2. This style of binding

may be advantageous if wires are comparatively more expensive than components.

Moreover, in the opposite limit where components are significantly more expensive

than wires, it is preferable to select a binding that minimizes component costs, and

the wiring length to do so is of negligible importance. As a result, in both ex-

trema of the wire/component cost balance it is not necessary to explicitly handle

the heterogeneous component case.

While a full treatment of the heterogeneous component case is left as future

work7, note that the derivation of Theorem 3.4.3 remains valid if the partitions at

7This is partially because the author’s available experimental test cases fall in the design region
of expensive components with comparatively inexpensive wires, making experimental verification

74

each level are made to have balanced numbers of each type of component. Thus, it

would seem plausible that merging circuits composed of small numbers of distinct

component types may yield results similar in form to the homogeneous case. More-

over, this type of partitioning constraint would seem ideally suited for leveraging

multi-objective partitioning strategies familiar to the EDA community [51, 74]. To

capture this distinction for the purposes of reasoning about the asymptotic features

of the design space, a separate Rent exponent parameter p? is proposed.

Definition p? is defined as the Rent exponent that arises from the parallel hierarchi-

cal decompositions of a set of circuits restricted to have at level of decomposition,

balanced numbers of each component type across each of the parallel partitions.

That is, it is the minimal possible effective Rent parameter of the multipexer-based

programmable circuit capable of implementing the functionalities of each of the

circuits in the set.

If we reasonably assume that p? ≥ p, then we can compute an additional

wiring overhead due to the heterogeneous component types. Based upon equation

2.31, the following ratio on average wirelength can be found for the common case of

p > 0.5:

Rheterogeneous

Rhomogeneous
= [Cprogrammable]

(p?−p) . (3.19)

3.4.3 Shared Component Inefficiencies

The third condition of Theorem 3.1.2 states that for a resource sharing manipulation

to be functionality-preserving, “the resulting shared component has functionality

equal to or greater than the supremum of the set of resources to be shared.”

difficult.

75

This condition implies the existence of overhead due to the shared com-

ponents that must implement multiple functionalities. Fortunately, for any given

shared component, an upper bound on this overhead can be established by invok-

ing the side-by-side construction technique of Figure 2.2. In the case of a restricted

component library, this upper bound may fact represent the only valid construction.

3.5 Design Space Regions

In the prior section, the overheads induced in a multiplexer-based programmable

interconnect were decomposed into three contributory sources based upon the con-

ditions in Theorem 3.1.2. Concisely, these three overheads can be attributed to

multiplexers, wires, and components. In this section, this decomposition will be

used to sketch out the gross regions of the design space based on the relative con-

tributions of the various components to the overall cost of a programmable circuit.

These design space regions can be visualized in Figure 3.14. In this visual-

ization, the axes are total multiplexer and wire costs normalized to total functional

unit costs. For this figure, costs here are deliberately left independent of any par-

ticular cost metric (e.g. delay, area, energy, and leakage), as the concept applies

generally to any cost metric.

In is important to keep in mind that the design space of Figure 3.14 is

composed of points, each representing a specific programmable implementation.

However, the region containing Pareto optimal design points may be limited. For

instance, given a set of circuits composed of components (e.g. microprocessor cores)

substantially more costly than either wires or multiplexers, Pareto optimal design

points may be restricted to the component-dominated region of the design space.

Restrictions may also come from a specific physical realization technology. For

76

Wire-cost/Component-Cost

M
u
lt
ip
le
x
e
r-
co
st
/C
o
m
p
o
n
e
n
t-
C
o
st

Multiplexer
Dominated

Component
Dominated

Wire
Dominated

Figure 3.14: Graphical representation of proposed design-space regions for
multiplexer-based programmable circuits.

77

instance, a technology with switching components substantially more costly than

wires (e.g. super-micrometer CMOS VLSI) may not have Pareto optimal design

points in the wire-dominated region.

Such restrictions are useful because they can serve to guide optimization

strategies. The general co-optimization problem is NP-hard, as it can be shown to

reduce to subgraph isomorphism. Thus, simplification of the problem is of clear

computational benefit. If a particular application is known to have Pareto optimal

solutions restricted to one (or more) design-space regions, appropriate simplified

optimization strategies can be employed that strategically neglect aspects of the

design. Each of these three design regions will now be examined, and for each:

• a targeted optimization strategy to optimizate the dominenant cost will be

suggested, and

• closed-form guidelines for when a design will reside in a particular region will

be provided.

Compiling the various individual cost estimates from prior sections, one can

summarize expected costs of a multiplexer-based programmable circuit as the sum

of:

• the component cost portion of the fixed-function equivalent circuit,

• the costs of added multiplexer components, and

• the wire cost fixed-function equivalent circuit times the ratio of programmable

wire costs to fixed-function wire costs.

Translating this into symbolic form for delay and energy costs yields

78

delay(programmable) =delay(fixedcomponents)

+ ncpceil(log2(N))delay(MUX2)

+ delay(fixedwires)
Rprogrammable

Rfixed

(3.20)

and

energy(programmable) =energy(fixedcomponents)

+Mprogrammableenergy(MUX2)γ

+ energy(fixedwires)γ
Wprogrammable

Wfixed

Rprogrammable

Rfixed
,

(3.21)

where γ is the circuit-dependent fraction of dynamic energy dissipated as a

result of efficiencies gained from operand isolation.

3.5.1 Guideline Criteria

Consider now the relative magnitudes of the types of costs composing equations 3.20

and 3.21. The costs for the delay metric will be considered first in detail, followed

by analogous results for the energy metrics. A similiar derivation will then be made

for the area metric.

Delay

Because there are three types of costs, and three regions, there are three compar-

isons to be made. First, compare the fixed-function component cost to the cost of

79

added multiplexer components, testing for the dominance of fixed-function compo-

nent costs:

delay(fixedcomponents)
?
> ncpceil(log2(N))delay(MUX2)8. (3.22)

Rearranging this equation by dividing both sides by ncpdelay(MUX2) yields

the following equivalent comparision:

delay(fixedcomponents)

ncpdelay(MUX2)

?
> ceil(log2(N)). (3.23)

Note that the delay(fixedcomponents)/ncp term is the average delay of com-

ponents on the critical path, and dividing by delay(MUX2) effectively states this

average delay in units of a 2-input multiplexer delay. The equivalent comparison

is then whether the average component delay along the critical path in units of a

2-input multiplexer is greater or less than log2(N), where N is the number of ex-

plicit functionalities in the programmable circuit. If the result of this comparison is

much greater, then fixed-component costs dominate multiplexer costs. If it is much

less, then multiplexer costs will tend to dominate fixed-component costs. Thus this

equation predicts a bound on the number of merged components before multiplexer

costs become dominant over useful component costs.

Second, consider a test for determining if fixed-function component cost dom-

inates the cost of wiring:

delay(fixedcomponents)
?
> delay(fixedwires)

Rprogrammable

Rfixed
. (3.24)

8Throughout this section, the symbol
?
> will be used to denote a magnitude comparison test

between two costs. Equal magnitude costs, and therefore the location of the asymptotic region
boundary, would be indicated be equality of the sides of the equation.

80

Rearranging this equation yields

delay(fixedcomponents)

delay(fixedwires)

?
>
Rprogrammable

Rfixed
. (3.25)

Recall equation 3.12, which bound on
Rprogrammable

Rfixed
as:

Rprogrammable

Rfixed
≤
√

1 + k(N − 1).

Substitution of this bound, followed by algebraic manipulation yields the

bound

[
delay(fixedcomponents)

delay(fixedwires)

]2
− 1

?
> k(N − 1). (3.26)

For better intuition, consider the case for asymptotically large N , and an

average of three terminals per component (k = 3) typical for synthesized RTL with

many two-operand components:

[
delay(fixedcomponents)

delay(fixedwires)

]2
?
> 3N. (3.27)

Or equivalently in prose, component costs will be dominant over wiring costs

if the square of the ratio of component delay to wiring delay in the fixed-function

circuits is greater than three times the number of explicit functionalities present in

the circuit.

Finally, consider the case of comparing the cost of added multiplexers to the

costs of wiring:

81

ncpceil(log2(N))delay(MUX2)
?
> delay(fixedwires)

Rprogrammable

Rfixed
. (3.28)

Rearranging this equation by dividing both sides by ncpdelay(MUX2) yields

the following equivalent comparison:

ceil(log2(N))
?
>
delay(fixedwires)

ncpdelay(MUX2)

Rprogrammable

Rfixed
. (3.29)

Substituting the bound on
Rprogrammable

Rfixed
from equation 3.12 yields

ceil(log2(N))
?
>
delay(fixedwires)

ncpdelay(MUX2)

√
1 + k(N − 1). (3.30)

Grouping N -dependent terms on a single side, yields

ceil(log2(N))√
1 + k(N − 1)

?
>
delay(fixedwires)

ncpdelay(MUX2)
. (3.31)

Unfortunately, as the left-hand side is not monotonic with N , this does not

yield a simple bound as do equations 3.23 and 3.26.

Energy

Similar derviations for energy yields a test for the dominance of fixed-function com-

ponent costs over added multiplexers:

energy(fixedcomponents)

Cenergy(MUX2)

?
> αkβ(N − 1)γ. (3.32)

Now assume several bounds guaranteed by definition, specifically that the

number of input terminals is equal or less than the total number of terminals (α ≤ 1),

82

the fraction of multiplexers inserted is less than one (β ≤ 1), and no gains from

operand isolation (γ = 1) techniques. The equation then simplifies to a bound

related to the minimum extent of the component-dominated region:

energy(fixedcomponents)

Cenergy(MUX2)

?
> k(N − 1). (3.33)

In prose, this equation suggests that the fixed-function component energy

is dominant if the average energy per component in units of energy dissipated by

a MUX2 component exceeds the product of the averge number of terminals per

component and the number of designs implemented less one.

A similar derviations yields a test for the dominance of fixed-function com-

ponent costs over the cost of wiring:

energy(fixedcomponents)

energy(fixedwires)

?
> γ

Wprogrammable

Wfixed

Rprogrammable

Rfixed
. (3.34)

By incoporating definitions for
Wprogrammable

Wfixed
and

Rprogrammable

Rfixed
from equations

3.12,3.18 and the bounds described earlier (α ≤ 1, β ≤ 1, and γ = 1), one arrives at

a second bound related to the minimum extent of the component-dominated region

energy(fixedcomponents)

energy(fixedwires)

?
> [1 + k(N − 1)]3/2 . (3.35)

Consider the case of comparing the cost of added multiplexers to the costs

of wiring:

Mprogrammableenergy(MUX2)γ
?
> energy(fixedwires)γ

Wprogrammable

Wfixed

Rprogrammable

Rfixed
.

(3.36)

83

By incoporating definitions for
Wprogrammable

Wfixed
and

Rprogrammable

Rfixed
from equations

3.12,3.18 and the bounds described earlier (α ≤ 1, β ≤ 1, and γ = 1), one arrives

at an equation of the form

kC(N − 1) [1 + k(N − 1)]2/3
?
>
energy(fixedwires)

energy(MUX2)
. (3.37)

Much as for delay, this bound is not as a convenient a form as the bounds in

equations 3.33 and 3.35.

Area

In section 2.2.3 the area metric is not defined to map onto the set of positive reals.

Thus, simple relationships of the form previously found for delay and energy will

not be presented for area. However, if one restricts attention to a single component

of area, for instance the active area as might be reported in a standard cell library,

and ignores wiring area, simple relations can be expressed.

Within this context, the area used by fixed-function components can be com-

pared to that used by multiplexers and the following test for dominance derived:

area(fixedcomponents)
?
> area(MUX2)Mprogrammable. (3.38)

Substituting the definition of Mprogrammable from equation 3.1 and rearrang-

ing terms yields

area(fixedcomponents)

area(MUX2)

?
> αkβC(N − 1). (3.39)

Now assume several bounds guaranteed by definition, specifically that the

number of input terminals is equal or less than the total number of terminals (α ≤ 1),

84

and the fraction of multiplexers inserted is less than one (β ≤ 1), yielding the

simplied relation

area(fixedcomponents)

Carea(MUX2)

?
> k(N − 1). (3.40)

In prose, this implies that the fixed function component area is dominant if

the average fixed-function component area expressed in units of MUX2 components

is greater than the product of the average number of terminals times one less than

the number of explicit functionalities. Thus this equation establishes a bound for

the number of functionalies that can be implemented surely within the component-

dominated region.

3.5.2 Region Discussions

Because equations 3.23, 3.26, 3.31, 3.35, 3.33, 3.37, and 3.40 depend solely on high-

level parameters, they are capable of providing guidance early in the design process

as to which design-space region the resulting design is likely to reside, thereby guid-

ing optimization. For example, if the comparisons in equations 3.23 and 3.26 are

true, then the design is likely to reside in the component-dominated design-space

region. The remainder of this section considers scaling behavior and optimization

within each of the three design-space regions.

Component Dominated

Equations 3.23, 3.26, 3.35, 3.33, and 3.40 establish a minimum size for the component-

dominated region based solely upon high-level parameters. For example, consider

a 90nm standard cell library with characteristics shown in Table 3.1. Using this

library, a 32-bit adder and 16x16-bit multiplier, as might be found in a typical Dig-

85

Cell MUX2 Cell Full Adder Cell 32-bit Adder 16x16 multiplier

Delay 31 60 (A/B to CO) 2100 2500 ps
32 (CI to CO) ps
33 (CI to S) ps

Energy 15 31 3100 5800 fJ
Area 7.1 19 1800 4200 µm2

Leakage 1900 7600 24000 69000 nW

Table 3.1: Assumed 90nm standard-cell performance characteristics.

ital Signal processing application, were synthesized with the costs also shown in

Table 3.1. Further assume that for an (unbuffered) wire of length ` delay can be

approximated as
(
2.08fs
µm2

)
`2, and switching energy dissipation can be modeled as

(0.11fJ/µm) `9. For clarity, all numeric values are treated as having 2 significant

digits.

To gain intution, several simplifying assumptions are made:

• the fixed-function component has costs approximated by those of a 32-bit

adder,

• the average number of terminals (k) per component is 3, and

• the average wirelength in the critical path is approximately equal to the square

root of the area of a 32-bit adder times the number of components (C).

From the last assumption and Table 3.1, one can approximate the average

wirelength on the critical path as
√

1800C in units of µm, with a corresponding

modeled delay of 3.7C ps, and switching energy of 4.7
√
C fJ. In this context, con-

sider now the limits on the number of functionalities (N) within the component-

dominated region predicted by equations 3.23, 3.26, 3.35, 3.33, and 3.40.

9These wire performance values are derived from parameters provided by Ho, et al. for mid-layer
wires [47].

86

In the context of equation 3.23, the ratio of delay between the 32-bit adder

component and MUX2 of 67.7 suggests that for up to 267 functionalities (N), the

fixed-function component delay will be greater than the added multiplexers. In the

context of equation 3.26, for the number of programmable functionalities (N), the

fixed-function component delay will be greater than the added wiring up to 105

C2 . For

a design with 10 components, this represents a 1000 functionalities bound, while for

100 components, this represents up to 10 functionalities.

In the context of equation 3.33, the ratio of dynamic energy from the 32-bit

adder to a 32-bit multiplexer is approximately 6.5, suggesting that up to N = 3

functionalities will be in the component-dominated region for energy. Equation

3.35 predicts up to N = 25C−1/3 will be in the component-dominated region for

energy. For a design with 10 components, this represents a bound of N = 12,

while for 100 components, the predicted bound is N = 6. However, as will be

studied experimentally, this conservative analysis neglects the substantial benefits

of operand isolation that are captured by the γ parameter.

