
Open Research Online
The Open University’s repository of research publications
and other research outputs

Miki: a wiki for synchronous modeling of software
requirements
Conference or Workshop Item

How to cite:

Yu, Yijun; Petre, Marian and Tun, Thein Than (2011). Miki: a wiki for synchronous modeling of software
requirements. In: 4th FlexiTools workshop @ ICSE 2011, 22 May 2011, Waikiki, Honolulu, Hawaii.

For guidance on citations see FAQs.

c© 2011 The Authors

Version: Version of Record

Link(s) to article on publisher’s website:
http://www.ics.uci.edu/ nlopezgi/flexitoolsICSE2011/papers/yu flexitools icse2011.pdf

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Research Online

https://core.ac.uk/display/106367?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://www.ics.uci.edu/~nlopezgi/flexitoolsICSE2011/papers/yu_flexitools_icse2011.pdf
http://oro.open.ac.uk/policies.html

Miki: A Wiki for Synchronous Modeling
of Software Requirements

Yijun Yu Marian Petre Thein Than Tun
Computing Department

The Open University
United Kingdom

ABSTRACT
Eliciting a high quality requirements model that can be
traced down to implementations is a challenge. Keeping
models updated for evolving software systems is a further
challenge. Formal modelling methods are one approach –
but one that is too rigid and costly for many small soft-
ware engineering companies [1]. We propose a light-weight
alternative, using a wiki as the synchronous bridge between
requirements capture and more formal modeling features of
the IDE such as Eclipse .

1. INTRODUCTION
Requirements engineers face the challenge of eliciting from
stakeholders high quality formal models for reasoning and
analysis purposes. In practice, however, requirements are
often informally stated, requiring substantial effort to digest.
Requirements modeling methods usually demands a rather
heavy use of formal modeling tools, usually a big barrier for
small software engineering companies to adopt [1].

One way to alleviate this elicitation problem is to interface
a full-fledged modeling tool through its plugin with a wiki
system. Available to every Web browser, wikis have been ap-
plied to software projects for documenting various artifacts
ranging from source code, design blueprints, bug reports,
mailing lists, etc [7]. Through collective uses of the wikis,
a software development team can elicit requirements as in-
formal text in a rather flexible format. Linking to related
domain knowledge through wiki names requires little effort.
Integrating with change management systems such as sub-
version is also possible. Trac1 is an example wiki system
used by software development teams. It can associate wiki
pages with snippets and revisions of the source code. On
the other hand, a formal requirements model still needs to
be elicited manually from these informal descriptions.

An additional problem is updating the links from the for-

1http://trac.edgewall.org/

mally stated requirements down to solutions in the sources
of evolving software systems [3]. A loose integration such as
the EclipseTracPlugin 2 still requires users themselves to
upload the models created by heavy Eclipse modeling tools
into more flexible Trac wiki attachments.

This paper demonstrates a technical solution that integrates
the modeling tools tightly within a wiki system such that
analysts, end-users, other types of stakehoders only need
a Web browser to create and maintain modeling diagrams.
In addition to the Trac wiki format – which is suitable for
documenting informal requirements – our extended macro
also accepts formal requirements modeling languages of ex-
isting Eclipse-based tools as the input. From the input,
stakeholders can get the formal models in both graphical
and textual syntaxes. The synchronously update feature of
Miki makes it less demanding to bridge formal requirements
models and the informal wiki pages.

Our limited experience in the prototype Miki system is re-
ported in this paper, with a position that a wiki enhanced
with formal modeling features that could produce easy to
maintain models that would help achieve the objective of flex-
ible modeling and sketching of requirements.

2. THE MIKI SYSTEM
Figure 1 overviews the Miki system as a service that synchro-
nizes textual and graphical models from a wiki users’ per-
spective. The example illustrated here is that of analysing
the Sluice Gate problem using the Problem Frames method [6].
Other modeling languages such as i* [10] and argumenta-
tion [5] are equally supported by our web-based Open Re-
quirements Engineering lab3, running as an instance of Miki.

