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Abstract 

 

Human Detection and Action Recognition Using Depth Information by 

Kinect  

 

Lu Xia, M.S.E. 

The University of Texas at Austin, 2012 

 

Supervisor:  J. K. Aggarwal 

 

Traditional computer vision algorithms depend on information taken by visible-

light cameras. But there are inherent limitations of this data source, e.g. they are sensitive 

to illumination changes, occlusions and background clutter. Range sensors give us 3D 

structural information of the scene and it’s robust to the change of color and illumination. 

In this thesis, we present a series of approaches which are developed using the depth 

information by Kinect to address the issues regarding human detection and action 

recognition. 

 Taking the depth information, the basic problem we consider is to detect humans 

in the scene. We propose a model based approach, which is comprised of a 2D head 

contour detector and a 3D head surface detector. We propose a segmentation scheme to 

segment the human from the surroundings based on the detection point and extract the 

whole body of the subject. We also explore the tracking algorithm based on our detection 

result. The methods are tested on a dataset we collected and present superior results over 

the existing algorithms. 
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With the detection result, we further studied on recognizing their actions. We 

present a novel approach for human action recognition with histograms of 3D joint 

locations (HOJ3D) as a compact representation of postures. We extract the 3D skeletal 

joint locations from Kinect depth maps using Shotton et al.’s method. The HOJ3D 

computed from the action depth sequences are reprojected using LDA and then clustered 

into k posture visual words, which represent the prototypical poses of actions. The 

temporal evolutions of those visual words are modeled by discrete hidden Markov 

models (HMMs). In addition, due to the design of our spherical coordinate system and 

the robust 3D skeleton estimation from Kinect, our method demonstrates significant view 

invariance on our 3D action dataset. Our dataset is composed of 200 3D sequences of 10 

indoor activities performed by 10 individuals in varied views. Our method is real-time 

and achieves superior results on the challenging 3D action dataset. We also tested our 

algorithm on the MSR Action3D dataset and our algorithm outperforms existing 

algorithm on most of the cases. 
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Chapter 1:  Introduction 

1.1 MOTIVATION 

The development of computer vision, the use of a camera and a computer to 

recognize objects, began in the early 1960s. Although it has matured fairly quickly and 

contributes to the solution of some of the most serious societal problems, most of the 

vision algorithms are built on 2D intensity images. But the world we live in is a 3D 

world. Upon seeing a 2D image, a human has no difficulty understanding its 3D 

structure. However, inferring such 3D structures remains extremely challenging for 

current computer vision systems. Such 3D geometric structure is necessary for most 

computer vision applications such as navigation and object search, and it may bring 

significant improvement to a lot of the current computer vision algorithms.  But the 

acquiring of such 3D geometric structures is a difficult problem. There are basically two 

ways to obtain it. The first method is to estimate 3D structures from 2D images. But it 

remains an extremely challenging task for current computer vision systems, because there 

is a great deal of information lost when we project the 3D scene into a 2D image. Indeed, 

in a narrow mathematical sense, it is impossible to recover 3D depth from a single image, 

since we can never know if it is a picture of a painting or if it is an image of an actual 3D 

environment. Yet, in practice we consider it possible to estimate the 3D structure from 

the 2D image. Because humans can easily infer 3D structures from a 2D image, there 

must be some cues embedded in the 2D image that allow us to recover the 3D structure of 

the scene. Although much effort has been devoted to this issue, the result is still not as 

good as one would expect. The second method is to get the 3D structure directly from 

sensors. However, earlier range sensors were either too expensive, difficult to use in 
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human environments, slow at acquiring data, or provided poor estimation of distance. For 

example, sonar sensors are relatively low cost, but have poor angular resolution and are 

susceptible to false echoes and reflections. Infrared and laser range finders are again 

relatively low cost, but typically provide measurements from only one point in the scene. 

At the other end of the spectrum, LIDAR and radar systems provide accurate distance 

measurements with good angular resolution across a plane in the scene, but are 

considerably more expensive and typically have higher power consumption requirements. 

The advent of low-cost digital cameras has therefore generated renewed interest in 

vision-based systems, but the disadvantage of this approach is that distance has to be 

inferred either from stereoscopic cameras, or from the motion of objects within the image 

(e.g. optical flow). 

The research on range data dates back from 1980s, when people used laser range 

sensors which is expensive, slow at acquiring data and difficult to use on human subjects. 

Among the precursory attempts, Gil et al. [57] have done experiments at combining 

intensity and range edge maps. To describe 3D structures of objects, Magee et al. [58] 

have research on employing specialized range sensing hardware together with 2D 

intensity images of a scene to build descriptors of objects. Vemuri et al. [59] studied on 

calculating representation of objects from range data. To overcome the defect of the slow 

speed of laser range sensor at that time, Magee et al. [60] have explored in intensity 

guided range sensing recognition of three-dimensional objects. Furthermore, Vemuri et 

al. [61] have studied on obtaining representation of 3D objects from range data using 

intrinsic surface properties. Later on, Chu et al. [62] have studied on image interpretation 

using multiple sensing modalities.  
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While depth cameras are not conceptually new, the recent release of the Kinect 

has made such sensors accessible to all and received great deal of attention from the 

public.  The Kinect provides both an RGB image and a depth image. Although intended 

primarily for the entertainment market, the Kinect has excited considerable interest 

within the vision and robotics community for its broad applications [4]. The Kinect 

camera uses a structured light technique [5] to generate real-time depth maps containing 

discrete range measurements of the physical scene. The quality of the depth sensing, 

given the low-cost and real-time nature of the device, is compelling, especially when 

compared with the previous commercial range sensors. However, it is still inherently 

noisy. Depth measurements often fluctuate and depth maps contain numerous ‘holes’ 

where no estimations of range are obtained. See Figure 1.1.  

 

 

Figure 1.1:   Depth map and corresponding RGB image of an indoor scene. On the left is 

the depth image (brighter colors correspond to closer to the camera.) On the 

right is the RGB image. 

There is significant number of research studies using the Kinect during the last 

two years. Projects and applications can be found on facial expression analysis and 

synthesis [6], indoor navigation [7], gaming [8] and robotics [9, 10]. From last year, there 

is a body of research on the problems of human/parts detection [11], pose estimation [2], 
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tracking from 3D data [12] and activity recognition from depth images [3, 13] or 

combined with RGB images [14].  

In this thesis, we consider using Kinect depth data to understand human activities. 

Depth images have several advantages over 2D intensity images: they are robust to the 

change in color and illumination. Also, depth images are simple representations of 3D 

information. To this end, our first task is to detect the humans in the scene. Then we track 

the persons and recognize their basic actions.  

