
To appear in EPTCS.

Perspicuity and Granularity in Refinement

Eerke Boiten
School of Computing, University of Kent, Canterbury, Kent,CT2 7NF, UK.

E.A.Boiten@kent.ac.uk

This paper reconsiders refinements which introduce actionson the concrete level which were not
present at the abstract level. It draws a distinction between concrete actions which are “perspicuous”
at the abstract level, and changes of granularity of actionsbetween different levels of abstraction.

The main contribution of this paper is in exploring the relation between these different methods
of “action refinement”, and the basic refinement relation that is used. In particular, it shows how the
“refining skip” method is incompatible with failures-basedrefinement relations, and consequently
some decisions in designing Event-B refinement are entangled.

Keywords: Refinement, action refinement, stuttering steps, ASM, Event-B, Z, internal operations, weak
refinement, granularity, perspicuity, divergence.

1 Introduction

This paper discusses how different ways of introducing “extra” actions in refinement (such as weak re-
finement, action refinement, stuttering steps) relate to theunderlying refinement relations used (e.g. trace
refinement, failures refinement). In particular, we aim to show how the choices in those two dimensions
are interdependent. The paper is not intended to be polemic (“my formalism/refinement relation is better
than yours”) nor is it really meant to be a first introduction to the topic. Where it appears to state the ob-
vious, this is in an attempt to ensure that commonalities, differences, and design decisions in refinement
relations are exhibited in an unambiguous and uncontroversial way.

Before describing the issues in detail, we consider an example. The example is presented in Z, but
the notation used is not essential to what follows in this paper. In general, most of what is described
in this paper could be expressed in ASM [18], (Event-)B [1], Z[19], binary relations [11], UTP [15]
or many other state-based formalisms; for the moment we makeno assumptions about what refinement
relation is “in force”.

This example is due to Carroll Morgan, who presented it during an enlightening conversation at the
2009 Dagstuhl seminar “Refinement Based Methods for the Construction of Dependable Systems”. The
abstract specification is essentially a priority queue, stored as a bag, so taking out an element involves
selecting the minimum of the bag. Obvious specifications of functionsmin on bags and (later)sorted
on sequences are omitted. The schemaASdescribes system states,AInit initial states, and the schemas
Ain andAout the operations of adding and removing an element. The precondition b 6= [[]] is included
explicitly in Aout, in recognition of it having to be an explicit guard in alternative notations such as

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/10635823?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Perspicuity and Granularity in Refinement

Event-B.

AS
b : bagN

Ain
∆AS
x? :N

b′ = b] [[x?]]

AInit
AS′

b′ = [[]]

Aout
∆AS
x! : N

b 6= [[]]
b= b′] [[x!]]
x! = min(b)

The concrete specification uses a sequence to represent the queue. Removing an element is only possible
when the sequence is non-empty and sorted, in which case the element to be removed is at the head of
the sequence. The schemaSortdescribes the sorting of the sequence. The schemaCycleis mostly a red
herring1 and not part of Morgan’s original example.

CS
s : seqN

Cin
∆CS
x? :N

s′ = sa 〈x?〉

Sort
∆CS

itemss= itemss′

sorted(s′)

CInit
CS′

s′ = 〈〉

Cout
∆CS
x! : N

s 6= 〈〉
sorted(s)

s= 〈x!〉as′

Cycle
∆CS

s= 〈〉∧s′ = 〈〉 ∨

s′ = (tail s)a 〈head s〉

This paper discusses the many ways in which one may consider the concrete specification to refine
the abstract one, possibly after a slight modification, or possibly not at all, depending on the notions of
refinement and action refinement employed. Before we move on to that level of complication, consider
the composed schemaSortOut== Sorto

9Cout, whose meaning is given by

SortOut
∆CS
x! : N

s 6= 〈〉

∃s′′ : seqN • itemss= itemss′′∧sorted(s′′)∧s′′ = 〈x!〉a s′

1One might use it to represent the non-determinism in a distributed implementation where individual clients have no control
over the access pointer in a cyclical list, . . . maybe.

