
An Expression Processor:
A Case Study in Refactoring Haskell Programs

Christopher Brown1, Huiqing Li2 and Simon Thompson2

1 School of Computer Science, University of St. Andrews, UK.
chrisb@cs.st-andrews.ac.uk

2 School of Computing, University of Kent, UK.
{H.Li,S.J.Thompson}@kent.ac.uk

Abstract. Refactoring is the process of changing the structure of a pro-
gram while preserving its behaviour. This behaviour preservation is cru-
cial so that refactorings do not introduce any bugs. Refactoring is aimed
at increasing code quality, programming productivity and code reuse.
Refactoring has been practised manually by programmers for as long
as programs have been written; however, with the advent of refactoring
tools, refactoring can be performed semi-automatically, allowing refac-
torings to be performed (and undone) easily.
In this paper, we briefly describe a number of refactorings implemented
in the Haskell Refactorer, HaRe. In addition to this, we also implement a
simple expression processor to demonstrate how some of the refactorings
implemented in HaRe can be used to aid programmers in developing
Haskell software.

1 Introduction

Often programmers write a first version of a program without paying full atten-
tion to programming style or design principles [1]. Having written a program,
the programmer will realise that a different approach would have been much
better, or that the context of the problem has changed. Refactoring tools pro-
vide software support for modifying the design of a program without changing
its functionality: often this is precisely what is needed in order to begin adapting
or extending it.

The term ‘refactoring’ was first introduced by Opdyke in his PhD thesis in
1992 [2] and the concept goes at least as far back as the fold/unfold system
proposed by Burstall and Darlington in 1977 [3], although, arguably, the fold-
unfold system was more about algorithm change than structural changes. A key
aspect of refactoring — illustrated by the ‘rename function’ operation — is that
its effect is across a code base, rather than being focussed on a single definition:
renaming a function will have an effect on all the modules that call that function,
for instance.

The Haskell Refactorer, HaRe, is a product of the Refactoring Functional
Programs project at the University of Kent [5] [6] by Li, Reinke, Thompson and
Brown. HaRe provides refactorings for programs written in the full Haskell 98

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/10635738?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

standard language [7], and is integrated with the two most popular development
environments for Haskell programs [8], namely Vim [9] and (X)Emacs [10]. HaRe
refactorings can be applied to both single- and multi-module projects.

HaRe is itself implemented in Haskell, and is built upon the Programatica
[11] compiler front-end, and the Strafunski [12] library for generic tree traversal.
The HaRe programmers’ application programmer interface (API) provides the
user with an abstract syntax tree (AST) for the program together with utility
functions (for example, tree traversal and tree transforming functions) to assist
in the implementation of refactorings.

In this paper, we describe briefly a number of new refactorings for HaRe and
demonstrate their use by applying them to an expression processing example.
Using Haskell as the implementation language allows us the exploration of the
usability of Haskell for implementing transformation and analysis tools. The
particular contributions presented of this paper are to cover:

– Structural and Data-Type Refactorings. The design and implementa-
tion of a set of structural and data-type refactorings. These refactorings are
introduced in Section 2.

– Refactoring Case Study. A case study for refactoring Haskell programs. In
particular we apply the refactorings described in this paper to an expression
processing example. The example is used to demonstrate the capacity of the
refactorings from this paper in a simple, but still useful, context. This case
study is presented in Section 3.

We conclude the paper with a discussion of future work.

2 Structural and Data-Type Refactorings

This section describes some new structural and data-type refactorings that have
been defined and implemented in HaRe. In this paper we chose to select the
refactorings that would appear most useful to the Haskell programmer. The
refactorings presented here follow on from the refactoring work by Li [13], and
use the refactoring catalogue [14] maintained by Thompson as a basis. In par-
ticular, the following refactorings are described in this section: folding (Section
2.1); merging (Section 2.2); adding a constructor (Section 2.3); removing a con-
structor (Section 2.4); adding and removing a data type field (Section 2.5); and
introducing pattern matching (Section 2.6).

We note that the refactorings are only very briefly described here. For a much
more detailed overview of the transformation rules and side conditions for each
refactoring described in this section, we refer the reader to Brown’s PhD thesis
[15].

