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Expli
it multipeakon solutions of Novikov's
ubi
ally nonlinear integrable Camassa�Holmtype equationAndrew N. W. Hone∗ Hans Lundmark† Ja
ek Szmigielski‡Mar
h 20, 2009Abstra
tRe
ently Vladimir Novikov found a new integrable analogue of theCamassa�Holm equation, admitting peaked soliton (peakon) solutions,whi
h has nonlinear terms that are 
ubi
, rather than quadrati
. In thispaper, the expli
it formulas for multipeakon solutions of Novikov's 
ubi-
ally nonlinear equation are 
al
ulated, using the matrix Lax pair foundby Hone and Wang. By a transformation of Liouville type, the asso
iatedspe
tral problem is related to a 
ubi
 string equation, whi
h is dual tothe 
ubi
 string that was previously found in the work of Lundmark andSzmigielski on the multipeakons of the Degasperis�Pro
esi equation.1 Introdu
tionIntegrable PDEs with nonsmooth solutions have attra
ted mu
h attention inre
ent years, sin
e the dis
overy of the Camassa�Holm shallow water waveequation and its peak-shaped soliton solutions 
alled peakons [5℄. Our pur-pose in this paper is to expli
itly 
ompute the multipeakon solutions of a newintegrable PDE, equation (3.1) below, whi
h is of the Camassa�Holm form
ut − uxxt = F (u, ux, uxx, . . . ), but has 
ubi
ally nonlinear terms instead ofquadrati
. This equation was found by Vladimir Novikov, and published in are
ent paper by Hone and Wang [19℄.We will apply inverse spe
tral methods. The spatial equation in the Laxpair for Novikov's equation turns out to be equivalent to what we 
all the dual
ubi
 string, a spe
tral problem 
losely related to the 
ubi
 string that wasused for �nding the multipeakon solutions to the Degasperis�Pro
esi equation
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[27, 28, 23℄. On
e this relation is established, the Novikov peakon solution 
anbe derived in a straightforward way using the results obtained in [23℄. The
onstants of motion have a more 
ompli
ated stru
ture than in the Camassa�Holm and Degasperis�Pro
esi 
ases, and the study of this gives as an interestingby-produ
t a 
ombinatorial identity 
on
erning the sum of all minors in a sym-metri
 matrix, whi
h we have dubbed the Canada Day Theorem (Theorem 4.1,proved in Appendix A).The peakon problem for Novikov's equation presents in addition one impor-tant 
hallenge. Unlike its Camassa�Holm or Degasperis�Pro
esi 
ounterparts,the Lax pair for the Novikov equation is originally ill-de�ned in the peakon se
-tor. The problem is 
aused by terms whi
h involve multipli
ation of a singularmeasure by a dis
ontinuous fun
tion. We prove in Appendix B that there ex-ists a regularization of the Lax pair whi
h preserves integrability of the peakonse
tor, thus allowing us to use spe
tral and inverse spe
tral methods to obtainthe multipeakon solutions to the Novikov equation. This regularization problemhas a subtle but nevertheless real impa
t on the formulas. In general, the use ofLax pairs to 
onstru
t distributional solutions to nonlinear equations whi
h areLax integrable in the smooth se
tor but may not be so in the whole non-smoothse
tor is relatively un
harted territory, and the 
ase of Novikov's equation mayprovide some relevant insight in this regard.2 Ba
kgroundThe main example of a PDE admitting peaked solitons is the family
ut − uxxt + (b+ 1)uux = buxuxx + uuxxx, (2.1)often written as
mt +mxu+ bmux = 0, m = u− uxx, (2.2)whi
h was introdu
ed by Degasperis, Holm and Hone [10℄, and is Hamiltonianfor all values of b [17℄. It in
ludes the Camassa�Holm equation as the 
ase b = 2,and another integrable PDE 
alled the Degasperis�Pro
esi equation [11, 10℄ asthe 
ase b = 3. These are the only values of b for whi
h the equation is integrable,a

ording to a variety of integrability tests [11, 30, 18, 20℄. (However, we notethat the 
ase b = 0 is ex
luded from the aforementioned integrability tests;yet this 
ase provides a regularization of the invis
id Burgers equation that isHamiltonian and has 
lassi
al solutions globally in time [4℄.) Multipeakons areweak solutions of the form

u(x, t) =
n∑

i=1

mi(t) e
−|x−xi(t)|, (2.3)formed through superposition of n peakons (peaked solitons of the shape e−|x|).This ansatz satis�es the PDE (2.2) if and only if the positions (x1, . . . , xn) and2



momenta (m1, . . . ,mn) of the peakons obey the following system of 2n ODEs:
ẋk =

n∑

i=1

mi e
−|xk−xi|, ṁk = (b−1)mk

n∑

i=1

mi sgn(xk−xi) e
−|xk−xi|. (2.4)Here, sgnx denotes the signum fun
tion, whi
h is +1, −1 or 0 depending onwhether x is positive, negative or zero. In shorthand notation, with 〈f(x)

〉denoting the average of the left and right limits,
〈
f(x)

〉
=

1

2

(
f(x−) + f(x+)

)
, (2.5)the ODEs 
an be written as

ẋk = u(xk), ṁk = −(b− 1)mk

〈
ux(xk)

〉
. (2.6)In the Camassa�Holm 
ase b = 2, this is a 
anoni
al Hamiltonian system gen-erated by h = 1

2

∑n
j,k=1mj mk e

−|xj−xk|. Expli
it formulas for the n-peakonsolution of the Camassa�Holm equation were derived by Beals, Sattinger andSzmigielski [1, 2℄ using inverse spe
tral methods, and the same thing for theDegasperis�Pro
esi equation was a

omplished by Lundmark and Szmigielski[27, 28℄.It requires some 
are to spe
ify the exa
t sense in whi
h the peakon solu-tions satisfy the PDE. The formulation (2.2) su�ers from the problem that theprodu
t mux is ill-de�ned in the peakon 
ase, sin
e the quantity m = u−uxx =
2
∑n

i=1mi δxi
is a dis
rete measure, and it is multiplied by a fun
tion ux whi
hhas jump dis
ontinuities exa
tly at the points xk where the Dira
 deltas in themeasure m are situated. To avoid this problem, one 
an instead rewrite (2.1) as

(1 − ∂2
x)ut + (b+ 1 − ∂2

x) ∂x

(
1
2 u

2
)

+ ∂x

(
3−b
2 u2

x

)
= 0. (2.7)Then a fun
tion u(x, t) is said to be a solution if

• u(·, t) ∈ W 1,2
loc (R) for ea
h �xed t, whi
h means that u(·, t)2 and ux(·, t)2are lo
ally integrable fun
tions, and therefore de�ne distributions of 
lass

D′(R) (i.e., 
ontinuous linear fun
tionals a
ting on 
ompa
tly supported
C∞ test fun
tions on the real line R),

• the time derivative ut(·, t), de�ned as the limit of a di�eren
e quotient,exists as a distribution in D′(R) for all t,
• equation (2.7), with ∂x taken to mean the usual distributional derivative,is satis�ed for all t in the sense of distributions in D′(R).It is worth mentioning that fun
tions in the spa
e W 1,2

loc (R) are 
ontinuous, bythe Sobolev embedding theorem. However, the term u2
x is absent from equation(2.7) if b = 3, so in that parti
ular 
ase one requires only that u(·, t) ∈ L2

loc(R);this means that the Degasperis�Pro
esi 
an admit solutions u that are not
ontinuous [6, 7, 26℄.It is often appropriate to rewrite equation (2.7) as a nonlo
al evolution equa-tion for u by inverting the operator (1 − ∂2
x), as was done in [8, 9℄ for theCamassa�Holm equation. However, the distributional formulation used here isvery 
onvenient when working with peakon solution.3



3 Novikov's equationThe new integrable equation found by Vladimir Novikov is
ut − uxxt + 4u2ux = 3uuxuxx + u2uxxx, (3.1)whi
h 
an be written as

mt + (mxu+ 3mux)u = 0, m = u− uxx, (3.2)to highlight the similarity in form to the Degasperis�Pro
esi equation, or as
(1 − ∂2

x)ut + (4 − ∂2
x) ∂x

(
1
3 u

3
)

+ ∂x

(
3
2 uu

2
x

)
+ 1

2 u
3
x = 0 (3.3)in order to rigorously de�ne weak solutions as above, ex
ept that here one re-quires that u(·, t) ∈ W 1,3

loc (R) for all t, so that u3 and u3
x are lo
ally integrableand therefore de�ne distributions in D′(R); it then follows from Hölder's in-equality with the 
onjugate indi
es 3 and 3/2 that uu2

x is lo
ally integrable aswell, and (3.3) 
an thus be interpreted as a distributional equation. Sin
e fun
-tions in W 1,p
loc (R) with p ≥ 1 are automati
ally 
ontinuous, Novikov's equationis similar to the Camassa�Holm equation in that it only admits 
ontinuous dis-tributional solutions (as opposed to the Degasperis�Pro
esi equation, whi
h hasdis
ontinuous solutions as well).Like the equations in the b-family (2.1), Novikov's equation admits (in theweak sense just de�ned) multipeakon solutions of the form (2.3), but in this
ase the ODEs for the positions and momenta are

ẋk = u(xk)2 =

(
n∑

i=1

mi e
−|xk−xi|

)2

,

ṁk = −mk u(xk)
〈
ux(xk)

〉

= mk

(
n∑

i=1

mi e
−|xk−xi|

)


n∑

j=1

mj sgn(xk − xj) e
−|xk−xj|


 .

(3.4)
These equations were stated in [19℄, where it was also shown that they 
onstitutea Hamiltonian system ẋk = {xk, h}, ṁk = {mk, h}, generated by the sameHamiltonian h = 1

2

∑n
j,k=1mjmk e

−|xj−xk| as the Camassa�Holm peakons, butwith respe
t to a di�erent, non-
anoni
al, Poisson stru
ture given by
{xj , xk} = sgn(xj − xk)

(
1 − E2

jk

)
,

{xj ,mk} = mkE
2
jk,

{mj ,mk} = sgn(xj − xk)mjmkE
2
jk, where Ejk = e−|xj−xk|. (3.5)As will be shown below, (3.4) is a Liouville integrable system (Theorem 4.7); infa
t, it is even expli
itly solvable in terms of elementary fun
tions (Theorem 9.1).4



4 Forward spe
tral problemIn order to integrate the Novikov peakon ODEs, we are going to make use ofthe matrix Lax pair found by Hone and Wang [19℄, spe
i�ed by the followingmatrix linear system:
∂

∂x



ψ1

ψ2

ψ3


 =




0 zm 1
0 0 zm
1 0 0





ψ1

ψ2

ψ3


 , (4.1)

∂

∂t




ψ1

ψ2

ψ3



 =




−uux uxz

−1 − u2mz u2
x

uz−1 −z−2 −uxz
−1 − u2mz

−u2 uz−1 uux








ψ1

ψ2

ψ3



 . (4.2)(Compared with referen
e [19℄ we have added a 
onstant multiple of the identityto the matrix on the right hand side of (4.2), and used z in pla
e of λ.) Inthe peakon 
ase, when u =
∑n

i=1mi e
−|x−xi|, the quantity m = u − uxx =

2
∑n

i=1mi δxi
is a dis
rete measure. We assume that x1 < x2 < · · · < xn(whi
h at least remains true for a while if it is true for t = 0). These pointsdivide the x axis into n + 1 intervals whi
h we number from 0 to n, so thatthe kth interval runs from xk to xk+1, with the 
onvention that x0 = −∞ and

xn+1 = +∞. Sin
em vanishes between the point masses, equation (4.1) redu
esto ∂xψ1 = ψ3, ∂xψ2 = 0 and ∂xψ3 = ψ1 in ea
h interval, so that in the kthinterval we have


ψ1

ψ2

ψ3


 =



Ak e

x + z2 Ck e
−x

2z Bk

Ak e
x − z2 Ck e

−x


 for xk < x < xk+1, (4.3)where the fa
tors 
ontaining z have been inserted for later 
onvenien
e. Thesepie
ewise solutions are then glued together at the points xk. The proper inter-pretation of (4.1) at these points turns out to be that ψ3 must be 
ontinuous,while ψ1 and ψ2 are allowed to have jump dis
ontinuities; moreover, in theterm zmψ2, one should take ψ2(x)δxk

to mean 〈ψ2(xk)
〉
δxk

. This point is fullyexplained in Appendix B. This leads to


Ak

Bk

Ck


 =




1 − λm2
k −2λmk e

−xk −λ2m2
k e

−2xk

mk e
xk 1 λmk e

−xk

m2
k e

2xk 2mk e
xk 1 + λm2

k





Ak−1

Bk−1

Ck−1




=: Sk(λ)



Ak−1

Bk−1

Ck−1


 , where λ = −z2.

