
Distributed Middleware Enforcement of
Event Flow Security Policy

Matteo Migliavacca1, Ioannis Papagiannis1, David M. Eyers2, Brian Shand3,
Jean Bacon2, and Peter Pietzuch1

1 Imperial College London, {migliava, ip108, prp}@doc.ic.ac.uk
2 University of Cambridge, {firstname.lastname}@cl.cam.ac.uk

3 CBCU/ECRIC, National Health Service, brian.shand@cbcu.nhs.uk

Abstract. Distributed, event-driven applications that process sensitive
user data and involve multiple organisational domains must comply with
complex security requirements. Ideally, developers want to express secu-
rity policy for such applications in data-centric terms, controlling the
flow of information throughout the system. Current middleware does
not support the specification of such end-to-end security policy and lacks
uniform mechanisms for enforcement.
We describe DEFCon-Policy, a middleware that enforces security pol-
icy in multi-domain, event-driven applications. Event flow policy is ex-
pressed in a high-level language that specifies permitted flows between
distributed software components. The middleware limits the interaction
of components based on the policy and the data that components have
observed. It achieves this by labelling data and assigning privileges to
components. We evaluate DEFCon-Policy in a realistic medical sce-
nario and demonstrate that it can provide global security guarantees
without burdening application developers.

Keywords: multi-domain distributed applications, security policy, in-
formation flow control, event-based middleware

1 Introduction

Distributed systems that span multiple organisational or administrative domains
are increasingly common in many areas, yet the associated security challenges
remain largely unsolved. In the public sector from healthcare to public security,
the integration of separate agencies and departments into federations enables the
free flow of information and promises better services for citizens. Global com-
panies are moving away from monolithic organisations towards a more dynamic
business ecosystem that is reflected in the distributed nature of their software
infrastructures. To achieve the necessary degree of integration between software
components in such applications, they are often implemented as event-driven ar-
chitectures [1], in which components, potentially belonging to different domains,
process and exchange data in the form of event messages.

Multi-domain, event-driven applications process and exchange personal, of-
ten sensitive, data belonging to different users. As a result, organisations have

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/10636696?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


to abide by information handling policies, frequently stemming from data pro-
tection laws. Such policies often refer to the flow of sensitive data within the
system. For example, the Department of Health in the UK stipulates that any
access to a patient’s electronic health record must be controlled by strict pro-
tocols.4 An open problem is how to encode and enforce such flow-based security
policies in the context of multi-domain event-driven applications. In particular,
there is an impedance mismatch between high-level policies governing the han-
dling of confidential data and low-level technical enforcement mechanisms.

Enforcing security policies in multi-domain, event-driven applications is chal-
lenging for several reasons: (1) due to the complexity and scale of applications,
there is a risk that software faults may render policy checks ineffective. A single
component that omits an access control check may reveal a confidential patient
record to the outside world; (2) the integration of third-party components and
libraries, often without source code auditing, may mean that necessary policy
checks are omitted altogether. For example, a third-party developer may have
a different interpretation of a security policy and decide incorrectly that re-
vealing a patient record to an insurance provider is acceptable; (3) application
deployments across multiple administrative domains introduce issues of trust
and legal responsibility when enforcing security policies. For example, a hospital
domain may trust an insurance provider with billing-related data but not with a
complete patient health history. All these factors put the managed data at risk—
security violations of organisations’ private data may be disastrous; violations
of third-party user data may make them liable to lawsuits.

Traditional event-based and message-oriented middleware5 leaves the task of
enforcing security policy to application developers. They have to include appro-
priate policy enforcement points (PEPs) in application components that carry
out checks before executing sensitive operations. The middleware may provide
support for the implementation of PEPs in the form of access control models such
as access control lists and capabilities. However, these are low-level mechanisms
that require the configuration of permissions at the granularity of individual
operations. This makes it hard to realise a high-level security policy correctly,
in particular, in distributed, multi-domain environments with different levels of
trust between organisations.

To address the above security concerns, we argue that it should be possi-
ble to express high-level security policy as constraints on permitted data flows
throughout a distributed, event-driven application. It should be the responsibil-
ity of the middleware to enforce such security policy uniformly across domains
by taking a data-centric view—policy enforcement should occur automatically
when data flows cross boundaries between components and domains, instead of
carrying out access control checks over individual operations.

In this paper, we describe DEFCon-Policy, an event-based middleware
that enforces event flow security policy in distributed, multi-domain applica-
tions. Flow policy is expressed in the DEFCon Policy Language (DPL) as high-

4 See http://www.nigb.nhs.uk/guarantee/2009-nhs-crg.pdf
5 For example, IBM’s WebSphere MQ product: http://www.ibm.com/webspheremq



Cancer Registry domainPathology lab domainGP domain

Patient 
processing 

unit

Report 
management 

unit

Cancer 
statistics

unit
cancer registry

report

e1 e3
e2

biopsy
request

pathology report

Fig. 1. Multi-domain healthcare scenario. Events are exchanged between process-
ing units belonging to multiple domains.

level constraints on permitted data flows between components. The middleware
takes a DPL specification and translates it into an equivalent assignment of se-
curity labels, which are associated with data flows, and privileges, which enable
components to send and receive labelled data. To prevent event flows that would
violate the security policy, DEFCon-Policy sandboxes components after they
have received sensitive data controlled by the policy.

This approach makes policy enforcement transparent to application develop-
ers and does not add complexity to the application implementation. We evaluate
DEFCon-Policy with a case study of a healthcare scenario with multiple dis-
tributed domains. Our results show that DEFCon-Policy can realise a com-
plex, realistic security policy and enforce it with an acceptable runtime overhead.

In summary, the paper makes the following main contributions:

– a high-level event flow policy language for expressing constraints on dis-
tributed event flows in multi-domain, event-driven applications;

– the design and implementation of a middleware that can enforce event flow
policy by monitoring event flows between application components and re-
stricting them to ensure policy compliance;

– the evaluation of this approach as applied to security policy enforcement in
the context of a realistic medical scenario.