Similarly, equation 3.39 predicts that up to N = 5 functionalities will be

located within the component-dominated region for area.

In the component-dominated region, the costs of computing components is

dominant when compared to both wiring and multiplexer costs. Thus it is advanta-

geous to minimize the number of components instantiated, which implies satisfying

the conditions of maximal resource sharing. Beyond this, optimizing the insertion of

multiplexers and wiring is likely to have little impact on the overall performance of

the circuit. Therefore within the component-dominated region, one might say that

added functionality is comparatively inexpensive.

87

Multiplexer Dominated

In the multiplexer-dominated region the cost of the multiplexers dominates the

implementation cost, and as a result insertion of multiplexers should be minimized.

Optimization criteria is the subject of the Datapath Merging Problem of high-level

synthesis, and is well-addressed by existing academic literature. A full discussion

and summary of prior work is provided in section 5.3.

Wire Dominated

In the wire-dominated region, the cost of wires dominates the implementation cost.

As a result, optimization should focus on minimizing the resulting wiring complexity.

Desirable optimization strategies for this region include those deriving from

recursive bisection strategy followed in the proof of theorem 3.4.3. A case study of

this type of strategy is provided in section 4.1.2. Other than those provided within

this paper, binding strategies for this region are ill-addressed in current academic

literature for on-chip networks, but are well studied within networking domain.

3.6 Summary

In this chapter, a model of programmability based on the assembly of fixed-function

components with multiplexer “glue” was proposed and rigorously defined. Within

this model, design-points of theoretical interest were identified and defined. Trans-

formations for traversing within the design-space of programmable implementations

were defined along with an examination of the properties preserved and lost through

the various transformations. The programmability problem itself was refined to have

both a priori and a posteriori cases, and qualitative evaluation metrics for reasoning

about the amount of functionality provided was provided for both.

88

Further, the implementation cost for circuits created within this programma-

bility model were examined, and decomposed according to the need to meet each

of three criteria for a functionality-preserving transformation. The relative cost of

these three components were used to define design-space regions. Guidance was

provided to predict which of the three design-space regions identified a design was

likely to fall within. For each region, discussion as to relative amount of overhead

present and the best optimization strategies were suggested.

89

Chapter 4

Experimental Validation

90

4.1 Merging Design Tool

One of the key claims underlying this effort is that applications implemented in

traditional programmable devices incur a tremendous overhead relative to those im-

plemented in ASIC devices. Based upon this assertion, it is hypothesized that one

can automatically introduce programmability into fixed-function devices, thereby

yielding devices that incur substantially less overhead than fully programmable de-

vices and yet maintain a limited, but still useful, degree of programmability. The

validity of this hypothesis can be demonstrated by existence proof, and therefore,

this effort will include the creation of a tool that will accept a set of data-flows as

input and produce a programmable architecture capable of implementing those flows

as output. This tool is known as the Reconfigurable Architecture Synthesis Tool

(RAST). The input of the RAST is a set of netlists while the output will be a Ver-

ilog module that is capable of implementing each of the input netlists’ functionality

when provided with the correct configuration bits.

4.1.1 Overall Flow

The tool functions by reading RTL (in this case, Verilog) representations of the input

designs. The designs are synthesized into technology independent macro-models us-

ing a commercially available synthesis tool, in this case SynopsysTM DesignCompilerTM.

The macro-model netlist is then read into a custom tool and several local opti-

mizations are performed. Notably, bit-sliced components are aggregated into single

components. Wire for individual bits are clustered into buses.

The resulting netlists are merged by our custom tool that identifies common

cell instantiations between the input netlists and outputs a single netlist that shares

these components. Appropriate multiplexers are inserted at the input of shared

91

cells, such that the inter-cell connectivity for any of the input netlists can be im-

plemented by setting the multiplexer select lines appropriately. The select lines to

the multiplexers are exposed at the interface of the generated circuit such that the

functionality of any of the input circuits can be configured. A simple binary selec-

tion scheme can be used so that for N input designs, ceil(log2(N)) configuration

bits are required.

The technique presented here is a netlist-based approach in which, when con-

figured properly, the output circuit behaves identically in each cycle to the selected

input circuit. That is, no retiming or scheduling flexibility is allowed of the tool. As

a result, for each type of component in the input circuits, the output circuit must

contain at least the largest number of components found in any one of the input

netlists.

To reduce dynamic power, operand isolation gating circuitry is inserted at

the boundary between circuitry that will be active for a particular configuration

and circuitry that will not be active for that particular configuration. As a result,

inactive cells see constant operand inputs. In the studied cases, this approach adds

an average of 3% in area to the combined circuit, but decreases dynamic energy

consumption by 7%-65% (mean: 39%) depending on which circuit is selected. Power

gating of inactive cells will be considered in future work, but is omitted in this paper.

Eliminating power gating enables theoretical reconfiguration times of a single cycle,

but are practically limited to the pipeline length of the circuit reconfigured.

Following the merging of the input netlists, the resulting reconfigurable

netlist is exported to Verilog. As a result, the merging tool is “Verilog-in/Verilog-

out”, such that the merged netlist can be incorporated into a larger overall design.

This gives the design engineer the ability to explicitly control the reconfigurabil-

92

Figure 4.1: Conceptual design flow

93

ity present within the final design. One can envision that segments of the overall

application be made reconfigurable, while others remain application-specific depend-

ing on design objectives. More importantly, the reconfiguration boundaries can be

tailored to the specific application.

4.1.2 Optimization Strategies

Clearly the selection of components to merge (i.e. “binding”) forms a critical por-

tion of the optimization problem for this design flow. Ongoing work has enumer-

ated multiple reasonable optimization objectives for which the underlying optimiza-

tion problem is often NP-hard. For instance, one may be concerned with area-

minimization and thus require a “maximum-binding” objective. One may also con-

sider a “minimum-multiplexer” binding that requires the addition of the fewest

multiplexers. One may also wish to optimize delay for specific paths or input cir-

cuits at the expense of others. Alternately, one may consider minimizing various

interconnect parameters of the generated circuit, such as total wirelength (or proxies

thereof, such as Rent exponents [67]).

However, it is important to note that the substantial energy and delay im-

provements of the proposed reconfigurable ASIC technique relative to more general

purpose reconfigurable circuitry (e.g FPGAs) are not dependent on solving the op-

timization problem. Instead, the improvements flow directly from providing only

the reconfigurablity required by the application.

As discussed in section 3.5, the optimal binding problem is computationally

intractable in practice but, for many cases, the computational burden can be eased

by selecting a strategy based on the design-space region the solution is located in.

The RAST tool allows binding strategies to be plugged-in, and several strategies

94

have been implemented and for conciseness are identified by a mnemonic:

• mg null - a side-by-side realization with no binding,

• mg bmh - a bipartite matching heuristic scheme intended to be effective within

the multiplexer-dominated region,

• mg greedy - a simple greedy scheme, and

• mg random - a random scheme for comparative purposes.

4.1.3 Noteworthy Complexities

Beyond achievement of any explicitly stated goals, an implicit contribution in any

research effort is the identification and charting the inevitable unexpected difficul-

ties, and recording the arbitrary decisions made in the resolution of those difficulties.

Such documentation often serves a cartographic function for later researchers, facil-

itating comparisons with alternative approaches, and suggesting avenues for future

research. This effort is no exception, and several minor complexities worthy of brief

discussion will now be discussed.

Partial-port netlists

In many highly optimized signal processing circuits, extensive use is made of bit-level

manipulations. Modeling this in the context of coarse-grained reconfigurable logic

operating on many-bit words is possible in multiple ways. One method, common

in software-rooted approaches, is to model the bit-level manipulations (e.g. bit-

wise shift) as distinct operations in the dataflow graph. For computations to be

synthesized as software, this makes a great deal of sense, as these distinct operations

95

are ultimately realized as distinct instructions, each with a distinct cost in execution

time and scheduling restrictions.

However, for standard-cell level netlists, this model is not as appropriate.

To first order bit-shift operations are effectively cost-free to realize, as connections

are typically made solely at the bit-level without regard to word-level alignments.

As a result, distinct bit-level manipulation nodes in the dataflow graph work are

obstacles to extracting the true costs of connectivity in the graph. In the case of

generating multiplexer-based interconnects, it is desirable to avoid this masking. To

handle this case in the RAST, the named ports of each component are further split

into buses by connectivity. For example, given a 16-bit port “A” on a component

in which bits 0-7 are routed to one set of destinations and bits 8-15 are routed to

another set, the RAST tool will create two ports labeled “A[7:0]” and “A[15:8]”.

These two ports will then be treated as independent for further processing. In this

manner, the RAST tool internal data structure design prioritizes connectivity over

explicit identifiers extracted from the RTL source code.

Memories

Many signal processing circuits require the use of memory, often in two forms: read-

only constants (e.g. filter coefficients) and writable temporary working space. Those

in this case study are no exception. Much like other components, such memories

benefit from resource sharing. Read-only constants from differing functionalities can

be stored in disjoint areas of a single read-only memory (ROM), perhaps aligned

on power-of-two boundaries to ease address signal generation. Temporary working

areas that are disjointly active can similarly be stored in disjoint regions of a shared

random access memory (RAM).

96

In a non-trivial subset of commonly used signal processing algorithms, the

potential state transitions of the temporary working memory is self-stabilizing, in

that proper output can be assured after a specified number of clock cycles regardless

of the initial state of the temporary working memory. Two broad classes of com-

monly used applications have this characteristic: those with acyclic data flow graphs

(e.g. the heterodyning circuit of Figure B.5), and those with cyclic but provably

finite impulse response (e.g. the cascaded integrating comb filter of Figure B.4). In

these cases, it is possible to share temporary working areas for functionalities that

are disjointly active in the same regions of a random access memory.

Much as memories warrant specialized synthesis tools (i.e. memory com-

pilers), memories are handled explicitly in the RAST tool. Ports that would be

connected to internal memories are instead exposed as external ports. That is,

in the current version of the RAST tool, memories are handled explicitly by the

user. As each of the designs tested assumes at most a single RAM or ROM, for

the test cases studied, it is assumed that a single external memory is available to

be connected. The costs of such a memory are not considered extensively in this

document, as the sharing memory between tasks is relatively straightforward and

high-level estimation of memory costs are well developed [83].

Cycles in Output Netlists

Certain bindings can create cycles in the resulting netlist that have the potential

to cause problems for a synthesis tool. For example, in Figure 3.2, there is a cycle

involving nodes Mul 2B and Add 3C and two additional multiplexers. This has the

potential to cause loops in static timing analysis. These loops are false timing paths,

in that any useful configuration of the multiplexers avoids such a loop. However,

97

the falseness of such path may not be apparent to the synthesis tool and therefore

may cause difficulties in both timing optimization and characterization.

In this case study, the RAST tool is capable of generating such loops. The

difficulties are handled instead through careful control of the synthesis and static

timing tools. As a part of its output for a merged design, the RAST tool outputs

metadata for the configuration lines. This metadata is encoded as specially format-

ted Verilog comments that the synthesis TCL script parses. Using this information,

appropriate “case-analysis” parameters are setup for the synthesis tool and static

timing tool. These case analysis parameter convey to the synthesis tool that the

configuration ports will be used in only a select logical configurations and that it

should consider each value of the configuration line separately.

4.2 FLWR Case-Study

In order to validate the predictions of chapter 3, a case-study was undertaken us-

ing a Software Defined Radio (SDR) platform known as the Flexible Low-Power

Wideband Receiver (FLWR). This section details the FLWR platform, its applica-

tions, and the intended benefit of applying the techniques of chapter 3 to the FLWR

platform.

4.2.1 FLWR Overview

The University of Texas at Austin Applied Research Laboratories (ARL:UT) has

developed a FPGA-centric Software Defined Radio (SDR) platform called the Flex-

ible Low-Power Wideband Receiver (FLWR). As shown in Figure 4.2, the FLWR

hardware includes a 100 megasample per second (MSPS) analog-to-digital (ADC)

converter, a low-cost FPGA, 32 MB of SDRAM, and an USB 2.0 interface into a

98

Figure 4.2: Block Diagram of the Flexible Low-Power Wideband Receiver

PC. The FLWR has been used in a variety of applications, including the Long Wave-

length Demonstrator array (LWDA), a prototype of the Texas Ionospheric Ground

Receiver (TIGR), and a lunar bistatic radar experiment. In one sample application,

the FLWR collects 100 MHz of input RF bandwidth from the onboard ADC, tunes

and filters approximately 12.5 MHz of this bandwidth, then utilizes a polyphase

filter bank structure to produce 1024 independent frequency channels for further

processing. While in this mode of operation, the FLWR performs nearly 1 billion

multiply-accumulation operations per second, and the entire platform dissipates ap-

proximately 1.8 Watts of input power. A photograph of the hardware is shown in

Figure 4.3.

Currently, applications for the FLWR are hand-coded in a subset of Verilog

suitable for efficient implementation in the onboard FPGA. While this development

methodology is suitable for a number of applications, interest has arisen in being able

to rapidly reconfigure the Digital Signal Processing code running in the FPGA from

a stand-alone low-power embedded CPU. While an embedded CPU is adequate for

downloading bit-streams into the FPGA, it is not sufficiently capable of executing

the Computer Aided Design (CAD) tools needed to generate new FPGA bit-streams

99

Figure 4.3: Image of the Flexible Low-Power Wideband Receiver

within reasonable time and energy budgets. This is due to the computational com-

plexity of the FPGA mapping/placement/routing problem, which is NP-hard even

for simplified routing architectures in the absence of timing constraints [61].

However, the FLWR is only intended to operate over a limited set of algo-

rithms within a limited application domain and therefore the reconfiguration abili-

ties required by the FLWR are far less general than that of an FPGA. For example,

it is desirable for a FLWR to have multiple identical, independently-reconfigurable

channels. Each of these should capable of performing several functions in a time-

multiplexed manner, such as: 1) Spectral estimation via FFT followed energy detec-

tion, 2) Broadband digital down conversion for signal identification, and 3) Narrow-

band digital down conversion followed by demodulation.

One might envision each of the parallel channels initially in the spectral

estimation mode looking for the emergence of received RF energy. This would be

followed by a transition to a broadband digital down conversion mode in order to

identify the type of signal detected. Afterwards, a transition to a narrow-band

100

digital down conversion mode would allow recovery of the data from the signal

detected. Each of the operating modes uses a significant fraction of the FPGA

resources such that they cannot be implemented side-by-side in an area-efficient

manner. However, as is common in the signal processing problem domain, many

of the operators within each mode (e.g. adders, multipliers) are common between

the modes allowing the proposed merging tool is able to efficiently share resources

between circuitry implementing each mode.

4.2.2 Application Details

To demonstrate this principle, five algorithms commonly implemented on the FLWR

platform were identified:

• coordinate rotation digital computer (CORDIC) sine/cosine generator,

• complex multiplication heterodyning stage (hetero),

• Cascaded Integrating Comb (CIC) decimating filter,

• Finite Impulse Response (FIR) filter, and

• Fast Fourier Transform (FFT) butterfly.

Verilog implementations of these algorithms have been extracted from work-

ing FLWR-based systems and processed through the flow outlined in Section 4.1.1.

The RTL for these designs, originally targeted at the Xilinx synthesis tool XST,

were trivially augmented with explicit reset logic in order to synthesize under the

SynopsysTMDesign Compiler suite, but are otherwise unmodified.