2.1 Folding

Folding replaces instances of the right-hand-side of a definition by the corre-
sponding left-hand-side. This refactoring is designed to be the complement of

unfolding which is described in Li’s PhD thesis [13]. Folding can be used to
eliminate some duplicate expressions within a program; it can also be used to
create a name for a common abstraction occurring within the program by ab-
stracting away from a common sub-expression. As long as there is a definition
to fold against this can also be seen as naming an abstraction for a common
sub-expression. This is achieved by first extracting the common definition using
the introduce new definition refactoring [13], and then folding against this newly
introduced definition.

Example An example of folding an instance of the right hand side of a def-
inition, table, is shown in Figure 1. In the figure, two definitions are given:

Before:

showAll = (concat . format) . (map show)

table = concat . format

After:

showAll = table . map show

table = concat . format

Fig. 1. Before and after simple fold

showAll and table. The right-hand-side of table, as can be seen, also appears
as a sub-expression on the right-hand-side of showAll. Folding allows the defini-
tion table to be selected and all occurrences of its right-hand-side (occurrences
within different entities in the same scope as table, except those that appear
on the right-hand-side of table) are replaced with a call to table. The top row
of the example shows that the sub-expression, (concat . format) has been re-
placed with a call to table, passing in (map show) as an argument; this therefore
eliminates some duplicated code within the program.

2.2 Merging

Merging takes a number of selected definitions and creates a new, generative,
definition that returns a tuple. Each component of the tuple returned by the
merged definition encapsulates the behaviour of the selected entities. The merged
definition is generative in the sense that it is recursive, and removes duplicate
parts of the function by introducing code sharing. Merging is the inverse of
splitting, as defined in [15].

Merging is actually known as tupling in the field of program transforma-
tion, and was originally proposed by Pettorossi [16], as a strategy for composing
efficient computations by avoiding repeated evaluations of recursive functions.

Example An example of merging the functions splitAt 1 and splitAt 2 is
shown, from left to right, in Figure 2. In order to perform the merge, the user
must first select each function splitAt 1 and splitAt 2 in turn and add them
to a merging cache, so that HaRe can perform the refactoring over the selected
entities. The newly introduced definition, splitAt, uses only one list traversal,
rather than a separate traversal for each of splitAt 1 and splitAt 2.

Before:

splitAt_1 :: Int -> [a] -> [a]

splitAt_1 0 _ = []

splitAt_1 _ []= []

splitAt_1 n (x:xs)

= x : splitAt_1 (n-1) xs

splitAt_2 :: Int -> [a] -> [a]

splitAt_2 0 xs = xs

splitAt_2 _ [] = []

splitAt_2 n (x:xs)

= splitAt_2 (n-1) xs

After:

splitAt :: Int -> [a] -> ([a], [a])

splitAt 0 xs = ([],xs)

splitAt _ [] = ([],[])

splitAt n (x:xs) = (x:ys,zs)

where

(ys,zs) = splitAt (n-1) xs

Fig. 2. Merging a pair of definitions

2.3 Adding a Constructor to a data type

Adding a constructor to a defined data type. The introduced constructor is added
immediately after a selected constructor definition in a data type. New pattern
matching is introduced for all functions defined over the modified data type.

Example An example of adding a constructor Var to a data type Expr is
shown in Figure 3. In the example, we select the constructor Minus and choose
to add a new constructor immediately after (the result is shown in the right
column). We add the new constructor Var with a parameter Int. This is done
by HaRe prompting the user for the constructor name and the types of its fields
when the refactoring is selected from the menu. The function eval is updated
automatically to include pattern matching for the newly added constructor.

