
Recognizing Sketches of Euler Diagrams Drawn with Ellipses

Aidan Delaney1 Beryl Plimmer2 Gem Stapleton1 Peter Rodgers3
1Visual Modelling Group, University of Brighton, UK.

{a.j.delaney,g.e.stapleton}@brighton.ac.uk
2University of Auckland, New Zealand. beryl@cs.auckland.ac.nz

3University of Kent, UK. p.j.rodgers@kent.ac.uk

Abstract

Euler diagrams form the basis of a number of visual lan-
guages. However, the existing tool support for creating Eu-
ler diagrams is limited to generic diagram editing software
that uses mouse and keyboard interfaces. A more natural
and convenient mode of entry is via a sketching interface.
In addition, it is known that sketching, as opposed to us-
ing an editing package, facilitates greater cognitive focus
on the task of diagram creation. This paper presents the
first sketch tool for Euler diagrams. In particular, we de-
scribe the recognition mechanism and conversion that takes
a sketched Euler diagram and converts it into a formal dia-
gram drawn with ellipses and circles. The semantics of the
sketch is computed.

1. Introduction

Euler diagrams are a popular and widely used tool for in-
formation visualization. In addition, they form a component
of many visual languages, such as spider diagrams [8], Eu-
ler/Venn diagrams [21], Venn-II diagrams [19], constraint
diagrams [12], and ontology diagrams [15]. Given their
wide-ranging practical use, there is a need to provide con-
venient ways of creating these diagrams in electronic form.
Moreover, the software in which they are created will, ide-
ally, have some understanding of the diagram semantics, so
it can further support the user in exploring information con-
veyed by the diagram. Currently, however, the manual cre-
ation of Euler diagrams in electronic form relies on unintu-
itive mouse and keyboard interfaces in software that has no
semantic understanding of the diagram.

A natural creation method for Euler diagrams is using
a pen, but no intelligent tool support exists for this mode
of entry. The lack of sketching support for Euler diagrams
means that, in the vast majority of cases, when using a
computer they must be drawn in off-the-shelf diagram edit-
ing tools. The current editing support does not provide a

natural and convenient interface because the point-by-point
specification of the diagrams’ curves is slow (compared to
sketching) and the act of sketching is simple in compari-
son to using a diagram editor, such as those found in Mi-
crosoft’s Word or Visio packages. Sketching the diagram
has the further advantage that it allows the user to focus on
the actual diagram creation rather than the interface of the
editing tools.

↓

Members Staff

People

Figure 1. A sketched Euler diagram and its
formal visualization.

The sketch recognition software developed to date has
focused on user interface design and graph oriented dia-
grams [11]. With respect to user interface design tools the
sketched items are largely independent of each other. In
graph oriented diagrams the spatial positioning of nodes and
edges are not of semantic significance. By contrast, in Euler

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/10635694?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


diagrams the spatial relationships between sketched items is
fundamental to their semantics. To our knowledge, the work
described in this paper is the first to consider these types of
complex spatial relationship for sketch recognition.

This paper describes a mechanism for recognizing
sketches of Euler diagrams drawn with ellipses. This work
forms a basis for developing more sophisticated sketch
recognition tools for Euler diagrams and, hence, for the
many notations that extend them. To illustrate the process,
a user-sketched Euler diagram can be seen in the top of fig-
ure 1 whereas a diagram drawn in an editing tool is placed
underneath; we call this lower diagram a formal diagram.
The sketch tool that we have developed can automatically
produce a formal diagram from the user sketch. Our mech-
anism relies on, firstly, dividing the syntax into two classes:
handwritten labels and hand-drawn curves. The curves are
further classified as ellipses or circles. Syntax identified as
a label is subsequently passed to a standard handwriting
recognition package. Syntax identified as a curve is con-
verted into a formal representation by finding a suitable ap-
proximating circle or ellipse, as appropriate.

Section 2 provides background material on Euler dia-
grams and sketch recognition, thus providing motivation
for the research and contextual information. Section 3 de-
scribes our Euler diagram sketch recognition techniques,
including our method for deriving the diagram semantics.
Finally, we conclude in section 4, where we also discuss
further directions for this research.

