
Refactoring Support for Modularity Maintenance in Erlang

Huiqing Li
School of Computing

University of Kent
H.Li@kent.ac.uk

Simon Thompson
School of Computing

University of Kent
S.J.Thompson@kent.ac.uk

Abstract

Low coupling between modules and high cohesion inside
each module are key features of good software architecture.
Systems written in modern programming languages gener-
ally start with some reasonably well-designed module struc-
ture, however with continuous feature additions, modifica-
tions and bug fixes, software modularity gradually deterio-
rates. So, there is a need for incremental improvements to
modularity to avoid the situation when the structure of the
system becomes too complex to maintain.

We demonstrate how Wrangler, a general-purpose refac-
toring tool for Erlang, can be used to maintain and improve
the modularity of programs written in Erlang without dra-
matically changing the existing module structure. We iden-
tify a set of ”modularity smells” and show how they can
be detected by Wrangler and removed by way of a variety
of refactorings implemented in Wrangler. Validation of the
approach and usefulness of the tool are demonstrated by
case studies.

1 Introduction

Modular programming, as a software design technique,
improves the maintainability and reusablity of software by
enforcing well-defined boundaries between components or
modules. A module captures a set of design decisions
which are hidden from other modules, and the interaction
among the modules should primarily be through module in-
terfaces [9].

Low coupling between modules and high cohesion in-
side each module are the key aspects of modular program-
ming [13]. Unlike monolithic legacy application systems
written in programming languages that did not support
modular programming, most recent systems are structured
in a modular way.

However, without proper maintenance, software struc-
ture gradually deteriorates over years of feature additions,
changes and bug fixes, and finally gets to a state that the

program structure is too complex for anyone to fully un-
derstand it. The ageing of software architecture could be
avoided by reviewing the system structure regularly and
refactoring it whenever the symptoms of modularity prob-
lems start to show. This kind of incremental modular-
ity improvement slows down such deterioration and im-
proves the maintainability of the system. By carrying out
small changes each time, we avoid having to make dramatic
changes to existing module structures in a single step.

When a software system is large, detecting modularity
flaws and refactoring module structure are both hard with-
out proper tool support.

• Detecting modularity flaws and working out steps to
eliminate them both need an overall analysis of the sys-
tem under consideration.

• Restructuring a system, no matter at what scale, usu-
ally involves module interface changes and affects
multiple modules in the system. This is a tedious pro-
cess, and bugs can be introduced very easily, poten-
tially without being noticed.

Erlang is a modern functional programming language sup-
porting modular programming. Erlang’s module system is
simple, allowing the export of functions defined in a mod-
ule; calls of these in other modules are usually in fully qual-
ified Module:Function form. Our case studies shown
that the problem of modularity deterioration is not uncom-
mon in existing Erlang programs. Figure 1 shows an ex-
ample module graph generated from an Erlang program.
The nodes in the graph are labelled with module names, the
edges are labelled with the names and arities of the func-
tions called by the client module, pointed to by the arrow.
Although there are only four modules in this module graph,
there are already a number of cyclic module dependencies,
and no layered architecture for the system is apparent.

Further examination of the graph shows that all the cyclic
dependencies are actually caused by the same function,
namely get config value/2. This obviously indicates
some sort of “module structure bad smell”. We took a closer

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/10635698?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

look into the source code, and found that this function is
commented as “internal export”, which means that the func-
tion is an internal function, but also exported by the module.
Exporting of functions that are meant to be internal is a pro-
gramming practice not recommended.

Refactoring the code by moving the function
get config value/2 from its current module
ibrowse to module ibrowse lib results in the
module structure as shown in Figure 2, which is clearer and
more obviously layered.

Figure 1. Module graph before refactoring

Figure 2. Module graph after refactoring

Wrangler [5, 6] is a general-purpose refactoring tool for
Erlang developed by the authors. To make incremental
modularity improvement feasible for Erlang programs, we
have extended Wrangler with support for modularity main-
tenance. This is achieved in three steps:

• Firstly, a number of most common modularity flaws,
or “modularity smells”, are identified, and automatic
detection of these modularity flaws is implemented.

• Secondly, for each modularity smell detected, Wran-
gler gives refactoring suggestions in the format of
refactoring commands, which would eliminate the
smell detected without introducing new modularity
smells into the system.

• Thirdly and finally, the original refactoring to move
a function from one module to another has been ex-
tended to allow a collection of functions to be moved
in one single step.

These functionalities together make incremental modularity
maintenance much easier. The rest of the paper is organised
as follows. In Section 2, we give a brief introduction to
Erlang and Wrangler; in Section 3, we identify a number
of modularity smells that are common in Erlang programs.
In Section 4, we explain Wrangler’s support of modularity
smell detection and elimination, and in Section 5, we dis-
cuss Wrangler’s refactoring support for module restructur-
ing; a case study demonstrating the usefulness of the tool
is shown in Section 6. Section 7 discusses implementation
considerations of the tool, Section 8 gives an overview of
related work, and finally, Section 9 concludes the paper and
briefly discusses future work.