Before:

data Expr = Plus Expr Expr

| Minus Expr Expr

eval :: Expr -> Int

eval (Plus e1 e2)

= (eval e1) + (eval e2)

eval (Minus e1 e2)

= (eval e1) - (eval e2)

After:

data Expr = Plus Expr Expr

| Minus Expr Expr

| Var Int

addedVar = error "added Var Int to Expr"

eval :: Expr -> Int

eval (Plus e1 e2)

= (eval e1) + (eval e2)

eval (Minus e1 e2)

= (eval e1) - (eval e2)

eval (Var a) = addedVar

Fig. 3. Adding a constructor

2.4 Removing a Constructor from a Data Type

Removing a constructor is defined as the inverse of adding a constructor. Rather
than being a refactoring, removing a constructor is instead defined as a destruc-
tive transformation in the sense that it eliminates equations from the program
space; this therefore may change the behaviour. Removing a constructor allows
a constructor to be identified and all clauses that involve pattern matching over
the constructor are commented out. All occurrences of the constructor in an
expression are replaced with calls to error.

example An example of removing a constructor Var from a data type Expr is
defined in Figure 3 read from right to left. Var is selected for removal and the
refactoring removes the value from its defining definition, Expr and comments
out all equations referring to the value Var in a pattern. When used on the right
hand side Var is replaced with a call to error. The equation eval (Var a) =
addedVar is also commented out, although this is not shown in the figure.

2.5 Adding or Removing a Field to or From a Constructor

Adding a field to a constructor allows a new field to be added to an identified
data type constructor.

Removing a field is defined as the inverse of adding a field. All references
to the removed field in pattern matches are commented out of the program.
Removing a field is a destructive transformation rather than a refactoring, as it
changes behaviour.

Before:

data Data1 a = C1 a Int Char

| C2 Int

| C3 Float

f :: Data1 a -> Int

f (C1 a b c) = b

f (C2 a) = a

f (C3 a) = 42

g (C1 (C1 x y z) b c) = y

h :: Data1 a

h = C2 42

After:

data Data1 b a = C1 a Int Char

| C2 Int

| C3 b Float

f :: (Data1 b a) -> Int

f (C1 a b c) = b

f (C2 a) = a

f (C3 c3_1 a) = 42

g (C1 (C1 x y z) b c) = y

h :: Data1 b a

h = C2 42

Fig. 4. Adding and removing a field

Example Figure 4, read from left to right, shows an example of a new field being
added to a data type. The new field, of the polymorphic type b, generalises the
data type further. b is added to the left hand side of the type definition, and
also to all type signatures which involve the type Data1 in the program.

Conversely, Figure 4, read from right to left, shows an example of a field being
destructively removed from a data type. The field in question, of the polymorphic
type b, is removed from the left hand side of the type definition, and also from
all type signatures involving Data1.

2.6 Introduce Pattern Matching Over an Argument Position

Introduction of pattern matches for a function with a variable in a particular
argument position in all its defining equations replaces the variable by an ex-
haustive set of patterns over the type of the variable.

Before:

f :: [Int] -> Int

f x = head x + head (tail x)

After:

f :: [Int] -> Int

f x@[] = head x + head (tail x)

f x@(y:ys) = head x + head (tail x)

Fig. 5. Introducing pattern matches for a pattern

Example An example of introducing pattern matches is given in Figure 5 from
left to right. In the example, the new pattern matches are added to the definition
of f and the introduced patterns for x are placed within an as pattern. The right-
hand-side is copied into the new equations and any new pattern variables that
are introduced are given new, distinct, names so that no binding conflicts can
occur. In the example, the pattern variables y and ys are introduced.

3 Refactoring an Expression Processor

In this section we present a simple example illustrating how the majority of the
refactorings described in this paper could be used. In the example, we design a
very simple language; we then write a parser, evaluator and pretty printer for
that language. As the application is being implemented, there are cases where the
use of a refactoring tool greatly increases the productivity of the programmer,
and improves the design of the program, making the succeeding implementation
steps easier to perform. In addition to the previously mentioned techniques, we
also make use of the following refactorings from Li’s thesis [13]: renaming ; gen-
eralising ; introducing a new definition; and adding an argument to a definition.

The example starts with the very basics of implementing a language, parser
and evaluator. The code for this is shown in below; the grammar for the language

1 data Expr = Literal Int | Plus Expr Expr

2 deriving Show

3

4 parseExpr :: String -> (Expr, String)

5 parseExpr (’ ’:xs) = parseExpr xs

6 parseExpr (’+’:xs) = (Plus parse1 parse2, rest2)

7 where

8 (parse1, rest1) = parseExpr xs

9 (parse2, rest2) = parseExpr rest1

10 parseExpr (x:xs)

11 | isNumber x = (Literal (read (x:lit)::Int), drop (length lit) xs)

12 where

13 lit = parseInt xs

14 parseInt :: String -> String

15 parseInt [] = []

16 parseInt (x:xs) | isNumber x = x : parseInt xs

17 | otherwise = []

18 parseExpr xs = error "Parse Error!"

