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Abstract. One approach to verifying bit-twiddling algorithms is to de-
rive invariants between the bits that constitute the variables of a pro-
gram. Such invariants can often be described with systems of congruences
where in each equation c · x = d mod m, m is a power of two, c is a
vector of integer coefficients, and x is a vector of propositional variables
(bits). Because of the low-level nature of these invariants and the large
number of bits that are involved, it is important that the transfer func-
tions can be derived automatically. We address this problem, showing
how an analysis for bit-level congruence relationships can be decoupled
into two parts: (1) a SAT-based abstraction (compilation) step which
can be automated, and (2) an interpretation step that requires no SAT-
solving. We exploit triangular matrix forms to derive transfer functions
efficiently, even in the presence of large numbers of bits. Finally we pro-
pose program transformations that improve the analysis results.

1 Introduction

Recently there has been a resurgence of interest in inferring numeric relations
between program variables, most notably with congruences [1, 8, 11]. In this ab-
stract domain, each description is a system of congruence equations (over n

variables), each taking the form c · x = d mod m, with c ∈ Z
n, d, m ∈ Z and

x an n-ary vector of variables. The congruence c · x = d mod m, henceforth
abbreviated to c · x ≡m d, expresses that there exists a multiplier k ∈ Z of
m such that c · x = d + km. Quite apart from their expressiveness [5], such
systems are attractive computationally since, if the values in [0, m − 1] can be
represented with machine integers then arbitrary precision arithmetic can be
avoided in abstract operations, and at the same time, polynomial performance
guarantees are obtained [11]. This compares favourably with systems of inequal-
ities that present, among other problems, the issue of how to curb the growth of
coefficients [6, 9, 15].

Of particular interest are congruences where m is a power of two, since these
can express invariants that hold at the level of machine words [11] or bits [8]. The
central idea of [8] is congruent closure which computes a system of congruences c

to describe all the solutions of a given Boolean function f . To see the motivation
for this, consider bit-twiddling programs such as those in Figure 1 (we return
to the two programs in Section 3). Such programs often establish important but
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ℓ0: p := 0; y := x;
ℓ1: while (y 6= 0)

y := y & (y − 1);
p := 1 - p;

ℓ2: skip

ℓ0: y := x;
y := ((y ≫ 1) & 0x5555) | ((y & 0x5555) ≪ 1);
y := ((y ≫ 2) & 0x3333) | ((y & 0x3333) ≪ 2);
y := ((y ≫ 4) & 0x0F0F) | ((y & 0x0F0F) ≪ 4);
y := (y ≫ 8) | (y ≪ 8);

ℓ1: skip

(a) (b)

Fig. 1. Computing the parity of x and reversing the 16-bit word x

obscure invariants. Performing a complete bit-precise analysis is infeasible for
all but the simplest loop-free programs. At the same time, the invariants can
often be captured succinctly as a system of congruence equations. However, as
the assignments involved are not linear, traditional congruence analyses will not
work. An alternative is to summarise basic program blocks bit-precisely and ap-
ply congruent closure judiciously. This allows us to reveal “numeric” invariants
amongst bits, even for flowchart programs with loops, such as in Figure 1(a).
Congruences satisfy the ascending chain condition: no infinite chain c1, c2, . . .

with [[ci]] ⊂ [[ci+1]] exists. We exploit this to compute congruent closure symbol-
ically, by solving a finite number of SAT instances [8].

Congruent closure connects with work on how to compute most precise trans-
fer functions for a given abstract domain. A transfer function simulates the effect
of executing an operation where the possible input values are summarised by an
element in the abstract domain. The problem is how to find, in the domain, the
most precise element that summarises all outputs that can result from the sum-
marised inputs. In predicate abstraction, when the abstract domain is a product
of Boolean values, decision procedures have been used to solve this problem [4].
More generally, a decision procedure can also be applied to compute the most
precise transfer function when the domain satisfies the ascending chain condi-
tion [13]. The idea is to translate the input summary into a formula which is
conjoined with another that expresses the semantics of the operation as a rela-
tionship between input values and output values. An output summary is then
extracted from the conjoined formula by repeatedly calling the decision proce-
dure. Reps et al [13] illustrate this construction for constant propagation, and
the technique is equally applicable to congruences. In this context, the semantics
of an operation can be expressed propositionally [8]. The state of each integer
variable is represented by a vector of propositional variables, one propositional
variable for each bit. A formula is then derived [2, 7], that is propositional, which
specifies how the output bits depend on the input bits. Given an input summary
that is congruent, a congruent output summary can be derived by: (1) convert-
ing the input summary to a propositional formula; (2) conjoining it with the
input-output formula; (3) applying congruent closure to the conjunction. The
advantage of this formulation is that it can derive invariants down to the level
of bits, which enables the correctness of bit-twiddling code to be verified [8].
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Congruent closure may require many calls to a SAT solver. As sketched, it is
computed each time a transfer function is applied. A critical observation in this
paper is that it is possible, and simpler, to summarise the input-output formula
as a linear system that prescribes a transfer function. Once all transfer functions
have been derived, it is only necessary to manipulate linear systems. In this new
scheme, the application of a SAT solver is limited to the compilation step: the
derivation of the transfer function. With this paper we:

– Consider an unrestricted flowchart language with non-linear, bit-manipulating
operations and provide it with a relational semantics. The semantic defini-
tion lets us dovetail bit-blasting with congruent closure, and avoids the need
for a separate collecting semantics.

– Show that congruent closure is only needed in the derivation, from the bit-
blasted relational semantics, of a certain transition system; thereafter con-
gruence invariants can be inferred by repeatedly applying linear operations
to the transition system. As well as allowing separation of concerns, this
avoids the overhead of repeated closure calculation.

– Present a new algorithm for congruent closure. Its use of (upper triangular)
matrices for congruence systems makes it considerably faster than a previous
algorithm [8].

– Show how an input program can be transformed so that range information
can be inferred for variables occurring in loops. This is possible since bit-
level (rather than word-level) congruences can express the non-negativity of
a variable, which is sufficient to verify that inequalities hold.

Analyses using congruences modulo 2k have previously been designed [8, 11].
Our main contribution here is the automated derivation of transfer functions
for these analyses. This complements recent work [10] on automatically deriving
transfer functions for linear template domains [14] (which can realise octagons
and intervals) where the semantics of instructions is modelled with piecewise
linear functions. However, our approach does not impose this semantic restriction
and is not based on quantifier elimination.