 

1.2 HUMAN DETECTION 

Detecting human in images or videos is a challenging problem due to variations in 

pose, clothing, lighting conditions and complexity of the backgrounds. There has been 

much research in the past few years in human detection and various methods are 

proposed [15, 16, 17]. Most of the research is based on images taken by visible-light 

cameras, which is a natural way to do it just as what human eyes perform. Some methods 

involve statistical training based on local features, e.g. gradient-based features such as 

HOG [15], EOH [18], and some involve extracting interest points in the image, such as 

scale-invariant feature transform (SIFT) [19], etc. Although lots of reports showed that 

these methods can provide highly accurate human detection results, RGB image based 

methods encounter difficulties in perceiving the shapes of the human subjects with 

articulated poses or when the background is cluttered. These will result in the drop of 

accuracy or the increase of computational cost.  

In this thesis, we present a novel model based method for human detection from 

depth images captured by Kinect. We detect people using a 2-stage detection process, 

which includes a 2D edge detector and a 3D shape detector to make use of both the edge 
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information and the relational depth change information embedded in the depth image. 

We propose a segmentation scheme to segment the human from the background and 

extract the overall contour of the subject accurately. We also present a simple algorithm 

for tracking in depth image. The method is evaluated on a 3D dataset taken indoor using 

the Kinect and achieves excellent results. 

 

1.3 ACTION RECOGNITION 

Human action recognition is a widely studied area in computer vision. Its 

applications include surveillance systems, video analysis, robotics and a variety of 

systems that involve interactions between persons and electronic devices such as human-

computer interfaces. Its development began in the early 1980s. To date research has 

mainly focused on learning and recognizing actions from video sequences taken by a 

single visible light camera. There is extensive literature in action recognition in a number 

of fields, including computer vision, machine learning, pattern recognition, signal 

processing, etc. [28, 29]. Among the different types of features for recognition, 

silhouettes and spatio-temporal interest points are most commonly used [30].  

Here we enumerate three major challenges to vision based human action 

recognition. First is intra-class variability and inter-class similarity of actions. Individuals 

can perform an action in different directions with different characteristics of body part 

movements, and two actions may be only distinguished by very subtle spatio-temporal 

details. Second, the number of describable action categories is huge; the same action may 

have different interpretations under different object and scene contexts. Third, occlusions, 

cluttered background, cast shadows, varying illumination conditions and viewpoint 

changes can all alter the way actions are perceived.  
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The use of range cameras significantly alleviates the challenges presented in the 

third category, which are the common low-level difficulties that reduce the recognition 

performance from 2D imagery. Furthermore, a range camera provides the discerning 

information of actions with depth changes in certain viewpoints. For example, in a frontal 

view, it would be much more accurate to distinguish person pointing from reaching from 

depth map sequences than in RGB footage.  

In this thesis, we employ a histogram based representation of 3D human posture 

named HOJ3D. In this representation, 3D space is partitioned into n bins using a 

modified spherical coordinate system. We manually select 12 informative joints to build 

a compact representation of human posture. To make our representation robust against 

minor posture variation, votes of 3D skeletal joints are cast into neighboring bins using a 

Gaussian weight function. The collection of HOJ3D vectors from training sequences are 

first reprojected using LDA and then clustered into k posture vocabularies. By encoding 

sequences of depth maps into sequential vocabularies, we recognize actions using HMM 

classifiers [39]. Our algorithm utilizes depth information only. Experiments show that 

this algorithm achieves superior results on our challenging dataset and also outperforms 

Li et al. algorithm [3] on nearly all the testing cases.  

 

1.4 CONTRIBUTIONS 

The main contribution of this thesis consists of three parts. First, we put forward a 

novel algorithm of human detection using depth information. Second, we present an 

algorithm to recognize human actions using skeletonization result inferred from depth 

imagery. Third, we propose a view-invariant representation of human poses and prove it 

is effective at action recognition and the whole system runs at real-time. Finally, we 
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collected a large 3D dataset of persons performing different kinds of indoor activities 

with a variety of viewpoints.  

The remainder of the thesis is organized as follows: We discuss the related work 

in the Chapter 2. Chapter 3 describes our human detection algorithm using depth image 

and also presents our preliminary research on tracking. In Chapter 4 we present our view-

invariant human action recognition algorithm. We conclude in Chapter 5 and discuss 

possible future works. 
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Chapter 2:  Related Work 

2.1 HUMAN DETECTION AND POSE ESTIMATION FROM 3D DATA 

In recent years, there is a body of research on the problem of human parts 

detection, pose estimation and tracking from 3D data. Earlier research used stereo 

cameras to estimate human poses or perform human tracking [20, 21, 22]. In the past few 

years, a part of the research has focused on the use of time-of-flight range cameras 

(TOF). Many algorithms have been proposed to address the problem of pose estimation 

and motion capture from range images [23, 24, 25, 26]. Ganapathi et al. [23] present a 

filtering algorithm to track human poses using a stream of depth images captured by a 

TOF camera. Jain et al. [24] present a model based approach for estimating human poses 

by fusing depth and RGB color data. Recently, there have been several works on 

human/parts detection using TOF cameras. Plagemann et al. [27] use a novel interest 

point detector to solve the problem of detection and identifying body parts in depth 

images. Ikemura et al. [1] proposed a window-based human detection method using 

relational depth similarity features based on depth information. Recently, there has been 

research on human parts detection and pose estimation from depth images from Kinect. 

Shotton et al. [2] propose to extract 3D body joint locations from a depth image using an 

object recognition scheme. 

 

2.2 REPRESENTATION AND RECOGNITION OF HUMAN ACTIONS 

Researchers have explored different compact representations of human actions in 

the past few decades. Here we mainly divide them into 3 categories: 



 9 

silhouette/contour/shape based representation, joint/body parts representation and space-

time interest points representation. 

Silhouette/contour/shape is an effective representation to describe the shape of the 

body postures. It is usually extracted from the video using background subtraction [63]. 

Methods proposed in the past for silhouette/contour/shape based action recognition can 

be divided into two major categories. One is to extract action descriptors from the 

sequences of silhouettes. Conventional classifiers are frequently used for recognition [31, 

32, 33, 34]. In this approach, the action descriptors are supposed to capture both spatial 

and temporal characteristics of the actions. The other one is to extract features from each 

silhouette and model the dynamics of the action explicitly [33, 35, 36, 37, 38]. To extract 

features from the silhouettes/contours, some researchers extract feature directly from the 

whole silhouettes, e.g. use PCA to extract Eigen images [64, 65, 66]. Many researchers 

extract extremities of the silhouettes and link the extremities to the centroid to make a 

skeleton representation [42, 68, 69]. The “star skeleton” proposed by Fujiyoshi and 

Lipton [41] is widely used. The skeleton is generated by extracting the human silhouettes 

from the video using background segmentation and finding the gross extremities of the 

silhouette’s boundary, where extremities should correspond to the limbs and head. The 

“star skeleton” can also be extended to 3D using multiple cameras [67]. But note such 

skeleton is not what we mean by the human skeleton which is linking of the body joints. 