E.A. Boiten 3

Then, uncontroversially, in most sensible refinement relations, the operationAout is refined by
SortOut(or more precisely: the data type(AS,AInit,Ain,Aout) is refined by(CS,CInit,Cin,SortOut))
under the retrieve relationb= itemss. In fact, this is normally an equivalence: refinement also holds in
the reverse direction2.

The rest of this paper is structured as follows. In Section 2 we describe different basic refinement
notions. Then in Section 3 we discuss the various methods in which “extra” operations may appear in
refinement steps. In Section 4 we compare how these methods can be used to model the decomposition of
actions into smaller grained ones, and how this impacts on the various basic refinement notions. Finally,
Section 5 presents some conclusions.

2 Basic Notions of Refinement

We have given detailed fully formal descriptions and comparisons of the different basic notions of re-
finement for state-based and concurrent systems in many previous papers, e.g. [6, 11, 5]. Rather than
repeating this and thereby fixing a formalism or even introducing a new one, we remain informal here,
using various formalisms and their refinement notions as illustrations.

In basic data refinement, systems (or machines or abstract data types) are compared which have
identical alphabets (or sets of labels of operations (or actions or events)). Apart from conditions on
initial and possibly final states, and other details which depend on what observations can be made of
these systems, operations are compared in pairs of an abstract and a concrete operation, with refinement
conditions being some subset of the following properties:

(1) ConsistencyThe effect of the concrete operation is one that is allowed bythe abstract operation.

(2) EnablednessWhen operations can be invoked in the abstract state, they can be invoked in the con-
crete state as well.

(3) Restricted consistencyIn states where the abstract operation is enabled, the effect of the concrete
operation is one that is allowed by the abstract operation.

Property (1) or its weaker variant (3) represents the essence of refinement: that a client would be unable
to observe conclusively that they are using the concrete rather than the abstract system. Property (2)
ensures that the client is indeed able to perform the same “experiments” on both systems. Property (1)
obviously implies (3), and also a converse of (2): where concrete operations are enabled (leading to an
“effect”), their abstract counterparts should be enabled,too (in order to allow comparison of effects).
The properties leave out detail about what an effect is, are purposefully vague on “can be invoked” in (2)
to allow a variety of interpretations, and leave any linkingbetween abstract and concrete states implicit.
They are also somewhat biased towards downward simulation.A few examples should make all this
clearer. The refinement relations described below will be refered to in later sections.

Traditional (downward simulation)Z refinement[19, 11] is characterised by properties (2) and (3),
with “can be invoked” in a state computed as individual operations’ preconditions, i.e. whether their
defining predicates can be satisfied for some after-state. Condition (2) is called “applicability” and typi-
cally formulated as

preAOp∧R⇒ preCOp

2A refinement linkingAin to Cino
9Sort instead is equally possible but would require strengthening the concrete state invariant

to sorted sequences;Cino
9Sort then simplifies to the insert operation of insertion sort.

4 Perspicuity and Granularity in Refinement

where preAOp== ∃AS′ •AOpdenotes the computed precondition. Condition (3) is called“correctness”,
and typically formulated as

preAOp∧R∧COp⇒∃AS′ • R′∧AOp

We have sometimes called this refinement relation the “contract” model of refinement as it constrains the
implementation only within the original precondition.

Trace refinementis characterised by (1) only, only requiring that anything that doeshappen in the
concrete specification is consistent with the abstract one.As such, it represents preservation of safety
properties only, “nothing bad happens”. No concrete operations being enabled at all, for example, is an
acceptable trace refinement.