2. Context and Motivation

Euler diagrams [4] are collections of closed curves used
to visualize relationships between sets and generalize Venn
diagrams [23]. Euler diagrams are a common component of
visual languages because they intuitively represent exclu-
sion, containment and intersection of sets. An example can
be seen in figure 2, which shows a categorization of coun-
tries in the British Isles. The varied application areas of
Euler diagrams include, but are not limited to: crime con-
trol [5], computer file organization [3], classification sys-
tems [22], education [10], genetics [13], and medicine [20].
Thus, there is widespread interest in these types of dia-
grams, but under-developed tools to support their creation.
Providing sketch tools for Euler diagrams has the potential
to be beneficial to a large community of users.

Sketching a diagram on a piece of paper is a useful prob-
lem solving and communications technique [7]. In a sketch-
ing context, users can produce, evaluate, modify, refine and
replace diagram components rapidly. The backtalk from the
external representation of the diagram is considered an es-
sential part of the cognitive support for design. If a com-
puter ‘understands’ the sketch it can be more easily edited,
animated and translated from one format to another. Pen-

Figure 2. The British Isles, by Sam
Hughes [9].

input computers mean that the act of drawing can now be
performed directly on the computer screen or tablet. Au-
tomatic and reliable recognition of hand-drawn diagrams is
now becoming possible.

Hand-drawing diagrams has been shown to be more ef-
fective for external representation of a problem than using
formal computer diagramming tools [6]. However to retain
these benefits the computer-based sketch tools interaction
must be carefully designed with particular attention to re-
taining the hand-drawn appearance of the diagram [18] in
the initial stages of the diagram’s creation. Underlying such
a sketching interface there must be a sophisticated and ac-
curate recognition engine. While much of the early work
was on recognition engines for specific diagrams, for exam-
ple [14], there are now a number of configurable or trainable
recognition engines [16, 17].

However, there are no recognition engines specifically
designed for diagrams where the spatial relationship be-
tween the syntactic components is of primary significance.
For instance, closed curves (typically circles) represent
nodes in graph-like diagrams and their spatial relation-
ship is often taken to have no semantic relevance whereas
closed curves in Euler diagrams overlap or enclose one an-
other precisely to convey semantically relevant information:
overlapping and containment between curves is unique and
critical to Euler diagrams.

3. Recognizing Euler Diagrams

There are various stages to our recognition process
which we have implemented in a prototype software tool.



This tool is an extension of the existing SketchNode code-
base [18]. Given a user created sketch, the first stage is to
divide the sketched components into two categories: labels
and curves. We derive the semantics of the sketch by com-
puting its abstract syntax. Independently, we convert the
sketched curves into formal curves; in this paper we restrict
the curves to being to ellipses, with circles as a special case
of an ellipse. The curve labels are processed by a handwrit-
ing recognition engine.

3.1 Dividing the Syntax

An example of a sketched Euler diagram, drawn in our
software tool, can be seen in figure 3. The first phase of the
recognition process is to classify each syntactic component
as a curve label or as a curve; curves are further catego-
rized as circles or ellipses. We use AI techniques to derive

Figure 3. A sketched Euler diagram.

a mechanism for the classification. The recognizer compo-
nent, Rata.SSR [2], was trained from a number of sample
diagrams; we chose 10 Euler diagrams, each with up to 4
curves. The curve labels comprised the letters of the al-
phabet. We asked 10 participants to sketch each of the 10
Euler diagrams and label their curves appropriately. This
provided us with a training set of 100 sketches. The sample
diagrams were collected in DataCollector, part of DataMan-
ager [1].

To illustrate, figure 4 shows a screenshot of a partici-
pant’s sketch. The righthand panel shows the description of
the task. Here, two descriptions of Euler diagrams are given
and the participant is asked to draw them. The top sketch
was drawn from the Euler diagram description f , fg, fh

which identifies the regions to be present in the diagram; f
is a region inside just a curve labelled f , fg is inside just
curves labelled f and g and so forth. The participants who
were not familiar with this manner of describing an Euler
diagram were provided with training.

