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Abstract

Recently Vladimir Novikov found a new integrable analogue of the
Camassa—Holm equation, admitting peaked soliton (peakon) solutions,
which has nonlinear terms that are cubic, rather than quadratic. In this
paper, the explicit formulas for multipeakon solutions of Novikov’s cubi-
cally nonlinear equation are calculated, using the matrix Lax pair found
by Hone and Wang. By a transformation of Liouville type, the associated
spectral problem is related to a cubic string equation, which is dual to
the cubic string that was previously found in the work of Lundmark and
Szmigielski on the multipeakons of the Degasperis—Procesi equation.

1 Introduction

Integrable PDEs with nonsmooth solutions have attracted much attention in
recent years, since the discovery of the Camassa—Holm shallow water wave
equation and its peak-shaped soliton solutions called peakons [5]. Our pur-
pose in this paper is to explicitly compute the multipeakon solutions of a new
integrable PDE, equation (B.)) below, which is of the Camassa—Holm form
Ut — Uggt = F(U, Uy, Ugy,...), but has cubically nonlinear terms instead of
quadratic. This equation was found by Vladimir Novikov, and published in a
recent paper by Hone and Wang [19].

We will apply inverse spectral methods. The spatial equation in the Lax
pair for Novikov’s equation turns out to be equivalent to what we call the dual
cubic string, a spectral problem closely related to the cubic string that was
used for finding the multipeakon solutions to the Degasperis—Procesi equation
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[27, 28, 23]. Once this relation is established, the Novikov peakon solution can
be derived in a straightforward way using the results obtained in [23]. The
constants of motion have a more complicated structure than in the Camassa—
Holm and Degasperis—Procesi cases, and the study of this gives as an interesting
by-product a combinatorial identity concerning the sum of all minors in a sym-
metric matrix, which we have dubbed the Canada Day Theorem (Theorem [4.1]
proved in Appendix [A]).

The peakon problem for Novikov’s equation presents in addition one impor-
tant challenge. Unlike its Camassa—Holm or Degasperis—Procesi counterparts,
the Lax pair for the Novikov equation is originally ill-defined in the peakon sec-
tor. The problem is caused by terms which involve multiplication of a singular
measure by a discontinuous function. We prove in Appendix [Bl that there ex-
ists a regularization of the Lax pair which preserves integrability of the peakon
sector, thus allowing us to use spectral and inverse spectral methods to obtain
the multipeakon solutions to the Novikov equation. This regularization problem
has a subtle but nevertheless real impact on the formulas. In general, the use of
Lax pairs to construct distributional solutions to nonlinear equations which are
Lax integrable in the smooth sector but may not be so in the whole non-smooth
sector is relatively uncharted territory, and the case of Novikov’s equation may
provide some relevant insight in this regard.

2 Background
The main example of a PDE admitting peaked solitons is the family

Ut — Uggt + (b4 Dutsy = buglyy + Ulggs, (2.1)
often written as

mg + mgu + bmu, = 0, m=1u— Ugy, (2.2)

which was introduced by Degasperis, Holm and Hone [10], and is Hamiltonian
for all values of b [17]. It includes the Camassa—Holm equation as the case b = 2,
and another integrable PDE called the Degasperis—Procesi equation [I1], [10] as
the case b = 3. These are the only values of b for which the equation is integrable,
according to a variety of integrability tests [11], 30} 18 20]. (However, we note
that the case b = 0 is excluded from the aforementioned integrability tests;
yet this case provides a regularization of the inviscid Burgers equation that is
Hamiltonian and has classical solutions globally in time [4].) Multipeakons are
weak solutions of the form

n

u(w,t) =Y mi(t)e Ol (2.3)

=1

formed through superposition of n peakons (peaked solitons of the shape e~ 1®/).
This ansatz satisfies the PDE (2.2)) if and only if the positions (z1,...,z,) and



momenta (myq, ..., my) of the peakons obey the following system of 2n ODEs:

n n
T = Z m; e 1oe il g = (b—1) my Z m; sgn(zy —x;) e~ 1Rl (2.4)
i=1 =1
Here, sgnz denotes the signum function, which is +1, —1 or 0 depending on
whether z is positive, negative or zero. In shorthand notation, with {f(z))
denoting the average of the left and right limits,

(@) = 5(Fa) + F), (2)

the ODEs can be written as

ik = ’U,(:Ek), mk = —(b - 1) my <um($k)> (26)
In the Camassa—Holm case b = 2, this is a canonical Hamiltonian system gen-
erated by h = %E;kzl m; mg e 1#i—=xl Explicit formulas for the n-peakon
solution of the Camassa—Holm equation were derived by Beals, Sattinger and
Szmigielski [I, 2] using inverse spectral methods, and the same thing for the
Degasperis—Procesi equation was accomplished by Lundmark and Szmigielski
27, 28].

It requires some care to specify the exact sense in which the peakon solu-
tions satisfy the PDE. The formulation (Z2)) suffers from the problem that the
product mu, is ill-defined in the peakon case, since the quantity m = u — uy, =
2", m; 0y, is a discrete measure, and it is multiplied by a function u, which
has jump discontinuities exactly at the points x; where the Dirac deltas in the
measure m are situated. To avoid this problem, one can instead rewrite (2Z.I)) as

(1=0D)ue+ (b+1-02)0, (3u?) + 0. (32 u2) =0. (2.7)
Then a function u(x,t) is said to be a solution if
e u(-,t) € WL2(R) for each fixed ¢, which means that u(-,#)? and (-, )2

loc
are locally integrable functions, and therefore define distributions of class
D'(R) (i.e., continuous linear functionals acting on compactly supported

C* test functions on the real line R),

e the time derivative wu;(+,t), defined as the limit of a difference quotient,
exists as a distribution in D’'(R) for all ¢,

e equation (27), with 0, taken to mean the usual distributional derivative,
is satisfied for all ¢ in the sense of distributions in D’'(R).

It is worth mentioning that functions in the space VVI})S (R) are continuous, by

the Sobolev embedding theorem. However, the term 2 is absent from equation
2 if b = 3, so in that particular case one requires only that u(-,t) € L2 (R);
this means that the Degasperis—Procesi can admit solutions u that are not
continuous [6), [7] 26].

It is often appropriate to rewrite equation (2.7) as a nonlocal evolution equa-
tion for u by inverting the operator (1 — 92), as was done in [8, 9] for the
Camassa—Holm equation. However, the distributional formulation used here is

very convenient when working with peakon solution.



3 Novikov’s equation
The new integrable equation found by Vladimir Novikov is
U — Uggr + AUy = SUlglsy + U Upes, (3.1)
which can be written as
me + (mgu + 3mug ) u =0, m=1u— Ugg, (3.2)
to highlight the similarity in form to the Degasperis—Procesi equation, or as
(1=02)ue+(4—02) 0 (3u”) + 0, (Buul) + $ud =0 (3.3)

in order to rigorously define weak solutions as above, except that here one re-
quires that u(-,t) € WL2(R) for all ¢, so that u® and u? are locally integrable
and therefore define distributions in D’(R); it then follows from Holder’s in-
equality with the conjugate indices 3 and 3/2 that uu?2 is locally integrable as
well, and ([B.3) can thus be interpreted as a distributional equation. Since func-
tions in Wli’Cp(R) with p > 1 are automatically continuous, Novikov’s equation
is similar to the Camassa—Holm equation in that it only admits continuous dis-
tributional solutions (as opposed to the Degasperis—Procesi equation, which has
discontinuous solutions as well).

Like the equations in the b-family (2.1]), Novikov’s equation admits (in the
weak sense just defined) multipeakon solutions of the form (23]), but in this
case the ODEs for the positions and momenta are

" 2

. 2 —|zy—x;

Tr = u(zg)” = g m; e~ 1Rl ,
i=1

Ty = —my u(zy) (U (x)) (3.4)
= my (Z m; 6_“_“') ij sgn(xy — x;) eIz
i=1 j=1

These equations were stated in [I9], where it was also shown that they constitute
a Hamiltonian system @, = {xg,h}, mi = {my, h}, generated by the same
Hamiltonian h = % szzl mimy e~ 1#i=7rl a5 the Camassa~Holm peakons, but
with respect to a different, non-canonical, Poisson structure given by

{z;,zr} =sgn(z; — xx) (1 — Efk),
{l'j,mk} = mkE?ku (35)

{m;, my} = sgn(z; — ) mjmkE?k, where Ejj, = e~ 1%kl

As will be shown below, (B.4) is a Liouville integrable system (Theorem [£.7); in
fact, it is even explicitly solvable in terms of elementary functions (Theorem @.T]).