BasicEvent-B refinement(called simple refinement in [1, Ch. 14]) is characterised by(1), with (op-
tionally) a weak alternative to (2): if the concrete state deadlocks (i.e. no events are enabled), then so
should the abstract state. Enabledness of events is given byexplicitly specified guards, with a “feasibil-
ity” proof obligation ensuring that they are at least as strong as any computed precondition. Abrial [1, p.
429] states that condition (2) could be imposed, but “this happens to be sometimes too strong”. (We will
return to this.)

Failures-based variantsof refinement are characterised by (1) and (2), where (2) considers indi-
vidual operations for “blocking Z refinement” and singletonfailures refinement, or sets of concurrently
enabled operations for failures refinement as in CSP. We refer to [6, 17, 5] for detailed discussion of these
refinement relations and the finer distinctions between them, which are not relevant in the current paper.

Note that a refinement relation characterised by property (3) without property (2) is nonsensical as it
is not transitive: preconditions or guards can be strengthened (lack of (2)) and then weakened (by (3)),
but the composition of such steps does not respect (3).

3 Adding Operations in Refinement

The basic refinement rules described above deal only with thesituation where the abstract and concrete
specifications have the same alphabet of operations. There are many ways in which one could allow
a refined specification to have “extra” operations – we discuss a number of them. First, we mention
alphabet extension and alphabet translation [11, Ch. 14] for completeness. Then, we get to the core of
this paper: stuttering steps, the introduction of internaloperations, and action refinement, and how these
sometimes get conflated.

3.1 Alphabet Extension and Translation

The simplest way of allowing new operations in refinement isalphabet extension: to just accept them
without any further constraints. If we make the intuitive step of identifying a non-existent operation with
one that is never enabled, alphabet extension should be perfectly acceptable in traditional Z refinement:
it means we allow implementors to provide functionality that we had not asked for. In a process algebra
context alphabet extension is typically not allowed, and indeed that would make sense in our intuitive
view: it would go against refinement property (1), by having no matching abstract behaviour for some
concrete behaviour.

In alphabet translation, a single abstract operation is implemented by multiple concrete ones, which
requires an explicit mapping, recording for every concreteoperation which abstract operation it repre-
sents, and thus which operation’s behaviour it needs to correspond with. (If this mapping is not required

E.A. Boiten 5

to be total, alphabet extension is subsumed.) A typical example for this would be an abstract two-
dimensional grid specification with a “move” operation, which is refined into “moveNorth”, “moveEast”,
etc. Alphabet translation is allowed in Event-B, where it iscalled “splitting” an abstract event.

The semantic property established in alphabet translationis: every concrete trace (with its corre-
sponding observations) is consistent with an abstract trace that relates to it by the given mapping (applied
elementwise) with its corresponding observations.

3.2 Perspicuous Operations

State-based systems potentially change state when operations are executed. When no operation is in-
voked, the state does not normally change. Some formalisms take this into account by including ex-
plicitly so-called stuttering steps in their semantics: steps where the state does not change between two
observations, due to no event having taken place. In the light of that, it is intuitively obvious to accept
the introduction of additional concrete events as refinements of the identity operation (a.k.a.skip) on
the abstract state. We will call theseperspicuousconcrete events, to be distinguished from “internal
events” (see below) which incur additional assumptions andrequirements. In particular, in subsequent
refinement steps, perspicuous operations donothave a different status from operations that were present
earlier.

Abrial [1] presents a similar motivation for the introducion of new events in Event-B, analogous to
how this is done in action systems [3], and refers to it as “observing our discrete system in the refinement
with a finer grain than in the abstraction”. Event-B is explicit about the introduction of such events as
being refinements ofmodelling: introducing not just aspects of a solution, but more detailof the model.
Indeed, where refinement is viewed as only moving from a complete description of a problem to its so-
lution, the introduction of perspicuous operations which achieve nothing in the abstract world can hardly
be useful by itself3. Both action systems and Event-B include a relative deadlock freedom condition with
this kind of refinement: the new system should deadlock (i.e., terminate, in the action systems view) no
more often than the old one. The semantic relation established by this kind of generalised refinement is:
for every concrete trace with its corresponding observations, an abstract trace constructed by crossing
out all perspicuous actions is consistent with it.