The rest of the paper is organised as follows. In §2, we explore security
problems in multi-domain, event-driven applications. We present DPL, our event
flow policy language, in §3. In §4, we describe how the DEFCon-Policy middle-
ware enforces event flow policy in a distributed setting by controlling the flow of
events between distributed components. Evaluation results are presented in §5.
The paper finishes with related work (§6) and future work and conclusions (§7).

2 Security in Multi-domain, Event-driven Applications

In this section, we describe the problem of providing security guarantees in
distributed systems that involve multiple organisational domains. We introduce a
sample healthcare workflow and show how event-based middleware can naturally
support it but struggles to cover security challenges. Based on this analysis, we
propose to enforce high-level security policy by the middleware.

Figure 1 gives an example of a data processing workflow in a healthcare sce-
nario with multiple domains. It is representative of the types of workflows found



in the UK National Health Service (NHS). The figure shows domains (dashed re-
gions) and software components within those domains. In this scenario, a patient
is worried about a lump on his arm, and visits his general practitioner (GP) for
a consultation. The GP takes a skin biopsy, which she sends, together with an
electronic biopsy request containing information about the patient, to an NHS
pathology laboratory for testing (edge e1). There, a pathologist analyses the
sample and produces an electronic pathology report. The lab sends this pathol-
ogy report back to the GP (edge e2), and also sends a copy to the regional cancer
registry (edge e3), but only if there is any evidence of cancer.

2.1 Event-based middleware.

A software system that supports the above workflow can be effectively realised as
an event-driven architecture [1]. In this architectural model, data is presented as
structured event messages or events. The software components of an application
are implemented as a set of event processing units that receive, process and emit
events. Events are usually transformed by a sequence of units. Units are hosted
on physical machines and belong to a given organisational or administrative
domain. An event-based middleware dispatches events between units, either
locally or involving network communication between machines.

In the above scenario, the GP, the pathology lab and the cancer registry each
form a domain. There are three types of events flowing between them: the biopsy
request event e1, the pathology report event e2 and the cancer registry report
event e3. These events are exchanged between units belonging to the different
domains: a patient processing unit in the GP domain, a report management unit
in the pathology lab domain and a cancer statistics unit in the cancer registry.

2.2 Information security

The above workflow has events that contain confidential patient data, which
makes information security important. Their propagation between the different
parts of the system is regulated by corresponding data protection legislation.6

It states that the following security guarantees must be maintained at all times:

1. Pathology reports may be sent only to the requesting GP or a cancer registry.
2. Cancer registries may only receive cancer-related pathology reports.
3. Only doctors in the pathology lab may view sensitive patient data.

In general, the security goals in such scenarios are to prevent leakage of data
to unauthorised units or third-parties and to ensure the integrity of data that
units use for input. For example, the pathology report event should not be sent
to any other units outside of the GP and Cancer Registry domains. In addition,
the GP domain should only accept genuine pathology reports as input.

6 http://www.nhs.uk/choiceintheNHS/Rightsandpledges/NHSConstitution/

Documents/COI_NHSConstitutionWEB2010.pdf



In terms of a threat model, information security can be violated in a num-
ber of ways: software bugs in the implementation of units can leak sensitive
events or make units accept bogus input data; malicious developers can include
back-doors in unit implementations to obtain unauthorised access to data; and
units operating in different domains may handle security policy differently due
to inconsistent interpretations at implementation time. All of these problems are
enabled by the fact that security concerns are distributed across the implemen-
tation of many units and are disconnected from the global security requirements.
Any unit in the system can potentially violate information security.

Security policy. To ensure that a multi-domain, event-based application guar-
antees information security, we argue that a policy administrator should first
express security concerns in a high-level policy language. By separating secu-
rity policy from unit implementations, the policy administrator can focus on
the high-level security goals of a multi-domain application, without being over-
whelmed by implementation details.

A key observation when expressing security policy is that the required se-
curity guarantees, as the ones described above, usually pertain to the event
data and, more specifically, focus on the flow of events through the system. An
event flow security policy should therefore control the propagation of event flows
through the system. This is in contrast to fine-grained security policy found
in access control systems that usually governs permitted operations. For exam-
ple, when the biopsy request event is received by the report management unit,
it is trusted to manage the data appropriately. Any operations carried out by
the report management unit internally do not need to be checked, as long as
interactions of the unit with other units are controlled.

Policy enforcement. Current implementations of multi-domain, event-driven
applications leave the overall enforcement of security policy to the developers of
units. A frequent approach is to introduce an access control layer around units,
which carries out ad hoc policy checks at the input and output of events. This is
not only error-prone but also makes it challenging to enforce security properties
that rely on the behaviour of a sequence of event processing units.

In contrast, we want to enforce event flow policy by the middleware itself, in-
dependently of the implementation of processing units. For this, the middleware
must track the flow of events between components in order to provide end-to-end
security guarantees that do not depend on the correct implementation of each
individual unit. This assumes that the middleware implementation is correct
and can be trusted to enforce event flow policy. In practice, this is a reason-
able assumption because only a small part of the middleware implementation is
involved with policy enforcement.

Information flow control. Since event flow policy expresses limitations on the
flows of events throughout the system, the middleware must be able to pre-
vent invalid flows. This idea of information flow control has been successfully
applied in different domains for achieving security guarantees, including operat-
ing systems [2, 3], programming languages [4], web applications [5, 6] and high-
performance event processing [7].



Investment Accounting Risk Assessment

Transaction Card

Reporting Internal
Auditing

Fig. 2. Protection of flow categories within a bank. Flow categories define
boundaries around data and specify which units can pass data over those bound-
aries. Transaction, as an input unit, cannot send data to the investment flow, while
Internal, an output unit, can extract data from the flow.