4 Forward spectral problem

In order to integrate the Novikov peakon ODEs, we are going to make use of
the matrix Lax pair found by Hone and Wang [19], specified by the following
matrix linear system:

) 1 0 zm 1 (1
% 52 = g) 8 Zg’b 52 N (41)
3 3
o U —uly Ugz ' —uimz ui U
g o | = [ wz™?! —z72 —uzz"t —uPmz o | . (4.2)
3 —u? uz™t Ul 3

(Compared with reference [19] we have added a constant multiple of the identity
to the matrix on the right hand side of ([£2), and used z in place of \.) In
the peakon case, when u = Y I | m;e”1*=%il the quantity m = u — ugy =
22?:1 m; 0y, is a discrete measure. We assume that z; < 22 < -+ < 2,
(which at least remains true for a while if it is true for ¢ = 0). These points
divide the x axis into n 4+ 1 intervals which we number from 0 to n, so that
the kth interval runs from zj to z;41, with the convention that g = —oco and
Zn41 = +00. Since m vanishes between the point masses, equation (A1) reduces
to 0;¥1 = 3, Ox¥2 = 0 and 0,13 = 91 in each interval, so that in the kth
interval we have

Y Ape® +22Cre™®
Py | = 2z By, for z, < x < g1, (4.3)
3 Ape* —22Cre™™®

where the factors containing z have been inserted for later convenience. These
piecewise solutions are then glued together at the points xy. The proper inter-
pretation of (A1) at these points turns out to be that s must be continuous,
while 11 and 1, are allowed to have jump discontinuities; moreover, in the
term zmabz, one should take 12(2)d,, to mean (Y2(zx))dy,. This point is fully
explained in Appendix [Bl This leads to

Ay, 1-— )\mi —2 mpe Tk —)\2 m% e~ 2%k Ap_1
B | = my, er 1 Amy e Tk Bi_1
C m2 ek 2my, ek 14+ Im? Ch_
k k k k k—1 (4'4)
Ar_1
=: 5\ | Be=1 ], where \ = —22.
Cr—1

We impose the boundary condition (Ag, By, Co) = (1,0,0), which is consistent
with the time evolution given by [@2) for z < z1. Then all (A, By, Ck) are
determined by successive application of the jump matrices Si(\) as in ([@4).
For © > x,, equation (@.2) implies that (A, B,C) := (A, By, Cy,) evolves as

i-o B:B—;\4M+7 o 2M+(B>\—AM+)7

(4.5)



where M, = Z]kvzl my e . Thus A is invariant. It is the (1,1) entry of the
total jump matrix

SO = Su(N) ... S2(N)S1(N), (4.6)

and therefore it is a polynomial in A of degree n,

AN = zn:Hk(—/\)k = <1 - %) (1 - A—An> , (4.7)

where Hy = 1 (since S(0) = I, the identity matrix), and where the other coeffi-
cients Hy, ..., H, are Poisson commuting constants of motion (see Theorems[d.2]
and .7 below).

The first linear equation (1)), together with the boundary conditions ex-
pressed by the requirements that By = Cy = 0 and A, ()\) = 0, is a spectral
problem which has the zeros A1,..., A, of A(\) as its eigenvalues. (To be pre-
cise, one should perhaps say that it is the corresponding values of z = v/ —X
that are the eigenvalues, but we will soon show that the )\, are positive, at least
in the pure peakon case, and therefore more convenient to work with than the
purely imaginary values of z; see ([dI9) below.)

Elimination of ¢; from @I)) gives 0,2 = zmabs and (92 — 1) 3 = zmabs,
and the boundary conditions above imply that (¢2,13) — (0,0) as ¢ — —o0
and 13 — 0 as  — 400. Using the Green’s function —e~1?!/2 for the operator
02 — 1 with vanishing boundary conditions, we can rephrase the problem as a
system of integral equations,

vale) = = [ " ay) dm(y),
— (4.8)

vale) = =z [ e () dmy)

— 00

with integrals taken with respect to the discrete measure m = 231" | m; 0y, .
Here, there is again the problem of Dirac deltas multiplying a function 1, with
jump discontinuities, and we take v2(z)d,, to mean the average (Vo (zy))dg,,
in full agreement with the earlier definition of the singular term appearing in
the spectral problem. Then

(Ya(z)) = 2 <221/13($k)mk +1/)3(l‘j)mj> ,

k=1

Y3(zj) = —2 Z e 1%k 4y () ) g,
k=1

which can be written in block matrix notation as

(<$§>) —F (—Jgp T0P> (ﬁ?) ; (4.10)



where

U3 = (Y3(x ..71/)3(:12n))t7
(Vy) = (<w2 Dy (),
P = diag(mq,...,my), (4.11)
E = (Ejk)j where Ejj, = e~1%i=kl,
T=( ]k)g k=1s where Tj, = 1 +sgn(j — k).

(In words, T is the lower triangular n x n matrix that has 1 on the main diagonal
and 2 everywhere below it.) In terms of (¥5) alone, we have

(Uy) = —2*TPEP(¥,), (4.12)

so the eigenvalues are given by 0 = det(I + 2°TPEP) = det(I — N\TPEP),
where of course I denotes the n x n identity matrix. Since the eigenvalues are
the zeros of A(A), and since A(0) = 1, it follows that

A()) = det(I — ATPEP). (4.13)

This gives us a fairly concrete representation of the constants of motion Hy,
which by definition are the coefficients of A(\) (see (1)), and it can be made
even more explicit thanks to the curious combinatorial result in Theorem [411
We remind the reader that a k x k minor of an n x n matrix X is, by definition,
the determinant of a submatrix X;; = (Xj;)icr, 7e7 whose rows and columns are
selected among those of X by two index sets I, J C {1,...,n} with k elements
each, and a principal minor is one for which I = J. Compare the result of
the theorem with the well-known fact that the coefficient of s* in det( + sX)
equals the sum of all principal k x k minors of X, regardless of whether X is
symmetric or not.

Theorem 4.1 (“The Canada Day Theorem”). Let the matriz T be defined as
in [@II) above. Then, for any symmetric n X n matriz X, the coefficient of s*
in the polynomial det(I + sTX) equals the sum of all k x k minors (principal
and non-principal) of X.

Proof. The proof is presented in Appendix [Al It relies on the Cauchy-Binet
formula, Lindstrom’s Lemma, and some rather intricate dependencies among
the minors of X due to the symmetry of the matrix. O

Theorem [4.1] is named after the date when we started trying to prove it:
July 1, 2008, Canada’s national day. (It turned out that the proof was more
difficult than we expected, so we didn’t finish it until a few days later.) Summa-
rizing the results so far, we now have the following description of the constants
of motion:

Theorem 4.2. The Novikov peakon ODEs [B4) admit n constants of motion
Hq, ..., H,, where Hy equals the sum of all k x k minors (principal and non-
principal) of the n x n symmetric matriv PEP = (mjmyEj)} . (See @II)
for notation.)



Proof. This follows at once from [@7), (.I3), and Theorem [L.1] O

Example 4.3. The sum of all 1 x 1 minors of PEP is of course just the sum
of all entries,

n n
H, = Z mimpEj, = Z m;my e~ 1wl (4.14)
G k=1 jk=1

and the Hamiltonian of the peakon ODEs B4) is h = $H;. Higher order
minors of PEP are easily computed using Lindstrom’s Lemma, as explained in
Section [A.3] in the appendix. In particular, the constant of motion of highest
degree in the my, is

n—1 n
H, = det(PEP) = [ (1 - E2,,,) [] m% (4.15)
Jj=1 j=1

Example 4.4. Written out in full, the constants of motion in the case n = 3
are

H, = m% =+ m% =+ mg + 2mimaoFE1o + 2mimsE13 + 2momsFog,
Hy = (1= Efy) mimi + (1 = Efy)mim3 + (1 — E33) m3mj
+ 2(Fa3 — E12E13) mi ma mg + 2(E12 — E13E23) my mam3,

Hz=(1- E%z)(l - E223) m% m% mg.

(4.16)

From now on we mainly restrict ourselves to the pure peakon case when
my, > 0 for all k£ (no antipeakons). Our first reason for this is that we can then
use the positivity of H; and H,, to show global existence of peakon solutions.

Theorem 4.5. Let
P={x1 < - <z, all mp >0} (4.17)

be the phase space for the Novikov peakon system [B.4) in the pure peakon case.
If the initial data are in P, then the solution (x(t),m(t)) exists for all t € R,
and remains in P.

Proof. Local existence in P is autormatic in view of the smoothness of the ODEs
there. By (@I4) and (@I3), both H; and H,, are strictly positive on P. Since
m% < Hjy, all my remain bounded from above. The positivity of H,, ensures
that the my are bounded away from zero, and that the positions remain ordered.
The velocities iy are all bounded by (Y mg)?, hence 0 < @, < C for some
constant C, and the positions xy(¢) are therefore finite for all ¢ € R. Since
neither xjx nor my can blow up in finite time, the solution exists globally in
time. o

Remark 4.6. The peakon ODEs ([B.4)) are invariant under the transformation
(mi,...,myp) — (—=mq,...,—my,), so the analogous result holds also when all
my are negative.



Theorem 4.7. The constants of motion Hi, ..., Hy, of Theorem [{.3 are func-
tionally independent and commute with respect to the Poisson bracket [B.3), so
the Novikov peakon system (B4) is Liouville integrable on the phase space P.

Proof. To prove functional independence, one should check that J := dH; A
dHs N ... AN dH, does not vanish on any open set in P. Since J is rational in
the variables {mg, e™* }}_,, it vanishes identically if it vanishes on an open set,
so it is sufficient to show that J is not identically zero. To see this, note that

Hk :ek(mf,...,mi)—l—O(qu), (418)

where e denotes the kth elementary symmetric function in n variables, and
O(Epg) denotes terms involving exponentials of the positions z;. It is well
known that the first n elementary symmetric functions are independent (they
provide a basis for symmetric functions of n variables [29]), and therefore the
leading part of J (neglecting the O(E,,) terms) does not vanish. Since the
O(E,,) terms can be made arbitrarily small by taking the xj far apart, we see
that there is a region in P where J does not vanish, and we are done.

To prove that the quantities Hy Poisson commute with respect to the bracket
B3), it is convenient to adapt some arguments of Moser that he applied to the
scattering of particles in the Toda lattice and the rational Calogero-Moser sys-
tem [3I]. The Poisson bracket of two constants of motion is itself a constant of
motion, so {H;, Hy} is independent of time. Consider now this bracket at a fixed
point (x%, m°) := (29, 23,...,20, my m3,...mY) € P which we consider as an
initial condition for the peakon flow (x(¢), m(¢)), which exists globally in time
by Theorem .5l Theorem [0.4] which will be proved later without using what we
are proving here, shows that the peakons scatter as t — —oo; more precisely, m3
tends to 1/Ag, while the z; move apart, so that the terms O(E,) tend to zero.
(It should also be possible to prove these scattering properties directly from
the peakon ODEs, along the lines of what was done for the Degasperis—Procesi
equation in [28, Theorem 2.4], but we have not done that.) Thus, from [@.I8),
{va Hk}(xov mO) = {va Hk}(x(t)v m(t)) = limt*—OO{va Hk}(x(t)v m(t)) =
lim;—,_oo{e;,ex}(x(¢),m(t)). Now the Poisson brackets of these symmetric
functions are given by linear combinations of the Poisson brackets {m;,my}
with coefficients dependent only on the amplitudes. However, from B3] it
is clear that {m;, ms}(x(t), m(t)) = O(Epq) — 0, from which it follows that
{ej,er}(x(t),m(t)) — 0 as t — —oo, and hence {H;, Hy}(x°,m°) = 0 as re-
quired. O

Remark 4.8. Since the vanishing of the Poisson bracket is a purely algebraic
relation, the Hj, Poisson commute at each point of R?", not just in the region P.