(4.4)We impose the boundary 
ondition (A0, B0, C0) = (1, 0, 0), whi
h is 
onsistentwith the time evolution given by (4.2) for x < x1. Then all (Ak, Bk, Ck) aredetermined by su

essive appli
ation of the jump matri
es Sk(λ) as in (4.4).For x > xn, equation (4.2) implies that (A,B,C) := (An, Bn, Cn) evolves as
Ȧ = 0, Ḃ =

B −AM+

λ
, Ċ =

2M+ (B −AM+)

λ
, (4.5)5



where M+ =
∑N

k=1mk e
xk . Thus A is invariant. It is the (1, 1) entry of thetotal jump matrix
S(λ) = Sn(λ) . . . S2(λ)S1(λ), (4.6)and therefore it is a polynomial in λ of degree n,

A(λ) =
n∑

k=0

Hk(−λ)k =

(
1 − λ

λ1

)
. . .

(
1 − λ

λn

)
, (4.7)where H0 = 1 (sin
e S(0) = I, the identity matrix), and where the other 
oe�-
ientsH1, . . . , Hn are Poisson 
ommuting 
onstants of motion (see Theorems 4.2and 4.7 below).The �rst linear equation (4.1), together with the boundary 
onditions ex-pressed by the requirements that B0 = C0 = 0 and An(λ) = 0, is a spe
tralproblem whi
h has the zeros λ1, . . . , λn of A(λ) as its eigenvalues. (To be pre-
ise, one should perhaps say that it is the 
orresponding values of z = ±

√
−λthat are the eigenvalues, but we will soon show that the λk are positive, at leastin the pure peakon 
ase, and therefore more 
onvenient to work with than thepurely imaginary values of z; see (4.19) below.)Elimination of ψ1 from (4.1) gives ∂xψ2 = zmψ3 and (∂2

x − 1)ψ3 = zmψ2,and the boundary 
onditions above imply that (ψ2, ψ3) → (0, 0) as x → −∞and ψ3 → 0 as x→ +∞. Using the Green's fun
tion −e−|x|/2 for the operator
∂2

x − 1 with vanishing boundary 
onditions, we 
an rephrase the problem as asystem of integral equations,
ψ2(x) = z

∫ x

−∞

ψ3(y) dm(y),

ψ3(x) = −z
∫ ∞

−∞

1

2
e−|x−y|ψ2(y) dm(y),

(4.8)with integrals taken with respe
t to the dis
rete measure m = 2
∑n

i=1mi δxi
.Here, there is again the problem of Dira
 deltas multiplying a fun
tion ψ2 withjump dis
ontinuities, and we take ψ2(x)δxk

to mean the average 〈ψ2(xk)
〉
δxk

,in full agreement with the earlier de�nition of the singular term appearing inthe spe
tral problem. Then
〈
ψ2(xj)

〉
= z

(
2

j−1∑

k=1

ψ3(xk)mk + ψ3(xj)mj

)
,

ψ3(xj) = −z
n∑

k=1

e−|xj−xk|
〈
ψ2(xk)

〉
mk,

(4.9)whi
h 
an be written in blo
k matrix notation as
(〈

Ψ2

〉

Ψ3

)
= z

(
0 TP

−EP 0

)(〈
Ψ2

〉

Ψ3

)
, (4.10)6



where
Ψ3 =

(
ψ3(x1), . . . , ψ3(xn)

)t
,

〈
Ψ2

〉
=
(〈
ψ2(x1)

〉
, . . . ,

〈
ψ2(xn)

〉)t
,

P = diag(m1, . . . ,mn),

E = (Ejk)n
j,k=1, where Ejk = e−|xj−xk|,

T = (Tjk)n
j,k=1, where Tjk = 1 + sgn(j − k).

(4.11)(In words, T is the lower triangular n×n matrix that has 1 on the main diagonaland 2 everywhere below it.) In terms of 〈Ψ2

〉 alone, we have
〈
Ψ2

〉
= −z2TPEP

〈
Ψ2

〉
, (4.12)so the eigenvalues are given by 0 = det(I + z2TPEP ) = det(I − λTPEP ),where of 
ourse I denotes the n× n identity matrix. Sin
e the eigenvalues arethe zeros of A(λ), and sin
e A(0) = 1, it follows that

A(λ) = det(I − λTPEP ). (4.13)This gives us a fairly 
on
rete representation of the 
onstants of motion Hk,whi
h by de�nition are the 
oe�
ients of A(λ) (see (4.7)), and it 
an be madeeven more expli
it thanks to the 
urious 
ombinatorial result in Theorem 4.1.We remind the reader that a k×k minor of an n×n matrix X is, by de�nition,the determinant of a submatrixXIJ = (Xij)i∈I, J∈J whose rows and 
olumns aresele
ted among those of X by two index sets I, J ⊆ {1, . . . , n} with k elementsea
h, and a prin
ipal minor is one for whi
h I = J . Compare the result ofthe theorem with the well-known fa
t that the 
oe�
ient of sk in det(I + sX)equals the sum of all prin
ipal k × k minors of X , regardless of whether X issymmetri
 or not.Theorem 4.1 (�The Canada Day Theorem�). Let the matrix T be de�ned asin (4.11) above. Then, for any symmetri
 n× n matrix X, the 
oe�
ient of skin the polynomial det(I + s TX) equals the sum of all k × k minors (prin
ipaland non-prin
ipal) of X.Proof. The proof is presented in Appendix A. It relies on the Cau
hy�Binetformula, Lindström's Lemma, and some rather intri
ate dependen
ies amongthe minors of X due to the symmetry of the matrix.Theorem 4.1 is named after the date when we started trying to prove it:July 1, 2008, Canada's national day. (It turned out that the proof was moredi�
ult than we expe
ted, so we didn't �nish it until a few days later.) Summa-rizing the results so far, we now have the following des
ription of the 
onstantsof motion:Theorem 4.2. The Novikov peakon ODEs (3.4) admit n 
onstants of motion
H1, . . . , Hn, where Hk equals the sum of all k × k minors (prin
ipal and non-prin
ipal) of the n× n symmetri
 matrix PEP = (mjmkEjk)n

j,k=1. (See (4.11)for notation.) 7



Proof. This follows at on
e from (4.7), (4.13), and Theorem 4.1.Example 4.3. The sum of all 1 × 1 minors of PEP is of 
ourse just the sumof all entries,
H1 =

n∑

j,k=1

mjmkEjk =

n∑

j,k=1

mjmk e
−|xj−xk|, (4.14)and the Hamiltonian of the peakon ODEs (3.4) is h = 1

2H1. Higher orderminors of PEP are easily 
omputed using Lindström's Lemma, as explained inSe
tion A.3 in the appendix. In parti
ular, the 
onstant of motion of highestdegree in the mk is
Hn = det(PEP ) =

n−1∏

j=1

(1 − E2
j,j+1)

n∏

j=1

m2
j . (4.15)Example 4.4. Written out in full, the 
onstants of motion in the 
ase n = 3are

H1 = m2
1 +m2

2 +m2
3 + 2m1m2E12 + 2m1m3E13 + 2m2m3E23,

H2 = (1 − E2
12)m

2
1m

2
2 + (1 − E2

13)m
2
1m

2
3 + (1 − E2

23)m
2
2m

2
3

+ 2(E23 − E12E13)m
2
1m2m3 + 2(E12 − E13E23)m1m2m

2
3,

H3 = (1 − E2
12)(1 − E2

23)m
2
1m

2
2m

2
3.

(4.16)From now on we mainly restri
t ourselves to the pure peakon 
ase when
mk > 0 for all k (no antipeakons). Our �rst reason for this is that we 
an thenuse the positivity of H1 and Hn to show global existen
e of peakon solutions.Theorem 4.5. Let

P = {x1 < · · · < xn, all mk > 0} (4.17)be the phase spa
e for the Novikov peakon system (3.4) in the pure peakon 
ase.If the initial data are in P, then the solution (x(t),m(t)) exists for all t ∈ R,and remains in P.Proof. Lo
al existen
e in P is automati
 in view of the smoothness of the ODEsthere. By (4.14) and (4.15), both H1 and Hn are stri
tly positive on P . Sin
e
m2

k < H1, all mk remain bounded from above. The positivity of Hn ensuresthat themk are bounded away from zero, and that the positions remain ordered.The velo
ities ẋk are all bounded by (
∑
mk)2, hen
e 0 < ẋk ≤ C for some
onstant C, and the positions xk(t) are therefore �nite for all t ∈ R. Sin
eneither xk nor mk 
an blow up in �nite time, the solution exists globally intime.Remark 4.6. The peakon ODEs (3.4) are invariant under the transformation

(m1, . . . ,mn) 7→ (−m1, . . . ,−mn), so the analogous result holds also when all
mk are negative. 8



Theorem 4.7. The 
onstants of motion H1, . . . , Hn of Theorem 4.2 are fun
-tionally independent and 
ommute with respe
t to the Poisson bra
ket (3.5), sothe Novikov peakon system (3.4) is Liouville integrable on the phase spa
e P.Proof. To prove fun
tional independen
e, one should 
he
k that J := dH1 ∧
dH2 ∧ . . . ∧ dHn does not vanish on any open set in P . Sin
e J is rational inthe variables {mk, e

xk}n
k=1, it vanishes identi
ally if it vanishes on an open set,so it is su�
ient to show that J is not identi
ally zero. To see this, note that
Hk = ek(m2

1, . . . ,m
2
n) +O(Epq), (4.18)where ek denotes the kth elementary symmetri
 fun
tion in n variables, and

O(Epq) denotes terms involving exponentials of the positions xj . It is wellknown that the �rst n elementary symmetri
 fun
tions are independent (theyprovide a basis for symmetri
 fun
tions of n variables [29℄), and therefore theleading part of J (negle
ting the O(Epq) terms) does not vanish. Sin
e the
O(Epq) terms 
an be made arbitrarily small by taking the xk far apart, we seethat there is a region in P where J does not vanish, and we are done.To prove that the quantitiesHk Poisson 
ommute with respe
t to the bra
ket(3.5), it is 
onvenient to adapt some arguments of Moser that he applied to thes
attering of parti
les in the Toda latti
e and the rational Calogero�Moser sys-tem [31℄. The Poisson bra
ket of two 
onstants of motion is itself a 
onstant ofmotion, so {Hj , Hk} is independent of time. Consider now this bra
ket at a �xedpoint (x0,m0) := (x0

1, x
0
2, . . . , x

0
n,m

0
1,m

0
2, . . .m

0
n) ∈ P whi
h we 
onsider as aninitial 
ondition for the peakon �ow (x(t),m(t)), whi
h exists globally in timeby Theorem 4.5. Theorem 9.4, whi
h will be proved later without using what weare proving here, shows that the peakons s
atter as t→ −∞; more pre
isely, m2

ktends to 1/λk, while the xk move apart, so that the terms O(Epq) tend to zero.(It should also be possible to prove these s
attering properties dire
tly fromthe peakon ODEs, along the lines of what was done for the Degasperis�Pro
esiequation in [28, Theorem 2.4℄, but we have not done that.) Thus, from (4.18),
{Hj, Hk}(x0,m0) = {Hj , Hk}(x(t),m(t)) = limt→−∞{Hj , Hk}(x(t),m(t)) =
limt→−∞{ej, ek}(x(t),m(t)). Now the Poisson bra
kets of these symmetri
fun
tions are given by linear 
ombinations of the Poisson bra
kets {mj ,mk}with 
oe�
ients dependent only on the amplitudes. However, from (3.5) itis 
lear that {mj,mk}(x(t),m(t)) = O(Epq) → 0, from whi
h it follows that
{ej, ek}(x(t),m(t)) → 0 as t → −∞, and hen
e {Hj, Hk}(x0,m0) = 0 as re-quired.Remark 4.8. Sin
e the vanishing of the Poisson bra
ket is a purely algebrai
relation, the Hk Poisson 
ommute at ea
h point of R2n, not just in the region P .The λk, whi
h are de�ned as the zeros of A(λ), are the eigenvalues of theinverse of the matrix TPEP , sin
e A(λ) = det(I − λTPEP ). Another reasonwhy we restri
t our attention to the 
ase with all mk > 0 is that the matrix
TPEP 
an then be shown to be os
illatory (see Se
tion A.2 in the appendix),whi
h implies that its eigenvalues are positive and simple. Consequently, the9