The paper is structured as follows: The new algorithm for congruent clo-
sure is given in Section 2. Section 3 presents a relational semantics for flowchart
programs over machine integers and Section 4 develops a bit-level relational se-
mantics that encapsulates the spirit of bit-blasting. Section 5 shows how these
semantics can be abstracted to derive transition systems over congruences. Sec-
tion 6 explains how programs can be transformed to derive range information.
Section 7 concludes.

2 Congruent Closure

This section introduces a new algorithm for computing the congruent closure of
a Boolean function. Let Bm = {0, 1} and let Zm = [0, m − 1]. If x, y ∈ Z

k then

we write x ≡m y for
∧k

i=1 xi ≡m yi where x = 〈x1, . . . , xk〉 and y = 〈y1, . . . , yk〉.
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Definition 1. The (modulo m) affine hull of S ⊆ Z
k
m is defined:

affk
m(S) =

{

x ∈ Z
k
m

∣

∣

∣

∣

x1, . . . , xℓ ∈ S ∧ λ1, . . . , λℓ ∈ Z ∧
∑ℓ

i=1 λi ≡m 1 ∧ x ≡m

∑ℓ

i=1 λixi

}

Example 1. If S = ∅, S = Z
k
m or S = {x} for some x ∈ Z

k
m then affk

m(S) = S.
Now consider S = {〈0, 3〉, 〈1, 5〉}. We have

aff2
8(S) = {x ∈ Z

2
8 | λ1 + λ2 ≡8 1 ∧ x ≡8 λ1〈0, 3〉 + λ2〈1, 5〉}

= {x ∈ Z
2
8 | x ≡8 〈k, 3 + 2k〉 ∧ k ∈ Z}

Let Affk
m = {S ⊆ Z

k
m | affk

m(S) = S}. Suppose Si ∈ Affk
m for all i ∈ I where I is

some index set. Put S =
⋂

i∈I Si. It is not difficult to see that affk
m(S) = S. In

other words, 〈Affk
m,⊆,

⋂

〉 is a Moore family [3], and we obtain a complete lattice
〈Affk

m,⊆,
⋂

,
⊔

〉 by defining
⊔

i∈I Si =
⋂

{S′ ∈ Affk
m | ∀i ∈ I.Si ⊆ S′}. This gives

rise to a notion of abstraction in the following sense:

Definition 2. The abstraction map αk
m : ℘(Bk) → Affk

m and concretisation map
γk

m : Affk
m → ℘(Bk) are defined: αk

m(S) = affk
m(S) and γk

m(S) = S ∩ B
k.

For any k and m we call αk
m the modulo m congruent closure3 of its argument.

Example 2. Let us denote the set of solutions (models) of a Boolean function
f by [[f ]] thus, for example, [[x1 ∧ x2]] = {〈1, 1〉} and [[x1 ⊕ x2]] = {〈0, 1〉, 〈1, 0〉}
where ⊕ denotes exclusive-or. Likewise, let us denote the set of solutions of a
system of congruences c by [[c]]. For instance, if c = (x1 + x2 ≡4 3 ∧ 3x2 ≡4 2)
then [[c]] = {〈4k1 + 1, 4k2 + 2〉 ∈ Z

2
4 | k1, k2 ∈ Z} where Zm = [0, m− 1]. Given f

over n (propositional) variables x and a modulus m, congruent closure computes
the strongest congruence system c over n (integer) variables such that [[f ]] ⊆ [[c]],
or equivalently, [[f ]] ⊆ [[c]] ∩ B

n where B = {0, 1}. For example, given m = 4,
f1 = (¬x1)∧ (x1 ⊕x2⊕x3), and f2 = x1∧ (x2 ∨x3), congruent closure computes
c1 = (x1 ≡4 0 ∧ x2 + x3 ≡4 1) and c2 = (x1 ≡4 1) respectively. The congruences
c1 and c2 describe all solutions of f1 and f2, as

[[f1]] = {〈0, 0, 1〉, 〈0, 1, 0〉} = [[c1]] ∩ B
3

[[f2]] = {〈1, 0, 1〉, 〈1, 1, 0〉, 〈1, 1, 1〉} ⊆ {〈1, x2, x3〉 | x2, x3 ∈ B} = [[c2]] ∩ B
3

Note that c2 additionally contains a non-solution 〈1, 0, 0〉 of f2 and hence, in
general, congruent closure upper-approximates the set of models of a Boolean
function.

It is straightforward to verify that αk
m and γk

m form a Galois connection between
the complete lattices 〈℘(Bk),⊆,

⋂

,
⋃

〉 and 〈Affk
m,⊆,

⋂

,
⊔

〉.

3 The notion should not be confused with congruence closure as used in the automated
deduction community for the computation of equivalence relations over the set of
nodes of a graph a la Nelson and Oppen [12].
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function closure(input: S ⊆ B
k and modulus m ∈ N)

[A|b] := [0, . . . , 0, 1]; – the unsatisfiable system
i := 0; r := 1;
while (i < r)

〈a1, . . . , ak, b〉 := row([A|b], r − i); – last non-stable row
S′ := {x ∈ S | 〈a1, . . . , ak〉 · x 6≡m b}; – impose disequality
if (there exists x ∈ S′) then – solve new SAT instance

[A′|b′] := [A|b] ⊔ [Id|x]; – merge with new solution x

[A|b] := triangular([A′|b′]);
r := rows([A|b]);

else
i := i + 1; – a · x ≡m b is invariant so move on

return [A|b];

Fig. 2. Calculating Congruent Closure Based on Triangularisation

Example 3. Suppose Sb0b1b2b3 = {〈0, 0〉 | b0 = 1} ∪ {〈0, 1〉 | b1 = 1} ∪
{〈1, 0〉 | b2 = 1} ∪ {〈1, 1〉 | b3 = 1} where b0, b1, b2, b3 ∈ B. Then

α2
16(S0000) = ∅

α2
16(S0001) = {〈1, 1〉}

α2
16(S0010) = {〈1, 0〉}

α2
16(S0011) = {〈1, k〉 | k ∈ [0, 15]}

α2
16(S0100) = {〈0, 1〉}

α2
16(S0101) = {〈k, 1〉 | k ∈ [0, 15]}

α2
16(S0110) = {〈k1, k2〉 ∈ Z

2
16 | k1 + k2 ≡16 1}

α2
16(S0111) = Z

2
16

α2
16(S1000) = {〈0, 0〉}

α2
16(S1001) = {〈k, k〉 | k ∈ [0, 15]}

α2
16(S1010) = {〈k, 0〉 | k ∈ [0, 15]}

α2
16(S1011) = Z

2
16

α2
16(S1100) = {〈0, k〉 | k ∈ [0, 15]}

α2
16(S1101) = Z

2
16

α2
16(S1110) = Z

2
16

α2
16(S1111) = Z

2
16

From this we conclude that, in general, αk
m is not surjective and therefore αk

m

and γk
m do not form a Galois insertion.

