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Abstract
We revisit the old problem of exotic superconductivity as Cooper pairing with
finite angular momentum emerging from a central potential. Based on some
general considerations, we suggest that the phenomenon is associated with
interactions that keep electrons at some particular, finite distance r0, and occurs
at a range of intermediate densities n ∼ 1/r3

0 . We discuss the ground state
and the critical temperature in the framework of a standard functional-integral
theory of the BCS to Bose crossover. We find that, due to the lower energy
of two-body bound states with l = 0, the rotational symmetry of the ground
state is always restored on approaching the Bose limit. Moreover in that limit
the critical temperature is always higher for pairs with l = 0. The breaking of
the rotational symmetry of the continuum by the superfluid state thus seems
to be a property of weakly-attractive, non-monotonic interaction potentials, at
intermediate densities.

PACS numbers: 74.20.−z, 74.20.Fg, 74.20.Rp

1. Introduction

Since the original formulation of BCS theory [1, 2] there has been great interest in possible new
phenomena arising from its generalization. The earliest example concerns the possibility of
Cooper pairs having angular momentum quantum number l > 0, thus breaking the rotational
symmetry of the continuum [3, 4]. Such speculations were based on the assumption of a
different shape of the potential describing the effective attraction between fermions. Another
generalization concerned stronger values of the fermion–fermion attraction. It was realized
that there is a crossover, as this strength is increased, from a BCS superfluid to a Bose–Einstein
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condensate of non-overlapping pairs [5], with a dramatic effect on the critical temperature [6].
It turned out that the ground state can be described by a straightforward generalization of BCS
theory [7], while the superconducting instability requires taking into account ‘preformed pair’
(PP) fluctuations in the normal state [8].

Experimentally, Cooper pairing with l > 0 was first observed in the superfluid state of
3He. Moreover since the discovery of superconductivity in cuprate perovskites [9], whose
pairs have dx2−y2 symmetry [10], several families of ‘anomalous superconductors’ have been
found. Many of these materials present exotic pairing in the form of a superconducting
state that breaks the rotational symmetry of the crystal, and they often deviate from BCS
theory in several other ways [11]. This led to a resurgence of interest in the BCS to Bose
crossover [12–26], particularly in models with exotic pairing [27–33, 48]. On the other hand,
little attention has been paid to the physics of the crossover in the context of the original
discussions of exotic pairing [3, 4], namely when a central attraction, in a continuum, leads
to Cooper pairing with l > 0. In fact this is an especially interesting case since the two-body
ground state is guaranteed, under quite general conditions [34], to have l = 0, making exotic
pairing necessarily a many-body effect. Some obvious questions arise: what type of isotropic
interactions lead to exotic pairing, and under what conditions? Is exotic pairing possible in
the Bose–Einstein (BE) limit, when the BCS ground state is a condensate of non-overlapping
pairs [5–8]? Moreover, the recent achievement of Fermi degeneracy in magnetically trapped,
ultra-low temperature gases has stimulated speculations that superfluidity [35–37] and indeed
the BCS–Bose crossover [26] may be observable in these systems. Understanding the above
questions may guide us as to whether exotic pairing is also a possibility.

Recently, we and our co-authors have studied the above questions in a simple model
that features exotic pairing via a central attraction [48]. In this contribution we revisit them
with a more general point of view, using some of the results obtained for the ‘delta shell
model’ (DSM) of [48] as an illustration. We begin section 2 by reminding the reader how, as
a consequence of the weak-coupling theory of superconductivity, a central potential can, in
principle, lead to exotic pairing [3, 4]. Then we take this old argument one little step further by
asking: what is the essential feature that makes a particular interaction potential, in practice,
lead to this effect? Having established the existence of such potentials, and knowing what they
look like, we move on to outline, in section 3, the main features of a simple, but fairly general
theory of the BCS to Bose crossover. Our formalism follows a recipe that has, by now, become
standard [38] (though not the only one [13, 25]): to introduce bosonic pairing fields via a
Hubbard–Stratonovich transformation (HST) [39, 40] and then expand the action to quadratic
(Gaussian) order in those fields. Although limited [16, 18], such a scheme suffices for the
discussion of the BCS and BE limits. The novelty of our formulation is that pairs may be
created and annihilated with different values of their angular momentum quantum numbers.
In contrast, many previous applications of the Gaussian theory assumed these internal degrees
of freedom of the Cooper pairs to be ‘frozen’ to the desired s [14, 20] or dx2−y2 [28] state.
As we shall see these internal degrees of freedom turn out to be important, determining some
of the key features of the problem. In sections 4 and 5 we apply the formalism to discuss
the ground state and the superconducting instability, respectively, in the BE limit, where the
original argument for exotic pairing cannot be applied. Finally, in section 6, we offer our
conclusions.