The A, which are defined as the zeros of A()\), are the eigenvalues of the
inverse of the matrix TPEP, since A(\) = det(I — A\TPEP). Another reason
why we restrict our attention to the case with all my > 0 is that the matrix
TPEP can then be shown to be oscillatory (see Section [A.2]in the appendix),
which implies that its eigenvalues are positive and simple. Consequently, the



Ak are also positive and simple, and for definiteness we will number them such
that
0< A <o < Mgy (4.19)

(For another proof that the spectrum is positive and simple, see Theorem [6.1])

Turning now to B = S(A\)2; and C' = S(\)31, we find from (L6) and (£4)
that they are polynomials in  of degree n—1, with B(0) = M, and C(0) = M3,
where M = Efj:l my, ek as before. This means that the two Weyl functions

B cN)

w(A) = AN C(A) = T2A00 (4.20)

are rational functions of order O(1/)\) as A — oo, having poles at the eigen-
values \;. Let by and c¢; denote the residues,

_ ~ b . = Ck
=2 T =T (4.21)
k=1 k=1
The time evolution of (A4, B,C), given by (&), translates into
. w(A) —w(0 : .
S\ = % (O = —w(0) (N (4.22)

Comparing residues on both sides in [@.22)) gives

; by ) by ~ binby
RS Ub e O (123
This at once implies bg(t) = by (0) e'/**, and integrating ¢ (1) from 7 = —oo
(assuming that ¢ vanishes there) to 7 = ¢ then gives
" bbe
= _— . 4.24
Ck mZ:l Am + Ak ( )

A purely algebraic proof of this relation between the Weyl functions, not relying
on time dependence and integration, will be given below; see Theorem We
note the identities > cx/Ax = (307 br/Ax)? and Y7 Aecr = (307 bi)?

The multipeakon solution is obtained as follows. The initial data z(0),
my(0) (for & = 1,...,n) determine initial spectral data A;(0), bx(0), which
after time ¢ have evolved to A (t) = A (0), by (t) = bx(0) et/** (since the Ay are
the zeros of the time-invariant polynomial A()), and since the by satisfy [@23)).
Solving the inverse spectral problem for these spectral data at time ¢ gives the
solution xx(t), mi(t). The remainder of the paper is devoted to this inverse
spectral problem.

10



5 The dual cubic string

Just like for the Camassa—Holm and Degasperis—Procesi equations, some terms
in the Lax pair’s spatial equation (equation (£IJ) in this case, repeated as (B.1])
below) can be removed by a change of both dependent and independent vari-
ables. We refer to this as a Liouville transformation, since it is reminiscent of
the transformation used for bringing a second-order Sturm-Liouville operator
to a simple normal form. This simplification reveals an interesting connection
between the Novikov equation and the Degasperis—Procesi equation, and allows
us to solve the inverse spectral problem by making use of the tools developed
in the study of the latter.

Theorem 5.1. The spectral problem

9 1 0 zm(z) 1 U1
P2 Yol =10 0 zm(z) | | e (5.1)
3 1 0 0 s

on the real line x € R, with boundary conditions

Yo(x) =0, asxz — —o0,
e“Ps3(r) = 0, asz — —o0, (5.2)

e “3(x) — 0, asx— +oo,

is equivalent (for z # 0), under the change of variables

y = tanhx,
o1(y) = w ( ) cosh & — v3(z) sinh
$2(y) = 22 (), 53
¢3(y) = 2" ¢s(x)/ coshz, '
gly) = m( ) cosh®
A=
to the “dual cubic string” problem
o [ 0 gly) 0 $1
o\ 2] =10 0 9@) | | ¢2 (5.4)
®3 -A 0 0 ®3

on the finite interval —1 < y < 1, with boundary conditions

$2(—1) = ¢3(~1) =0 ¢3(1) = 0. (5.5)

In the discrete case m = 23 ,_, my 0y, , the relation between the measures m
and g should be interpreted as

= Z Gr0y, yr = tanh zy, g = 2my cosh x. (5.6)

11



Proof. Straightforward computation using the chain rule and, for the discrete

d
case, 0y, = G2 (k) Oy, - O

Remark 5.2. The cubic string equation, which plays a crucial role in the
derivation of the Degasperis—Procesi multipeakon solution [2§], is

B =—Ago, (5.7)
which can be written as a system by letting ® = (¢1, 2, ¢3) = (@, Dy, Dyy):
9 o1 0 10 ®1
5o (02| = 0 0 1| [e]. (5.8)
Y \¢s ~Ag(y) 0 0/ \¢s

The duality between (5.4) and (5.8) manifests itself in the discrete case as an
interchange of the roles of masses g and distances I = yr11 — yi; see Section [6l
When the mass distribution is given by a continuous function g(y) > 0, the
systems are instead related via the change of variables defined by

Y gly) = =

A (5.9)

9(@)’
where y and g(y) refer to the primal cubic string (B.8), and § and §(g) to the
dual cubic string (54) (or the other way around; the transformation (B.9) is
obviously symmetric in y and g, so that the dual of the dual is the original
cubic string again).

Remark 5.3. The concept of a dual string figures prominently in the work of
Krein on the ordinary string equation 85(;5 = —\g¢ (as opposed to the cubic
string). For a comprehensive account of Krein’s theory, see [12].

Remark 5.4. As a motivation for the transformation (5.3]), we note that one can
eliminate ¢; from (5.I), which gives 0,12 = zm3, (02 — 1) 43 = zmaps. From
the study of Camassa—Holm peakons [2] it is known that the transformation
y = tanhz, ¢(y) = ¥ (z)/ coshx takes the expression (02 — 1) to a multiple
of ¢4y, so it is not far-fetched to try something similar on 13 while leaving 1,
essentially unchanged.

From now on we concentrate on the discrete case. The Liouville transfor-
mation maps the piecewise defined (11,1, 13) given by [@3) to

®1 Ar(A) = ACk(N)
g2 | = —2X\ Bi()) for yp <y < yr41- (5.10)
o “AAN) (L+y) = N Ce(V) (1~ y)

The initial values (Ao, Bo, Co) = (1,0, 0) thus correspond to ®(—1; \) = (1,0, 0)?,
where ®(y; \) = (¢1, ¢2, ¢3)t, and at the right endpoint y = 1 we have

An(A) = ACL(A)
(LN = —2aB.()) . (5.11)
—2A A ()

12



In particular, the condition A,(\) = 0 defining the spectrum corresponds to
@3(1;A) = 0, except that the latter condition gives an additional eigenvalue
Ao = 0 which is only present on the finite interval. (This is not a contradiction,
since the Liouville transformation from the line to the interval is not invertible
when z = —\? = 0.)

The component ¢3 is continuous and piecewise linear, while ¢, and ¢ are
piecewise constant with jumps at the points y; where the measure g is supported.
More precisely, at point mass number k we have

o1(y) — d1 (v, ) = gr{d2(yr)),
b2(yit) — D2y, ) = gk D3 (yi),

and in interval number k, with length lx = yr+1 — Y,

03(Ypy1) — G3(y) = L Oyd3(yit) = =Ml b1 (yy))- (5.13)

In terms of the vector ® these relations take the form

(5.12)

L g 30
Py =(0 1 g | ®(yp), (5.14)
0 0 1
and
1 0 0
QY1) = 0 1 0|y, (5.15)
—Ai 0 1
respectively. If we introduce the notation
1 00 1z 3a?
Gz, \) = 0o 1 0], Lz)=(0 1 =z |, (5.16)
A 0 1 0 0 1

it follows immediately that

O(132) = Gl A) Lign) - G2, A) Ligz) G, \) Ligr) Glio, N) () -

(5.17)
We define the Weyl functions W and Z of the dual cubic string to be
P2(1; ) $1(1;A)
W(A) =— , Z(\) =— . 5.18
AT YR N TPy 19

It is clear from (5II) that they are related to the Weyl functions w and ¢
previously defined on the real line (see [@.20)) as follows:

_ B.(\) = b
- . (5.19)
AN =GN T 7 Ck
20 = 204, () ot 2_+Z)\—)\k'

13



6 Relation to the Neumann-like cubic string

Kohlenberg, Lundmark and Szmigielski [23] studied the discrete cubic string
with Neumann-like boundary conditions. We will briefly recall some results
from that paper, with notation and sign conventions slightly altered to suit our
needs here. The spectral problem in question is

byyy(y) = —Ag(y)o(y) fory e R, 6.1)
Py(—00) = ¢yy( 00) =0, Pyy(o0) =0,
where g = ZZ:O gk 0y, is a discrete measure with n + 1 point masses go, ..., gn
at positions yg < y1 < --- < yn; between these points are n finite intervals of

length ly,...,1, (where l, = yr — yr—1). Since ¢yyy = 0 away from the point
masses, the boundary conditions can equally well be written as

¢y(y0_) = ¢yy(y0_) =0, ¢yy (y:) =0.