After collecting the 100 sketches, we labelled each dig-
ital ink stroke as: text, curve-circle or curve-ellipse. From
the sketches, DataManager generates feature vectors from
each ink stroke and uses these to train the Rata.SSR gener-
ator. The Rata.SSR is then consumed within our software
tool as a component. It separates labels from curves and
recognizes curves as circles or ellipses. Labels are passed
to the operating system text recognizer while the curves are
used to generate the equivalent formal visualization; we dis-
cuss this latter aspect in section 3.3.

3.2 Abstract Syntax of the Sketch

A sketch tool needs semantic understanding of the dia-
gram in order to support intelligent interaction such as edit-
ing and to generate other representations. Euler diagrams
represent sets using curves and the diagram’s zones com-
pletely determine the relationships between the sets. That
is, the zones present correspond to the semantics. A zone is
a region that can be described as being inside some curves
but outside the rest of the curves. For example, the sketch
in figure 3 has zones described by a, ab, c, d, ae, ac, ad, cd,
acd, as shown in the callout. This list of zone descriptors is
called the abstract description.

In order to compute the abstract description, we first as-
sign each curve label its closest curve, unless that curve
is already assigned a label. The process of label assign-
ment is done on-line, whilst the user is creating the sketch,
and adjustments are made as the user performs edits to the
diagram. For instance, if a curve is deleted but its asso-
ciate label remains then that label may be reassigned to the
next closest curve, or assigned to no curve if every sketched
curve already has a label. Each curve is automatically as-
signed a colour that is used in both the sketch and formal
views. There is an internal list of 8 colours for curves; the
colours are automatically assigned in sequence as curves
are recognised. Curve labels are assigned a lighter shaded
of the colour associated to their curve. This allows the user
to readily check the association made by the software and,
thus, have an opportunity to change the sketch if necessary.

There are three major steps when building the abstract
description of a sketched Euler diagram: first, all the sepa-
rate zones in the diagram must be identified; second, we es-
tablish the containment relationships between zones; lastly,
we build the abstract description by iterating through all
zones to establish their label.

The zones are created by first identifying intersections
between each pair of (real) curves, c1 and c2. When an in-



Figure 4. A sketch from the training set.

tersection is found between c1 and c2, a virtual curve, c3, is
created with a sequence of points made from the segments
of the real curves that form the boundary of the intersection
space. Information on the parent curves, c1 and c2, is held
in the virtual curve, c3, for later use. In figure 3, this re-
sults in virtual curves ac, ad and cd (three regions formed
from the pairwise intersecting curves). The algorithm then
checks the set of virtual curves looking for intersections.
On the next pass, the zone acd is discovered, for example.
If more than one new virtual curve is created the algorithm
calls itself with the new virtual curves looking for further
intersections.

We also need to identify when one curve, virtual or real,
contains another. To establish containment, the smallest (if
any) container for each curve is found. Each curve (real
and virtual) is checked against all other non-parent curves
(a virtual curve will always fall within its parents’ bound-
ing boxes). When the bounding box of a curve lies within
the bounding box of another curve then the other curve is a
candidate container. If more than one candidate container is
found then the smallest is the container the outer containers
can be found by check each containers container.

The abstract description can then generated by building
the label for each curve. A label for a real curve consists of
the label of its container (which may itself have a container)
and its own label. The label for a virtual curve is the set of
the labels of the component curves To allow the abstract
description to be constructed when a curve is unlabelled the
curve’s colour is used as shown in the callout in figure 5.

3.3 Converting to the Formal Diagram

We now describe the process by which we convert a
sketch drawn curve into a formal curve. First, we describe

Figure 5. A sketch with no curve labels.

how to convert a sketched curve that has been classified as
an ellipse, but not a circle, into a formal ellipse. A sketched
curve, see the left of figure 6, is represented internally by
a sequence of points, as shown on the right. We find the
longest chord across the ellipse by taking the two points that
are furthest apart in the internal representation and we then
draw a line segment between them. We can calculate the
rotation of the sketched ellipse from the angle, α, formed
by this chord and the x-axis, as shown in figure 7.