In previous work, we proposed a Decentralised Event Flow Control (DEFC)
model [7] for controlling the flow of events in event-driven applications. DEFC
associates events with labels, that “contaminate” units that receive them: data
output by a contaminated unit must include the labels of the events that contam-
inated it. As detailed in §4.2, this mechanism is key for implementing mandatory
tracking of security properties for data processed in the system. Units may by-
pass constraints imposed by labels associated with events only when they possess
privileges over them. As we show in §4, the DEFC model provides an appro-
priate low-level enforcement mechanism for event flow policy. However, it must
be extended to support multiple domains that may enforce policies differently.

3 Event Flow Policy

In this section, we introduce the DEFCon Policy Language (DPL), our language
for event flow policy specification. Based on the previous analysis of security in
multi-domain, event-based applications, the design of DPL aims to satisfy the
following set of requirements:

– Security policies should take a data-centric view, providing end-to-end guar-
antees for confidentiality and integrity of event flows in the system.

– Security policies should be independent of the functional implementation of
processing units and be supported across legacy processing units.

– Security policies should be separate from the details of the enforcement mech-
anism at the middleware level.

– Security policies should be enforceable efficiently, without resulting in an
unacceptable degradation of event processing performance.

We describe DPL with reference to a financial scenario, as illustrated in Fig-
ure 2. Within the processing system of a bank, several functions exist: from in-
vestment activities to accounting on behalf of clients to internal risk assessment.
Flows of information are exchanged within each function and among different
functions. We consider the case of a bank that wants to improve the security of
the software component that processes customer account information. The goal
is to ensure that account information cannot be corrupted or leaked by software
faults or malicious behaviour of components.



The events in this scenario can be divided into event flow categories. An event
flow category, such as accounting flow, is used to identify events with distinct
security requirements, for example, by pertaining to data containing customers’
account details. Alternatively, a flow category could group all data belonging to
a single user.

3.1 Event flow constraints

Our event flow policy provides security guarantees through the definition of event
flow constraints on flow categories. We focus on two ways that policy specifi-
cation can distinguish flows of information by applying flow constraints and we
name them vertical and horizontal flow separation. Vertical separation relates
to flow constraints that should hold across the end-to-end processing of events,
from input to output. Horizontal separation is used to isolate the processing at
one stage from the processing being done in another, and is typically used to
achieve security guarantees related to functional transformations such as data
cleaning, auditing and anonymisation.

In DPL, event flows constraints have the following syntax:

flow constraint ::= 〈flow name〉 ':' '{' flow part (',' flow part)∗ '}' '.'

flow part ::= ['->'] 〈processing context〉 ['->']

As an example, the following DPL specification encodes the flow constraints
in the above banking scenario:

accounting_flow: {

-> transaction, -> card,

auditing,

reporting ->, internal -> }.

All flow constraints must name an event flow category (i.e. accounting flow

above), and state whether the flow parts (i.e. card, transaction, etc.) can
receive or produce events within the flow. Flow parts indicate the processing
context, which can be a unit that sees and alters the event flow.7 The inclusion
of a unit as a flow part, without any further annotation, means that the unit is
sandboxed within the context of the specified event flow. In other words, such
units are isolated so that they can only input and output events from and to
other units within that event flow.

Parts of event flows contain annotations to indicate that they are able to
cause events to flow in or out of the event flow. Input units, preceded by a ->

prefix, such as transaction and card are constrained to output events only
within the flow, but can receive events from the outside of the flow. Units with
a -> suffix, such as reporting can, in addition to sending events into the flow,
take events from the flow and let them leave the protected environment created
by the flow constraint. Units can also both input and output events to and from

7 To simplify discussion, we assume for now that a processing context is a single unit;
we relax this assumption in §3.2, when we address the general case.



Transaction Card

Reporting Internal
Auditing

(a) (b)

Transaction Card

Reporting Internal

Auditing

(c) (d)

Fig. 3. Vertical and horizontal separation. In 3(a), two constraints are defined to
separate the data of the transaction from the details of the credit card; flows permitted
by both constraints are shown in 3(b). In 3(c), horizontal separation is used to force
events to pass through an Auditing unit as shown in 3(d).

a flow. Note that input and output units have a certain degree of freedom in
their actions: input units can choose to receive input events from “inside” the
flow, “outside” the flow or both; similarly output units can specify where to send
new produced events with respect to the flow constraint.

Specification of flow constraints protects both the confidentiality and the
integrity of event flows. For example, a policy administrator can ensure that a
flow prevents units written by third parties from tampering with accounting data
(integrity), or even receiving it in the first place (confidentiality). A sand-boxed
unit cannot leak events, or allow unauthorised modifications. As a consequence,
the amount of code to be trusted is limited for integrity to the units that are
flow inputs and for confidentiality to the units that are flow outputs.

Vertical flow separation. Flow categories isolate and control the diffusion of
events with different security requirements. For example, the accounting data
above may contain credit card information that should be prevented from reach-
ing the reporting unit. In DPL, this can be expressed by defining two constraints:

transaction_flow:

{ -> transaction,

auditing,

reporting ->, internal -> }.

card_flow:

{ -> card,

auditing,

internal -> }.

The personal transaction flow and the credit card flow intersect as part of the
auditing and internal units. When two flows intersect, we have some events
that are part of only the first flow, some events that are only part of the second
flow and some events that are part of both flows. A unit that is present in both
flows (e.g. the auditing unit in our example) can only receive events that are
accepted in both flows by their respective flow constraints. This means that
events in the intersection of the two flows can be created only by units that act
as inputs for both flows, or units in one flow that are also inputs for the other
flow. As this never happens for personal and card flows, the two units in the
intersection are effectively isolated from input events. This can be illustrated



using the possible interactions between units shown in 3(b). DPL specifications
can be checked for such inconsistencies by the middleware, alerting the policy
administrator to such problems.