Using the normalization ¢(—o00) = 1 (or ¢(y; ) = 1) and the notation ® =
(¢7 ¢y7 (byy)t, one finds

(Y3 ) = Glgw A) Llln) - - Glg2,A) Lllz) Glg1, ) L(1) Gloo, V) (8)
(6.2)
with matrices G and L as in (5.16) above. Under the assumption that all g; > 0,
the zeros of ¢y, (y;7; A), which constitute the spectrum, are

0:>\0</\1<"'</\n;

and the Weyl functions are

W) = —LelniN, Z

¢;7z(yn7 b= . (6.3)
Z(A):—W* +Z)\ v 7:];)%,
with all by, > 0. They satisfy the identity
ZA) + Z(=N) + W)W (=) =0, (6.4)

from which it follows, by taking the residue at A = )\, that

n

bm bk
Z Am + A (6:5)

Thus Z()\) is uniquely determined by the function W(\) and the constant .
Now note that (6.2) is exactly the same kind of relation as (5.17]), except that
the roles of g, and lj, are interchanged, and the right endpoint is called y = y;

14



instead of y = 1. The definitions of the Weyl functions (6.3) also correspond
perfectly to the Weyl functions (5I8) for the dual cubic string. Therefore, all
the results above are also true in the setting of the dual cubic string. The
assumption that the n distances [, and the n+ 1 point masses g are all positive
for the Neumann cubic string corresponds of course to the requirement that the
n point masses gr and the n 4+ 1 distances [, are positive for the dual cubic
string. The constant v = >, _, gk in the term 1/ in (E3) corresponds to the
constant 2 in the term 1/2X in (EI9), since Y ,_,lr = 2 is the length of the
interval —1 <y < 1. In summary:

Theorem 6.1. Assume that all point masses gi are positive. Then the discrete
dual cubic string of Theorem [5.1] has nonnegative and simple spectrum, with
eigenvalues 0 = Ng < A1 < -+ < A\, and its Weyl functions (@I8) have
positive residues and satisfy (6.4) and ©3). In particular, the second Weyl
function Z(\) is uniquely determined by the first Weyl function W (X).

7 Inverse spectral problem

The inverse spectral problem for the discrete dual cubic string consists in re-
covering the positions and masses {yx, g« },._; given the spectral data consisting
of eigenvalues and residues {\g, by };_, (or, equivalently, given the first Weyl
function W(A)). The corresponding problem for the Neumann-like cubic string
was solved in [23], and we need only translate the results, as in Section [@ See
also [28] for more information about inverse problems of this kind and [3] for
the underlying theory of Cauchy biorthogonal polynomials.

To begin with, we state the result in terms of the bimoment determinants
DS,?“ and D), defined below. Things will become more explicit in the next
section (Corollary B4), where the determinants are expressed directly in terms
of the A\ and by.

Definition 7.1. Suppose p is a measure on Ry (the positive part of the real
line) such that its moments,

Ba = /Kaa du(k), (7.1)

and its bimoments with respect to the Cauchy kernel K(x,y) = 1/(z + y),

Ha b
Ly = Iou — / / T ) du (), (72)

are finite. For m > 1, let Dg,‘fb) denote the determinant of the m x m bimoment
matrix which starts with I,; in the upper left corner:

Iab Ia,b+1 .. Ia,berfl
Tov1p Tovip41 --- To41,p4+m—1
ab)y _ | I T 1, _ _ y(ba
Dab) — | la+2p a+2,b+1 a+2,b+m-1 | = pba), (7.3)
Ia+m71,b Ia+m71,b+1 .. Ia+m71,b+m71

15



Let ’Déab) =1, and DY = 0 for m < 0.

Similarly, for m > 2, let D/, denote the m x m determinant

Bo T T ... Iim—2
B Iog Io1 ... Iy;m—o

po=| P o In ... Dyma| (7.4)
6m71 ImO Iml s Im,m72

and define D] = By and D, =0 for m < 1.

Theorem 7.2. Given constants 0 < A\ < --- < A, and by,..., b, > 0, define
the spectral measure

p="> b, (7.5)
i=1
and let I,p be its bimoments,
KO AP g AN
I, = d du(\) = 1 bb,. 7.6
o= [ [ 5 ) ) B e v (76)

Then the unique discrete dual cubic string (with positive masses gi) having the
Weyl function

"Ly, du(k)
W A = =
) Z A=Ak A—K
k=1
is given by
B LS R
D + 1D Dy
where k' =n+1—k fork=0,...,n+ 1. The distances between the masses are
given by
2
10
(7i)
(7.8)

-1 =Y — Ypr—1 = )
00 1) 00 1)
(o7 o) (o 50

Proof. For 0 < k < n, let a®**Y()\) be the product of the first 2k + 1 factors

in (5.17),

a P V() = G(ln, N) Lgn) Gllp—1,A) L(gn-1) ...
cee G(lk’a)‘) L(gk’) G(lk’—la )‘)7 (79)
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where k' = n+1—k. By Lemma 4.1 and Theorem 4.2 in |23], the entries in the
first column of a = aF+t1()),

a1 P
a1 == P 5
as1 Q

satisfy what in [23] was called a “Type I” approximation problem. This means
that (P(\), P(A),Q())) are polynomials in A of degree k, k, k + 1, respectively,
satisfying the normalization conditions

PO)=1,  P(0)=0, Q(0)=0,
the approximation conditions
QW) +PN) =0(1),  QNZA\)+PX)=00A"), asA— oo,
and the symmetry condition
QNZ(=A) — POW(=X) — P(A) = O0(A7* 1), as A — oo.

According to Theorem 4.15 in [23], this determines (ﬁ P, Q) uniquely; in par-

ticular, the coefficients of a(2k+1)()\) = Q) = Zk+1l ¢;\' are given by the
nonsmgular linear system

Io+3 Ion - ok G 1
I Iy - Iig q2 0
I I oo+ Ik 3 | =—|0], (7.10)
Io Iy - I Qr+1 0

From (7.9) one finds that
i) = (N +lnoa 4+ 1)+

2 2 2 (7.11)
et (ISt Ty g g

+ (=3 2 2 9 1ol )

and the lowest and highest coefficients are then extracted from (ZI0) using

Cramer’s rule:

D(ll)
7.12
k+1 Dz(clo) ﬁ g3l -
(=D)"" qry1 = 00 1~a0 == | lp-1-
Dt +50y Y = 2

The first equation gives a formula for yxs 1 right away, and of course also for y;/
(with 1 < k < n + 1) after renumbering. This formula (1) for yx holds also
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for k = 0, since it gives yor = yn+1 = +1 because of the way Dﬁgb) is defined

for m < 0. (That it indeed gives y(,41)y = yo = —1 when k& = n + 1 is not
as obvious; this depends on D,(zofi being zero when the measure p is supported

on only n points. See [23] Appendix B].) Subtraction gives a formula for 5/,
which simplifies to (C.8)) with the help of “Lewis Carroll’s identity” [24] Prop. 10]

applied to the determinant Dgﬂ:

00 11 00 11 10 01
D)D) = DD — DDV, (7.13)

Finally, the second formula in (T.I2)), divided by the corresponding formula with
k replaced by k — 1, gives an expression for % g%/ Iy —1 from which one obtains

_ (p , Lpay 2
9k = (Dk + _Dk—l) (10) ~(10) *
2 Dy, "Dy
The formula for gx presented in (1) now follows from the identity (D})? =
2D,(€10)’D](€1702 and the positivity of D}, which are immediate consequences of (8.6)
below. (The determinant identity can also be proved directly by expanding Dj,
along the first column, squaring, and using 5;,3; = Iix1,; + Ii j+1-) O

Remark 7.3. We take this opportunity to correct a couple of mistakes in [23]:
the formula in Corollary 4.17 should read [Qai2] = (—1)**'Dy/Ak11, and
2

consequently it should be my,_; = in (4.54).

Tk
2Ak 11 Ay

8 Evaluation of bimoment determinants

The aim of this section is just to state some formulas for the bimoment determi-

nants DS,?“ and D/, taken from |28, Lemma 4.10] and |23, Appendix B|. Quite
a lot of notation is needed.

Definition 8.1. For k > 1, let

1 A dp(a)
be = E/Itk T(x) z122...28%
)2
up = %/Rk AF(({E)) du*(z), (8.1)
1 A(z)?
v = E/I:tk () xlxg...xkd,uk(:z:),
where
A(I) = A(‘Tla 7xk) = H(‘TZ - ‘Tj)v
< (8.2)
[(z) =T(z1,...,21) = H(x + ;).



(When £ = 0 or 1, let A(zx) =T(z) = 1.) Also let top = up = vo = 1, and
tr =up = v, =0 for k < 0.

When p = 22:1 by 0y, , the integrals tx, ug, vi reduce to the sums Ty, Uy,
Vi below.

Definition 8.2. For k > 0, let ([1}€n]) denote the set of k-element subsets I =
{i1 < -+ <y} of the integer interval [1,n] = {1,...,n}. For I € ([1,;"]), let

Ar=AN, ., N\, Ly =T\, Aiy), (8.3)

with the special cases Ay = I'yp = Ay = 'y = 1. Furthermore, let

)\I:H)\ia bI:Hbia

i€l i€l

A2
with Ay = by = 1. Using the abbreviation ¥; = 1"_]’ let
I

T, = Z \I/IbI’ U, = Z \IIIbI, Vi = Z \IJI)\Ibfu (84)

A
re(h) ! re() re()
and
U Vi_
Wy =1, " MU = U Vi — Upa Vi1,
U1 Vi
- U (8.5)
Zp =" U = ToUy — Ty Up—1.
AT Uk kUk k+1Uk—1

(To be explicit, Uy = Vo =To=1,and Uy, =V, =T =0 for k <0or k > n.)

We can now finally state the promised formulas for the bimoment determi-
nants.

