
REFINE 2007

Reduction and Refinement

Eerke Boiten and Dan Grundy1,2

Computing Laboratory, University of Kent
Canterbury, Kent, CT2 7NF, UK

Abstract

In this paper we explore the relation between refinement and reduction, especially as it is used in the
context of cryptography. We show how refinement is a special case of reduction, and more interestingly,
how reduction is an instance of a novel generalisation, “refinement with context”.

Keywords: Refinement, reduction, cryptography, complexity, IO-refinement.

1 Introduction

This paper forms part of ongoing work by the authors on the application of tech-

niques from formal methods and “mathematics of program construction” to the

security area [11,4]. A continuing frustration of ours is the nature of the proofs of

security of modern[14] 3 cryptographic constructions.

Roughly speaking, cryptography is the study of constructions where some of the

computations involved are deliberately easy (i.e., can be carried out in polynomial-

time), while others are deliberately hard (i.e., cannot be carried out in probabilistic

polynomial-time). Rather than relying on tacit assumptions that a cryptosystem is

“secure”, the goal is to prove that breaking it, under a suitable definition of what

it means to “break” the cryptosystem, is computationally intractable; i.e., the goal

is to prove that the hard computations are indeed hard.

Unfortunately, high level composable sound abstractions are very thin on the

ground in this area. Consequently, a typical proof obligation is that all algorithms

in a given probabilistic complexity class have a particular property. However, since

there are no useful induction theorems for these classes of algorithms, the only

1 Email: E.A.Boiten@kent.ac.uk, WWW: www.cs.kent.ac.uk/~eab2.
2 Email: dcg2@kent.ac.uk.
3 I.e., typically it may involve some degree of probabilism, the black-box encryption assumption does not
hold, and the notion of security is concerned with leakage of information rather than being all-or-nothing
(e.g., revealing complete plaintexts).

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/10631055?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:E.A.Boiten@kent.ac.uk
http://www.cs.kent.ac.uk/people/staff/eab2/
mailto:dcg2@kent.ac.uk


Boiten and Grundy

available proof technique is by reduction to contradiction: the proof that every

algorithm D in class C satisfies P is by taking a hypothetical algorithm D satisfying

¬P , and using it as a subroutine (“oracle”) in an algorithm for efficiently solving

an intractable problem; by contradiction, then, all D satisfy P . In the context of

cryptography, we show that any attack is at least as hard as some other problem

assumed to be intractable, by demonstrating that the existence of an attack would

imply the ability to solve a computationally intractable problem, and so conclude

that any such attack must also be computationally intractable.

(We used the word “assumed” in the last sentence because of unresolved ques-

tions about the complexity classes, in particular the infamous P ?
= NP problem.

However, for all relevant complexity classes there are problems strongly believed to

be outside them, and disproving these beliefs would take a large section of computer

science down with them, so we will not worry about icebergs here.)

To give a simple example, the well-known RSA cryptosystem [17] is — roughly

speaking — based on the difficulty of factoring integers: it is easy to show that if

factoring is easy then breaking RSA is easy 4 . However, this is an upper bound

on the difficulty of attacking RSA: it asserts that attacking RSA is no harder than

factoring; far more useful would be to show that attacking RSA is at least as hard

as factoring, by showing how the existence of an attack against RSA would imply

the ability to factor.

Due to the intricacy and complex nature of the constructions, proofs of this kind

are rarely performed at the detailed level of formality that would allow them to be

mechanised or machine-checked. (Even experts in this field have a low confidence

in the full correctness of such proofs in general, and have suggested mechanisation

[12].) By contrast, the field of formal program development, or “refinement”, has

a well-developed understanding of mechanisable correctness proofs. In this paper

we explore the relation between the concepts of reduction and refinement, our aim

being to discover whether there is a set of generalisations and enhancements to

(mechanisable) refinement theory that can be used to support reduction proofs.

In Section 2 we define the concept of reduction and briefly explain its use in

complexity theory and cryptography. In Section 3 we explore the mutually depen-

dent concepts of refinement and implementation. In Section 4 we examine how

refinement can be viewed as a special case of reduction; the more useful and general

view of reduction as a special case of generalised refinement is set out in Section 5.

