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DYNAMICS OF MULTI-KINKS IN THE PRESENCE
OF WELLS AND BARRIERS
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Sine-Gordon kinks are non-dispersive solutions in a much studied inte-
grable system. Recent studies on sine-Gordon kinks with space-dependent
square-well-type potentials have revealed interesting dynamics of a single
kink interacting with wells and barriers. In this paper, we study a class of
smooth space-dependent potentials and discuss the dynamics of one kink
in the presence of different wells. We also present values for the critical
velocity for different types of barriers. Furthermore, we study two kinks
interacting with various wells and describe interesting trajectories such as
double-trapping, kink knock-out and double-escape.
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1. Introduction

Topological solitons arise in many classical field theories [1]. One of the
simplest systems to admit topological solitons is the sine-Gordon model.
In fact, this (1 + 1) dimensional model gives rise to a variety of different
solutions such as wave-like solutions, topological soliton solutions usually
referred to as kinks, as well as breather and kink–antikink solutions which
do not carry a topological charge. The sine-Gordon model is described by
the Lagrangian density

L =
1
2

(
∂φ

∂t

)2

− 1
2

(
∂φ

∂x

)2

− λ (1− cosφ) , (1)
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where φ(x, t) is a real scalar field and λ is a coupling constant. Applying
the standard variational principle leads to the field equation

∂2φ

∂t2
− ∂2φ

∂x2
+ λ sinφ = 0 . (2)

This so-called sine-Gordon equation has applications in a large number of
areas of physical and bio-physical interest, including the Josephson effect [2],
nuclear physics [3], non-linear optics [4], ferromagnetic spin chains [5] and
wave propagation in brain microtubules [6], amongst others. Taking a spin
chain in the easy plane model of a ferromagnet as an example, λ is deter-
mined by the strength of the magnetic field, which occurs in a direction in the
(x, y) easy plane (see [5] for details). When this system becomes inhomoge-
neous, that is the magnetic field has a z-dependence, then the corresponding
parameter λ is also space-dependent. The Bloch equation describing the sys-
tem still leads to a sine-Gordon equation, and solitons can still occur. We
will not discuss physical interpretations further. In this paper, we shall be
interested in the sine-Gordon model with parameter λ, which, as a function
of space, is of the form of a smooth well or barrier. For our system, λ will
be positive and, far away from the origin, very close to unity.

The interaction of a sine-Gordon soliton with a potential obstacle was
investigated by Fei et al. [7]. The authors investigated a kink incident on
a point defect and found a novel behaviour in which, for certain incoming
velocities, the kink is reflected backwards, due to its interaction with the
defect. Many of the results in [7] were explained by Goodman and Haber-
man [8] in terms of a two-bounce resonance model. The interaction of a kink
with a kink pinned by a point defect has been discussed in [9], see also [10]
for a review on related soliton dynamics.

In [11] Piette and Zakrzewski investigated a sine-Gordon kink interacting
with a potential with a space-dependent term in the form of a rectangular
well. The authors found that back-reflection for some incoming velocities
also arises for this system and gave two effective models to account for this
phenomenon. Soliton interactions with rectangular wells have also been
discussed for various other soliton systems [12, 13, 14, 15, 16, 17, 18]. A kink
interacting with a smooth well is discussed in [19] in terms of the sine-
Gordon model and in [20] for the λφ4 model. While these papers address
the dynamics of a kink interacting with a well, multi-kinks interacting with
extended wells have so far not been investigated.

In this paper, Section 2 gives a review of sine-Gordon kinks. Then
Section 3 introduces a two-parameter family of space-dependent potentials
which include a variety of wells and barriers. In Section 4, the results of
simulations of the dynamics of a single kink interacting with a particular
well are given. We also calculate critical velocities for barriers and compare
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numerical results to an analytic approximation. In Section 5, the dynamics
of a moving kink incident on a well with another initially at rest in the well
are presented. The paper also gives plots of the scattering data for 1-kink
and 2-kink systems with two different types of wells, these are discussed at
the end of Section 5. The paper ends with a conclusion.

2. Sine-Gordon kinks

In this section, we recall some basic facts about sine-Gordon kinks and
set up our notation.