Lemma 8.3. For all m,

tm Um—1

p00) _ }tmﬂ

Um Um4-1 Um,
pan) -
2m roTm om ’ (8.6)
p10) _ (Um)2 D — UmUm—1
m om ’ m gm—1

n
In the discrete case when p = Zbk Oz, , this reduces to
k=1

po) _ Zm  pay _ Wm
27TL

m 2777,7 m
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Corollary 8.4. The solution to the inverse spectral problem for the discrete
dual cubic string (Theorem [T2) can be expressed as

Yo = Zi = W1 e = Zi + W1 (8.8)
Zp +Wi_1’ UpUg—1 '
2 (Up)*
(Uk) (8.9)

l/_ = ;7 — r_1 = .
K Y W) (Zps + W)

The expression Wy, can be evaluated explicitly in terms of Ay and by, al-
though the formula is somewhat involved |28 Lemma 2.20]:

A4

We= > =EM\b
IE([ln]) 1
ATA? Aoy
+Z > b2bJ{2m+1 | 2.  AEARIcIp |y,

m=1 e (tml) g cuD=J

o IC|=ID|=m

JG( m@) min(C)<min(D)
InJ=

(8.10)

where A7 ; = H (A\i — \;)?. The corresponding formula for Zj is obtained
i€l jeg
by replacing b; with b;/\; everywhere.

9 The multipeakon solution

In order to obtain the solution to the inverse spectral problem on the real line,
which provides the multipeakon solution, we merely have to map the formulas
for the interval (Corollary [84) back to the line via the Liouville transformation
(55).

We remind the reader that in this paper we primarily study the pure peakon
case where it is assumed that all m; > 0 and also that z; < --- < z,,. This
assumption guarantees that the solutions are globally defined in time (Theo-
rem 5] and, regarding the spectral data, that all by > 0and 0 < Ay < --- < A,
(Theorem[6.1)). Details regarding mixed peakon-antipeakon solutions are left for
future research, but we point out that since the velocity iy = u(zg)? is always
nonnegative, Novikov antipeakons move to the right just like peakons (unlike
the b-family (21]), where pure peakons move to the right and antipeakons to the
left, if they are sufficiently far apart). Nevertheless, peakons and antipeakons
may collide after finite time also for the Novikov equation, causing division by
zero in the solution formula for my in ([@J) below, and this breakdown leads
to the usual subtle questions regarding continuation of the solution beyond the
collision.
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Theorem 9.1. In the notation of Section[8, the n-peakon solution of Novikov’s
equation is given by

1 Zk ZpWi—1
s = =1 = 9.1
=g an_l’ 1tk UpUg—1 ®-
where k' =n+1—Fk for k=1,...,n, and where the time evolution is given by
bi(t) = by (0) /%, (9.2)

Proof. The inverse of the coordinate transformation (5.6]) is

L L+ /1 -y}

m=ghg— s =T
which upon inserting ([8.8) gives (@) at once. The evolution of by comes from
equation (423)). O
Example 9.2. The two-peakon solution is
()\1 B A2)4 b2b2
o2y . Y192
1 o 1 ()\1 + )\2)2)\1)\2
Ilzglnm:—ln 4)\1)\2 )
A1 b3+ A2 b3 bib
1 1+ 2 2+/\1+)\2 102
1. Z7 1 b? b3 4
—In—==In —= b1b
To 2mW 5 ()\1+/\2+)\1+/\2127
)\2 4b2b2 ) ) 4 Mo 1/2
A1 b+ A b5+ ———=bib
%W _ { M e P, T A0 A b
1 U2U1 ()\1 _ /\2)2 blbg (b N . ) (93)
T, b
400 12
b2 b2+ —"= b
<)\1 T+ Xbs+ P 12>
VA1 A2 (b1 + b2)
B2 b2 4 12
—+ =4+ ——10bd
vV Z1Wo <)\1 +)\2+)\1+)\2 ! 2>
ma = = )

U.Uy b1 + by

where the simpler of the two expressions for m; is obtained under the assumption
that all spectral data are positive, and therefore only can be trusted in the pure
peakon case. This way of writing the solution is simpler and more explicit
than that found in [I9]. In order to translate (@3] to the notation used there,
write (g, px) instead of (xg, my), ¢k instead of 1/\g, and ¢( instead of (/\1_1 -

A1) n 20 then tanh T = (by—bs)/ (b1 +b2) and cosh™> T' = dbyba/ (b1 +b2)?,

ba(
where T' = %(Cl - CQ)(t — to).
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Example 9.3. The three-peakon solution is

1 L, Zs 1 Zs 1, 4
= frnd PLTa = — In —
Wy’ w2 Wy
m:w%m m:M@m NI
1 U3 U2 ) 2 U2 U1 ) 3 Ul UO 5

where Uy = Wy =1,

Ui = by + by + b3,
Us = W12 b1b2 + V130103 + Wog bobs,
Uz = U123 b1babs,

Wi = A1 b3 + Mo b3 + A3 b3
4/\1)\2 4/\1)\3 4)\2/\3
+ bibo + b1bs + ———— bobs,
MAAr TN A T XA o0
Wa = Uiy Ay Ao b3b3 + U2, Ay A3 bIb3 4 U3, Ao A3 b3b3
4Wi3Uo3 A1 A2 A3 bibob? + 4W19Wo3 A1 A2 A3
A1+ A 17273 A1+ A3
41T 13 A3,
— =TT T bbb
AQ +)\3 19203,

b1babs

4 4 4
Zi=-L 42434 biby + bibs + ——— bobs,
L VL VL VL VD W D VINED Vit R VI Wit

w2, w2 w3

b2b2 13 b2b2 23

A1 A2 A3 A3
4 Wq3Wo3 bibab? + 4WqWo3 byb2bs + 4 W03

(A1 + A2)As ST A Ay 2 (A2 + As) A

Uiss
A1A2As

Ty = b2b2

b§b2b3a

bib3b3,

3 =
and
(A= X)? (a = )? (e = )?
= Yy3=———r WPgy ==

A1+ A A1+ A3 A2 + A3
(A1 — A2)2(A1 — A3)% (M2 — A3)?

()\1 + )\2)(/\1 + /\3)(/\2 + )\3)

Uig =

)

Wio3 =

(9.4)

(9.5)

(9.7)

(9.8)

Theorem 9.4 (Asymptotics). Let the eigenvalues be numbered so that 0 < A\ <

- < Ap. Then
t - (i =)
xk(t)w/\—k—i—logbk( ——ln/\k—i— Z In PESWIN as t — —oo,
=k+1
t
:vk/(t)w/\—k—i—logbk( ——ln/\k—i—ZI /\ +/\k as t — +o00,
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where k' = n + 1 — k. Moreover,

. 1 .
i my(t) = Vol i e (1), (9.10)
In words: asymptotically as t — +oo, the kth fastest peakon has velocity 1/
and amplitude 1//Ay.

Proof. This is just a matter of identifying the dominant terms; by (t) = b1 (0) e!/*
grows much faster as ¢ — 400 than by(t), which in turn grows much faster than
bs(t), etc., and as t — —oo it is the other way around. Thus, for example,
Uk ~ Uig kbiba...bx as t — +o0o. A similar analysis of Wy and Zj leads
quickly to the stated formulas. O

The only difference compared to the xj; asymptotics for Degasperis—Procesi
peakons [28, Theorem 2.25] is that (0.9) contains an additional term —21 In .
Since this term cancels in the subtraction, the phase shifts for Novikov peakons
are exactly the same as for Degasperis—Procesi peakons [28, Theorem 2.26]:

. t . t
Jim (xk (t) - A—,) - Jim (f”k“) - A—,) =

k—1

A Combinatorial results

This appendix contains some material related to the combinatorial structure of
the constants of motion Hq, ..., H, of the Novikov peakon ODEs; see Section [,
and in particular Theorem Recall that

AN =1—=AH; + -+ (=\)"H,, = det(I — N\TPEP),

where [ is the n x n identity matrix, and T, E, P are n X n matrices defined
by Tjx = 1+ sgn(j — k), Ejx = e”1#~2l and P = diag(mi,...,my). The
first thing to prove is that the matrix TPEP is oscillatory if all my > 0, which
shows that the zeros of A()) are positive and simple. Then we show how to easily
compute the minors of PEP, and finally we prove the “Canada Day Theorem”
(Theorem A1) which implies that Hy, equals the sum of all k& x k minors of PEP.

A.1 Preliminaries

In this section we have collected some facts about total positivity |21 15 [13]
that will be used below.

Definition A.1. If X is a matrix and I and J are index sets, the submatrix
(Xij)ier jes will be denoted by X;; (or sometimes X7 s). The set of k-element
subsets of the integer interval [1,n] = {1,2,...,n} will be denoted (“;ﬂ’”), and
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elements of such a subset I will always be assumed to be numbered in ascending
order i1 < --- < k.

Definition A.2. A square matrix is said to be totally positive if all its minors
of all orders are positive. It is called totally nonnegative if all its minors are
nonnegative. A matrix is oscillatory if it is totally nonnegative and some power
of it is totally positive.

Theorem A.3. All eigenvalues of a totally positive matrixz are positive and of
algebraic multiplicity one, and likewise for oscillatory matrices. All eigenval-
ues of a totally nonnegative matrix are nonnegative, but in general of arbitrary
multiplicity.

Theorem A.4. The product of an oscillatory matriz and a nonsingular totally
nonnegative matrix is oscillatory.

Definition A.5. A planar network (I',w) of order n is an acyclic planar directed
graph T with arrows going from left to right, with n sources (vertices with
outgoing arrows only) on the left side, and with n sinks (vertices with incoming
arrows only) on the right side. The sources and sinks are numbered 1 to n,
from bottom to top, say. All other vertices have at least one arrow coming in
and at least one arrow going out. Each edge e of the graph T" is assigned a
scalar weight w(e). The weight of a directed path in T' is the product of all the
weights of the edges of that path. The weighted path matriz Q(T',w) is the n xn
matrix whose (¢,7) entry €;; is the sum of the weights of the possible paths
from source 4 to sink j.

The following theorem was discovered by Lindstrém [25] and made famous
by Gessel and Viennot [16]. A similar theorem also appeared earlier in the work
of Karlin and McGregor on birth and death processes [22].

Theorem A.6 (Lindstrém’s Lemma). Let I and J be subsets of {1,...,n} with
the same cardinality. The minor det Qr; of the weighted path matriz Q(T,w)
of a planar network is equal to the sum of the weights of all possible families of
nonintersecting paths (i.e., paths having no vertices in common) connecting the
sources labelled by I to the sinks labelled by J. (The weight of a family of paths
is defined as the product of the weights of the individual paths.)