2 Erlang and Wrangler

Erlang [1, 3] is a strict, impure, dynamically typed func-
tional programming language with support for higher-order
functions, pattern matching, concurrency, communication,
distribution, fault-tolerance, and dynamic code loading.

Erlang comes with a simple, non-hierarchical module
system. An Erlang program typically consists of a number
of modules, each of which defines a collection of functions.
Only functions exported explicitly through the export di-
rective may be called from other modules; furthermore, a
module may only export functions which are defined in the
module itself.

Calls to functions defined in other modules should qual-
ify the function name with the module name: the function
foo from the module bar is called as: bar:foo(...).
Despite the fact that this can be avoided by means of
import directives, practice within the Erlang community
recommends the use of this fully qualified notation. Figure 3
shows an Erlang module containing the definition of the fac-
torial function. In this example, fac/1 denotes the func-
tion fac with arity of 1. In Erlang, a function name can be
defined with different arities, and the same function name
with different arities can represent entirely different func-
tions computationally.

-module (fact).
-export ([fac/1]).
fac(0) -> 1;
fac(N) when N > 0 -> N * fac(N-1).

Figure 3. Factorial in Erlang

Wrangler [5, 6] is a tool that supports interactive
refactoring of Erlang programs. It is integrated with
Emacs and XEmacs as well as with Eclipse through the
ErlIDE plugin. Wrangler itself is implemented in Er-
lang. Wrangler supports a variety of elementary struc-
tural refactorings, process refactorings, as well as a set of
“code smell” inspection operations, together with facili-
ties to detect and eliminate duplicated code [4]. Wran-
gler is downloadable from http://www.cs.kent.ac.
uk/projects/wrangler/Home.html.

3 Modularity Smells

Modules are the basic unit of code in Erlang. Functions
in an Erlang program are grouped together into modules,
each containing functions that logically belong together.
Each module makes itself available to the other modules
by exporting a list of functions defined in this module. In
a well-designed system, each module should serve a clear
purpose or goal, and only export functions that are expected
to be part of a well-defined interface or API (Application
Programming Interface). While we could assume that most
programmers follow some kind of design principles when
deciding to which module a function should belong, and
which functions should be made visible to other modules,
there are still some modularity smells which we found to be
common in real-world Erlang programs, and these are the
subject of this section.

3.1 Improper Inter-Module Dependency

As mentioned earlier, each Erlang module exports a set
of functions available for use by other modules. Ideally,
the functions that are exported should constitute a well-
designed API, which represents the services that the module
has to offer. All the remaining functions are internal func-
tions meant to be used only within the module itself.

During the course of system development, it is often the
case that the developer finds that a function which he or she
wants to implement already exists in another module, but is
not exported by that module. At this stage, the developer
could refactor the code to include that function in the API
for a module to which the function logically belongs.

However, the alternative of adding the function name to
the export list of the module is often chosen, without think-
ing of questions such as: should this function be an API
function provided by this module? does its functionality
conform to the purpose of this module? should the module
that needs this function be dependent on this module? If the
answer to any of these questions is ’no’, then a code smell
is being introduced by the export. A dependency introduced
in this way cries out for further inspection.

3.2 Cyclic Dependent Modules

Cyclic dependent modules are a set of modules in which
each module calls functions defined in every other mod-
ule in the set, directly or indirectly. Cyclic dependency
between two or more modules should always be avoided
whenever it is possible because it affects the understand-
ability and maintainability of the system; on the contrary, a
tree-structured or acyclic module dependency gives a lay-
ered view of the program structure, which is much easier to
understand and maintain as illustrated in Figures 1 and 2.

3.3 Modules Serving Multiple Goals

High cohesion inside each module is one of the key fea-
tures of good software architecture. A module should ide-
ally contain a collection of functions and data structures that
are logically grouped together, and offer some well-defined
common service to the rest of the system. It is therefore a
modularity smell if a module provides a large collection of
API functions that logically serve more than one goal. 1

Modules serving multiple goals are in general harder
to understand. Apart from that, modules serving multiple
goals are more likely to depend heavily on other modules,
or vice versa; in other words, they tend to have high in or
out degree in the module graph. Such modules are more
difficult to maintain: each time the module’s interface is
changed, all the places in the program where this module is
used have to be checked. Also, each time a change is made
to the interface of one of the modules that this module de-
pends on, this module also needs to be checked.

Modules with multiple goals should be partitioned into
smaller modules, each of which provides a clearly-defined
service to its clients.

3.4 Very Large Modules

Large monolithic modules containing many lines of code
potentially obscure the architecture of the system. Large
modules are often modules with multiple goals, but not nec-
essarily: for instance, it could be that a set of functions

1It has been conjectures that this would lead to a partition in the set of
modules using this one: we will investigate this further.

http://www.cs.kent.ac.uk/projects/wrangler/Home.html
http://www.cs.kent.ac.uk/projects/wrangler/Home.html

within a module form an internal library that is used by
other functions: this is a candidate to become a separate
module which exports its services. This additional structure
makes the system easier to understand, to maintain and to
evolve, as well as increasing the opportunities for reuse of
the library functions.