The energy of a static sine-Gordon kink is

E =

∞∫
−∞

(
1
2

(
dφ

dx

)2

+ λ (1− cosφ)

)
dx . (3)

One can also define a super potential, W , given by

1
2

(
dW

dφ

)2

= λ (1− cosφ) . (4)

The energy (3) can then be rewritten in terms of two integrals

E =
1
2

∞∫
−∞

(
dφ

dx
∓ dW

dφ

)2

dx±
φ(∞)∫

φ(−∞)

dW . (5)

For a minimum energy soliton, we obtain the Bogomolny equations

dφ

dx
= ±dW

dφ
, (6)

where the ± sign gives a kink or antikink. Substituting the solution of (4)
into (6) gives the kink field

φ(x) = 4 arctan
(

exp
(√

λ(x−X)
))

, (7)

where X is a constant of integration and corresponds to the position of
the kink. The energy can then be evaluated to be 8

√
λ, so one has the

Bogomolny bound
E ≥ 8

√
λ . (8)

Since the Lagrangian density (1) is Lorentz invariant, a boost can be applied
to (7) to give a moving kink with field configuration

φ = 4 arctan (exp (γ (x− vt−X))) , (9)
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where v is the velocity of the kink, with −1 < v < 1, and γ = 1√
1−v2 is the

Lorentz factor, and we have set λ = 1 for simplicity. There is a topological
charge N associated with a sine-Gordon kink given by

N =
1

2π

∞∫
−∞

dφ

dx
dx . (10)

At x = ±∞ the field φ needs to minimize the potential energy in (3), hence
we choose φ(−∞) = 0 and φ(∞) = 2πN . Therefore, equation (10) clearly
takes integer values. For charge N the Bogomolny bound becomes

E ≥

∣∣∣∣∣∣∣
φ(∞)=2πN∫
φ(−∞)=0

dW

∣∣∣∣∣∣∣ = 8|N |
√
λ . (11)

For the case of multi-kinks this bound cannot be saturated as there is a
repulsive force between two static kinks. Indeed, in [3] Perring and Skyrme
show that the asymptotic interaction energy of two sine-Gordon kinks is
given by

Eint = 32
√
λe−

√
λR , (12)

where R is the separation between the kinks.
As well as being Lorentz invariant, the sine-Gordon model is also fully

integrable (see [21] for a review of integrable systems). Therefore, it has the
feature that solution generating techniques, such as the Bäcklund transfor-
mation, are applicable (see e.g. [22]). For N = 2 this transformation can
be used to obtain the field

φ = 4 arctan

 v sinh
(
x−vt
1−v2

)
cosh

(
vt−v2x
1−v2

)
 . (13)

This describes two individual kinks, one static at negative infinity in time
and the other travelling with speed v at this instant. The field configura-
tions of the kinks gradually approach each other with time and the solitons
interact. For simplicity, we have set λ = 1 in formula (13).

In the sine-Gordon model there is also a breather solution, which exists in
the charge zero sector and can be interpreted as a kink–antikink bound state.
A solution that is a bound state of a breather and kink, the sine-Gordon
wobble, is described in [23]. These solutions show interesting behaviour
when they are interacting with square wells [16,17].
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3. A class of space-dependent potentials

In the following, we describe a class of space-dependent potentials, where
the coupling constant λ in (2) becomes space-dependent. Square-well-type
potentials have been discussed for example in [11]. These have the disadvan-
tage that they are not smooth. Here, we propose a smooth two-parameter
family of barriers and wells, with the additional advantage that there is an
analytic solution for a static kink located at the centre of the barrier or well.
Figure 1 displays the wells which we study in this paper, and figure 2 shows
a selection of barriers.
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Fig. 1. Wells with λ(0) = 1
4 for various values of a and b. Detailed scattering

experiments have been performed on the wells displayed with solids lines. These
are the quartic well (a = 5

√
5

32 , b = 3
√

5
32 ), a narrow well without humps (a = 0,

b =
√

10/4) and a generic well with humps (a = −0.25, b = 1.126166088). Some
other examples of wells are displayed in dotted lines, for example the double well
(a = 3

8 , b = 1
8 ).