Corollary A.7. If all weights w(e) are nonnegative, then the weighted path
matriz is totally nonnegative.

Remark A.8. Beware that having positive weights does not in general imply
total positivity of the path matrix 2, since some minors det {2;; may be zero
due to absence of nonintersecting path families from I to J, in which case € is
only totally nonnegative.

A.2 Proof that TPFEP is oscillatory

The matrix 7 is the path matrix of the planar network whose structure is
illustrated below for the case n =4 (with all edges, and therefore all paths and
families of paths, having unit weight):
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® (l)\ ®

—_— 0 — 0

N

®——oo—

N

D—o—o—

Indeed, there is clearly one path from source 7 to sink j if ¢ = j, two paths if
1 > j, and none if 7 < j, and this agrees with

1, 1=y,
0, <.

Similarly one can check that the matrix PEP is the weighted path matrix of
the planar network illustrated below for the case n = 5 (we are assuming that
r1 < - < Tp, SO that FioFo3 = e®17T2e%2773 — FEis, etc.):

1— E2
ms o 45 ms @

(o]
my E4A 1-— E§4 0/545

(e}

ms ESNO 1-E% O/E:M
ma E23\*o 1 - F3, . /}323
my EIZ\AO/ECH my

By Corollary [A7 both T and PEP are totally nonnegative (if all my > 0).
Furthermore, (PEP)¥ is the weighted path matrix of the planar network ob-
tain by connecting N copies of the network for PEP in series, and if N is large
enough, there is clearly enough wiggle room in this network to find a nonin-
tersecting path family from any source set I to any sink set J with |I| = |J].
Thus (PEP)Y is totally positive for sufficiently large N; in other words, PEP
is oscillatory. (Another way to see this is to use a criterion [15, Chapter II,
Theorem 10| which says that a totally nonnegative matrix X is oscillatory if
and only if it is nonsingular and X;; > 0 for |i — j| = 1.) Since T is nonsingular,
Theorem [A4] implies that TPEP is oscillatory, which was the first thing we
wanted to prove.

CNORONORC)
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A.3 Minors of PEP

Having a planar network for PEP makes it easy to compute its minors using
Lindstrém’s Lemma.

Example A.9. Consider the constant of motion Hs in the case n = 6.

For sources I = {1,2,3} and sinks J = {1,2,3} there is only one family of
nonintersecting paths, namely the paths going straight across. The weights of
these paths are mimq, ma(1 — E%,)msg and m3(1 — E3;)mg, and the total weight
of that family is therefore (1 — E%)(1 — E%;) m3m3m3, which will be the first
term in Hs.

A similar term results whenever I = J. For instance, when I = J = {1,2, 4}
the paths starting at sources 1 and 2 must go straight across, while the path
from source 4 to to sink 4 can go straight across, or down to line 3 and up again.
The contributions from these two possible nonintersecting path families add up
to

mimsy - m2(1 — E122)m2 . (m4(1 — E§4)m4 + m4E34(1 - E§3)E34m4)
= (1= B})(1 — E3;) mimam}.

From I = {1,2,3} to J = {1,2,4} there is one nonintersecting path family,
and there is another one with the same weight from I = {1,2,4} to J = {1,2,3};
the two add up to the term 2(1 — F%,)(1 — E33)Eaq mim3msmy.

Continuing like this, one finds that the types of terms that appear in Hs are

Hsz = (1 - FE%)(1 — E%)m2mim3 + ...
+2(1 — EL)(1 — E3;)Ezg mimamamy + ...
+ 4(1 - E122)(1 - E§4)E23E45 m%m2m3m4m5 + ...

+8 (1 - E223)(1 - E£5)E12E34E56 mi1mommsmqmsimse.

(A1)

The last term comes from the 8 possible nonintersecting path families from
I ={iy,iz,is} to J = {j1, j2, js} where (i1, j1) = (1,2) or (2,1), (i2,j2) = (3,4)
or (4,3), and (i3,53) = (5,6) or (6,5).

Remark A.10. Alternatively, the my can be factored out from any minor of
PEP, leaving the corresponding minor of F, which can be computed using a
result from Gantmacher and Krein [I5] Section II.3.5], since the matrix E is
what they call a single-pair matriz. This means a symmetric n X n matrix X
with entries
Xij = {%XJ’ 1= (A.2)
YiXi, 12> ]

The kxk minors of a single-pair matrix are given by the following rule: det X;; =
0, unless I,J € ([117@"]) satisfy the condition

(i1,71) < (i2,72) < -+ < (i, k), (A.3)
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where the notation means that both numbers in one pair must be less than both
numbers in the following pair; in this case,

_ XB1  Xaz| [XB2 Xas XBr—1 Xag
det X715 = ¥, e , A4
=Y ' wﬁl waz wﬁz was d]ﬁk—l wak X8 ( )
where
(i, Brm) = (min(im,jm),max(im,jm)). (A.5)

In the case of E we have 1, = ¢* and x; = e~ (assuming as usual that
x1 < - <), and (A4) becomes

det Ery = (1= E3 ,,)(1—E3,0.)---(1=E3,_ 0, )Ea1pEasps - - FEayp,- (A6)

A.4 Proof of the “Canada Day Theorem”

The result to be proved (Theorem [A.T]) is that for any symmetric n xn matrix X,
the coefficient of s* in the polynomial det(I + s TX) equals the sum of all k x k
minors of X:

det(1+sTX)=1+Zn: S Y detXyy | sk (A7)
([1:

k=1 1e(t ]) Je([l;c"])

We start from the elementary fact that for any matrix Y, the coefficients in its
characteristic polynomial are given by the sums of the principal minors,

det(I+sY) =1+ | > detYy, |s"
k=1 \ ye(m)

Applying this to Y = T'X and computing the minors of T'X using the Cauchy—
Binet formula [14, Ch. I, § 2]

det(TX)ap= »  detTasdetX;p,  for A, Be (}), (A.8)
re(")

we find that

det(I+sTX)=1+Y_| Y Y detTy det Xy, |s".
=z g€ (M)

Comparing this to (A7), it is clear that what we need to show is that, for any k,

Z Z detTJ] detXU: Z Z detXU. (Ag)

IE(D}C”]) Je([ll,cn]) IE([licn]) JE([ll,Cn])

The first thing to do is calculate the minors det 77;;.
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Definition A.11. Given I,J € ([1},€n]), the set I is said to interlace with the
set J, denoted I < J, if

1< 1 <i2<jo < ... <ip < jp. (A.10)

If all the inequalities are strict, then [ is said to strictly interlace with J, in which
case we write I < J. If I < J, then I’ and J' denote the strictly interlacing
subsets (possibly empty)

I'=1\(INnJ), J=J\({InJ), (A.11)
whose cardinality (possibly zero) will be denoted by
p(1,J) = I'[ =|.J']. (A.12)
Lemma A.12. ForI,J € ([117:])’ the corresponding k X k minor of T is

op(Ld) - f [ <,

i (A.13)
0, otherwise.

detTH = {

Proof. We will use Lindstrém’s Lemma, (Theorem [A6)) on the planar network
for T given in Section [A.2] above; the minor detT;; equals the total number
of families of nonintersecting paths connecting the source nodes (on the left)
indexed by J to the sink nodes (on the right) indexed by I.

The proof proceeds by induction on the size n of T'. The claim is trivially
true for n = 1. Consider an arbitrary n > 1, and suppose the claim is true for
size n — 1. If neither I nor J contain n, the claim follows immediately from the
induction hypothesis, and likewise if I and J both contain n, because there is
only one path connecting source n to sink n. If I contains n but J does not,
then det T';; = 0 because there are no paths going upward; this agrees with the
claim, since in this case I does not interlace with J.

The only remaining case is therefore J = JyU{n}, I = I U{ix}, with ix < n.
But then

2, if Tr—1 < 1k,
det Ty = detTth x <1, if jr_q1 =i,
0, if jr_1 > iy,

depending on whether the path connecting source n with sink i has to cross
the jr—1 level; if it does not, there are two available paths, if it does, there is
only one available path provided jx_1 = i,, otherwise the path intersects the
path coming from source ji_1. In the last instance, I does not interlace with J,
while in the other two I < J if and only if I; < Jj, thus proving the claim. [

According to this lemma, the structure of ([(A9]) (which is what we want to
prove) is

> 2D det Xy = ) detXap, (A.14)
1,Je(M) A,Be(m)
I<J
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and we must show that those terms det X;; that occur more than once on the
left-hand side exactly compensate for those that are absent. This will follow
from another technical lemma:

Lemma A.13 (Relations between k x k minors of a symmetric matrix). Suppose
1,J e ([1,;"]) and I < J. Then, for any symmetric n X n matric X,

> det Xap =2"0) det Xy . (A.15)
A,Be("Y)
ANB=INJ

Before proving Lemma [A. T3] we will use it to finish the proof of the main
theorem. The two lemmas above show that the sum on the left-hand side of

(A14) equals

> 22U det Xy = ) > detXap |, (A.16)

1,7e(m) rae(Mmy \aBe("y)
< <7 " \anB=1nJ

which in turn equals the sum on the right-hand side of (A14]),

> detXap. (A.17)
A.Be()

Thus (A14) holds, and the theorem is proved. The final step from (AI6) to
(A1) is justified by the observation that any given pair (4, B) of the type
summed over in (A7) appears exactly once in the right-hand side of (A6,
namely for the sets I and J defined as follows. Let M = ANB, A’ = A\ M,
B’ = B\ M, and let p > 0 be the cardinality of the disjoint sets A’ and B’
(they are empty sets if p = 0). Then define I’ and J’ by enumerating the 2p
elements of A’ U B’ in the strictly interlacing order I’ < J', and let I = M U I’
and J = M U J'. Conversely, no other terms than these appear in the right
hand side of (A16)), and it is therefore indeed equal to (A17).