λk are also positive and simple, and for de�niteness we will number them su
hthat
0 < λ1 < · · · < λn. (4.19)(For another proof that the spe
trum is positive and simple, see Theorem 6.1.)Turning now to B = S(λ)21 and C = S(λ)31, we �nd from (4.6) and (4.4)that they are polynomials in λ of degree n−1, with B(0) = M+ and C(0) = M2

+,where M+ =
∑N

k=1mk e
xk as before. This means that the two Weyl fun
tions

ω(λ) = −B(λ)

A(λ)
and ζ(λ) = − C(λ)

2A(λ)
(4.20)are rational fun
tions of order O(1/λ) as λ → ∞, having poles at the eigen-values λk. Let bk and ck denote the residues,

ω(λ) =
n∑

k=1

bk
λ− λk

, ζ(λ) =
n∑

k=1

ck
λ− λk

. (4.21)The time evolution of (A,B,C), given by (4.5), translates into
ω̇(λ) =

ω(λ) − ω(0)

λ
, ζ̇(λ) = −ω(0) ω̇(λ). (4.22)Comparing residues on both sides in (4.22) gives

ḃk =
bk
λk
, ċk = −ω(0)

bk
λk

=
n∑

m=1

bmbk
λmλk

. (4.23)This at on
e implies bk(t) = bk(0) et/λk , and integrating ċk(τ) from τ = −∞(assuming that ck vanishes there) to τ = t then gives
ck =

n∑

m=1

bmbk
λm + λk

. (4.24)A purely algebrai
 proof of this relation between the Weyl fun
tions, not relyingon time dependen
e and integration, will be given below; see Theorem 6.1. Wenote the identities ∑n
1 ck/λk = 1

2 (
∑n

1 bk/λk)2 and ∑n
1 λkck = 1

2 (
∑n

1 bk)2.The multipeakon solution is obtained as follows. The initial data xk(0),
mk(0) (for k = 1, . . . , n) determine initial spe
tral data λk(0), bk(0), whi
hafter time t have evolved to λk(t) = λk(0), bk(t) = bk(0) et/λk (sin
e the λk arethe zeros of the time-invariant polynomial A(λ), and sin
e the bk satisfy (4.23)).Solving the inverse spe
tral problem for these spe
tral data at time t gives thesolution xk(t), mk(t). The remainder of the paper is devoted to this inversespe
tral problem.

10



5 The dual 
ubi
 stringJust like for the Camassa�Holm and Degasperis�Pro
esi equations, some termsin the Lax pair's spatial equation (equation (4.1) in this 
ase, repeated as (5.1)below) 
an be removed by a 
hange of both dependent and independent vari-ables. We refer to this as a Liouville transformation, sin
e it is reminis
ent ofthe transformation used for bringing a se
ond-order Sturm�Liouville operatorto a simple normal form. This simpli�
ation reveals an interesting 
onne
tionbetween the Novikov equation and the Degasperis�Pro
esi equation, and allowsus to solve the inverse spe
tral problem by making use of the tools developedin the study of the latter.Theorem 5.1. The spe
tral problem
∂

∂x



ψ1

ψ2

ψ3


 =




0 zm(x) 1
0 0 zm(x)
1 0 0





ψ1

ψ2

ψ3


 (5.1)on the real line x ∈ R, with boundary 
onditions

ψ2(x) → 0, as x→ −∞,

exψ3(x) → 0, as x→ −∞,

e−xψ3(x) → 0, as x→ +∞,

(5.2)is equivalent (for z 6= 0), under the 
hange of variables
y = tanhx,

φ1(y) = ψ1(x) coshx− ψ3(x) sinh x,

φ2(y) = z ψ2(x),

φ3(y) = z2 ψ3(x)/ coshx,

g(y) = m(x) cosh3 x,

λ = −z2,

(5.3)to the �dual 
ubi
 string� problem
∂

∂y



φ1

φ2

φ3


 =




0 g(y) 0
0 0 g(y)
−λ 0 0





φ1

φ2

φ3


 (5.4)on the �nite interval −1 < y < 1, with boundary 
onditions

φ2(−1) = φ3(−1) = 0 φ3(1) = 0. (5.5)In the dis
rete 
ase m = 2
∑n

k=1mk δxk
, the relation between the measures mand g should be interpreted as

g(y) =

n∑

k=1

gkδyk
, yk = tanhxk, gk = 2mk coshxk. (5.6)11



Proof. Straightforward 
omputation using the 
hain rule and, for the dis
rete
ase, δxk
= dy

dx(xk) δyk
.Remark 5.2. The 
ubi
 string equation, whi
h plays a 
ru
ial role in thederivation of the Degasperis�Pro
esi multipeakon solution [28℄, is

∂3
yφ = −λgφ, (5.7)whi
h 
an be written as a system by letting Φ = (φ1, φ2, φ3) = (φ, φy , φyy):

∂

∂y



φ1

φ2

φ3


 =




0 1 0
0 0 1

−λg(y) 0 0





φ1

φ2

φ3


 . (5.8)The duality between (5.4) and (5.8) manifests itself in the dis
rete 
ase as aninter
hange of the roles of masses gk and distan
es lk = yk+1−yk; see Se
tion 6.When the mass distribution is given by a 
ontinuous fun
tion g(y) > 0, thesystems are instead related via the 
hange of variables de�ned by

dỹ

dy
= g(y) =

1

g̃(ỹ)
, (5.9)where y and g(y) refer to the primal 
ubi
 string (5.8), and ỹ and g̃(ỹ) to thedual 
ubi
 string (5.4) (or the other way around; the transformation (5.9) isobviously symmetri
 in y and ỹ, so that the dual of the dual is the original
ubi
 string again).Remark 5.3. The 
on
ept of a dual string �gures prominently in the work ofKrein on the ordinary string equation ∂2

yφ = −λgφ (as opposed to the 
ubi
string). For a 
omprehensive a

ount of Krein's theory, see [12℄.Remark 5.4. As a motivation for the transformation (5.3), we note that one 
aneliminate ψ1 from (5.1), whi
h gives ∂xψ2 = zmψ3, (∂2
x − 1)ψ3 = zmψ2. Fromthe study of Camassa�Holm peakons [2℄ it is known that the transformation

y = tanhx, φ(y) = ψ(x)/ coshx takes the expression (∂2
x − 1)ψ to a multipleof φyy , so it is not far-fet
hed to try something similar on ψ3 while leaving ψ2essentially un
hanged.From now on we 
on
entrate on the dis
rete 
ase. The Liouville transfor-mation maps the pie
ewise de�ned (ψ1, ψ2, ψ3) given by (4.3) to



φ1

φ2

φ3


 =




Ak(λ) − λCk(λ)
−2λBk(λ)

−λAk(λ) (1 + y) − λ2 Ck(λ) (1 − y)


 for yk < y < yk+1. (5.10)The initial values (A0, B0, C0) = (1, 0, 0) thus 
orrespond to Φ(−1;λ) = (1, 0, 0)t,where Φ(y;λ) =

(
φ1, φ2, φ3

)t, and at the right endpoint y = 1 we have
Φ(1;λ) =




An(λ) − λCn(λ)

−2λBn(λ)
−2λAn(λ)



 . (5.11)12



In parti
ular, the 
ondition An(λ) = 0 de�ning the spe
trum 
orresponds to
φ3(1;λ) = 0, ex
ept that the latter 
ondition gives an additional eigenvalue
λ0 = 0 whi
h is only present on the �nite interval. (This is not a 
ontradi
tion,sin
e the Liouville transformation from the line to the interval is not invertiblewhen z = −λ2 = 0.)The 
omponent φ3 is 
ontinuous and pie
ewise linear, while φ1 and φ2 arepie
ewise 
onstant with jumps at the points yk where the measure g is supported.More pre
isely, at point mass number k we have

φ1(y
+
k ) − φ1(y

−
k ) = gk

〈
φ2(yk)

〉
,

φ2(y
+
k ) − φ2(y

−
k ) = gk φ3(yk),

(5.12)and in interval number k, with length lk = yk+1 − yk,
φ3(y

−
k+1) − φ3(y

+
k ) = lk ∂yφ3(y

+
k ) = −λ lk φ1(y

+
k ). (5.13)In terms of the ve
tor Φ these relations take the form

Φ(y+
k ) =




1 gk

1
2g

2
k

0 1 gk

0 0 1



Φ(y−k ), (5.14)and
Φ(y−k+1) =




1 0 0
0 1 0

−λlk 0 1


Φ(y+

k ), (5.15)respe
tively. If we introdu
e the notation
G(x, λ) =




1 0 0
0 1 0

−λx 0 1


 , L(x) =




1 x 1
2x

2

0 1 x
0 0 1


 , (5.16)it follows immediately that

Φ(1;λ) = G(ln, λ) L(gn) . . . G(l2, λ) L(g2) G(l1, λ) L(g1) G(l0, λ)
(

1
0
0

)
.(5.17)We de�ne the Weyl fun
tions W and Z of the dual 
ubi
 string to be

W (λ) = −φ2(1;λ)

φ3(1;λ)
, Z(λ) = −φ1(1;λ)

φ3(1;λ)
. (5.18)It is 
lear from (5.11) that they are related to the Weyl fun
tions ω and ζpreviously de�ned on the real line (see (4.20)) as follows:

W (λ) = −Bn(λ)

An(λ)
= ω(λ) =

n∑

k=1

bk
λ− λk

,

Z(λ) =
An(λ) − λCn(λ)

2λAn(λ)
=

1

2λ
+ ζ(λ) =

1

2λ
+

n∑

k=1

ck
λ− λk

.

(5.19)13



6 Relation to the Neumann-like 
ubi
 stringKohlenberg, Lundmark and Szmigielski [23℄ studied the dis
rete 
ubi
 stringwith Neumann-like boundary 
onditions. We will brie�y re
all some resultsfrom that paper, with notation and sign 
onventions slightly altered to suit ourneeds here. The spe
tral problem in question is
φyyy(y) = −λg(y)φ(y) for y ∈ R,

φy(−∞) = φyy(−∞) = 0, φyy(∞) = 0,
(6.1)where g =

∑n
k=0 gk δyk

is a dis
rete measure with n+ 1 point masses g0, . . . , gnat positions y0 < y1 < · · · < yn; between these points are n �nite intervals oflength l1, . . . , ln (where lk = yk − yk−1). Sin
e φyyy = 0 away from the pointmasses, the boundary 
onditions 
an equally well be written as
φy(y−0 ) = φyy(y−0 ) = 0, φyy(y+

n ) = 0.Using the normalization φ(−∞) = 1 (or φ(y−0 ) = 1) and the notation Φ =
(φ, φy , φyy)t, one �nds

Φ(y+
n ;λ) = G(gn, λ) L(ln) . . . G(g2, λ) L(l2) G(g1, λ) L(l1) G(g0, λ)

(
1
0
0

)
,(6.2)with matri
es G and L as in (5.16) above. Under the assumption that all gk > 0,the zeros of φyy(y+

n ;λ), whi
h 
onstitute the spe
trum, are
0 = λ0 < λ1 < · · · < λn,and the Weyl fun
tions are

W (λ) = − φy(y+
n ;λ)

φyy(y+
n ;λ)

=
n∑

k=1

bk
λ− λk

,

Z(λ) = − φ(y+
n ;λ)

φyy(y+
n ;λ)

=
1

γλ
+

n∑

k=1

ck
λ− λk

, γ =

n∑

k=0

gk,

(6.3)with all bk > 0. They satisfy the identity
Z(λ) + Z(−λ) +W (λ)W (−λ) = 0, (6.4)from whi
h it follows, by taking the residue at λ = λk, that

ck =

n∑

m=1

bmbk
λm + λk

. (6.5)Thus Z(λ) is uniquely determined by the fun
tion W (λ) and the 
onstant γ.Now note that (6.2) is exa
tly the same kind of relation as (5.17), ex
ept thatthe roles of gk and lk are inter
hanged, and the right endpoint is 
alled y = y+
n14



instead of y = 1. The de�nitions of the Weyl fun
tions (6.3) also 
orrespondperfe
tly to the Weyl fun
tions (5.18) for the dual 
ubi
 string. Therefore, allthe results above are also true in the setting of the dual 
ubi
 string. Theassumption that the n distan
es lk and the n+1 point masses gk are all positivefor the Neumann 
ubi
 string 
orresponds of 
ourse to the requirement that the
n point masses gk and the n + 1 distan
es lk are positive for the dual 
ubi
string. The 
onstant γ =