There are two ways of fixing the above issue. The first is to restructure
the system to split a unit into two units e.g. in the auditing case, one unit to
monitor for suspicious card numbers, the other for suspicious transactions above
a given threshold. An alternative solution is to add auditing and internal

as input units to card flow and transaction flow. This is acceptable as card
data entering from the card unit would still be constrained to flow only to
the internal unit. The weakening of the flow constraints would simply allow
auditing and internal to receive additional events as input.

Horizontal flow separation. So far, we have explored the case, in which flows
are defined to protect data of a given security category from other categories
(vertical separation). There is, however, another use for flow constraints: to con-
strain the processing within a specific flow (horizontal separation). For example,
in our accounting flow, the policy administrator may want to ensure that all
transactions and card usage are audited. We can enforce this by separating the
auditing flow horizontally into two subflows:

unaudited_flow: {

-> transaction, -> card,

auditing -> }.

audited_flow: {

-> auditing,

reporting ->, internal -> }.

The two flows intersect each other again (see Figure 3(c)): the auditing unit is
common to both event flows. However, the intersection does not cause problems
for these two flows (see Figure 3(d)). The case when outputs of one flow are
inputs for the other is actually beneficial: auditing is an output of the “top
stage” of Figure 3(c), it can thus only receive events from the top stage. In
general, it could output without constraint, except that being an input to the
bottom stage means that it can only present its events to the bottom event flow.
Thus, a protected data transfer is forced from one flow category to the next.

Parameterisation. Some policies require separation vertically of many flow
categories with the same structure, e.g. to protect data individually by client
or patient. To support such constraints, DPL allows parameterisation of flow
constraints, supporting the inclusion of parameters that appear both in flow
categories and in processing units. For example, the above transaction flow

can be parameterised by client to prevent transactions from one client to affect
a report for another client:

transaction_flow[client]: {

-> transaction[client],

auditing[client],

reporting[client] ->, internal[client] -> }.

3.2 Abstracting processing context

So far, we illustrated the use of DPL in small-scale contexts. We assumed that
policy administrators had global knowledge of all processing units that partici-
pate in event flows. In such scenarios, it is possible to link policy fragments in the



form of flow constraints directly to the units that are constrained by these frag-
ments. However, such an approach is not feasible in larger deployments where
the policy spans multiple domains and no domain has control over the details
of event processing in other domains. For example in our accounting scenario,
including units from a third party would tie in the policy with the units’ design:
changes to the design would require changes to the event flow specification.

To apply event flow control in a large distributed setting, it is therefore nec-
essary to abstract the relationship between flow policies and units. We achieve
this by introducing hierarchical names that correspond to event processing con-
texts. The hierarchical nature of processing contexts facilitates support for multi-
domain use of event flow policy: we can map the organisational structure of
domains to the hierarchical structure of processing contexts. Also, by using a
federated naming service analogous to the domain name system (DNS), the con-
trol over subcontexts can be delegated to the domains themselves.

Processing context names provide a common, consistent naming structure to
correlate processing units and policies belonging to different organisations. Flow
constraints can refer to processing context names, which then map to actual
event processing units. This relaxes the previous assumption in §3.1 that each
unit maps to exactly one processing context. When a flow constraint states a
processing context, the constraint applies to all units that are directly part of
the context and to all units that are part of any sub-contexts.

We illustrate processing contexts with two examples. As the first example,
we refine the flows that are internal to the previously introduced reporting

context from Figure 2 by specifying the following flow constraint:

anon_reporting_flow: {

-> reporting.anonymiser,

reporting.stats -> }.

This flow names two sub-contexts of reporting: an anonymiser and stats.
The stats context is reachable only through the anonymiser. All units assigned
to reporting.stats can only receive data from reporting.anonymiser, while
units in anonymiser or directly in reporting are still constrained by any flow
constraint mentioning the reporting context. As a multi-domain example, we
can consider the following version of the accounting flow:

policy uk.co.ebank

accounting_flow: {

-> transaction, -> .uk.co.curr_quotes.ebank,

local_processing,

internal ->, .uk.gov.soca.auditing.ebank -> }.

In this policy, processing contexts not starting with a dot are treated as relative
to the domain specified in the policy header, while fully-qualified names can
refer to arbitrary contexts. This example has an external provider of quotes for
foreign currencies and the UK Serious Organised Crime Agency (SOCA) as an
output context. The two organisations with control over these processing context
names define processing units operating in these domains, and authorise foreign
organisation (ebank in this case) to define policies relating to these contexts.



Engine 1

Privileged components

Engine 2

Policy
manager

Event 
communicator

Policy
compiler

Event 
dispatcher

Inter-engine
communication

Inter-unit event
communication

Processing
UnitsProcessing

UnitsProcessing
Units

Label management

Policy specifications

Policy
manager

Event 
communicator

Policy
compiler

Event 
dispatcher

Inter-unit event
communication

Processing
UnitsProcessing

UnitsProcessing
Units

Fig. 4. DEFCon-Policy architecture. Multiple engines house processing units that
communicate using message passing while information flow is tracked using labels.

4 Distributed Event Flow Middleware

Given a set of policies described in DPL, we enforce them using the DEFCon-
Policy middleware. It implements distributed DPL policies by translating them
into local communication constraints on processing contexts and enforces them
as units execute. The architecture of the DEFCon-Policy middleware is shown
in Figure 4 and consists of the following parts:

Engines. Engines are responsible for policy enforcement in one or more pro-
cessing contexts. Each engine hosts processing units and isolates them from
each other to be able to sandbox units. Engines also control communication
channels to and from other engines and outside systems. Engines manage
the internal flow of events using the DEFC security model (cf. §4.2).

Event dispatcher. The event dispatcher supports asynchronous communica-
tion between units in the form of publish/subscribe communication. Pub-
lish/subscribe allows units to express their interest in events that match a
subscription filter. Events are dispatched in compliance with security labels.

Policy manager. As part of each engine, a policy manager is responsible for lo-
cally checking and authorising DPL policies constraining processing contexts
local to that engine. In a small-scale deployment, policies can be checked and
deployed manually; in more complex deployments, the policy managers of
different engines coordinate to set-up policies (cf. §4.1).