In the running example, under most refinement relations and with the obvious retrieve relation
itemss= b both concrete operationsSortandCycleare candidate perspicuous operations, as they satisfy
itemss= itemss′ and thus relate identical abstract states. They are both applicable in every concrete state
and thus are refinements of an abstractskipeven when property (2) is imposed.

For perspicuous operations, the notion ofdivergencecomes into the picture. A collection of perspic-
uous operations is divergent if infinitely often in succession, from some state, one of its members can be
invoked. In a trace-based view, where perspicuous operations could be inserted at arbitrary points be-
tween “normal” operations, non-divergence is necessary toensure that a finite trace cannot get extended
into an infinite one by that process. This is how Abrial [1] explains it4. With additional assumptions,
such as that a system might perform perspicuous operations independently, divergence becomes a prac-
tical as well as a theoretical problem. Butler [9] explains the non-divergence requirement in Event-B by
saying “The new events introduced in a refinement step can be viewed as hidden events not visible to
the environment of a system and are thus outside the control of the environment” which would suggest

3This isnot intended to be a controversial statement or implicit criticism on Event-B: the crux is in the phraseby itself, and
this should become clearer later when we compare the different ways of encoding action refinement.

4His use of the term “reachable” is a bit unfortunate, though –this tends to be an existential property (some path is finite)
rather than the required universal (all paths are finite) property required.

6 Perspicuity and Granularity in Refinement

these are not just perspicuous events, but eveninternal events as we will discuss next. In action systems
[3], which are viewed as a main inspiration for Event-B, all actions could be considered to be internal
(even if the variables they modify are not), which conforms more with Abrial’s explanation than with
Butler’s5. A typical method of proving non-divergence is by establishing a variant (well-founded, strictly
decreasing function) on newly introduced (collections of)perspicuous operations [8, 12, 1]. If refinement
is based on property (1) rather than property (3), i.e., an action cannot gain behaviour in refinement, then
non-divergence is preserved by subsequent refinement steps.

In the example, both perspicuous operations are divergent.This is obvious from the fact that they
are enabled ineveryconcrete state.Sort allows an infinite sequence of invocations of which only the
first does not necessarily correspond to a concreteskip. For formalisms that use infinite traces and allow
stuttering steps, such as TLA, this may not be a problem. Removing divergence on each of the operations
can be done using several possible small modifications. The divergence problem forSortcould be fixed
by including a guard¬sorted(s), but this makes it a refinement ofskiponly if property (2) is not imposed
and guards can be strengthened. Another way would be to add a flag that ensuresSort is invoked exactly
once after every occurrence ofCin or Cycle (possibly also preventing the nextCin until after sorting).
A counter could be used to remove divergence inCycle, with each of the other operations (excluding
Sort) setting the counter to fix the maximal number of occurrencesof Cycle to follow it, and Cycle
decrementing it at every step until it is 0. None of those modifications would retain the property thatSort
or Cyclerefinesskip if the prevalent refinement relation respects (2).

3.3 Internal Operations

An internal operation is a perspicuous operation with a special status: it is assumed to be invisible to
the environment, and under internal control of the system only. In process algebras, internal operations
naturally occur in a number of ways. In CSP [14] they arise from channels being hidden, for example
encapsulating an internal communication channel when considering a system of communicating subsys-
tems. They may also be used, for example in LOTOS [7], to encode internal choice when only external
choice is available as a basic operator. Butler first considered the introduction of internal events in B
refinement [8], and based on this approach we introduced “weak refinement” for Z [12, 10], which was
analysed and compared to ASM refinement in detail by Schellhorn [18].