∑n
k=0 gk in the term 1/γλ in (6.3) 
orresponds to the
onstant 2 in the term 1/2λ in (5.19), sin
e ∑n

k=0 lk = 2 is the length of theinterval −1 < y < 1. In summary:Theorem 6.1. Assume that all point masses gk are positive. Then the dis
retedual 
ubi
 string of Theorem 5.1 has nonnegative and simple spe
trum, witheigenvalues 0 = λ0 < λ1 < · · · < λn, and its Weyl fun
tions (5.18) havepositive residues and satisfy (6.4) and (6.5). In parti
ular, the se
ond Weylfun
tion Z(λ) is uniquely determined by the �rst Weyl fun
tion W (λ).7 Inverse spe
tral problemThe inverse spe
tral problem for the dis
rete dual 
ubi
 string 
onsists in re-
overing the positions and masses {yk, gk}n
k=1 given the spe
tral data 
onsistingof eigenvalues and residues {λk, bk}n

k=1 (or, equivalently, given the �rst Weylfun
tion W (λ)). The 
orresponding problem for the Neumann-like 
ubi
 stringwas solved in [23℄, and we need only translate the results, as in Se
tion 6. Seealso [28℄ for more information about inverse problems of this kind and [3℄ forthe underlying theory of Cau
hy biorthogonal polynomials.To begin with, we state the result in terms of the bimoment determinants
D(ab)

m and D′
m de�ned below. Things will be
ome more expli
it in the nextse
tion (Corollary 8.4), where the determinants are expressed dire
tly in termsof the λk and bk.De�nition 7.1. Suppose µ is a measure on R+ (the positive part of the realline) su
h that its moments,

βa =

∫
κa dµ(κ), (7.1)and its bimoments with respe
t to the Cau
hy kernel K(x, y) = 1/(x+ y),

Iab = Iba =

∫∫
κa λb

κ+ λ
dµ(κ) dµ(λ), (7.2)are �nite. For m ≥ 1, let D(ab)

m denote the determinant of the m×m bimomentmatrix whi
h starts with Iab in the upper left 
orner:
D(ab)

m =

∣∣∣∣∣∣∣∣∣∣∣

Iab Ia,b+1 . . . Ia,b+m−1

Ia+1,b Ia+1,b+1 . . . Ia+1,b+m−1

Ia+2,b Ia+2,b+1 . . . Ia+2,b+m−1... ...
Ia+m−1,b Ia+m−1,b+1 . . . Ia+m−1,b+m−1

∣∣∣∣∣∣∣∣∣∣∣

= D(ba)
m . (7.3)15



Let D(ab)
0 = 1, and D(ab)

m = 0 for m < 0.Similarly, for m ≥ 2, let D′
m denote the m×m determinant

D′
m =

∣∣∣∣∣∣∣∣∣∣∣

β0 I10 I11 . . . I1,m−2

β1 I20 I21 . . . I2,m−2

β2 I30 I31 . . . I3,m−2... ...
βm−1 Im0 Im1 . . . Im,m−2

∣∣∣∣∣∣∣∣∣∣∣

, (7.4)and de�ne D′
1 = β0 and D′

m = 0 for m < 1.Theorem 7.2. Given 
onstants 0 < λ1 < · · · < λn and b1, . . . , bn > 0, de�nethe spe
tral measure
µ =

n∑

i=1

bi δλi
, (7.5)and let Iab be its bimoments,

Iab =

∫∫
κa λb

κ+ λ
dµ(κ) dµ(λ) =

n∑

i=1

n∑

j=1

λa
i λ

b
j

λi + λj
bibj . (7.6)Then the unique dis
rete dual 
ubi
 string (with positive masses gk) having theWeyl fun
tion

W (λ) =

n∑

k=1

bk
λ− λk

=

∫
dµ(κ)

λ− κis given by
yk′ =

D(00)
k − 1

2D
(11)
k−1

D(00)
k + 1

2D
(11)
k−1

, gk′ = 2
D(00)

k + 1
2D

(11)
k−1

D′
k

, (7.7)where k′ = n+ 1− k for k = 0, . . . , n+ 1. The distan
es between the masses aregiven by
lk′−1 = yk′ − yk′−1 =

(
D(10)

k

)2

(
D(00)

k + 1
2D

(11)
k−1

)(
D(00)

k+1 + 1
2D

(11)
k

) . (7.8)Proof. For 0 ≤ k ≤ n, let a(2k+1)(λ) be the produ
t of the �rst 2k + 1 fa
torsin (5.17),
a(2k+1)(λ) = G(ln, λ) L(gn) G(ln−1, λ) L(gn−1) . . .

. . . G(lk′ , λ) L(gk′) G(lk′−1, λ), (7.9)16



where k′ = n+1− k. By Lemma 4.1 and Theorem 4.2 in [23℄, the entries in the�rst 
olumn of a = a(2k+1)(λ),


a11

a21

a31


 =:



P̂
P
Q


 ,satisfy what in [23℄ was 
alled a �Type I� approximation problem. This meansthat (P̂ (λ), P (λ), Q(λ)) are polynomials in λ of degree k, k, k+ 1, respe
tively,satisfying the normalization 
onditions

P̂ (0) = 1, P (0) = 0, Q(0) = 0,the approximation 
onditions
Q(λ)W (λ) + P (λ) = O(1), Q(λ)Z(λ) + P̂ (λ) = O(λ−1), as λ→ ∞,and the symmetry 
ondition

Q(λ)Z(−λ) − P (λ)W (−λ) − P̂ (λ) = O(λ−k−1), as λ→ ∞.A

ording to Theorem 4.15 in [23℄, this determines (P̂ , P,Q) uniquely; in par-ti
ular, the 
oe�
ients of a(2k+1)
31 (λ) = Q(λ) =

∑k+1
i=1 qiλ

i are given by thenonsingular linear system



I00 + 1
2 I01 · · · I0k

I10 I11 · · · I1k

I20 I21 · · · I2k... ...
Ik0 Ik1 · · · Ikk







q1
q2
q3...
qk+1




= −




1
0
0...
0



. (7.10)From (7.9) one �nds that

a
(2k+1)
31 (λ) = (−λ)(ln + ln−1 + · · · + lk′−1) + . . .

+ (−λ)k+1

(
g2

n

2

g2
n−1

2
. . .

g2
k′

2
lnln−1 . . . lk′−1

)
,

(7.11)and the lowest and highest 
oe�
ients are then extra
ted from (7.10) usingCramer's rule:
−q1 =

D(11)
k

D(00)
k+1 + 1

2D
(11)
k

=
n∑

j=k′−1

lj = 1 − yk′−1,

(−1)k+1qk+1 =
D(10)

k

D(00)
k+1 + 1

2D
(11)
k

=




n∏

j=k′

g2
j lj

2



 lk′−1.

(7.12)The �rst equation gives a formula for yk′−1 right away, and of 
ourse also for yk′(with 1 ≤ k ≤ n + 1) after renumbering. This formula (7.7) for yk′ holds also17



for k = 0, sin
e it gives y0′ = yn+1 = +1 be
ause of the way D(ab)
m is de�nedfor m ≤ 0. (That it indeed gives y(n+1)′ = y0 = −1 when k = n + 1 is notas obvious; this depends on D(00)

n+1 being zero when the measure µ is supportedon only n points. See [23, Appendix B℄.) Subtra
tion gives a formula for lk′−1whi
h simpli�es to (7.8) with the help of �Lewis Carroll's identity� [24, Prop. 10℄applied to the determinant D(00)
k+1:

D(00)
k+1D

(11)
k−1 = D(00)

k D(11)
k −D(10)

k D(01)
k . (7.13)Finally, the se
ond formula in (7.12), divided by the 
orresponding formula with

k repla
ed by k − 1, gives an expression for 1
2 g

2
k′ lk′−1 from whi
h one obtains

gk′ =
(
D(00)

k +
1

2
D(11)

k−1

)√ 2

D(10)
k D(10)

k−1

.The formula for gk′ presented in (7.7) now follows from the identity (D′
k)2 =

2D(10)
k D(10)

k−1 and the positivity of D′
k, whi
h are immediate 
onsequen
es of (8.6)below. (The determinant identity 
an also be proved dire
tly by expanding D′

kalong the �rst 
olumn, squaring, and using βiβj = Ii+1,j + Ii,j+1.)Remark 7.3. We take this opportunity to 
orre
t a 
ouple of mistakes in [23℄:the formula in Corollary 4.17 should read [Q3k+2] = (−1)k+1Dk/Ak+1, and
onsequently it should be mn−k =
D2

k

2Ak+1Ak
in (4.54).8 Evaluation of bimoment determinantsThe aim of this se
tion is just to state some formulas for the bimoment determi-nants D(ab)

m and D′
m, taken from [28, Lemma 4.10℄ and [23, Appendix B℄. Quitea lot of notation is needed.De�nition 8.1. For k ≥ 1, let
tk =

1

k!

∫

Rk

∆(x)2

Γ(x)

dµk(x)

x1x2 . . . xk
,

uk =
1

k!

∫

Rk

∆(x)2

Γ(x)
dµk(x),

vk =
1

k!

∫

Rk

∆(x)2

Γ(x)
x1x2 . . . xk dµ

k(x),

(8.1)where
∆(x) = ∆(x1, . . . , xk) =

∏

i<j

(xi − xj),

Γ(x) = Γ(x1, . . . , xk) =
∏

i<j

(xi + xj).
(8.2)18



(When k = 0 or 1, let ∆(x) = Γ(x) = 1.) Also let t0 = u0 = v0 = 1, and
tk = uk = vk = 0 for k < 0.When µ =

∑n
k=1 bk δλk

, the integrals tk, uk, vk redu
e to the sums Tk, Uk,
Vk below.De�nition 8.2. For k ≥ 0, let ([1,n]

k

) denote the set of k-element subsets I =

{i1 < · · · < ik} of the integer interval [1, n] = {1, . . . , n}. For I ∈
(
[1,n]

k

), let
∆I = ∆(λi1 , . . . , λik

), ΓI = Γ(λi1 , . . . , λik
), (8.3)with the spe
ial 
ases ∆∅ = Γ∅ = ∆{i} = Γ{i} = 1. Furthermore, let

λI =
∏

i∈I

λi, bI =
∏

i∈I

bi,with λ∅ = b∅ = 1. Using the abbreviation ΨI =
∆2

I

ΓI
, let

Tk =
∑

I∈([1,n]
k )

ΨIbI
λI

, Uk =
∑

I∈([1,n]
k )

ΨIbI , Vk =
∑

I∈([1,n]
k )

ΨIλIbI , (8.4)and
Wk =

∣∣∣∣
Uk Vk−1

Uk+1 Vk

∣∣∣∣ = UkVk − Uk+1Vk−1,

Zk =

∣∣∣∣
Tk Uk−1

Tk+1 Uk

∣∣∣∣ = TkUk − Tk+1Uk−1.

(8.5)(To be expli
it, U0 = V0 = T0 = 1, and Uk = Vk = Tk = 0 for k < 0 or k > n.)We 
an now �nally state the promised formulas for the bimoment determi-nants.Lemma 8.3. For all m,
D(00)

m =

∣∣∣∣
tm um−1

tm+1 um

∣∣∣∣
2m

, D(11)
m =

∣∣∣∣
um vm−1

um+1 vm

∣∣∣∣
2m

,

D(10)
m =

(um)
2

2m
, D′

m =
umum−1

2m−1
.