Example 4. Let f be the Boolean function c′0 ↔ (c0 ⊕ 1) ∧ c′1 ↔ (c1 ⊕ c0) ∧
c′2 ↔ (c2 ⊕ (c0 ∧ c1)) ∧ c′3 ↔ (c3 ⊕ (c0 ∧ c1 ∧ c2)). Then α8

16([[f ]]) = [[c]], where c is
the conjunction of two equations c0 +2c1 +4c2 +8c3 +1 ≡16 c′0 +2c′1 +4c′2 +8c′3
and c0 + c′0 ≡16 1. This illustrates how congruent closure can extract numeric
relationships from a Boolean function.

Figure 2 presents a new algorithm for finding the congruent closure of a Boolean
function. For the purpose of presentation, it is convenient to pretend the function
is given as a set S of models, although we assume it given in conjunctive normal
form. If A is an m × n matrix and b = (b1, . . . , bm) is a vector, we denote by
[A|b] the m × (n + 1) matrix B defined by

Bij =

{

Aij if 1 ≤ i ≤ m and 1 ≤ j ≤ n

bi if 1 ≤ i ≤ m and j = n + 1
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Given a matrix A, we write ‘row(A, i)’ for its ith row, and ‘rows(A)’ for the
number of rows. We use ‘triangular(A)’ for the result of bringing A into upper
triangular form—Müller-Olm and Seidl [11] provide an algorithm for this. The
join operation ⊔ can be implemented in terms of projection which in turn has
a simple implementation utilising the maintenance of upper-triangular form [8].
Space constraints prevent us from repeating the join algorithm here.

It is important to observe that S′ can be expressed propositionally by aug-
menting S with a propositional encoding of the single disequality constraint
〈a1, . . . , ak〉 · x 6≡m b. This ensures that the propositional encoding of S′ does
not grow without bound, which is vital for tractability. A chain length result
for congruences [11] ensures that the total number of calls to the SAT solver is
O(wk) when m = 2w.

Example 5. Suppose f = (¬x3 ∧ ¬x2 ∧ ¬x1 ∧ ¬x0 ∧ ¬x′
3 ∧ ¬x′

2 ∧ ¬x′
1 ∧ ¬x′

0) ∨
(x3 ∧ x′

3 ∧ x′
2 ∧ x′

1 ∧ x′
0) ∨ (¬x3 ∧ (x2 ∨ x1 ∨ x0) ∧ ¬x′

3 ∧ ¬x′
2 ∧ ¬x′

1 ∧ x′
0).

(This function could appear in an attempt to reason about an assignment x :=
sign(x) for a machine with 4-bit words.) The table given in Figure 3 shows how
the algorithm proceeds when computing the congruent closure of f , assuming a
particular sequence of results being returned from a SAT solver. The responses
from the solver are shown. In step 0, a single model of f produces the equation
system s1. This, and the subsequent congruence systems, are also shown. Each
system si is produced from its predecessor si−1 by identifying some model x of
f that is not covered by si−1 and calculating the strongest congruence system
covering both, that is, si is the join of si−1 and the system expressing the fact
that x is a model. The congruent closure of f is finally given by s6.

The following proposition states the correctness of the algorithm: the result is
independent of the order in which a SAT/SMT solver finds solutions. A proof
sketch has been relegated to the appendix.

Proposition 1. Let S ⊆ B
k and m ∈ N, and let [A|b] = closure(S, m). Then

affk
m(S) = {x ∈ Z

k
m | Ax ≡m b}.

3 Relational Semantics

Flowchart programs are defined over a finite set of labels L and a set of variables
X = {x1, . . . , xk} that range over values drawn from R = [−2w−1, 2w−1 − 1]. A
flowchart program P is a quadruple P = 〈L, X, ℓ0, T 〉 where ℓ0 ∈ L indicates the
program entry point and T ⊆ L×L×Guard× Stmt is a finite set of transitions.

3.1 Syntax of flowchart programs

The classes of well-formed expressions, guards and statements are defined by:

Expr ::= X | R | −Expr | Expr bop Expr

Guard ::= true | false | Expr rop Expr | Guard lop Guard

Stmt ::= skip | X := Expr | Stmt; Stmt
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Step i Response from SAT solver Ax ≡m b

0 0 x0 = 0, x1 = 0, x2 = 1, x3 = 0, x′

0 = 1, x′

1 = 0, x′

2 = 0, x′

3 = 0 s1

1 0 x0 = 0, x1 = 0, x2 = 0, x3 = 1, x′

0 = 1, x′

1 = 1, x′

2 = 1, x′

3 = 1 s2

2 0 UNSATISFIABLE s2

3 1 UNSATISFIABLE s2

4 2 x0 = 0, x1 = 0, x2 = 0, x3 = 0, x′

0 = 0, x′

1 = 0, x′

2 = 0, x′

3 = 0 s3

5 2 UNSATISFIABLE s3

6 3 x0 = 0, x1 = 1, x2 = 0, x3 = 0, x′

0 = 1, x′

1 = 0, x′

2 = 0, x′

3 = 0 s4

7 3 x0 = 0, x1 = 1, x2 = 1, x3 = 0, x′

0 = 1, x′

1 = 0, x′

2 = 0, x′

3 = 0 s5

8 3 x0 = 1, x1 = 0, x2 = 0, x3 = 0, x′

0 = 1, x′

1 = 0, x′

2 = 0, x′

3 = 0 s6

s1 : s2 :
8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

x0 ≡4 0
x1 ≡4 0

x2 ≡4 1
x3 ≡4 0

x′

0 ≡4 1
x′

1 ≡4 0
x′

2 ≡4 0
x′

3 ≡4 0

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

x0 ≡4 0
x1 ≡4 0

x2 x3 ≡4 1
x3 −x′

1 ≡4 0
x′

0 ≡4 1
x′

1 −x′

2 ≡4 0
x′

2 −x′

3 ≡4 0

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

s3 : s4 :
8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

x0 ≡4 0
x1 ≡4 0

x2 x3 −x′

0 ≡4 0
x3 −x′

1 ≡4 0
x′

1 −x′

2 ≡4 0
x′

2 −x′

3 ≡4 0

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

8

>

>

>

>

<

>

>

>

>

:

x0 ≡4 0
x1 x2 x3 −x′

0 ≡4 0
x3 −x′

1 ≡4 0
x′

1 −x′

2 ≡4 0
x′

2 −x′

3 ≡4 0

9

>

>

>

>

=

>

>

>

>

;

s5 : s6 :
8

>

>

<

>

>

:

x0 ≡4 0
x3 −x′

1 ≡4 0
x′

1 −x′

2 ≡4 0
x′

2 −x′

3 ≡4 0

9

>

>

=

>

>

;