While it is difficult to give a hard and fast rule about
module size, a recent Erlang text Erlang Programming [3]
has suggested: “A manageable module should have no more
than 400 lines of code, comments excluded.”

4 Modularity Smell Detection and Refactor-
ing Suggestions

Detecting modularity smells is the very first step to mod-
ularity improvement. Once a modularity smell has been de-
tected, the next question is how to remove it. While elimi-
nating modularity smells mostly involves moving functions
from one module to another, it is not always clear which
functions to move, and to where. With Wrangler, we aim
to not only find modularity smells, but also give the user
suggestions as to how to eliminate them.

In this section, we focus on Wrangler’s detection of the
modularity smells discussed in the previous section. For
each kind of modularity smell, we also discuss the strat-
egy used by Wrangler to work out how to eliminate it. The
fundamental principles used by Wrangler when suggesting
refactorings steps are that the refactoring steps suggested,
if executed, should not introduce new modularity smells to
the system, and the new module dependencies introduced to
the system because of the refactoring should be minimal.

4.1 Improper Inter-Module Dependency

Detection. In principle a module should only export func-
tions that are designed to be API functions; however, this
principle can be very easily violated in practice. Erlang’s
module system allows any function defined in a module to
be exported and used by the rest of the system. For an Er-
lang module to use functions exported by other modules,
there is no need to import that module first as is required by
other programming languages like Haskell, as long as the
function name is qualified with its defining module. This
is flexible, but also means that module dependency can be
introduced in a rather ad-hoc way.

Syntactically, the export lists of an Erlang module make
no distinction between functions that are designed to be API
functions and functions that are meant to be internal but
are also exported by the module, which we call non-API
functions (there might by comments indicating this, as men-
tioned earlier). To be able to detect the export of non-API
functions, and module dependency introduced by function

calls to non-API functions, we try to mark each function ex-
ported by a module as an API function or a non-API func-
tion using static analysis and heuristics.

For the purposes of discussion we denote an Erlang pro-
gram P as a collection of Erlang modules {M1, ...Mn}, and
each Erlang module as a collection of functions exported by
the module Mi = {fi1, ..fin}.

For a given Erlang module Mi = {fi1, ..fin}, we use
F ext

i to denote the subset of Mi representing those func-
tions that are not called by any other functions in the
module that do not contribute to its definition; in other
words, a function in F ext

i is only called, directly or indi-
rectly, by other functions in its Strongly Connected Compo-
nent (SCC). We use F int

i to denote those functions in Mi

that do not belong to F ext
i , that is Mi−F ext

i . As a conven-
tion, each function in F ext

i is considered as an API function,
therefore the major task is to classify each function from
F int

i as an API, or non-API function.
Within this context, for each function fij belonging to

module Mi = {fi1, ..fin}, the probability score for it being
an API function is calculated as:

APIScore(fij) = 1−min{dist(fij , f
e)|fe ∈ F ext

i }

where dist{fij , fik} is a function calculating the distance
between two functions fij and fik. If A and B denote the
set of nodes reachable from fij and fik in the function call-
graph of the Erlang program in question, then we define

dist(fij , fik) = 1− 2∗|A∩B|
|A|+|B|

Function fij is considered to be an API function if its
APIScore(fij) is greater than a specified threshold, φ,
which should be between 0 and 1. Obviously, a function
belonging to F ext

i always has an APIScore of 1, therefore
is always marked as an API function. We mark a function
as a non-API function if its APIScore is less than the re-
quired threshold, φ.

Given two Erlang modules Mi and Mj , we say Mj di-
rectly depends on Mi if some of the functions exported by
Mi are directly called by functions defined in Mj . We rep-
resent this kind of direct module dependency as a three-
element tuple {Mi,Mj , F}, where F is the set of functions
that are exported by Mi and used by Mj , which we denote
by use(Mi,Mj). Given an Erlang program P , and an API
score threshold φ, the set of improper module dependencies
reported by Wrangler is given by:

{ {Mi,Mj , use(Mi,Mj)} | ∀f ∈ use(Mi,Mj),
APIScore(f) < φ }

Refactoring Suggestion. An improper inter-module de-
pendency introduced by non-API inter-module function
calls could be eliminated by moving the non-API functions,
together with those internal functions on which the non-API

functions depend. They are moved to a third module, so that
the non-API functions become API functions exported by
that module.

For each improper inter-module dependency
{Mi,Mj , use(Mi,Mj)} detected, Wrangler gives possible
options for the third module, to which the non-API func-
tions could be relocated. The following constraints are
applied when choosing the target module.

• Moving a non-API function to the target module
should not introduce a cyclic module dependency.

• Moving a non-API function to the target module
should make the function an API function of that mod-
ule as measured by its APIScore.

• The number of new module dependencies introduced
should be minimal.