(8.6)In the dis
rete 
ase when µ =

n∑

k=1

bk δλk
, this redu
es to

D(00)
m =

Zm

2m
, D(11)

m =
Wm

2m
, D(10)

m =
(Um)

2

2m
, D′

m =
UmUm−1

2m−1
. (8.7)19



Corollary 8.4. The solution to the inverse spe
tral problem for the dis
retedual 
ubi
 string (Theorem 7.2) 
an be expressed as
yk′ =

Zk −Wk−1

Zk +Wk−1
, gk′ =

Zk +Wk−1

UkUk−1
, (8.8)

lk′−1 = yk′ − yk′−1 =
2 (Uk)4

(Zk +Wk−1)(Zk+1 +Wk)
. (8.9)The expression Wk 
an be evaluated expli
itly in terms of λk and bk, al-though the formula is somewhat involved [28, Lemma 2.20℄:

Wk =
∑

I∈([1,n]
k )

∆4
I

Γ2
I

λIb
2
I

+

k∑

m=1

∑

I∈([1,n]
k−m)

J∈([1,n]
2m )

I∩J=∅

b2IbJ

{
2m+1

∆4
I∆

2
I,JλI∪J

ΓI ΓI∪J

(
∑

C∪D=J
|C|=|D|=m

min(C)<min(D)

∆2
C∆2

DΓCΓD

)}
,(8.10)where ∆2

I,J =
∏

i∈I,j∈J

(λi − λj)
2. The 
orresponding formula for Zk is obtainedby repla
ing bi with bi/λi everywhere.9 The multipeakon solutionIn order to obtain the solution to the inverse spe
tral problem on the real line,whi
h provides the multipeakon solution, we merely have to map the formulasfor the interval (Corollary 8.4) ba
k to the line via the Liouville transformation(5.6).We remind the reader that in this paper we primarily study the pure peakon
ase where it is assumed that all mk > 0 and also that x1 < · · · < xn. Thisassumption guarantees that the solutions are globally de�ned in time (Theo-rem 4.5) and, regarding the spe
tral data, that all bk > 0 and 0 < λ1 < · · · < λn(Theorem 6.1). Details regarding mixed peakon-antipeakon solutions are left forfuture resear
h, but we point out that sin
e the velo
ity ẋk = u(xk)2 is alwaysnonnegative, Novikov antipeakons move to the right just like peakons (unlikethe b-family (2.1), where pure peakons move to the right and antipeakons to theleft, if they are su�
iently far apart). Nevertheless, peakons and antipeakonsmay 
ollide after �nite time also for the Novikov equation, 
ausing division byzero in the solution formula for mk in (9.1) below, and this breakdown leadsto the usual subtle questions regarding 
ontinuation of the solution beyond the
ollision. 20



Theorem 9.1. In the notation of Se
tion 8, the n-peakon solution of Novikov'sequation is given by
xk′ =

1

2
ln

Zk

Wk−1
, mk′ =

√
ZkWk−1

UkUk−1
, (9.1)where k′ = n+ 1 − k for k = 1, . . . , n, and where the time evolution is given by

bk(t) = bk(0) et/λk . (9.2)Proof. The inverse of the 
oordinate transformation (5.6) is
xk =

1

2
ln

1 + yk

1 − yk
, mk =

gk

√
1 − y2

k

2
,whi
h upon inserting (8.8) gives (9.1) at on
e. The evolution of bk 
omes fromequation (4.23).Example 9.2. The two-peakon solution is

x1 =
1

2
ln
Z2

W1
=

1

2
ln

(λ1 − λ2)
4

(λ1 + λ2)2λ1λ2
b21b

2
2

λ1 b
2
1 + λ2 b

2
2 +

4λ1λ2

λ1 + λ2
b1b2

,

x2 =
1

2
ln
Z1

W0
=

1

2
ln

(
b21
λ1

+
b22
λ2

+
4

λ1 + λ2
b1b2

)
,

m1 =

√
Z2W1

U2U1
=

[
(λ1 − λ2)

4 b21b
2
2

(λ1 + λ2)2λ1λ2

(
λ1 b

2
1 + λ2 b

2
2 +

4λ1λ2

λ1 + λ2
b1b2

)]1/2

(λ1 − λ2)
2 b1b2

λ1 + λ2
(b1 + b2)

=

(
λ1 b

2
1 + λ2 b

2
2 +

4λ1λ2

λ1 + λ2
b1b2

)1/2

√
λ1λ2 (b1 + b2)

,

m2 =

√
Z1W0

U1U0
=

(
b21
λ1

+
b22
λ2

+
4

λ1 + λ2
b1b2

)1/2

b1 + b2
,

(9.3)
where the simpler of the two expressions form1 is obtained under the assumptionthat all spe
tral data are positive, and therefore only 
an be trusted in the purepeakon 
ase. This way of writing the solution is simpler and more expli
itthan that found in [19℄. In order to translate (9.3) to the notation used there,write (qk, pk) instead of (xk,mk), ck instead of 1/λk, and t0 instead of (λ−1

1 −
λ−1

2 )−1 ln b2(0)
b2(0)

; then tanhT = (b1−b2)/(b1+b2) and cosh−2 T = 4b1b2/(b1+b2)
2,where T = 1

2 (c1 − c2)(t− t0). 21



Example 9.3. The three-peakon solution is
x1 =

1

2
ln
Z3

W2
, x2 =

1

2
ln
Z2

W1
, x3 =

1

2
ln
Z1

W0
,

m1 =

√
Z3W2

U3U2
, m2 =

√
Z2W1

U2U1
, m3 =

√
Z1W0

U1U0
,

(9.4)where U0 = W0 = 1,
U1 = b1 + b2 + b3,

U2 = Ψ12 b1b2 + Ψ13 b1b3 + Ψ23 b2b3,

U3 = Ψ123 b1b2b3,

(9.5)
W1 = λ1 b

2
1 + λ2 b

2
2 + λ3 b

2
3

+
4λ1λ2

λ1 + λ2
b1b2 +

4λ1λ3

λ1 + λ3
b1b3 +

4λ2λ3

λ2 + λ3
b2b3,

W2 = Ψ2
12 λ1λ2 b

2
1b

2
2 + Ψ2

13 λ1λ3 b
2
1b

2
3 + Ψ2

23 λ2λ3 b
2
2b

2
3

+
4 Ψ13Ψ23 λ1λ2λ3

λ1 + λ2
b1b2b

2
3 +

4 Ψ12Ψ23 λ1λ2λ3

λ1 + λ3
b1b

2
2b3

+
4 Ψ12Ψ13 λ1λ2λ3

λ2 + λ3
b21b2b3,

(9.6)
Z1 =

b21
λ1

+
b22
λ2

+
b23
λ3

+
4

λ1 + λ2
b1b2 +

4

λ1 + λ3
b1b3 +

4

λ2 + λ3
b2b3,

Z2 =
Ψ2

12

λ1λ2
b21b

2
2 +

Ψ2
13

λ1λ3
b21b

2
3 +

Ψ2
23

λ2λ3
b22b

2
3

+
4 Ψ13Ψ23

(λ1 + λ2)λ3
b1b2b

2
3 +

4 Ψ12Ψ23

(λ1 + λ3)λ2
b1b

2
2b3 +

4 Ψ12Ψ13

(λ2 + λ3)λ1
b21b2b3,

Z3 =
Ψ2

123

λ1λ2λ3
b21b

2
2b

2
3,

(9.7)
and

Ψ12 =
(λ1 − λ2)

2

λ1 + λ2
, Ψ13 =

(λ1 − λ3)
2

λ1 + λ3
, Ψ23 =

(λ2 − λ3)
2

λ2 + λ3
,

Ψ123 =
(λ1 − λ2)

2(λ1 − λ3)
2(λ2 − λ3)

2

(λ1 + λ2)(λ1 + λ3)(λ2 + λ3)
.

(9.8)Theorem 9.4 (Asymptoti
s). Let the eigenvalues be numbered so that 0 < λ1 <
· · · < λn. Then
xk(t) ∼ t

λk
+ log bk(0) − 1

2
lnλk +

n∑

i=k+1

ln
(λi − λk)2

(λi + λk)λi
, as t→ −∞,

xk′ (t) ∼ t

λk
+ log bk(0) − 1

2
lnλk +

k−1∑

i=1

ln
(λi − λk)2

(λi + λk)λi
, as t→ +∞,

(9.9)22



where k′ = n+ 1 − k. Moreover,
lim

t→−∞
mk(t) =

1√
λk

= lim
t→+∞

mk′(t). (9.10)In words: asymptoti
ally as t → ±∞, the kth fastest peakon has velo
ity 1/λkand amplitude 1/
√
λk.Proof. This is just a matter of identifying the dominant terms; b1(t) = b1(0) et/λ1grows mu
h faster as t→ +∞ than b2(t), whi
h in turn grows mu
h faster than

b3(t), et
., and as t → −∞ it is the other way around. Thus, for example,
Uk ∼ Ψ12...k b1b2 . . . bk as t → +∞. A similar analysis of Wk and Zk leadsqui
kly to the stated formulas.The only di�eren
e 
ompared to the xk asymptoti
s for Degasperis�Pro
esipeakons [28, Theorem 2.25℄ is that (9.9) 
ontains an additional term − 1

2 lnλk.Sin
e this term 
an
els in the subtra
tion, the phase shifts for Novikov peakonsare exa
tly the same as for Degasperis�Pro
esi peakons [28, Theorem 2.26℄:
lim

t→∞

(
xk′ (t) − t

λk

)
− lim

t→−∞

(
xk(t) − t

λk

)
=

=
k−1∑

i=1

log
(λi − λk)2

(λi + λk)λi
−

n∑

i=k+1

log
(λi − λk)2

(λi + λk)λi
. (9.11)A Combinatorial resultsThis appendix 
ontains some material related to the 
ombinatorial stru
ture ofthe 
onstants of motion H1, . . . , Hn of the Novikov peakon ODEs; see Se
tion 4,and in parti
ular Theorem 4.2. Re
all that

A(λ) = 1 − λH1 + · · · + (−λ)nHn = det(I − λTPEP ),where I is the n × n identity matrix, and T , E, P are n × n matri
es de�nedby Tjk = 1 + sgn(j − k), Ejk = e−|xj−xk|, and P = diag(m1, . . . ,mn). The�rst thing to prove is that the matrix TPEP is os
illatory if all mk > 0, whi
hshows that the zeros of A(λ) are positive and simple. Then we show how to easily
ompute the minors of PEP , and �nally we prove the �Canada Day Theorem�(Theorem 4.1) whi
h implies that Hk equals the sum of all k×k minors of PEP .A.1 PreliminariesIn this se
tion we have 
olle
ted some fa
ts about total positivity [21, 15, 13℄that will be used below.De�nition A.1. If X is a matrix and I and J are index sets, the submatrix
(Xij)i∈I,j∈J will be denoted by XIJ (or sometimes XI,J). The set of k-elementsubsets of the integer interval [1, n] = {1, 2, . . . , n} will be denoted ([1,n]

k

), and23



elements of su
h a subset I will always be assumed to be numbered in as
endingorder i1 < · · · < ik.De�nition A.2. A square matrix is said to be totally positive if all its minorsof all orders are positive. It is 
alled totally nonnegative if all its minors arenonnegative. A matrix is os
illatory if it is totally nonnegative and some powerof it is totally positive.Theorem A.3. All eigenvalues of a totally positive matrix are positive and ofalgebrai
 multipli
ity one, and likewise for os
illatory matri
es. All eigenval-ues of a totally nonnegative matrix are nonnegative, but in general of arbitrarymultipli
ity.Theorem A.4. The produ
t of an os
illatory matrix and a nonsingular totallynonnegative matrix is os
illatory.De�nition A.5. A planar network (Γ, ω) of order n is an a
y
li
 planar dire
tedgraph Γ with arrows going from left to right, with n sour
es (verti
es withoutgoing arrows only) on the left side, and with n sinks (verti
es with in
omingarrows only) on the right side. The sour
es and sinks are numbered 1 to n,from bottom to top, say. All other verti
es have at least one arrow 
oming inand at least one arrow going out. Ea
h edge e of the graph Γ is assigned as
alar weight ω(e). The weight of a dire
ted path in Γ is the produ
t of all theweights of the edges of that path. The weighted path matrix Ω(Γ, ω) is the n×nmatrix whose (i, j) entry Ωij is the sum of the weights of the possible pathsfrom sour
e i to sink j.The following theorem was dis
overed by Lindström [25℄ and made famousby Gessel and Viennot [16℄. A similar theorem also appeared earlier in the workof Karlin and M
Gregor on birth and death pro
esses [22℄.Theorem A.6 (Lindström's Lemma). Let I and J be subsets of {1, . . . , n} withthe same 
ardinality. The minor detΩIJ of the weighted path matrix Ω(Γ, ω)of a planar network is equal to the sum of the weights of all possible families ofnoninterse
ting paths (i.e., paths having no verti
es in 
ommon) 
onne
ting thesour
es labelled by I to the sinks labelled by J . (The weight of a family of pathsis de�ned as the produ
t of the weights of the individual paths.)Corollary A.7. If all weights ω(e) are nonnegative, then the weighted pathmatrix is totally nonnegative.Remark A.8. Beware that having positive weights does not in general implytotal positivity of the path matrix Ω, sin
e some minors detΩIJ may be zerodue to absen
e of noninterse
ting path families from I to J , in whi
h 
ase Ω isonly totally nonnegative.A.2 Proof that TPEP is os
illatoryThe matrix T is the path matrix of the planar network whose stru
ture isillustrated below for the 
ase n = 4 (with all edges, and therefore all paths andfamilies of paths, having unit weight):24