The static kink (7) located at x = X solves the static field equations

∂xxφ− λ sinφ = 0 , (14)

for constant λ. By allowing λ to depend on x we can solve equation (14) for
λ(x) for any given static field configuration. However, a priori it is not clear
whether such a λ(x) is non-singular. We will show in the following that we
can find a two parameter family of kinks located at x = 0 which solves the
static field equations (14) such that λ(x) is non-singular for all real values
of x. The kinks are given by

φ(x) = π + 2 arctan (ax+ b sinh(x)) (15)
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provided that we set

λ(x) =
n2x

2 + n1x+ n0

d3x3 + d2x2 + d1x+ d0
, (16)

where

n2 = −a2b sinh(x) ,
n1 = 2a

(
b2 + a2 + 2ab cosh(x)

)
,

n0 = b sinh(x)
(
b2 + 2a2 − 1 + 4ab cosh(x) + b2 cosh(x)2

)
,

and

d3 = a3 ,

d2 = 3a2b sinh(x) ,
d1 = a

(
1− 3b2 + 3b2 cosh(x)2

)
,

d0 = b sinh(x)
(
1− b2 + b2 cosh(x)2

)
.

Note that the trivial vacuum solutions φ(x) ≡ 2πn also satisfy (14) for all
functions λ(x) provided n is an integer.

It is easy to see that λ(x) = λ(−x) and that the map

(a, b) 7→ (−a,−b) (17)

leaves λ(x) invariant. Physically, this means that λ is the same for a kink
(b > 0) and an antikink (b < 0). In the following, we restrict our attention
to kinks and set b ≥ 0. Since the sinh(x) term dominates for large |x| the
parameter a can take positive and negative values provided b > 0. Setting
b > 0 also guarantees that

lim
|x|→∞

λ(x) = 1 , (18)

which means that the kink located at X given by (7) tends to the exact
solution for large |X|, that is when the kink is far enough away from the
well. For b = 0, the asymptotics change. In this case,

λ(x) =
2a2

a2x2 + 1
, (19)

which tends to 0 as |x| → ∞. Since we want the usual sine-Gordon kink (7)
to be an asymptotic solution, we only consider the case b > 0.
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In order to determine the values of a and b for which λ(x) is regular, we
solve equation (14) for λ and obtain

λ(x) =
∂xxφ

sinφ
. (20)

Therefore, singularities can only occur for sinφ = 0. With our choice of
b > 0 we have

− π

2
< arctan (ax+ b sinh(x)) <

π

2
, (21)

hence, since arctan is a monotonic function and arctan(0) = 0, λ(x) can
only have singularities at g(x) = 0, where

g(x) = ax+ b sinh(x) . (22)

Taking the derivative of (22) leads to

g′(x) = a+ b cosh(x) . (23)

This implies that g′(x) > 0 for a+b > 0, so that g(x) is a monotonic function
whose only root is x = 0. We can evaluate the limit

lim
x→0

λ(x) =
2(a+ b)3 − b

a+ b
. (24)

Hence, λ(x) diverges for b > 0 and a → −b. For a + b < 0, the function
g(x) has one maximum and one minimum and hence two non-trivial zeros.
Generically, λ(x) will be singular for a+ b ≤ 0.

Physical applications usually demand that λ(x) > 0. This condition is
satisfied provided a satisfies the stronger inequality

a+ b >

(
b

2

) 1
3

. (25)

Furthermore, we are mostly interested in wells located at the origin, which
implies λ(0) < 1.

An interesting one parameter family is obtained by setting a = 0. It
follows from (24) that λ(0) = 2b2 − 1. Therefore, we obtain a well with

λ(x) > 0, for
√

1
2 < b < 1, whereas for b > 1 this is a barrier. This

one-parameter family is an example of a pure well or barrier, respectively,
because the only extremum of λ(x) is at x = 0.

Fixing the value of λ(0) = h and b gives a cubic equation for a, which is
most conveniently expressed in terms of the variable a+ b, namely

(a+ b)3 − h

2
(a+ b)− b

2
= 0 . (26)
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This cubic has the discriminant

D = − h3

216
+
b2

16
. (27)

Hence equation (26) has three real solutions for D < 0, two real solutions
for D = 0 and only one real solution for D > 0. However, not all solutions
will lead to regular wells.

