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Abstract. This paper describes an approximate quantifier elimination
procedure for propositional Boolean formulae. The method is based on
computing prime implicants using SAT and successively refining over-
approximations of a given formula. This construction naturally leads to
an anytime algorithm, that is, it can be interrupted at anytime without
compromising soundness. This contrasts with classical monolithic (all or
nothing) approaches based on resolution or model enumeration.

1 Introduction

Model checking and abstract interpretation are sub-disciples of formal methods
that, for many years, have been diametrically opposed. In model checking a
programmer prescribes a so-called model that formally specifies the behaviour
of the system or program. All paths through the program are then exhaustively
checked against this requirement. Either the requirement is discharged or a
counterexample is found that illustrates how the program is faulty. The detailed
nature of the requirements entails that the program is simulated in a fine-grained
way, sometimes down to the level of individual bits. Enumerating all these
combinations is computationally infeasible. Thus, there has been much interest
in representing all the states of a program symbolically, which enables states that
share commonality to be represented without duplicating their commonality.

In abstract interpretation, the key idea is to abstract away from the detailed
nature of states. Then the program checker operates over classes of related states

— collections of states that are equivalent in some sense — rather than individual
states. If the number of classes is small, then all the paths through the program
can be enumerated one-by-one without incurring the problems of state-space
explosion. When carefully constructed, the classes of states can preserve sufficient
information to prove the correctness requirements.

Despite their philosophical differences, the fields of model checking and
abstract interpretation are converging, partly because they draw on similar
computational techniques. A case in point is given by Boolean formulae that
are typically either represented with BDDs [5] or manipulated using SAT [22].
BDDs have been widely applied, both in symbolic model checking [7], and as an
abstract domain for tracking dependences [1]. Although some niche problems
remain difficult for SAT [6], clever ideas and careful engineering have advanced
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DPLL-based SAT solvers [22] to the point they can rapidly decide the satisfiability
of structured problems that involve thousands of variables. Conseqently SAT has
been almost universally adopted within symbolic model checking [9].

1.1 Quantifier elimination and abstract interpretation

Yet SAT remains a comparative novelty in abstract interpretation where it
is more often than not relegated to solving auxiliary problems such as that
of synthesising best transformers [4, 20, 30] rather then being integrated into
the heart of the analysis itself [18]. This is not because there is no interest in
using Boolean functions as an abstract domain [1, 16, 18] but rather because
projection operations, namely existential and universal quantifier elimination, fit
less comfortably with SAT than with BDDs. Eliminating a single variable from
a BDD, either existentially or universally, is worst-case quadratic in size of the
input BDD [5, Sect. 3.3]. By way of contrast, the natural way to existentially
quantify using a SAT solver is to systematically enumerate the models of a
formula using blocking clauses. Even when the blocking clauses only constrain the
variables in the projection space, such methods are inefficient when compared to
BDD-based techniques because of the large number of models that may need to
be enumerated [6]. This would be less of a problem if projection was an infrequent
operation in abstract interpretation; the guiding principle in domain design is
that the commonly arising operations should be fast whereas the speed of the
infrequent operations is less critical. However, in dependency analysis, elimination
is applied whenever a call is encountered. This is because the dependencies at
the call site need to be restricted to those variables that occur as the arguments
of a call so as to propagate dependency information across the body of the
callee. Existential quantification is applied to flow information in the direction
of the control-flow [1] whereas universal quantification is needed to propagate
requirements against the control-flow [13]. The frequency of call handling and
the inefficiency of SAT-based elimination methods have tended to bias abstract
interpretation towards BDDs [1], though new algorithms for elimination would
break this dependency.

1.2 Quantifier elimination by resolution and striking out literals

For formulae presented in CNF, existential and universal quantifiers can alter-
natively be eliminated by resolution and striking out literals [22]. To illustrate,
let f = (∧n1

i=0x∨Ci)∧ (∧n2
j=0¬x∨Dj)∧ (∧nk=0Ek) and consider ∃x : f and ∀x : f

where Ci, Dj and Ek are clauses that involve neither x nor ¬x. A quantifier-free
version of ∃x : f can be obtained by resolving each x ∨ Ci with ¬x ∨Dj to give
∃x : f = (∧n1

i=0 ∧
n2
j=0 Ci ∨Dj) ∧ (∧nk=0Ek), increasing the representation size by

as many as n1n2 − n1 − n2 clauses. By way of contrast, ∀x : f can be found by
removing the x and ¬x literals to give ∀x : f = (∧n1

i=0Ci) ∧ (∧n2
j=0Dj) ∧ (∧nk=0Ek),

reducing the size of the representation.
One might be forgiven for thinking that calculating a quantifier-free version

of ∀y : f is straightforward when f is propositional and y is a vector of variables.
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For such an f , an equisatisfiable CNF formula g can be found [28] by introducing
fresh variables z to give f = ∃z : g [33] . But then ∀y : f amounts to solving
∀y : ∃z : g and the quadratic nature of resolution compromises the tractability
of this approach as the size of z increases.