And it may not represent the pose well if not viewed form the favorable view. 

Joints/body parts based has also been popular for a few decades. In 1975, 

Johansson’s experiment shows that humans can recognize activity with extremely 

compact observers [40]. Johansson demonstrated his statement using a movie of a person 

walking in a dark room with lights attached to the person’s major joints. Even though 

only light spots could be observed, there was a strong identification of the 3D motion in 
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these movies. There are plenty of works focusing on action recognition using joints/body 

parts [43, 74, 75]. Joints data are usually acquired using markers to the subjects and use 

multiple cameras to get the 3D positions [70, 71, 72, 73]. The CMU Motion Capture 

Database is widely used that provide such information. Such representation suffers little 

of the intra-class variance that plague appearance-based methods. Especially, 3D 

joint/body parts are view point invariant and appearance invariant, in that the actions vary 

little from different actors. But in the past, extracting body parts/3D joints accurately is a 

difficult task, particularly under realistic imaging conditions. As such, low-level 

appearance features such as spatio-temporal interest points have also been popular 

recently. 

Inspired by natural language processing and information retrieval, space-temporal 

interest point approaches are also applied to recognize actions as a form of descriptive 

action unites. In these approaches, actions are represented as a collection of visual words, 

which is the codebook of spatio-temporal features. Schuldt et al. [44] integrate space-time 

interest point’s representation with SVM classification scheme. Dollar et al. [45] employ 

histogram of video cuboids for action representation. Wang et al. [45] represent the 

frames using the motion descriptor computed from optical flow vectors and represent 

actions as a bag of coded frames.  

However, all these features are computed from RGB images and are view 

dependent. Researchers also explored free viewpoint action recognition algorithms from 

RGB images. Due to the large variations in motion induced by camera perspective, it is 

extremely challenging to generalize them to other views even for very simple actions. 

One way to address the problem is to store templates from several canonical views and 

interpolate across the stored views [31, 47]. Scalability is a hard problem for this 

approach. Another way is to map an example from an arbitrary view to a stored model by 
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applying homography. The model is usually captured using multiple cameras [48]. 

Weinland et al. [49] model action as a sequence of exemplars which are represented in 

3D as visual hulls that have been computed using a system of 5 calibrated cameras. 

Parameswaran et al. [50] define a view-invariant representation of actions based on the 

theory of 2D and 3D invariants. They assume that there exists at least one key pose in the 

sequence in which 5 points are aligned on a plane in the 3D world coordinates. Weinland 

et al. [51] extend the notion of motion-history [55, 31] to 3D. They combine views from 

multiple cameras to build a 3D binary occupancy volume. Motion history is computed 

over these 3D volumes and view-invariant features are extracted by computing circular 

FFT of the volume.  

There are a few works on the recognition of human actions from depth data in the 

past two years. Li et al. [3] employ an action graph to model the dynamics of the actions 

and sample a bag of 3D points from the depth map to characterize a set of salient postures 

that correspond to the nodes in the action graph. However, the sampling scheme is view 

dependent. Lalal et al. [53] utilize Radon transformation on depth silhouettes to recognize 

human home activities. The depth images were captured by a ZCAM [54]. This method is 

also view dependent. Sung et al. [55] extract features from the skeleton data provided by 

Prime Sense from RGBD data from Kinect and use a supervised learning approach to 

infer activities from RGB and depth images from Kinect. Considering they extract 

features from both types of imageries, the result is interesting but at the same time not as 

good as one would expect. 
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Chapter 3: Human Detection 

3.1 OVERVIEW OF THE METHOD 

 

Figure 3.1: Over view of the human detection method 

This section provides an overview of the major steps in our method, which is 

summarized in Figure 3.1.  

Given an input depth array, we first reduce the noise and smooth the array for 

later process. We use a 2-stage head detection process to locate the people. We first 

explore the boundary information embedded in the depth array to locate the candidate 

regions. The algorithm used here is 2D Chamfer Distance Matching. It scans across the 

whole image and gives the possible locations that suggest the appearance of a human’s 

head. We examine each of these regions using a 3D head model, which utilizes the 

relational depth information of the array for verification. We extract the parameters of the 

head from the depth array and use the parameter to build a 3D head model. Then we fit 

the 3D model against all the candidate regions to make a final estimation. We also 

develop a region growing algorithm to find the entire body of the person and extract the 

body contour. Also, we give preliminary research on tracking using our detection result. 
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3.2 2D CHAMFER DISTANCE MATCHING 

3.2.1 Preprocessing 

As we have mentioned, the quality of the Kinect depth sensing is still inherently 

noisy. Depth measurements often fluctuate and depth maps contain numerous ‘holes’ 

where no estimations of range are obtained. In the depth image taken by the Kinect, all 

the points that the sensor is not able to measure depth are offset to 0 in the output array. 

To estimate its true depth value, we make the assumption that the space is continuous, 

and the missing point is more likely to have a similar depth value to its neighbors. With 

this assumption, we use nearest neighbor interpolation algorithm to fill these pixels and 

get a depth array that has meaningful values in all the pixels. Then we use median filter 

with a 4×4 window on the depth array to smooth the data to make up the fluctuation of 

the depth sensing. 

3.2.2 2D Chamfer Distance Matching 

The first stage of the method is to use the edge information embedded in the depth 

array to locate the candidate regions that indicate the appearance of a person. It is a rough 

scanning approach in that we need to have a rough detection result with a false negative 

rate as low as possible but may have a high false positive rate. We use 2D Chamfer 

Distance Matching in this stage for quick processing. Chamfer Distance Matching is a 

good 2D shape matching algorithm that is invariant to scale. We use canny edge detector 

to extract edges in the depth array. To reduce the disturbance from the surrounding 

irregular small objects, we eliminate all the edges whose sizes are smaller than a certain 

threshold. (Here, the size of the edge is determined by the number of pixels.) Results of 