101

4.3 ASIC Implementation

To evaluate the suitability of this approach for an ASIC design-flow, netlists are

imported to Design Compiler, and synthesized and mapped into a 90nm standard-

cell library. Critical path delay, dynamic energy dissipation, static power dissipation

and area are estimated based on Design Compiler’s “topographic mode”. While

in topographic mode, interconnect parasitics are estimated based upon a global

placement and process parameters, although a legalized placement and detailed

routing are not performed. Since the proposed technique is an architectural design

exploration technique, the relative fidelity of metrics derived from a global placement

were deemed sufficient for this initial exploration.

4.3.1 Input Circuit Baselines

To provide a baseline from which performance on the generated circuits can be com-

pared, the RTL for each circuit were synthesized. In the initial synthesis run, each

circuit is synthesized with an effectively infinite delay constraint. It is important

to note that the optimal synthesis is an NP-hard problem and that RTL synthesis

tools often use potentially unstable heuristic algorithms during optimization stages.

Without constraint, the use of potentially unstable optimizations (e.g. simulated

annealing) within the synthesis tool is minimized and these tools generally produce

stable, repeatable results. Thus, unconstrained results are useful for verifying ex-

pected behaviors separately from optimization effects and will therefore be discussed

first.

Because the RAST tool must parse the RTL netlist output by the synthe-

sizer, and then output RTL to be read by the synthesizer, a useful test is to feed the

RTL for a single design through the RAST tool and then synthesize the resulting

102

output. If everything works correctly, the synthesis results should be approximately

the same. Table 4.3.1 shows the results of both the original RTL (source column)

and the RAST-generated output (vcv column). For each of the five designs de-

scribed in section 4.2.2, and the mcu design to be described in section 4.6, four

costs are considered: delay, energy, leakage, and area. These are reported in units

of picoseconds, picoJoules, nanoWatts, and square millimeters. In the tables, these

values are scaled by a power of ten selected to yield 2-3 significant digits for easy

visual inspection. The selected scaling value is reported in the table and, within a

single cost metric, is consistent across all designs to facilitate comparison.

The values are approximately the same in most cases, and simulation us-

ing a suite of test-vectors yielded no discrepancies between the RAST-generated

and source RTL. The lone outlier is the energy for the CORDIC serial design, the

cause of which remains elusive after investigation. The CORDIC algorithm performs

extensive bit-level manipulations (e.g. shifts and adds), and it is suspected the pro-

cessing of the netlist affected the heuristics used by the synthesis tool to derive

placement constraints for datapath components. That the simultation results and

area values remain effectively unchanged is consistent with this hypothesis. Note

that such an aberration does not directly bias later results, as future comparisons

will be made to the original RTL values, not the VCV.

4.3.2 Output Circuit Unconstrained Synthesis

Initially each evaluated circuit is synthesized without critical-path constraints. Be-

cause the synthesizer is unconstrained in this case, detailed cell-level logic opti-

mization is not performed. As a result, unlike more realistic constrained scenarios

examined in following sections, the unconstrained results tend to be stable and

103

delay (×102ps) source vcv

CIC 24 24
CORDIC serial 28 30

fftbutterfly32 29 29
fir32 28 28

hetero 25 25
mcu 33 31

energy (×10−1pJ) source vcv

CIC 105 102
CORDIC serial 65 75

fftbutterfly32 370 369
fir32 208 208

hetero 346 343
mcu 29 32

leakage (×104nW) source vcv

CIC 11 11
CORDIC serial 15 16

fftbutterfly32 32 32
fir32 19 19

hetero 29 29
mcu 12 12

area (×10−4mm2) source vcv

CIC 76 76
CORDIC serial 97 96

fftbutterfly32 178 178
fir32 113 113

hetero 170 170
mcu 89 90

Table 4.1: Unconstrained synthesis results for original source (source column) and
the RAST-generated passthrough output (vcv column)

predictable, and are therefore more comparable and interpretable.

In the results to follow, the RAST tool generates a programmble circuit ca-

pable of implementing the functionality of each of the five target circuit detailed in

section 4.2.2. The costs of the resulting programmable circuit are then estimated

through static analysis and compared to the orginal fixed-function equivalent. The

104

static analysis cost estimation process is repeated for each of the five target circuits

with the circuit control lines driven to the appropriate state to implement the func-

tionality of the selected target circuit. The unconstrained results for the five target

circuits detailed in section 4.2.2 are shown in Table 4.2.

As shown in Table 4.2, the generated multiple personality circuit is smaller

than the two largest input designs (hetero & fft), and represents a 1.9X reduction

in area over implementing all five designs side-by-side. In effect, implementing

the three smaller designs is free. Similarly, leakage power is smaller than the sum

of the largest two designs (hetero & fft) and represents a 2.3X reduction relative

to implementing all 5 designs side-by-side. Critical path delay varies from 0-24%

worse (mean: 12%) than a side-by-side implementation, depending on which circuit

is configured. Dynamic energy varies from 8.5-40.5% (mean: 21%) worse than an

side-by-side implementation, depending on which circuit is configured. The 40.5%

outlier in dynamic energy (CORDIC) suffered from having its many 16-bit adders

promoted to 32-bit adders in order to minimize area when merged with the 32-bit

adders prevalent in other designs.

To provide context for the area metric, the individual components consti-

tuting the input designs were synthesized and the resulting area of each measured.

Because a multiple personality circuit must have at least as many instances of each

type as the maximum number in any input circuit, one can establish a minimal

component constitution given a set of input circuits. The areas of this minimal

component constitution were summed to estimate a lower area bound for merged

circuitry. Note that this does not include any required multiplexers, nor inefficien-

cies due to placement/routing concerns and thus represents an loose, unobtainable

lower bound. For the five sample designs studied, such an unobtainable lower bound

105

of 260 × 10−4mm2, or approximately 11% below a solution with the random bind-

ing. Inverting the ratio and comparing to the highest area of five random binding

trials, it can be concluded that in the studied case, even a random binding strategy

repeatedly achieves within 13% of this lower bound. While not initially intuitive,

this result is consistent with the analysis of section 3.5.2. Only the minimum of

programmable interconnect required by the targeted circuits are inserted, and the

total area of the multiplexers required is small relative to the required functional

components regardless of binding choices.

4.3.3 Pareto Synthesis Flow

The post-merge synthesis flow outlined in section 4.1.1 is subject to bias induced by

the synthesis constraints. While Table 4.2 lists the resulting performance constraints

for the canonical unconstrained design-point, they are not realistic. To explore the

impact of delay synthesis constraints, each synthesized design is repeatedly resyn-

thesized for a variety of critical path delay constraints. An automated process was

used in which the design is initially synthesized unconstrained, followed by a resyn-

thesis using an unachievable (10ps in 90nm) critical path delay constraint. With

the upper and lower bounds established, the automated process proceeds to resyn-

thesize at logarithmically spaced intervals between the bounds. At each synthesis

step, the performance measures discussed in section 2.2 are estimated and recorded,

including:

• achieved critical path delay,

• dynamic energy utilization per cycle,

• static power dissipation per unit time, and

106

delay (×102ps) source mg null mg random mg greedy mg bmh

CIC 24 25 25 26 26
CORDIC serial 28 32 34 34 33

fftbutterfly32 29 30 37 36 37
fir32 28 30 36 37 36

hetero 25 28 30 29 29

energy (×10−1pJ) source mg null mg random mg greedy mg bmh

CIC 105 110 137 147 143
CORDIC serial 65 84 137 113 117

fftbutterfly32 370 395 485 460 459
fir32 208 231 295 284 277

hetero 346 366 428 407 399

leakage (×104nW) source mg null mg random mg greedy mg bmh

CIC 11 107 43 59 43
CORDIC serial 15 107 44 60 44

fftbutterfly32 32 107 45 61 44
fir32 19 107 44 60 43

hetero 29 107 44 60 43

area (×10−4mm2) source mg null mg random mg greedy mg bmh

CIC 76 647 292 395 300
CORDIC serial 97 647 292 395 300

fftbutterfly32 178 647 292 395 300
fir32 113 647 292 395 300

hetero 170 647 292 395 300

Table 4.2: Resulting costs for unconstrained synthesis experiment. The source col-
umn shows the costs of a fixed-function implementation, while the columns to the
right indicate the performance of a merged circuit (capable of implementing any of
the five functionalities) when configured to implement the functionality in question.
The various columns indicate various binding strategies.

• utilized cell area.

By examining the results for a variety for synthesis constraints, it is possible

to derive the set of Pareto optimal design points (the “Pareto frontier”). These

points each represent a unique design trade-off between delay and other performance

characteristics. Through experimentation with the standard cell synthesis flow used

for this exercise, it was found that dynamic energy, static power, and area metrics

107

are positively correlated. That is, when one of the three variables increased, the

others tended to increase as well. This unsurprising dependency is indicative that

the commercial synthesis flow we used is unable to expose trade-offs between these

three parameters, perhaps indicating that the trade-off does not exist within the

achievable design space of the flow. Therefore the results presented here focus on

Pareto optimal trades of critical path delay against dynamic energy, static power,

and area.

Figure 4.4 plots the achieved dynamic energy and area vs. delay Pareto

curves. For each of the five input circuits, the figure shows both the achievable de-

sign points for the application-specific implementation and the automatically gener-

ated reconfigurable implementation. Recall that the mp greedy and mp random

traces represent a multiple personality implementations, each capable of behaving

identically to any of the five input circuits.

4.4 FPGA Implemenation

For comparison, each of the five sample circuits under consideration in this study

were also synthesized for a Xilinx Spartan-3 90nm FPGA. The standard Xilinx ISE

tool flow was used, and power and timing analysis were executed on the results. In

contrast to the standard-cell flow, where critical pieces of the data-path are built out

of smaller components and much room exists for trade-offs between energy and delay,

FPGA synthesis tools generally map and place standard multi-bit operations in a

specific manner efficient to the underlying FPGA fabric. In particular, in modern

commercial FPGAs multiplications are typically mapped to dedicated multiplication

units, and addition is mapped so as to utilize dedicated carry-chains within the

device. As these operations dominate the signal processing application domain, and

108

11

13

15

C
IC

5

15

C
O

R
D

IC

40

50

60

ff
t

25

35

fi
r

1 2 3

Delay (ns)

35

45

55

h
e
te

ro

0.02

0.06

0.10

0.02

0.06

0.10

0.02
0.04
0.06
0.08

0.02
0.04
0.06
0.08

1 2 3

Delay (ns)

0.02
0.04
0.06
0.08

E
n
e
rg

y
(p

J)

A
re

a
 (
m
m
2

)

Null Binding (mp_null)
Greedy Binding (mp_greedy)
Random Binding (mp_random)
Original Circuit (source)

Figure 4.4: Achievable dynamic energy and area design points for each input circuit
and its three reconfigurable implementations as a function of critical path delay.
The points forming the Pareto Frontier for each circuit are connected with lines.

109

Standard Cell ASIC FPGA
delay (×102ps) source mg null mg random mg greedy mg bmh

CIC 24 25 25 26 26 118
CORDIC serial 28 32 34 34 33 122

fftbutterfly32 29 30 37 36 37 181
fir32 28 30 36 37 36 130

hetero 25 28 30 29 29 91
mcu 33 143

energy (×10−1pJ) source mg null mg random mg greedy mg bmh FPGA

CIC 105 110 137 147 143 1400
CORDIC serial 65 84 137 113 117 3200

fftbutterfly32 370 395 485 460 459 9000
fir32 208 231 295 284 277 3400

hetero 346 366 428 407 399 3400
mcu 29 6000

Table 4.3: 90nm FPGA Implementation Results compared to RAST flow with 90nm
standard-cell implementation.

may become very inefficient if mapped in any other manner, only a single design

point is shown for the FPGA synthesis results.

The resulting performance figures for the FPGA are shown in Table 4.3 and

graphically in Figures 4.5 and 4.6. Only critical path delay and dynamic energy

figures are shown, as reputable die size information for the FPGA was not available

in the searched public literature. Moreover, despite the favorable light that such

results would likely paint the proposed multiple personality approach, it is arguably

misleading to present area and static power figures based upon a partially utilized

FPGA, as “design to fit” FPGA fabrics are often neither attainable, nor desirable

[27]. In order to reflect a comparison to the standard cell flow, power and energy

figures reflect only the Vcore component of the device, and ignores the other power

supplies within the FPGA.

110

CIC CORDIC fft fir hetero
0

5000

10000

15000

20000

D
e
la

y
 (

p
s
)

ASIC

Multiple Personality ASIC (mg_greedy)

FPGA

Figure 4.5: Comparative critical path delay for a fixed-functionality standard-cell
ASIC, the proposed multiple personality approach, and an FPGA.

4.5 Revisiting Asymptotic Region Boundary Predictions

From the RAST case study, estimates can be made for several of the model param-

eters used in section 3.5.2. In section 3.5.2, very conservative values were used for

parameters α, β, and γ, to predict a lower-bound on the number of functionalities

(N) present at the boundary of the component-dominated asymptotic region. In

this section, crude estimates for these parameters are made from experimental data,

and the predictions revisited to produce a more typical estimate.

In the output of the RAST tool using binding algorithm, there were 101

111

CIC CORDIC fft fir hetero
0

200

400

600

800

E
n
e
rg

y
 (

p
J)

ASIC

Multiple Personality ASIC (mg_greedy)

FPGA

Figure 4.6: Comparative dynamic energy per cycle for a fixed-functionality
standard-cell ASIC, the proposed multiple personality approach, and an FPGA.

fixed-function components, each with 3 terminals (k = 3) and 2 inputs. This allows

estimation of the fraction of terminals that are inputs at two-thirds (α = 0.67).

Similarly, the number of components C can be fixed at the average number of

components in each functionality of 27.

Furthermore, with two inputs per functional unit, each of which may need

one or more two-input multiplexers inserted to achieve the desired functionality.

Of the minimum 202 potential multiplexers, only the equivalent of 51 two-input

multiplexer elements were needed. Thus a conservative estimate for the fraction of

112

Asymptotic Region Boundary Delay Energy Area

Component/Mux 280 40 38
Component/Wire 208 20 -

Table 4.4: Typical number of functionalities (N) predicted to riside within the
component-dominated asymptotic region. See section 3.5.2 for more detail.

potential multiplexers actually inserted (β) is

β ≈ 51

202
(4.1)

As noted in section 4.1.1, operand isolation techniques produced a reduction

in energy overhead of mean 39%, yielding an estimate for the fraction of dynamic

energy overhead actually incurred of γ ≈ 0.61.

Using these parameters in the methodology of section 3.5.2 yields expected

values for the size of the component-dominated region which are summarized in Ta-

ble 4.4. That is, depending the particular cost function selected, one should expect

to be able to produce programmable circuits with between 20 and 280 functionalities

before the cost of programmability dominated the cost of the fixed-function com-

ponents. Thus for future work, the component-dominated region is interestingly

large.

4.6 a posteriori Progammability

The RAST toolchain provides a computer aided technique producing a programmable

circuit capable of implementing the functionality of any of the input circuits known

as design-time. This a priori programmability is sufficient to directly satisfy the def-

inition of programmability justified in section 3.1. However, as noted in section 3.3,

a useful feature commonly associated with programmability is that of implementing

113

functionality not envisioned at design-time. Such a posteriori programmability is

useful for feature improvements and bug-fixes. It is often acceptable for efficiency

to drop as the desired functionality moves beyond that envisioned at design-time,

but the ability to gracefully degrade by implementing unintended functionality in

existing hardware is valuable.

As argued in section 3.3, merging techniques, such as those implemented by

RAST, are theoretically sufficient for a posteriori programmability provided that

the set of envisonable funtionalities can be enumerated. While theoretically attrac-

tive, such a strategy has the substantial practical flaw: it requires enumeration and

merging of an potentially intractable number of envisonable functionalities. That

is, such a brute-force solution problem is likely to be computationally intractable in

practice. As a result, section 3.3 argues for and proposes higher-levels of abstraction.