1

2

3

4

1

2

3

4

Indeed, there is 
learly one path from sour
e i to sink j if i = j, two paths if
i > j, and none if i < j, and this agrees with

Tij = 1 + sgn(i− j) =






1, i = j,

2, i > j,

0, i < j.Similarly one 
an 
he
k that the matrix PEP is the weighted path matrix ofthe planar network illustrated below for the 
ase n = 5 (we are assuming that
x1 < · · · < xn, so that E12E23 = ex1−x2ex2−x3 = E13, et
.):

1

2

3

4

5

1

2

3

4

5

m1

m2

m3

m4

m5

m1

m2

m3

m4

m5

E12 E12

1 − E2
12

E23 E23

1 − E2
23

E34 E34

1 − E2
34

E45 E45

1 − E2
45

By Corollary A.7, both T and PEP are totally nonnegative (if all mk > 0).Furthermore, (PEP )N is the weighted path matrix of the planar network ob-tain by 
onne
ting N 
opies of the network for PEP in series, and if N is largeenough, there is 
learly enough wiggle room in this network to �nd a nonin-terse
ting path family from any sour
e set I to any sink set J with |I| = |J |.Thus (PEP )N is totally positive for su�
iently large N ; in other words, PEPis os
illatory. (Another way to see this is to use a 
riterion [15, Chapter II,Theorem 10℄ whi
h says that a totally nonnegative matrix X is os
illatory ifand only if it is nonsingular and Xij > 0 for |i− j| = 1.) Sin
e T is nonsingular,Theorem A.4 implies that TPEP is os
illatory, whi
h was the �rst thing wewanted to prove.
25



A.3 Minors of PEPHaving a planar network for PEP makes it easy to 
ompute its minors usingLindström's Lemma.Example A.9. Consider the 
onstant of motion H3 in the 
ase n = 6.For sour
es I = {1, 2, 3} and sinks J = {1, 2, 3} there is only one family ofnoninterse
ting paths, namely the paths going straight a
ross. The weights ofthese paths are m1m1, m2(1−E2
12)m2 and m3(1−E2

23)m3, and the total weightof that family is therefore (1 − E2
12)(1 − E2

23)m
2
1m

2
2m

2
3, whi
h will be the �rstterm in H3.A similar term results whenever I = J . For instan
e, when I = J = {1, 2, 4}the paths starting at sour
es 1 and 2 must go straight a
ross, while the pathfrom sour
e 4 to to sink 4 
an go straight a
ross, or down to line 3 and up again.The 
ontributions from these two possible noninterse
ting path families add upto

m1m1 ·m2(1 − E2
12)m2 ·

(
m4(1 − E2

34)m4 +m4E34(1 − E2
23)E34m4

)

= (1 − E2
12)(1 − E2

24)m
2
1m

2
2m

2
4.From I = {1, 2, 3} to J = {1, 2, 4} there is one noninterse
ting path family,and there is another one with the same weight from I = {1, 2, 4} to J = {1, 2, 3};the two add up to the term 2(1 − E2

12)(1 − E2
23)E24m

2
1m

2
2m3m4.Continuing like this, one �nds that the types of terms that appear in H3 are

H3 = (1 − E2
12)(1 − E2

23)m
2
1m

2
2m

2
3 + . . .

+ 2(1 − E2
12)(1 − E2

23)E34m
2
1m

2
2m3m4 + . . .

+ 4(1 − E2
12)(1 − E2

34)E23E45m
2
1m2m3m4m5 + . . .

+ 8 (1 − E2
23)(1 − E2

45)E12E34E56m1m2m3m4m5m6.

(A.1)The last term 
omes from the 8 possible noninterse
ting path families from
I = {i1, i2, i3} to J = {j1, j2, j3} where (i1, j1) = (1, 2) or (2, 1), (i2, j2) = (3, 4)or (4, 3), and (i3, j3) = (5, 6) or (6, 5).Remark A.10. Alternatively, the mk 
an be fa
tored out from any minor of
PEP , leaving the 
orresponding minor of E, whi
h 
an be 
omputed using aresult from Gantma
her and Krein [15, Se
tion II.3.5℄, sin
e the matrix E iswhat they 
all a single-pair matrix. This means a symmetri
 n × n matrix Xwith entries

Xij =

{
ψiχj , i ≤ j,

ψjχi, i ≥ j.
(A.2)The k×k minors of a single-pair matrix are given by the following rule: detXIJ =

0, unless I, J ∈
(
[1,n]

k

) satisfy the 
ondition
(i1, j1) < (i2, j2) < · · · < (ik, jk), (A.3)26



where the notation means that both numbers in one pair must be less than bothnumbers in the following pair; in this 
ase,
detXIJ = ψα1

∣∣∣∣
χβ1 χα2

ψβ1 ψα2

∣∣∣∣

∣∣∣∣
χβ2 χα3

ψβ2 ψα3

∣∣∣∣ . . .
∣∣∣∣
χβk−1

χαk

ψβk−1
ψαk

∣∣∣∣χβk
, (A.4)where

(αm, βm) =
(
min(im, jm),max(im, jm)

)
. (A.5)In the 
ase of E we have ψi = exi and χi = e−xi (assuming as usual that

x1 < · · · < xn), and (A.4) be
omes
detEIJ = (1−E2

β1α2
)(1−E2

β2α3
) . . . (1−E2

βk−1αk
)Eα1β1Eα2β2 . . . Eαkβk

. (A.6)A.4 Proof of the �Canada Day Theorem�The result to be proved (Theorem 4.1) is that for any symmetri
 n×nmatrix X ,the 
oe�
ient of sk in the polynomial det(I + s TX) equals the sum of all k× kminors of X :
det(I + s TX) = 1 +

n∑

k=1




∑

I∈([1,n]
k )

∑

J∈([1,n]
k )

detXIJ


 sk. (A.7)We start from the elementary fa
t that for any matrix Y , the 
oe�
ients in its
hara
teristi
 polynomial are given by the sums of the prin
ipal minors,

det(I + s Y ) = 1 +

n∑

k=1




∑

J∈([1,n]
k )

detYJJ


 sk.Applying this to Y = TX and 
omputing the minors of TX using the Cau
hy�Binet formula [14, Ch. I, � 2℄

det(TX)AB =
∑

I∈([1,n]
k )

det TAI detXIB, for A,B ∈
(
[1,n]

k

)
, (A.8)we �nd that

det(I + s TX) = 1 +

n∑

k=1




∑

I∈([1,n]
k )

∑

J∈([1,n]
k )

det TJI detXIJ


 sk.Comparing this to (A.7), it is 
lear that what we need to show is that, for any k,

∑

I∈([1,n]
k )

∑

J∈([1,n]
k )

detTJI detXIJ =
∑

I∈([1,n]
k )

∑

J∈([1,n]
k )

detXIJ . (A.9)The �rst thing to do is 
al
ulate the minors detTJI .27



De�nition A.11. Given I, J ∈
(
[1,n]

k

), the set I is said to interla
e with theset J , denoted I ≤ J , if
i1 ≤ j1 ≤ i2 ≤ j2 ≤ . . . ≤ ik ≤ jk. (A.10)If all the inequalities are stri
t, then I is said to stri
tly interla
e with J , in whi
h
ase we write I < J . If I ≤ J , then I ′ and J ′ denote the stri
tly interla
ingsubsets (possibly empty)

I ′ = I \ (I ∩ J), J ′ = J \ (I ∩ J), (A.11)whose 
ardinality (possibly zero) will be denoted by
p(I, J) = |I ′| = |J ′| . (A.12)Lemma A.12. For I, J ∈

(
[1,n]

k

), the 
orresponding k × k minor of T is
detTJI =

{
2p(I,J), if I ≤ J,

0, otherwise. (A.13)Proof. We will use Lindström's Lemma (Theorem A.6) on the planar networkfor T given in Se
tion A.2 above; the minor detTJI equals the total numberof families of noninterse
ting paths 
onne
ting the sour
e nodes (on the left)indexed by J to the sink nodes (on the right) indexed by I.The proof pro
eeds by indu
tion on the size n of T . The 
laim is triviallytrue for n = 1. Consider an arbitrary n > 1, and suppose the 
laim is true forsize n− 1. If neither I nor J 
ontain n, the 
laim follows immediately from theindu
tion hypothesis, and likewise if I and J both 
ontain n, be
ause there isonly one path 
onne
ting sour
e n to sink n. If I 
ontains n but J does not,then detTJI = 0 be
ause there are no paths going upward; this agrees with the
laim, sin
e in this 
ase I does not interla
e with J .The only remaining 
ase is therefore J = J1∪{n}, I = I1∪{ik}, with ik < n.But then
detTJI = detTJ1I1 ×






2, if jk−1 < ik,

1, if jk−1 = ik,

0, if jk−1 > ik,depending on whether the path 
onne
ting sour
e n with sink ik has to 
rossthe jk−1 level; if it does not, there are two available paths, if it does, there isonly one available path provided jk−1 = in, otherwise the path interse
ts thepath 
oming from sour
e jk−1. In the last instan
e, I does not interla
e with J ,while in the other two I ≤ J if and only if I1 ≤ J1, thus proving the 
laim.A

ording to this lemma, the stru
ture of (A.9) (whi
h is what we want toprove) is ∑

I,J∈([1,n]
k )

I≤J

2p(I,J) detXIJ =
∑

A,B∈([1,n]
k )

detXAB, (A.14)28



and we must show that those terms detXIJ that o

ur more than on
e on theleft-hand side exa
tly 
ompensate for those that are absent. This will followfrom another te
hni
al lemma:Lemma A.13 (Relations between k×k minors of a symmetri
 matrix). Suppose
I, J ∈

(
[1,n]

k

) and I ≤ J . Then, for any symmetri
 n× n matrix X,
∑

A,B∈(I∪J

k )
A∩B=I∩J

detXAB = 2p(I,J) detXIJ . (A.15)Before proving Lemma A.13, we will use it to �nish the proof of the maintheorem. The two lemmas above show that the sum on the left-hand side of(A.14) equals
∑

I,J∈([1,n]
k )

I≤J

2p(I,J) detXIJ =
∑

I,J∈([1,n]
k )

I≤J




∑

A,B∈(I∪J

k )
A∩B=I∩J

detXAB


 , (A.16)whi
h in turn equals the sum on the right-hand side of (A.14),

∑

A,B∈([1,n]
k )

detXAB. (A.17)Thus (A.14) holds, and the theorem is proved. The �nal step from (A.16) to(A.17) is justi�ed by the observation that any given pair (A,B) of the typesummed over in (A.17) appears exa
tly on
e in the right-hand side of (A.16),namely for the sets I and J de�ned as follows. Let M = A ∩ B, A′ = A \M ,
B′ = B \M , and let p ≥ 0 be the 
ardinality of the disjoint sets A′ and B′(they are empty sets if p = 0). Then de�ne I ′ and J ′ by enumerating the 2pelements of A′ ∪B′ in the stri
tly interla
ing order I ′ < J ′, and let I = M ∪ I ′and J = M ∪ J ′. Conversely, no other terms than these appear in the righthand side of (A.16), and it is therefore indeed equal to (A.17).Proof of Lemma A.13. The sets I ≤ J and I ′ < J ′ (as in De�nition A.11), with

|I| = |J | = k, |I ′| = |J ′| = p(I, J) = p,will be �xed throughout the proof, and for 
onvenien
e we also introdu
e M =
I ∩ J and U = I ∪ J , with |M | = k − p and |U | = k + p. We 
an assume that
p > 0, sin
e the 
ase p = 0 is trivial; it o

urs when I = J , and then both sidesof (A.15) simply equal detXII .The set U \M 
onsists of the 2p numbers whi
h belong alternatingly to I ′and to J ′. The sum (A.15) runs over all pairs of sets (A,B) obtained by splittingthese 2p numbers into two disjoint p-sets A′ and B′ in an arbitrary way andletting A = M ∪ A′ and B = M ∪ B′. Write Q for this set; that is, Q denotes29



the set of pairs (A,B) ∈
(
[1,n]

k

)
×
(
[1,n]

k

) su
h that A ∪ B = U and A ∩B = M .After expanding detXAB, we 
an then write the left-hand side of (A.15) as
∑