Next, we rotate the sketched ellipse by α so that this
chord is parallel to the x-axis. A standard algorithm is
then used to find a bounding box of the sketched ellipse,
as shown in figure 8. This rectangle is used to create the



Figure 6. A sketched ellipse and its internal
representation.

α

Figure 7. Computing the angle of rotation.

minor

axis

major axis

Figure 8. Finding a bounding box to compute
the minor axis.

formal ellipse: the centre of the ellipse is the centre of the
rectangle, the major axis takes the width of the rectangle,
and the minor axis is the height of the rectangle. Finally,
the formal ellipse has rotation α, the same angle of rotation
as the sketched version, shown in figure 7.

However, we attempt to preserve user intent in this last
step, with regard to approximate alignment with the x and
y-axis. If α is within 10 degrees of 0, 90, 180, or 270 de-
grees then we round α accordingly to achieve alignment.

Figure 9. The final formal ellipse.

In the case of a curve classified as a circle by Rata.SSR,
we follow a similar procedure, except that angle of rotation
is irrelevant. Once we have computed the bounding box,

we take the average length of the two sides as the circle’s
diameter. Of course, it is not necessary to differentiate be-
tween circles and ellipses, but circles are more aesthetically
pleasing; if a user intended to draw a circle it is preferable
to preserve that intention where possible.

Figure 10 shows the formal Euler diagram obtained from
the sketch in figure 3. The sketched curves c, d and e have
been classified by Rata.SSR as circles and, therefore, ren-
dered as circles in the formal diagram, whereas a and b have
been identified as ellipses. Notice that b, in the sketch, is ap-
proximately parallel to the y-axis and has, therefore, been
given a rotation of 90 degrees in the formal diagram. The
computed angle of rotation of a in the sketch has, however,
has been maintained in the formal diagram. We plan to ex-

Figure 10. A formal Euler diagram generated
from figure 3.

tend the software so that it computes the abstract description
of the formal diagram, which can be done using the algo-
rithm described for the sketch. This will allow us to auto-
matically compare the abstract description of the sketch and
the formal diagram to highlight any differences that may
have arisen during the formalization stage.

4. Conclusion

In this paper, we have presented the first techniques for
recognizing sketches of Euler diagrams and developed a
prototype implemtation. We have restricted to the case
when all curves are circles or ellipses, which is often seen to
be the case in user created Euler diagrams. However, there
are collections of sets that cannot be accurately visualized
using an Euler diagram drawn with ellipses and more arbi-
trary shaped curves must be used. We plan to extend this
work to allow the recognition of arbitrary curves.



In order to produce quality diagrams from sketches
drawn with arbitrary curves there are many challenges to be
overcome. For instance, when a sketched curve has some
symmetry, we should aim to preserve that symmetry in the
formal diagram. In addition, we need to take into account
approximate alignment and equality of spacing between
sketched curves and preserve the perceived user intention
in the formal diagram. The software should also incorpo-
rate more sophisticated editing functionality which the user
can access in order to make modifications to both the sketch
and formal diagram as required. We plan to write an Euler
diagram sketch recognition plug-in for InkScape, so we can
take advantage of the features already implemented in this
freely available diagram editing tool.

The results presented here provide the necessary basis
for developing sketch recognition software for notations
that extend Euler diagrams with additional syntax. For ex-
ample, constraint diagrams augment Euler diagrams with
graphs, arrows, and shading. A simple example can be
seen in figure 11; in this example, the curves of the under-
lying Euler diagrams do not intersect with each other but
more complex diagrams can display arbitrary intersections
between the curves. In constraint diagrams, the different
style of node (asterisks versus filled circles) in the embed-
ded graphs is of semantic importance and a sketch recogni-
tion engine for constraint diagrams would need to be sensi-
tive to this difference.

ActorFilm

ActorFilm
leadActor

ActorFilm
allActors

Figure 11. A constraint diagram.

Acknowledgement This research is supported by EPSRC
grants EP/E010393/1, EP/H012311/1 and EP/H048480/1
and a Royal Society of New Zealand Marsden Grant.