Policy compiler. The policy compiler translates DPL policies into security
labels and privileges in the DEFC model used for enforcement (cf. §4.1).

Event communicator. In each engine, the event communicator is responsible
for securely propagating protected events between engines. It guarantees that
events are labelled correctly in each engine trusted by the policy when they
are exported and imported over the network (cf. §4.2).



4.1 Distributed policy management

To support large multi-domain deployments, DEFCon-Policy needs to handle
many processing contexts deployed in many engines. In such a scenario, policy
set-up and management needs support from the middleware. To set up a policy,
before enforcement can begin, DEFCon-Policy performs a series of steps:

1. Context to engine resolution. After a new DPL policy has been sub-
mitted, the DEFCon-Policy middleware first resolves engines responsible for
processing contexts mentioned in the policy, thus locating the deployed units
to constrain. The resolution from processing contexts to engines is performed
through a distributed directory system. Such a directory service can be feder-
ated so that each organisation owns a part of the namespace and can delegate
subparts to other organisations.

2. Engine trust verification. Engines have to verify that remote engines in-
volved in a policy can be trusted to enforce event flow constraints defined in the
policy. This is important because remote engines may belong to independent ad-
ministrative domains. For example uk.co.ebank.transactions from §3.2 might
map to a local engine defcon.ebank.co.uk, while uk.co.curr quotes.ebank

might map to engine defcon.curr quotes.co.uk externally hosted.
In the most general case, each domain, such as ebank, can specify the set of

DEFCon-Policy engines that it trusts for enforcement of its policies. These
can be specified per organisation, per policy or per flow. We assume that units
are deployed on engines with sufficient trust, such as the local engine, to support
their execution. Referring to processing contexts by a fully-qualified name is an
assertion of trust in the remote policy enforcement of that domain.

3. Policy deployment and authorisation. Once engines are verified, the pol-
icy is deployed on all relevant engines. The policy managers on each engine check
if the deployed policy is authorised with respect to the contexts involved. Such
authorisation may be implemented by using PKI infrastructure8 for example.
Digitally signed policies, and information about the signing certificates, can be
integrated with the directory service exploited in step 1.

4. Policy checking. Before a policy is enforced, DEFCon-Policy checks that
the new policy is not inconsistent (cf. vertical separation example in §3). An
inconsistent policy may violate liveness properties by leading to units that are
unable to receive or send any events because of policy constraints.

To check the policy, the policy manager recursively retrieves policies related
to the processing contexts specified in the new policy. It then performs a graph
traversal to check if, for all units, there exists at least one event flow path from
the external world to their input (reachability) and at least one path from their
output to the external world (observability).

This policy checking algorithm can be formalised as follows. Let P be the
set of all possible processing contexts. The goal of the algorithm is to check the
compatibility of a set of flow constraints F where F ⊆ 2P × 2P × 2P . We can

8 SPKI would meet our needs: http://www.ietf.org/rfc/rfc2693.txt



Event in transit

confidentiality tagsname data integrity tags

DEFC labeldata set by units

DEFC check

Fig. 5. An event with a DEFC label. DEFC labels are not controlled by units, but
are used to enforce event flows.

first compute whether two units can send an event to each other according to F :

canSendTo(x, y)⇔ ∀(Fin, Fsand, Fout) ∈ F : Fall = Fin ∪ Fsand ∪ Fout(
x ∈ (Fin ∪ Fsand)⇒ y ∈ (Fsand ∪ Fout)

)
∧((

x ∈ Fout ∨ x /∈ Fall

)
⇒

(
y ∈ Fin ∨ y /∈ Fall

))
and based on that, infer reachability via multiple hops:

canReach(x, y)⇔ ∃n > 0,∀i ∈ [1, . . . , 2n], zi ∈ P
∧ (z1 = x ∧ z2n = y) ∧ canSendTo(zi, zi+1)

Then we consider a unit that is external to all flow constraints of F , i.e.
operates in an unconstrained context, modelling the external world φ. Given
φ ∈ P : ∀(Fin, Fsand, Fout) ∈ F, φ /∈ Fin ∪ Fsand ∪ Fout, the following definitions
hold:

isObservable(x)⇔ canReach(x, φ)
isReachable(x)⇔ canReach(φ, x)

The check succeeds if and only if, given F ,

∀x ∈ P : isObservable(x) ∧ isReachable(x)

at which point the policy is ready for enforcement.

4.2 Enforcement of event flow constraints

After policies have been distributed to engines, the DEFCon-Policy middle-
ware sets up runtime enforcement within an engine and between engines.

DEFC model. Event flow constraints specified in DPL are enforced at runtime
according to the Decentralised Event Flow Control (DEFC) model [7]. In this
model, as shown in Figure 5, events are structured messages that consist of (1) a
named data part that units can manipulate and (2) a DEFC label. The data part
contains the payload of the event whereas the DEFC label restricts its flow.9

A DEFC label (S, I) is composed of a confidentiality label (S) and an integrity
label (I). Labels are sets of tags, each representing a concern over confidentiality
or integrity of the event. A tag is implemented as a unique bit sequence.

9 We ignore multiple data parts here; see [7] for more detail on the DEFC model.



Processing units are also assigned a label Lp that represents the confidential-
ity and integrity of information contained in their state. Units can create events
or process events that they receive, provided that their label can flow to the
labels of the events. Intuitively, a unit cannot read data that is “more confiden-
tial” than its label, or write data that has “higher integrity” than itself. More
precisely, an event flow is only allowed if the source label Ls and the destination
labels Ld satisfy a partial order can-flow-to relation �:

Ls = (Ss, Is) � Ld = (Sd, Id) ⇐⇒ Ss ⊆ Sd ∧ Is ⊇ Id.