One intriguing technique is to utilize multiplexers inserted during the merge

to implement circuitry beyond the original targeted set. Specifically, the higher-

level a posteriori programmability goals and metrics of section 3.3 can be improved

by strategically adding “extra” multiplexers during the binding process, thereby

directly exposing an efficiency vs. generality trade space. Such exploration is left

for future work, but it is the author’s belief that the properties enumerated in

section 3.3.3 provide both an evaluation criteria for such work and directly suggest

approaches for mechanically introducing multiplexers to meet said criteria.

For this work, a more straightforward leveraging of the RAST design flow to

provide general-purpose programmability is explored. Two observations motivate

this strategy:

• The Universal Turning machine proof suggests that, except for the infeasi-

ble infinite memory, the hardware requirements for a device to be fully pro-

114

grammable are quite weak1.

• The incremental cost of implementing an additional functionality falls with

the total number of designs. This arises because (a) additional designs share

the resources of the others, and (b) key multiplexer costs (e.g. delay) scale

logarithmically with the number of inputs (and therefore number of desired

functionalities).

These properties can be exploited to gain general-purpose programmability

by merging an additional microcontroller design (MCU) alongside the original a pri-

ori designs. To evaluate this strategy within this case study, a simple microcontroller

has been implemented in Verilog. This microcontroller includes:

• a 32-bit datapath,

• multiplication, add, subtract, xor, or, and, not, and shift instructions,

• an accumulator-based architecture,

• multiple condition-codes for branching,

• a 3 cycle pipeline without interlocks, and

• the capability to connect to an external RAM up to 512 entries x 32 bits.

The intent is for the instruction set to be simple, while sufficently resembling

contemporary digital signal processor instruction sets to support a judgement that

the design is indeed programmable for general purpose tasks. For reference, the

instruction set is shown in Table 4.5. An architectural diagram is shown in Fig-

ure 4.7. The instruction encoding, similar in spirit to Very Long Instruction Word

1See section 1.2

115

Mnuemonic Description

NOP No operation (for filling delay slots)
LD Load from memory
ST Store value to memory
IN Load value from I/O port
OUT Output value to I/O port

ADD Add accumulator and memory operand
SUB Subtract memory operand from accumulator
RSB Subtract accumulator from memory operand
MUL Multiply accumulator and memory operand (16x16-bit signed)
SHL Shift accumulator value left 1 bit
SHR Shift accumulator value right 1 bit
NOT Bit-wise inversion of accumulator value
AND Bit-wise AND of accumulator value
XOR Bit-wise XOR of accumulator value
ZERO Zero accumulator
XCH Exchange most and least significant words of accumulator
DEC Decrement memory operand

JMP Unconditional jump to address
JB Jump if below
JNB Jump if not below
JZ Jump if zero
JNZ Jump if not-zero

Table 4.5: MCU instruction set

(VLIW) designs is shown in Table 4.6 and supports a limited amount of parallelism

within a cycle. For instance, one may store a value to memory, add two values,

and conditionally jump within a single instruction word. To support this, pipeline

interlocks are not present, and it is assumed that the programmer will accommodate

these features. An assembler was written to support this MCU, and a test program

implementing a FIR filter is shown in Figure 4.8. Note that this MCU approach

satisfies many of the abstract properties outlined in section 3.3.3 that are desired

in a programmable system, including compositional universality, function coverage,

class connectedness, bounded coupling, and constant access.

116

Figure 4.7: Block Diagram of the Microcontroller Unit (MCU)

Bits Description

27-25 Branching opcode
26-16 Branch address
15-12 ALU operation
11 Store accumulator value to memory
10 Output accumulator value to I/O port
8-0 Memory address

Table 4.6: MCU instruction encoding

Consistent with the discussion of section 4.1.3, for the purposes of this case

study, it is expected that the RAM will be shared with other circuitry and so

RAM costs are not considered in the figures that follow. Obviously, the validity

of this assumption is application-specific. If none of the a priori circuits require

sufficient RAM, the costs incurred for having RAM may be substantial. Such a

penalty appears to be unavoidable: general purpose a posteriori programmability

is expensive. However, the need for RAMs of this size are common in the signal

117

NOP
LOOP:

IN 0x2
IN 0x3
ST X # X=IN(0 x2)
MUL X
IN 0x4
ST ACC
MUL X
ADD ACC
IN 0x5
ST ACC
MUL X ; JMP LOOP
ADD ACC # JMP Delay s l o t
OUT 0x1 # JMP Delay s l o t

X : CONST 0
ACC: CONST 0

Figure 4.8: MCU Assembly source for a simple 3-tap FIR filter

processing domain2, and this case is assumed for the remainder of the analysis.

The processor here is not intended to be particularly fast. As noted earlier, it

is often acceptable for functionality unenvisioned at design-time to run slower than

functionalties that were optimized at design time. As an example, when the FIR

design was implemented within the MCU, the same functionality was obtained at

1/13th of the a priori design throughput. While not efficient, the added flexibility

comes with little penalty. As shown in Table 4.7, the incremental cost of imple-

menting this MCU as an additional functionality alongside the five other test cases

varies according to which of the five circuits is configured, but averages only 1.3%

in critical path delay, 3.5% in dynamic energy per cycle, 7.8% in leakage power, and

2Commercially available “signal processing”-optimized FPGAs such as the Virtex-5SX line pro-
vide extra dedicated RAMs for this reason

118

10.1% in area.

Given the low impact, this configuration may be viewed as a “dual” of a hard-

ware accelerator module attached to a general-purpose microprocessor. Instead of

a small limited-purpose accelerator module integrated into a much larger micropro-

cessor, this configuration integrates a small microprocessor into the very fabric of a

much larger limited-purpose design.

119

w
/o

M
C

U
w

it
h

M
C

U
d

el
ay

(×
10

2
p
s)

m
g

n
u

ll
m

g
ra

n
d

om
m

g
gr

ee
d

y
m

g
b

m
h

m
g

n
u

ll
m

g
ra

n
d

om
m

g
gr

ee
d

y
m

g
b

m
h

C
IC

25
25

26
26

24
26

28
31

C
O

R
D

IC
se

ri
al

32
34

34
33

32
35

33
35

ff
tb

u
tt

er
fl

y
32

30
37

36
37

30
36

35
37

fi
r3

2
30

36
37

36
30

39
36

36
h

et
er

o
28

30
29

29
28

29
29

29
m

cu
33

33
32

31

en
er

gy
(×

10
−
1
p
J

)
m

g
n
u

ll
m

g
ra

n
d

om
m

g
gr

ee
d

y
m

g
b

m
h

m
cu

n
u

ll
m

cu
ra

n
d

om
m

cu
op

t
m

cu
b

m
h

C
IC

1
10

13
7

14
7

14
3

11
0

13
2

14
7

14
8

C
O

R
D

IC
se

ri
al

84
13

7
11

3
11

7
85

14
0

12
6

13
3

ff
tb

u
tt

er
fl

y
32

3
95

48
5

46
0

45
9

40
7

49
3

46
8

47
3

fi
r3

2
2
31

29
5

28
4

27
7

23
7

30
3

29
2

28
5

h
et

er
o

3
66

42
8

40
7

39
9

36
7

43
4

42
4

40
1

m
cu

48
12

2
11

3
11

1

le
a
ka

g
e

(×
10

4
n
W

)
m

g
n
u

ll
m

g
ra

n
d

om
m

g
gr

ee
d

y
m

g
b

m
h

m
cu

n
u

ll
m

cu
ra

n
d

om
m

cu
op

t
m

cu
b

m
h

C
IC

1
07

43
59

43
11

9
46

68
46

C
O

R
D

IC
se

ri
al

1
07

44
60

44
11

9
47

69
46

ff
tb

u
tt

er
fl

y
32

1
07

45
61

44
12

0
47

70
47

fi
r3

2
1
07

44
60

43
11

9
47

69
47

h
et

er
o

1
07

44
60

43
12

0
47

69
46

m
cu

11
9

46
68

46

ar
ea

(×
10
−
4
m
m

2
)

m
g

n
u

ll
m

g
ra

n
d

om
m

g
gr

ee
d

y
m

g
b

m
h

m
cu

n
u

ll
m

cu
ra

n
d

om
m

cu
op

t
m

cu
b

m
h

C
IC

6
47

29
2

39
5

30
0

74
0

32
0

46
3

33
2

C
O

R
D

IC
se

ri
al

6
47

29
2

39
5

30
0

74
0

32
0

46
3

33
2

ff
tb

u
tt

er
fl

y
32

6
47

29
2

39
5

30
0

74
0

32
0

46
3

33
2

fi
r3

2
6
47

29
2

39
5

30
0

74
0

32
0

46
3

33
2

h
et

er
o

6
47

29
2

39
5

30
0

74
0

32
0

46
3

33
2

m
cu

74
0

32
0

46
3

33
2

T
ab

le
4.

7:
C

om
p

ar
at

iv
e

re
su

lt
s

fo
r

d
es

ig
n

s
w

it
h

an
d

w
it

h
ou

t
a

m
er

ge
d

M
C

U

120

Chapter 5

Prior and Related Work

121

This work draws from several areas, each solving a related, but fundamen-

tally different problem. These problems include: 1) modification and/or run-time

configuration of FPGA architectures, 2) high-level synthesis of application-specific

data-path accelerators, and 3) reconfigurable computing architecture design. In ad-

dition, a substantial body of directly relevant prior work has developed out of The

Totem Project [46] at The University of Washington.

5.1 FPGA Modification Approaches

A number of prior efforts involve using FPGAs in atypical ways to achieve goals

related to this effort. The approaches can be categorized into two general: 1) pruning

of unneeded FPGA resources, 2) run-time reconfiguration of existing FPGAs.

FPGA vendors have long offered reduced functionality versions of their com-

ponents in order to reduce costs. For example, XilinxTM offers an approach called

EasyPathTM [84], which relaxes production-line device testing to include only those

resources actually utilized by a particular customer design. This allows devices that

are not completely functional, and would normally be scrapped, to be sold to suit-

able customers at a reduced cost. In contrast, AlteraTM offers a “HardCopy” service,

in which FPGA designs are mapped onto “common partially fabricated units” [1]

of similar construction to an FPGA. Instead of using FPGA-like programmable cir-

cuits, the operation of the device is customized via production of a subset of the

metal layers. In this manner components not needed in the FPGA fabric are simply

not connected, yielding improvements in both performance and energy dissipation

[1].

Parvez et al. [66] have extended this approach to allow a set of applications to

be mapped to an FPGA in such a manner that the total resources used in the FPGA

122

are minimized. The unused resources can then be pruned, leaving a “Application

Specific Inflexible FPGA (ASIF)” device that can implement any of the applications

in the set, but only limited subset of others. Re-synthesis of the resulting ASIF into

standard cell technology yielded 85% reduction in FPGA area usage in one case.

An overview of early work on a new CAD flow capable of mapping designs into the

ASIF is also presented.

An alternate approach that yields rapid reprogrammability is run-time con-

figuration of existing FPGA architectures. This work has historically focused on

several key problems:

• software libraries to abstract the complex (and often proprietary) nature of

FPGA architecture internals [40],

• minimizing the storage needed for target FPGA architecture descriptions [80]

[53] [81],

• minimizing the execution time of routing algorithms [52] [11] [28], and

• integrating circuit-descriptive software libraries [68].

While these efforts have been successful to varying degrees, run-time syn-

thesis and configuration of complete data-paths is largely an unachieved goal due

to the NP-hard computational complexity of the FPGA technology mapping prob-

lem. Moreover, the commercial environment is such that if the mapping problem

could be simplified, traditional FPGA vendor tool-chains would be among the first

to adopt the techniques. As a result of the computational complexity, the biggest

benefactors of the run-time configuration work are problems that can be addressed

without attempting to solve the NP-hard mapping problems, including multi-layer

123

floorplanning [76], radiation induced soft-fault detection/correction in FPGAs [39],

and limited debugging probe readout.

5.2 High-level Synthesis

High-level synthesis (HLS) is generally defined as the “automated generation of the

hardware circuit of a digital system from a behavioral description” [42]. High-level

synthesis techniques have been well-known for over two decades [62], and have been

used successfully in numerous commercial products.

For conceptual reasons, the high-level synthesis problem is traditionally bro-

ken down into two optimization subproblems: (i) scheduling and (ii) binding (also

known as allocation or assignment in the literature). The scheduling subproblem is

to determine the order in which operations are executed, typically with the goal of

optimizing execution time under constraints derived from operation dependencies

and hardware limitations. The binding subproblem consists of mapping operations

in the input behavioral description to physical computing resources in the target

hardware circuit, often with the goal of minimizing required hardware resources.

While the binding and scheduling subproblems are often treated as conceptually

distinct, these two optimization problems are not separable under many, if not

most, interesting conditions [62]. While extensive work has been done in the area of

high-level synthesis, the problem is so broadly defined and computationally complex

that much of its promise remains unfulfilled in practice. As a result, interest and

work on various aspects of high-level synthesis continues.

While the high-level synthesis problem arguably assumes scheduling flexi-

bility by definition, the binding subproblem for a fixed schedule has been studied

independently. Notably, Haung et al. [48] examines a problem defined as follows:

124

We assume that the data path allocation is performed after the schedul-

ing. [...] Our inputs include: (1) the scheduled data flow graph and

(2) the set of available functionunits with known capability (ie. types of

operations each function unit is capable of performing). Our goal is to

allocate a minimal set of registers for variables, assign operations into

function units, and connect registers to and from function units using

minimal number of multiplexers (measured as the number of multiplexer

inputs).

Weighted bipartite matching is used for two independent and successive steps

of register allocation and operation assignment. By assuming register connections

between operations and allocating them in a separate step based on lifetimes, this

work avoids much of the higher order potential mux elimination steps (and thereby

potential optimization) exploited by the works discussed in section 5.3.

van der Werf et al. [87] examine the case of merging data flow graphs (DFGs)

into a “multi-functional processing unit” which can execute one DFG at a time. The

goal of the exercise is to “find an operator assignment that minimizes the silicon

area that is occupied the [...] interconnection consisting of multiplexers and wires.”

A local search algorithm based upon iterative and simulated annealing using an

assignment 2-exchange primitive is used to minimize the number of edges in the

interconnect.

As noted by Geurts et al.[37], an alternative approach is to expand the high-

level operators into Boolean logic, and then use logic synthesis techniques to min-

imize redundancies (e.g. subexpressions). While conceptually pure, and perhaps

optimal in a general way, the general logic synthesis problem is known to be in the

class NP, and the reduction from high-level operators to Boolean expressions only

125

increases the computational complexity (exponentially).

Fan et al. [34] demonstrate an approach for generating “reconfigurable in-

terconnection network” components, which are switch blocks that “yield routing

solutions for a pre-given set of applications.” This work focuses on the generation of

multi-stage switch boxes that have minimal complexity, and therefore presumably

low costs of implementation.

5.3 Datapath Merging Problem

The Datapath Merging (DPM) problem can be viewed as a restricted subset of

the high-level synthesis problem. The general DPM problem accepts as input any

number of DFGs, and produces as output a “single reconfigurable datapath” [63],

with the goal being to “design a reconfigurable datapath which incorporates all

the [...] datapaths and has [the fewest] functional units and interconnections as

possible.” [63] Experimental work on this subject has primarily focused on using

unscheduled DFGs obtained from intermediate compiler representations of software

implementations, although manual examples of the technique exist in the context

of FPGA run-time reconfiguration [75].