Finally, we draw some conclusions and indicate areas for further research.

2 Reduction

Informally, a problem P reduces to another problem Q if any solution to Q can be

used to construct a solution to P ; more specifically, a reduction is a program that

solves P by using a solution to Q as a subroutine. Often the problems involved

are decision problems, which can be phrased as testing membership of a certain

4 Here, breaking RSA amounts to computing a private key from a public key, which would be considered
a “complete” break of RSA.

2



Boiten and Grundy

set (which may or may not be computable). In this very general sense, every

computable problem P reduces to every other problem, as a solution can always be

constructed — namely, one which does not actually use the solution to Q . However,

the more relevant specialised definition in complexity theory assigns a complexity

to the construction in order to relate the complexity classes that P and Q belong

to.

Definition 2.1 (Reduction) Given specifications Pn and Qn , indexed with the

size of their input, P reduces to Q with complexity c(n) if there exists an algorithm

An,O such that:

• An,O uses an oracle O for Qn as a subroutine; counting each call to this oracle

as a single step, it has time complexity c(n). The notation An,B indicates the

replacement of the oracle by an actual algorithm B , resulting in an algorithm

which has time complexity at least c(n).

• for all algorithms B we have that:

Bn implements Qn ⇒ An,B implements Pn

With no further constraints on A, the reduction is called a Turing reduction. If Pn

and Qn are decision problems, and An,O is constrained to a single call to O at the

end, the reduction is a called a many-one reduction 5 . 2

As alluded to above, in order to compare the relative complexities of P and

Q we need to consider the complexity of the reduction. It is, for example, easy

to reduce an NP-complete problem to a trivial (e.g., constant time) problem if

we allow the reduction algorithm to solve the NP-complete problem in exponential

time 6 . However, such a reduction is of little interest, since performing the reduction

is at least as hard as solving the original problem, and so tells us nothing about

the complexity relationship between the two problems. Consequently, in order to

relate the complexity of P and Q , we additionally bound the complexity of the

construction; that is, we bound the rate of growth of the complexity function c(n).

Additionally, although we consider the oracle to compute its solution in a single

step, in order to make useful assertions about the complexity of P on the basis

of the (usually assumed) complexity of Q , our bound on the complexity of the

reduction must also consider the complexity of instantiations of the oracle, where

the bound used will depend on the granularity of comparison we intend to make.

For example, if we want to establish that P is tractable if Q is tractable, we require

only that the reduction algorithm runs in overall polynomial-time when the oracle

for Q is replaced by a tractable (i.e., polynomial-time) implementation. However,

if we want to make a finer grained comparison, e.g., by showing that P is quadratic

if Q is quadratic, then the reduction may only make a constant number of calls to

5 Many-one reductions are so-named since the transformation need not be injective; the term “one-
reduction” is sometimes used to describe injective (many-one) reductions.
6 All NP problems can be solved in exponential time.

3



Boiten and Grundy

the oracle, since the reduction algorithm must run in overall quadratic time when

the oracle is replaced with a quadratic implementation.

In the context of cryptography, we restrict the reductions to efficient (i.e.,

tractable) computations, since we restrict our attention to feasible, and hence ef-

ficient attacks. In practice this means we restrict our attention to probabilistic

polynomial-time, since this captures our notion of “efficient” algorithms. Under

this definition it may be possible to attack a cryptosystem in (say) exponential

time, but since we consider such computations infeasible (i.e., intractable), if fol-

lows that we also consider such an attack infeasible. Of course, a proof that no

attack exists even in the face of unbounded resources would constitute a strong

proof of security, but this is rarely a realistic requirement.

We mention, in view of the importance of efficient computations, that a

“polynomial-time reduction” is a reduction that is computable in polynomial-time.

If it is a many-one reduction, it is called a Karp reduction ; if it is a Turing reduction

(but not a many-one reduction) it is called a Cook reduction 7 .