Chamfer Distance Matching are shown in Figure 3.2. 
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We use a binary head template shown in Figure 3.2(d) and match the template to 

the resulted edge image. To increase the efficiency, a distance transform is calculated 

before the matching process. This results in a distance map of the edge image, where 

pixels contain the distances to the closest data pixels in the edge image. Matching 

consists of translating and positioning the template at various locations of the distance 

map; the matching measure is determined by the pixel values of the distance image which 

lie under the data pixels of the transformed template. The lower these values are, the 

better the match between image and template at this location. If the distance value lies 

below a certain threshold, the target object is considered detected at this place, which 

means that a head like object is found here. We use the phrase “head like object” here 

because the object we detected may not be a real head because we used a high threshold 

here to guarantee a very low false negative rate. Whether this object is actually a head we 

will decide at the next stage. It is usually the case that the person in the scene is likely to 

appear at any depth, which means the head size will change according to the depth. To 

make the algorithm invariant to scale, we generate an image pyramid with the original 

image at the bottom; each image is subsampled to generate the next image at the higher 

level. The subsample rate we used here is 3/4, and the number of the level of the pyramid 

 
              (a)                      (b)                     (c)                       (d)                      (e) 

Figure 3.2:   Intermediate results of 2D Chamfer Distance Matching. (a) shows the depth 

array after noise reduction. (b) gives the binary edge image calculated using 

Canny edge detector and then eliminate  small edges. (c) shows the distance 

map generated from edge image (b). Match the binary head template (d) to 

(c) gives the head detection result (e). Yellow dots indicate the detected 

locations. 
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depends on the scene. If the scene contains a larger range of depth, a larger number of 

levels is needed. This template is able to find head of the person in all poses and views. If 

the person is in a horizontal position or is upside down, it is easily settled by rotating the 

template and running the same detection process. The result of all the steps in this stage is 

shown in Figure 3.2. 

 

3.3 3D MODEL FITTING 

Now we are going to examine all the candidate regions that selected by 2D 

Chamfer Distance Matching algorithm. 

3.3.1 Compute Head Parameters 

To generate the 3D head model, we first estimate the parameter of the head that 

appears in the detected location. We conduct an experiment and get the regression result 

for the depth of the head and its height, shown in Figure 3.3. 

 

 

 
Figure 3.3: Regression result of head height and depth. 
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The cubic equation we get is: 

 
3 2

1 2 3 4y p x p x p x p       
                                     (3.1)  
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From the detection result of 2D Chamfer Distance Matching, we can get the depth 

of detected location from the original depth array. By equation (3.1), we calculate the 

standard height of the head in this depth. Then we search for the head within a certain 

range that is defined by the standard height of the head: 

 

1.33 / 2.R h                                                       (3.2) 

Here, h is the height of the head calculated from equation (3.1), R is the search 

radius. 

Next, we search for the head within a circular region defined by radius R in the 

edge image. If there is a circular edge in this region that satisfied all the constraints, e.g. 

size pass a certain threshold, it is decided that a head is detected. The next thing to do is 

to find the true radius of the head. It happened to be that the distance map we calculated 

at 2D Chamfer Distance Matching stage can be used to estimate the radius of the head. 

Recall that the pixels in the distance map contain the distances from this pixel to the 

closest data pixels in the edge image, considering the head is a circular like shape, the 

value of the center of the head on the distance map is just an approximation of the radius 
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of the head. So we can take this directly as our estimation of the true radius of the head 

Rt. 

3.3.2 Generate 3D Model 

Considering the calculation complexity of 3D model fitting is comparatively high, 

we want the model to be view invariant so that we don’t have to use several different 

models or rotate the model and run several times. The model should generalize the 

characteristics of the head from all views: front, back, side and also higher and lower 

views when the sensor is placed higher or lower or when the person is higher or lower. 

To meet these constraints and make it the simplest, we use a hemisphere as the 3D head 

model. Figure 3.4 illustrates the requirements and shows the head model. 

 

 

                                   

(a) (b) 

Figure 3.4: 3D head model. (a) illustrates the demands of the head model: the model 

should invariant to different views. (b) shows the hemisphere model we 

used as the 3D head model 

 

3.3.3 Fitting 

Next, we fit the model onto the regions detected from previous steps. We extract a 

circular region CR with radius Rt around the detect center and normalize its depth: 

View from different height 
View from different angle 
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,
_ ( , ) ( , ) min( ( , ))

i j
depth n i j depth i j depth i j     

,i j CR          (3.3)  

Here, depth (i, j) is the depth value of pixel (i, j) in the depth array. depth_n (i , j) 

is the normalized depth value of pixel (i , j). Then we calculate the square error between 

the circular region and the 3D model: 

 

2

,

| _ ( , ) ( , ) |
i j CR

Er depth n i j template i j


 
                          

(3.4) 

We use a threshold to decide whether the region is actually a head. Figure 3.5 

illustrates some of the steps in this stage, and shows the result of the 3D matching. 

 

 

  
(a) (b) 

Figure 3.5: (a) illustrates the process of estimating the true parameter of the head from the 

distance map. Input of the 3D model fitting is the output of the 2D Chamfer Distance 

Matching in Figure 3(e). Output of 3D model fitting is shown in (b). Yellow dots indicate 

the center of the head detected. 

 

3.4 EXTRACT CONTOURS  

We extract the overall contour of the person so that we may track his/her hands 

and feet and recognize the activity. In an RGB image, despite the person is standing on 

the ground, it is less a problem to detect the boundary between the feet and the ground 
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plane using gradient feature. However, in a depth array, the values at the person’s feet 

and the local ground plane are the same. Therefore, it is not feasible to compute humans’ 

whole body contours from a depth array using regular edge detectors. The same applies 

when the person touches any other object that is partially in the same depth with the 

person. To resolve this issue, we take advantages of the fact that persons’ feet generally 

appear upright in a depth array regardless of the posture. We use the filter response of 

 

[1,1,1, 1, 1, 1]TF                                 (3.5) 

to extract the boundary between the persons and the ground. 

The filter response after threshold delineates the planar areas that are parallel to 

the floor. The edges extracted by F filter response together with the original depth array 

are added together as the input to our region growth algorithm. Figure 3.6 shows an 

example of the filter response. (The color distributions of in both images are a little 

different because of we scale the array for display, the corresponding values are the 

same.) 

 

  
(a) (b) 

Figure 3.6: (a) Original depth array. Some parts of the body are merged with the ground 

plane and wall. (b) The input depth array to the region growth algorithm. 

The ground plane is delineated by the thresholded F filter response. The 

edges along the feet well separate the persons from the floor.  
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We develop a region growth algorithm to extract the whole body contours from 

the processed depth array. It is assumed that the depth values on the surface of a human 

object are continuous and vary only within a specific range. The algorithm starts with a 

seed location, which is the centroid of the region detected by 3-D model fitting. The rule 

for growing a region is based on the similarity between the region and its neighboring 

pixels. The similarity between two pixels x and y in the depth array is defined as: 

 

( , )  | ( ) ( ) |S x y depth x depth y                                      (3.6) 

 

Here, S is similarity and depth() returns the depth value of the pixel. The depth of 

a region is defined by the mean depth of all the pixels in that region: 

 

1
( ) ( ( ))

i R

depth R depth i
N 

 
                                            (3.7) 

 

The pseudocode of the region growth algorithm is summarized in Table.3.1 The 

results of the region growth algorithm are shown in Figure 3.7. 