• A target module that is closer to Mi and Mj in terms
of the length of the shortest paths connecting them in
the module graph is favoured over a target module that
is further away.

4.2 Cyclic Module Dependency

Detection. A cyclic module dependency is a minimal set
of modules {M1,M2,Mn}, in whichMi(1<i≤n) directly
depends on Mi−1, and M1 directly depends on Mn. Mod-
ules that are cyclically dependent are straightforward to lo-
cate given the module graph and function callgraph gen-
eration functionalities provided by Wrangler. For a set of
cyclically dependent modules, Wrangler reports not only
the module names, but also the functions called between
each pair of dependent modules. To take the function calls
between each pair of directly dependent modules into ac-
count, we denote a cyclic module dependency relation as:

M1
F1−→M2

F2−→ ...
Fn−1−−−→Mn

Fn−−→M1 (n >= 2)

where Mi
Fi−→ Mj means that module Mj directly depends

on module Mi, and Fi represents those functions that are
exported by module Mi, and called by functions defined in
module Mj , i.e. use(Mi,Mj).

Elimination. Give a cyclic module dependency,

M1
F1−→M2

F2−→ ...
Fn−1−−−→Mn

Fn−−→M1 (n >= 2),

the following steps are used to work out how to break the
cyclic module dependency.

Step 1: we mark each function in Fi(i=1,..n) as either an
API function or a non-API function using the same ap-
proach as described in Section 4.1. Let us use F api

i

to represent the subset of Fi representing functions
marked as API functions.

Step 2: if there exists j, such that F api
j = φ, then the de-

pendency between module Mj and Mj+1 (M1 when
j = n) is regarded as improper inter-module depen-
dency, and Wrangler would suggest the moving of
functions in Fj the same way as discussed in Sec-
tion 4.1; otherwise continue to Step 3.

Step 3: We try to distinguish two kinds of cyclic module
dependency, namely intra-layer and inter-layer. To do
so, for each Fi(i=1,..n), we use Callers(Mi+1, F

api
i)

to denote the set of functions from Mi+1 (M1 when
j = n), each of which calls one or more of the func-
tions from F api

i either directly or indirectly.

Step 4: we say that the cyclic module dependency
is an intra-layer cyclic module dependency if,
and only if, for each module Mi(i=1,..n−1),
Callers(Mi+1, F

api
i) ∩ F api

i+1 6= φ, and
Callers(M1, F

api
n) ∩ F api

1 6= φ.
Otherwise the cyclic module dependency is considered
as inter-layer cyclic dependency.

Generally speaking, an intra-layer cyclic module de-
pendency is caused by mutually recursive functions across
modules, and intra-layer cyclic module dependency could
be eliminated by merging those mutual-dependent functions
into a single module.2 An inter-layer cyclic module depen-

-module(m1).
-export ([foo/0, bar/0]).

foo() ->1.
bar() -> m2:blah().

-module(m2).
-export([blah/0]).

blah() -> m1:foo().

Figure 4. Cyclic module dependency

dency, on the other hand, is usually caused by the coexis-
tence of API functions that belong to different logical layers
of the systems in the same module. This kind of cyclic mod-
ule dependency can be removed by splitting the module into
two, or more, so that each module only exports functions
that belong to the same logic layer. For example, Figure 4
shows two contrived Erlang modules that are mutually de-
pendent on each other. The dependency between modules
can be represented as :

2There are, of course, exceptions to this: we might want to split a mu-
tually recursive set of language processing functions into one module per
language category, say.

m1
F1={foo/0}−−−−−−−→ m2

F2={blah/0}−−−−−−−−→ m1

This cyclic module dependency is treated as an inter-layer
cyclic module dependency as:

Callers(m1, F2) ∩ F1 = φ

It is obvious in this case that the cyclical dependency can be
removed by splitting module m1 into two modules, so that
functions foo/0 and bar/0 are not in the same layer of
the architecture.

4.3 Modules Serving Multiple Goals

Detection. Detecting modules serving multiple goals
by static analysis is less straightforward simply because the
service offered by a function is hidden in its implementation
logic, and there is no standard way to measure the common-
ality of purpose between functions in a quantitative way.

Based on the observation that functions serving the same
goal are more likely to share a number of things, includ-
ing nodes in the function callgraph, data structures and
macros as well as words used in function, variable, or pro-
cess names, similarity metrics based on these features could
serve as an indicator as to whether two functions, or two
function groups, share similar goals.

We make use of an existing agglomerative hierarchical
algorithm [12, 8] to cluster the functions exported by a mod-
ule into clusters based on the similarity metrics between
functions clusters. Clustering is a key technique used in re-
verse engineering to gather software components into mod-
ules that might well be considered significant to the soft-
ware engineers who designed the original system or those
who will have to work with the results. To evaluate the
similarity score between two functions, we represent each
function by a feature list. The four features we choose are:

• Calls to functions, which corresponds to those nodes in
the function callgraph of the system that are reachable
from the function under consideration.

• Use of records, which is the only data structure that
can be named in Erlang.

• Use of macros.