A substantial portion of work on the DPM problem are related to techniques

for accelerator synthesis [37], [4]. A common use case for such accelerators is to im-

plement Application-Specific instruction set extensions for otherwise conventional

microprocessors. For instance, Zuluaga and Topham [91] propose a technique that

considers latency constraints during the merging process between multiple instruc-

tion set extensions. In this technique each functional unit type is synthesized using

Synopsys’ DC Ultra synthesis tool into a 130nm standard-cell library under a range

of synthesis constraints, yielding a Pareto frontier of area vs. delay curves for each

126

component. The Pareto front for each component is then used in a relaxation pro-

cess [38] to produce a Pareto frontier of merged solutions using modified versions

of the resource-sharing techniques of Brisk et al. [10]. Notable other examples

of application-specific instruction set generation are listed in [90] and [10]. Brisk

et al. [10] propose a DPM heuristic solution restricted to directed acyclic graphs

(DAGs), and focuses on reducing functional unit area at the expense of interconnec-

tion sharing. This heuristic solution relies on enumerating the operation type along

all paths in the input DFGs into a set of strings, followed by finding the longest

common-substrings (appropriately weighted for component area), and using them

to construct an output merged DFG.

In the chapter “Application-Specific Unit (ASU) Synthesis” Geurts et al.[37]

outlines a methodology for the DPM problem, focused on merging clusters of oper-

ations into a single unit. Much as in earlier work [87], the sole goal is to minimize

the area cost. Two techniques are presented, differing primarily in the modeling of

interconnect cost: 1) local estimation based on linear programming, and 2) a global

modeling based on integer linear programming. Discussion of the problem of false-

combinatorial cycles introduced by binding together operators with dependency-

order conflicts is provided, along with mechanisms to reject solutions containing

these cycles. Also discussed are approaches for iteratively merging n > 2 graphs us-

ing pair-wise iterative techniques, along with a conclusion that “the pairwise merging

technique can be used to generate solution which are close to optimal”.

Huang and Malik [49] discuss the DPM problem as a component of a method-

ology to minimize run-time reconfiguration overhead in Systems-on-a-Chip(SoC).

Specifically, a design flow is described in which a software application is profiled to

find inner-loops (i.e. kernels), which are then extracted as DFGs and merged to

127

form a reconfigurable datapath. The interconnect for the reconfigurable datapath

is optimized through matching functional units from the input DFGs via maximum

bipartite mapping. The ability to use bi-partite matching in the DMP problem relies

on the restriction of merging only 2 DFGs at a time (i.e. 2-DPM). To merge more

than n > 2 DFGs (i.e. n-DPM), the additional graphs are iteratively merged into

the final graph one at a time. Because of this, the algorithm is a greedy heuristic in

that binding choices made early on are made without regard to all the input graphs

and may therefore be suboptimal.

Moreano et al. [63] further elaborate on the DPM problem by defining a

“compatibility graph” in which each node corresponds to a pair of arcs from differing

input DFGs. In this case, a compatibility graph node symbolizes the mapping of the

head and tail of one arc to the head and tail, respectively, of the other arc during

the merging process. Compatible graph nodes are those in which the mappings

implied by the node are not conflicting (i.e. a single DFG node is conflicting iff it

is mapped to more than one node in another DFG). By defining the existence of an

edge between nodes in the compatibility graph if and only if they are compatible, the

problem of minimizing the number of interconnection edges becomes that of finding

a maximum clique in the compatibility graph. As the maximum clique problem is

NP-complete, the authors propose a specific polynomial-time heuristic algorithm by

Battiti and Protasi [6]. Similar to [49], a greedy iterative approach is proposed for

the merging of more than 2 DFGs. The overall approach described is referred to as

“Moreano’s heuristic (MH)” or the “Compatibility Clique” algorithm in later works.

Various algorithmic aspects of the DPM problem were elaborated upon by de

Souza, et al. [79]. Again, minimization of interconnect edge cardinality was proposed

as a goal, and under this condition the DPM problem was shown to be NP-hard.

128

Deciding the feasibility of a specific edge cardinality was shown to be NP-complete

in general via reduction to the subgraph isomorphism problem. Interestingly, in this

analysis a feasible solution is restricted to use as few functional unit of each type

(or “label” in the terminology of [79]) as is possible.

Moreano, et al. [64] expand on more practical aspects of the DPM prob-

lem by defining the “DFG merge problem”, which they define as minimizing the

total area of the merged graph, including modeled interconnect, multiplexers, and

wires. The authors note that minimizing functional unit area cost is not a difficult

task in the case of 2-DPM, as one can leverage polynomial time solutions to the

maximum weight bipartite matching problem. However mapping so as to minimize

interconnect area is an NP-hard problem. Experimentally, 9 applications taken from

compiler intermediate representation of the MediaBench suite [59] are examined in a

case study. For each application up to 8 kernels were extracted as DFGs, merged by

both the compatibility clique technique, and synthesized with the Synopsys design

compiler tool. The limited applicability of the resource allocation technique built-in

to Design Compiler was discussed. The resulting designs were compared in terms

of both synthesized area, and merging tool computational run time to 3 other bind-

ing techniques (specifically bipartite matching, iterative improvement, and integer

programming). Quantitatively, area reductions averaging 19.6% over an unmerged

datapath were reported, while energy and delay are not reported.

5.4 Multi-mode Synthesis

More recent work has applied a classic high-level synthesis argument that scheduling

and binding are best jointly-optimized to the DPM problem [12, 7]. Specifically

Chavet et al. [12] argue that among prior work (e.g. [87, 37, 49, 63, 64]), “four

129

distinct approaches can be identified” based upon which of the steps in a conceptual

high-level synthesis design are modified to be merge-aware:

1. Graph merging - merging occurs outside of the classic HLS steps prior to

scheduling and binding,

2. Joint scheduling - HLS scheduling is aware of the merge,

3. Sharing during binding - merging occurs during traditional HLS binding, and

4. Datapath merging - merging occurs outside of the classic HLS steps after

scheduling and binding.

Note that Chavet et al.[12] use a post-scheduling, post-binding definition

for the term “datapath merging” that differs from the pre-scheduling, pre-binding

definition used by Moreano et al. [63]. The prior work argues the need for a distinct

“multi-mode” synthesis design flow that co-optimizes scheduling and binding, and

suggest that new “scheduling, binding and register merging algorithms have to be

proposed”. The authors go on to propose such an algorithm and implementation

strategy based upon a “strong semantic memories” (e.g. FIFO buffers), a FSM

controller and synthesized datapaths. Experimental work was conducted by merging

variants (e.g. differing tap-length or matrix-size) of the same algorithm for several

common numerical algorithms (e.g. FFT, FIR, IFFT, LMS, DCT). Very limited

attention was paid to merging different algorithms. However, 3 pairs of DFGs for

differing algorithms were merged. In all cases, area and operation count results were

provided for this approach, and compare favorably to the result discussed below

([14]). Andriamisaina et al. [3] furthered this work by presenting a methodology

that uses multi-mode aware scheduling and binding steps during the synthesis of

each input DFG.

130

Chiou, Bhunia and Roy [13, 14] presented a multi-mode synthesis flow based

upon a SPA-tially Chained Transformation (SPACT) in which the input DFGs are

scheduled individually with estimated resource constraints, then concatenated, then

bound, and then synthesized into HDL code. Three heuristic approaches are pro-

posed with varying trade-offs between area and power. In the minimal resource

approach (SPACT-MR), the input DFGs are scheduled based upon minimal avail-

able functional resources. In the resource constrained approach (SPACT-RC), some

additional functional resources are made available during scheduling to potentially

improve power at the expense of area. In the signal similarity-based approach

(SPACT-SIM), the binding cost function is tuned to minimize switching power based

upon data value statistics. In each cases, binding is performed with modified version

of the weighted bipartite matching algorithm proposed by Huang [48]. Experimen-

tal data is provided based upon merging several variants (e.g. differing filter tap

lengths, constraint lengths) of a single DSP algorithm into a single module, synthe-

sizing into a 0.25 µm standard cell library and then measuring total power, area,

and critical path delay overheads for the merged design relative to a fixed-purpose

design. This experiment is repeated for three common DSP algorithms (Verterbi-

style add-compare-select networks, finite impulse response (FIR) filters, and infinite

impulse response (IIR) networks. Area savings of 14 to 44% over the sum of in-

dividual designs were reported, along with delay overhead from 2-12%, and power

overhead of 2 to 30%. The same three algorithms were compared to a fixed-purpose

implementations in a 0.22 µm Virtex FPGA, with the reported critical-path delay

improvements of about 3.5X, and power consumption improvement of about 53-66X.

Note that in this work, only variants of the same algorithm were merged with each

other.

131

Kumar and Lach [55] present an approach for incorporating flexible arith-

metic components (FAC) into multi-mode synthesis. The example FAC given is a

functional unit that can both multiply and add, but is smaller than the combined

areas of an adder and multiplier. It is argued that the utilization of FACs in multi-

mode synthesis will further reduce interconnect costs by by allowing DFG subgraph

isomorphisms without exactly matching functional units to be merged. Smith et al.

[78] propose a similar approach and claim an average improvement of 1.67X in delay

and 5.55X in area for nine small (2-4 operation) common subgraphs implemented

in 90nm standard cell logic relative to a Xilinx Virtex 4 FPGA.

Although not directly applicable, multi-mode strategies have been incorpo-

rated into system-level modular hardware-software co-design frameworks, such as

the Multi-Objective Co-Synthesis Framework for Multi-mode Embedded Systems,

termed “CHARMED” [54]. Notably, this framework claims to use multi-objective

genetic algorithm to produce a non-dominated set (Parteto front) of implementa-

tions. While experimental results are provided for 10 randomly generated DFGs,

this author was unable to locate any more rigorous results from CHARMED in

later literature. Schmitz et al. [73] provide another example of the energy-efficient

multi-mode system-level co-design that considers the probability of occurrence for

each mode to minimize expected costs.

5.5 Reconfigurable Computing

Reconfigurable logic arrays had their humble birth in the implementation of “low

cost/marginal performance class” [35] of circuitry, as more mundane concerns of

testability and designer effort began to outweigh the incremental fabrication costs

of large scale integrated circuit fabrication. As fabrication abilities improved, gate

132

arrays became field programmable, and began to be used for larger applications [85].

Today Field Programmable Gate Arrays (FPGAs), capable of emulating millions of

gates, are frequently used to implement entire applications, and may be the only

computing device in a piece of hardware.

Modern reconfigurable computing architectures can be categorized in many

dimensions, including:

1. functional unit granularity (e.g. gate array or object array),

2. functional unit regularity (homogeneous or heterogeneous),

3. interconnect style (e.g. mesh or hierarchical),

4. overhead per instruction word (e.g. fetch/execute loop or FPGA-style bit-

stream reconfiguration), and

5. global synchronization style (e.g. asynchronous message passing/synchronous

clocking).

Academic literature in this field is largely filled with the exploration of single

“island” design-points. Typically a unique architecture is developed, hard-compiled

demos are generated, benchmarks are published, and the numerous unique features

of the architecture are cited as responsible for the remarkable performance. Refer-

ence [45] alone cites 18 distinct architectures first published within a single four-year

period, including the RaPiD architecture discussed in section 5.6. Similarly, gate

array architecture design studies [60] [69] in academic literature are dominated by

exploration of design parameters of a single synthesis tool (Versatile Packing, Place-

ment and Routing for FPGAs [8]). Comparatively little effort has been invested

in rigorously defining the space of reconfigurable computing architecture, although

[26] provides a useful framework for analyzing several dimensions.

133

5.6 The Totem Project

The Totem Project at The University of Washington has the stated goal of providing

an “automatic path for the creation of custom reconfigurable hardware, targeted for

use in Systems-on-a-Chip (SoCs)” [46]. This ambitious project intends to span

from high-level architecture generation, through layout of the programmable chip,

ultimately including CAD suites customized for each generated architecture. To

date, the Totem project has focused on two distinct architecture styles: 1) a course-

grained architecture based upon the Reconfigurable Pipelined Datapath (RaPiD)

architecture [21], and 2) a crossbar-based architecture similar to Programmable

Logic Arrays (PLAs). While a substantial amount of work on the latter style has

been performed, the former represents the work most relevant to this document and

so will be discussed in greater detail.

The RaPiD architecture [33][22] leveraged by the Totem project is a linear

array of compute components that operate on full 16-bit words of data. A single

cell from the RaPiD architecture is shown in Figure 5.1, which contains compute

components including 16-bit ALUs, a 16x16 multiplier, 16-bit RAM, and 16-bit reg-

isters. Interconnection is performed at word-level granularity by segmented routing

tracks spanning the length of the array. The RaPiD architecture is quite specific in

form, allowing for 5 local routing tracks, and 10 tracks with longer segments. Bus

connectors are provided to allow adjacent segments in a single routing track to be

connected in order to provide for longer distance communication. A large portion

of Totem work is based heavily upon the RaPiD [21] infrastructure, including use

of the RaPiD-C [32] compiler to generate netlists from a C-like language, and use

of RaPiD area models to gauge success.

Building upon the RaPiD framework, in [18] a two stage algorithm was devel-

134

oped for combining multiple RaPiD netlists into an application-specific RaPiD-like

structure. In the first stage, simulated annealing approach is used to bind compute

elements from input netlists to physical units in a RaPiD-style linear array. In the

second stage, one of three algorithms (Greedy, Clique Partitioning, or Maximum

Sharing) is used to generate the routing between the components. The generated

architectures preserve the linear functional unit layout structure from RaPiD. How-

ever, they abandon the strict RaPiD routing structure and instead only contain

point-to-point routing paths and multiplexers as required to implement the specific

input designs. This paper considered area optimization as a sole metric and demon-

strated that a custom architectures can achieve area efficiencies of only 1.5 times a

lower bound based on the minimum number of functional units able to implement

each of the input netlists.

The concepts in [21] were further elaborated upon in the Ph.D dissertation

of Katherine Compton [17], which introduced the term “configurable ASIC” for the

generated architectures. Among the contributions of the dissertation is a comparison

of sample configurable ASIC designs against a traditional FPGA implementation.

The comparisons with traditional FPGAs were limited to area-efficiency, but were

quite favorable, with improvements ranging from 4-12X. Because the area model

for the generated architectures used custom-layout RaPiD functional units, overall

factors of 2X improvement in area were possible over purely standard cell imple-

mentations. Follow-on publications, most recently [20], have further discussed this

idea, although comparisons have thus far been limited to area-efficiency.

In [19], a novel method for measuring the flexibility of domain-specific recon-

figurable hardware is proposed. The methodology relies upon generating synthetic

netlists that mimic the characteristics of netlists within a specific domain. By gen-

135

erating a domain-specific reconfigurable architecture based upon these synthetic

netlists alone, the flexibility of the architecture can be quantitatively measured by

its ability to place and route the original domain-specific circuit.

5.7 Virtual Reconfigurable Architectures

In an interesting application of datapath merging problem to existing FPGAs, Rull-

mann and Merker have developed a technique for development of virtual architec-

tures on top of FPGAs using datapath merging [72]. In another paper, the datapath

merging technique (including a novel Ant Colony Optimization algorithm) is used

to generate placement constraints to force the FPGA synthesis tool to place similar

logic in similar placement between multiple designs, thereby maximizing redundant

configuration bits between DFGs[71].

136

Figure 5.1: A single cell from the RaPiD architecture [33] [22] [18]

137

Chapter 6

Conclusion

138

6.1 Contributions and Potential Impacts

In exploring the thesis of chapter 1, this work provides a number of contributions

with direct implications both to applied engineering and future academic research,

including:

• A rigorous definition of programmability - In this author’s experience, pro-

grammability is an informally used term, resulting in much confusion. As a

result, programmabilty is often a neglected aspect in comparisons between

computing architectures. Section 3.1 argues for a definition of programmabil-

ity suitable for engineering used based upon how a device is used, rather being

an intrinsic feature of a device. Such a definition serves as a foundation upon

which programmability can be treated as an explicit design parameter.