2. Central potentials leading to exotic pairing

Let us begin by recalling some central ideas of the original weak-coupling theory of exotic
pairing [3, 4]. Consider a system of electrons, in a three-dimensional continuum, interacting
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via some local, non-retarded, central potential V (r − r′) = V (|r − r′|). For simplicity, we
will assume the interaction to take place between electrons with opposite spins and limit
our discussion to the case of singlet pairing, with angular momentum quantum number
l = 0, 2, 4, . . . . As is well known the Fourier transform

V (k − k′) =
∫

d3r ei(k−k′)rV (r) (1)

admits the partial-wave decomposition

V (k − k′) =
∞∑
l=0

Kl(|k|, |k′|)(2l + 1)Pl(k̂k̂′) (2)

in terms of the Legendre polynomials Pl(k̂k̂′) = (2l + 1)−14π
∑

m Yl,m(k̂)Y ∗
l,m(k̂′). It was

soon pointed out [3] that in the weak-coupling limit one can use the approximation

V (k − k′) ≈ Klmax(2lmax + 1)Plmax(k̂k̂′) (3)

where lmax is the value of l for which the coupling constant on the Fermi surface,

Kl ≡ Kl(kF , kF ) (4)

is largest (kF is the Fermi vector). The approximate form (3) of the potential V (k − k′) is, for
lmax > 0, anisotropic, and it leads to pairing with finite angular momentum quantum number
lmax [3].

Let us now try to understand how the preference for a particular value of l comes about. To
do this one has to examine the relationship between the coupling constant Kl and the interaction
potential V (r). It can be found by expanding in spherical waves the two exponentials eik r and
e−ik′r in equation (1); comparison to (2) yields

Kl(|k|, |k′|) = (−1)l
∫ ∞

0
dr 4πr2jl(|k|r)V (r)jl(|k′|r) (5)

where jl(x) is a spherical Bessel function. Substituting (5) in (4) we obtain

Kl = (−1)l
∫ ∞

0
dr 4πr2jl(kF r)2V (r). (6)

Thus Kl is a weighted integral of the interaction potential V (r). The weighting factors jl(kF r)2

are shown in figure 1 for l = 0, 2, 4, . . . . Evidently for a purely attractive, monotonic potential,
such as that in figure 2(a), lmax = 0. To have lmax > 0, V (r) has to be most attractive at
distances at which the weighting factors for a finite value of the angular momentum quantum
number are largest. That is achieved by non-monotonic potentials that lead to maximum
attraction at some finite distance r0, such as that in figure 2(b). For example, provided that
the width of the potential well centred on r0, namely rc (see the figure), is sufficiently small,
choosing r0 so that kF r0 ∼ 3 yields lmax = 2.

3. Basic theory of the BCS to Bose crossover

The above discussion implies that, in the BCS limit, exotic pairing can be described by
an effectively anisotropic interaction, equation (3). On the other hand, we would like to
describe the ground state and the superconducting instability also in the BE limit, where such
approximation may not (and, as we shall see, does not) apply. For this we need to develop our
theory in a more general framework, and in particular it is important to work with a complete
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Figure 1. The weighting factors in the integral on the right-hand side of equation (6) for pairing
with the first four even values of the angular momentum quantum number, l = 0, 2, 4, 6. Note the
logarithmic scale on the vertical axis.
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Figure 2. Interaction potentials representing on-site attraction (a) and attraction at a finite
distance (b).

description of the interaction potential. For concreteness let us write explicitly the grand-
canonical Hamiltonian for the situation at hand. At chemical potential µ, it is [8, equation (1)
(for example)]

Ĥ − µN̂ =
∑
k,σ

εkĉ
+
k,σ ĉk,σ +

1

L3

∑
q,k,k′

V (k − k′)ĉ+
q/2+k,↑ĉ+

q/2−k,↓ĉq/2−k′,↓ĉq/2+k′,↑. (7)