1.3 Contributions to approximate quantifier elimination

In this paper, we show how upper-approximation can be applied to eliminate
z from ∃z : g where g is presented in CNF. We show how a SAT solver can be
repeatedly called to compute a sequence of CNF formulae h0, h1, . . . that converge
onto ∃z : g from above in the sense that ∃z : g entails hi (each model of ∃z : g is
also a model of hi). Each hi+1 strictly entails hi so the sequence is ultimately
stationary. However, each hi is free from all variables in z, hence this approach
has the attractive property that generation of the sequence h0, h1, . . . , ht can be
stopped prematurely, at any time t, without compromising soundness since each
hi is an upper-approximation of ∃z : g.

This approach leads to a so-called anytime (or interruptible [2, Sect. 2.6])
formulation of projection that compares favourably against resolution and model
enumeration techniques, which lead to all or nothing, monolithic approaches.
Specifically, if g0 = g and gi+1 is obtained from gi by applying resolution to
remove another variable of z, then it is only the final formula g|z| that is free from
z. Moreover, the number of clauses in gi do not necessarily decrease as i increases,
and the size of intermediate gi can be significantly larger than both g and its
projection g|z|. By way of contrast, the size of the hi increases monotonically as
the sequence converges. We also show how to construct a sequence h0, h1, . . . , ht
which rapidly converges onto ∃z : g based on the enumeration of prime implicants,
that is, small conjunctions of literals which entail ∃z : g. As a final contribution,
we show how this scheme can be implemented with incremental SAT [35] and
sorting networks [14, 21].

Our paper makes a specific contribution to a specific problem, yet that
problem appears in various guises in model checking and abstract interpretation.
As already stated, projection arises in dependency analysis which is itself finding
new applications in, for example, information flow analysis [16]. Projection arises
when computing transfer functions [4] and, very recently, in the synthesis of
ranking functions from template constraints for low-level code [10]. The existence
of a ranking function on a path π with a transition rπ(x,x′) amounts to solving
the formula ∃c : ∀x : ∀x′ : rπ(x,x′) → p(c,x) < p(c,x′) where p(c,x) is
a polynomial over the bit-vector x whose coefficients constitute the vector c.
However, if intermediate variables are needed to express rπ(x,x′), the polynomials
p(c,x) and p(c,x′) or the size relation < in CNF, then the quantifiers take the
form ∃c : ∀x : ∀x′ : ∃z where z is the vector of intermediate variables. The
authors proceed by instantiating elements of the c vector to values drawn from the
set {−1, 0, 1}, then testing the formula ¬∃x : ∃x′ : rπ(x,x′)∧¬(p(c,x) < p(c,x′))
for unsatisfiability. The method advocated in this paper suggests a more direct
approach, which avoids enumerating combinations of coefficients, and restricts
the coefficients to a small set of allowable values.
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2 Existential quantification in five steps

The idea behind our approach is to converge onto the set of solutions of a formula
ϕ by adding constraints formed from the prime implicants of ¬ϕ that are derived
using SAT solving. This approach contrasts with existing techniques in that it
is based on successive refinement and thereby provides an anytime approach to
existential quantifier elimination. We build towards the technique in five steps.

2.1 Under-approximation using implicants

We first show how to under-approximate an existentially quantified formula by
deriving an implicant ν of ∃z : ϕ, that is, ν |= ∃z : ϕ. To illustrate, let:

ϕ = (¬x ∨ z) ∧ (y ∨ z) ∧ (¬x ∨ ¬w ∨ ¬z) ∧ (w ∨ ¬z)

Let X = {w, x, y, z} denote the set of variables in ϕ. To project ϕ onto Y1 =
{w, x, y}, i.e. remove all information pertaining to the variables Y2 = X\Y1 = {z},
we introduce fresh sets of variables Y +

1 = {v+ | v ∈ Y1} and Y −1 = {v− | v ∈ Y1}.
Each occurrence of the literal v in ϕ is replaced with v+ if v ∈ Y1 and each
occurrence of ¬v is replaced with v− if v ∈ Y1. The transformed formula is
augmented with a constraint ¬v+ ∨ ¬v− for each v ∈ Y1 so as to prevent v+ and
v− holding simultaneously. Let tY1 denote this transformation, hence:

tY1(ϕ) =
{

(x− ∨ z) ∧ (y+ ∨ z) ∧ (x− ∨ w− ∨ ¬z) ∧ (w+ ∨ ¬z) ∧
(¬w+ ∨ ¬w−) ∧ (¬x+ ∨ ¬x−) ∧ (¬y+ ∨ ¬y−)

Then the formula tY1(ϕ) is defined over the set of variables X ′ = Y +
1 ∪ Y

−
1 ∪ Y2,

and a model of tY1(ϕ) is a map M : X ′ → B such as:

M =
{
w+ 7→ 1, w− 7→ 0, x+ 7→ 0, x− 7→ 1, y+ 7→ 0, y− 7→ 0, z 7→ 1

}
The model M can be equivalently represented by the set {v ∈ X ′ | M(v) = 1},
and henceforth we shall use the map and set representation interchangeably. The
variables ofM∩ (Y +

1 ∪Y
−
1 ) define a cube (a conjunction of literals) that is given

by ν = (
∧
v+∈M∩Y +

1
v) ∧ (

∧
v−∈M∩Y −1

¬v). Therefore ν = (¬x ∧ w). Observe
that ν |= ∃Y2 : ϕ hence ν is a so-called implicant of ∃Y2 : ϕ which constitutes
an under-approximation of ∃Y2 : ϕ. This can be seen since ν is free from any
variables of Y2 and the conjunction ¬ϕ ∧ ν is unsatisfiable. To converge onto
∃Y2 : ϕ from below, we augment tY1(ϕ) with the blocking clause (¬x− ∨ ¬w+)
which suppresses the previously derived solution. The blocking clause ensures that
any cube that is subsequently found does not entail ν. Then tY1(ϕ)∧(¬x−∨¬w+)
is checked for satisfiability, yielding a model:

M′ =
{
w+ 7→ 0, w− 7→ 0, x+ 7→ 0, x− 7→ 1, y+ 7→ 1, y− 7→ 0, z 7→ 0

}
which defines another implicant (¬x ∧ y) of ∃Y2 : ϕ, hence the refined under-
approximation (¬x ∧ y) ∨ (¬x ∧ w). Adding another blocking clause and pass-
ing tY1(ϕ) ∧ (¬x− ∨ ¬w+) ∧ (¬x− ∨ ¬y+) to a SAT solver reveals the for-
mula to be unsatisfiable. Convergence onto ∃Y2 : ϕ has thus been achieved
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and ∃Y2 : ϕ = (¬x ∧ y) ∨ (¬x ∧ w). This can be checked by applying Schröder-
expansion [22, Sect. 9.2.3] to compute ∃Y2 : ϕ = ϕ[z 7→ 0] ∨ ϕ[z 7→ 1] =
((¬x) ∧ (y)) ∨ ((¬x ∨ ¬w) ∧ (w)) = (¬x ∧ y) ∨ (¬x ∧ w).

2.2 Over-approximation using implicants

To derive an over-approximation of ∃Y2 : ϕ, a formula κ is constructed which is
equisatisfiable to ¬ϕ:

κ =


(x ∨ t1) ∧ (¬z ∨ t1) ∧
(¬y ∨ t2) ∧ (¬z ∨ t2) ∧
(x ∨ t3) ∧ (w ∨ t3) ∧ (z ∨ t3) ∧
(¬w ∨ t4) ∧ (z ∨ t4) ∧ (¬t1 ∨ ¬t2 ∨ ¬t3 ∨ ¬t4)

The formula κ is obtained by a standard CNF translation [28] which introduces
fresh variables T = {t1, . . . , t4} such that ¬ϕ ≡ ∃T : κ. The variable ti indi-
cates whether a truth assignment violates the ith clause of ϕ. Applying the
transformation introduced previously then gives:

tY1(κ) =


(x+ ∨ t1) ∧ (¬z ∨ t1) ∧
(y− ∨ t2) ∧ (¬z ∨ t2) ∧
(x+ ∨ t3) ∧ (w+ ∨ t3) ∧ (z ∨ t3) ∧
(w− ∨ t4) ∧ (z ∨ t4) ∧ (¬t1 ∨ ¬t2 ∨ ¬t3 ∨ ¬t4) ∧
(¬w+ ∨ ¬w−) ∧ (¬x+ ∨ ¬x−) ∧ (¬y+ ∨ ¬y−)

To see how tY1(κ) can be applied to find an over-approximation ¬ν of ∃Y2 : ϕ
observe that ν |= ∀Y2 : ∃T : κ iff ¬∀Y2 : ∃T : κ |= ¬ν iff ∃Y2 : ¬∃T : κ |= ¬ν
iff ∃Y2 : ϕ |= ¬ν. Hence to find an over-approximation of ∃Y2 : ϕ it suffices
to find an implicant of ∀Y2 : ∃T : κ. To find such an implicant observe that
∀Y2 : ∃T : κ |= ∃Y2 : ∃T : κ hence every implicant of ∀Y2 : ∃T : κ is also an
implicant of ∃Y2 : ∃T : κ. This suggests a strategy in which the implicants of
∃Y2 : ∃T : κ are filtered to find the implicants of ∀Y2 : ∃T : κ, that is, the
implicants ν |= ∃Y2 : ∃T : κ are filtered by checking ∃Y2 : ϕ |= ¬ν. Moreover, the
check ∃Y2 : ϕ |= ¬ν amounts to deciding whether the conjoined formula ϕ ∧ ν is
unsatisfiable. Thus an unsatisfiability check can be used for filtering. To illustrate,
suppose that a SAT solver produces the following solution to the formula tY1(κ):

M =
{
w+ 7→ 0, w− 7→ 1, x+ 7→ 0, x− 7→ 0, y+ 7→ 0, y− 7→ 0
z 7→ 1, t1 7→ 1, t2 7→ 1, t3 7→ 1, t4 7→ 0

}
The cube ν = (¬w) is an implicant of ∃Y2 : ∃T : κ and therefore it remains to check
whether ∃Y2 : ϕ |= ¬ν. Since ϕ ∧ ν is satisfiable, the cube is discarded. However,
before doing so, the formula tY1(κ) is augmented with ¬w−∨x+∨x−∨y−∨y+ to
avoid the cube being found again. This blocking clause can be interpreted as an
implication w− → (x+∨x−∨ y−∨ y+) which ensures that any cube subsequently
found that entails ν also has more literals than ν. Applying a SAT solver then
yields a model:

M′ =
{
w+ 7→ 0, w− 7→ 0, x+ 7→ 1, x− 7→ 0, y+ 7→ 0, y− 7→ 0
z 7→ 0, t1 7→ 0, t2 7→ 1, t3 7→ 1, t4 7→ 0