 

  
(a) (b) 

Figure 3.7: (a) Result of our region growth algorithm. (b) The extracted whole body contours 

are superimposed on the depth map. 
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Table 3.1: Region growth algorithm 

 

3.5 TRACKING 

Finally, we give preliminary results on tracking using depth information based on 

our detection result. Tracking in RGB image is usually based on color, the assumption is 

that the color of the same object in different time frames should be similar. But in depth 

images we don’t have such color information. What we have is the 3D space information 

of the objects, so that we can measure the movements of the objects in a 3D space. Our 

tracking algorithm is based on the movements of the objects. We assume that the 

coordinates and speed of the same objects in neighboring frames change smoothly, i.e. 

there should not be big jumps in coordinates or speed. First, we find the center of the 

Start region growth until similarity between the 

region and neighboring pixels is higher than a  

threshold 

i. Initialize: region = seed 

ii. 

(1) Find all neighboring pixels of the region 

(2) Measure the similarity of the pixels and the 

region (Eq.7) s1, s2, … and sort  the pixels 

according to the similarity. 

(3)  

If smin < threshold 

 (3.1). Add the pixel with the highest similarity 

to the region. 

 (3.2). Calculate the new mean depth of the 

region. 

 (3.3). Repeat (1)-(3) 

else 

algorithm terminate 

iii. Return the region 
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detected blob. Then we calculate the 3D coordinates and speed of the persons in each 

frame. The coordinates are given in the depth array directly; the speed is calculated from 

the coordinates of neighboring frames. We define a energy score of the changes in space 

and speed:  

 
2 2

0 0( ) ( )E c c v v                                                   (3.8) 

Here, E is the energy score, c is the coordinates of the person in the current frame 

and c0 is the coordinates of the person in the last frame. v is the speed of the person in the 

current frame and v0 is the speed of the person in the last frame.  

In the first frame, we label the person in turn according to the detection order. For 

the subsequent frames, we try all the possible matches of those people and take the one 

with the smallest energy score to be the solution. Special cases need to be handled when 

the total number of people in the frame changes, like when there are people get out of the 

scene or new persons join in. 

 

3.6 EXPERIMENTAL RESULTS 

In this section we describe the experiments performed to evaluate our method. We 

show both qualitative and quantitative results on our datasets and compare our approach 

with a window-based human detection algorithm [1]. 

3.6.1 Dataset  

We evaluate our method using a sequence of depth arrays taken by the Kinect for 

XBOX 360 in indoor environment. We took the sequence in our lab with at most two 

persons presented in the scene. There are tables, chairs, shelves, computers, an overhead 
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lamp and so on presented in the scene. The people have a variety of poses, and they have 

interaction with others or the surrounding objects. There are 98 frames in the test set and 

the frame rate is 0.4s/frame. The size of the depth array is 1200 ×900 and the resolution is 

about 10mm. 

To better illustrate our image frames, we scale the depth array and plot using 

color map ‘JET’ as in Figure 3.8. The depth is measured in millimeters and the points that 

failed to be measured are offset to 0 (which usually happen in the irregular edge of 

objects or surfaces that do not reflect infrared rays well, e.g. polyporous materials and 

when the objects are moving fast). 0-value in depth array corresponds to the dark blue in 

the image in (b). 

 

 
(a)  

 
(b)  

Figure 3.8: (a) a patch of the depth array (b) the depth array showed using color map JET 

3.6.2 Experimental Results 

Our detection method performs well on our indoor dataset. Figure 3.9 shows some 

of the results of our algorithm.  

 

      

Figure 3.9: Examples of the human detection result. 
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Figure 3.10 shows the preliminary tracking results based on our detection result. 

15 consecutive frames are shown, which includes two people walking past each other, 

one person gets occluded and appears again. The detection method performs well in most 

cases. We do not have any FP instances but only a few FN detections. It happened when 

the person’s head is occluded by another person or half of the body is out of the frame, as 

shown in Figure 3.11. 

 

 

 

 

Figure 3.10: Tracking result. 15 consecutive frames are shown. 

 

  
(a) (b) 

Figure 3.11: Examples of false negative detections. In group (a) the person that got 

occluded is not detected. In group (b) the person that is half way out of the 

frame is not detected. 
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We evaluate our method with different accuracy metrics, as shown in Table 3.2. 

The precision, recall and accuracy are defined as follows: 

 

TP
Precision

TP FP



                                                (3.9) 

TP
Recall

TP FN



                                                   (3.10) 

TP TN
Accuracy

TP TN FP FN




  
                                      (3.11) 

 

TP TN FP FN 

169 266 0 7 

Precision Recall 

100% 96.0% 

Accuracy 

98.4% 

Table 3.2: Accuracy of our human detection algorithm. 

We compare our algorithm with a recent window-based algorithm which uses the 

relational depth similarity features for classification [1]. The original method uses TOF 

data. We perform an additive preprocessing step and implement the scheme on our 

Kinect data. Table 3.3 shows the comparison of performances of both methods. There are 

about 0 to 500 windows extracted from each frame and we subsample them and use the 

odd number of frames for training and even number of frames for testing. There are 770 

positive examples and 2922 negative examples in the training set and 738 positive 

examples and 2930 negative examples in the test set. Note that the unit here is window 

not frame. 

 

 



 26 

 Precision Recall Accuracy 

Ours 100% 96.0% 98.4% 

Ikemura 90.0% 32.9% 85.8% 

Table 3.3: Comparison of our algorithm with Ikemura 

From Table 3.3 we can see that our algorithm outperforms Ikumura’s algorithm 

on this dataset. The main reason is that Ikumura’s window-based algorithm is better at 

handling the instances when the people in the frame are in an upright position. However, 

people in this dataset are presented in all kinds of postures and rotations. The recall of 

Ikemura’s algorithm is low because it is a window-based method which has a large false 

negative rate. The high false negative rate actually does not deteriorate his performance 

because the same person would appear in a lot of scanning windows. The algorithm will 

produce true positive when the person is well centered in the window, and it will classify 

the rest of the windows which the persons are not in the center as negative frames. And 

that is the cause of the high false negative rate. But the person in the image is 

successfully detected in this case. 

To prove the privilege of using depth data and the effectiveness of our algorithm, 

we also compared our result with human detection algorithm performed on RGB data. 