Units possess privileges that allow them to change labels. Adding a tag t to
a label requires the t+ privilege, which for integrity is called an “endorsement
privilege”—it endorses the unit’s state, allowing it to produce higher integrity
data. Removing t from a confidentiality label requires the t− privilege, called a
“declassification privilege”—it declassifies the unit’s state allowing it to produce
unclassified data. Privileges held by units also determine if a unit can communi-
cate externally. Only a unit that holds endorsement privileges t+ for all tags in
I and declassification privileges t− for all tags in S can freely exchange events
with the outside world.

DEFC also controls the delegation of privileges between units. Only if a unit
possess the privilege-granting privileges t+auth and t−auth, it is permitted to delegate
its endorsement and declassification privileges t+ and t− to other units.

Policy translation to DEFC. The DEFC model is used to enforce event
flow constraints specified in DPL policy specifications. Each flow constraint f is
associated with a tag pair (cf , if ) to protect flow confidentiality and integrity.
Tags and privileges are assigned to units in the following way:

(1) Sandboxed and output units have if in their integrity label, constraining
them to receive only events that also contain if . (2) Sandboxed and input units
also have cf in their confidentiality label, thus being constrained to have their
output contain cf . (3) Input units are given i+f and therefore can produce events
with if , even if they do not have if in their label. This means that they can re-
ceive events form “outside of the flow”. (4) Output units are given c−f to produce
data without cf in their label, even if their confidentiality label contains cf to
be able to receive data from the flow. When a unit is mentioned in multiple flow
constraints, its label is the conjunction of all listed constraints.

In the multi-domain example from §3.2, the policy manager on the engine
defcon.ebank.co.uk, responsible for the transactions, local processing and
internal subdomains of uk.co.ebank, would create i, c tags to represent the
flow uk.co.ebank.account flow. The manager would then instantiate the pro-
cessing unit parts of those contexts with a label L = ({c}, {i}), it would also
bestow i+ in transactions, and c− in internal, keeping i+auth and c−auth for
itself. These privileges can be used by the policy manager in case of a policy
change that would require a reconfiguration of privileges.

Inter-engine communication. Tags and privileges that are allocated by policy
managers in engines have local meaning. Engines use these to restrict communi-
cation between units in the local engine. However, units that are able to process



data of a given flow should be able to exchange events even if they are located
on different engines. This requires the exchange of events between two engines
over the network. It cannot be achieved by just giving units endorsement or
declassification privileges because this would enable them to communicate with
units outside of the flow, without event flow control.

To address this problem, DEFCon-Policy provides a trusted proxy unit,
called an event communicator. The event communicator is delegated endorse-
ment and declassification privileges for a given event flow and can then transfer
events to the event communicator in another engine. As part of this process,
the tags associated with events are translated at the receiver’s engine by the
event communicator to equivalent tags for local enforcement. This mapping be-
tween tags on different engines is set up on demand, on the basis of the policy
specifications shared between the engines during policy deployment (§4.1).

We illustrate inter-engine communication in the context of the example above.
The policy manager on the engine defcon.curr quotes.co.uk, which is re-
sponsible for the uk.co.curr quotes.ebank context, can allocate tags i, c to
represent the uk.co.ebank.account flow flow. It initialises units in the con-
text to L = ({c}, {i}), granting the i+ privilege to them. The units from the
uk.co.curr quotes.ebank context cannot communicate directly with units in
uk.co.ebank.local processing, which are sandboxed in the accounting flow.

Each policy manager instantiates an event communicator, granting it the
i+ and c− privileges. When a unit in the uk.co.curr quotes.ebank context
sends an event to uk.co.ebank.local processing, the event is received by
the communicator, which exports it from the accounting flow by exercising its
declassification privilege. The event is then transmitted securely, for example,
using an encrypted transport-level connection, to the other event communicator.
The second event communicator possesses the i+ privilege, which enables it to
insert the received event in the accounting flow in the other engine.

5 Evaluation

We evaluate the effectiveness of DPL and DEFCon-Policy with respect to
specifying and enforcing security policy in a multi-domain, event-driven appli-
cation. We focus on the ease-of-use from a software developer’s standpoint and
also experimentally evaluate the performance impact of the middleware.

5.1 Healthcare case study

In our case study, we examined an NHS policy involving GPs, Pathology Labora-
tories, a Primary Care Trust (PCT), the UK Office of National Statistics (ONS)
and a Cancer Registry. Figure 6 shows an extract of the policy that enforces the
guarantees introduced in §2.

An overarching NHS policy (lines 1–3) specifies a high-level constraint that
sensitive data are controlled and partitioned by GPs. Partitioning is enforced by
the use of a constraint parametrised by gp. Data processing in the laboratory is



1 policy uk.nhs

2 sensitive[gp]: { -> GP[gp].sensitive ->, -> lab.doc[gp] ->,

3 lab.sensitive[gp], cancer_registry.sensitive -> }. {. . .}
4

5 policy uk.nhs.GP[gp]

6 patient_data_flow: { -> sensitive.patient_data,

7 sensitive.patient_data.anonymiser ->,

8 sensitive.pathology.patient_data ->,

9 -> sensitive.pathology.incoming_reports }.
10 anonymised_data: { -> sensitive.patient_data.anonymiser,

11 statistics.anonymised_data -> ,

12 performance.anonymised_data -> }.
13 path_request: { -> sensitive.pathology.test_requests,

14 -> sensitive.pathology.patient_data,

15 .uk.nhs.lab.doc[gp].pathology.request ->,

16 .uk.nhs.lab.sensitive[gp].pathology.patient_data -> }. {. . .}
17

18 policy uk.nhs.lab

19 path_report[gp]: { -> doc[gp].pathology.report,

20 -> sensitive[gp].pathology.patient_data,

21 sensitive[gp].pathology.cancer_registry_reporting ->,

22 .uk.nhs.GP[gp].sensitive.pathology.incoming_reports -> }.
23 tumour_report: { -> sensitive[gp].pathology.cancer_registry_reporting,

24 .uk.nhs.cancer_registry.sensitive.pathology.incoming -> }. {. . .}

Fig. 6. Extract of the healthcare policy scenario in DPL. Constraints not related
to managemet of sensitive medical data are omitted.

also partitioned by GP and only doctors within the lab can see and contribute
to confidential information (lines 2–3). Finally, Cancer Registries can receive
sensitive information for computing statistics about tumours (line 3).