It is particularly illustrative to re-write it in the following way:

Ĥ − µN̂ =
∑
k,σ

εkĉ
+
k,σ ĉk,σ +

1

L3

∑
κ,l,m

∑
q

Vκ,l b̂
+
κ,l,m,qb̂κ,l,m,q. (8)

Here, ĉ+
k,σ , ĉk,σ create and annihilate, respectively, an electron with momentum h̄k and spin

σ =↑,↓. εk ≡ h̄2|k|2/2m∗ − µ is the single-particle dispersion relation (m∗ is the effective
mass of an electron) and L3 is the (very large) sample volume. The additional operators

b̂+
κ,l,m,q ≡

∑
k

φκ,l,m,kĉ
+
q/2+k↑ĉ+

q/2−k↓ (9)

b̂κ,l,m,q ≡
∑

k

φ∗
κ,l,m,kĉq/2−k↓ĉq/2+k↑ (10)
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create and annihilate, respectively, a pair with opposite spins, total momentum h̄q and internal
wavefunction φκ,l,m,k ≡ Rκ,l(|k|)Yl,m(k̂), where h̄k is the momentum of one of the two
components of the pair with respect to its centre of mass. To put the generic Hamiltonian (7)
in the form (8) it suffices to define the ‘kernel factors’ Rκ,l(|k|) and ‘coupling constants’ Vκ,l

so that they yield the following parametrization:

Kl(|k|, |k′|) = 1

4π

∑
κ

Vκ,lRκ,l(|k|)R∗
κ,l(|k′|). (11)

We may construct the φκ,l,m,k and Vκ,l as a complete set of solutions to the eigenvalue problem∑
k′

V (k − k′)φκ,l,m,k′ = Vκ,lφκ,l,m,k (12)

which can be regarded as the result of neglecting, for strong attraction, the kinetic energy
contribution to the Schrödinger equation for a two-body bound state.

Equation (8) generalizes the usual BCS Hamiltonian by including interaction terms
corresponding to pairs with h̄q 	= 0 and different values of the internal angular momentum,
given by l, m. This is required for the correct description of the normal state above Tc in the
strong-coupling limit [8] and, as we shall see, to capture the essential physics of exotic pairing
via a central potential, respectively. The latter can be understood, in essence, by noting that the
angular momentum quantum numbers l, m describe the internal rotational degrees of freedom
of the Cooper pairs, and so they are a key ingredient to describe their dynamics in the case of a
central attraction. The additional index κ has been introduced to ensure the generality of (11),
and it refers to the relative motion of the electrons in a pair in the radial direction. Evidently,
for interaction potentials of the type we are interested in, such radial motion is ‘locked’ so that
the distance between the two electrons remains constant, and is equal to r0. We will therefore
disregard these vibrational modes, assuming that there is a single kernel factor Rl(|k|) for each
value of l. Obviously, in that case there is a single coupling constant Vl for each value of the
angular momentum quantum number. This approximation becomes exact in the limit when
rc → 0 and V (r0) → −∞, keeping V (r0)rc ≡ −g constant. Then we obtain the DSM [41],
featuring the central ‘delta shell’ potential [42]

V (r − r′) = −gδ(|r − r′| − r0) (13)

for which [48]

Kl(|k|, |k′|) = −g4πr2
0 (−1)ljl(|k|r0)jl(|k′|r0). (14)

More generally, it must be regarded as a convenient approximation, valid when the potential
well in figure 2(b) is sufficiently deep and narrow.

Having set up our Hamiltonian, we can now use the standard method reviewed by Randeria
[38], which has been applied to specific models by several authors [14, 20, 21, 28], to discuss
the ground state at T = 0 and the superconducting instability at Tc. In short, we introduce
bosonic fields �l,m,q(τ ),�∗

l,m,q(τ ) coupling to the pair creation and annihilation operators

b̂+
l,m,q, b̂l,m,q, respectively. In terms of these fields one can define an effective action Seff [�∗,�]

that determines the partition function of the system:

Z =
∫

D[�∗,�] e−Seff [�∗,�]. (15)

We then expand it to the lowest non-trivial (Gaussian) order:

Seff[�
∗,�] ≈ Seff[�

∗(0), �(0)] + S
(2)
eff [�∗,�]. (16)