We choose the most successful method HOG pedestrian detection algorithm [15] here, 

and run this algorithm on the RGB images. (Because we didn’t store the corresponding 

RGB images when we take the dataset, we recaptured the RGB images in the same room 

and same persons.  So even though the RGB images and the depth images are not one to 

one corresponded, the scene and subjects in the images are the same. So we consider the 

difficulty of detect the humans are similar.) The result is shown in Figure 3.12. The first 

row shows examples of typical success cases. Second rows shows that the background 

clutter causes confusion for the HOG descriptor.  Third row shows that the whole body of 
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the person must be in view to make the pedestrian detection algorithm work. Even though 

a small portion of the lower leg is out of field of view (FOV), the pedestrian detector 

cannot detect the person. Fourth row gives examples when the algorithm totally missed 

the person even though the person is fully in view. Fifth row shows examples when the 

algorithm totally messed up the detection. 
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Figure 3.12: Detection Results using HOG pedestrian detection algorithm [15]. 
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3.7    CONCLUSIONS 

We propose a human detection method that utilizes the depth information 

obtained from the Kinect. The experimental results show that our algorithm can 

effectively detect the persons in all poses and appearances from the depth array, and it 

provides an accurate estimation of the whole body contour of the person. In addition, we 

explore a tracking algorithm based on our detection results. The approach can be applied 

in multiple tasks such as object segmentation, human detection, tracking, and activity 

analysis. And the algorithm is generally applicable to depth images acquired by other 

types of range sensors.  

The advantages of our method are briefly described in the followings. First, the 

method can easily adjust to new datasets, no training is needed. Second, the algorithm 

uses a two layer detection process with 2D Chamfer Distance Matching in the first layer 

which largely reduces computational cost. Third, we do not assume person’s pose for 

accurate detection. The limitation is that this algorithm has high dependency on accurate 

head detection, which implies that if the head is occluded or if the person is wearing a 

strange shape hat, it probably will not be detected, but this problem can be handled when 

we extend the head detector to other parts of the body, e.g. combine with hand detector or 

central body detector.  
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Chapter 4: View Invariant Action Recognition Using HOJ3D 

4.1 OVERVIEW OF THE METHOD 

 

In this section, we present an action recognition algorithm using a compact 

representation of postures built from skeleton joint locations extracted from depth 

images. Taking the skeletal joint locations of one posture, we calculate the histograms of 

the 3D skeletal joint locations (HOJ3D) and take this as a compact representation of the 

posture. Then we reduce the dimensions of the HOJ3D features using LDA and cluster 

the features into k clusters using K-means. In this way, each posture is represented by a 

Figure 4.1: Overview of the method. 
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single number which represent the id of the clusters and each action is simplified as a 

sequence of numbers. Finally, we classify the encoded action sequence using trained 

HMMs. Taking advantage of Kinect and J. Shotton et al.’s algorithm [2], this method 

improves on the previous methods in that it achieves excellent recognition rates and is 

also view invariant and real time.  

 

4.2 BODY PART INFERENCE AND JOINT POSITION ESTIMATION 

The human body is an articulated system of rigid segments connected by joints 

and human action is considered as a continuous evolution of the spatial configuration of 

these segments (i.e. body postures) [56]. Here, we use joint locations to build a compact 

representation of postures. The launch of Kinect offers a low-cost and real-time solution 

for the estimation of the 3D locations of objects or persons in the scene. Shotton et al. [2] 

propose to extract 3D body joint locations from a depth image using an object recognition 

scheme. The human body is labeled as body parts based on the per-pixel classification 

results. The parts include LU/ RU/ LW/ RW head, neck, L/R shoulder, LU/ RU/ LW/ 

RW arm, L/ R elbow, L/ R wrist, L/ R hand, LU/ RU/ LW/ RW torso, LU/ RU/ LW/ RW 

leg, L/ R knee, L/ R ankle and L/ R foot (Left, Right, Upper, Lower). They compute the 

confidence-scored 3D position estimation of body joints by employing a local mode-

finding approach based on mean shift with a weighted Gaussian kernel. Their gigantic 

and diverse training set allows the classifier to estimate body parts invariant of pose, 

body shape, clothing, and so on. Using their algorithm, we acquire the 3D locations of 20 

skeletal joints which comprise hip center, spine, shoulder center, head, L/ R shoulder, L/ 

R elbow, L/ R wrist, L/ R hand, L/ R hip, L/ R knee, L/ R angle and L/ R foot. Note that 
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body part segmentation results are not directly available.  Figure 4.2 shows an example 

result of 3D skeletal joints and the corresponding depth map. 

  
 

 

We use these skeletal joint locations to form our representation of postures. 

Among these joints, hand and wrist and foot and ankle are very close to each other and 

thus redundant for the description of body part configuration. In addition, spine, neck, 

and shoulder do not contribute discerning motion while a person is performing indoor 

activities. Therefore, we compute our histogram based representation of postures from 12 

of the 20 joints, including head, L/ R elbow, L/ R hands, L/ R knee, L/ R feet, hip center 

and L/ R hip. We take the hip center as the center of the reference coordinate system, and 

define the x-direction according to L/ R hip. The rest 9 joints are voted into the proposed 

3D spatial histogram. 

 

4.3 HOJ3D AS POSTURE REPRESENTATION 

The estimation of 3D skeleton from RGB imagery is subject to error and 

significant computational cost. With the use of Kinect, we can acquire the 3D locations of 

the body parts in real-time with better accuracy. We propose a compact and viewpoint 

Figure 4.2:  (a) Depth image. (b) Skeletal joints locations by Shotton et al. 

  
(a) (b) 
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invariant representation of postures. We use the 3D skeletal joints locations as the 

representation of postures, and employ a vocabulary of postures to describe the 

prototypical poses of actions.  

4.3.1 Spherical Coordinates of Histogram 

Our methodology is designed to be view invariant, i.e., descriptors of the same 

poses are similar despite being captured from different viewpoints. We achieve this by 

aligning our spherical coordinates with the reference vectors of the person. (Illustrate in 

Figure 4.3).  We define the center of the spherical coordinates as the hip center joint. 

Define the horizontal reference vector α to be the vector from the left hip center to the 

right hip center projected on the horizontal plane parallel to the ground, and the zenith 

reference vector θ as the vector that is perpendicular to the ground plane and passes 

through the coordinate center. 