• Reference to words. Identifiers, including function,
module, process and variable names, used in a func-
tion definition are decomposed into words.

Given two functions, or function clusters, and their list of
entity references, X and Y say, their similarity score is cal-
culated using the Jaccard similarity metrics [11] as follows,

sim(X,Y) = a/(a+ b+ c)
where a = |X ∩ Y | , b = |X \ Y |, and c = |Y \X|

An agglomerative hierarchical algorithm starts from the in-
dividual entities, gathers them into small clusters which are
in turn gathered into larger clusters up to one final cluster
that contains every entity. The result is a binary tree of clus-
ters. However, if the aim is to detect modularity smells,
there is no need to continue the clustering process until there
is only one cluster left. In fact, we only group two clusters
into one if their similarity score is above a specified thresh-
old, and the clustering process stops when there are no more
clusters whose similarity scores are above the threshold.

The clusters generated are then further analysed regard-
ing to the size of the clusters, and their usage by the client
modules. A ‘multi-goal module’ smell is only reported if
we find more than one cluster, and each of them is of a rea-
sonable size, i.e. the number of lines of code contained is
greater than a threshold given.

Elimination. A ‘multi-goal module smell’ can be elim-
inated by partitioning the module into two or more parts
based on the number of clusters reported. With Wrangler’s
support for moving functions from one module to another,
which we will discuss in more detail in Section 5, splitting
a module is straightforward. All the user needs to do is to
select the functions that are to be moved to another module,
and provide Wrangler with the target module name, which
in general is a fresh module name.

4.4 Very Large Modules

The number of lines in a module is the major factor
used to identify very large modules. In general, it is likely
that a large module is providing too many services to the
rest of the system, and therefore should be partitioned into
smaller modules using the cluster techniques discussed in
Section 4.3; however, it is also possible that a module con-
taining a monolithic piece of code serves only one goal; in
this case, it still could be possible to extract one or more
sub-components of the module into another module, so that
the module size and complexity can be reduced.

To guide Wrangler’s searching for sub-components to be
moved to anther module, two parameters can be specified:

• the minimal number of lines of code, and

• the maximal number of functions shared between the
sub-components and the rest of the module.

5 Refactoring Support

The most important refactoring when refactoring module
structure is concerned is moving functions from one module
to another. For this purpose, we have extended Wrangler’s
original refactoring for moving a single function between

modules, so that a collection of functions can be moved in
one single step. Moreover, in the case that a function to
be moved depends on other functions defined in the origi-
nal module, those functions are also automatically moved to
the target module if no other functions in the original mod-
ule depend on them. The target module can be an existing
module or a new module to be created.

The refactoring move functions from one module to an-
other is complex because both the pre-condition checking
and program transformation involved are nontrivial. For
this refactoring to be behaviour preserving, various pre-
conditions need to be checked before the program can be
actually transformed. For example, the refactoring needs
to make sure that the functions to be moved do not conflict
with the existing functions in the target module, also macros
and records used by the functions to be moved should not be
defined differently in the target module, and so forth. The
program transformation step needs not only to remove the
functions from the original module, to add them to the tar-
get module, but also needs to check the call sites of these
functions – potentially across the whole system when the
functions are exported – to make sure that all the references
to the functions are changed to use the target module as the
defining module of functions moved.

Tool support for this kind of complex, though elemen-
tary, refactorings is essential, as both manual program anal-
ysis and transformation are tedious and error prone.

Apart from move functions from one module to another,
other refactorings from Wrangler can also help with the
modularity maintenance process. These include renaming
of module and function names, cleaning up the module ex-
port lists, cross module duplicated code detection and elim-
ination [4].

6 A Case Study

To examine the usefulness of Wrangler’s support for
modularity maintenance, we applied the tool to the Wran-
gler system itself, a number of other open-source Erlang
systems, as well as some industrial code from Ericsson,
Sweden. In this paper we mainly discuss the results of ap-
plying the tool to Wrangler itself. As authors of most of the
code in Wrangler, we can play the role of domain experts in
judging the usefulness of the results returned by the tool.

The version of Wrangler we used in the case study is
Wrangler-0.8.7, which consists of 56 Erlang files and 40K
lines of code, comments included. Due to the compactness
of program written in functional programming languages,
Wrangler is by no means a small Erlang program.

Along with the development of Wrangler’s modular-
ity maintenance support, substantial number of structural
refactorings have been made to Wrangler after the release
of Wrangler-0.8.7. In what follows, we discuss the case

Figure 5. Improper inter-module dependency

study results for each modularity smell in the same order as
they are introduced in the previous sections.

6.1 Improper Inter-module Dependency

With an API Score threshold of 0.4, Wrangler reports 13
improper inter-module dependencies. We examined each
of these and concluded that 11 of them should be removed.
The remaining 2 involve sharing of functions between two
different versions of the Erlang tokenizer, which we decided
to leave them as they are.