Here �
∗(0)
l,m,q(τ ),�

(0)
l,m,q(τ ) is the configuration of the pairing fields at the saddle point and the

Gaussian contribution, S
(2)
eff [�∗,�], takes into account fluctuations of the fields about that

saddle point.
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4. Exotic pairs in the ground state

In the ground state, the pairing fields become ‘frozen’ in their saddle-point configurations
[38]. S

(2)
eff [�∗,�] acquires a trivial form such that

∫
D[�∗,�] exp

{−S
(2)
eff [�∗,�]

} = 1,
equation (15) thus becoming Z = exp{−Seff[�∗(0), �(0)]}. As usual we look for a stationary
and homogeneous saddle point:

�
(0)
l,m,q(τ ) = �

(0)
l,mδq,0 �

∗(0)
l,m,q(τ ) = �

(0)∗
l,m δq,0

which yields the BCS ground state [2]. As is well known this state can describe, at least
variationally, the BCS to Bose crossover at T = 0 [7, 8, 31]. The amplitudes �

(0)
l,m are related

to the expectation values of the pair annihilation operators by �
(0)
l,m = Vl〈b̂l,m,0〉. The equations

determining the saddle point take the following form:

�
(0)
l,m = −Vl

∑
l′,m′

{∫
d3k

(2π)3

φ∗
l,m,kφl′,m′,k

2Ek

}
�

(0)
l′,m′ (17)

where Ek ≡
√

ε2
k + |�k|2 with �k ≡ ∑

l,m �
(0)
l,mRl(|k|)Yl,m(k̂) the usual BCS ‘gap function’.

Evidently this non-linear system of equations may have many different solutions, each
corresponding to a different superposition of angular momentum states. To determine their
relative stability one has to evaluate the appropriate potential. If, as usual, we fix the density n,
treating the chemical potential µ as a parameter to be determined self-consistently [8], the
energy U0 = 〈Ĥ 〉 has to be calculated. Quite generally, it is given by

1

L3
U0 =

∫
d3k

(2π)3

h̄2|k|2
2m∗

(
1 − εk

Ek

)
+

∑
l,m

∣∣�(0)
l,m

∣∣2

Vl

(18)

which results from taking the T → 0 limit of L−3〈Ĥ 〉 = −L−3β−1 ln Z + µn.
The above equations are entirely equivalent to the usual mean-field theory [43] for a

sufficiently general interaction potential (at least, when only pairing correlations are taken
into account). In particular, in the limit of very weak attraction (BCS limit), the argument of
section 2 applies. Thus we expect that, for the type of interaction that we are interested in,
represented in figure 2(b), pairing with l = 2 will be preferred to l = 0 for a range of values
of the density, n = k3

F

/
3π2, such that kF r0 ∼ 3. In the extreme case in which the attraction

takes place only exactly at r = r0 one expects the densities at which the preferred value lmax

of the angular momentum quantum number changes to be given by

j0(kF r0)
2 = j2(kF r0)

2. (19)

This result, which is degenerate in the quantum number m, is exact for the DSM (13), and
it gives the boundaries of a quantum phase transition in which the ground state changes the
rotational symmetry.

On the other hand in the dilute, strong coupling limit (BE limit), there is no longer a
well-defined Fermi surface and approximation (3) ceases to be useful. The gap equation (17)
describes a two-body bound state with energy εl

b = 2µ and wavefunction ψk = �k/2Ek

[7, 8, 27] and so, evidently, the full functional form of the interaction potential V (r − r′) has
to be taken into account. Since l is a good quantum number for the Schrödinger equation,
a well-defined angular momentum is a shared characteristic of the BCS and BE limits. On
the other hand it is easy to show, using µ  −∣∣�(0)

l,m

∣∣, that in the BE limit equation (18)
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becomes

1

L3
U0 = 1

2
nεl

b. (20)

This equation has a simple interpretation: in the dilute, strong-coupling limit, the system is a
BE condensate of non-overlapping pairs. Each pair has h̄q = 0 and they are all in the same
internal state with energy εl

b. It follows that the energy of the system is given simply by the
formation energies of the individual pairs. Since, for a central potential, the bound state with
lowest energy always has l = 0, one expects that rotational symmetry is never broken in the
BE limit.