}
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and hence ν′ = (x). Since ϕ∧ ν′ is unsatisfiable, we conclude that ∃Y2 : ϕ |= ¬ν′,
hence ¬ν′ constitutes an over-approximation of ∃Y2 : ϕ. The blocking clause ¬x+

is then added to tY1(κ) to prevent any cube which entails ν′ being found. Note
too that this blocking clause differs in structure from the one imposed previously,
and indeed the number of literals in the clause is merely n where n is the number
of literals in the cube. In the previous case, the number of literals in the blocking
clause is 2|Y1| − n. Reapplying a SAT solver yields a further model:

M′′ =
{
w+ 7→ 0, w− 7→ 1, x+ 7→ 0, x− 7→ 0, y+ 7→ 0, y− 7→ 1
z 7→ 1, t1 7→ 1, t2 7→ 1, t3 7→ 1, t4 7→ 0

}
which defines the cube ν′′ = ¬w∧¬y. Since ϕ∧ν′′ is unsatisfiable, it again follows
that ∃Y2 : ϕ |= ¬ν′′, which refines the over-approximation of ∃Y2 : ϕ to the
conjunction (¬ν′) ∧ (¬ν′′). The blocking clause ¬w− ∨ ¬y− is then added to the
augmented formula at which point one final application of the solver indicates that
the conjoined formula is unsatisfiable. Hence convergence onto ∃Y2 : ϕ has been
obtained from above where ∃Y2 : ϕ = ¬ν′ ∧ ¬ν′′ = (¬x) ∧ (w ∨ y). Terminating
the procedure early, before ν′′ is computed, would yield the over-approximation
¬ν′ = ¬x which, though safe, has strictly more models than (¬x) ∧ (w ∨ y).
Thus the method is diametrically opposed to resolution: In the resolution based
scheme, the projection is found in the last step only when all variables have been
eliminated one after the other. In the above SAT based scheme, a clause in the
projection space is obtained in the first step, as in a parallel form of elimination,
which is subsequently refined by adding further clauses.

2.3 Approximation using prime implicants

Thus far we have seen how upper- and lower-approximation can be reduced to
finding an implicant c of a formula f where c is a cube, namely a conjunction of
literals. Suppose c1 |= f and c2 |= f where the cubes c1 and c2 are related by
c1 |= c2. Then ¬f |= ¬c2 |= ¬c1 where ¬c2 and ¬c1 are clauses. Furthermore, if
c2 is shorter than c1, that is, if c2 is constructed from fewer literals than c1, then
¬c2 constitutes a stronger (more descriptive) approximation than ¬c1. Rather
than using any implicant to approximate ¬f , it is better to use a shorter one,
and better still to use one that is said to be prime. The implicant c2 of f is prime
(or irreducible) if there is no shorter implicant c3 of f such that c2 |= c3 |= f . The
best approximations are thus constructed from the shortest prime implicants.

To derive shortest prime implicants, we turn to sorting networks [14, 21].
Examples of sorting networks for 3 and 4 bits are given in Fig. 1. The 3-bit sorter
has 3 input bits on the left and 3 output bits on the right. It also has 3 comparison
operations, indicated with vertical bars, which compare and if necessary swap
bits. A comparator assigns its outgoing upper bit to the maximum of its two
incoming bits and its outgoing lower bit to the minimum. A comparator with
incoming bits i1 and i2 with outgoing bits u and ` can be encoded propositionally
as the formula (u ↔ i1 ∨ i2) ∧ (` ↔ i1 ∧ i2). The value of a sorting network is
that it can be applied to compute the sum of a series of 0/1 values [14] where the

6



Fig. 1. Sorting networks for 3 and 4 bits

sum is represented in a unary fashion. Moreover, by instantiating the output bits
to fixed unary value, a cardinality constraint can be obtained. For example, by
constraining the output bits of the 4-bit sorter to 1100, the cardinality constraint
is derived which ensures that exactly two of the input bits to the sorter are set.
Constraining the output bits to 1110 would ensure that exactly three input bits
are set. Such cardinality constraints can be imposed in conjunction with the
formula tY1(κ) to rule out the discovery of implicants that are not prime.

Let us return to the formula tY1(κ) from Sect. 2.2 where Y1 = {w, x, y}. The
construction proceeds by introducing variables, denoted v± for each v ∈ Y1, which
serve as input to the sorting network. Each v± indicates whether v or ¬v appear
in the implicant, hence the relationship v± ↔ (v+ ∨ v−). A 3-bit network is then
used to constrain the output bits o1, o2, o3 (top-to-bottom) to the unary sum of
the inputs w±, x±, y± (again oriented top-to-bottom). Overall, this construction
yields the following propositional encoding, where h1, h2, h3 are intermediate
variables computed by the comparators:

µ = tY1(κ) ∧ (w± ↔ w+ ∨ w−) ∧ (x± ↔ x+ ∨ x−) ∧ (y± ↔ y+ ∨ y−) ∧
(h1 ↔ w± ∨ x±) ∧ (h2 ↔ w± ∧ x±) ∧ (h3 ↔ h2 ∨ y±) ∧
(o1 ↔ h1 ∨ h3) ∧ (o2 ↔ h1 ∧ h3) ∧ (o3 ↔ h2 ∧ y±)

To enforce the cardinality constraint, we set µk=1 = µ∧ o1 ∧¬o2 ∧¬o3. Invoking
a SAT solver on µk=1 yields candidates ¬w, x and ¬y, but only x is implied
by ∃Y2 : ϕ. Then µk=1 is unsatisfiable, and we derive implicants for µk=2 =
µ ∧ o1 ∧ o2 ∧ ¬o3, which yields the clause w ∨ y that is implied by ∃Y2 : ϕ.
Enumerating implicants by their size may require more SAT instances, but it
ensures that the upper-approximation is always conjoined with a clause that is
as short as possible. Short clauses are likely to remove more models from the
approximation than long ones, thereby encouraging rapid convergence.