• Formal division of programmabilty into a priori and a posteriori aspects - Sec-

tion 3.3 argues for a division of programmability into a priori and a posteriori

aspects, in which the intended functionality of a device is fixed either before or

after fabrication time. As chapter 4 shows, a priori knowledge yields distinct

advantages in implementation efficiency. Moreover, the uncertainty inherent

in the a posteriori problem demands distinct approaches from those of the a

priori problem.

• An interconnect-based framework for construction of programmable devices -

While a programmable device can be implemented in perhaps infinite ways,

section 3.2 suggests a construction technique that separates the composition of

a device into fixed-function components that are connected by an interconnect

responsible for implementing the programmable aspects of the devices. Such

a construction facilitates explicit manipulation of the programmability of a

139

device within a well-defined framework with many useful properties.

• Identification of design-space regions for programmable interconnect-based de-

vices - The properties of a device with fixed function components embedded

in programmable interconnect naturally give rise to a number of distinct cost

classes: those from the fixed function components, those from the active com-

ponents of the interconnect, and those from the wires composing the intercon-

nect. One of these classes of cost may dominate the others, and this gives rise

to distinct design-space regions for programmable interconnect-based devices.

As established in 3.5, the scaling properties and optimization strategies within

each design-space region are distinct and can be predicted.

• Predictions of the extent and usefulness of the design-space regions - Sec-

tion 3.5.2 suggests that the extent of the efficient component-dominated region

can be predicted based upon high-level design parameters. Such predictions

are useful for system-level planning of both the size of programmable blocks (as

programmable regions that are too large become overwhelmed by wire costs)

and the amount of functionality to build into a single programmable block (as

large numbers of function become overwhelmed by multiplexer costs).

• A tool for exploring a priori programmability in a computer-assisted design

flow - Chapter 4 documents the creation of a computer assisted design tool for

exploring a priori programmability that is easily integrated into a standard-cell

design flow. This tool facilitates the control of programmability with a design.

For instance, designs from entirely different design teams may be efficiently

combined into a single programmable design. Because the output of the tool

is easily integrated with other logic, the tool allows designers to incoporate

140

programmability only to the extent that is desirable.

• Demonstration of a “dual” for the general-purpose processor accelerator mod-

ule - As discussed in section 5.3, the performance of large general-purpose mi-

croprocessors can be greatly improved through the addition of a small special-

purpose accelerator module. Section 4.6 demonstrates the opposite idea: the

introduction of a small general-purpose design into a larger fixed-function de-

sign with minimal added cost. Such a design has the potential to allow the

introduction of general-purpose programmability into designs that may not

otherwise tolerate the overhead of a conventional microprocessor.

This work is a foray into the treatment of programmability as an explicit de-

sign parameter. By formalizing terms, approaches, and properties, it both suggests

and provides a foundation for a number of future academic research avenues. More-

over, the experimental validation conducted has resulted in computer-aided design

tools for explicitly controlling programmability within computing designs.

6.2 Future Work

Several areas of future work were identified within this document:

• exploration of usefulness of the infimum in the functionality relation (Sec-

tion 2.1.4),

• derivation of a Rent’s rule bound for the heterogeneous component merging

case (Section 3.4.2),

• automatic insertion of multiplexers to better address the a posteriori problem

(Section 4.6),

141

• experimental identification of design points in regions other than the component-

dominated region (Section 3.5), and

• experimental verification of predicted boundaries (Section 3.5).

Notably, a number of investigations suitable for future doctoral dissertations

follow directly from observations made in this document:

• Firstly, a largely theoretical work is suggested to explore better classification

criteria for programmable devices. While section 3.1 defines a minimal criteria

for programmability, further (stronger) classifications are warranted. Several

avenues for developing such classification criteria are suggested within this

document. The infimum discussion of section 2.1.4 suggests a method for rig-

orously constraining devices via the absence of specific functionality. Such a

device might be said to be as programmable as possible without possessing cer-

tain threshold capability. The high-level properties enumerated in section 3.3.3

suggest an alternate approach for rigorously characterizing programmable de-

vices that could be further developed. A key part of this investigation would

be the study of cost implications for various criteria.

• A second theoretical work is suggested to identify and exploit unintended

functionality within programmable devices. Corollary 3.1.4 notes that re-

source sharing manipulations tend to increase the potential functionality of

programmable circuits beyond those intentionally specified. Section 3.1.2 fur-

ther discusses how these unintended functionalities can be exploited by appro-

priately configuring multiplexers with unintended configurations. This work

would consider how these functionalities can be enumerated and appropriately

exposed to a programmer to enable better performing a posteriori programma-

142

bility than the microprocessor-based approach outlined in section 4.6. Further

work might consider how to appropriately insert additional multiplexers at

design-time to enhance the ability to later implement functionalities a poste-

riori. The properties outlined in section 3.3.3 may serve as guidance on how

to carry out this effort.

• Finally, an experimentally-focused work might carry out further development

of the RAST tool of section 4.1.1 in order to perform experimental verification

of principles in this document. This work would enhance the binding opti-

mizer to support an optimization algorithm targeted at the wire-dominated

region. The guiding principles of such an algorithm are suggested in the proof

of theorem 3.4.3. With this improvement, the RAST tool would possess op-

timizers targeted at each of the three regions discussed in section 3.5. The

remainder of the work would identify case studies to experimentally verify the

predictions of section 3.5 relating to cost scaling, optimization strategies, and

asymptotic region boundaries.

6.3 Recapitulation

Chapter 1 hypothesized that programmability can be elevated to an explicit design

parameter that

• can be rigorously defined,

• has measurable costs amenable to high-level modeling,

• yields a design-space with distinct regions and properties, and

• can be usefully manipulated using computer-aided design tools.

143

A specific engineering problem was proposed in which one wishes to introduce a

useful degree of programmability into a fixed-function circuit. This application was

used as a contextual vehicle by which the thesis is discussed in the remainder of this

document.

Chapter 2 provided a formalism in which the thesis of chapter 1 can be dis-

cussed in a rigorous manner. A computation model appropriate for the application

was defined formally. Four cost metrics relevant to the implementation of computa-

tions in contemporary semiconductor technology were discussed: delay, energy, area,

and leakage. A review of practicalities related to such implementations, including

placement, wiring and the high-level modeling thereof concludes the chapter.

Chapter 3 began by proposing and defending a formal definition of pro-

grammability, noting that programmabilty is not an intrinsic trait of a device, but

instead is associated with how it is used. Specifically, a device is said to be pro-

grammable if it can be assigned a particular function, and is distinguished from a

fixed-function device by the ability to be assigned more than one function. Based

upon this definition, a simple side-by-side realization of a programmable device was

discussed that hinges on the availability of a multiplexer component. A model of

programmability was then defined based upon the composition of fixed-function

components and multiplexers. This class of multiplexer-based interconnects forms

a design-space, of which the side-by-side realization is but one point. Two ma-

nipulations (resource sharing and multiplexer elimination) were then introduced,

which are used to transform local regions of multiplexer-based interconnects. By

modifying the interconnects, these two manipulations and their inverses provide

a means to traverse the design-space of all multiplexer-based interconnects. The

connectedness of this design-space via these manipulations was shown, in that any

144

multiplexer-based interconnect can be transformed via these manipulations to or

from a canonical side-by-side realization.

The problem of generating programmable devices was then refined by dis-

tinguishing the a priori and a posteriori subproblems. The former concerns the

generation of a device that can fulfill any of a set of functionalities enumerated at

design-time. In contrast, the a posteriori subproblem arises out of a practical consid-

eration – directly enumerating the set of desired functionalities may not be feasible

in practice and therefore higher levels of abstraction are desirable. For example,

programmable devices may be called to implement functionalities not envisioned at

design-time in order to implement bug-fixes and feature improvements. The a pos-

teriori subproblem concerns the development of properties and techniques to allow

this without a full enumeration of possible functionalities.

The overheads due to programmability within the design-space were then

discussed. Three regions of the multiplexer-based interconnect design-space were

identified based upon the source of dominant cost: multiplexers, wires, or the fixed-

function components. Each region possesses different scaling characteristics and

desirable optimization criteria. A derivation was performed, based upon Rent’s rule,

to predict the boundaries between these regions based upon high-level fabrication

parameters. Among other uses, these predictions were used to provide guidance

for how many functionalities can be implemented with minimal overhead in a given

implementation technology.

Chapter 4 documented the development of a computer-aided design tool that

addresses the a priori subproblem. This tool is then applied to a software-defined

radio application. The resulting programmable designs were then synthesized and

overheads compared to fixed-function implementations in both standard-cell and

145

FPGA implementation technologies. A simple a posteriori capability was provided

via the development of a simple microcontroller unit that can be programmed after

the design is completed. The resulting overheads were then examined in the context

of the predictions from Chapter 3, and bounds were extrapolated.

Chapter 5 provided a detailed discussion of prior work for the interested

reader.

146

Appendix A

Case Study Source Code

147

A.1 CIC

module CIC(clk , r s t , q , a , csync) ; // Cascaded I n t e g r a t i n g−Comb

f i l t e r

input c l k ;

input r s t ;

output signed [1 5 : 0] q ;

input signed [1 5 : 0] a ;

input csync ;

reg c s c e ;

/∗ Sign−extend input ∗/

reg signed [3 2 : 0] i ;

reg c sync de layed ;

/∗ ∗∗∗∗∗∗∗∗∗ I n t e g r a t e ∗∗∗∗∗∗∗∗∗∗ ∗/

reg signed [3 2 : 0] iA0 , iA1 , iA2 , iA3 ;

always @(posedge c l k) begin

i f (r s t) begin

148

iA0<=0;

iA1<=0;

iA2<=0;

iA3<=0;

i<=0;

end else begin

i<=$s igned ({a , 1 ’ b1 }) ;

iA0<=iA0+i ;

iA1<=iA1+iA0 ;

iA2<=iA2+iA1 ;

iA3<=iA3+iA2 ;

end

end

/∗ ∗∗∗∗∗∗∗∗∗∗∗ Comb ∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

reg signed [3 2 : 0] c sacc ;

wire signed [3 2 : 0] c s i n=csync de layed ? iA3 : c sacc ;

reg signed [3 2 : 0] cs1 , cs2 , cs3 , cs4 ;

always @(posedge c l k) begin

i f (r s t) begin

csacc <=0;

cs1<=0;

149

cs2<=0;

cs3<=0;

cs4<=0;

end else i f (c s c e) begin

cs1<=c s i n ;

cs2<=cs1 ;

cs3<=cs2 ;

cs4<=cs3 ;

csacc<=cs in−cs4 ;

end

end

wire signed [3 2 : 0] qq ;

assign qq=csacc +65536;

assign q=qq [3 2 : 1 7] ;

/∗ ∗∗∗∗∗∗∗∗∗ Timing c i r c u i t s ∗∗∗∗∗∗/

s r l e c y c l e R #(4 ,17 ’ h007) I c s c e (c lk , c s c e o r1 , csync | c s c e o r1 ,

r s t) ;

150

always @(posedge c l k) begin

i f (r s t) begin

csce <=0;

csync de layed <=0;

end else begin

csce<=csync | c s c e o r 1 ;

csync de layed<=csync ;

end

end

endmodule

151

A.2 CORDIC

module CORDIC serial (c lk , r s t , xo , yo , xi , yi , z i , k i) ;

input c l k ;

input r s t ;

output signed [1 5 : 0] xo , yo ;

input signed [1 5 : 0] xi , yi , z i , k i ;

reg signed [1 5 : 0] x , y , z ;

reg signed [1 4 : 0] r ;

reg signed [3 1 : 0] xs , ys ;

reg signed [1 5 : 0] z s ;

always @(posedge c l k) begin

i f (r s t) begin

r<=15’b010000000000000 ;

end else begin

r<={1’b0 , r [0] , r [1 3 : 1] } ;

xs=r [1 3] ? x i : ((x∗ r)>>13) ;

ys=r [1 3] ? y i : ((y∗ r)>>13) ;

z s=r [1 3] ? z i : z ;

152

i f (r [1 3]) begin

z<=z i ;

x<=xi ;

y<=yi ;

end else i f (zs [1 5]) begin

z<=zs+k i ;

x<=x+ys ;

y<=y−xs ;

end else begin

z<=zs−k i ;

x<=x−ys ;

y<=y+xs ;

end

end

end

assign xo=x ;

assign yo=y ;

endmodule

153

A.3 CORDIC

// Implements a p i p e l i n e d , complex , radix−2 FFT b u t t e r f l y

module f f t b u t t e r f l y 3 2 (c lk , Cr , Ci , Dr , Di , Tr , Ti , Ar , Ai , Br , Bi) ;

input c l k ;

output signed [3 1 : 0] Cr , Ci , Dr , Di ; // Outputs

input signed [1 5 : 0] Ar , Ai , Br , Bi ; // Inputs

input signed [1 5 : 0] Tr , Ti ; // Twiddle f a c t o r s

wire signed [3 1 : 0] Mr, Mi ; // i n t e r m e d i a t e v a l u e

reg signed [3 1 : 0] Cr , Ci , Dr , Di ;

assign Mr=Br∗Tr−Bi∗Ti ;

assign Mi=Br∗Ti+Bi∗Tr ;

always @(posedge c l k) begin

Cr<=Ar+Mr;

Ci<=Ai+Mi ;

Dr<=Ar−Mr;

Di<=Ai−Mi ;

end

endmodule

154

A.4 FIR

// Direct−form 3−tap FIR f i l t e r

module f i r 3 2 (c lk , z , x , h0 , h1 , h2) ;

input c l k ;

input signed [1 5 : 0] x , h0 , h1 , h2 ;

output signed [3 1 : 0] z ;

reg signed [1 5 : 0] a , b ;

reg signed [3 1 : 0] z ;

always @(posedge c l k) begin

// Tapped−d e l a y l i n e

a<=x ;

b<=a ;

// Compute output

z<=x∗h0+a∗h1+b∗h2 ;

end

endmodule

155

A.5 heterodyning

module hetero (c lk , IN I , IN Q , LO I ,LO Q, OUT I ,OUT Q) ;

input c l k ;

input signed [1 5 : 0] LO I ,LO Q, IN I , IN Q ;

output signed [3 1 : 0] OUT I ,OUT Q;

reg signed [3 1 : 0] P II ,P QQ, P IQ , P QI ;

reg signed [3 1 : 0] OUT I ,OUT Q;

always @(posedge c l k) begin

/∗ Products ∗/

P II<=LO I∗ IN I ;

P QQ<=LO Q∗IN Q ;

P IQ<=LO I∗IN Q ;

P QI<=LO Q∗ IN I ;

/∗ Sum ∗/

OUT I<=P II−P QQ;

OUT Q<=P IQ+P QI ;

end

endmodule

156

A.6 mcu

module mcu(input c lk ,

input r s t ,

output [8 : 0] ram addra , ram addrb ,

output [3 1 : 0] ram dia , ram dib ,

input [3 1 : 0] ram doa , ram dob ,

output ram ena , ram enb ,

output ram wea , ram web ,

input [3 1 : 0] i o d i ,

output [3 1 : 0] io do ,

output [8 : 0] io addr ,

output i o o s ,

output i o i s

) ;

assign ram wea=0;

assign ram ena=1;

assign ram enb=1;

assign ram dia =0;

157

reg [3 1 : 0] p2 ins t word ;

reg [3 1 : 0] p3 acc ;