We partition the 3D space into n bins as shown in Figure 4.4 (in our experiment, 

we take n=84).  The inclination angle is divided into 7 bins from the zenith vector θ: [0, 

15], [15, 45], [45, 75], [105, 135], [165, 180]. Similarly, from the reference vector α, the 

azimuth angle is divided into 12 equal bins with 30 degrees resolution. With our spherical 

coordinate, any 3D joint can be localized at a unique bin. 
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4.3.2 Probabilistic Voting 

Our HOJ3D descriptor is computed by casting the 9 joint locations into the 

corresponding spatial histogram bins. For each joint location, weighted votes are 

contributed to the geometrically surrounding 3D bins. To make the representation more 

robust against minor errors of joint locations, we vote the 3D bins using a Gaussian 

weight function: 
11
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Figure 4.3: Reference coordinates of HOJ3D. 
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Figure 4.4: Modified spherical coordinate system for joint location binning. 
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where ( , , )p X   is Gaussian probability density function with mean vector   and 

covariance matrix  .   For each joint, we only vote over the bin it is in and 8 neighboring 

bins. We calculate the probabilistic voting on θ and α separately since they are 

independent (see Fig. 4.5). The probabilistic voting for each of the 9 bins is the product 

of the probability on α direction and θ direction. Let the joint location be ( , )   . The 

vote of a joint to bin 1 2[ , ]  is 

 

 
1 2 2 1( ; , ) ( ; , ) ( ; , )p                                         (4.2) 

where Φ is the CDF of Gaussian distribution. Similarly, the vote of joint location 

( , )    to the bin 1 2[ , ]  is, 

 

1 2 2 1( ; , ) ( ; , ) ( ; , )p                                   (4.3) 

Then, the probability voting to bin 1 2    , 1 2     is: 

 

1 2 1 2

1 2 1 2

( , ; , )

                   ( , , ) ( , , )
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p p 

      

         

     

    

                (4.4) 

The votes are accumulated over the 9 joints. As a result, a posture is represented 

by an n-bin histogram. Fig. 4.6 illustrates an instance of the computed histogram. 
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4.3.3 Feature Extraction 

Linear discriminant analysis (LDA) is performed to extract the dominant features. 

LDA is based on the class specific information which maximizes the ratio of between-

class scatter and the within-class scatter matrix. The LDA algorithm looks for the vectors 

in the underlying space to create the best discrimination between different classes. In this 

way, a more robust feature space can be obtained that separates the feature vectors of 

each class. In our experiment, we reduce the dimension of the HOJ3D feature from n 

dimension to nClass-1 dimension. 

4.4 VECTOR QUANTIZATION 

As each action is represented by an image sequence or video, the key procedure is 

to convert each frame into an observation symbol so that each action may be represented 

by an observation sequence. Note that the vector representation of postures is in a 

Figure 4.5: Voting using a Gaussian weight function. 

Figure 4.6: Example of the HOJ3D of a posture. 
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continuous space. In order to reduce the number of observation symbols, we perform 

vector quantization by clustering the feature vectors. We collect a large collection of 

indoor postures and calculate their HOJ3D vectors. We cluster the vectors into K clusters 

(a K-word vocabulary) using K-means. Then each posture is represented as a single 

number of the visual words. In this way, each action is a time series of the visual words. 

 

4.5 ACTION RECOGNITION USING DISCRETE HMM 

We recognize a variety of human actions by the discrete HMM technique similar 

to what Rabiner did in speech recognition [39]. In discrete HMM, discrete time 

sequences are treated as the output of a Markov process whose states cannot be directly 

observed.   In Section 4, we have encoded each action sequence as a vector of posture 

vocabularies, and we input this vector to learn the HMM model and use this model to 

predict for the unknown sequence.  

A HMM that has N states S={s1,s2,…,sN} and M output symbols Y={y1, y2, …, yM} 

is fully specified by the triplet λ = {A, B, π}. Let the state at time step t be St.  The N×N 

state transition matrix A is, 

1{ | ( | )}ji ij t j t iA a a P s q s q   
                          (4.5) 

The N×M output probability matrix B is, 

 

{ ( ) | ( ) ( | )}i i k t iB b k b k P v s q                           (4.6) 

And the initial state distribution vector π is 

1{ | ( )}i i iP s q                                        (4.7) 
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We use a HMM to construct a model for each of the actions we want to recognize: 

the HMM gives a state based representation for each action. After forming the models for 

each activity, we take an action sequence V={v1, v2, … vT} and calculate its probability of 

a model λ for the observation sequence, P(V|λ) for every model, which can be solved by 

using the forward algorithm. Then we classify the action as the one which has the largest 

posterior probability. 

 
1,2,...,

decision=argmax{ }i
i M

L


                                           (4.8) 

Where iL  indicates the likelihood of i-th HMM iH and M number of activities. 

This model can compensate for the temporal variation of the actions caused by 

differences in the duration of performing the actions. 

 

4.6 EXPERIMENTS 

We tested our algorithm on a challenging dataset we collected ourselves. And we 

also test it on the public MSR Action3D dataset and compare our results with [3]. 

4.6.1 Data 

 To test the robustness of the algorithm, we collected a dataset of human indoor 

actions using Kinect. Kinect hardware has a practical range of about 4 to 11 feet. We 

evaluate our method on 10 indoor actions. We take the sequence indoors using a single 

stationary Kinect. The RGB images and depth maps were captured at 30 frames per 

second (FPS). The resolution of the depth map is 320×240 and resolution of the RGB 

image is 640×480.  We collected a dataset that contains 10 actions: walk, sit down, stand 

up, pick up, carry, throw, push, pull, wave and clap hands. Each action was collected 

from 10 different persons for 2 times: 9 males and 1 female. One of the persons is left-
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handed. Altogether, the dataset contains 6220 frames of 200 action samples. Each action 

sample spans about 5-120 frames. Sample RGB images from the dataset are shown in 

Fig. 4.7. Note that we only use the information from the depth map for action recognition 

in our algorithm; the RGB sequences are just for illustration. 

 

 

As shown in Table 4.1, we took action sequences from different views to 

highlight the advantages of our representation. In addition to the varied views, our dataset 

features 3 other challenges, which are summarized as follows. First, there is significant 

variation among different realizations of the same action. For example, in our dataset, 

some actors pick up objects with one hand while others prefer to pick up the objects with 

Figure 4.7:  Sample images from videos of the 10 activities in our database. Depth and RGB 

images are shown. Note only depth images are used in the algorithm. Action 

type from left to right, top to bottom: walk, stand up, sit down, pick up, carry, 

throw, push, pull, wave hands, clap hands. 
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both hands. Table 4.2 is another example: individuals can toss an object with either their 

right or left arms or producing different trajectories. Second, the durations of the action 

clips vary dramatically. Table 4.3 shows the mean and standard deviation of individual 

action length. In this table, the standard deviation of the carry sequence lengths is 27 

frames, while the mean duration of carry is 48 frames longer than that of push. Third, 

object-person occlusions and body part out of field of view (FOV) also add to the 

difficulty of this dataset. 

 
 Right view Frontal view Right view Back view 

No. 5 Carry 

    
No. 4 Pick up 

    

Table 4.1: Different views of the actions. 