2.4 Solution-space reduction using instantiation

In the example in Sect. 2.2, a SAT solver generates several false candidates ν for
implicants, which are then refuted by checking ϕ |= ¬ν. This scheme is based
on the observation that every implicant of ∀Y2 : ∃T : κ is also an implicant of
∃Y2 : ∃T : κ, where in the case of the example Y2 = {z}. However, observe that
∀Y2 : ∃Y : κ |= ∃Y : κz←0 where κz←0 denotes the formula obtained by replacing
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each occurrence of z in κ with the truth value 0 (instantiation). Therefore every
implicant of ∀Y2 : ∃T : κ is also an implicant of ∃T : κz←0. The formula ∃T : κz←0

is not only a simplification of ∃T : κ but ∃T : κz←0 will possess fewer models
and hence fewer implicants than ∃Y2 : ∃T : κ provided κ 6|= ¬z.

Consider again the formula tY1(κ) given in Sect. 2.2 and consider tY1(κz←0) =
tY1(κ)z←0. Recall that originally the candidate implicant ν = (¬w) was derived
which was then refuted because ϕ 6|= ¬ν. This candidate is suppressed by the
instantiation and is not a solution of tY1(κ)z←0. It turns out that 13 SAT
instances are required to converge onto ∃Y2 : ϕ whereas operating on tY1(κ)z←0

and tY1(κ)z←1 only requires 9 and 10 SAT instances, respectively. Interestingly,
the formulae derived for these cases are equivalent but different. For tY1(κ)z←0

we obtain the limit (¬x)∧ (w∨ y) as expected, but operating on tY1(κ)z←1 yields
(w ∨ y) ∧ (w ∨ ¬x) ∧ (¬w ∨ ¬x) which is equivalent to (¬x) ∧ (w ∨ y).

2.5 Solution-space reduction using multiple instantiations

Instantiating the variables of Y2 with truth values can decrease the number
of spurious implications that are generated. This suggests instantiating κ in
several different ways and then combining the instantiations so as to limit the
search space a priori. Thus the basic idea is to derive multiple instantiations, say,
tY1(κ)z←0 and tY1(κ)z←1 and solve the conjunction µ = tY1(κ)z←0 ∧ tY1(κ)z←1.
In actuality, care is needed to avoid accident coupling between the T variables in
the different instantiations. This can be avoided by introducing fresh, disjoint sets
of variables T1 = {ti,1 | ti ∈ T} and T2 = {ti,2 | ti ∈ T} by applying renamings
ρ1(ti) = t1,i and ρ2(ti) = t2,i to κz←0 and κz←1, respectively. By applying these
renamings, combining and then applying simplification we obtain:

µ =

 (x+ ∨ t1,1) ∧ (y− ∨ t1,2) ∧ (¬t1,1 ∨ ¬t1,2) ∧
(x+ ∨ t2,3) ∧ (w+ ∨ t2,3) ∧ (w− ∨ t2,4) ∧ (¬t2,3 ∨ ¬t2,4) ∧
(¬w+ ∨ ¬w−) ∧ (¬x+ ∨ ¬x−) ∧ (¬y+ ∨ ¬y−)

When solving for µ, the sequence of upper-approximations converges onto the
limit (w∨y)∧ (w∨¬x)∧ (¬w∨¬x) without encountering any spurious implicants.
Observe too that µ consists of 10 clauses whereas the tY1(κ) formula given in
Sect. 2.2 has 13 clauses. This is because instantiating the variables of Y2 often
confers significant opportunities for simplification, offering scope for applying
multiple instantiation without generating a formula that is unwieldy.

3 Correctness of the Transformation

The techniques presented thus far for computing under- and over-approximations
of existentially quantified formula all rest on finding an implicant of a formula
of the form ∃Y2 : ϕ (Sect. 2.1) or ∃Y2 : ∃T : κ (Sect. 2.2 onwards). The
transformation tY1 reduces this problem SAT. This section is concerned with
correctness of this transformation. The style of presentation is necessarily formal
and a reader who is concerned with the application of the technique (rather than
establishing its correctness) can proceed onto the following section.

8



3.1 Transforming clauses

Let BoolX denotes the class of propositional formulae over the set of variables
X and suppose X is partitioned into two disjoint subsets Y1 and Y2. We shall
consider the problem of computing an implicant of ∃Y2 : f where the formula
f ∈ BoolX is presented in CNF. The transformation is formalised as a map tY1 on
the set of literals LitX = {x,¬x | x ∈ X}. This map is, in turn, defined in terms
of sets of propositional variables Y +

1 = {x+ | x ∈ Y1} and Y −1 = {x− | x ∈ Y1}
for which we assume that Y +

1 ∩ Y
−
1 = ∅ and (Y +

1 ∪ Y
−
1 ) ∩X = ∅.