8

<

:

x3 −x′

1 ≡4 0
x′

1 −x′

2 ≡4 0
x′

2 −x′

3 ≡4 0

9

=

;

Fig. 3. SAT responses and the six congruence systems that arise for Example 5

where the sets of binary operators bop, logical operators lop and relational op-
erators rop are defined thus rop = {=, 6=, <,≤}, bop = {+,−, & , | ,≪ ,≫ },
lop = {∧,∨} and the & , | ,≪ ,≫ symbols denote C-style bitwise operations.

Example 6. The program in Figure 1(a) can be expressed as the flowchart
〈{ℓ0, ℓ1, ℓ2}, {p, x, y}, ℓ0, T 〉 where T = {t1, t2, t3} and t1 = 〈ℓ0, ℓ1, true, p = 0;
y = x〉, t2 = 〈ℓ1, ℓ1, y 6= 0, y := y & (y − 1); p := 1 − p〉, t3 = 〈ℓ1, ℓ2, y = 0, skip〉.

Example 7. The program in Figure 1(b) is expressed as

〈{ℓ0, ℓ1}, {x, y}, ℓ0, {〈ℓ0, ℓ1, true, y := x; y := e1; y := e2; y := e3; y := e4〉}〉

where e1, e2, e3 and e4 are the RHSs of the assignments that follow y := x.
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3.2 Semantics of flowchart programs

All variables are of limited-precision integer signed type, based on some word
length w. The semantics can be formulated denotationally in terms of functions:
The set of states is the function space Σ = X → R and each state σ ∈ Σ

maps a variable to a value of R; the function E : Expr → Σ → R evaluates an
expression; and the function S : Stmt → Σ → Σ transforms one state to another.
However, we prefer to give a relational semantics, for a number of reasons. First,
we consider programs to take input via the program variables, so the semantics
needs to express how, at different points, program states are related to initial
states. Second, the relational semantics can be bit-blasted in a natural way, and
this is essential to the program analysis that we discuss. Third, we avoid a need
to lift a standard semantics to a so-called collecting semantics. Hence we wish to
express the effect of a program statement as a relation r ⊆ R2k that captures the
values of the k variables before and after the statement is executed. Compared
to the denotational approach, in our relational viewpoint a state transformer
S[[s]] : Σ → Σ is replaced by a relation r = {〈σ(x1), . . . , σ(xk), τ(x1), . . . , τ(xk)〉 |
σ ∈ Σ ∧ τ = S[[s]](σ)}. Henceforth S[[s]] will denote a relation S[[s]] ⊆ R2k.

3.3 Semantic machinery: composition and bit manipulation

To formulate a relational semantics, if a, b ∈ Rk then let a · b ∈ R2k denote the
concatenation of a and b. The identity relation is then Id = {a · a | a ∈ Rk}. If
r1, r2 ⊆ R2k then the composition of r1 and r2 is defined r1 ◦ r2 = {a · c | b ∈
Rk ∧ a · b ∈ r1 ∧ b · c ∈ r2}. Furthermore, if r1 ⊆ Rk and r2 ⊆ R2k then let
r1 ◦ r2 = {b | a ∈ r1 ∧ a · b ∈ r2}. If a = 〈a1, . . . , ak〉 ∈ Rk let a[i] = ai and if
b ∈ R let a[i 7→ b] = 〈a1, . . . , ai−1, b, ai+1, . . . , ak〉.

To specify bit-twiddling operations, let 〈〈.〉〉 : [−2w−1, 2w−1 − 1] → B
w and

〈.〉 : [0, 2w − 1] → B
w denote the signed and unsigned w-bit representation of

an integer. Thus let 〈〈n〉〉 = 〈x0, . . . , xw−1〉 where n = (
∑w−2

i=0 2ixi) − 2w−1xw−1

and let 〈m〉 = 〈x0, . . . , xw−1〉 where m =
∑w−1

i=0 2ixi. Let n1, n2 ∈ R. To define
n1 | n2 = n let 〈〈n〉〉 = 〈x1

0 ∨x2
0, . . . , x

1
w−1 ∨x2

w−1〉 where 〈〈ni〉〉 = 〈xi
0, . . . , x

i
w−1〉.

To define n1≪ n2 = n let 〈〈n〉〉 = 〈0, . . . , 0, x1
0, . . . , x

1
w−1−n2

〉 if n2 ∈ [0, w − 1]
otherwise n = 0 (which handles the normally unspecified case of when n2 < 0).
To define n1 + n2 = n let n ∈ R such that n1 + n2 ≡2w n. Bitwise conjunction,
rightshift and subtraction are analogously defined.

3.4 Semantic equations

The relational semantics of a guard g ∈ Guard is then given by S[[g]] = {a · a |
a ∈ Rk ∧ G[[g]]a}. The effect of a statement s ∈ Stmt is defined thus:

S[[skip]] = Id

S[[xi := e]] = {a · a[i 7→ E [[e]]a] | a ∈ Rk}
S[[s1; s2]] = S[[s1]] ◦ S[[s2]]
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where E and C are defined:

E [[xi]]a = a[i]
E [[n]]a = n

E [[−e]]a = r ∈ R where r ≡2w −(E [[e]]a)
E [[e1 ⊙ e2]]a = (E [[e1]]a) ⊙ (E [[e2]]a) where ⊙ ∈ bop

G[[e1 ⊗ e2]]a = (E [[e1]]a) ⊗ (E [[e2]]a) where ⊗ ∈ rop G[[true]]a = 1
G[[g1 ⊖ g2]]a = (G[[g1]]a) ⊖ (G[[g2]]a) where ⊖ ∈ lop G[[false]]a = 0

The semantics of a program P = 〈L, X, ℓ0, T 〉 is then defined as the set of smallest
relations {rℓ ∈ R2k | ℓ ∈ L} such that Id ⊆ rℓ0 and rℓi

◦ S[[g]] ◦ S[[s]] ⊆ rℓj
for all

〈ℓi, ℓj, g, s〉 ∈ T . Each relation rℓ is finite and relates states at ℓ0 to states at ℓ.
The set of reachable states at ℓ is given by the composition Rk ◦ rℓ.