((A,B),σ)∈Q×Sk

(−1)σXa1bσ(1)
Xa2bσ(2)

. . .Xakbσ(k)
, (A.18)where Sk is the group of permutations of {1, 2, . . . , k}, and (−1)σ denotes thesign of the permutation σ.For ea
h ((A,B), σ) ∈ Q×Sk, we let A′ = A\M and B′ = B\M , and set up a(σ-dependent) bije
tion between A′ and B′ as follows: a′ ∈ A′ is paired up with

b′ ∈ B′ if and only if the produ
t Xa1bσ(1)
Xa2bσ(2)

. . . Xakbσ(k)

ontains either thefa
tor Xa′b′ or a sequen
e of fa
tors Xa′r, Xrs, . . . , Xtb′ where r, s, . . . , t ∈ M .Let us say that a′ and b′ are linked if they are paired up in this manner. Alinked pair (a′, b′) ∈ A′ × B′ will be 
alled hostile if (a′, b′) belongs to I ′ × I ′or J ′ × J ′, and friendly if (a′, b′) belongs to I ′ × J ′ or J ′ × I ′. To ea
h term inthe sum (A.18) there will thus 
orrespond p su
h linked pairs, and what we willshow is that the terms 
ontaining at least one hostile pair will 
an
el out, andthat the remaining terms (with all friendly pairs) will add up to the right-handside of (A.15).Next we de�ne what we mean by �ipping a linked pair (a′, b′). This meansthat, in the produ
t Xa1bσ(1)

Xa2bσ(2)
. . . Xakbσ(k)

, those fa
tors Xa′rXrs . . .Xtb′that link a′ to b′ are repla
ed by Xb′t . . .XsrXra′ , with all the indi
es in reversedorder. (When the linking involves just a single fa
tor Xa′b′ , �ipping meansrepla
ing it by Xb′a′ .) Sin
e the matrix X is symmetri
, this does not 
hangethe value of the produ
t, but it 
hanges the way it is indexed. The number a′whi
h used to be in the �rst slot (in Xa′r) is now in the se
ond slot (in Xra′),and vi
e versa for b′. The 
onne
ting indi
es r, s, . . . , t ∈ M do not 
ontributeto any 
hange in the indexing sets, sin
e, for example, the r in Xa′r is movedfrom the se
ond slot to the �rst, while the other r in Xrs is moved from the �rstto the se
ond. The new produ
t (the result of the �ipping) is therefore indexedby the sets (
A \ {a′}

)
∪ {b′} =: Ã = {ã1 < · · · < ãk}and (

B \ {b′}
)
∪ {a′} =: B̃ = {b̃1 < · · · < b̃k}respe
tively, and after reordering the fa
tors so that the �rst indi
es 
ome inas
ending order, it 
an be written

X
ea1

ebeσ(1)
X

ea2
ebeσ(2)

. . . X
eak

ebeσ(k)for some uniquely determined permutation σ̃ ∈ Sk. Flipping a given pair thustakes ((A,B), σ) to ((Ã, B̃), σ̃). This operation is invertible, with inverse givenby simply �ipping the same pair again, now viewed as a pair (b′, a′) ∈ ((Ã)′, (B̃)′)linked via the indi
es t, . . . , s, r. Be
ause of the symmetry of the matrix X , theterm in (A.18) 
orresponding to ((Ã, B̃), σ̃) is equal to the term 
orresponding30



to ((A,B), σ), ex
ept possibly for a di�eren
e in sign, depending on whether thesigns of σ and σ̃ 
ome out equal or not:
(−1)eσX

ea1
ebeσ(1)

X
ea2

ebeσ(2)
. . . X

eak
ebeσ(k)

= ±(−1)σXa1bσ(1)
Xa2bσ(2)

. . .Xakbσ(k)
.We will show below that the permutation σ̃ has the same sign as σ when afriendly pair is �ipped, and the opposite sign when a hostile pair is �ipped.Taking this for granted for the moment, divide the set Q×Sk into the two sets

(Q×Sk)hostile, 
onsisting of those ((A,B), σ) for whi
h at least one linked pairis hostile, and (Q × Sk)friendly, 
onsisting of those ((A,B), σ) for whi
h all plinked pairs are friendly. The mapping ��ip that out of all hostile pairs (a′, b′)for whi
h min(a′, b′) is smallest� is an involution on (Q×Sk)hostile that pairs upea
h term with a partner term that is equal ex
ept for having the opposite sign(sin
e it is a hostile pair that is �ipped). Consequently these terms 
an
el out,and the 
ontribution from (Q × Sk)hostile to (A.18) is zero. The sum thereforeredu
es to
∑

((A,B),σ)∈(Q×Sk)friendly

(−1)σXa1bσ(1)
Xa2bσ(2)

. . . Xakbσ(k)
. (A.19)Now equip the set (Q×Sk)friendly with an equivalen
e relation; ((Ã, B̃), σ̃) and

((A,B), σ) are equivalent if one 
an go from one to another by �ipping friendlypairs. Ea
h equivalen
e 
lass 
ontains 2p elements, sin
e ea
h of the p friendlypairs 
an belong to either I ′ × J ′ or J ′ × I ′. Moreover, the terms 
orrespondingto the elements in one equivalen
e 
lass are all equal (in
luding the sign, sin
eonly friendly pairs are �ipped), and ea
h 
lass has a �
anoni
al� representativewith all linked pairs belonging to I ′ × J ′,
(−1)σXi1jσ(1)

Xi2jσ(2)
. . . Xikjσ(k)

,where the permutation σ is uniquely determined by the equivalen
e 
lass (andvi
e versa). Thus (A.19) be
omes
2p
∑

σ∈Sk

(−1)σXi1jσ(1)
Xi2jσ(2)

. . . Xikjσ(k)
= 2p detXIJ , (A.20)whi
h is what we wanted to prove.To �nish the proof, it now remains to demonstrate the rule that σ̃ has thesame (opposite) sign as σ when a friendly (hostile) pair is �ipped. To thisend, we will represent ((A,B), σ) with a bipartite graph, with the numbers in

U = A ∪ B (in in
reasing order) as nodes both on the left and on the right,and the left nodes ai ∈ A 
onne
ted by edges to the 
orresponding right nodes
bσ(i) ∈ B. The sign of σ will then be equal to (−1)c, where c is the 
rossingnumber of the graph. As an aid in explaining the ideas we will use the followingexample with U = [1, 8], where the nodes in M = A ∩ B are marked withdiamonds, and the nodes in A′ and B′ are marked with 
ir
les:31



1 12 23 34 45 56 67 78 8
A = {2, 3, 4, 5, 6, 8}

= {2, 4, 5, 8} ∪ {3, 6}
= M ∪A′

B = {1, 2, 4, 5, 7, 8}
= {2, 4, 5, 8} ∪ {1, 7}
= M ∪B′Clearly, A′ ∪ B′ = {3, 6} ∪ {1, 7} = {1, 3, 6, 7} = {i′1 < j′1 < i′2 < j′2}, so that

I ′ = {i′1, i′2} = {1, 6} and J ′ = {j′1, j′2} = {3, 7}. Consequently, I = M ∪ I ′ =
{1, 2, 4, 5, 6, 8} and J = M ∪ J ′ = {2, 3, 4, 5, 6, 7}. The 
hosen permutationis σ(123456) = 632415, where the notation means that σ(1) = 6, σ(2) = 3,et
.; for example, the latter equality 
omes from the se
ond smallest number
a2 in A being 
onne
ted to the third smallest number b3 in B. There are
9 
rossings, so σ is an odd permutation, and this graph therefore represents theterm −X28X34X42X55X61X87, appearing with a minus sign in the sum (A.18).The linked pairs (a′, b′) ∈ A′ × B′ are (6, 1) (dire
tly linked) and (3, 7) (linkedvia 4, 2, 8 ∈M). Both pairs are hostile, sin
e (6, 1) ∈ I ′×I ′ and (3, 7) ∈ J ′×J ′.We will illustrate in detail what happens when the pair (3, 7) is �ipped.The �ip is e�e
ted by repla
ing the fa
tors X34X42X28X87 by X78X82X24X43and sorting the resulting produ
t so that the �rst indi
es 
ome in as
end-ing order; this gives X24X43X55X61X78X82. Thus Ã = {2, 4, 5, 6, 7, 8}, B̃ =
{1, 2, 3, 4, 5, 8}, and σ̃(123456) = 435162 (an even permutation). In terms of thegraph, the nodes that are involved in the �ip are, on both sides, {2, 3, 4, 7, 8}(the two nodes in the pair being �ipped, plus the nodes linking them), and theedges involved are {34, 42, 28, 87}, whi
h get 
hanged into {43, 24, 82, 78}. Inother words, the �ip 
orresponds to this a
tive subgraph being mirror re�e
teda
ross the 
entral verti
al line. To understand how the pro
ess of re�e
tiona�e
ts the 
rossing number, it 
an be broken down into two steps, as follows.On the left, node 7 is uno

upied to begin with, so we 
an 
hange the edge
87 to 77. This frees node 8 on the left, so that we 
an 
hange the edge 28 to 88,whi
h frees node 2 on the left. (Think of this edge as a rubber band 
onne
tedat one end to node 8 on the right; we're dis
onne
ting its other end from node32



2 on the left and sliding it past all the other nodes down to node 8 on the left.Obviously the 
rossing number in
reases or de
reases by one every time we slidepast a node that has an edge atta
hed to it.) Continuing like this, we get theresult illustrated in Step 1 below; the edges 
hanged are 87 → 77, 28 → 88,
42 → 22, 34 → 44.1 12 23 34 45 56 67 78 8Intermediate stage (after Step 1)

1 12 23 34 45 56 67 78 8Result of the �ip (after Step 2)In Step 2, we work similarly on the right-hand side: node 3 is uno

upied tobegin with, so we 
an 
hange edge 44 to 43, and so on. The list of edge movesis 44 → 43, 22 → 24, 88 → 82, 77 → 78. (In the graph on the right we seethat the 
rossing number after the �ip is 8, verifying the 
laim that σ̃ is an evenpermutation.)We need to keep tra
k of the 
hanges in the 
rossing number 
aused bysliding a
tive edges past nodes that have edges atta
hed to them. This is mosteasily done by following the dotted lines in the �gures, and 
ounting whetherthe nodes that are marked (with 
ir
les and diamonds) are passed an even or anodd number of times. However, sin
e the a
tive subgraph simply gets re�e
ted,the 
rossings among its edges will be the same before and after the �ip, so weneed in fa
t only 
ount how many times we pass a passive marked node. (Thepassive nodes in the example are {1, 5, 6}.)If a passive node belonging to M is passed in Step 1, then it is passed thesame number of times in Step 2 as well, sin
e the nodes in M are marked bothon the left and on the right. Therefore they do not a�e
t the parity of the
rossing number either, and we 
an ignore the nodes marked with diamonds,and only look at the passive 
ir
led nodes (all the nodes in A′ and B′ ex
eptfor the two a
tive nodes that are being �ipped).Passive nodes belonging to A′ are 
ounted only in Step 1 and passive nodesin B′ only in Step 2; they get 
ounted an odd number of times if they lie betweenthe two �ipped nodes (like node 6 in the example, 
ounted on
e), and an even33



number of times otherwise (like node 1, never 
ounted). Consequently, whatdetermines whether the parity of the 
rossing number 
hanges is the numberof nodes between the �ipped ones that belong to A′ ∪ B′ = I ′ ∪ J ′. And for afriendly pair, this number is even, while for a hostile pair, it is odd.This shows that the 
rossing number keeps its parity (so that (−1)σ = (−1)eσ)when a friendly pair is �ipped, and the opposite when a hostile pair is �ipped.The proof is �nally 
omplete.B Veri�
ation of the Lax pair for peakonsThe purpose of this appendix is to 
arefully verify that the Lax pair formulation(4.1)�(4.2) of the Novikov equation really is valid for the 
lass of distributionalsolutions that we are 
onsidering. This is not at all obvious, as should be 
learfrom the 
omputations below.B.1 PreliminariesWe will need to be more pre
ise regarding the notation here than in the maintext. A word of warning right away: our notation for derivatives here will di�erfrom that used in the rest of the paper (where subs
ripts should be interpretedas distributional derivatives).To begin with, given n smooth fun
tions x = xk(t) su
h that x1(t) < · · · <
xn(t), let x0(t) = −∞ and xn+1(t) = +∞, and let Ωk (for k = 0, . . . , n) denotethe region xk(t) < x < xk+1(t) in the (x, t) plane.Our 
omputations will deal with a 
lass that we denote PC∞, 
onsisting ofpie
ewise smooth fun
tions f(x, t) su
h that the restri
tion of f to ea
h region
Ωk is (the restri
tion to Ωk of) a smooth fun
tion f (k)(x, t) de�ned on an openneighbourhood of Ωk (so that f (k) and its partial derivatives make sense onthe 
urves x = xk(t)). For ea
h �xed t, the fun
tion f(·, t) de�nes a regulardistribution Tf in the 
lass D′(R), depending parametri
ally on t (and written
Tf(t) where needed). After having made 
lear exa
tly what is meant, we willmostly be less stri
t, and write f instead of Tf for simpli
ity.The values of f on the 
urves x = xk(t) need not be de�ned; the fun
tion de-�nes the same distribution Tf no matter what values are assigned to f(xk(t), t).But our assumptions imply that the left and right limits of f exist, and (sup-pressing the time dependen
e) they will be denoted by f(x−k ) := f (k−1)(xk) and
f(x+

k ) := f (k)(xk), respe
tively. The jump and the average of f at xk will bedenoted by
[
f(xk)