The requirements imposed in this context are inspired by howprocess algebras deal with internal
actions, for example in defining “weak” bisimulation: wherestandard refinement conditions refer to
a single action, their “weak” equivalents consider the sameaction possibly prefixed and postfixed by
occurrences of internal actions. Thus, the refinement consistency property, e.g., will state that for every
concrete action, with internal concrete behaviour before and after, its effect is consistent with the abstract
action, possibly also pre- and postfixed with (abstract) internal behaviour. E.g. in [12] the restricted
consistency (correctness) condition for weak refinement inZ (downward simulation) is phrased as

pre(IntA o
9 AOp)∧R∧ (IntC o

9 COpo
9 IntC)⇒∃AS′ • R′∧ (IntA o

9AOpo
9 IntA)

whereIntC is arbitrary internal behaviour in the concrete state, i.e.the transitive reflexive closure of the
union of internal operations, and similar forIntA. Taking this process algebra inspired approach has a
few consequences:

5Note however that Abrial [1] does recognise (on page 414) a different class of operation that “is not part of the protocol: it
corresponds to a “daemon” acting . . .”.

E.A. Boiten 7

• internal actions have a special status which goes beyond therefinement step where they are intro-
duced. They can not only be introduced this way, but must alsobe taken into consideration or can
even be removed in subsequent refinement steps.

• there is an assumption that if internal actions are necessary for progress, they will “eventually”
happen, so external operations are viewed as “enabled” if their before-state is reachable through
internal behaviour; in timed process algebras in particular, internal actions are often taken as “ur-
gent” meaning they happen as soon as they are enabled.

• there need not be independent refinement conditions for internal operations: all internal behaviour
is viewed in the context of its composition with external behaviour. Thus, internal operations need
not be refinements ofskip. Of course, all internal operations being perspicuous, with external
operations corresponding as normal, isoneway of satisfying the refinement conditions like the
one above, but it is not the only way. In fact, in some refinement relations, it may not be a viable
way, see below.

The approaches for B and Z mentioned above only includedpreventionof divergence in weak refinement
steps. A more general approach, also consistent with the process algebraic view, is topreserveor reduce
any divergence that was already present in the abstract specification. This is worked out in detail in [6],
and the impact of differing notions of “livelock” or divergence is discussed in [4]. The semantic relation
established in this case is roughly that for every concrete trace, an abstract trace exists that is consistent
with it, with both traces’ subsequences ofexternalactions being identical6.

3.4 Action Refinement

Alphabet translation described above allows for arbitrarymatchings of an occurence of an abstract action
with the occurrence of a single concrete action. The most explicit way of changing the granularity of ac-
tions is to allow for matchings betweensequencesof abstract and concrete actions. This has been called
“action refinement” [2] or “non-atomic refinement” [10]. In its most7 general form, action refinement
corresponds to ASM 1-to-n diagrams withn possibly greater than 1 [18], generalising the normal com-
muting simulation diagram to one where the concrete effect is achieved inn steps, without requiring a
relation between abstract andintermediateconcrete states. In this view, all concrete operations resulting
from the decomposition are of the same status, with only their order having an impact on refinement
conditions. This is also the view we took in definining non-atomic refinement for Z [10], work which
was continued by Derrick and Wehrheim [13]. This kind of action refinement is even possible without
changing the state space involved. It requires an explicit matching between abstract actions and con-
crete action sequences, which also extends to traces. The semantic relation aimed for is that concrete
traces are consistent with abstract traces under this extended matching relation. The concrete and the
abstract models end up having different interfaces with this approach – this may be exactly what is re-
quired, though. For example, [11, Ch. 13] has an example of a watch which in the abstract model has
a ResetTimeoperation, which in the concrete model is represented by a series of executions ofButtonA
andButtonBoperations.

Considering for simplicity now only the case thatn = 2, the refinement requirements are like the
introduction of sequential composition in refinement calculus [16]. Splitting an operation in two means

6In fact it is a somewhat more subtle matching: non-determinism included in a single operation on one abstraction level may
be represented through a different choice of sequence of internal actions on the other level, so it is really a relation between sets
of abstract vs. concrete traces with the same external subsequence.