Figure 3 shows a specific result for the DSM [48] that illustrates the above points. It is a
phase diagram for the relative stability of ground states in which Cooper pairs have s and dx2−y2

symmetries. At weak coupling, pairing with l = 0 is preferred at low and high densities, with
a quantum phase transition leading to the onset of dx2−y2 pairing in the intermediate-density
regime. The location of the phase boundary is accurately predicted by equation (19). In
contrast, as the attraction is made stronger the range of densities over which the state with
l = 2 is preferred becomes narrower until, above some critical value of the coupling constant,
rotational symmetry is restored for all values of the density. The dx2−y2 state is thus confined
to a relatively small ‘island’ in parameter space. This result not only confirms our expectation
that pairing should take place in the s state in the BE limit, but in fact suggests that l = 0 is
preferred at all densities, provided that the attraction is sufficiently strong. However note that
the phase boundary, at finite values of the coupling constant g, is not necessarily degenerate
in m (unlike at weak coupling). Thus investigations for more general trial ground states
(allowing, for example, for mixing of s and d symmetries) have to be carried out.

5. Superconducting critical temperature for exotic pairs

When the attraction is strong, fluctuations around the saddle-point configurations of the fields
are important to determine the low-lying excitations of the BCS ground state [15, 21] as well as
to describe the superconducting instability at Tc [14, 20, 28]. Our interest here is in the latter,
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Figure 4. Validity of the Gaussian description of the superconducting instability [38]. The theory
is deemed correct in the shaded areas: BCS limit (weak-coupling) and BE limit (strong-coupling
and low densities). For the crossover region it can be regarded as a convenient interpolation scheme
at low densities (below the dashed line), while at larger densities it fails (see the text).

as we wish to see whether such instability can correspond, in the strong-coupling, low-density
limit, to the formation of a BE condensate of exotic pairs.

Just above Tc, the partition function (15) is given by

Z = Z0 × δZ (21)

where Z0 = exp{−S[0, 0]} corresponds to a free electron gas while δZ =∫
D[�∗,�] exp

{
S

(2)
eff [�∗,�]

}
is the contribution from PP just above Tc. The normal state is

composed of a mixture of two gases, one made out of free electrons and the other one consisting
of PP. In effect, on account of (21) the total electron density n(β,µ) = L−3kBT ∂ ln Z/∂µ can
be written as

n(β,µ) = n0(β, µ) + δn(β, µ) (22)

where the first and second terms on the right-hand side come from Z0 and δZ, respectively.
In particular, the contribution from free electrons has the familiar form n0(β, µ) =
2L−3∑

kf (βεk) where f (x) ≡ (ex + 1)−1 is the Fermi distribution function. As is well
known in the BCS limit µβ → ∞ all electrons are unpaired just above Tc so we have n ≈ n0.
Conversely, in a dilute system with strong attraction (BE limit) we have n ≈ δn: the normal
state just above Tc is composed exclusively of preformed pairs, whose BE condensation leads
to superconductivity.

It is important to note that the above functional-integral theory is only valid either at weak
coupling or for sufficiently dilute systems with strong attraction. The problem is (leaving
aside the fact that it relies on an expansion in powers of the amplitude of the pairing fields,
while neglecting other fluctuations due exclusively to their phase, which are essential in
two dimensions [44]) that as the density is increased interactions between the PP, which
the Gaussian theory neglects, become important. Similarly, when the interaction becomes
weaker the PP increase their radius and begin to overlap. Quite generally, at low densities
and intermediate coupling the Gaussian theory of Tc must be regarded only as a convenient
interpolation scheme [8, 38], while it fails completely at higher densities (as is evidenced for
example in the negative bosonic mass obtained for the DSM at sufficiently large values of the
density and the coupling constant [48]). Such limitations (illustrated in figure 4) have been,
at least partially, addressed [16, 18, 45]; however, for simplicity our discussion of Tc below
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refers only to the regions of parameter space in which the standard theory [38] can be safely
applied at that temperature. These are illustrated in figure 4.