Wiki is an effective means to document requirements collab-
oratively and informally among the group members. To il-
lustrate the effectiveness on the other extreme of the flexible
modeling spectrum, i.e. modeling formal requirements, we
compare Miki with (Trac + Eclipse) in three operational
use cases (creating, updating and deleting). In each of them,
the formal requirements models are shown updated in the
wiki pages, reflecting users’ modifications in a light-weight
fashion, in terms of bandwidth, time and effort savings. The
requirements engineers in the SecureChange research project
use the Miki prototype and have confirmed the usefulness
in eliciting early requirements: they could share and edit

2http://trac-hacks.org/wiki/EclipseTracPlugin
3http://computing-research.open.ac.uk/trac/openre

Figure 1: An overview of the Miki system

the requirements model using the bare browsers remotely
and document the background knowledge on the same wiki
pages; when they are meeting face-to-face in front of a desk-
top, the advantages of Miki over the Eclipse alternative is
the provision and recording of secondary annotations in the
free-formed wiki format [4].

The size of the model in textual form (DSL) is not a scal-
ability issue for the tool support, however, visualising the
whole model in one page could contain excessive informa-
tion for users due to the automatic layout of large diagrams.
According to our users, this problem can be alleviated by
dividing the large textual model into chunks that can be
treated as individual diagrams separately, while maintaining
the traceability from the original model to these fragmented
diagrams. Although all our modeling languages such as goal
models and problem frames can be hierarchically used, in
general not all requirements languages support this type of
hierarchical views.

2.1 Creating a model
When a user wants to create a model using a domain-specific
language (DSL) through Miki , she starts with entering an
extended Trac macro (see Figure 2 for a screenshot):

{{{#!openpf

... domain specific language in $ext ...

#!$ext

}}}

where #!openpf is the opening pragma for the macro we cre-
ated in Miki ; $ext (e.g., instantiate to an extension name
such as “problem” in Figure 2) in the closing pragma #!$ext

is the abbreviation of the DSL, used as the file extension
name of the corresponding model; the content of the model-
ing file is filled by the text in-between the opening and the

closing pragmas. Once submitting the above macro in Miki,
a modeling file $wiki.$ext will be created into an input
folder with $wiki being the name of the wiki page embed-
ding the macro. Our customised running Eclipse instance
monitors constantly any change inside the input folder to
discover and load the model file into the editor generated
by the Xtext framework for the DSL $ext [2]. On top of
standard applications of model-driven software development
process [9], we have introduced two major automations for
the purpose of synchronised modeling:

The first one converts the modeling text in the generated
syntax highlighted editor into a color-coded file $wiki.$ext.
html in an output folder using the following encoding per
token:

[<$style>]$token[</$style>]

The hexdecimal RRGGBB colors the $token in the RGB
scheme, and the optional $style is chosen between “B” for
bold and “I” for italics, depending on the choices made by
the Xtext editor.

The second automation generates an Eclipse modeling frame-
work (EMF) model $wiki.$ext.xmi that could be loaded by
a corresponding graphical modeling framwork (GMF) ed-
itor that visualizes the same model graphically. A stan-
dard GMF editor plugin normally just visualises a graph in
Eclipse, without saving it into a form for the use by an ex-
ternal wiki. Therefore the visualisation must be extended to
fulfil the second half of our goal, i.e., to embed the graph as
part of the wiki page. This is done automatically through
several customizations to the GMF editors.

First we make use of the GUI-free API in the GMF runtime
to save the model opened in the GMF plugin into graphical
file formats such as $wiki.$ext.png and $wiki.$ext.pdf,
and put them into the output folder. The Miki system con-
stantly monitors the changes inside the output folder un-
til these output files are saved from both the Xtext and
GMF editors, then automatically import them as attach-
ments to the $wiki page: the HTML output file is auto-
matically inserted into the wiki page after translating the
HTML encoding as native ones in the Python Trac exten-
sion, and the image output is embedded by the generated
Trac macro [[Image(attachment: $wiki.$ext.png)]] on
the same wiki page.

In brief, Figure 3 presents the architecture of the Miki sys-
tem, exemplified by the data flow. As a result (see Figure 4),
along with the rest of the informal wiki text, users will see
both the textual and graphical representations of the formal
model. The whole process is automated and takes no more
than a few seconds.

2.2 Updating a model
Once the model was created and shared on the wiki, to up-
date the model another user may simply edit the Miki macro
and resubmit. Upon an update of the Miki page, the sys-
tem checks the normalised $wiki.$ext model against the
cached one for any difference. Without a difference, noth-
ing will be created so that the user can see the updated
wiki with the formal model instantly; otherwise, updated
model diagrams will be regenerated from the updated macro,
which can take only a couple of seconds longer than a nor-
mal update of the wiki page. Since we make use of the
org.eclipse.xtext.gmf.glue extension to Xtext for the
synchronous editing of Xtext, EMF and GMF models, an
update of the graphs also takes less time than a complete
regeneration of the graph models. In this way, updating the
non-Miki macro parts of the page does not take extra time,
making the Miki system as responsive as its Trac predeces-
sor.