7Avoiding for now the generalisation tom-to-n diagrams withm 6= 1.

8 Perspicuity and Granularity in Refinement

finding an intermediate state (predicate) such that the first“half” lands in the intermediate state, and the
second “half” moves from the intermediate to the original after-state. The problematic issue is what is or
is not allowed to happen in the intermediate state. In a concurrent context, this comes under the heading
of “interference” – when the first “half” of an operation has been executed, should other operations be
disabled (non-interference, as e.g. discussed for action systems in [3]), or should their execution cancel
out the effect of this one? This is a well-known problematic area, discussed also in [10], which we
will not focus on here, as it is orthogonal to the issues discussed: when an action is split with part of it
being perspicuous or internal, that also creates an intermediate state with the same potential interference
problems.

4 How to Reduce Granularity in Refinement

From the discussion above, it should be clear that there are at least three semantic models for reducing
the granularity of actions in refinement:

• by introducing perspicuous actions that take on some of the “work” – possibly requiring non-
divergence;

• by introducing internal actions to the same effect – either using the limited refinement rules for
perspicuous actions, or by using the more general “weak refinement” rules;

• by giving explicit decompositions of actions in which all parts have the same status.

We limit ourselves for now to the case where we are decomposing an action into two actions, where the
first part could be viewed as “prepatory work”, and the secondpart as the “real work” – in other words,
the situation in our example of refiningAout into Sort andCout, where we expectSort to be executed
beforeAout. However, in order to concentrate on the general situation,let us consider refiningAWork
into PrepareandCWork.

For the methods of reducing granularity by refiningskip, we aim forPrepareto be perspicuous, and
for CWork to be a refinement ofAWork. Now consider an abstract state in which the operationAWork
was applicable. If in every corresponding concrete state itwould be possible to applyCWork, then we
have a degenerate situation: we are introducing a new actionPreparewhose contribution is unnecessary
in all situations (i.e., it might as well be aconcrete skip, too). Thus, in any relevant case of reducing
granularity,CWork can be applicable in only a subset of the corresponding concrete states – namely
those wherePreparehas nothing (left) to do. Indeed, becausePrepareis a refinement of an abstractskip,
if its before-state is linked to a particular abstract state, then so should its after-state. Again in order to
ensure thatPreparedoes something useful in some circumstances, there should be some abstract states
linked to the before-states ofPrepare.

This is where the prevalent notion of refinement makes a difference. If condition (2) (“enabledness”)
is in force, we have made it impossible forCWork to be a refinement ofAWork, becauseCWork is
only applicable in a strict subset of the corresponding concrete states. This holds a fortiori for stronger
versions of condition (2) such as failures refinement.

Thus, condition (2) excludes reduction of granularity by introducing perspicuous actions. It also
excludes reduction of granularity by introducing internalactions using the “perspicuous actions” condi-
tions. However, the more general “weak refinement” rules canbe used in combination with condition
(2), as we have shown in [6] in a context with condition (1) in force, and in [10] with condition (3) in
force. This is explained by not being constrained to considering the concrete operation in isolation, but
rather only considering it in the context of possible internal concrete behaviour.

E.A. Boiten 9

The other way in which condition (2) is problematic for the refinements ofskip is any requirements
for perspicuous actions to be non-divergent. If they are refinements ofskip respecting condition (2),
then they are by definition applicable in all states and thus always applicable “again” and by definition
divergent.

Returning to the example, ignoringCycle for now, refinement reducing granularity is possible in
several ways:

• by havingSort perspicuous, and guarded by¬sorted(s) if it is also required to be non-divergent.
This works for trace refinement (just (1)), Event-B refinement, but not the other forms.