Two problems are called computationally equivalent if they mutually reduce to

one-another. Observe that two problems may be computationally equivalent but

not in the same complexity class. For example, many natural problems (including

all NP-complete problems) are self-reducible, meaning the search variant of the

problem reduces to the decision variant. Going in the opposite direction, it is clear

that if we can solve the search version of a problem then we can solve the deci-

sion version. Hence the search and decision versions of self-reducible problems are

computationally equivalent, even though the two variants lie in different complex-

ity classes (since complexity classes for decision problems and search problems are

disjoint by definition).

A problem is called C -complete for a complexity class C if it is a member of

C , and every other problem in C can be reduced to it using resources that do not

exceed the bounds of the class 8 . For example, a problem is P-complete if it is in P
(the class of decision problems solvable by polynomial-time algorithms) and every

other problem in P polynomially (i.e., Karp) reduces to it. By definition, a solution

to any of the complete problems for some class yields a solution to every problem

in the class, therefore the complete problems are the hardest in the class. If we

view reduction as capturing the notion that one problem is rich enough to encode

another, then completeness captures the notion that one problem is rich enough to

encode an entire class of problems.

Note that the above assumes languages for problems and their algorithmic solu-

tions, an implicit correctness relation between them, and a notion of time complexity

for the algorithmic language. There is no mention of refinement in there yet, but it

is just around the corner . . .

7 We mention also that other notions of reduction exist (e.g., Levin reductions), but that in practice Karp
and Cook reductions are the most common types of reduction one encounters (at least in the context of
complexity theory).
8 Cook’s [9], and independently, Levin’s [13], fundamental contribution to complexity theory (known as
the Cook-Levin theorem) was to show the existence of NP-complete problems. By now a large number of
natural problems have been shown to be NP-complete; our inability to efficiently solve such a large class
of problems offers a strong basis for the common belief that P 6= NP.

4



Boiten and Grundy

3 Refinement and Implementation

The definition of reduction given above uses a notion of “implementation”. This

gives us a notion of refinement either directly or indirectly, depending on whether we

consider specifications and implementations to be in separate languages. Readers

with a background in program derivation will probably find no big surprises in this

section 9 .

3.1 Wide Spectrum Languages

So-called wide spectrum languages [15,2] include executable programs alongside

non-operational specification constructs: programs are specifications. In such a

language, there is no strict distinction between refinement and implementation.

The only distinction one could make is that certain specifications are considered

executable, and only those are in the domain of the implementation relation; i.e.,

(using == for definitional equality)

implements == executable C refines(1)

The set executable might contain only deterministic specifications, or ones where

all non-determinism is due to explicit concurrency, or feasible specifications only, or

programs executable within given time limits, etc.

Crucially, implementation inherits most of the properties of refinement: it is

reflexive (on implementations) and transitive if refinement is, inherits lattice prop-

erties, and is monotonic under an operation if the set of executables is closed under

it and refinement is monotonic. All this is immediate from implements ⊆ refines.

3.2 Specifications and Programs, Separately

If specifications and implementations are expressed in different languages, then a

notion of implementation (a.k.a. satisfaction or conformance) must already exist in

order to characterise correctness. From such a notion of implementation, we can

derive a notion of refinement as “inclusion of models” or “inclusion of properties of

interest”; i.e.,

s refines s ′ == ∀ p • (p implements s)⇒ (p implements s ′)(2)

Additionally, it may be required that s is feasible, i.e., ∃ p • p implements s, or

feasible if s ′ is, to avoid trivial refinements.

For example, when the specification language is some kind of logic, and imple-

mentation is satisfaction, then one would expect refinement to be implication. (If

it is not, then the logic has a very unusual notion of satisfaction.)

We have given definitions of refinement in terms of implementation and vice

versa; a sanity check is whether substituting one definition in the other makes

sense. Substituting (1) in (2) gives

∀ s, s ′ • s refines s ′ ≡ (∀ p : executable • p refines s ⇒ p refines s ′)(3)

9 A similar discussion is included in [5] which drives home the point that having semantics, refinement,
conformance, or consistency for UML are very closely related issues.