Let us now see what form the above standard equations [38] take in the case of our fairly
general model. In terms of the bosonic Matsubara frequencies ων = 2νπ/β the quadratic
contribution to the effective action has the form

S
(2)
eff [�∗,�] = β

∑
qν

∑
l,m,l′,m′

�∗
l,m,q(ων)�

−1
l,m,l′,m′(q, iων)�l′,m′,q(ων) (23)

where the sums on l and l′ extend only over values of the angular momentum quantum number
having the same parity (both even or both odd). As usual, we start by writing out the inverse
bosonic propagator explicitly. It is

�−1
l,m,l′,m′(q, iων) = −L3

Vl

δl,l′δm,m′ −
∑

k

il
′−lφ∗

l,m,kφl′,m′,k

× 1

β

∑
n

G0

(q
2

+ k, iωn

)
G0

(q
2

− k, iων − iωn

)
(24)

where G0(k, iωn) ≡ (εk − iωn)
−1 is a free-electron Green’s function and ωn = (2n + 1)π/β a

fermion Matsubara frequency. This is a slightly more general form of the similar expression
found in the literature [8, 14, 20, 28, 48]. Such fairly general bosonic propagator, like the
one obtained in [48] for the DSM, describes not only the centre-of-mass motion of the PP
existing above Tc (represented by their total momentum h̄q) but also the freedom that they
have to change their angular momentum (represented by the labels l, m). On the other hand,
in [8, 14, 20, 28] these internal degrees of freedom were not taken into account. In effect, the
interaction potentials employed in [8, 14, 20] had the form (3) with lmax = 0 and, therefore,
could only lead to pairing in the s state; similarly, the potential in [28] was chosen so that it
could only lead to pairing in a particular d-wave state, with dx2−y2 symmetry. But for strong
central attraction one expects that, just above Tc, preformed pairs exist with all values of the
angular momentum quantum number, as reflected in equation (24). The question that we are
trying to answer here is what pairs will form a BE condensate at Tc; in particular, whether they
can have l > 0.

As usual the ‘Tc equation’ is found as the temperature at which the system becomes
unstable with respect to pairing fluctuations describing a homogeneous, static field:

β
∑

l,m,l′,m′
�∗

l,m,0(0)�−1
l,m,l′,m′(0, 0)�l′,m′,0(0) = 0. (25)

We obtain

1 = − Vl

(2π)3

∫ ∞

0
d|k||k|2|Rl(|k|)|2 1 − 2f (βcεk)

2εk
(26)

which is diagonal in l and degenerate in m. In general (26) has several solutions βc ≡ 1/kBTc,
corresponding to the formation of a superconducting state with different values of the angular
momentum quantum number l = 0, 2, 4, . . . . Evidently the highest Tc corresponds to the
true superconducting instability, and it gives the angular momentum quantum number of the
Cooper pairs in the superconducting state, just below Tc.

As expected [38], equation (26) has the same form as in the mean-field theory and so
in the weak-coupling limit the Gaussian theory reduces to it. In particular, the argument for
exotic pairing in the BCS limit that we recalled above applies also to the critical temperature:
thus at intermediate densities we expect pairs to form and condense simultaneously, at Tc, with
angular momentum quantum number lmax = 2.
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Let us now focus on the BE limit. For sufficiently strong coupling and low densities
the inverse propagator �−1

l,m,l′,m′(q, iων) can be expanded to the lowest non-trivial order in the
pair’s total momentum h̄q and frequency ων [8]. Such expansion was carried out in [48] for
the DSM, following closely the procedure of [14, 28]. The derivation is entirely analogous in
the present slightly more general case. In short we find that, after appropriate rescaling of the
fields,

�−1
l,m,l′,m′(q, iων) = [−iων − µb

l (β, µ)]δl,l′δm,m′ +
∑

i,j=x,y,z

h̄2qiqj

2m
b,ij

l,m,l′,m′(β, µ)
. (27)

Thus the action S
(2)
eff [�∗,�] describes an ideal Bose gas made out of bosons that propagate

with some effective mass m
b,ij

l,m,l′,m′(β, µ) and chemical potential µb
l (β, µ) (these quantities are

given by explicit formulae which we shall omit, for brevity). In general, the effective masses
m

b,ij

l,m,l′,m′(β, µ) represent anisotropic dispersion relations that are different for PP in distinct
internal states. Moreover, their off-diagonal values (l 	= l′,m 	= m′) may be finite, reflecting
hybridization between such states. Nevertheless, in the BE limit we have

m
b,ij

l,m,l′,m′(β, µ) →
{

2m∗ if l = l′ and m = m′

∞ otherwise

indicating that the tightly-bound PP propagate freely as particles of mass 2m∗ without
changing their angular momentum. This simplifies (23) to