• by havingSort internal, provided it is guarded by¬sorted(s). This works according to the rules
for Event-B, establishing normal Event-B refinement. However, it can also work for stronger
refinement relations respecting condition (2), but then themore general weak refinement rules
need to be used to establish it. In particular, it would mean thatAout is compared for refinement
with Sort∗ o

9 Cout.

• for explicit action refinement ofAout by Sort followed byCout, there is no requirement forSort
to be guarded (compare the watch example referred to above: as conceptionally the user presses
ButtonB, there is no guard preventing the user from doing that infinitely often), and refinement can
be any kind, including relations respecting property (2) oreven (3). In fact, including a guard on
Sort would disallow the combined concrete output operation on states which are already sorted,
and thus be unacceptable if the refinement relation obeys property (2).

5 Conclusion

The paradox that led to the discussion with Carroll Morgan referred to earlier was the following. If the
work of one abstract operation is split between two concreteones, and one of the concrete operations
makes no progress that can be detected abstractly8, why do we need this action at all? And if we do
need it, how can the other concrete operation, achieving some but not all of the work of its abstract
counterpart, be a refinement of the abstract one? The answer is hopefully somewhat clarified above. It
requires a notion of refinement that allows for guards to be strengthened. The underlying issue may well
have been known in “folklore” but it is not presented in any published papers we are aware of.

Coming back to Event-B specifically, two of its design decisions are thus closely entangled:

• to have essentially a trace semantics with only global deadlock prevention;

• to use stuttering step refinements for reducing granularity.

Both lead to relatively simple refinement obligations, which is attractive. In order for Event-B to
strengthen refinement to preserve stronger properties suchas encoded in various refusal-based semantics,
it would also have to give up its simple notion of reduction ofgranularity. It could do this in at least two
ways: either by going the way of ASM and having explicit recipes for decomposing operations with their
corresponding conditions, or by going the way of process algebra, and giving certain operations explicit
“internal” status which they then would need to retain subsequently. In either case, the price of gaining
semantic strength is a considerable amount of complicationof refinement conditions, which may be too
big a price to pay, particularly for a formalism which now hasso much (automated) proof tool support
available. Would that be what Abrial had in mind when he wrotethat (condition (2)) “happens to be
sometimes too strong”?

8Thus, some degree of data refinement is implied: a refinement of skipon thesamestate really cannot make any progress.

10 Perspicuity and Granularity in Refinement

Postscript

Finally, returning to the running example once more, a last word on theCycleoperation. It makes no
useful progress whatsoever, but the constraints put upon this completely irrelevant operation in refine-
ment in any “stuttering steps” approach (namely: taming itsdivergence), have been no more and no less
than on the supposedly enormously usefulSortoperation. Surely that is somewhat disappointing.

Acknowledgements

To Carroll Morgan for his explanations, to Michael Butler, John Derrick, Steve Dunne and Gerhard
Schellhorn for useful discussions, and to the reviewers fortheir comments.

References

[1] J.-R. Abrial (2010):Modelling in Event-B. CUP.

[2] L. Aceto (1992):Action Refinement in Process Algebras. CUP.

[3] R.J.R. Back (1993):Refinement of Parallel and Reactive Programs. In M. Broy, editor: Program Design
Calculi, pp. 73–92.

[4] E.A. Boiten & J. Derrick (2009):Modelling divergence in Relational Concurrent Refinement. In M. Leuschel
& H. Wehrheim, editors:IFM 2009: Integrated Formal Methods, LNCS5423, Springer Verlag, pp. 183–199,
doi:10.1007/978-3-642-00255-7-13.

[5] E.A. Boiten & J. Derrick (2010):Incompleteness of Relational Simulations in the Blocking Paradigm. Sci-
ence of Computer Programming75(12), pp. 1262–1269, doi:10.1016/j.scico.2010.07.003.

[6] E.A. Boiten, J. Derrick & G. Schellhorn (2009):Relational Concurrent Refinement Part II: Internal Opera-
tions and Outputs. Formal Aspects of Computing21(1-2), pp. 65–102, doi:10.1007/s00165-007-0066-z.