Most of the 11 dependencies that we chose to re-
move were caused by sharing of functionalities between
the implementation of different refactorings. For in-
stance, Figure 5 shows 3 of the improper inter-module
dependencies reported involving 4 modules. Among
the four modules shown in the graph, three of them
(refac add a tag, refac rename process and
refac register pid) each implements a single refac-
toring, whereas refac annotate pid is a infrastructure
module providing services to be used by the other three.

The module graph shows that three non-API functions
defined in module refac register pid are exported
by it and used by other modules. As a matter of fact, the
three non-API functions are all the non-API functions ex-
ported by that module. These inter-module dependencies
are clearly against the authors’ intention, as ideally a mod-
ule implementing a refactoring should only export func-
tions that serve as refactoring commands, and there should
be no dependency between modules implementing different
refactorings (whenever it is possible).

The dependency between refac annotate pid and
refac register pid is even more undesirable, as it
actually constitutes a cyclic dependency between the two
modules.

For the module dependencies shown in Figure 5, the
three refactoring commands suggested by Wrangler are:

move_fun(refac_register_pid,[{evaluate_expr,5}],
[refac_util,refac_syntax,
refac_annotate_pid]).

move_fun(refac_register_pid,[{is_spawn_app,1}],
[refac_annotate_pid]).

move_fun(refac_register_pid,[{spawn_funs,0}],
[refac_util,refac_syntax,
refac_annotate_pid,refac_syntax_lib]).

Take the first refactoring command as an example, it sug-
gests to move the function evaluate expr/5 defined
in module refac register pid to one of the modules
given in the list. When multiple target modules are sug-
gested by Wrangler, the user has to select one target mod-
ule, and remove the others from the list. Of course, if none
of the modules suggested makes sense to the user, he or
she could always specify another existing module or a com-
pletely new module. For the three refactorings above, we
chose the first module suggested as the target module.

Performing these refactorings in either an IDE or directly
on the command line is straightforward with Wrangler’s
refactoring support.

6.2 Cyclic Module Dependency

After having removed the inter-module dependencies re-
ported, we applied Wrangler’s cyclic module dependency
detection to Wrangler-0.8.7, and this reveals 8 cyclic mod-
ule dependencies, among which one is reported as intra-
layer cyclic module dependency, and the other seven are
reported as inter-layer cyclic module dependencies. Two
of the cyclic module dependencies reported consist of 3
modules, and all the others consist of two modules. Our
manual inspection of the results reported completely agrees
with Wrangler’s automatic intra-layer/inter-layer classifica-
tion result.

Most of the 8 cyclic module dependencies reported in-
volve a module named refac util, which provides a col-
lection of utility functions to the other parts of the system.
However, over years of development, too much functional-
ity has been added to this module, some functions no longer
qualify as utility functions.

For instance, Figure 6 shows one of the cyclic module
dependencies reported, and the refactoring command sug-
gested by Wrangler. What the refactoring command says is
that the four functions enclosed in the list defined in mod-
ule refac util should be moved into a separate mod-
ule, and the user needs to choose the module name, which
in general is a fresh module name, and substitute it for
user supplied mod name. Indeed, after the release
of Wrangler-0.8.7, this module has been refactored signif-
icantly, and the single big module has been divided into 5
smaller modules, each of which provides a specific kind of
service.

6.3 Modules Serving Multiple Goals

With a Jaccard similarity threshold of 0.2, we applied
Wrangler’s multi-goal module detector to Wrangler-0.8.7,

move_fun(refac_util,
[{write_refactored_files,1},
{write_refactored_files,3},
{write_refactored_files,4},
{write_refactored_files_for_preview,2}],
user_supplied_target_mod_name).

Figure 6. Cyclic module dependency

and this process reported that 12 of the 56 modules serve
multiple goals.

The clustering result provides valuable information re-
garding the commonality between different functions in
each module, however given the fact that there is not stan-
dard way to compare the goals of different functions, the
user still has to experiment with different threshold values,
and inspect the results using his or her domain knowledge
to decide what to do next.

For example, for the module refac syntax lib
from Wrangler, which is a modified version of the
erl syntax lib module from Erlang Syntax Tools li-
brary [2], seven clusters were reported, as shown in Fig-
ure 7. Together with each cluster, InDegree represents the
number of modules that make use of the functions from the
cluster, and OutDegree represents the number of modules
on which the cluster depends. Clearly, this module pro-
vides functionalities that cover a number of themes includ-
ing functionalities for abstract syntax tree (AST) traversal,
for AST annotation, for AST analysis, etc. It might not be
a good idea to put each cluster into a separate module, be-
cause some of the clusters are actually too small to form a
new module, however, it would be preferable to move clus-
ter 1, probably also cluster 2, to a separate module espe-
cially designed for AST traversal APIs, because of the large
number of modules that depend on it, and the clearness of
the service it provides.