Proof of Lemmal[4.13. The sets I < J and I’ < J’ (as in Definition [A-TT]), with
| =Jl=k  |I'|=|T]=pJ)=p,

will be fixed throughout the proof, and for convenience we also introduce M =
INJand U =1UJ, with |[M| =k —p and |U| = k + p. We can assume that
p > 0, since the case p = 0 is trivial; it occurs when I = J, and then both sides
of (A15) simply equal det X;.

The set U \ M consists of the 2p numbers which belong alternatingly to I’
and to J'. The sum (A.15) runs over all pairs of sets (A4, B) obtained by splitting
these 2p numbers into two disjoint p-sets A’ and B’ in an arbitrary way and
letting A= M U A" and B = M U B’. Write Q for this set; that is, @ denotes
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the set of pairs (4, B) € ([1;6”]) X ([117:]) such that AUB=U and ANB =M.
After expanding det X 45, we can then write the left-hand side of (A15) as

Z (1) Xayb, 1, Xagboo) - - - Xarboge) (A.18)
((A,B),0)€Qx S},

where Sy, is the group of permutations of {1,2,...,k}, and (—1)? denotes the
sign of the permutation o.

For each ((A, B),0) € QxSk, welet A = A\M and B’ = B\ M, and set up a
(o-dependent) bijection between A’ and B’ as follows: o’ € A’ is paired up with
" € B’ if and only if the product Xa,b,, Xasb, ) - - - Xarby ) COntains either the
factor X, or a sequence of factors Xy, Xys, ..., Xyy Where r,s,...,t € M.
Let us say that o’ and b’ are linked if they are paired up in this manner. A
linked pair (a’,b") € A’ x B’ will be called hostile if (a’,b") belongs to I' x I
or J' x J', and friendly if (a’,b") belongs to I’ x J' or J' x I'. To each term in
the sum (AT8)) there will thus correspond p such linked pairs, and what we will
show is that the terms containing at least one hostile pair will cancel out, and
that the remaining terms (with all friendly pairs) will add up to the right-hand
side of (A.13).

Next we define what we mean by flipping a linked pair (a’,b’). This means
that, in the product Xarby oy Xasby iy - - - Xagby » those factors XXy ... X
that link a’ to " are replaced by Xy ... X Xpor, with all the indices in reversed
order. (When the linking involves just a single factor X, , flipping means
replacing it by Xpa.) Since the matrix X is symmetric, this does not change
the value of the product, but it changes the way it is indexed. The number a’
which used to be in the first slot (in X,/,) is now in the second slot (in X,4/),
and vice versa for &’. The connecting indices r,s,...,t € M do not contribute
to any change in the indexing sets, since, for example, the r in X/, is moved
from the second slot to the first, while the other r in X, is moved from the first
to the second. The new product (the result of the flipping) is therefore indexed
by the sets

(A\{a’}) Uy = A={a, < <)
and

(B\{b'})u{a'}zzéz{a<---<Ek}

respectively, and after reordering the factors so that the first indices come in
ascending order, it can be written

~ = X+ Lo X5
a1bz (1) az2bz(z) arbz (k)

for some uniquely determined permutation ¢ € Si. Flipping a given pair thus
takes ((A, B),o) to ((A, B),7). This operation is invertible, with inverse given
by simply flipping the same pair again, now viewed as a pair (v, a’) € (A, (B)')
linked via the indices ¢,...,s,r. Because of the symmetry of the matrix X, the
term in (AI8) corresponding to ((4, B), o) is equal to the term corresponding
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to ((4, B), o), except possibly for a difference in sign, depending on whether the
signs of o and ¢ come out equal or not:

= (1) Xa,p,, X

o(1)“raz2bg(2) * -

(=17 5138(1)XE235(2) " 'Xakg?r(k) Karboq-
We will show below that the permutation & has the same sign as o when a
friendly pair is flipped, and the opposite sign when a hostile pair is flipped.
Taking this for granted for the moment, divide the set Q x Sy into the two sets
(Q X Sk)nostile, consisting of those ((A, B), o) for which at least one linked pair
is hostile, and (Q X Sk)miendly, consisting of those ((A, B),o) for which all p
linked pairs are friendly. The mapping “flip that out of all hostile pairs (a’,b’)
for which min(a’,d’) is smallest” is an involution on (Q X Sk )hostile that pairs up
each term with a partner term that is equal except for having the opposite sign
(since it is a hostile pair that is flipped). Consequently these terms cancel out,
and the contribution from (Q X Sk )nostite to (AI8) is zero. The sum therefore
reduces to

Z (—1)" Xarby 1) Xasboca) - - - Xarbo (A.19)
((A,B),0)€(QX Sk ) triendly

Now equip the set (Q X Sk)sienaly With an equivalence relation; ((/T, E), o) and
((A, B), o) are equivalent if one can go from one to another by flipping friendly
pairs. Each equivalence class contains 27 elements, since each of the p friendly
pairs can belong to either I’ x J" or J' x I'. Moreover, the terms corresponding
to the elements in one equivalence class are all equal (including the sign, since
only friendly pairs are flipped), and each class has a “canonical” representative
with all linked pairs belonging to I’ x J’,

o
(_1) Xi1jo(1)Xi2ja(2) s Xikja(k)?

where the permutation o is uniquely determined by the equivalence class (and
vice versa). Thus (A19) becomes

2" (1) Xisjo iy Xinjoay -+ Xinjogy = 2P det X1, (A.20)
€Sk

which is what we wanted to prove.

To finish the proof, it now remains to demonstrate the rule that o has the
same (opposite) sign as o when a friendly (hostile) pair is flipped. To this
end, we will represent ((A, B),o) with a bipartite graph, with the numbers in
U = AU B (in increasing order) as nodes both on the left and on the right,
and the left nodes a; € A connected by edges to the corresponding right nodes
boiy € B. The sign of o will then be equal to (—1)¢, where c is the crossing
number of the graph. As an aid in explaining the ideas we will use the following
example with U = [1,8], where the nodes in M = AN B are marked with
diamonds, and the nodes in A’ and B’ are marked with circles:
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A=1{23,4,56,8} B =1{1,2,4,5,7,8}
=1{2,4,5,8} U {3,6} =1{2,4,5,8}U{1,7}
—MUA =MUB

Clearly, AU B’ = {3,6} U{1,7} = {1,3,6,7} = {i}] < ji < iy < j4}, so that
I' = {i},i5} = {1,6} and J = {ji,55} = {3,7}. Consequently, I = M UI' =
{1,2,4,5,6,8} and J = M U J" = {2,3,4,5,6,7}. The chosen permutation
is 0(123456) = 632415, where the notation means that o(1) = 6, o(2) = 3,
etc.; for example, the latter equality comes from the second smallest number
az in A being connected to the third smallest number b3 in B. There are
9 crossings, so ¢ is an odd permutation, and this graph therefore represents the
term — Xog X34 X 42 X55X61 X7, appearing with a minus sign in the sum (ATS).
The linked pairs (a/,b") € A’ x B’ are (6,1) (directly linked) and (3,7) (linked
via 4,2,8 € M). Both pairs are hostile, since (6,1) € I’ x I’ and (3,7) € J' x J'.
We will illustrate in detail what happens when the pair (3,7) is flipped.
The flip is effected by replacing the factors X4 X490 X258 Xg7 by X78Xg0X04Xy3
and sorting the resulting product so that the first indices come in ascend-
ing order; this gives X24X43X55X61X78X82. Thus A = {2,4,5,6,7,8}, B =
{1,2,3,4,5,8}, and 7(123456) = 435162 (an even permutation). In terms of the
graph, the nodes that are involved in the flip are, on both sides, {2,3,4,7,8}
(the two nodes in the pair being flipped, plus the nodes linking them), and the
edges involved are {34,42,28 87}, which get changed into {43,24,82,78}. In
other words, the flip corresponds to this active subgraph being mirror reflected
across the central vertical line. To understand how the process of reflection
affects the crossing number, it can be broken down into two steps, as follows.
On the left, node 7 is unoccupied to begin with, so we can change the edge
87 to 77. This frees node 8 on the left, so that we can change the edge 28 to 88,
which frees node 2 on the left. (Think of this edge as a rubber band connected
at one end to node 8 on the right; we’re disconnecting its other end from node
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2 on the left and sliding it past all the other nodes down to node 8 on the left.
Obviously the crossing number increases or decreases by one every time we slide
past a node that has an edge attached to it.) Continuing like this, we get the
result illustrated in Step 1 below; the edges changed are 87 — 77, 28 — 88,
42 — 22, 34 — 44.

Intermediate stage (after Step 1) Result of the flip (after Step 2)

In Step 2, we work similarly on the right-hand side: node 3 is unoccupied to
begin with, so we can change edge 44 to 43, and so on. The list of edge moves
is 44 — 43, 22 — 24, 88 — 82, 77 — 78. (In the graph on the right we see
that the crossing number after the flip is 8, verifying the claim that & is an even
permutation.)

We need to keep track of the changes in the crossing number caused by
sliding active edges past nodes that have edges attached to them. This is most
easily done by following the dotted lines in the figures, and counting whether
the nodes that are marked (with circles and diamonds) are passed an even or an
odd number of times. However, since the active subgraph simply gets reflected,
the crossings among its edges will be the same before and after the flip, so we
need in fact only count how many times we pass a passive marked node. (The
passive nodes in the example are {1,5,6}.)

If a passive node belonging to M is passed in Step 1, then it is passed the
same number of times in Step 2 as well, since the nodes in M are marked both
on the left and on the right. Therefore they do not affect the parity of the
crossing number either, and we can ignore the nodes marked with diamonds,
and only look at the passive circled nodes (all the nodes in A’ and B’ except
for the two active nodes that are being flipped).

Passive nodes belonging to A’ are counted only in Step 1 and passive nodes
in B’ only in Step 2; they get counted an odd number of times if they lie between
the two flipped nodes (like node 6 in the example, counted once), and an even
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number of times otherwise (like node 1, never counted). Consequently, what
determines whether the parity of the crossing number changes is the number
of nodes between the flipped ones that belong to A’ UB’ = I’ UJ’. And for a
friendly pair, this number is even, while for a hostile pair, it is odd.