In order to gain a better understanding of the various wells and barriers
it is useful to calculate

lim
x→0

d2λ(x)
dx2

=
−12(a+ b)6 + 12b(a+ b)3 − b(a+ b) + b2

2(a+ b)2
. (28)

When this limit vanishes we have a quartic well.
In figure 1, we considered wells with λ(0) = 1

4 . There is a one-parameter
family of wells with humps on both sides for a < 0. Our main example is
a = −0.25 and b = 1.126166088. There is another one parameter family
of wells with a > 0 which includes pure wells, the quartic well and double
wells. As can be seen in figure 1, the pure wells for a > 0 are wider than
the pure well at a = 0. Using equation (28) we can derive the values for the
quartic well, namely, a = 5

√
5

32 and b = 3
√

5
32 with λ(0) = 1

4 . For a > 5
√

5
32 we

obtain double wells, where there is a local maximum at x = 0, and global
minima at either side.

In figure 2, we show interesting examples of barriers. Again, there are
pure barriers, barriers with wells at either side and volcano (or double peak)
barriers.
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Fig. 2. Different types of barriers: a barrier with two side wells (a = 0.25, b = 0.75),
a volcano barrier (a = −0.5, b = 1.657970214), and three pure barriers (a = 0,
b = 3

√
2

4 ), (a = 0, b =
√

6
2 ) and (a = 0, b =

√
2) with height 1.25, 2 and 3,

respectively.
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4. Dynamics of one kink in the presence of wells and barriers

In this section, we consider a sine-Gordon kink travelling towards our
standard well with various initial velocities and plot the trajectories. We
also calculate the critical velocities for different barriers and compare these
to an analytic approximation. First, we briefly comment on our numerical
scheme.

The equations of motion for the kinks have been solved using a standard
fourth order Runge–Kutta method with gridsize 10001. Plus and minus
“infinity” are located at 50 and −50, respectively, so that the stepsize in
space is ∆x = 0.01. The stepsize in time has usually been taken to be
∆t = 0.0001 which is the same choice of parameters as in [11]. For small
initial velocities of the kink, larger values of ∆t are appropriate.

4.1. Plots of trajectories

Figure 3 illustrates all relevant phenomena for one kink interacting with
a well. We have chosen the well with parameters a = −0.25 and b =
1.126166088, which has a minimum λ(0) = 1

4 and two humps at x ≈ ±2.20
of height 1.16.
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(a) v = 0.2 (b) v = 0.33
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(c) v = 0.3873 (d) v = 0.5
Fig. 3. Kink trajectories x(t) for a well with a = −0.25 and b = 1.126166088.
(a) shows elastic back-reflection. In (b) the kink becomes trapped in the well.
In (c) the kink is back-reflected by the well. In (d) the kink crosses the well.
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For low velocity v < 0.3, there is elastic back-reflection from the first
hump, so that initial and final velocity are equal in size, as in figure 3(a). For
higher velocity the kink overcomes the initial barrier and becomes trapped in
the well which is illustrated in figure 3(b). The critical velocity uc is defined
as the smallest initial velocity which allows the kink to cross the well (or
barrier). For the well discussed here, the critical velocity is uc ≈ 0.387. An
example of a kink crossing the well is given in figure 3(d), where it can be seen
that the kink gains speed inside the well. The most interesting behaviour
happens for a narrow range of velocities just below uc. As figure 3(c) shows,
the kink may enter the well, get reflected from the well and then leave the
well travelling in the opposite direction. This type of behaviour has been
discussed in detail in [11]. For our standard well, these resonance windows
are very narrow. In fact the kink in figure 3(c) is trapped for v = 0.38735, is
back-reflected for v = 0.38736 and trapped once more for v = 0.38737. For
v = 0.38738 the kink escapes.

4.2. Critical velocities for one kink interacting with a barrier

In this section we follow an argument in [15] to calculate an analytic
approximation to the critical velocity, uc. We then compare the analytic
calculations with numerical results. Finally, we briefly discuss how to apply
the moduli space approximation in this context.