[7] T. Bolognesi & E. Brinksma (1988):Introduction to the ISO Specification Language LOTOS. Computer
Networks and ISDN Systems14(1), pp. 25–59, doi:10.1016/0169-7552(87)90085-7.

[8] M. Butler (1997):An approach to the design of distributed systems with B AMN. In J.P. Bowen, M G. Hinchey
& D. Till, editors: ZUM’97: The Z Formal Specification Notation, Lecture Notes in Computer Science1212,
Springer-Verlag, pp. 223–241, doi:10.1007/BFb0027291.

[9] M. Butler (2009): Decomposition Structures for Event-B. In M. Leuschel & H. Wehrheim, editors:IFM,
Lecture Notes in Computer Science5423, Springer, pp. 20–38, doi:10.1007/978-3-642-00255-7-2.

[10] J. Derrick & E.A. Boiten (1999): Non-atomic refinement in Z. In J.M. Wing, J.C P. Woodcock &
J. Davies, editors:FM’99, Lecture Notes in Computer Science1708, Springer-Verlag, Berlin, pp. 1477–
1496, doi:10.1007/3-540-48118-428.

[11] J. Derrick & E.A. Boiten (2001):Refinement in Z and Object-Z: Foundations and Advanced Applications.
FACIT, Springer Verlag, doi:10.1007/978-1-4471-0257-1.

[12] J. Derrick, E.A. Boiten, H. Bowman & M.W.A. Steen (1998): Specifying and Refining Internal Operations
in Z. Formal Aspects of Computing10, pp. 125–159, doi:10.1007/s001650050007.

[13] J. Derrick & H. Wehrheim (2003):Using coupled simulations in non-atomic refinement. In D. Bert, J. Bowen,
S. King & M. Walden, editors:ZB 2003: Formal Specification and Development in Z and B, Lecture Notes
in Computer Science2651, Springer, pp. 127–147, doi:10.1007/3-540-44880-2-10.

[14] C.A R. Hoare (1985):Communicating Sequential Processes. Prentice Hall.

[15] C.A.R. Hoare & He Jifeng (1998):Unifying Theories of Programming. Prentice Hall.

[16] C.C. Morgan (1994):Programming from Specifications, 2nd edition. International Series in Computer Sci-
ence, Prentice Hall.

http://dx.doi.org/10.1007/978-3-642-00255-7-13
http://dx.doi.org/10.1016/j.scico.2010.07.003
http://dx.doi.org/10.1007/s00165-007-0066-z
http://dx.doi.org/10.1016/0169-7552(87)90085-7
http://dx.doi.org/10.1007/BFb0027291
http://dx.doi.org/10.1007/978-3-642-00255-7-2
http://dx.doi.org/10.1007/3-540-48118-4_28
http://dx.doi.org/10.1007/978-1-4471-0257-1
http://dx.doi.org/10.1007/s001650050007
http://dx.doi.org/10.1007/3-540-44880-2-10

E.A. Boiten 11

[17] S. Reeves & D. Streader (2008):Data refinement and singleton failures refinement are not equivalent. Formal
Aspects of Computing20(3), pp. 295–301, doi:10.1007/s00165-008-0076-5.

[18] G. Schellhorn (2005):ASM Refinement and Generalizations of Forward Simulation inData Refinement: A
Comparison. Theoretical Computer Science336(2-3), pp. 403–436, doi:10.1016/j.tcs.2004.11.013.

[19] J.C.P. Woodcock & J. Davies (1996):Using Z: Specification, Refinement, and Proof. Prentice Hall.

http://dx.doi.org/10.1007/s00165-008-0076-5
http://dx.doi.org/10.1016/j.tcs.2004.11.013

	Introduction
	Basic Notions of Refinement
	Adding Operations in Refinement
	Alphabet Extension and Translation
	Perspicuous Operations
	Internal Operations
	Action Refinement

	How to Reduce Granularity in Refinement
	Conclusion