This shows that the crossing number keeps its parity (so that (—1)7 = (—1)%)
when a friendly pair is flipped, and the opposite when a hostile pair is flipped.
The proof is finally complete. O

B Verification of the Lax pair for peakons

The purpose of this appendix is to carefully verify that the Lax pair formulation
EI)-E2) of the Novikov equation really is valid for the class of distributional
solutions that we are considering. This is not at all obvious, as should be clear
from the computations below.

B.1 Preliminaries

We will need to be more precise regarding the notation here than in the main
text. A word of warning right away: our notation for derivatives here will differ
from that used in the rest of the paper (where subscripts should be interpreted
as distributional derivatives).

To begin with, given n smooth functions x = xx(t) such that z1(t) < --- <
Zn(t), let zo(t) = —oco and x,41(t) = +00, and let Q (for £ =0,...,n) denote
the region z(t) < ¢ < zg4+1(¢) in the (x,t) plane.

Our computations will deal with a class that we denote PC°, consisting of
piecewise smooth functions f(x,t) such that the restriction of f to each region
Q, is (the restriction to Q of) a smooth function f*)(z,t) defined on an open
neighbourhood of Q. (so that f*) and its partial derivatives make sense on
the curves © = z(t)). For each fixed ¢, the function f(,¢) defines a regular
distribution T in the class D'(R), depending parametrically on ¢ (and written
T (t) where needed). After having made clear exactly what is meant, we will
mostly be less strict, and write f instead of T’ for simplicity.

The values of f on the curves = x(¢) need not be defined; the function de-
fines the same distribution Ty no matter what values are assigned to f(zx(t),t).
But our assumptions imply that the left and right limits of f exist, and (sup-
pressing the time dependence) they will be denoted by f(x, ) := f*=D(z) and
f(xf) := f®)(xy), respectively. The jump and the average of f at zj will be
denoted by

it €T,
Fan)] = fla) - Fep)  and  (f(e) = LD TT@) gy

respectively. They satisfy the product rules

[fo] = (Dal + gy (o) =)o) +5lfTl]- (B2
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We will use subscripts to denote partial derivatives in the classical sense, so
that (for example) f, denotes the piecewise smooth function whose restriction
to Q is given by 9f* /0z (and whose values at = = z(t) are in general
undefined). On the other hand, D, will denote the distributional derivative,
which in addition picks up Dirac delta contributions from jump discontinuities
of f at the curves = x4 (t). That is, DoTy = Ty, + > p_; [f (k)] 6z, or, in
less strict notation,

Dof = fot Y _[f(@1)]0a,. (B.3)
k=1
The time derivative D; is defined as a limit in D'(R),

DtTf (t) — lim Tf (t + h) — Tf (t)

B.4
Lim Y : (B-4)

and it commutes with D, by the continuity of D, on D'(R). For our class PC*
of piecewise smooth functions, we have DTy = Ty, — Y i_, @k [f (k)] 0z, or
simply

Dif = fi — Zwk [f (k)] 0z, (B.5)

k=1

where & = dxi/dt. We also note that % (zE(t),t) = fm(xf(t),t) i (t) +
fi(ziE (), t), which gives

()] = [folan)] @x + [fi(ze)],

d
i B.
L flan)) = (folan)) dr + (folar). (B.6)

B.2 The problem of multiplication

If the function f is continuous at x = xg, then the Dirac delta at xj can be
multiplied by the corresponding distribution 7 according to the well-known
formula

Ty b0 = (@) b, (B.7)

But below we will have to consider this product for functions in the class PC*
described above, where the value f(xy) is not defined. It will turn out that in
the present context, the right thing to do is to use the average value of f at
the jump, and thus define T¢ 6, := <f(x;€)> 0z,. However, since we want this
to be a consequence of the analysis, rather than an a priori assumption, we
will, to begin with, just assign a hypothetical value f(zj) and use that value in
(BX7). This assignment is justified in the present context, as we will see below.
However, we are not claiming that this addresses any of the deeper issues; for
example, this assignment does not respect the product structure of piecewise
continuous functions. See [32], Ch. 5] for more information about the structural

problems associated with any attempt to define a product of distributions in
D'(R).
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B.3 Distributional Lax pair

Peakon solutions .
u(a,t) =Y my(t) e 0 (B.8)
k=1

belong to the piecewise smooth class PC*°. They are continuous and satisfy

n
Dyu=uy = E my sgn(xy — x) P

k=1
D2u = D, (ug) = Ugs + Z[um(xk)} O, = U+ Z(—ka) Oz s
k=1 k=1
which implies
m::u—Diu:Zkaémk. (B.9)
k=1

The Lax pair [@I)—(@2) will involve the functions v and D,u, as well as the
purely singular distribution m. We will take 11, 12, 93 to be functions in PC,
and separate the regular (function) part from the singular (Dirac delta) part.
The formulation obtained in this way reads

D,V =LU, DU =AY, (B.10)
where U = (¢17w27 1/13)t;

~ n 00 1 010
L:L+2Z<ka6mk>N, L=|0 0 0], N=|0 0 1|, (B.11)
k=1 1 00 0 0 0

and

R n —UUy  Uy/Z u?
A=A-2z <kau(:tk)2(5mk> N, A=| u/z —1/22 —u,/z]|. (B.12)

k=1 —u? u/z Uty

Note that (B.10) involves multiplying N¥ = (t2, 13, 0) by 0, , and some value
a2 (z)) must be assigned in order for this to be well-defined (we will soon see that
13 must be continuous and therefore it is only 9 that presents any problems).

Theorem B.1. Provided that the product miv, is defined using the average
value Vo (xy) = (Ya(ay)) at the jumps,

mapy =2 my (V2(z1)) Ony (B.13)

k=1
the following statement holds. With u and m given by (B.8)—(B.9), and with ¥ €
PC®>, the Laz pair (BIQ)-(BI2) satisfies the compatibility condition Dy D, ¥ =
DDV if and only if the peakon ODEs ([3.4) are satisfied: i), = u(xk)? and
mE = —Mmg u(xk)<uz(xk)>

36



Proof. For simplicity, we will write just Y instead of >.;_,. Identifying co-
efficients of 0, in the two Lax equations (BI0) immediately gives [¥(z;)] =
22mp NV (zi) and —iy [¥(zx)| = —2zmiu(zr)?N¥(zy), respectively. Thus,
[¢3(x)] = 0 (in other words, w3 is continuous) and @, = u(xr)?. Next we
compute the derivatives of (B.10):

Dy(D,yW) = Dy(LV + 22 (Z i 5%) NT)

= L(AD) + 22N> L (mp¥(2p)) 0n, — 22N> mp ¥ ()il
Do (Dy¥) = Dy (AT — 22 (Z mi u(xk)25mk) ND)

= (AV), + Y [AU(21)] 00, — 22N Y mp ¥ (i )ulwr)’s),

The regular part of (B.I0) gives ¥, = LWV, so that (A¥), = A,V + ALY,
and it is easily verified that LA = A, + AL holds identically (since uz, = u).
This implies that the regular parts of the two expressions above are equal,
and the terms involving J7, are also equal since i = u(xy)?. Therefore the
compatibility condition D;(D,¥) = D,(D;¥) reduces to an equality between
the coefficients of d,, ,

— 2zmiu(ze)’ LNV (zg) + 22N 4 (mp V() = [AV(zy)]. (B.14)

Using the product rule (B.2), the expression for [¥(z4)] above, and [ug(z))] =
—2my, we find that the right-hand side of (B.14) equals

4

<A(:Ek)> 2z mkN\I/(LEk) + [A(CL‘;@)} <‘I’(CL‘;€)> =

2z my, <2 *Z</7f> <u1z/>z/;> U(zy) + 2my (3 _B/z _21</Zm>> (V(zx)). (B.15)

0 —u? u/z 0 0 —u .

The (3,2) entry —u? in the matrix in the first term will cancel against the whole
first term on the left-hand side of (B.14), since the only nonzero entry of LN is
(LN)32 = 1. Thus (BI4) is equivalent to

1he N (zg) + mg NS0 () =

(O —u<um> <um>/z>
Mgl o wu/z —1/22%

0 0 w/z

(U(xx)). (B.16)

k

u/z —1/2% —2<um>/z
U (xg) +my ( 0 o 1/22

N 0 0 —u/z

To make it clear how the assumption (B.I3)) enters the proof, we want to avoid
assigning a value to ¥ (xy) for as long as possible. Therefore we can’t compute
4y () quite yet. But (¥(zy)) is well-defined, and its time derivative can be
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computed using ¥, = LY and ¥; = AV in (B.6):
NL(W(zy)) = N(LY(xy)) i, + N(AV(2x))
— N(Lu(xk)2 + <A(xk)>) (W(ax)) + N2 [A(z)] [9 ()]

= <uéz e <uz>>/z> <\If(xk)> + % N[A(xk)}NQ,zmk\If(xk).
0 x

u/z  ufug
—_—————
0 k -0

A bit of manipulation using this result, as well as (v3)(zx) = ¥3(xx), shows
that the compatibility condition (B.16) can be written as

mN L (\Il(a:k) - <\I/(3:k)>) n (mk n mku(xk)<um(xk)>)]\7\1/(x)

=y (0u/=0) (W) = (¥(wn))  (B.17)

0 0 0/xy

The third row is zero, and the first two rows say that

(mk + mw(%)(%(fﬂk»)wz(%) = —mip s (¢2($k) - <¢2($k)>),
(mk + mkU(Ik)<Uz($k)>)1/)3(l’k) = 1my u(m)(d&(m) - <1/12(33k)>)

At this point we choose to assign v2(zx) := (tb2)(xk), and then it is clear that
(B.17) is satisfied if and only if

1 = —miu(r)(ue(Tr)).
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