The total energy of a kink configuration is given by sum of kinetic and
potential energy, namely,

Etotal =

∞∫
−∞

(
1
2

(
∂φ

∂t

)2

+
1
2

(
∂φ

∂x

)2

+ λ(1− cosφ)

)
dx . (29)

Far away from the well, λ ≈ 1, and a kink travelling with speed v is given
by equation (9) with total energy

E1(v) =
8√

1− v2
. (30)

By construction, we know that the kink (15) is a static configuration when
the coupling constant λ is given by (16). We first consider the case a = 0,
then the total energy is given by

E2(b) =

∞∫
−∞

(
2(b2 − 1 + 2b2 cosh(x)2)

b4 cosh(x)4 − 2b2 (b2 − 1) cosh(x)2 + (b2 − 1)2

)
dx . (31)
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The energy E2(b) can be evaluated explicitly, but the expression is

lengthy. E2(b) is a monotonically increasing function of b with E2

(√
1
2

)
=

√
2 ln

(√
2− 1

)
+ 6 ≈ 4.75, E2(1) = 8, so that E2 > 8 for b > 1 (barrier)

and E2 < 8 for b < 1 (well).
The critical velocity uc is the smallest velocity such that the kink passes

the obstacle. In the case of elastic scattering, the critical velocity can be
evaluated using the conservation of energy, that is by setting

E1(uc) = E2(b) , (32)

as was pointed out in [14]. Since E1(v) ≥ 8 this approach is only valid for
barriers. For non-zero a the situation is similar, only now there is a larger
variety of possible shapes, see figure 2.

In Table I we present critical velocities for kinks interacting with the
barriers displayed in figure 2. The critical velocities have been calculated
both numerically and using equation (32). It is clear that the theoretical
approach is accurate for barriers that are monotonically increasing before
the origin and monotonically decreasing afterwards. Otherwise, there is
discrepancy, and hence the assumption of elastic scattering is not valid in
these cases.

TABLE I

The values of a and b are the parameters of the barriers discussed in figure 2. The
column “mass” gives the energy of the a kink located on top of the barrier, the two
columns with uc compare the analytic approximation to the critical velocity to its
numerical value, λ(0) is the height of the barrier at x = 0 and the final column
gives the type of barrier.

a b Mass uc (theoretical) uc (numerical) λ(0) Type of barrier
0.25 0.75 8.33 0.271 0.280 1.25 Barrier with wells
−0.50 1.66 9.17 0.489 0.505 1.25 Volcano
0.00 1.06 8.64 0.379 0.379 1.25 Pure barrier
0.00 1.22 10.35 0.635 0.636 2.00 Pure barrier
0.00 1.41 12.28 0.759 0.762 3.00 Pure barrier

In the following, we sketch how we might be able to calculate critical
velocities in the case of inelastic scattering. We begin by discussing the
moduli space approximation [24], in the context of kinks interacting with
wells and barriers. Originally, this method was developed for BPS monopoles
where the static solutions of the field equations are a finite dimensional
manifold, and relativistic dynamics can be approximated for low velocities as
geodesic flow on this manifold. For a single kink with λ = 1 the moduli space
is one-dimensional, generated by translating the kink. For non-constant λ,
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the only static solutions are the kink and the antikink. Therefore, we need
to include low energy configurations, which are not static, in order to obtain
a finite dimensional “moduli space”. For the well given by (16) we can choose
the following finite dimensional parametrisation of the kink configuration,

φ(x, t) = π + 2 arctan (A(t) (x−X(t)) +B(t) sinh (γ(t) (x−X(t))))
+W (t)φwell(x) . (33)

The time-dependence of the kink is captured by the functions A(t), B(t),
γ(t), X(t) and W (t) which are coordinates on the moduli space. Here A(t)
and B(t) describe how the presence of the well deforms the kink. For low
energy configurations, a kink which is static in the well has A = a and
B = b whereas a kink far away from the well will have A ≈ 0 and B ≈ 1.
The parameter X(t) gives the position of the kink and the gamma factor
γ(t) describes how the kink deforms for high velocities, which has already
been discussed in [11]. Finally, φwell(x) parametrizes a bound state which
arises unless λ(x) ≥ 1 for all x. In order to include multikinks, we could
add another kink to (33) with new parameters Ã(t), B̃(t), γ̃(t) and X̃(t),
which is a reasonable approximation provided the two kinks are far apart
from each other, namely |X(t)− X̃(t)| � 0, see [25] for a detailed study in
the case λ ≡ 1.