]
:= f(x+

k ) − f(x−k ) and 〈
f(xk)

〉
:=

f(x+
k ) + f(x−k )

2
, (B.1)respe
tively. They satisfy the produ
t rules

[
fg
]

=
〈
f
〉[
g
]
+
[
f
]〈
g
〉
,

〈
fg
〉

=
〈
f
〉〈
g
〉

+ 1
4

[
f
][
g
]
. (B.2)34



We will use subs
ripts to denote partial derivatives in the 
lassi
al sense, sothat (for example) fx denotes the pie
ewise smooth fun
tion whose restri
tionto Ωk is given by ∂f (k)/∂x (and whose values at x = xk(t) are in generalunde�ned). On the other hand, Dx will denote the distributional derivative,whi
h in addition pi
ks up Dira
 delta 
ontributions from jump dis
ontinuitiesof f at the 
urves x = xk(t). That is, DxTf = Tfx
+
∑n

k=1

[
f(xk)

]
δxk

, or, inless stri
t notation,
Dxf = fx +

n∑

k=1

[
f(xk)

]
δxk

. (B.3)The time derivative Dt is de�ned as a limit in D′(R),
DtTf (t) = lim

h→0

Tf (t+ h) − Tf (t)

h
, (B.4)and it 
ommutes with Dx by the 
ontinuity of Dx on D′(R). For our 
lass PC∞of pie
ewise smooth fun
tions, we have DtTf = Tft

−∑n
k=1 ẋk

[
f(xk)

]
δxk

, orsimply
Dtf = ft −

n∑

k=1

ẋk

[
f(xk)

]
δxk

, (B.5)where ẋk = dxk/dt. We also note that d
dtf(x±k (t), t) = fx(x±k (t), t) ẋk(t) +

ft(x
±
k (t), t), whi
h gives

d
dt

[
f(xk)

]
=
[
fx(xk)

]
ẋk +

[
ft(xk)

]
,

d
dt

〈
f(xk)

〉
=
〈
fx(xk)

〉
ẋk +

〈
ft(xk)

〉
.

(B.6)B.2 The problem of multipli
ationIf the fun
tion f is 
ontinuous at x = xk, then the Dira
 delta at xk 
an bemultiplied by the 
orresponding distribution Tf a

ording to the well-knownformula
Tf δx = f(xk) δxk

. (B.7)But below we will have to 
onsider this produ
t for fun
tions in the 
lass PC∞des
ribed above, where the value f(xk) is not de�ned. It will turn out that inthe present 
ontext, the right thing to do is to use the average value of f atthe jump, and thus de�ne Tf δx :=
〈
f(xk)

〉
δxk

. However, sin
e we want thisto be a 
onsequen
e of the analysis, rather than an a priori assumption, wewill, to begin with, just assign a hypotheti
al value f(xk) and use that value in(B.7). This assignment is justi�ed in the present 
ontext, as we will see below.However, we are not 
laiming that this addresses any of the deeper issues; forexample, this assignment does not respe
t the produ
t stru
ture of pie
ewise
ontinuous fun
tions. See [32, Ch. 5℄ for more information about the stru
turalproblems asso
iated with any attempt to de�ne a produ
t of distributions in
D′(R). 35



B.3 Distributional Lax pairPeakon solutions
u(x, t) =

n∑

k=1

mk(t) e−|x−xk(t)| (B.8)belong to the pie
ewise smooth 
lass PC∞. They are 
ontinuous and satisfy
Dxu = ux =

n∑

k=1

mk sgn(xk − x) e−|x−xk|,

D2
xu = Dx(ux) = uxx +

n∑

k=1

[
ux(xk)

]
δxk

= u+

n∑

k=1

(−2mk) δxk
,whi
h implies

m := u−D2
xu = 2

n∑

k=1

mk δxk
. (B.9)The Lax pair (4.1)�(4.2) will involve the fun
tions u and Dxu, as well as thepurely singular distribution m. We will take ψ1, ψ2, ψ3 to be fun
tions in PC∞,and separate the regular (fun
tion) part from the singular (Dira
 delta) part.The formulation obtained in this way reads

DxΨ = L̂Ψ, DtΨ = ÂΨ, (B.10)where Ψ = (ψ1, ψ2, ψ3)
t,

L̂ = L+ 2z

(
n∑

k=1

mk δxk

)
N, L =




0 0 1
0 0 0
1 0 0


 , N =




0 1 0
0 0 1
0 0 0


 , (B.11)and̂

A = A−2z

(
n∑

k=1

mk u(xk)2δxk

)
N, A =




−uux ux/z u2

x

u/z −1/z2 −ux/z
−u2 u/z uux



 . (B.12)Note that (B.10) involves multiplying NΨ = (ψ2, ψ3, 0) by δxk
, and some value

ψ2(xk) must be assigned in order for this to be well-de�ned (we will soon see that
ψ3 must be 
ontinuous and therefore it is only ψ2 that presents any problems).Theorem B.1. Provided that the produ
t mψ2 is de�ned using the averagevalue ψ2(xk) :=

〈
ψ2(xk)

〉 at the jumps,
mψ2 := 2

n∑

k=1

mk

〈
ψ2(xk)

〉
δxk

, (B.13)the following statement holds. With u and m given by (B.8)�(B.9), and with Ψ ∈
PC∞, the Lax pair (B.10)�(B.12) satis�es the 
ompatibility 
ondition DtDxΨ =
DxDtΨ if and only if the peakon ODEs (3.4) are satis�ed: ẋk = u(xk)2 and
ṁk = −mk u(xk)

〈
ux(xk)

〉. 36



Proof. For simpli
ity, we will write just ∑ instead of ∑n
k=1. Identifying 
o-e�
ients of δxk

in the two Lax equations (B.10) immediately gives [Ψ(xk)
]

=

2zmkNΨ(xk) and −ẋk

[
Ψ(xk)

]
= −2zmku(xk)2NΨ(xk), respe
tively. Thus,

[ψ3(xk)] = 0 (in other words, ψ3 is 
ontinuous) and ẋk = u(xk)2. Next we
ompute the derivatives of (B.10):
Dt(DxΨ) = Dt(LΨ + 2z

(∑
mk δxk

)
NΨ)

= L(ÂΨ) + 2zN
∑

d
dt

(
mkΨ(xk)

)
δxk

− 2zN
∑

mkΨ(xk)ẋkδ
′
xk
,

Dx(DtΨ) = Dx(AΨ − 2z
(∑

mk u(xk)2δxk

)
NΨ)

= (AΨ)x +
∑[

AΨ(xk)
]
δxk

− 2zN
∑

mkΨ(xk)u(xk)2δ′xk
.The regular part of (B.10) gives Ψx = LΨ, so that (AΨ)x = AxΨ + ALΨ,and it is easily veri�ed that LA = Ax + AL holds identi
ally (sin
e uxx = u).This implies that the regular parts of the two expressions above are equal,and the terms involving δ′xk

are also equal sin
e ẋk = u(xk)2. Therefore the
ompatibility 
ondition Dt(DxΨ) = Dx(DtΨ) redu
es to an equality betweenthe 
oe�
ients of δxk
,

− 2z mku(xk)2LNΨ(xk) + 2zN d
dt

(
mkΨ(xk)

)
=
[
AΨ(xk)

]
. (B.14)Using the produ
t rule (B.2), the expression for [Ψ(xk)

] above, and [ux(xk)
]

=
−2mk, we �nd that the right-hand side of (B.14) equals
〈
A(xk)

〉
2z mkNΨ(xk) +

[
A(xk)

]〈
Ψ(xk)

〉
=

2zmk

(
0 −u

〈
ux

〉 〈
ux

〉
/z

0 u/z −1/z2

0 −u2 u/z

)

xk

Ψ(xk) + 2mk

(
u −1/z −2

〈
ux

〉

0 0 1/z
0 0 −u

)

xk

〈
Ψ(xk)

〉
. (B.15)The (3,2) entry −u2 in the matrix in the �rst term will 
an
el against the whole�rst term on the left-hand side of (B.14), sin
e the only nonzero entry of LN is

(LN)32 = 1. Thus (B.14) is equivalent to
ṁk NΨ(xk) +mk N

d
dtΨ(xk) =

mk

(
0 −u

〈
ux

〉 〈
ux

〉
/z

0 u/z −1/z2

0 0 u/z

)

xk

Ψ(xk) +mk

(
u/z −1/z2 −2

〈
ux

〉
/z

0 0 1/z2

0 0 −u/z

)

xk

〈
Ψ(xk)

〉
. (B.16)To make it 
lear how the assumption (B.13) enters the proof, we want to avoidassigning a value to ψ2(xk) for as long as possible. Therefore we 
an't 
ompute

d
dtΨ(xk) quite yet. But 〈Ψ(xk)

〉 is well-de�ned, and its time derivative 
an be
37




omputed using Ψx = LΨ and Ψt = AΨ in (B.6):
N d

dt

〈
Ψ(xk)

〉
= N

〈
LΨ(xk)

〉
ẋk +N

〈
AΨ(xk)

〉

= N
(
Lu(xk)2 +

〈
A(xk)

〉)〈
Ψ(xk)

〉
+N 1

4

[
A(xk)

][
Ψ(xk)

]

=

(
u/z −1/z2 −

〈
ux

〉
/z

0 u/z u
〈

ux

〉
0 0 0

)

xk

〈
Ψ(xk)

〉
+ 1

4 N
[
A(xk)

]
N

︸ ︷︷ ︸
=0

2zmkΨ(xk).A bit of manipulation using this result, as well as 〈ψ3

〉
(xk) = ψ3(xk), showsthat the 
ompatibility 
ondition (B.16) 
an be written as

mkN
d
dt

(
Ψ(xk) −

〈
Ψ(xk)

〉)
+
(
ṁk +mku(xk)

〈
ux(xk)

〉)
NΨ(x)

= mk

( 0 0 0
0 u/z 0
0 0 0

)

xk

(
Ψ(xk) −

〈
Ψ(xk)

〉) (B.17)The third row is zero, and the �rst two rows say that
(
ṁk +mku(xk)

〈
ux(xk)

〉)
ψ2(xk) = −mk

d
dt

(
ψ2(xk) −

〈
ψ2(xk)

〉)
,

(
ṁk +mku(xk)

〈
ux(xk)

〉)
ψ3(xk) = 1

zmk u(xk)
(
ψ2(xk) −

〈
ψ2(xk)

〉)
.At this point we 
hoose to assign ψ2(xk) :=

〈
ψ2

〉
(xk), and then it is 
lear that(B.17) is satis�ed if and only if

ṁk = −mku(xk)
〈
ux(xk)

〉
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