4 Symbolic Relational Semantics over Boolean Functions

This section shows how a flowchart program can be bit-blasted, that is, described
symbolically with Boolean formulae. First, two disjoint sets of propositional
variables are introduced: X = {xi,j | xi ∈ X ∧ j ∈ [0, w − 1]} and X′ = {x′

i,j |

xi ∈ X ∧ j ∈ [0, w − 1]}. Second, each relation rℓ ⊆ R2k for ℓ ∈ L, is encoded
symbolically as a formula fℓ ∈ BX∪X′ , where BY denotes the class of formulae
that can be defined over the propositional variables Y . Third, operations over
relations are simulated by operations over formulae.

4.1 Semantic machinery: encoding and composition

We introduce a map sym : ℘(R2k) → BX∪X′ that specifies the symbolic encoding:

sym(r) =
∨

{
∧

xi∈X,j∈[0,w−1]

(xi,j ↔ 〈〈a[i]〉〉[j] ∧ x′
i,j ↔ 〈〈b[i]〉〉[j]) | a · b ∈ r}

For example, sym(Id) =
∧

xi∈X,j∈[0,w−1] xi,j ↔ x′
i,j . To handle expressions and

guards, we introduce a variant of the encoding map sym : ℘(Rk) → BX defined
thus sym(r) =

∨

{
∧

xi∈X,j∈[0,w−1] xi,j ↔ 〈〈a[i]〉〉[j] | a ∈ r}.
Different formulae can represent the same Boolean function, but if we identify

equivalent formulae (implicitly working with equivalent classes of formulae), then
functions and formulae can be used interchangeably. With this understanding,
sym is bijective so that a relation r ⊆ R2k uniquely defines a function f ∈ BX∪X′ ,
and vice versa. Moreover, if r1, r2 ∈ R2k then r1 ⊆ r2 iff sym(r1) |= sym(r2) where
|= denotes logical consequence.

To simulate composition with operations on formulae, let r1, r2 ⊆ R2k and
suppose sym(r1) = f1 and sym(r2) = f2, hence f1, f2 ∈ BX∪X′ . A formula
f ∈ BX∪X′ such that sym(r1 ◦ r2) = f can be derived as follows: Let X′′ =
{x′′

i,j | xi ∈ X ∧ j ∈ [0, w − 1]} so that X ∩ X′′ = X′ ∩ X′′ = ∅. Put
f ′
1 = f1 ∧

∧

xi∈X,j∈[0,w−1] x
′
i,j ↔ x′′

i,j and f ′
2 = f2 ∧

∧

xi∈X,j∈[0,w−1] xi,j ↔ x′′
i,j .

9



Define f ′ = ∃X′(f ′
1) ∧ ∃X(f ′

2) and then put f = ∃X′′(f ′) where the operations
∃X′(f ′

1), ∃X(f ′
2) and ∃X′′(f ′) eliminate the variables X′, X and X′′ from f ′

1, f ′
2

and f ′ respectively. Henceforth, denote f1 ◦b f2 = f .

4.2 Semantic equations

Analogues of S[[s]] ⊆ R2k, E [[e]] ⊆ R2k and G[[g]] ⊆ R2k over Boolean formu-
lae, namely, Sb[[s]] ∈ BX∪X′ , Eb[[e]] ∈ BX∪X′ and Gb[[g]] ∈ BX∪X′ can now be
constructed. The symbolic bit-level semantics for a guard g ∈ Guard is given
by Sb[[g]] = Gb[[g]] ∧

∧

xi∈X,j∈[0,w−1](x
′
i,j ↔ xi,j) whereas the semantics for a

statement s ∈ Stmt is given as follows:

Sb[[skip]] =
∧

xi∈X,j∈[0,w−1](x
′
i,j ↔ xi,j)

Sb[[xi := e]] =
∧

j∈[0,w−1](x
′
i,j ↔ Eb[[e]][j]) ∧

∧

xk∈X\{xi},j∈[0,w−1](x
′
k,j ↔ xk,j)

Sb[[s1; s2]] = Sb[[s1]] ◦b Sb[[s2]]

The second conjunct of Sb[[g]] expresses that variables remain unchanged. Like
before, Sb is defined in terms of Gb and Eb. The semantic function Eb : Expr →
[0, w − 1] → BX takes an expression and a bit position and returns the value of
that bit, expressed in terms of a Boolean formula. The function Gb : Guard → BX

takes a guard and returns its (Boolean) value. In what follows, f1 ∈ B
w
X

and
f2 ∈ B

w
X

abbreviate Eb[[e1]] and Eb[[e2]], respectively.

Eb[[xi]][j] = xi,j

Eb[[n]][j] = 〈〈n〉〉[j]
Eb[[−e]][j] = Eb[[e]][j] ⊕ ∨i−1

j=0Eb[[e]][j]

Eb[[e1 + e2]][j] = f1[j] ⊕ f2[j] ⊕
⊕j−1

k=0(f1[k] ∧ f2[k] ∧
∧j−1

m=k+1(f1[m] ⊕ f2[m]))
Eb[[e1 − e2]][j] = Eb[[e1 + (−e2)]][j]
Eb[[e1 & e2]][j] = f1[j] ∧ f2[j]
Eb[[e1 | e2]][j] = f1[j] ∨ f2[j]

Gb[[g1 = g2]] =
∧w−1

i=0 (f1[j] ↔ f2[j]) Gb[[true]] = 1
Gb[[g1 6= g2]] = ¬(Gb[[g1 = g2]]) Gb[[false]] = 0
Gb[[g1 < g2]] = ¬(Gb[[g2 ≤ g1]])
Gb[[g1 ≤ g2]] = (f1[w − 1] ∧ ¬f2[w − 1]) ∨

∨w−2
j=0 (¬f1[j] ∧ f2[j] ∧

∧w−1
k=j+1 f1[k] ↔ f2[k])

Gb[[g1 ∧ g2]] = (Gb[[g1]]) ∧ (Gb[[g2]])
Gb[[g1 ∨ g2]] = (Gb[[g1]]) ∨ (Gb[[g2]])