References

[1] R. Blagojevic, P. Schmieder, and B. Plimmer. Towards a
toolkit for the development and evaluation of sketch recog-
nition techniques. In Sketch Recognition Workshop, 2009.

[2] S. Chang, B. Plimmer, and R. Blagojevic. Rata.ssr: Data
mining for pertinent stroke recognizers. In Sketch Based
Interface Modeling. ACM, 2010.

[3] R. DeChiara, U. Erra, and V. Scarano. VennFS: A Venn
diagram file manager. In Proceedings of Information Visu-
alisation, pages 120–126. IEEE Computer Society, 2003.

[4] L. Euler. Lettres à une Princesse d’Allemagne sur divers
sujets de physique et de philosophie. Letters, 2:102–108,
1775.

[5] G. Farrell and W. Sousa. Repeat victimization and hot
spots: The overlap and its implication for crime control
and problem-oriented policing. Crime Prevention Studies,
12:221–240, 2001.

[6] V. Goel. Sketches of thought. MIT Press, 1995.
[7] G. Goldschmidt. Visual and Spatial Reasoning in Design,

chapter The Backtalk of Self-Generated Sketches, pages
163–184. University of Sydney, 1999.

[8] J. Howse, F. Molina, J. Taylor, S. Kent, and J. Gil. Spider
diagrams: A diagrammatic reasoning system. Journal of Vi-
sual Languages and Computing, 12(3):299–324, June 2001.

[9] S. Hughes. The Great British Venn diagram.
http://qntm.org/uk, accessed July 30, 2010.

[10] E. Ip. Visualizing multiple regression. Journal of Statistics
Education, 9(1), 2001.

[11] G. Johnson, M. Gross, and J. Hong. Computational Support
for Sketching in Design. Now Publisher Inc., 2009.

[12] S. Kent. Constraint diagrams: Visualizing invariants in
object oriented modelling. In Proceedings of OOPSLA97,
pages 327–341. ACM Press, October 1997.

[13] H. Kestler, A. Muller, H. Liu, D. Kane, B. Zeeberg, and
J. Weinstein. Euler diagrams for visualizing annotated gene
expression data. In Proceedings of Euler Diagrams 2005,
Paris, September 2005.

[14] J. Landay and B. Myers. Interactive sketching for the early
stages of user interface design. In Chi 1995 Mosaic of Cre-
ativity, pages 43–50, 1995.

[15] I. Oliver, J. Howse, G. Stapleton, E. Nuutila, and S. Törma.
A proposed diagrammatic logic for ontology specification
and visualization. In International Semantic Web Confer-
ence, 2009.

[16] B. Paulson and T. Hammond. Paleosketch: Accurate prim-
itive sketch recognition and beautification. In Intelligent
User Interfaces. ACM Press, 2008.

[17] B. Plimmer and I. Freeman. A toolkit approach to sketched
diagram recognition. In HCI, pages 205–213. British Com-
puter Society, 2007.

[18] B. Plimmer, H. Purchase, and H. Laycock. Preserving the
hand-drawn appearance of graphs. In Visual Languages and
Computing, pages 347–352, 2009.

[19] S.-J. Shin. The Logical Status of Diagrams. Cambridge
University Press, 1994.

[20] J. Soriano, K. D. B. Coleman, G. Visick, D. Mannino, and
N. Pride. The proportional Venn diagram of obstructive lung
disease. Chest, 124:474–481, 2003.

[21] N. Swoboda and G. Allwein. Heterogeneous reasoning with
Euler/Venn diagrams containing named constants and FOL.
In Proceedings of Euler Diagrams 2004, volume 134 of
ENTCS. Elsevier Science, 2005.

[22] J. Thièvre, M. Viaud, and A. Verroust-Blondet. Using Eu-
ler diagrams in traditional library environments. In Euler
Diagrams 2004, volume 134 of ENTCS, pages 189–202.
ENTCS, 2005.

[23] J. Venn. On the diagrammatic and mechanical representation
of propositions and reasonings. Phil.Mag, 1880.