2.3 Deleting a model
If the Miki page is no longer needed, the model and auxil-
iary files generated from the Miki system shall be removed.
This is done by the synchronous monitor sits in-between the
running Eclipse and the Trac systems. Once a removal of
the file $wiki.$ext happens, in a few milliseconds a noti-
fication from the file system will be caught by the running
Eclipse monitor such that all $wiki.$ext.* files will be
removed from the project resources, and the corresponding
attachments in the Trac wiki page will be removed as well.

2.4 Comparing Miki with (Trac + Eclipse)
For all the three operational use cases, Table 1 compares the
differences between Miki and its baseline predecessor (Trac
+ Eclipse) in the steps of basic usage scenarios, time a
user spent, the network bandwidth; all based on the con-
crete Sluice Gate example. Here Miki stands for a browser
client visiting the Miki wiki; Trac stands for a browser client
visiting the Trac wiki, and Eclipse stands for an Eclipse in-
stance that has the Xtext, GMF editor plugins instances for
the supported DSL (in our cases the OpenPF4 tool installed

4http://sead1.open.ac.uk/openpf

on the client side).

Note that the time estimation of editing the wiki page is
assumed to be 1 minutes just for an illustration, and other
mouse click/shortcut key interactions require 1s each. The
bandwidth estimation is based on the actual size of the DSL
specification and generated diagrams.

3. RELATED WORK
Mozilla Ace for Cloud9 IDE 5 is one of the projects aiming
to provide a syntax-highlighted text editor on the Web using
the HTML5 canvas feature. Ideally it could be used to edit
not only Javascript programs but also domain specific lan-
guages of various sorts. However, comparing to the mature
model-driven tool development frameworks such as Xtext,
Ace requires substantially more effort to customise the do-
main specific language for different requirements models.
For requirements languages currently supported in Eclipse -
based modeling environment, therefore it might require less
investment to support a syntax highlighting online editor.
To this aim, it would be nice if the Xtext framework could
already generate a Web-based text editor automatically us-
ing the rich Ajax platform (RAP), as indicated by the fol-
lowing April Fool’s day wish 6. Lacking support of deploying
a full Eclipse framework to the Web, however, this feature
is not within the release plan of the Xtext project.

Ossher et al [8] propose to support flexible modeling using
the BITkit tool built on top of Adobe Flex, which needs
to be preinstalled. Miki could enable yet another level of
flexibility, i.e. to synchronously edit the models using the
wiki browsers alone. The Eclipse Sketch project7 provides
yet another route to support flexible modeling, where any
type of graphical syntax could be supported through the
recognision of the model from hand drawings. Since Sketch
is supported by Eclipse, it is our belief that such graph
recognision tool could be combined with the Miki system
while such inputs could be provided by a whiteboard plugin
for the wiki.

4. CONCLUSIONS AND FUTURE WORK
In this work, we have discussed the motivations of lowering
the barriers of adoption for flexible modeling tools through
the use of wikis, which can provide a synchronous bridge
between requirements capture and the more formal model-
ing features of the IDE such as Eclipse. A proof-of-concept
implementation has been detailed with a running exam-
ple to explain how we tightly integrate any Eclipse-based
graph modeling tool into the Trac wiki. Currently the tool
supports any Eclipse-based modeling representations that
can be supported by Xtext, EMF and GMF. An instance
of the Miki system is exemplified at the website http://

computing-research.open.ac.uk/trac/openre. Our ini-
tial experience that the text-based informal representations
in Miki can be used effectively in eliciting formal require-
ments models, saving bandwidth, time and effort.