The formula for e1 + e2 is derived by considering a cascade of full adders with
w carry bits c. Then Gb[[e1 + e2]][j] = (f1[j] ⊕ f2[j] ⊕ c[j]) ∧ (¬c[0]) ∧ f where

f =
∧w−1

j=1 c[j] ↔ ((f1[j−1]∧f2[j−1])∨(f1[j−1]∧c[j−1])∨(f2[j−1]∧c[j−1])).
By the eliminating the b variables and simplifying, the above formula is obtained.
The equation for Eb[[e1≪ e2]][j] can be straightforwardly defined with w + 2
cases that handle the various classes of shift. Likewise for Eb[[e1≫ e2]][j]. Both
equations are omitted for brevity.
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4.3 Semantic equivalence

The semantics of a program P = 〈L, X, ℓ0, T 〉 can then be prescribed as the
set of least Boolean functions {fℓ ∈ BX∪X′ | ℓ ∈ L} such that sym(Id) |= fℓ0

and fℓi
◦b S[[g]] ◦b S[[s]] |= fℓj

for all 〈ℓi, ℓj , g, s〉 ∈ T . The semantics can be
equivalently stated as the least fixed point of a system of equations of the form
fℓj

= ∨{fℓi
◦bS[[g]]◦bS[[s]] | 〈ℓi, ℓj, g, s〉 ∈ T }, where the equation for fℓ0 includes

the additional disjunction sym(Id). The semantics of the previous section can
likewise be expressed as a fixed point. This allows induction to be applied to
argue sym(rℓ) = fℓ for all ℓ ∈ L. However this itself requires the use of induction
to show sym(G[[g]]) = Gb[[g]] for all g ∈ Guard and sym(E [[e]][j]) = Eb[[e]][j] for all
s ∈ Stmt and j ∈ [0, w− 1]. The key point is that the semantics of this section is
equivalent to that introduced previously in that sym(rℓ) = fℓ for all ℓ ∈ L. The
difference is the latter semantics provides a basis suitable for deriving transition
systems over congruences.

5 Abstract Relational Semantics over Congruences

Abstract interpretation [3] is a systematic way of deriving invariants by consid-
ering all paths through a program. Each atomic operation over the concrete data
values is simulated with an abstract version manipulating abstract data values
drawn from an abstract domain. The semantics of a transition t = 〈ℓi, ℓi, g, s〉 is
expressed by the Boolean function f = S[[g]]◦bS[[s]] ∈ BX∪X′ , which permits t to
be viewed as a single atomic operation. Once the modulo m is chosen, congruent
closure provides a way to map f to a system of congruence equations that define
an abstract version of t.

5.1 Deriving abstract transitions

Since f is Boolean formula on X∪X′, we let AffX∪X
′

m denote the set of systems of

equations modulo m that can be defined over X∪X′. Thus if c ∈ AffX∪X
′

m then c is
a system of implicitly conjoined equations (rather than a single equation). Then
the abstraction map α2kw

m : ℘(B2kw) → Aff2kw
m can be extended to αm : BX∪X′ →

AffX∪X
′

m in the natural way. This leads to the notion of an abstract flowchart
program 〈L, X, ℓ0, T

′〉 where T ′ = {〈ℓi, ℓj , αm(S[[g]] ◦b S[[s]])〉 | 〈ℓi, ℓj, g, s〉 ∈ T }.
Enlarging m preserves more of f at the expense of a more complicated abstract
program. Note how αm(S[[g]] ◦b S[[s]]) summarises both g and s (even when s is
itself compound) with a single system of congruences.

Example 8. Observe αm(sym(Id)) =
∧

xi∈X,j∈[0,w−1] xi,j ≡m x′
i,j .

Example 9. Consider again the parity program and suppose w = 16. Then com-
puting αm(S[[g]] ◦b S[[s]]) for m = 2 and each transition 〈ℓi, ℓj , g, s〉 ∈ T given in
Example 6, we derive the abstract transitions t′1 = 〈ℓ0, ℓ1, c1〉, t′2 = 〈ℓ1, ℓ1, c2〉

11



and t′3 = 〈ℓ1, ℓ2, c3〉 where

c1 =







(∧15
i=0p

′
i ≡2 0) ∧

(∧15
i=0y

′
i ≡2 xi) ∧

(∧15
i=0x

′
i ≡2 xi)

c2 =























p0 + p′0 ≡2 1 ∧
(∧15

i=1pi ≡2 p′i) ∧
(∧15

i=0xi ≡2 x′
i)∧

y′
0 ≡2 0 ∧

1 +
∑15

i=1 y′
i ≡2

∑15
i=0 yi

c3 =















(∧15
i=0p

′
i ≡2 pi) ∧

(∧15
i=0x

′
i ≡2 xi)∧

(∧15
i=0yi ≡2 0) ∧

(∧15
i=0y

′
i ≡2 0)

Of course, such translation cannot be performed manually and therefore we have
written a Java application that derives abstract transition systems. It applies the
congruent closure algorithm presented in section 2 and uses the MiniSat solver
through the Kodkod Java bindings. The most complicated system, c2, requires
97 SAT instances to be derived taking 3s overall. Such a modulus is sufficient to
verify the correctness of parity, but in general, the behaviour of the program is
unknown and then it is more appropriate to use a modulo that reflects the size
of machine words. Using a modulo of, say, 232 does not increase the number of
SAT instances but does double the time required to compute c2. Interestingly,
if c2 is derived without the guard y 6= 0 (which accidently happened when this

experiment was conducted), then the equation 1 +
∑15

i=0 y′
i ≡2

∑15
i=0 yi cannot

be inferred. Note too that y′
0 ≡2 0 asserts that the low bit of y is reset.

Example 10. Let us revisit the word reversal program of Example 7 where w =
16. Thus put m = 216. Then the abstract flowchart has a single transition
〈ℓ0, ℓ1, c〉 where c =

∧15
i=0(x

′
i ≡216 xi ∧ y′

15−i ≡216 xi). This can be derived
in 0.8s and requires 33 calls to the SAT solver. Note how c precisely summarises
program behaviour, despite the use of devious bit-twiddling operations.

5.2 Applying abstract transitions

Once an abstract transition system has been derived, existing techniques can be
used to compute congruences that hold at each ℓ ∈ L. Efficient algorithms have
been reported elsewhere [1, 8, 11] for checking entailment c1 |= c2, calculating join

c1⊔c2, and eliminating variables ∃Y (c1) for c1, c2 ∈ AffX∪X
′

m . We make no contri-
bution in this area, but to keep the paper self-contained, we present a semantics
for abstract flowchart programs which specifies a program analysis. The seman-
tics is formulated in terms of a composition operator, ◦c, that mirrors ◦b. To de-

fine this operator, let c1, c1 ⊆ AffX∪X
′

m . Put c′1 = c1∧
∧

xi∈X,j∈[0,w−1] x
′
i,j ≡m x′′

i,j

and c′2 = c2 ∧
∧

xi∈X,j∈[0,w−1] xi,j ≡m x′′
i,j , and then proceed by analogy with

the ◦b construction to define c1 ◦c c2 = c.