GPs specify their own local policy (lines 5–16) to refine and extend the
global policy. In this example, all GPs have the same policy: patient data can be
transformed by an anonymiser into anonymised data (line 7), which in turn can
be used for computing statistics by the ONS and measuring performance by the
PCT (lines 10–12). Alternatively, patient data can be used to generate pathology
requests that are to be sent to a lab (lines 8 and 13–16), while reports received
from the lab can be combined with patient data (line 9). The lab pathology
reports can either be sent back to the same GP (line 22) or included in tumour
reports (lines 23–24) by specific reporting units (line 21).

Policy enforcement in DEFC. After the policy is specified in DPL, it is compiled
into tags that are used for DEFC enforcement. We now show how the resulting
tag assignment enforces the guarantees presented in §2. Each flow constraint is
enforced by a tag pair, which we represent symbolically as (ix, cx) where x is the
line at which the constraint is defined in Figure 6. Pathology reports are produced
within the lab.doc[gp].pathology.report context, specific to each GP, that is
tainted by cgp19. The declassification privilege for this tag, cgp+19 , is held by the cor-



responding GP[gp].sensitive.pathology.incoming report context and not by any
other context under a different GP. The only other context with declassification
privilege for the report tag is lab.sensitive[gp].pathology.cancer registry re-

porting. It is, however, tainted by tag c23, which can be removed only by
cancer registry.pathology.incoming. This completes the enforcement of the first
guarantee protecting sensitive pathology reports.

As the cancer registry.pathology.incoming context is tainted by i23, lab.sen-
sitive[gp].pathology.cancer registry reporting, holding the i+23 privilege, is
the only context that can send data to it. Furthermore, as units in this con-
text drop reports not classified as cancerous, the second guarantee on Cancer
Registry input is enforced.

To enforce the third guarantee, the GP[gp].sensitive.patient data context
is protected by cgp2 and cgp6 . Only units under lab.doc[gp].pathology.request

can reveal sensitive data to authenticated doctors within the lab because, as a
sub-context of GP[gp], they have the cgp−2 privilege. While these units do not
hold privileges for cgp6 , units in GP[gp].sensitive.pathology.patient data can
exchange cgp6 with cgp13 for which units in lab.doc[gp].pathology.request have
the cgp−13 privilege.

The policy fragment consists of 24 lines. It generates 10n + 2 tags and dis-
tributes 37n + 1 privileges where n is the total number of GPs in the system.
Assuming that one unit is instantiated in every context, at least 14n + 2 units
must be initialised with correct taints. To provide this initial set-up manually, a
programmer would have to call the low level DEFC API at least 24n+ 4 times.
Instead, these calls, the creation of tags and the distribution of privileges are
automatically carried out by DEFCon-Policy.

5.2 Performance overhead

In this section, we present an experimental evaluation of the performance impact
of enforcing event flow policy using DEFCon-Policy. We measure overhead as
a micro-benchmark in terms of (1) the end-to-end event propagation latency
between a set of units and (2) the throughput of event processing. For these
experiments, we deploy the following simple security policy:

policy secure_Policy

sensitive_data: { -> context_a ->, context_b }

This policy specifies that only units in context_a can cause events to flow in
or out of the sensitive_data flow. Units in context_b can perceive and process
such events without the ability to disclose them. A single unit A and a single
unit B are instantiated in each context, respectively. We compare processing
latency and throughput while varying the following parameters:

1. Number of engines. The units/contexts are deployed in a single engine or
in two different engines.

2. Network encryption. When network communication is involved, Trans-
port Layer Security (TLS) can be used to encrypt data.



Configuration Throughput Penalty Latency Penalty
Engines TLS Policy (Events/sec) (ms)

1 n/a 7 99,723 – 0.028 –
1 n/a 3 82,334 17.4% 0.030 7.1%

2 7 7 62,215 – 0.268 –
2 3 7 42,344 31.9% 0.283 5.6%
2 3 3 37,500 39.7% 0.294 9.7%

Table 1. Performance overhead of DEFCon-Policy middleware.

3. Policy enforcement. The engines enforce that events are propagated ac-
cording to secure_policy.

Our experiments are conducted on two Intel Core 2 Duo E6850 3 GHz ma-
chines with a maximum of 1 GiB of heap memory allocated per engine. We use
Sun’s unmodified JVM 1.6.0.06 on Ubuntu 8.04. The average network round
trip-time between the machines is 0.18 ms. Each event contains a single integer.

Table 1 shows the average throughput and the 95th percentile of latency
for events sent from unit A to unit B and back to A. As this experiment does
not involve actual event processing, it mainly stresses the event dispatching
mechanism. In the single-engine configurations, DEFCon-Policy enforcement
introduces an overhead of 17.4% for throughput and 7.1% for latency. This is
the result of storing, propagating and checking tags at runtime.

The overall lower performance achieved in the two-engine configurations is a
consequence of the work carried out by the event communicators. Throughput is
reduced by 31.9% due to network encryption. On top of this, DEFCon-Policy
enforcement introduces a further relative overhead of only 11.4% for throughput
and 3.9% for latency. We believe that the overhead of policy enforcement becomes
even more marginal for realistic applications with more costly processing.10

6 Related Work

Middleware. Messaging middleware, and event-based middleware in particular,
such as Sun JMS or IBM WebSphere support efficient exchange of information
in large-scale distributed systems. Security in these systems usually focuses on
access control at the boundary of the middleware API rather than end-to-end
tracking of information. Any component with access to multiple channels can
transfer information between them. As such each component needs to be trusted
to comply with integrity and confidentiality requirements of messages.