To simplify the discussion we only consider the case of a pure barrier
with a = 0 and b > 1. In this case, the ansatz (33) reduces to

φ(x, t) = π + 2 arctan (B(t) sinh((x−X(t)))) (34)

assuming low enough speeds, so that the gamma factor can be ignored.
Inserting the ansatz into the Lagrangian (1) and integrating over space, we
obtain the reduced Lagrangian

L = C1Ẋ
2 + C2Ḃ

2 − V (b, B,X) , (35)

where

C1 =
2B2 arctan

√
B2 − 1 + 2

√
B2 − 1√

B2 − 1
, (36)

C2 =
2B2 arctan

√
B2 − 1− 2

√
B2 − 1

B2
√
B2 − 1

3 (37)

and V (b, B,X) is a complicated, but explicitly known function of the well
parameter b and the kink parameters B and X. For large |X| the reduced
potential can be written as

V (b, B,X) = U(B) +O (exp (−2|X|)) , (38)
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where U(B) is independent of the well parameter b. For B ≈ 1, we obtain

U(B) = 8 + 32
15 (B − 1)2 +O

(
(B − 1)3

)
. (39)

Hence, for small energies, far away from the well, the kink moves with con-
stant speed and oscillates around the equilibrium configuration B = 1. As
a useful check, we set B ≡ 1, so that Ḃ = 0, to obtain

L = 4Ẋ2 − 8 , (40)

which is the expected Lagrangian for a free particle of mass 8. This La-
grangian describes geodesic motion on R, the moduli space of a single kink.
Note, the geodesic approximation has been rigorously proven by Stuart for
vortices and monopoles [26,27].

A detailed study of the moduli space approximation is beyond the scope
of this paper. Here we discussed what kind of parameters may become
relevant and gave a partial answer in the case of barriers. For the more
interesting case of kinks interacting with wells, a good approximation for
the bound mode is required. This is work currently in progress.

5. Dynamics of two kinks in the presence of a well

In general, the interaction of two kinks with a well is rather complicated
because the trajectories depend on the initial positions and the initial ve-
locities of both kinks. Here, we restrict our attention to scattering processes
when the first kink approaches the well with given initial velocity v, and
the second kink is at rest in the well. Our potential λ(x) has been chosen,
such that the first kink is given asymptotically by equation (9) whereas the
second kink is given by equation (15). The exact solution (13) cannot be
generalized to our wells. However, since kinks are exponentially localized,
we can just concatenate the two kinks provided the first kink is far enough
away from the well.

Figure 4 illustrates some important trajectories for our standard well.
When the first kink travels with small initial velocity, e.g. v = 0.2, then
there is elastic back-reflection, such that the final velocity of the first kink
is −v, and the second kink remains at rest in the well, see figure 4(a). The
trajectory of the first kink closely resembles the trajectory of a single kink in
figure 3(a). Figure 4(b) shows inelastic scattering where the first kink loses
energy, and the second kink clearly gains energy because it is now oscillating
in the well. In figure 4(c) the second kink is knocked out of the well by the
first kink which also escapes from the well. Figure 4(d) shows a similar
scenario. The second kink is again knocked out of the well, whereas the first
kink is now trapped in the well. It is worth comparing this outcome to the
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exact solution when there is no well. In this case, the first kink loses all its
kinetic energy to the second kink, so that after the scattering event the first
kink is at rest whereas the second kink moves with velocity v.

100 150 200 250
−20

−15

−10

−5

0

5

t

x

40 50 60 70 80 90 100
−20

−15

−10

−5

0

5

t

x

(a) v = 0.2 (b) v = 0.6

40 60 80 100
−20

−15

−10

−5

0

5

10

15

t

x

40 60 80 100 120
−20

−15

−10

−5

0

5

10

15

20

t

x

(c) v = 0.7 (d) v = 0.75

Fig. 4. Kink trajectories x(t) for a well with a = −0.25 and b = 1.126166088. One
kink is travelling towards the well whereas a second kink is stationary inside the
well. (a) shows elastic back-reflection, the kink in the well remains stationary. In
(b) the kink experiences inelastic scattering, the trapped kink oscillates in the well.
In (c) the first kink is back-reflected while the second kink escapes from the well.
In (d) the first kink becomes trapped while the second kink escapes from the well.