The semantics of an abstract flowchart program 〈L, X, ℓ0, T
′〉 can then be

defined as the set of least congruence systems {cℓ ∈ AffX∪X
′

m | ℓ ∈ L} such
that αm(sym(Id)) |= cℓ0 and cℓi

◦c c |= cℓj
for all 〈ℓi, ℓj, c〉 ∈ T ′. As before,

the semantics can be equivalently stated as the least fixed point of a system
of equations, which leads to an iterative approach for computing congruence
invariants:
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ℓ0: assume(0 ≤ n);
x := 0; y := 0;

ℓ1: while (x < n)
y := y + 2;
x := x + 1;

ℓ2: skip

ℓ0: assume(0 ≤ n);
x := 0; y := 0; δ := n − x;

ℓ1: while (0 < δ)
y := y + 2;
x := x + 1;
δ := n − x;

ℓ2: skip

Fig. 4. Inferring x ≤ n by using a witness variable δ

Example 11. Returning to Example 9, the invariants cℓ0 , cℓ1 , cℓ2 can be com-
puted iteratively since they are the least solutions to the equations: cℓ0 =
αm(sym(Id)), cℓ1 = (cℓ0 ◦c c1) ⊔ (cℓ1 ◦c c2) and cℓ2 = cℓ1 ◦c c3. To solve these
equations, first assign cℓ0 = cℓ1 = cℓ2 = false where false is the unsatisfiable con-
gruence system. Application of the first equation then yields cℓ0 = (∧j∈[0,15]p

′
j ≡2

pj)∧(∧j∈[0,15]x
′
j ≡2 xj)∧(∧j∈[0,15]y

′
j ≡2 yj). Thereafter cℓ0 is stable. For brevity,

let c = (∧j∈[1,15]p
′
j ≡2 pj) ∧ (∧j∈[0,15]x

′
j ≡2 xj). An application of the second

equation gives cℓ1 = c∧ p′0 ≡2 0∧ (∧j∈[0,15]y
′
i ≡2 xi). Then cℓ1 ◦c c2 = c∧ (p′0 ≡2

1) ∧ (y0 ≡2 0) ∧ (1 ≡2

∑

j∈[0,15] xi −
∑

j∈[1,15] y
′
i), thus reapplying the second

equation gives cℓ1 = c∧(y0 ≡2 0)∧(p′0 ≡2

∑

j∈[0,15] xi−
∑

j∈[1,15] y
′
i). Thereafter

cℓ1 is also stable. Finally, the third equation then gives cℓ2 = c ∧ (∧j∈[0,15]y0 ≡2

0) ∧ (∧j∈[0,15]y
′
0 ≡2 0) ∧ (p′0 ≡2

∑

j∈[0,15] xi). Then cℓ2 is stable too, and the
fixed point has been reached. Correctness of parity follows from the invariant
p′0 ≡2

∑

j∈[0,15] xi that holds at ℓ2.

6 Transformation for Range Information

Consider the program in the left-hand-side of Figure 4 where n, x and y are
signed w bit variables. Bit-level congruences cannot directly represent the in-
equality (

∑w−2
i=0 2ixi) − 2w−1xw−1 ≤ (

∑w−2
i=0 2ini) − 2w−1nw−1 that holds at ℓ2,

which is crucial for inferring that x and n are bit-wise equivalent at ℓ2.

6.1 Adding witness variables

However, bit-level congruences can express the non-negativity of a variable,
which suggests augmenting the program with a variable δ that witnesses the
non-negativity of n − x. The program in the right-hand-side of the figure illus-
trates the tactic, and the flow-graph for this program is given below:

〈ℓ0, ℓ1, 0 ≤ n, x := 0; y := 0; δ := n − x〉
〈ℓ1, ℓ1, 0 < δ, y := y + 2; x := x + 1; δ := n − x〉
〈ℓ1, ℓ2, δ ≤ 0, skip〉
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Generating the abstract transitions as previously described gives t′1 = 〈ℓ0, ℓ1, c1〉
and t′2 = 〈ℓ1, ℓ1, c2〉 where

c1 =
∧















x′
0 ≡16 0, x′

1 ≡16 0, x′
2 ≡16 0, x′

3 ≡16 0,

y′
0 ≡16 0, y′

1 ≡16 0, y′
2 ≡16 0, y′

3 ≡16 0,

n′
0 ≡16 n0, n′

1 ≡16 n1, n′
2 ≡16 n2, n′

3 ≡16 n3,

δ′0 ≡16 n0, δ′1 ≡16 n1, δ′2 ≡16 n2, δ′3 ≡16 n3















c2 =
∧















































δ0 + δ′0 ≡16 1, δ1 + 2δ2 ≡16 δ′0 + δ′1 + 2δ′2, 0 ≡16 δ3,

0 ≡16 δ′3, n′
0 ≡16 n0, n′

1 ≡16 n1,

n′
2 ≡16 n2, n3 ≡16 n′

3, 1 ≡16 x0 + x′
0,

y0 ≡16 y′
0, 1 ≡16 y1 + y′

1,

δ′0 + 8(n3 + x3 + x′
2) + 1 ≡16

n0 + 2(n1 + x1 − δ′1) + 4(n2 + x2 − δ′2 − x′
1) + 3x0,

2x′
0 + 2x′

1 + 4x′
2 ≡16 2x1 + 4x2 + 8x3 + 8x′

3 + 2,

4y2 + 4 ≡16 8y3 + 4y′
1 + 4y′

2 + 8y′
3















































The width is set to w = 4 merely for presentational purposes. The key point
is that c2 asserts that 0 ≡16 δ′3 indicating that δ is non-negative at the end
of the loop, as required. In general, a loop condition that is a single inequality
e1 < e2 (resp. e1 ≤ e2) can be replaced with 0 < δ where δ = e2 + (−e1) (resp.
δ = e2 + (−e1) + 1) so the transformation can be automated.