19

20 eval :: Expr -> Int

21 eval (Literal x) = x

22 eval (Plus x y) = (eval x) + (eval y)

Fig. 6. The basic language and parser

is described in the data type on Line 1 in Figure 6. So far, the language only has
the capacity to handle integer literals and applications of Plus. The function
parseExpr is the parser for the language, taking a String and converting it
into a tuple: the first element being the Abstract Syntax Tree for Expr, and the
second the unconsumed input. To show this in practice, the following shows how
the parser and evaluator can be invoked from the GHCi command line:

Prelude Parser> parseExpr "+ 1 2"

(Plus (Literal 1) (Literal 2),"")

Prelude Parser> eval $ fst $ parseExpr "+ 1 2"

3

For reasons of simplicity, the language does not include parentheses (although
this could easily be integrated into future versions) and + is not applied as an
infix function, also the expressions only take unsigned (positive) integers. For
the purpose of this example the expressions are given in a prefix format. The
complete implementation, for each stage of the case study, can be found at [17].

3.1 Stage 1: Initial Implementation

With the basics of the parser and evaluator set up, the first step is to start
integrating other constructs into the language. Therefore, we add the constructor

Mul to Expr in order to represent the application of * in our programs. We do
this by using the refactoring add a constructor (described in Section 2.3). The
refactoring asks us for the name of the constructor and any arguments. We enter
Mul Expr Expr and select the constructor Plus. The refactoring always adds
the new constructor immediately after the highlighted constructor. In this case
the refactoring adds the new constructor to the end of the definition of Expr
and also generates additional pattern matching clauses to eval (we use italics
to show code introduced by the refactorer):

data Expr = Literal Int | Plus Expr Expr | Mul Expr Expr

addedMul = error "Added Mul Expr Expr to Expr"

...

eval :: Expr -> Int

eval (Literal x) = x

eval (Plus x y) = (eval x) + (eval y)

eval (Mul p_1 p_2) = addedMul

The refactoring has also inserted a call to the (automatically created) definition
of addedMul which is easily replaced with actual functionality in the succeeding
steps.

3.2 Stage 2: Introduce Binary Operators

In the future it is hoped that the language will be able to handle any number
of mathematical binary operators. In order to handle this design decision, we
implement a new data type Bin Op to handle binary operators, and a new con-
structor to Expr to handle this abstraction. In order to do this implementation,
we first remove the constructors Plus and Mul (using the remove a constructor
refactoring, defined in Section 2.3). The refactoring then automatically removes
both constructors and their pattern matching:

data Expr = Literal Int

...

parseExpr (’+’:xs) = (error "Plus removed from Expr"

{-Plus parse1 parse2, rest2-})
where

(parse1, rest1) = parseExpr xs

(parse2, rest2) = parseExpr rest1

...

eval :: Expr -> Int

eval (Literal x) = x

{- eval (Plus x y) = (eval x) + (eval y) -}
{- eval (Mul p_1 p_2) = (eval x) * (eval y) -}

The Bin Op data type is then created with the constructors, Mul and Plus. This
operation of removing constructors and introducing a new, generalised, type,
may be implemented as refactoring, and is known as introduce layered data type
in the catalogue of refactorings, maintained by Thompson [14].

A new function, called eval op is then introduced, with a skeleton imple-
mentation, as follows:

eval_op :: (Num a) => Bin_Op -> (a -> a -> a)

eval_op x = error "Undefined Operation"

We then proceed to define the implementation for eval op: by choosing introduce
pattern matching (described in Section 2.6 on Page 6) from HaRe and selecting
the argument x within eval op, the refactoring produces the following:

eval_op :: (Num a) => Bin_Op -> (a -> a -> a)

eval_op p_1@(Mul) = error "Undefined Operation"

eval_op p_1@(Plus) = error "Undefined Operation"

eval_op _ = error "Undefined Operation"

All that is left to do for this stage is to replace the right-hand-sides of eval op
with (*) and (+) respectively.