Without further empirical evidence of how frequent such use

5http://ace.ajax.org/
6http://kthoms.wordpress.com/2010/04/01/bringing-
xtext-to-the-web/
7http://www.eclipse.org/sketch

Table 1: Comparing basic use cases between (Trac + Eclipse) and Miki

Operation Trac + Eclipse Sec. Byte Miki Sec. Byte

Installing installing Eclipse instance 600 200 M -
Creating starting Eclipse instance 20 0 -

editing DSL using Trac 30 346 editing DSL using Miki 30 346
copying/pasting DSL from Trac to Eclipse 4 0 -
saving DSL in Eclipse as EMF 6 0 -
loading EMF in Eclipse as GMF diagram 3 0 -
screenshot from GMF to an image 1 0 -
uploading an image to Trac 10 10.6 K submitting the Miki page 10 380
inserting link to attachment in Trac 10 346 -

Updating starting Eclipse instance 20 0 -
editing DSL using Trac 10 350 editing DSL using Miki 10 350
copying/pasting DSL from Trac to Eclipse 4 0 -
saving DSL in Eclipse as EMF 6 0 -
loading EMF in Eclipse as GMF diagram 3 0 -
screenshot from GMF to an image 1 0 -
uploading an image to Trac 10 10.6 K submitting the Miki page 10 380

Deleting deleting Trac page 1 380 delete Miki page 1 380
deleting Trac attachments 1 0 -
deleting Eclipse model files 3 0 -
refreshing the Eclipse resource nativator 1 0 -

cases happen in formal requirements modeling, here we only
position that Miki > (Trac + Eclipse) as long as formal re-
quirements need to be collaboratively edited. Further study
is required to tell whether Web-based interaction limits the
ability to edit the diagrams directly rather than having to
edit the textual domain-specific languages.

It is remained to be experienced how Miki would help users
engaging in the early stage of modeling. We plan to inves-
tigate the cognitive dimensions [4] when evaluating Miki’s
effectiveness in shortening the conceptual distances between
users. We intend to conduct an empirical studies to evalu-
ate the benefits with respect to supporting flexible modeling
tools through the Miki system by logging the number of in-
teractions. To support a spectrum of models ranging from
as informal as a wiki page to those that are amenable to
formal reasoning and execution, for example, we intend to
study how to support the direct diagram editing in the Web-
based interfaces. Also we would investigate the opportunity
to integrate other flexible modeling tools with Miki .

Acknowledgement
This work is in part supported by the EU FP7 SecureChange
project (http://securechange.eu).

5. REFERENCES
[1] Jorge Aranda, Steve M. Easterbrook, and Greg

Wilson. Requirements in the wild: How small
companies do it. In RE, pages 39–48. IEEE, 2007.

[2] Moritz Eysholdt and Heiko Behrens. Xtext:
implement your language faster than the quick and
dirty way. In William R. Cook, Siobhán Clarke, and
Martin C. Rinard, editors, SPLASH/OOPSLA
Companion, pages 307–309. ACM, 2010.

[3] Orlena Gotel and Anthony Finkelstein. Extended
requirements traceability: Results of an industrial case
study. In 3rd IEEE International Symposium on

Requirements Engineering (RE’97), January 5-8,
1997, Annapolis, MD, USA, pages 169–, 1997.

[4] T.R.G. Green and M. Petre. Usability Analysis of
Visual Programming Environments: A ’Cognitive
Dimensions’ Framework. Journal of Visual Languages
and Computing, 7(2):131–174, 1996.

[5] Charles B. Haley, Robin C. Laney, Jonathan D.
Moffett, and Bashar Nuseibeh. Security requirements
engineering: A framework for representation and
analysis. IEEE Trans. Software Eng., 34(1):133–153,
2008.

[6] Michael Jackson. Problem Frames: Analysing and
Structuring Software Development Problems.
Addison-Wesley, New York, December?Winter 2001.

[7] Panagiotis Louridas. Using wikis in software
development. IEEE Software, 23(2):88–91, 2006.

[8] Harold Ossher, Rachel K. E. Bellamy, Ian Simmonds,
David Amid, Ateret Anaby-Tavor, Matthew Callery,
Michael Desmond, Jacqueline de Vries, Amit Fisher,
and Sophia Krasikov. Flexible modeling tools for
pre-requirements analysis: conceptual architecture and
research challenges. In William R. Cook, Siobhán
Clarke, and Martin C. Rinard, editors, OOPSLA,
pages 848–864. ACM, 2010.

[9] Bran Selic. The pragmatics of model-driven
development. IEEE Software, 20(5):19–25, 2003.

[10] Eric S. K. Yu. Towards modeling and reasoning
support for early-phase requirements engineering. In
3rd IEEE International Symposium on Requirements
Engineering (RE’97), January 5-8, 1997, Annapolis,
MD, USA, pages 226–235. IEEE Computer Society,
1997.

Figure 2: Input to Miki through the Trac editor page

Figure 3: The architecture of the Miki system

Figure 4: An example Miki page as output