Person No. Throwing sequence 

Person 1 

 
Person 2 

 
Person 5 

 
Person 9 

 

Table 4.2: The variations of subjects performing the same action. 
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No. 1 2 3 4 5 

Mean 43.60  34.15 25.60    35.50    58.15 

Standard variation 8.89 9.40 6.44 11.89 27.04 

No. 6 7 8 9 10 

Mean    11.95    10.30    15.05 45.70 31.00 

Standard variation 4.10 4.24 7.72 16.30 20.14 

Table 4.3: The mean and standard deviation of the sequence lengths measured by 

number of frames at 30 fps. 

 

Action  ACC Action ACC 

Walk 96.5% Throw 59.0% 

Sit down 91.5% Push 81.5% 

Stand up 93.5% pull 92.5% 

Pick up 97.5% wave 100% 

Carry 97.5% Chap hands 100% 

Overall:   90.92% 

Table 4.4: Recognition rate of each action type 

 

4.6.2 Experimental Results 

We evaluated our algorithm on our 200 sequences dataset using leave one 

sequence out cross validation (LOOCV). As there is randomness in the initialization of 

the cluster centroids and the HMM algorithm, we run the experiment 20 times and report 

the mean performance, shown in Table 4.4. We take the set of clusters to be 125. By 

experiments, the overall mean accuracy is 90.92%, the best accuracy is 95.0% and the 

standard deviation is 1.74%. On a 2.93GHz Intel Core i7 CPU machine, the estimation of 

3D skeletal joints and the calculation of HOJ3D is real-time using C implementation. The 

average testing time of one sequence is 12.5ms using Matlab. 
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We also test our algorithm on the public MSR Action3D database that contains 20 

actions: high arm wave, horizontal arm wave, hammer, hand catch, forward punch, high 

throw, draw x, draw tick, draw circle, hand clap, two hand wave, side-boxing, bend, 

forward kick, side kick, jogging, tennis swing, tennis serve, golf swing and pickup & 

throw. Shown in Figure 4.8. We selected one typical depth image for each action. We 

divide the actions into 3 subsets the same as in [3], each comprising 8 actions (see table 

4.5). We use the same parameter settings as previously. Each test is repeated 20 times, 

and the average performance is shown in Table 4.6. We compare our algorithm’s 

performance with Li et al. [3]. We can see that our algorithm achieves considerably 

higher recognition rates than Li et al. [3] in all the testing setups on AS1 and AS2. On 

AS3, our recognition rate is slightly lower. As we have noticed in [3] that the goal of AS3 

was intended to group complex actions together. However, Li et al.’s algorithm actually 

achieves much higher recognition accuracy on this complex dataset while ours have 

higher accuracy on the other two dataset. We conjecture the reason to be that the complex 

actions effects adversely the HMM classification when the number of training samples is 

small. Note that our algorithm performs better on MSR Action3D dataset than on our 

own dataset, partially because of the following reasons: 1) the subjects were facing the 

camera during the activities; 2) the whole body is in view all the times; 3) if the action is 

performed by a single arm or leg, the subjects were advised to use their right arm or leg.  
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Figure 4.8    Sample depth images from the MSR Action3D dataset. One frame for each 

of the 20 actions is shown. Action type (from left to right, up to bottom): 

high arm wave, horizontal arm wave, hammer, hand catch, forward punch, 

high throw, draw x, draw tick, draw circle, hand clap, two hand wave, side-

boxing,bend, forward kick, side kick, jogging,tennis swing, tennis serve, golf 

swing, pickup & throw. 

 

Table 4.5: The three subsets of actions used in the experiments. 
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 Test One Test Two Cross Subject Test 

 Li et al. Ours Li et al. Ours Li et al. Ours 

AS1 89.5% 98.47% 93.4% 98.61% 72.9% 87.98% 

AS2 89.0% 96.67% 92.9% 97.92% 71.9% 85.48% 

AS3 96.3% 93.47% 96.3% 94.93% 79.2% 63.46% 

Overall 91.6% 96.20% 94.2% 97.15% 74.7% 78.97% 

 

Table 4.6: Recognition results of our algorithm on the MSR Action3D dataset. We 

compared our result with Li et al. [3]. In test one, 1/3 of the samples were used as training 

samples and the rest as testing samples. In test two, 2/3 samples were used as training 

samples. In the cross subject test, half of the subjects were used as training and the rest of 

the subjects were used as testing 

 

4.7 CONCLUSIONS 

We have presented a methodology to recognize human action as time series of 

representative 3D poses. We take as input 3D skeletal joints locations inferred from depth 

maps as input. We proposed a compact representation of postures named HOJ3D that 

characterizes human postures as histograms of 3D joint locations within a modified 

spherical coordinate system. We build posture vocabularies by clustering HOJ3D vectors 

calculated from a large collection of postures. We train discrete HMMs to classify 

sequential postures into action types. The major components of our algorithm are real-

time, which include the extraction of 3D skeletal joint locations, computation of HOJ3D, 

and classification. Experimental results show the salient advantage of our view invariant 

representation.   

This work also suggests the advantage of using 3D data to recognize human 

actions and points out a promising direction of performing recognition tasks using depth 

information. Traditional RGB information can also be combined with the depth data to 

provide more data and produce algorithms with better recognition rates and robustness. 
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Chapter 5: Conclusion & Future Work 

We have presented our approaches for human detection and action recognition 

from depth images. The main novelty of this work is the use of depth information instead 

of traditional RGB images. In the first place, we proposed a simple model based 

algorithm to detect human from depth images, then we further presented an algorithm to 

recognize the human actions which is view invariant and runs at real-time. 

The algorithms are tested on existing and new datasets collected using Kinects. 

We have shown that the 3D information in the depth image simplified the traditional 

human detection and action recognition tasks. And the 3D information is robust to color 

and illumination changes and background clutter. In addition, the 3D information also 

makes it easier to realize view-invariance. We compared our performance with existing 

algorithms using depth images and RGB images and shown that our algorithm has 

superior result and faster speed.  

In the current approach, the action recognition algorithm depends on accurate 

estimation of the skeletal joint locations. There are mainly two drawbacks of this 

dependence: first, the accuracy of the algorithm is limited by the accuracy of the skeleton 

extraction algorithm. Second, there is information loss when extracting the skeleton from 

the depth image. In the future, we will consider building 3D surface of the person and 

recognizing his/her action from the reconstructed 3D surface. Depend on the demand, 

multiple Kinects might be used. We will also investigate on combining RGB information 

with depth information to provide more information and build more robust algorithms. 

And it is also an interesting and challenging topic to study human-human interaction and 

human-objects interaction.    
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