The next stage is to do some tidying of our newly introduced type, Bin Op. In
particular, we need to define a constructor within Expr and modify the evaluator
to call eval op for the Bin Op case.

To start, we add a constructor to Expr where HaRe also automatically adds
a new pattern clause to eval:

data Expr = Literal Int | Bin Bin_Op Expr Expr

addedBin = error "Added Bin Bin_Op Expr Expr to Expr"

...

eval :: Expr -> Int

eval (Literal x) = x

eval (Bin p_1 p_2 p_3) = addedBin

The call to error on the right hand side of parseExpr for the ’+’ case is then
replaced with Bin Plus parse1 parse2. The next step is also to rename (using
the rename refactoring in HaRe) the variables in the introduced pattern match
to something more meaningful:

eval :: Expr -> Int

eval (Literal x) = x

eval (Bin op e1 e2) = eval_op op (eval e1) (eval e2)

Multiplication is then introduced in the parser, by copying the ’+’ case into a
’*’ case, and substituting Plus for Mul on the right hand side.

3.3 Stage 3: Generalisation

The next step is to do some generalisation and folding. As can be seen from
Figure 7, two equations of parseExpr contain some duplicated code (this is
highlighted in the figure). We eliminate this duplicate code, by first introducing
a new definition (using the introduce new definition refactoring in HaRe) by
highlighting the code on lines 7 - 10 from Figure 7. We enter parseBin as the
name for the new expression, and HaRe introduces the following code:

...

parseExpr (’+’:xs) = parseBin xs

...

1 parseExpr :: String -> (Expr, String)

2 parseExpr (’ ’:xs) = parseExpr xs

3 parseExpr (’*’:xs) = (Bin Mul parse1 parse2, rest2)

4 where

5 (parse1, rest1) = parseExpr xs

6 (parse2, rest2) = parseExpr rest1

7 parseExpr (’+’:xs) = (Bin Plus parse1 parse2, rest2)

8 where

9 (parse1, rest1) = parseExpr xs

10 (parse2, rest2) = parseExpr rest1

11 parseExpr (x:xs)

12 | isNumber x = (Literal (read (x:lit)::Int), drop (length lit) xs)

13 where

14 lit = parseInt xs

15 parseInt :: String -> String

16 parseInt [] = []

17 parseInt (x:xs) | isNumber x = x : parseInt xs

18 | otherwise = []

19 parseExpr xs = error "Parse Error!"

Fig. 7. The parser implementation with plus and multiplication

parseBin xs = (Bin Plus parse1 parse2, rest2)

where

(parse1, rest1) = parseExpr xs

(parse2, rest2) = parseExpr rest1

The code highlighted in italics show how the refactoring has replaced the right
hand side of the equation parseExpr with a call to parseBin. Obviously, the
function parseBin should now be generalised so that the constructors Plus and
Mul can be passed in as formal arguments. This will also allow us to fold (using
folding as described in Section 2.1) the equation parseExpr defined in Figure 7
against the new definition parseBin. The following code illustrates this:

parseExpr :: String -> (Expr, String)

parseExpr (’ ’:xs) = parseExpr xs

parseExpr (’*’:xs) = parseBin Mul xs

parseExpr (’+’:xs) = parseBin Plus xs

parseExpr (x:xs)

| isNumber x = ...

parseExpr xs = error "Parse Error!"

parseBin p_1 xs = (Bin p_1 parse1 parse2, rest2)

where

(parse1, rest1) = parseExpr xs

(parse2, rest2) = parseExpr rest1

This refactoring has allowed to keep the implementation simple: there is now
a separate evaluator for binary operators (defined in Section 3.2) as well as
a separate parser for binary operators; this allows for the code to be easily
maintained in future versions.