/∗ P i p e l i n e s t a g e 0 − Compute PC ∗/

reg [8 : 0] p0 pc ;

always @(posedge c l k or posedge r s t) begin

i f (r s t) begin

p0 pc<=0;

end else begin

p0 pc<=p0 pc +1;

case (p2 ins t word [2 6 : 2 5])

0 : i f (p2 ins t word [2 7]) p0 pc<=

p2 ins t word [2 4 : 1 6] ; /∗ NOP/JMP ∗/

1 : i f (p2 ins t word [2 7] ˆ (p3 acc [3 1])) p0 pc<=

p2 ins t word [2 4 : 1 6] ; /∗ JB ∗/

2 : i f (p2 ins t word [2 7] ˆ (p3 acc==0)) p0 pc<=

p2 ins t word [2 4 : 1 6] ; /∗ JZ ∗/

endcase

end

end

/∗ P i p e l i n e s t a g e 1 − I n s t r u c t i o n f e t c h ∗/

158

wire [3 1 : 0] p1 ins t word ;

assign ram addra=p0 pc ; assign p1 ins t word=ram doa ;

// always @(posedge c l k) p1 ins t word<=ram [p0 pc] ;

/∗ P i p e l i n e s t a g e 2 − Load/ Store ∗/

wire [3 1 : 0] p2 operand x ;

always @(posedge c l k or posedge r s t) begin

i f (r s t) begin

p2 inst word <=0;

end else begin

p2 inst word<=p1 ins t word ;

/∗

p2 operand x<=ram [p 1 i n s t w o r d [8 : 0]] ;

i f (p 1 i n s t w o r d [1 1])

ram [p 1 i n s t w o r d [8:0]]<= p3 acc ; // Note the 2

c y c l e o f f s e t

∗/

end

159

end

assign ram addrb=p1 ins t word [8 : 0] ; assign p2 operand x=

ram dob ;

assign ram dib=p3 acc ;

assign ram web=p1 ins t word [1 1] ;

/∗ P i p e l i n e s t a g e 3 − Execute ∗/

always @(posedge c l k or posedge r s t) begin

i f (r s t) begin

p3 acc<=0;

end else begin

case (p2 ins t word [1 5 : 1 2])

0 : p3 acc<=p3 acc ;

/∗ NOP ∗/

1 : p3 acc<=p2 operand x ;

/∗ LD

∗/

2 : p3 acc<=p3 acc+p2 operand x ;

/∗ ADD ∗/

160

3 : p3 acc<=p3 acc−p2 operand x ;

/∗ SUB ∗/

4 : p3 acc<=p2 operand x−p3 acc ;

/∗ RSB ∗/

5 : p3 acc<=$s igned (p3 acc [1 5 : 0]) ∗ $s igned (

p2 operand x [1 5 : 0]) ; /∗ MUL ∗/

6 : p3 acc<={p3 acc [3 0 : 0] , 1 ’ b0 } ;

/∗ SHL ∗/

7 : p3 acc<={1’b0 , p3 acc [3 1 : 1] } ;

/∗ SHR ∗/

8 : p3 acc<=˜p3 acc ;

/∗ NOT ∗/

9 : p3 acc<=p3 acc&p2 operand x ;

/∗ AND ∗/

10 : p3 acc<=p3 acc ˆ p2 operand x ;

/∗ XOR ∗/

11 : p3 acc<=0;

/∗ ZERO ∗/

12 : p3 acc<={p3 acc [1 5 : 0] , p3 acc [3 1 : 1 6] } ;

/∗ XCH ∗/

13 : p3 acc<=p2 operand x −1;

/∗ DEC ∗/

161

14 : p3 acc<=i o d i ;

/∗ IN ∗/

15 : p3 acc<=0;

/∗ ZERO ∗/

endcase

end

end

/∗ IO Bus ∗/

assign i o addr=p2 ins t word [8 : 0] ;

assign i o do=p3 acc ;

assign i o o s=p2 ins t word [1 0] ;

assign i o i s =(p2 ins t word [15:12]==14) ;

endmodule

162

Appendix B

Case Study Dataflow Graphs

163

q

a

SELECT_OP
C919

DATA2<26>

a<15>

DATA2<16>

a<15>

DATA2<17>

a<15>

DATA2<18>

a<15>

DATA2<20>

a<15>

DATA2<29>

a<15>

DATA2<21>

a<15>

DATA2<30>

a<15>

DATA2<31>

a<15>

DATA2<15>

a<15>

DATA2<28>

a<15>

DATA2<22>

a<15>

DATA2<27>

a<15>

DATA2<23>

a<15>

DATA2<24>

a<15>

DATA2<25>

a<15>

DATA2<19>

a<15>

DATA2<14:0>

a<14:0>

rst

GTECH_NOT
Icsce_Idelay_I_0

GTECH_OR2
Icsce_Idelay_C50

GTECH_BUF
B_11

GTECH_BUF
B_9

GTECH_BUF
Icsce_Idelay_B_0

GTECH_BUF
B_7

GTECH_BUF
Icsce_B_1

GTECH_NOT
I_3

GTECH_NOT
I_0

clkcsync

GTECH_OR2
C951

SELECT_OP
C927

GTECH_OR2
C947

ADD_TC_OP
add_31

SELECT_OP
C915

GTECH_AND2
Icsce_Idelay_C88

SEQGEN
Icsce_Idelay_mem_reg

SEQGEN
csync_delayed_reg

GTECH_BUF
B_2

GTECH_NOT
I_1

SELECT_OP
C917

SEQGEN
iA2_reg

SELECT_OP
C916

SEQGEN
iA1_reg

SEQGEN
iA0_reg

GTECH_NOT
Icsce_I_0

GTECH_AND2
Icsce_C27

GTECH_BUF
Icsce_Idelay_B_4

MUX_OP
Icsce_Idelay_C83

SELECT_OP
C926

GTECH_BUF
B_5

SEQGEN
i_reg

next_state<32:1>

SELECT_OP
C918

SEQGEN
iA3_reg

SEQGEN
csacc_reg

ADD_TC_OP
add_65

SELECT_OP
C920

ADD_TC_OP
add_33

SELECT_OP
Icsce_Idelay_C82

DATA2<10>

Q<9>

DATA2<4>

Q<3>

DATA2<11>

Q<10>

DATA2<6>

Q<5>

DATA2<8>

Q<7>

DATA2<1>

Q<0>

DATA2<5>

Q<4>

DATA2<9>

Q<8>

DATA2<3>

Q<2>

DATA2<15>

Q<14>

DATA2<12>

Q<11>

DATA2<7>

Q<6>

DATA2<14>

Q<13>

DATA2<13>

Q<12>

DATA2<2>

Q<1>Q<9>
Q<3>Q<10>Q<5>Q<7>Q<0>Q<15>Q<8>Q<4>Q<2>Q<14>Q<11>Q<6>Q<13>Q<12>Q<1>

GTECH_BUF
Icsce_Idelay_B_3

SELECT_OP
Icsce_C21

ADD_TC_OP
add_32

SEQGEN
cs4_reg

SUB_TC_OP
sub_58

GTECH_BUF
Icsce_Idelay_B_2

GTECH_BUF
B_4

GTECH_OR2
C715

GTECH_NOT
I_2

GTECH_BUF
Icsce_Idelay_B_1

ADD_TC_OP
add_34

GTECH_OR2
Icsce_C19

SEQGEN
Icsce_q_reg

GTECH_BUF
B_0

GTECH_BUF
B_1

GTECH_BUF
B_3

SELECT_OP
C922

SELECT_OP
C923

SELECT_OP
C921

SELECT_OP
C924

SELECT_OP
C925

GTECH_BUF
B_6

GTECH_BUF
Icsce_B_2

SEQGEN
cs1_reg

SEQGEN
cs2_reg

SEQGEN
csce_reg

SEQGEN
cs3_reg

GTECH_AND2
C945

DATA2<0>

GTECH_BUF
Icsce_B_0

next_state<0>

Figure B.1: CIC Data-flow Graph

164

xoyo

clkyi

SELECT_OP
C313

SELECT_OP
C309

zi

SELECT_OP
C311

SELECT_OP
C310

xi

SELECT_OP
C312

SELECT_OP
C308

rst

GTECH_BUF
B_1

GTECH_NOT
I_0

ki

SUB_TC_OP
sub_35

ADD_TC_OP
add_31

SUB_TC_OP
sub_33

GTECH_OR2
C331

GTECH_NOT
I_2

GTECH_AND2
C336

SEQGEN
z_reg

A<15>

Z<15>

A<14:0>

Z<14:0>
Z<15>Z<15>

A<15>
Z<15>

A<14:0>

Z<14:0>

SEQGEN
y_reg

SEQGEN
x_reg

SELECT_OP
C314

SEQGEN
r_reg

next_state<13:0>

ADD_TC_OP
add_32

ADD_TC_OP
add_37

GTECH_BUF
B_0

GTECH_BUF
B_2

MULT_TC_OP
mult_22

SUB_TC_OP
sub_36

MULT_TC_OP
mult_23

Q<13>

DATA2<11:0>

Q<12:1>

DATA2<13>

Q<0>

DATA2<12>

Q<13>Q<13>

B<14>

Q<14>

B<12:1>

Q<12:1>

B<0>

Q<0>

B<13>

Q<13>

B<14>

Q<14>

B<12:1>

Q<12:1>

B<0>

Q<0>

B<13>

Q<13>

GTECH_NOT
I_1

Q<13>

Figure B.2: CORDIC Data-flow Graph

165

Ci Di DrCr

clkTr

MULT_TC_OP
mult_12

MULT_TC_OP
mult_13_2

Ar

ADD_TC_OP
add_17

SUB_TC_OP
sub_19

Br

MULT_TC_OP
mult_13

Ti

MULT_TC_OP
mult_12_2

Ai

ADD_TC_OP
add_18

SUB_TC_OP
sub_20

Bi

SUB_TC_OP
sub_12

SEQGEN
Cr_reg

SEQGEN
Ci_reg

SEQGEN
Di_reg

ADD_TC_OP
add_13

SEQGEN
Dr_reg

Figure B.3: FFT Data-flow Graph

166

z

h0

MULT_TC_OP
mult_18

h1

MULT_TC_OP
mult_18_2

h2

MULT_TC_OP
mult_18_3

x

SEQGEN
a_reg

clk

ADD_TC_OP
add_18_2

SEQGEN
z_reg

SEQGEN
b_reg

ADD_TC_OP
add_18

Figure B.4: FIR Data-flow Graph

167

OUT_I OUT_Q

LO_I

MULT_TC_OP
mult_12

MULT_TC_OP
mult_14

LO_Q

MULT_TC_OP
mult_13

MULT_TC_OP
mult_15

IN_QIN_I clk

SEQGEN
P_QQ_reg

SUB_TC_OP
sub_18

SEQGEN
P_II_reg

SEQGEN
OUT_Q_reg

ADD_TC_OP
add_19

SEQGEN
P_QI_reg

SEQGEN
P_IQ_reg

SEQGEN
OUT_I_reg

Figure B.5: Heterodyning Data-flow Graph

168

Bibliography

[1] Generating functionally equivalent FPGAs and ASICs with a single set of RTL

and synthesis/timing constraints. Technical report, Altera, Inc., 2009.

[2] Oxford english dictionary, 2010.

[3] C. Andriamisaina, E. Casseau, and P. Coussy. Synthesis of Multimode digital

signal processing systems. In Proceeding of Adaptive Hardware and Systems

NASA/ESA Conference on Adaptive Hardware and Systems, page 7, Edinburgh

Royaume-Uni, 2007. AHS.

[4] K. Atasu, C. Ozturan, G. Dundar, O. Mencer, and W. Luk. CHIPS: Custom

hardware instruction processor synthesis. IEEE Transactions on Computer

Aided Design of Integrated Circuits and Systems, 27(3):528, 2008.

[5] J. Backus. Can programming be liberated from the von Neumann style?: a

functional style and its algebra of programs. Communications of the ACM,

21(8):613–641, 1978.

[6] R. Battiti and M. Protasi. Reactive local search for the maximum clique prob-

lem. Technical report, Algorithmica, 2001.

[7] L. Bertrand and E. CASSEAU. Automated multimode system design for high

169

performance DSP applications. In Proceedings of the 17th European Signal

Processing Conference (EUSIPCO 2009), pages 1289–1293, 2009.

[8] V. Betz and J. Rose. VPR: A new packing, placement and routing tool for

FPGA research. Proceedings of the 7th International Workshop on Field-

Programmable Logic and Applications, pages 213–222, 1997.

[9] M. Breuer. A class of min-cut placement algorithms. In Proceedings of the 14th

Design Automation Conference, pages 284–290. IEEE Press, 1977.

[10] P. Brisk, A. Kaplan, and M. Sarrafzadeh. Area-efficient instruction set synthesis

for reconfigurable system-on-chip designs. In Proceedings of the 41st annual

conference on Design automation, pages 395–400. ACM New York, NY, USA,

2004.

[11] P. K. Chan and M. D. F. Schlag. Acceleration of an FPGA router. In FCCM ’97:

Proceedings of the 5th IEEE Symposium on FPGA-Based Custom Computing

Machines, page 175, Washington, DC, USA, 1997. IEEE Computer Society.

[12] C. Chavet, C. Andriamisaina, P. Coussy, E. Casseau, E. Juin, P. Urard, and

E. Martin. A design flow dedicated to multi-mode architectures for DSP ap-

plications. In Proceedings of the 2007 IEEE/ACM international conference on

Computer-aided design, pages 604–611. IEEE Press, 2007.

[13] L.-Y. Chiou, S. Bhunia, and K. Roy. Synthesis of application-specific highly-

efficient multi-mode systems for low-power applications. In DATE ’03: Pro-

ceedings of the conference on Design, Automation and Test in Europe, page

10096, Washington, DC, USA, 2003. IEEE Computer Society.

[14] L.-y. Chiou, S. Bhunia, and K. Roy. Synthesis of application-specific highly

170

efficient multi-mode cores for embedded systems. ACM Trans. Embed. Comput.

Syst., 4(1):168–188, 2005.

[15] S. Choi, R. Scrofano, V. Prasanna, and J. Jang. Energy-efficient signal pro-

cessing using FPGAs. In FPGA ’03: Proceedings of the 2003 ACM/SIGDA

eleventh international symposium on Field programmable gate arrays, pages

225–234, New York, NY, USA, 2003. ACM.

[16] P. Christie and D. Stroobandt. The interpretation and application of rent’s

rule. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,

8(6):639 –648, dec 2000.

[17] K. Compton. Architecture Generation of Customized Reconfigurable Hardware.

PhD thesis, Northwestern University, 2003.

[18] K. Compton and S. Hauck. Totem: Custom reconfigurable array generation.

IEEE Symposium on FPGAs for Custom Computing Machines, 00:111–119,

2001.

[19] K. Compton and S. Hauck. Flexibility measurement of domain-specific recon-

figurable hardware. Proceedings of the 2004 ACM/SIGDA 12th international

symposium on Field programmable gate arrays, pages 155–161, 2004.

[20] K. Compton and S. Hauck. Automatic design of area-efficient configurable

ASIC cores. IEEE Transactions on Computers, 56(5):662–672, 2007.

[21] D. Cronquist, C. Fisher, M. Figueroa, P. Franklin, and C. Ebeling. Architec-

ture design of reconfigurable pipelined datapaths. In ARVLSI ’99: Proceedings

of the 20th Anniversary Conference on Advanced Research in VLSI, page 23,

Washington, DC, USA, 1999. IEEE Computer Society.

171

[22] D. Cronquist, C. Fisher, M. Figueroa, P. Franklin, and C. Ebeling. Architecture

design of reconfigurable pipelined datapaths. Advanced Research in VLSI, 1999.