6.4 Very Large Modules

The average module size of Wrangler is 450 lines of
code, comments excluded. In general, a module imple-
menting a refactoring only contains the implementation of

Module: refac_syntax_lib
Cluster 1, Indegree:25, OutDegree:1,
[{map,2}, {map_subtrees,2},
{mapfold,3},{mapfold_subtrees,3},
{fold,3}, {fold_subtrees,3}]

Cluster 2, Indegree:0, OutDegree:0,
[{foldl_listlist,3},{mapfoldl_listlist,3}]

Cluster 3, Indegree:0, OutDegree:0,
[{new_variable_name,1},{new_variable_names,2},
{new_variable_name,2},{new_variable_names,3}]

Cluster 4, Indegree:4, OutDegree:1,
[{annotate_bindings,2},{annotate_bindings,3},
{var_annotate_clause,4},{vann_clause,4},
{annotate_bindings,1}]

Cluster 5, Indegree:4, OutDegree:1,
[{analyze_function_name,1},

...13 items omitted here
{analyze_attribute,1}]

Cluster 6, Indegree:0, OutDegree:1,
[{to_comment,1},{to_comment,2},
{to_comment,3}]

Cluster 7, Indegree:0, OutDegree:1,
[{limit,2},{limit,3},
{function_name_expansions,1}]

Figure 7. Clusters identified

a single refactoring, and only the refactoring command is
exported by that module. However, it is not uncommon
that a module gets too big because of the complexity of the
refactoring implemented, and in this case, extracting a sub-
component from the implementation into a separate module
is the general practice. Wrangler’s support for automatic
searching of sub-components proved to be very helpful.

7 Implementation Considerations

Erlang is a general-purpose functional programming lan-
guage. While Erlang shares some basic properties, such
as referential transparency, with other functional program-
ming languages, it also has its own characteristics and pro-
gramming idioms, which we need to address when build-
ing Erlang-specific program analysis tools in general. Since
the work investigated in this paper is built on top of Wran-
gler’s program analysis and transformation infrastructure,
and most of the issues were already handled by Wrangler,
we only summarise the major issues here without going into
details.

• In Erlang, function and module names are nor-
mal Erlang atoms, and can be generated dynam-
ically. Moreover, a function can be called us-
ing the built-in function apply/3 in the form
of apply(Module, Function, Args), where
Module and Function are expressions that eval-
uate to an Erlang atom, and Args is an expression
that evaluates to a list of terms. These features make
the generation of function callgraph and module graph
more complex than expected, and data flow analy-
sis techniques are needed for generation of accurate,
or nearly accurate, function callgraphs and module
graphs.

• Erlang is a programming language with built-in sup-
port for concurrency. In Erlang, functions can com-
mute with each other in two different ways, that is
parameter passing and message passing. The prim-
itives spawn, “!” (send) and receive allow a pro-
cess to create a new process and communicate with
other processes through asynchronous message pass-
ing. When message passing comes into play, tradi-
tional callgraph-based program analysis has to been
extended to take the process structure information into
account.

• OTP behaviour callback modules. Erlang comes with
the Open Telecom Platform (OTP) middleware plat-
form, which provides a number of ready-to-use be-
haviours, such as finite state machines, generic servers,
etc, embodying a set of design principles for Erlang
systems. To use these components, the user has to
define a behaviour callback module and implement
a number of pre-specified callback functions. Static
analysis of callback modules in a normal way could
produce results below expectation due to the fact that
the actual interaction between functions in the module
are hidden away in the components from Erlang.

8 Related Work

Various approaches have been proposed in the litera-
ture on system (re)modularization, with software cluster-
ing [12] being the most commonly used approach. Clus-
tering algorithms model the similarity between entities in
a quantitative way, and group entities that are similar to-
gether. Clustering-based software (re)modularization ap-
proaches differ mainly in their choice of three parameters:
how the entities are described, how the similarity metrics
between the entities is computed and what clustering al-
gorithm is used. A comparative study of the influence of
different parameter choices on the clustering results when
doing software (re)modularization has been done by N. An-
quetil et. al. [8], and their experimental results gave us

insight into the choice of the clustering algorithm used by
Wrangler to detect modules with multiple goals.

The work most closely related to ours is the Erlang refac-
toring tool, RefactorErl [7], developed by researchers at
the Eötvös Loránd University in Budapest, Hungary. Like
Wrangler, RefactorErl is also a general refactoring tool
for Erlang. Unlike Wrangler, which use abstract syntax
tree (AST) as the internal representation of Erlang pro-
grams, RefactorErl follows a different approach to refac-
toring and works by creating a formal semantical graph
model from Erlang source code and storing this graph in
a relational database. RefactorErl also provides support for
refactoring the module structure of an existing Erlang ap-
plication, however unlike Wrangler’s modularity smell di-
rected incremental modularity maintenance, RefactorErl’s
support for module restructure is solely based on clustering
techniques, and is mainly used to split a large software into
smaller loosely coupled components.

In [10], G.M.Rama also proposed the idea of refactoring
based modularity improvement, targeting at programs writ-
ten in imperative or OO programming languages. While
there is some overlapping between the modularity smells
detected by Rama and us, different techniques were used
to detect these modularity smells, and apart from that,
refactoring support for modularity smell elimination lies in
Rama’s future work.