3.4 Stage 4: Introduce Variables

We now add variables to the language by defining the let expression. In order
to do this, the Let and Var constructs need to be added to the language, taking
a variable name to be a String. The parser is then extended to handle the new
constructs, with the input let x=4 in 1+x giving the AST

Let "x" (Literal 4) (Bin Plus (Literal 1) (Var "x"))

Having variables in the language means that bindings of variables to values need
to be stored in an environment, and that environment variable needs to be passed
into the evaluator as an extra parameter: when a variable is evaluated lookup
is used to find its value in the environment.

To perform this extension to the language, first we perform two add construc-
tor refactorings to the definition of Expr, adding LetExp String Expr Expr
and then Variable String as arguments to the refactoring. The refactorings
introduce new pattern matches for eval, thus:

data Expr = ... | LetExp String Expr | Var String

...

addedLetExp = error "Added LetExp String Expr Expr to Expr"

addedVar = error "Added Var String to Expr"

...

eval :: Expr -> Int

...

eval (LetExp p_1 p_2 p_3) = addedLetExp

eval (Var p_1) = addedVar

The Environment type, addEnv and lookup functions are now defined (not part
of the refactoring sequence). Finally the definition of eval needs to be modified
to take a new parameter, namely the Environment. This can be added using an
“add argument” refactoring, but the definition needs then to be edited by hand
to thread the environment through the computation, giving

eval :: Environment -> Expr -> Int

eval env (Literal x) = x

eval env (Bin op e1 e2) = eval_op op (eval env e1) (eval env e2)

eval env (LetExp p_1 p_2 p_3) = eval (addEnv p_1 p_2 env) p_3

eval env (Var p_1) = lookup p_1 env

3.5 Stage 5: Merging

The next stage is concerned with implementing a pretty printer for our language.
We do this by defining a function prettyPrint over the type Expr with a type
signature. Initially prettyPrint is defined with the equation prettyPrint x =
error "Unable to pretty print!". We choose the introduce pattern matching
from HaRe, which produces the following:

1 eval :: Environment -> Expr -> (String, Int)

2 eval env (Literal x) = (show x, x)

3 eval env (Bin op e1 e2) = ((fst (eval_op op)) ++ " "

4 ++ (fst $ eval env e1) ++ " "

5 ++ (fst $ eval env e2),

6 (snd $ eval_op op) (snd $ eval env e1)

7 (snd $ eval env e2))

8 where

9 eval_op :: (Num a) => Bin_Op -> (String, (a -> a -> a))

10 eval_op p_1@(Mul) = ("*", (*))

11 eval_op p_1@(Plus) = ("+",(+))

12 eval_op _ = error "Undefined Operation"

13 eval env (LetExp n e e_2) = ("let " ++ n ++ " = " ++ (fst $ eval env e)

14 ++ " in " ++ (fst $ eval env e_2),

15 snd $ eval (addEnv n e env) e_2)

16 eval env (Var n) = (n, snd $ eval env (lookUp n env))

Fig. 8. The evaluator implementation with the generality of binary operators expressed

prettyPrint :: Expr -> String

prettyPrint x@(Literal x) = error "Unable to pretty print!"

prettyPrint x@(Bin op e1 e2) = error "Unable to pretty print!"

prettyPrint x@(LetExp n e e_2) = error "Unable to pretty print!"

prettyPrint x@(Var n) = error "Unable to pretty print!"

prettyPrint x = error "Unable to pretty print!"

The implementation for prettyPrint is completed, and the same procedure is
repeated for a function prettyBinOp (including introduce pattern matching) in
order to represent the pretty printing of binary operators. This gives us the
following definitions:

prettyPrint :: Expr -> String

prettyPrint x@(Literal y) = show y

prettyPrint x@(Bin op e1 e2) = prettyPrintBinOp op

++ " " ++ (prettyPrint e1) ++ " " ++ (prettyPrint e2)

prettyPrint x@(LetExp n e e_2) = "let " ++ n ++ " = "

++ (prettyPrint e) ++ " in " ++ (prettyPrint e_2)

prettyPrint x@(Var n) = n

prettyPrint x = error "Unable to pretty print!"

prettyPrintBinOp :: Bin_Op -> String

prettyPrintBinOp x@(Mul) = "*"

prettyPrintBinOp x@(Plus) = "+"

prettyPrintBinOp x = error "Unable to pretty print binary operator"

To show how the pretty printer and parser work in practice, the following shows
an example from the GHCi prompt:

Prelude Parser> parseExpr "let x + 1 1 x"

(LetExp "x" (Bin Plus (Literal 1) (Literal 1)) (Var "x"),"")

Prelude Parser> prettyPrint (LetExp "x" (Bin Plus (Literal 1)

(Literal 1)) (Var "x"))

"let x = + 1 1 in x"

Prelude Parser> eval [] (LetExp "x" (Bin Plus (Literal 1)

(Literal 1)) (Var "x"))

2

As can be seen, both eval and prettyPrint take an Expr as an argument. It
would be nice to merge the two functions together so that it may be possible to
pretty print and evaluate an abstract syntax tree simultaneously. This may lead
to a function that parses an input, and pretty prints and evaluates the output,
as follows:

Prelude Parser> parse "let x + 1 1 x"

"The value of let x = + 1 1 in x is 2"

In order to implement this feature, we first merge the definitions of prettyPrint
and eval together (the merge refactoring is defined in Section 2.2). We also move
the definitions of eval op and prettyPrintBinOp to a where clause of the newly
merged eval function.

4 Related Work

Program transformation for functional programs has a long history, with early
work in the field being described by Partsch and Steinbruggen in 1983 [18].
Other work in program transformation for functional languages is described by
Hudak in his survey [19]. For an extensive survey of refactoring tools and tech-
niques, Mens produced a refactoring survey in 2004 detailing the most common
refactoring tools and practices [20].

The University of Kent and Eötvös Loránd University are now in the process
of building refactoring tools for Erlang programs [21]. However, different tech-
niques have been used to represent and manipulate the program under refac-
toring. The Kent approach uses the Annotated Abstract Syntax Tree (AAST)
as the internal representation of an Erlang program, and program analyses and
transformations manipulate the AAST directly. The Eötvös Loránd approach
uses the relational database MySQL [22] to store both syntactic and semantic
information of the Erlang program under refactoring; therefore, program analy-
ses and transformations are carried out by manipulating the information stored
in the database.

The fold/unfold system of Burstall and Darlington [3] was intended to trans-
form recursively defined functions. The overall aim of the fold/unfold system was
to help programmers to write correct programs which are easy to modify. There
are six basic transformation rules that the system is based on: unfolding; fold-
ing; instantiation; abstraction; definition and laws. The advantage of using this
methodology is that it is simple and very effective at a wide range of program

transformations which aim to develop more efficient definitions; the disadvan-
tage is that the use of the fold rule may result in non-terminating definitions.
Indeed, the fold refactorings implemented for HaRe also suffer from the same
termination problems.

5 Conclusions and Future Work

This paper has explored transforming (in the sense of both general program
transformation, and refactoring) and analysing the functional programming lan-
guage Haskell. A particular limitation lies with designing refactorings in their
full generality instead of a large set of smaller, simpler refactorings, as it is not
possible to always find a single most general transformation of an envisaged
refactoring. Simpler refactorings can be described clearly, with a clear set of
conditions and limitations. Larger refactorings, that aim to be more general,
and which are designed and implemented in this paper, are difficult to describe
in terms of both the conditions and the transformation rules.

The approach that has been taken for this paper is that of implementing
atomic operations from which more complex refactorings can be constructed.
However, in hindsight it would have been more useful to separate out the atomic
components of the refactorings so that they could be executed singularly if de-
sired.

The work presented in this paper can still be carried forward in a number of
directions.

– Adding more refactorings to HaRe. The number of refactorings for HaRe has
increased, but there are still a number of refactorings listed in the catalogue
[14] that are still awaiting implementation.

– Make more use of type information with the current refactorings in HaRe. For
instance, when generalising a function definition that has a type signature
declared, the type of the identified expression needs to be inferred, and added
to the type signature as the type of the function’s first argument.

– We hope to extend HaRe to allow refactorings to be scripted. Scripting refac-
torings allows elementary —or atomic— refactorings to be stitched together,
creating the effect of a complete refactoring process.

– Finally, we wish to port HaRe to GHC Haskell —the de facto standard of
Haskell— and use the GHC API instead of Programatica for implementing
refactorings.