Definition 1. The literal transformation map tY1 : LitX → LitY +
1 ∪Y

−
1 ∪Y2

(and
its inverse t−1

Y1
) are defined as follows:

tY1(l) =

x+ if l = x ∧ x ∈ Y1

x− if l = ¬x ∧ x ∈ Y1

l otherwise
t−1
Y1

(l) =

 x if l = x+ ∧ x ∈ Y1

¬x if l = x− ∧ x ∈ Y1

l otherwise

A clause is considered to be a set of literals to simplify the lifting of the literal
transformation map from single literals to clauses. Thus if a clause is merely a
set C ⊆ LitX then tY1(C) = {tY1(l) | l ∈ C}.

3.2 Transforming cubes

The literal transformation map is lifted to cubes and implicants (an implicant
is a merely a particular type of cube) by likewise considering these to be sets
of (implicitly conjoined) literals. The transformation relates cubes with literals
drawn from LitX to cubes with literals drawn from Y +

1 ∪Y
−
1 ∪LitY2 . Our interest

is in cubes that are non-trivial, that is, they do not contain opposing literals.
These classes of non-trivial cubes are defined below:

Definition 2.

CubeX =
{
C ⊆ LitX

∣∣∀x ∈ X : {x,¬x} 6⊆ C
}

CubeY1,Y2 =
{
C ∪ C ′

∣∣∣∣C ∈ CubeY2 ∧ C ′ ⊆ Y +
1 ∪ Y

−
1 ∧

∀x ∈ Y1 : {x+, x−} ∩ C ′ 6= ∅ ∧ {x+, x−} 6⊆ C ′
}

We transform between these two types of cubes with the following map:

Definition 3. The mapping cY1 : CubeX → CubeY1,Y2 is defined:

cY1(C) = tY1(C) ∪ {¬x+,¬x− | x ∈ Y1 ∧ {x,¬x} ∩ C = ∅}

Observe that cY1 is both injective and surjective, hence it possesses an inverse
c−1
Y1

: CubeY1,Y2 → CubeX .
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3.3 Equivalence

With the tY1 and cY1 maps defined on clauses and cubes, we can now state an
equivalence result which details how implicants are preserved by transformation.
Note that a formula f represented in CNF can be considered to be a set of
implicitly conjoined clauses F .

Proposition 1 (equivalence). Let f =
∧
{
∨
C | C ∈ F} where F ⊆ ℘(LitX)

and put f ′ =
∧
{
∨
tY1(C) | C ∈ F}. Then

– If D ∈ CubeX and (
∧
D) |= f then (

∧
cY1(D)) |= f ′

– If D′ ∈ CubeY1,Y2 and (
∧
D′) |= f ′ then (

∧
c−1
Y1

(D′)) |= f

Proof.

– Let C ∈ F . Since (
∧
D) |= f it follows (

∧
D) |= (

∨
C).

• Suppose x ∈ D ∩ C and x ∈ Y1. Then x+ ∈ tY1(C) ∩ cY1(D).
• Suppose ¬x ∈ D ∩ C and x ∈ Y1. Then x− ∈ tY1(C) ∩ cY1(D).
• Suppose x ∈ D ∩ C and x ∈ Y2. Then x ∈ tY1(C) ∩ cY1(D).
• Suppose ¬x ∈ D ∩ C and x ∈ Y2. Then ¬x ∈ tY1(C) ∩ cY1(D).

Hence (
∧
cY1(D)) |= (

∨
tY1(C)) whence (

∧
cY1(D)) |= f ′ as required.

– Let C ∈ F . Since (
∧
D′) |= f ′ it follows (

∧
D′) |= (

∨
tY1(C)).

• Suppose x+ ∈ D′ ∩ tY1(C) and x ∈ Y1. Then x ∈ C ∩ c−1
Y1

(D′).
• Suppose x− ∈ D′ ∩ tY1(C) and x ∈ Y1. Then ¬x ∈ C ∩ c−1

Y1
(D′).

• Suppose x ∈ D′ ∩ tY1(C) and x ∈ Y2. Then x ∈ C ∩ c−1
Y1

(D′).
• Suppose ¬x ∈ D′ ∩ tY1(C) and x ∈ Y2. Then ¬x ∈ C ∩ c−1

Y1
(D′).

Hence (
∧
c−1
Y1

(D′)) |= (
∨
C) whence (

∧
c−1
Y1

(D′)) |= f as required.

The proof for this and other results is given in an appendix (which will be made
available on-line). The following corollary of the above relates implicants with
literals drawn from LitY1 to the satisfiability of the transformed clause set:

Corollary 1. Suppose f and f ′ are defined as above. Then

– If D ∈ CubeY1 and ∧D |= f then (
∧
cY1(D)) ∧ f ′ is satisfiable

– If D′ ∈ CubeY1,∅ and (
∧
D′) ∧ f ′ is satisfiable then (

∧
c−1
Y1

(D′)) |= f

To present the final result, let JfK ⊆ ℘(X) denote the set of models of the
Boolean function f . (Recall the set-based representation of a model given in
Sect 2.1, for example, if X = {x, y} then Jx ∨ yK = {{x}, {y}, {x, y}}.) We can
now that state how a prime implicant of the existentially quantifier formula
(whose literals are drawn from LitY1) fulfills two satisfiability conditions:

Corollary 2. Suppose f , f ′ and F ⊆ ℘(LitX) are defined as above. Put
g′ = f ′ ∧ {¬x+ ∨ ¬x− | x ∈ Y1}. Then D ∈ CubeY1 is a prime implicant of ∃Y2 : f
iff D = c−1

Y1
(M∗ ∩ (Y +

1 ∪ Y
−
1 )) where

– M∗ ∈ Jg′K
– |M∗ ∩ (Y +

1 ∪ Y
−
1 )| ≤ |M ∩ (Y +

1 ∪ Y
−
1 )| for all M ∈ Jg′K

Note that g′ does not include any cardinality constraint on the set M∗∩(Y +
1 ∪Y

−
1 ),

hence the need to define a prime implicant in terms of an implicant no longer
than any other. The above result can straightforwardly adapted to specify how
an implicant of a given size can be defined as a SAT instance.
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4 Experimental Results

We have implemented the techniques described in this paper in Java using the
Sat4J solver [23] so as to integrate with our analysis framework for machine code,
[mc]square [32], which is also coded in Java. To encode sorting propositionally,
we implemented optimal networks for 9 or fewer variables and resorted to bitonic
sorting for larger networks [21]. All experiments were performed on a MacBook
Pro equipped with a 2.6 GHz dual-core processor and 4 GB of RAM, but only
a single core was used in our experiments. The results obtained for deriving
upper-approximations using the combination of methods described in Sect. 2.2
and Sect. 2.3 (without applying instantiation) are summarised in Tab. 1.

The formulae originated from the Iscas benchmark set [17]. For some of these
benchmarks, quantifier elimination by model enumeration is intractable due to
the large numbers of models presented in column #models, and so is resolution.
This is highlighted by the benchmark 74L85b, which describes a 4-bit magnitude
comparator. Whereas model enumeration required more than 6 minutes for
74182b and 74283b, it ran out of memory for 74L85b after approximately 10
minutes. Column #vars/clauses shows the number of propositional variables and
clauses in the original formula, whereas column trans gives these numbers after
applying the transformation tY1 . The column length first contains the maximum
length of prime implicants that were enumerated, followed by the size of Y1. Thus
in the 8/8 case the algorithm was run to completion, whereas the 2/8 case was
terminated prematurely. Then #primes gives the number of implicants found
and #SAT the total number of calls to a SAT solver. The overall runtime is
given in the last column.

It is important to appreciate that the projection of the 74185b formula does
not contain any implicants with size between 7 and 10. Likewise 74283b does not
contain any implicants of size 7 and 8. This size distribution has been observed
elsewhere [19], though not in the context of projection, which suggests that
enumerating implicants up to a size threshold can achieve a good approximation
of the projection. The ratio of number of calls to the solver to the number of primes

Table 1. Experimental results without instantiation

Formula models #vars/clauses trans. length #primes #SAT runtime

74182b 262,144 227/526 780/1281
2/5 4 52 0.81
5/5 4 170 1.80s

74283b 262,144 266/646
966/1,633

4/8 13 1590 5.63s
6/8 20 4053 14.49s
8/8 20 4881 16.71s

74L85b >390,752 412/1084 1582/2747

4/10 6 4496 18.91s
5/10 14 12349 57.22s
6/10 30 24960 125.99s
8/10 30 47536 292.59s
10/10 30 51522 352.95s
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Table 2. Experimental results with a single instantiation

Formula length runtime speedup

74182b
2/5 0.50s 38%
5/5 0.85s 52%

74283b
4/8 4.26s 24%
6/8 10.54s 27%
8/8 12.34s 26%

Formula length runtime speedup

74L85b

4/10 12.61s 23%
5/10 38.85s 32%
6/10 84.68s 33%
8/10 203.45s 30%
10/10 84.68s 33%

is largely due to spurious candidates (in our experiments, it roughly doubled
by increasing the prime length by one or two), which motivates investigating
the impact of instantiating variables. Circuits can be simplified after applying
instantiation, which involves removing false literals from clauses and removing
all clauses that were already satisfied. The effects of single instantiation based on
a model of the original formula are highlighted in Tab. 2. The results shown in
column speedup suggest that instantiation can significantly increase performance.

Finally, we study applying multiple instantiation, accompanied with simpli-
fication, for different instances of the 74L85b circuit. Note that simplification
reduces the size of the SAT instance which compensates somewhat for multiple
instantiation. The instantiations themselves were generated from various models
of the formula that were themselves found by applying blocking clauses. By
choosing 6 instantiations that constrain the solution space in the 6/10 case
a priori, the number of SAT instances reduced from 24960 to 16954, and the
runtime decreased to 61.59s. This is a reduction of 32% in terms of the number
of calls to a SAT solver and an overall speedup of 51%. Using 10 instantiations,
reduced the number of calls to the solver was still further to 14273 and took
the runtime down to 52.45s yielding a speedup of 58%. The key point is that a
reduction occurs in the ratio of the number of calls to the SAT solver and the
number of primes. This is a measure of the effectiveness of the technique, that
is, how much effort is needed, on average, to find another implicant and thereby
refine the approximation. However, we conjecture, that it is not prudent to apply
too many instantiations simultaneously, because at some point the size of the
combined SAT instance will become unmanageable (this would correspond to a
flattening of quantified bit-vector logic, which can be prohibitively expensive).