5



Boiten and Grundy

which suggests a lattice-like property on the refinement ordering, viz. that every

minimal upper bound of a set of implementations (if it exists) refines every existing

minimal upper bound of every extension of that set. Informally, a specification is

equivalent to its set of implementations. If no distinction between executable and

non-executable specifications is made, then transitivity and reflexivity are the only

properties required to prove that (3) holds.

Certainly the above characterisation of refinement has a rich set of properties

that it inherits from set inclusion. However, the asymmetry in the implementation

relation means that it does not provide monotonicity properties for refinement to

inherit 10 .

In the rest of the paper we consider a generic relation refines which is either as-

sumed to be pre-defined or derived from a generic implementation relation using (2).

Properties that such relations will normally have include transitivity and reflexiv-

ity (allowing for stepwise refinement), and monotonicity under various specification

operators (allowing for piecewise refinement).

4 Refinement as Reduction

In this section we first observe that refinement can be viewed as a very particular

kind of reduction. We then explore a generalisation of (generic) refinement, viz.

IO-refinement, which may cover a wider range of reductions.

4.1 Refinement is Reduction

We have related reduction to implementation in Definition 2.1, and implementation

to refinement in properties (2) and (1). The similarity between the defining equation

of reduction and property (2) stands out. In particular, we have the following basic

result.

Theorem 4.1 If the relation refines satisfies property (2) then Q refines P im-

plies that P reduces to Q with complexity 1. If P and Q are decision problems, this

reduction is a many-one reduction.

10The natural generalisation is that p⊕ p′ implements s ⊗ s′ if p implements s and p′ implements s′,
i.e., ⊗ is “implemented by” ⊕, but the proof that ⊗ inherits monotonicity from ⊕ would require “iff” rather
than “if”. Monotonicity of specification operators is much more likely to follow through operators on their
sets of implementations rather than operators on individual implementations.

6



Boiten and Grundy

Proof

Since Q refines P , and refines satisfies (2), every implemen-

tation of Q is also an implementation of P , and so any imple-

mentation of our oracle for Q is also an implementation of P ,

consequently our reduction algorithm comprises a single call to

the oracle and hence has complexity 1. As it uses the oracle

only once at the end, it is a many-one reduction if P and Q are

decision problems. 2

The precondition of this theorem holds in many circumstances, for example for many

process algebra and relational refinements and standard Z refinement [10]. However,

the implication is really in the less useful direction: it positions the problem we can

solve as a special case of the one which we would like to solve. We need, then, to

look for the other direction, namely: how we can generalise refinement relations in

order to characterise (and ultimately, to verify) a wider class of reductions.

4.2 IO-Refinement

IO-refinement is a generalisation of refinement that allows us to decouple the in-

terfaces of specifications and implementations. For example, the specification may

refer to numbers or strings, but IO-refinement would allow it to be implemented

in terms of windows and mouse clicks. Another use of IO-refinement occurs when

an implementation is available with the right functionality but not quite the right

interface for the specification. The IO-transformation then could fix some of the

implementation’s input values or ignore some of its outputs, for example.

The particular instance of IO-refinement for Z abstract data types is described

in [7] and [10, Chapter 10]. To define IO-refinement for our generic notion of refine-

ment, we need notions of input/output transformers, and to assume an operation in

our specification language that allows pre-composing a specification with an input

transformer, and post-composing it with an output transformer. The input/output

transformers, and the composition operation, which we will denote o
9, will have dif-

ferent instantiations in different specification notations; e.g., see [7,10] for the Z

version of input/output transformers and the >> operator that is used to compose

them with Z operations and with each other.

Definition 4.2 (IO-refinement) For specifications s and s ′, s IO-refines s ′

using input transformer it and output transformer ot iff

it o
9 s o

9 ot refines s ′

When it is the identity, the refinement is called an output refinement; when ot is

7



Boiten and Grundy

the identity the refinement is called an input refinement. (If both are the identity

we have the usual notion of refinement.) 2

This normally implies that it is total, i.e., it transforms every possible input of

s ′ into some output of s, and that ot is injective: it transforms outputs of s into

outputs of s ′ while retaining enough information to allow the abstract outputs to

be reconstructed.