Policy. Most approaches to policy specification focus on actions (i.e. privileges)
rather than data, e.g. access control lists and role-based access control. Higher
level firewall policy languages [8] facilitate the definition of rules for “allow/deny”

10 Note that Sun’s JVM does not fully enforce unit isolation; the overhead imposed to
achieve such isolation was the focus of previous research [7].



actions, but such policies are only enforced locally. To achieve end-to-end secu-
rity, policies need to be attached to data (i.e. “sticky policies” [9]). A survey
and taxonomy of enforcement of sticky policies through distributed systems is
provided in [10]. In contrast, our work is a contribution regarding the use of a
high-level policy language with a view to translation into distributed, low-level
enforcement with security labels.

Information flow control (IFC) originated in the military domain in the set-
ting of Multi-Level Security (MLS) systems, and in that context used a limited
number of centrally-defined security labels. Declassification of information was
dealt with outside of the model. Myers and Liskov [4] extended IFC to decen-
tralised enforcement allowing unprivileged principals to define and share labels
and privilege over those new labels dynamically. More recently OS-level DIFC
proposals [2, 3, 11] protect OS processes and resources by using dynamic labels
that can be created at runtime. DEFC [7] brings tag-based security to event
processing systems, by allowing the labelling of event parts and assigning labels
to processing components.

In the past, decentralised IFC has mainly been applied to processes within a
single machine. An exception is DStar [12], which automates translation between
tags in remote enforcement engines. However, DStar aims to scale to a limited
number of machines, e.g. multi-tiered web applications. In contrast, the focus
of our work are large-scale distributed applications that contain engines under
control of independent administrative domains.

Creating a policy language for decentralised IFC has been explored in As-
bestos [13]. They compute tag configurations from pairwise communication pat-
terns between sets of processes. In contrast, DPL supports policies independently
authored by multiple policy administrators in the context of multi-domain dis-
tributed applications and explicitly addresses policy compatibility checking, pol-
icy authorisation and distributed enforcement.

7 Conclusions

Our research is motivated with reference to use cases in complex, multi-domain
scenarios found in electronic healthcare and financial services. We have presented
DEFCon-Policy, a middleware that achieves end-to-end enforcement of dis-
tributed event flow control based on high-level policy. The benefits of strict,
mandatory access control are coupled with the expressiveness and independence
required by policy specification within multi-domain, distributed systems. We
provide details of DPL, our event flow policy language, and sketch its formal
semantics. We detail the way in which event flow policies are compiled down
to be enforced using a distributed event flow control model. The evaluation
of our prototype demonstrates that in both single node and distributed cases,
an acceptably low overhead is incurred, while benefitting from the end-to-end,
event-based security features.

In future work, we want to explore the interaction of programming languages
and flow-based policy enforcement. By integrating flow constraints with pro-



gramming paradigms, we can make it more natural for programmers to remain
compliant with flow constraints. In addition, we want to determine the potential
for interconnection of our policy and enforcement systems with existing parame-
terised, role-based access control infrastructures. Finally, we will acquire further
experience of using DEFCon-Policy in real-world policy environments. This
will allow us to judge better the proportion of common policy requirements that
are covered by DEFCon-Policy.

Acknowledgements

This work was supported by grants EP/F042469 and EP/F044216 (“SmartFlow:
Extendable Event-Based Middleware”) from the UK Engineering and Physical
Sciences Research Council (EPSRC).

References

1. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley (2002)

2. Efstathopoulos, P., Krohn, M., VanDeBogart, S., et al.: Labels and event processes
in the Asbestos Operating System. In: SOSP ’05, ACM (2005) 17–30

3. Zeldovich, N., Kohler, E., et al.: Making information flow explicit in HiStar. In:
OSDI ’06, Berkeley, CA, USA (2006) 263–278

4. Myers, A., Liskov, B.: Protecting privacy using the decentralized label model. ACM
Transactions on Software Engineering and Methodology 9(4) (2000) 410–442

5. Chong, S., Vikram, K., Myers, A.: SIF: Enforcing confidentiality and integrity in
web applications. In: USENIX Security Symposium, Berkeley, CA (2007) 1–16

6. Papagiannis, I., Migliavacca, M., Eyers, D.M., Shand, B., Bacon, J., Pietzuch, P.:
Enforcing user privacy in web applications using Erlang. In: Web 2.0 Security and
Privacy (W2SP), Oakland, CA, USA, IEEE (2010)

7. Miglivacca, M., Papagiannis, I., Eyers, D., Shand, B., Bacon, J., Pietzuch, P.:
High-performance event processing with information security. In: USENIX Annual
Technical Conference, Boston, MA, USA (2010) 1–15

8. Bandara, A., Kakas, A., Lupu, E., Russo, A.: Using argumentation logic for fire-
wall policy specification and analysis. In: Distributed Systems: Operations and
Management (DSOM), Dublin, Ireland (2006) 185–196

9. Mont, M.C., Pearson, S., Bramhall, P.: Towards accountable management of iden-
tity and privacy: Sticky policies and enforceable tracing services. In: Database and
Expert Systems Applications (DEXA), Washington, DC, USA (2003) 377–382

10. Chadwick, D.W., Lievens, S.F.: Enforcing ”sticky” security policies throughout a
distributed application. In: Middleware Security (MidSec), New York, NY, USA,
ACM (2008) 1–6

11. Krohn, M., Yip, A., Brodsky, M., et al.: Information flow control for standard OS
abstractions. In: SOSP ’07, New York, NY, USA, ACM (2007) 321–334

12. Zeldovich, N., Boyd-Wickizer, S., Mazières, D.: Securing distributed systems with
information flow control. In: NSDI’08, Berkeley, CA, USA (2008) 293–308

13. Efstathopoulos, P., Kohler, E.: Manageable fine-grained information flow. In:
EuroSys European Conference on Computer Systems, ACM (2008) 301–313