The authors would like to thank Dave Harrison for his editorial advice, and the
anonymous reviewers for their comments. We would also like to acknowledge
EPSRC for supporting the original development of HaRe.

References

1. Brooks, F.P.: The mythical man-month: After 20 years. IEEE Software 12(5)
(1995) 57–60

2. Opdyke, W.F.: Refactoring object-oriented frameworks. PhD thesis, Champaign,
IL, USA (1992)

3. Burstall, R.M., Darlington, J.: A Transformation System for Developing Recursive
Programs. J. ACM 24(1) (1977) 44–67

4. Holland, J.H.: Adaptation in natural and artificial systems. MIT Press, Cambridge,
MA, USA (1992)

5. Li, H., Thompson, S., Reinke, C.: The Haskell Refactorer: HaRe, and
its API. In: Proceedings of the 5th workshop on Language Descrip-
tions, Tools and Applications (LDTA 2005). (April 2005) Published as Vol-
ume 141, Number 4 of Electronic Notes in Theoretical Computer Science,
http://www.sciencedirect.com/science/journal/15710661.

6. Li, H., Reinke, C., Thompson, S.: Tool Support for Refactoring Functional Pro-
grams. In: ACM SIGPLAN 2003 Haskell Workshop, Association for Computing
Machinery (August 2003) 27–38

7. Peyton Jones, S., Hammond, K.: Haskell 98 Language and Libraries, the Revised
Report. Cambridge University Press (December 2003)

8. Refactor-fp Group, T.: The Haskell Editing Survey. http://www.cs.kent.ac.uk/
projects/refactor-fp/surveys/haskell-editors-July-2002.txt (2004)

9. Oualine, S.: Vim (Vi Improved). Sams (April 2001)
10. Cameron, D., Elliott, J., Loy, M.: Learning GNU Emacs. O’Reilly (December

2004)
11. Hallgren, T.: Haskell Tools from the Programatica Project. In: Haskell ’03: Pro-

ceedings of the 2003 ACM SIGPLAN workshop on Haskell, New York, NY, USA,
ACM Press (2003) 103–106

12. Lämmel, R., Visser, J.: A Strafunski Application Letter. In: Proc. of Practical
Aspects of Declarative Programming (PADL’03). Volume 2562 of LNCS., Springer-
Verlag (January 2003) 357–375

13. Li, H.: Refactoring Haskell Programs. PhD thesis, Computing Laboratory, Uni-
versity of Kent, Canterbury, Kent, UK (September 2006)

14. Refactor-fp Group, T.: Refactoring Functional Programs. http://www.cs

.kent.ac.uk/projects/refactor-fp (2008)
15. Brown, C.: Tool Support for Refactoring Haskell Programs. http://www.

cs.kent.ac.uk/projects/refactor-fp/publications/ChrisThesis.pdf

(September 2008)
16. Pettorossi, A.: A Powerful Strategy for Deriving Efficient Programs by Trans-

formation. In: LFP ’84: Proceedings of the 1984 ACM Symposium on LISP and
functional programming, New York, NY, USA, ACM (1984) 273–281

17. Brown, C., Thompson, S.: Expression processor example code. http://www.cs.

st-and.ac.uk/~chrisb/tfp2010/ (2010)
18. Partsch, H., Steinbruggen, R.: Program Transformation Systems. ACM Comput.

Surv. 15(3) (1983) 199–236
19. Hudak, P.: Conception, Evolution, and Application of Functional Programming

Languages. ACM Computing Survey 21(3) (1989) 359–411
20. Mens, T., Tourwé, T.: A survey of software refactoring. IEEE Trans. Softw. Eng.

30(2) (2004) 126–139
21. Kozsik, T., Csörnyei, Z., Horváth, Z., Király, R., Kitlei, R., Lövei, L., Nagy, T.,

Tóth, M., Vı́g, A.: Use cases for refactoring in erlang. In: CEFP. Volume 5161 of
Lecture Notes in Computer Science., Springer (2007) 250–285

22. Sun Microsystems: MySQL. http://www.mysql.com/ (2008)

st-and.ac.uk/~chrisb/tfp2010/

	An Expression Processor: A Case Study in Refactoring Haskell Programs