Of course, IO-refinement is only really useful if the decomposition provided by

separating s ′ into it , s, and ot is a true decomposition: degenerate cases shift the

entire specification into it or ot and leave s trivial; the more interesting cases (includ-

ing the examples above) are when at least one of these has a known implementation

already.

Defining the reduction program by AO ,n := it o
9 O o

9 ot appears to make IO-

refinement an instance of reduction. However, the complexity of the reduction is

not fixed by this: the input transformer it might not be operational (deterministic,

executable); the complexity of the output transformation is even harder to pinpoint

as it should relate to the size of the input of s ′ which is not in the scope of ot .

Moreover, this would still only account for reductions which use the oracle exactly

once. A generalisation of Theorem 4.1 for a limited class of IO-transformers could be

given. However, given the limited range of reductions corresponding to refinements

that would result, we will look for a joint generalisation of the two concepts instead.

5 Refinement with Context

As stated previously, we would prefer a formalisation that characterises reduction as

a special case of (generalised) refinement as this would allow us to apply our knowl-

edge (mechanised or not) of refinement to the problem of reduction. We present

such a formalisation based on the commonality present in both IO-refinement and

reduction as defined above, viz. that the “concrete” specification is first put in a

context, and only then do we check for refinement.

Traditional data refinement is proved using simulations [10]: the refinement

conditions posit the existence of a simulation relation (retrieve relation, coupling

invariant, . . . ) that relates concrete and abstract states. However, the role of such a

simulation relation is purely existential: no knowledge of the simulation is required

in order to use the concrete data type instead of the abstract one. (That said, it does

appear in meta-level proofs, e.g., to prove that downward simulation is transitive,

where the derived simulation is the sequential composition of the base ones.)

Although we can safely ignore the simulation relation in data refinement once

we have proved a refinement step correct, notions of refinement that modify the

specification’s interface need to maintain extra information that tells clients how

the concrete interface they have been given corresponds to the abstract interface

they asked for. IO-refinement is just one such notion; [10] describes, in addition,

non-atomic refinement and alphabet translation. In order to construct concrete

inputs from abstract ones, and to reconstruct abstract outputs from concrete ones,

8



Boiten and Grundy

the transformers it and ot need to be provided to the user. This is reflected in

Definition 4.2: it defines IO-refinement modulo it and ot , where they appear both

as a part of the notion and its characterisation, and they are not (explicitly or

implicitly) existentially quantified.

A similar issue arises with reduction: it is defined modulo the complexity of

the reduction algorithm A. In the refinement-like characterisation of reduction in

Definition 2.1, the algorithm A is used in the defining property, and although it

is existentially quantified, its complexity is part of the notion. For many uses of

reduction, less information is required; for example, it may be sufficient to know

whether A belongs to a particular complexity class.

Generalising these two examples, we come to a notion of “refinement with con-

text”, where the “concrete” specification is viewed in a specific context, and the

refinement relation is decorated with that context. (This is different from refine-

ment in context, where the same context is applied to both sides.) Below, we define

a generalisation, which records an abstraction of the context rather than the context

itself.

Informally, for a given set of contexts C , P is refined by Q with context c

if P is refined by “Q put in a context c from C ”. Contexts are often defined

as “specifications with a hole”; however, rather than taking this more syntactic

approach, we will define them as sets of specification transformers, i.e., functions

from specifications to specifications. Allowing any function of that type makes for

a completely meaningless notion of refinement with contexts; rather, we need to

characterise sets of such functions which will guarantee that the derived refinement

notion has desirable properties.

Definition 5.1 (Contexts) Given a specification language L with a reflexive and

transitive relation refines on L. A context set for (L, refines) is a collection of

functions C : P(L → L) such that

• C contains the identity function 1L (or one for each type, if L is typed);

• C is closed under function composition;

• the elements of C are monotonic with respect to refines.