We checked the range 0.695 < v < 0.6951 in detail, in the hope that
there would be a double back-reflection, so that first kink and second kink
both escape on the same side. But for our standard well, we were unable to
find this kind of behaviour.

In figure 5, we discuss two interesting trajectories for the quartic well
(a = 5

√
5

32 , b = 3
√

5
32 ). This is a rather wide well which allows both kinks to

be trapped. Figure 5(a) shows an interesting quasi-periodic motion where
the two kinks knock each other out of the centre of the well but do not
gain enough energy to leave the well. Figure 5(b) shows a novel type of
back-reflection. The first kink enters the well and speeds up, then hits the
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second kink and knocks it off the centre of the well. The second kink slows
down, returns to the centre and gives the first kink enough kinetic energy
to escape the well.
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Fig. 5. Kink trajectories x(t) for the quartic well (a = 5
√

5
32 , b = 3

√
5

32 ). One kink
is travelling towards the well with velocity v whereas a second kink is stationary
inside the well. In (a) both kinks become trapped in the well. (b) shows a novel
type of back-reflection.

Figure 6 shows final versus initial velocity for our standard well. In the
left figure, one kink travels towards the well with initial velocity v. For
v < 0.3 the kink is elastically back-reflected. As v is increased, the kink is
trapped. For v > 0.387 the kink escapes the well. As v tends to one the
kink feels the influence of the well less, so that the final velocity tends to the
initial velocity for v ≈ 1. The back-reflection at v = 0.38736 is too narrow
to be detected with the resolution used for this figure. However, there are
additional back-reflections at v = 0.386 and v = 0.381.
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Fig. 6. Final velocity versus initial velocity for a kink incident on a well with humps
with a = −0.25 and b = 1.126166088. For the figure on the left, the well is empty
whereas for the figure on the right, there is a kink in the well, which is initially at
rest. The dotted line corresponds to no obstacle, i.e. initial velocity equals final
velocity.
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The right figure in 6 shows final versus initial velocity for our standard
well, where a second kink is at rest inside the well. Elastic scattering takes
place for a longer range of initial velocity v. As the initial velocity of the
incoming kink increases, the kink in the well is set oscillating more energeti-
cally. Because of this, at some point the final velocity of the first kink starts
to become less negative. At higher initial velocities the final velocity of the
initially static kink increases and approaches one, while the final velocity of
the other soliton takes the value zero in two separated windows, but is more
negative between and after these windows.

Figure 7 shows final velocity versus initial velocity for a narrow well with-
out humps. In the left figure, one kink travels towards the well with initial
velocity v. There is a series of resonance windows at v ≈ 0.2 where back-
reflections occur. In comparison to figure 6 the behaviour near the critical
velocity is less abrupt and back-reflections take place more frequently. For
large initial speed, the initial velocity approaches the final velocity. How-
ever, there is a region where the curve appears to wobble. In terms of our
numerical simulations, we have checked sensitivity to stepsize in time and
space independently. The wobble is more sensitive to the stepsize in space,
but appears to be a genuine phenomenon. This could be a novel feature due
to our potential.
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Fig. 7. Final velocity versus initial velocity for a kink incident on a narrow well
without humps with a = 0 and b =

√
10/4. For the figure on the left, the well

is empty whereas for the figure on the right, there is a kink in the well, which is
initially at rest. The dotted line corresponds to no obstacle, i.e. initial velocity
equals final velocity.