6.2 Decomposing guards

Interestingly, introducing a witness variable is not by itself sufficient to deduce
xi ≡2w ni for all i ∈ [0, w−1] at ℓ2. The semantics of abstract transition systems
can be applied to derive:

cℓ1 =
∧







δ3 ≡16 0,

y0 ≡16 0, y1 ≡16 x0, y2 ≡16 x1, y3 ≡16 x2,
∑3

i=0 2iδi +
∑3

i=0 2ixi ≡16

∑3
i=0 2ini







which, although unexpected, is not in error since 8δ3 ≡16 −8δ3 and likewise
for x3 and n3. But to infer the equivalence of x and n at ℓ2 it is necessary
to additionally impose the constraint δ ≤ 0. However, such a constraint is not
captured in the abstract transition t3 = 〈ℓ1, ℓ2, c〉 where

c =
∧















n0 ≡16 n′
0, n1 ≡16 n′

1, n2 ≡16 n′
2, n3 ≡16 n′

3,

x0 ≡16 x′
0, x1 ≡16 x′

1, x2 ≡16 x′
2, x3 ≡16 x′

3,

y0 ≡16 y′
0, y1 ≡16 y′

1, y2 ≡16 y′
2, y3 ≡16 y′

3,

δ0 ≡16 δ′0, δ1 ≡16 δ′1, δ2 ≡16 δ′2, δ3 ≡16 δ′3















since c does not preserve any information pertaining to the δ ≤ 0 constraint.
However, observe that δ ≤ 0 holds iff δ < 0 ∨ δ = 0 and both δ < 0 and
δ = 0 can represented with bit-level congruences. This suggests transforming
the third transition into 〈ℓ1, ℓ2, δ < 0, skip〉 and 〈ℓ1, ℓ2, δ = 0, skip〉. Then these
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rules respectively yield the abstract transitions 〈ℓ1, ℓ2, c1〉 and 〈ℓ1, ℓ2, c2〉 where
c1 = c ∧ (δ3 ≡16 1) and c2 = c∧ (∧j∈[0,3]δj ≡16 0). Only the second transition is
applicable since cℓ1 asserts δ3 ≡16 0. Thus the following constraints hold at ℓ2:

cℓ2 =
∧







δ0 ≡16 0, δ1 ≡16 0, δ2 ≡16 0, δ3 ≡16 0,

y0 ≡16 0, y1 ≡16 x0, y2 ≡16 x1, y3 ≡16 x2,

x0 ≡16 n0, x1 ≡16 n1, x2 ≡16 n2, x3 ≡16 n3







Thus, even if a guard is not amenable to an exact bit-level representation, then
it does not imply its transition cannot be decomposed to finesse the problem.

7 Concluding Discussion

We have shown how a SAT/SMT solver can be employed to derive abstract
transition systems over linear congruences. The resulting invariants can express
congruence relationships amongst the individual bits that comprise variables
and, as a consequence, the abstract transition systems can calculate relationships
even at the granularity of bit-twiddling. The advantage of the scheme presented
in this paper is that SAT solving is confined to the derivation of the abstract
transition system; only linear operations of polynomial complexity are required
thereafter. We also proposed program transformations to improve the analysis
through the use of witness variables that can help observe range information.

One may wonder how the efficiency of congruence closure depends on the SAT
(or SMT) engine. Thus, as an experiment, MiniSat was replaced with ZChaff.
This had little discernible impact on the overall time to compute the closure
(transfer functions) for transition relations that formalised a number of bit-
twiddling algorithms given in Warren’s book [16]. Rather surprisingly, only a
modest slow-down was found when MiniSat was replaced by SAT4J which is a
solver that is implemented in Java itself. To understand why, consider Wegner’s
fast bit counting algorithm [16]. Deriving the transfer functions for the 16 bit
version involves 98 SAT instances. Solving the instances takes 0.5s overall but
5.6s is spent computing all the joins. In this example, many joins involve ma-
trices of size 129 × 129 arising from a relation over 129 bits. The effect is more
pronounced for a 32 bit version of the algorithm which has one relation over 259
bits. To solve the 195 SAT instances requires 11.4s overall, but the join opera-
tion takes up 149.5s, partly because it manipulates matrices of size 259 × 259.
The bias towards join is least in an example that computes the sign operation
by bit-twiddling. For the 32 bit version of the algorithm, the timings are 0.1s
and 0.4s for the SAT and join components. We conclude that SAT is not the
bottleneck, and that future effort should focus on how to exploit the sparsity of
the matrices that arise.
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A Proof Appendix

Proposition 1. Let S ⊆ B
k and m ∈ N, and let [A|b] = closure(S, m). Then

affk
m(S) = {x ∈ Z

k
m | Ax ≡m b}.

Proof. (Sketch.) Let r = rows([A|b]). Let ej be the equation Σk
i=1aj,ixi ≡m bi,

where aj,1, aj,2, . . . , aj,k, bi = row([A|b], j). The following invariant holds at the
entry and exit of the body of the while loop, together with the fact that [A|b] is
in upper triangular form:

affk
m(S) = (affk

m(S) ⊔ {ej | 1 ≤ j ≤ r − i}) ∪ {ej | r − i < j ≤ r} (1)

This is clearly satisfied immediately before the while loop.
To see that the loop body preserves (1), note that by the invariant, every

y ∈ S satisfies
∧

{ej | r − i < j ≤ r}. There are two cases:

1. Assume some x ∈ S fails to satisfy er−i. The strongest set of congruence
equations that will satisfy x as well as every solution to [A|b] is (Ax ≡m

b ⊔ er−i). This join on matrices can be calculated as in [8], which exploits
the fact that the input matrices are in upper triangular form. The result
can be brought into upper triangular form as well—and algorithm for this
is provided by Müller-Olm and Seidl [11]. It remains to show that the last i

equations remain unchanged by the join operation.
Let [C|c] be the matrix corresponding to e1, . . . , er−i, and let [E|e] be the
matrix corresponding to er−i+1, . . . , er. Then 〈a1, . . . , ak, b〉 is the last row of
[C|c], and the chosen x satisfies, by the invariant, Ex = e, but not er−i. Note

that both [C|c], [E|e] and

[

C

E

∣

∣

∣

∣

c

e

]

∈ Zr×(k+1) are all in upper triangular

form. The effect of the join is to leave [E|e] unchanged and to remove the last
row of [C|c]. For each remaining row of [C|c], the index of the leading entry

remains unchanged. In other words, the upper triangular form of

[

C

E

∣

∣

∣

∣

c

e

]

⊔

[I | x] is of the form

[

D

E

∣

∣

∣

∣

d

e

]

. Hence (1) is preserved.

2. Otherwise, each x ∈ S satisfies er−i, and i is incremented. This clearly
preserves (1).

Finally, upon exit from the while loop, (1), together with i ≥ r, entails affk
m(S) =

{x ∈ Z
k
m | Ax ≡m b}, as desired.
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