2

The presence of identity transformers ensures that the refinement relation with

contexts from C generalises refines, and consequently that it is reflexive. C being

closed under composition ensures transitivity. Monotonicity transfers monotonicity

properties of the underlying refinement relation 11 .

Example 5.2 The context set for Z input refinement is {it : IOT • λ s • it >> s}
where IOT is the set of all IO-transformers (see [10] for details), and >> is restricted

to pairs of schemas with perfectly matching output/input names. The operator

>> is indeed monotonic with respect to refinement in this context; composition of

11There appears to be rich categorical structure in here.

9



Boiten and Grundy

contexts corresponds to composition using >> of the IO-transformers. Identities

also exist for each type.

The context set for Z output refinement is nearly identical, post-composing with

an IO-transformer instead. For full IO-refinement in Z, the context set is defined

by pre- and post-composition with IO-transformers.

Example 5.3 For reduction, we fix an extended set of specifications as “algorithms

using an oracle”. By including the trivial algorithm that just makes a single oracle

call, we also include basic specifications (such as P and Q in Definition 2.1), which

are thus effectively identified with their oracles. The application of a context cor-

responds to inclusion of algorithms as subroutines in larger algorithms. The trivial

algorithm is the identity context, and substitution in programs is closed under com-

position. The required monotonicity is the basis of top-down programming: correct

implementation through the correct implementation of subroutines.

We could now give a definition of refinement with contexts; however, this would

decorate the refinement with a specific context, which may be more information

than is required. In the case of reduction, for example, it is the complexity of the

mediating algorithm which matters, rather than the algorithm itself. Generalising

this observation, we move towards a refinement notion that is decorated with some

abstraction of the context, rather than the context itself. We reiterate a point made

for the specific cases of reduction and IO-refinement, namely that the process we

are looking at is one of decomposition: a problem (specification) is decomposed into

a “context” and a “simpler” problem. Such decompositions need not always be

useful: for example, they may shift all the difficulty into the context, and declare

our problem solved in that way 12 . The following definition reflects that we consider

this as “cheating”, by introducing a penalty function to put a price on (the difficulty

of) the work shifted into the context.

Definition 5.4 (Refinement with penalty) Given a context set C for

(L, refines), and a (fixed) function f : C → D, this induces a notion of refinement

with penalty as follows. We say that Q refines P with penalty p iff

∃ c : C • c(Q) refines P ∧ f (c) = p

Where f is the identity function, we say that Q refines P with context c. 2

Example 5.5 For IO-refinement (not necessarily just in Z), the penalty function

is the identity relation, the input and output transformers themselves represent the

additional work.

Example 5.6 Reduction (as in Definition 2.1) is refinement with a penalty deter-

mined by the complexity of the reduction algorithm. Note that here the penalty

function is not compositional i.e., the penalty of combined reduction steps cannot be

12Another example of this is the continuation passing style transformation in functional programming: the
continuation being passed around will contain all the “work”.

10



Boiten and Grundy

computed from the penalties of the individual steps 13 . However, in most cases only

the complexity class of the reduction algorithm is relevant, and classes of interest

(e.g., polynomial) are closed under this substitution.

Note that we have put no constraints on the function p in Definition 5.4. Clearly

compositionality would have been nice, but is too much to ask for in view of the

above example. Sensible constraints derive from a topological view, with (contexts

and) p representing a notion of distance between specifications, and might include

properties like f (c1
o
9 c2) ≥max (f (c1), f (c2)).

As usual, equivalence relations on specifications can be defined in terms of mu-

tual refinement.

Definition 5.7 (Equivalence with contexts) Given a context set C for

(L, refines), this induces a notion of equivalence with contexts as follows. We say

that Q is equivalent to P with contexts (c1, c2) if Q refines P with context c1 and

P refines Q with context c2. We say that P and Q are isomorphic if additionally

c1
o
9 c2 = c2

o
9 c1 = 1L.

Example 5.8 If IO-refinement holds in both directions with bijective transformers,

we have isomorphic specifications. However, it is also possible for refinement in one

direction to be achieved using an input transformer, and in the other direction using

an output transformer, in which case their composition clearly is not the identity

for all specifications.