The figure on the right in 7 shows final velocity versus initial velocity for
the narrow well without humps, where a second kink is initially static in
the well. At small to medium initial velocities, elastic and inelastic back-re-
flections occur. For velocity v > 0.6 the static kink is ejected from the well
and at marginally greater initial velocity, the first kink becomes trapped. For
higher velocities both kinks escape the well in opposite directions. Again,
the final velocity of the first kink is not a monotonic function of the initial
velocity.
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6. Conclusion
In this paper, we have discussed the interactions of kinks with wells and

barriers. We introduced a novel class of smooth potentials which include
pure wells and pure barriers of various heights and widths. These potentials
also give rise to wells with two side barriers and barriers with two side wells,
as well as double wells and volcano barriers. The main advantage of the
proposed potentials is that the static kink-in-the-well solution is explicitly
known. The asymptotic kink solution for a kink located at very large X is
also known. Therefore, a kink can be scattered off a kink-in-the-well and the
only relevant parameter is the initial velocity of the incoming kink. When
the exact solution of the kink in the well is not known, then the trapped
kink tends to oscillate in the well, such that the scattering behaviour depends
not only on the velocity of the incoming kink but also on the phase of the
trapped kink, which is more difficult to control.

We studied the scattering of one kink off a well, mainly focussing on our
standard well with λ(0) = 1

4 and two side humps, and reproduced all the
known phenomena such as trapping, back-reflection and escape. We then
compared numerically calculated critical velocities for various barriers to an
analytic approximation assuming elastic scattering. As expected, there was
good agreement for pure barriers, and less agreement for the volcano barrier
and the barrier with side wells.

The novel feature of this paper is the scattering of multi-kinks in the
presence of a well. We calculated various trajectories for our standard well,
such as elastic scattering, inelastic scattering, kink one replacing kink two
in the well and a scattering where both kinks escape. Unfortunately, we
were unable to find a double back-reflection for our standard well, but it is
likely that such a trajectory exists for the right choice of well parameters and
initial velocity. For the quartic well, we found double trapping of kinks and
a novel type of back-reflection. We also plotted initial velocity against final
velocity, both for an empty well and a kink trapped in a well. In the case
of our standard well with humps, we found that, for a single kink, the plot
reproduced all the expected behaviour. In the case of an incoming kink and a
kink initially in the well we found for small to medium initial velocities there
are back-reflections that start off as elastic then become inelastic. When the
initial velocity becomes high, the static kink is ejected and there are two
windows in which the initially moving kink is trapped. For a narrow well
without humps the plot for a single kink revealed resonance windows and
an interesting wobbling behaviour. The plots for two kinks showed that as
the initial velocity increases, there is a point where the static kink is ejected
and further on, the first kink becomes trapped. At high speeds both kinks
escape the well, moving in opposite directions. Again, the final velocity of
the first kink is not a monotonic function of the initial velocity.
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A long term aim of this line of work is to be able to design wells which
have desirable properties. In certain physical systems, it is possible to make
the coupling constant inhomogeneous, e.g. the ferromagnetic spin chain de-
scribed in the introduction [5]. Barriers and wells might then be used to
control kink dynamics, for example, by acting as filters. An even more am-
bitious aim is discussed in [28] where a particular kind of integrable point
defect could be used to construct simple logical gates.

Our approach is applicable to various different systems. The λφ4 kink al-
lows similar wells and barriers which would enable the study of kink–antikink
scattering in the presence of barriers and wells. Note that kink–antikink scat-
tering is a fascinating subject which leads to interesting resonance structures,
see e.g. [29] for λφ4 and [30] for related solitons. Soliton-well interaction has
also been discussed for various other solitons, for example, deformed sine-
Gordon models [13, 31], λφ4 models [12], Q-ball systems [14] or generalized
sigma models [16] where our approach may again prove to be useful.

Reference [25] presents calculations for two interacting kinks using the
method of Manton for constant λ. In [11] a moduli space approximation
was proposed which also takes account of the degrees of freedom of the well.
See [20] for related work on the λφ4 kink. In Section 4.2 we described how to
apply the moduli space approximation in our case. Our calculations imply
that the an additional degree of freedom could be the slope of the soliton
at the centre of the kink as parametrized by a and b. One could therefore
investigate moduli space dynamics applied to the model described in this
paper, where a, b and X for each kink become functions of time t, and the
degree of freedom of the well is also taken into account. This is currently
work in progress.
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knowledge the Nuffield Foundation for a Nuffield Science Bursary. S.W.G.
is supported by the EPSRC (EP/P503388/1) and by the SMSAS, University
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