S
(2)
eff [�∗,�] = β

∑
qν

∑
l,m

�∗
l,m,q(ων)

(
−iων +

h̄2|q|2
4m∗ − µb

l (β, µ)

)
�l,m,q(ων) (28)

in that limit. The effective chemical potentials µb
l (β, µ), on the other hand, are different for

bosons with different values of the angular momentum quantum number l. The condition
for an instability of the gas of preformed pairs to a superconducting state with angular
momentum quantum number l, equation (26), corresponds to the BE condensation of the
corresponding PP: µb

l (βc, µc) = 0. Typically, other PP with angular momentum quantum
number l′ 	= l are also present in the normal state, just above Tc, however their chemical
potential is µb

l′(βc, µc) < 0 at the transition so, unless they are also close to their own critical
temperature, they are only present in small number. One can thus neglect such additional
PP, and check the assumption a posteriori by ensuring that the critical temperatures are quite
different. Thus we eliminate the sum on l from equation (28). We can now very easily deduce
the explicit form of the density equation (22) in this case. At the critical temperature, it is

n(βc, µ) =
l∑

m=−l

δnl,m(βc) (29)

where δnl,m(βc) = 2L−3 ∑
q g(βch̄

2|q|2/4m∗) is the density of a Bose gas that is exactly at
its BE condensation temperature, Tc (g(x) ≡ (ex − 1)−1 is the Bose distribution function).
Evidently the fact that there are 2l + 1 values of m lowers the critical temperature: it is
given by

kBTc = 3.315
h̄2

2m∗

[
n

2(2l + 1)

]2/3

(30)

i.e. it is the BE condensation temperature for n/[2(2l + 1)] bosons of mass 2m∗ each. This
reduces to the usual result [8, 14, 20, 28] only for bosons with internal angular momentum
l = 0:
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kBTc = 3.315
h̄2

2m∗
(n

2

)2/3
for l = 0 (31)

For higher values of the angular momentum, the bosons still condense all at the same
temperature, but they do so as 2l + 1 independent Bose gases, each one corresponding to
one of the degenerate angular momentum states consistent with that value of l. Obviously, the
crucial consequence of this is that the superconducting instability in the low-density, strong-
coupling limit always corresponds to the BE condensation of pairs with l = 0. Evidently,
this result is quite generic since the degeneracy in m is an unavoidable feature of any central
potential4.

6. Conclusion

In these pages we have revisited the old problem [3, 4] of exotic pairing via a central potential.
According to a well-known argument, a central potential can lead to a superconducting ground
state in which Cooper pairing takes place with a finite value of the angular momentum
quantum number l > 0. We have demonstrated that the natural framework for that to happen
is provided by an interaction in which the distance between the paired electrons is ‘locked’
to some finite value r0. We have then used the well-known functional integral formulation
of the BCS to Bose crossover [38] to explore the behaviour of such models away from the
original weak-coupling limit. We have found evidence that a quantum phase transition, in
which the symmetry of the superconducting order parameter changes, is associated, quite
generally, with this type of interactions. The phase transition may occur at weak coupling
as the density is varied, making the preferred pairing channel change, or on approaching the
BE limit, where rotational symmetry is always restored. The latter is a consequence of very
elementary energetic considerations, related to the fact that the two-particle bound state with
l = 0 always has lower energy than those with finite angular momentum quantum number.
Finally, we have discussed the BE limit of the critical temperature. By neglecting preformed
pairs with all but one value of l, we have been able to estimate the BE limit of Tc for different
values of the angular momentum quantum number. For l > 0, we have found the surprising
result that Tc is not given by the usual, simple formula for BE condensation, but instead it is
considerably suppressed due to the 2l + 1 degeneracy of the corresponding bound state. This
may be an interesting example of the effect of internal degrees of freedom of the constituent
bosons on the properties of BE condensates, as discussed by Nozières [46].

Our remarks may serve as preliminary steps for a systematic exploration of the possibility
of rotational symmetry breaking in the possible BCS state of degenerate Fermi gases
[26, 35–37], where the distance r0 could be related to the shape of the interatomic interaction.
They also provide an indication that some of the features that we have identified [41, 47, 48]
in the new, delta shell model may be relevant to a larger, and important, class of interaction
potentials.
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4 In contrast, the anisotropic effective interaction considered in [28] has, by definition, a single, non-degenerate bound
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