Proceedings. 20th Anniversary Conference on, pages 23–40, 1999.

[23] W. Dally, J. Balfour, D. Black-Shaffer, J. Chen, R. Harting, V. Parikh, J. Park,

and D. Sheffield. Efficient embedded computing. Computer, 41(7):27–32, 2008.

[24] J. Davis, V. De, and J. Meindl. A stochastic wire-length distribution for gigas-

cale integration (GSI)Part I: Derivation and validation. IEEE Transactions on

Electron Devices, 45(3), 1998.

[25] J. Davis, V. De, and J. Meindl. A stochastic wire-length distribution for gigas-

cale integration (GSI)Part II: Applications to clock frequency, power dissipa-

tion, and chip size estimation. IEEE Transactions on Electron Devices, 45(3),

1998.

[26] A. DeHon. Reconfigurable architectures for general-purpose computing. PhD

thesis, Massachusetts Institute of Technology, Dept. of Electrical Engineering

and Computer Science, 1996.

[27] A. DeHon. Balancing interconnect and computation in a reconfigurable com-

puting array (or, why you don’t really want 100% LUT utilization). Pro-

ceedings of the 1999 ACM/SIGDA seventh international symposium on Field

programmable gate arrays, pages 69–78, 1999.

[28] A. DeHon, R. Huang, and J. Wawrzynek. Hardware-assisted fast routing.

In FCCM ’02: Proceedings of the 10th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines, page 205, Washington, DC, USA,

2002. IEEE Computer Society.

172

[29] W. Donath. Placement and average interconnection lengths of computer logic.

Circuits and Systems, IEEE Transactions on, 26(4):272–277, Apr 1979.

[30] W. Donath. Wire length distribution for placements of computer logic. IBM

Journal of Research and Development, 25(2-3):152–155, 1981.

[31] A. Dunlop and B. Kernighan. A procedure for placement of standard cell VLSI

circuits. IEEE Transactions on Computer-Aided Design, 4(1):92–98, 1985.

[32] C. Ebeling. Rapid-c manual. University of Washington Technical Report UW-

CSE-02-07-06, 2002.

[33] C. Ebeling, D. Cronquist, and P. Franklin. RaPiD–reconfigurable pipelined

datapath. 6th International Workshop on Field-Programmable Logic and Ap-

plications, pages 126–135, 1996.

[34] H. Fan, Y. Wu, and C. Cheung. Design Automation for Reconfigurable In-

terconnection Networks. Reconfigurable Computing: Architectures, Tools and

Applications, pages 244–256, 2010.

[35] H. Fleisher and L. Maissel. An introduction to array logic. IBM Journal of

Research and Development, 19(2):98–109, 1975.

[36] D. Gelernter and N. Carriero. Coordination languages and their significance.

Commun. ACM, 35:97–107, February 1992.

[37] W. Geurts, F. Catthoor, S. Vernalde, and H. De Man. Accelerator Data-Path

Synthesis for High-Throughput Signal Processing Applications. Kluwer Aca-

demic Pub, 1997.

173

[38] S. Ghiasi, E. Bozorgzadeh, P. Huang, R. Jafari, and M. Sarrafzadeh. A unified

theory of timing budget management. IEEE TRANSACTIONS ON COM-

PUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,

25(11):2364, 2006.

[39] M. Gokhale, P. Graham, E. Johnson, N. Rollins, and M. Wirthlin. Dynamic

reconfiguration for management of radiation-induced faults in FPGAs. Parallel

and Distributed Processing Symposium, 2004. Proceedings. 18th International,

26-30 April 2004.

[40] S. Guccione, D. Levi, and P. Sundararajan. JBits: A Java-based interface for

reconfigurable computing. 2nd Annual Military and Aerospace Applications of

Programmable Devices and Technologies Conference (MAPLD), 261, 1999.

[41] R. Gupta and F. Brewer. High-Level Synthesis: A Retrospective. High-Level

Synthesis, pages 13–28, 2008.

[42] S. Gupta. Spark: A Parallelizing Approach to the High-Level Synthesis of Dig-

ital Circuits. Kluwer Academic Publishers, 2004.

[43] L. Hagen, A. B. Kahng, F. Kurdahi, and C. Ramachandran. On the intrinsic

rent parameter and spectra-based partitioning methodologies. IEEE Trans. on

Comput.-Aided Des., Integrated Circuits and Systems, 13:27–37, 1994.

[44] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee,

S. Richardson, C. Kozyrakis, and M. Horowitz. Understanding sources of ineffi-

ciency in general-purpose chips. In Proceedings of the 37th annual international

symposium on Computer architecture, ISCA ’10, pages 37–47, New York, NY,

USA, 2010. ACM.

174

[45] R. Hartenstein. A decade of reconfigurable computing: a visionary retrospec-

tive. In DATE ’01: Proceedings of the conference on Design, automation and

test in Europe, pages 642–649, Piscataway, NJ, USA, 2001. IEEE Press.

[46] S. Hauck, K. Compton, K. Eguro, M. Holland, S. Phillips, and A. Sharma.

Totem: Domain-Specific Reconfigurable Logic. submitted to IEEE Transactions

on VLSI, 2008.

[47] R. Ho, K. Mai, and M. Horowitz. The future of wires. Proceedings of the IEEE,

89(4):490–504, 2001.

[48] C.-Y. Huang, Y.-S. Chen, Y.-L. Lin, and Y.-C. Hsu. Data path allocation

based on bipartite weighted matching. In DAC ’90: Proceedings of the 27th

ACM/IEEE Design Automation Conference, pages 499–504, New York, NY,

USA, 1990. ACM.

[49] Z. Huang and S. Malik. Managing dynamic reconfiguration overhead in systems-

on-a-chip design using reconfigurable datapaths and optimized interconnection

networks. Design, Automation and Test in Europe Conference and Exhibition,

0:0735, 2001.

[50] A. ISO. IEC 9899: 1999, Programming Languages–C. International Organiza-

tion for Standardization, 1999.

[51] G. Karypis and V. Kumar. Multilevel algorithms for multi-constraint graph

partitioning. In Proceedings of the 1998 ACM/IEEE conference on Supercom-

puting (CDROM), page 13. IEEE Computer Society, 1998.

[52] E. Keller. JRoute: A run-time routing API for FPGA hardware. 7th Reconfig-

urable Architectures Workshop, pages 874–881, 2000.

175

[53] E. Keller and S. McMillan. An FPGA Wire Database for Run-Time Routers.

In Proceedings on the 2002 International Conference on Military Applications

of Programmable Logic Devices (MAPLD02). Citeseer, 2002.

[54] V. Kianzad and S. Bhattacharyya. CHARMED: A multi-objective co-synthesis

framework for multi-mode embedded systems. In Proceedings of the 15th IEEE

International Conference on Application-Specific Systems, Architectures and

Processors (ASAP04). Citeseer, 2004.

[55] V. V. Kumar and J. Lach. Highly flexible multi-mode system synthesis. In

CODES+ISSS ’05: Proceedings of the 3rd IEEE/ACM/IFIP international con-

ference on Hardware/software codesign and system synthesis, pages 27–32, New

York, NY, USA, 2005. ACM.

[56] I. Kuon and J. Rose. Measuring the gap between FPGAs and ASICs. In FPGA

’06: Proceedings of the 2006 ACM/SIGDA 14th international symposium on

Field programmable gate arrays, pages 21–30, New York, NY, USA, 2006. ACM

Press.

[57] P. Kwan and C. T. Clarke. FPGAs for improved energy efficiency in processor

based systems. Advances in Computer Systems Architecture: 10th Asia-Pacific

Conference, ACSAC 2005, Singapore, October 24-26, 2005: Proceedings, 2005.

[58] B. Landman and R. Russo. On a pin versus block relationship for partitions

of logic graphs. IEEE Transactions on Computers, C-20:1469–1479, December

1971.

[59] C. Lee, M. Potkonjak, and W. H. Mangione-smith. Mediabench: A tool for

evaluating and synthesizing multimedia and communications systems. In In

International Symposium on Microarchitecture, pages 330–335, 1997.

176

[60] F. Li, Y. Lin, L. He, D. Chen, and J. Cong. Power modeling and characteris-

tics of field programmable gate arrays. Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on, 24(11):1712–1724, 2005.

[61] Y. W. S. T. M. Marek-Sadowska. On computational complexity of a detailed

routing problem in two dimensional FPGAs. VLSI, 1994. ’Design Automation

of High Performance VLSI Systems’. GLSV ’94, Proceedings., Fourth Great

Lakes Symposium on, pages 70–75, 4-5 Mar 1994.

[62] M. McFarland, A. Parker, and R. Camposano. Tutorial on high-level synthe-

sis. In DAC ’88: Proceedings of the 25th ACM/IEEE conference on Design

automation, pages 330–336, Los Alamitos, CA, USA, 1988. IEEE Computer

Society Press.

[63] N. Moreano, G. Araujo, Z. Huang, and S. Malik. Datapath merging and inter-

connection sharing for reconfigurable architectures. In ISSS ’02: Proceedings

of the 15th international symposium on System Synthesis, pages 38–43, New

York, NY, USA, 2002. ACM.

[64] N. Moreano, E. Borin, C. D. Souza, and G. Araujo. Efficient datapath merging

for partially reconfigurable architectures. In in IEEE Transactions on Computer

Aided Design of Integrated Circuits and Systems, pages 969–980, 2005.

[65] K. Parnell and R. Bryner. Comparing and contrasting FPGA and micropro-

cessor system design and development. Technical report, Xilinx, 2004.

[66] H. Parvez, Z. Marrakchi, and H. Mehrez. Application Specific FPGA Using

Heterogeneous Logic Blocks. Reconfigurable Computing: Architectures, Tools

and Applications, pages 92–109, 2010.

177

[67] J. Pistorius and M. Hutton. Placement rent exponent calculation methods,

temporal behaviour and FPGA architecture evaluation. In SLIP ’03: Proceed-

ings of the 2003 international workshop on System-level interconnect prediction,

pages 31–38, New York, NY, USA, 2003. ACM Press.

[68] A. Poetter. JHDLBits: An open-source model for FPGA design automation.

Master’s thesis, Virginia Polytechnic Institute and State University, 2004.

[69] K. Poon, S. Wilton, and A. Yan. A detailed power model for field-programmable

gate arrays. ACM Transactions on Design Automation of Electronic Systems

(TODAES), 10(2):279–302, 2005.

[70] W. Rudin and J. Cofman. Principles of mathematical analysis. McGraw-Hill

New York, 1964.

[71] M. Rullmann and R. Merker. Maximum edge matching for reconfigurable com-

puting. In Reconfigurable Architectures Workshop at 13th IEEE International

Parallel & Distributed Processing Symposium (IPDPS 2006), Rhodes, Greece.

Citeseer, 2006.

[72] M. Rullmann, R. Merker, H. Hinkelmann, P. Zipf, and M. Glesner. An Inte-

grated Tool Flow to Realize Runtime-Reconfigurable Applications on a New

Class of Partial Multi-Context FPGAs. In Proc. 19th Intl. Conf. on Field

Programmable Logic and Applications, 2009.

[73] M. Schmitz, B. Al-Hashimi, and P. Eles. Cosynthesis of energy-efficient mul-

timode embedded systems with consideration of mode-execution probabilities.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, 24(2):153–169, 2005.

178

[74] N. Selvakkumaran and G. Karypis. Multi. Objective Hypergraph Partitioning

Algorithms for Cut and Maximum Subdomain Degree Minimization. 2003.

[75] N. Shirazi, W. Luk, and P. Cheung. Automating production of run-time recon-

figurable designs. Field-Programmable Custom Computing Machines, Annual

IEEE Symposium on, 0:147, 1998.

[76] L. Singhal and E. Bozorgzadeh. Multi-layer floorplanning on a sequence of

reconfigurable designs. In Proceedings of the International Conference on Field

Programmable Logic and Applications (FPL06), pages 605–612. Citeseer, 2006.

[77] A. Smith. Universality of wolframs 2, 3 turing machine. Submitted for the Wol-

fram 2, 3 Turing Machine Research Prize http://www.wolframprize.org, 2007.

[78] A. Smith, G. Constantinides, and P. Cheung. Fused-Arithmetic Unit Gen-

eration for Reconfigurable Devices using Common Subgraph Extraction. In

Field-Programmable Technology, 2007. ICFPT 2007. International Conference

on, pages 105–112, 2007.

[79] C. C. d. Souza, A. M. Lima, G. Araujo, and N. B. Moreano. The datap-

ath merging problem in reconfigurable systems: Complexity, dual bounds and

heuristic evaluation. J. Exp. Algorithmics, 10:2.2, 2005.

[80] N. Steiner. A standalone wire database for routing and tracing in Xilinx Virtex,

Virtex-E, and Virtex-II FPGAs. Master’s thesis, Virginia Polytechnic Institute

and State University, 2002.

[81] N. Steiner and P. Athanas. An alternate wire database for Xilinx FPGAs. Field-

Programmable Custom Computing Machines, 2004. FCCM 2004. 12th Annual

IEEE Symposium on, pages 336–337, 2004.

179

[82] D. Stroobandt. Improving Donath’s technique for estimating the average inter-

connection length in computer logic. 1996.

[83] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. Jouppi. Cacti 5.1. Technical

report, Hewlett-Packard Development Company, 2008.

[84] F. Toth. The Easy Path to Cost Reductions. Xcell Journal, pages 72–74, 2004.

[85] S. Trimberger, X. Inc, and C. San Jose. A reprogrammable gate array and

applications. Proceedings of the IEEE, 81(7):1030–1041, 1993.

[86] A. Turing. On computable numbers, with an application to the entschei-

dungsproblem. Proceedings of the London Mathematical Society, 42(2):230–265,

1936.

[87] A. van der Werf, M. J. H. Peek, E. H. L. Aarts, J. L. van Meerbergen, P. E. R.

Lippens, and W. F. J. Verhaegh. Area optimization of multi-functional process-

ing units. In ICCAD ’92: Proceedings of the 1992 IEEE/ACM international

conference on Computer-aided design, pages 292–299, Los Alamitos, CA, USA,

1992. IEEE Computer Society Press.

[88] J. von Neumann. First draft of a report on the EDVAC. IEEE Annals of the

History of Computing, 15(4):27–75, 1993.

[89] M. Woh, S. Seo, S. Mahlke, T. Mudge, C. Chakrabarti, and K. Flautner.

AnySP: anytime anywhere anyway signal processing. In Proceedings of the

36th annual international symposium on Computer architecture, pages 128–

139. ACM, 2009.

[90] C. Wolinski, K. Kuchcinski, and E. Raffin. Automatic design of application-

180

specific reconfigurable processor extensions with upak synthesis kernel. ACM

Trans. Des. Autom. Electron. Syst., 15(1):1–36, 2009.

[91] M. Zuluaga and N. Topham. Resource sharing in custom instruction set ex-

tensions. In Proceedings of the 6th IEEE Symposium on Application Specific

Processors.(Jun. 2008), 2008.

181

Vita

Johnathan Andrew York attended Stratford High School in Houston, Texas. In 1999,

he entered the University of Texas at Austin. He received a Bachelor of Science in

Electrical Engineering with honors. He continued his study at the University of

Texas at Austin, receiving a Master of Science in Engineering in 2004. Johnathan

has been employed in various positions at the University of Texas Applied Research

Laboratories since 2001.

Permanent Address: 801 Stevenage Drive

Pflugerville, TX 78660

This dissertation was typeset with LATEX 2ε
1 by the author.

1LATEX 2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of
the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin, and extended
by Bert Kay, James A. Bednar, and Ayman El-Khashab.

182