9 Conclusions and Future Work

In this paper, we have identified a number of modular-
ity smells that are common in programs written in Erlang,
and also presented techniques taken to support automatic
detection and semi-automatic elimination of those modu-
larity smells. The tool is built on top of the infrastructure of
Wrangler, a general purpose refactoring tool for Erlang, and
also integrated within the Wrangler environment. Instead of
carrying out fully-automatic program restructuring – which
could produce a program that is too different from the orig-
inal one to be recognised and accepted by the user – we
aim to help the user to identify and solve existing modular-
ity flaws in a step-by-step way, so that the user can justify,
and be fully aware of, the changes made to the system. The
tool is designed to be regularly used during the software
development process, so that modularity smells can be de-
tected and eliminated early. Case studies carried out with
real-world code demonstrated the usefulness of the tool.

Our future work will go in a number of directions. We
are going to do more empirical studies of modularity smells
from different Erlang systems, and extend the tool to help
the detection and elimination of more modularity smells.
Although Erlang is a relatively simple programming lan-
guage, the concepts presented in this paper would also be
useful in attacking the same problem for other languages,

given the fact that moving functions from module to mod-
ule is a common refactoring across a number of program-
ming languages. To justify this, we would like to explore
the application of the approach investigated here to other
function programming languages like Haskell, which has a
more complex module system than Erlang.

10 Acknowledgements

This research is supported by EU FP7 collaborative
project ProTest (http://www.protest-project.
eu/), grant number 215868; we thank our funders and col-
leagues for their support and collaboration.

References

[1] J. Armstrong. Programming Erlang. Pragmatic Bookshelf,
2007.

[2] R. Carlsson. Erlang Syntax Tools. http://www.
erlang.org/doc/apps/syntax_tools/, 2004.

[3] F. Cesarini and S. Thompson. Erlang Programming.
O’Reilly Media, Inc., 2009.

[4] H. Li and S. Thompson. Similar Code Detection and Elim-
ination for Erlang Programs. In M. Carro and R. Pena,
editors, Practical Aspects of Declarative languages 2010,
LNCS, pages 104–118. Springer, January 2010.

[5] H. Li, S. Thompson, L. Lövei, Z. Horváth, T. Kozsik,
A. Vı́g, and T. Nagy. Refactoring Erlang Programs. In
EUC’06, Stockholm, Sweden, November 2006.

[6] H. Li, S. Thompson, G. Orosz, and M. Töth. Refactoring
with Wrangler, updated. In ACM SIGPLAN Erlang Work-
shop 2008, Victoria,Canada, 2008.

[7] L. Lövei, C. Hoch, H. Köllő, T. Nagy, A. Nagyné-Vı́g,
D. Horpácsi, R. Kitlei, and R. Király. Refactoring Module
Structure. In Proceedings of the 7th ACM SIGPLAN work-
shop on Erlang, Victoria, Canada, Sep 2008.

[8] C. F. Nicolas Anquetil and T. C. Lethbridge. Experiments
with Clustering as a Software Remodularization Method. In
WCRE ’99: Proceedings of the Sixth Working Conference
on Reverse Engineering, Washington, DC, USA, 1999.

[9] D. L. Parnas. On the Criteria to Be Used in Decompos-
ing Systems into Modules. Communications of the ACM,
15(12):1053–1058, December 1972.

[10] G. M. Rama. A Desiderata for Refactoring-Based Software
Modularity Improvement. In Third India Software Engineer-
ing Conference, Los Alamitos, CA, USA, 2010.

[11] P. H. SNEATH and R. R. SOKAL. Numerical Taxonomy.
Series of books in biology. W.H. Freeman and Company,
San Francisco, 1973.

[12] T. A. Wiggerts. Using Clustering Algorithms in Legacy Sys-
tems Remodularization. In WCRE ’97: Proceedings of the
Fourth Working Conference on Reverse Engineering (WCRE
’97), page 33, Washington, DC, USA, 1997.

[13] E. Yourdon and L. L. Constantine. Structured Design: Fun-
damentals of a Discipline of Computer Program and Sys-
tems Design. Prentice-Hall, Inc., NJ, USA, 1979.

http://www.protest-project.eu/
http://www.protest-project.eu/
http://www.erlang.org/doc/apps/syntax_tools/
http://www.erlang.org/doc/apps/syntax_tools/

	Introduction
	Erlang and Wrangler
	Modularity Smells
	Improper Inter-Module Dependency
	Cyclic Dependent Modules
	Modules Serving Multiple Goals
	Very Large Modules

	Modularity Smell Detection and Refactoring Suggestions
	Improper Inter-Module Dependency
	Cyclic Module Dependency
	Modules Serving Multiple Goals
	Very Large Modules

	Refactoring Support
	A Case Study
	Improper Inter-module Dependency
	Cyclic Module Dependency
	Modules Serving Multiple Goals
	Very Large Modules

	Implementation Considerations
	Related Work
	Conclusions and Future Work
	Acknowledgements