5 Related Work

The consensus method has been independently proposed by a number of re-
searchers [3, 29, 31] as a way of enumerating all the prime implicants of a propo-
sitional function in disjunctive normal form (DNF). If f is in CNF, then it is
straightforward to derive a DNF representation of ¬f , to which the consensus
procedure can be applied to find its prime implicants. Then ∃Y : f can be
found by conjoining all clauses ¬c where c is a prime implicant of ¬f which has
no variables in common with Y . One might think that this provides a way to
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compute projection, but the key step of the consensus method combines two
elementary conjunctions of ¬f , say, x∧C and (¬x)∧D, to form the conjunction
C ∧D, which is isomorphic to resolution. Hence the consensus method shares
the inefficiency problems associated with applying resolution to a formula in
CNF. The complexity of the shortest implicant problem for DNF formulae has
been studied by Umans [34] who showed that it is GC (log2(n), coNP)-complete.
Even though this result is not directly transferrable to CNF, it substantiates our
application of SAT solvers to the derivation of shortest implicants. Integer linear
programming techniques have also be used to find shortest implications, as have
SAT engines which have been modified to support inequalities [24]. In this work
a transformation is described which is similar to tY1 . However, the work is not
concerned with quantifier elimination, hence pairs of 0-1 variables are introduced
for each variable in the formula rather than merely those in Y1.

Operating on negated formulae has applications in bounded model checking [8],
in particular when using Craig interpolants [25]. Given two inconsistent formulae
ϕ and ψ, that is, ϕ∧ψ is unsatisfiable, a smaller upper-approximation ξ of ϕ can
be derived from the proof of unsatisfiability of ϕ∧ψ in linear time. This approach
is sound in the sense that ξ over-approximates ϕ, and at the same time serves
tractability, and thus can be regarded as a form of widening. Prime implicants have
been directly applied to widening Boolean functions represented as ROBDDs [19].
By appling a recursive meta-product construction [12] collections of short primes
can be used to derive an ROBDD that is an upper-approximation of the input.
Our work on applying SAT to projection was motivated by the emperical finding
that collections of short primes, for instance those up to length 5, often yield good
approximations of Boolean formulae [19]. Note that SAT-based enlargement of
cubes also appears in the work of McMillan [26], who uses SAT-based enumeration
for existential quantification. The idea of instantiating (multiple) instances of
Boolean formulae with models can be seen as a form of circuit co-factoring as
described by Ganai et al. [15]. A recent contribution to reasoning about quantified
bit-vector formulae was made by Wintersteiger et al. [36], who most notably used
word-level simplifications and template instantiations.

Another approach to quantifier elimination (of linear systems) was recently
proposed by Monniaux [27]. In his approach, satisfiability tests of quantified
formulae are used to derive witnesses (models). Rather than computing quantifier-
free formulae directly, his algorithm uses substitution of witnesses to extend the
original system towards a quantifier-free formula. Comparing this technique to
our method, a similarity is in the use of witnesses to guide the elimination process.
His method, however, is not anytime, and thus, cannot be stopped prematurely.

6 Conclusions

Synopsis This paper advocates using SAT to derive upper-approximations
of existentially quantified propositional formulae The approach is designed to
be anytime so that it can be stopped early without compromising correctness.
This can be considered to be a pragmatic response to the complexity of projec-
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tion [11]. Further, the technique avoids the blow-up in the number of clauses in
an intermediate representation that is associated with eliminating variables with
resolution.

Future Work This work calls for further investigations of ways to reduce the
number of spurious candidates that appear when implicants of negations are
enumerated, possibly based on the recent work described in [36].

Acknowledgment We thank Olivier Coudert for discussions on the complexity of
finding the smallest prime implicant. This work was funded, in part, by a Royal
Society travel grant, reference TG092357, and a Royal Society Industrial Fellow-
ship, reference IF081178. Furthermore, we thank Professor Stefan Kowalewski for
his generous financial support that was necessary to initiate our collaboration.

References

1. T. Armstrong, K. Marriott, P. Schachte, and H. Søndergaard. Two Classes of
Boolean Functions for Dependency Analysis. Science of Computer Programming,
31(1):3–45, 1998.

2. E. A. Bender. Mathematical Methods in Artificial Intelligence. IEEE Computer
Society Press, 1996.

3. A. Blake. Canonical expressions in Boolean algebra. University of Chicago, 1938.
4. J. Brauer and A. King. Automatic Abstraction for Intervals using Boolean Formulae.

In SAS, volume 6337 of LNCS, pages 167–183. Springer, 2010.
5. R. E. Bryant. Symbolic Boolean Manipulation with Ordered Binary-Decision

Diagrams. ACM Computing Surveys, 24(3):293–318, 1992.
6. R. E. Bryant. A View from the Engine Room: Computational Support for Symbolic

Model Checking. In 25 Years of Model Checking, volume 5000 of LNCS, pages
145–149. Springer, 2008.

7. J. R. Burch, E. M. Clarke, and K. L. McMillan. Symbolic model checking: 1020

states and beyond. Information and Computation, 98:142–170, 1992.
8. E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs. In

TACAS, volume 2988 of LNCS, pages 168–176. Springer, 2004.
9. E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using

satisfiability solving. Formal Methods in System Design, 19(1):7–34, 2001.
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