Example 5.9 For reduction, the induced notion of equivalence is computational

equivalence as discussed previously.

6 Further Work

Definition 5.4 represents one way towards achieving our goal: we have defined a

novel generalised notion of refinement, phrased in terms of (a generic notion of)

refinement, that encompasses both reduction and several generalised notions of

refinement.

In terms of our issues with reduction as a proof technique, it does not solve ev-

erything. In particular, we have not provided any significant advances to the process

of finding an algorithm to show that a particular reduction works (i.e., solving the

existential quantification in Definition 5.4). However, the characterisation above

may help to support the verification of reductions, possibly using (even existing)

mechanisations.

We mentioned probabilistic algorithms early on in the paper, but not much af-

ter that. These come naturally with a range of refinement and implementation

13 Consider a linear time algorithm AP with an oracle for Q . Its unit steps may be due either to oracle calls
or to other elementary operations; thus, we abstract away from how many calls it makes to the oracle for Q .
If we substitute for the oracle an algorithm AQ that solves Q , we cannot determine the resulting complexity
from the individual complexities. For example, if AP uses a single oracle call, and AQ is quadratic, then
the overall complexity is quadratic; however, if AP uses n oracle calls, then the resulting complexity with
the same AQ is cubic.

11



Boiten and Grundy

relations. Perfect implementation results in identical distributions; statistical im-

plementation only requires distributions that are statistically close. Computational

implementation weakens this further to distributions that cannot be distinguished

with a significant advantage by probabilistic polynomial algorithms. The latter is

often the realistically achievable notion of security [14]. See [4] for a characterisation

of this kind of refinement in the framework of approximate refinement [6]. For the

most part, it does not matter that we have glossed over the probabilistic aspect. All

of these implementation relations give rise to refinement relations with the usual

properties, and so fit our generic scheme. Our discussion of reduction also did not

fix the complexity classes of interest, which usually shift from worst-case consider-

ations to average-case ones when moving into the probabilistic world (particularly

in the context of cryptography). For details of this, see [11]. A generalisation of the

computation of penalties may also be necessary in order to account for the difference

allowed by approximate refinement relations.

Further work should take this probabilistic aspect fully into account, and ex-

pand the ideas in this paper into practical mechanisms applicable to problems in

cryptography. In particular, they should be related and applied to the two main

efforts at increased abstraction for cryptographic verification that have arisen in

the theoretic cryptography community: “game-hopping” [3,18] and universal com-

posability [8]/ reactive simulability [16]. The latter approach in particular already

has a strong formal methods influence, using probabilistic IO-automata; however,

their formalisation has not yet matured into one that is communicable and easily

mechanisable in general 14 .

References

[1] Backes, M., C. Jacobi and B. Pfitzmann, Deriving cryptographically sound implementations using
composition and formally verified bisimulation., in: L.-H. Eriksson and P. A. Lindsay, editors, FME,
Lecture Notes in Computer Science 2391 (2002), pp. 310–329.

[2] Bauer, F., R. Berghammer, M. Broy, W. Dosch, F. Geiselbrechtinger, R. Gnatz, E. Hangel, W. Hesse,
B. Krieg-Brückner, A. Laut, T. Matzner, B. Möller, F. Nickl, H. Partsch, P. Pepper, K. Samelson,
M. Wirsing and H. Wössner, “The Munich Project CIP. Volume I: The Wide Spectrum Language
CIP-L,” Lecture Notes in Computer Science 183, Springer, Berlin/Heidelberg/New York, 1985.

[3] Bellare, M. and P. Rogaway, The security of triple encryption and a framework for code-based game-
playing proofs., in: S. Vaudenay, editor, EUROCRYPT, Lecture Notes in Computer Science 4004
(2006), pp. 409–426.

[4] Boiten, E., Commitment is hard: Reconstruction of a cryptographic primitive from a formal methods
perspective (2007), submitted for publication.

[5] Boiten, E. and M. Bujorianu, Exploring UML refinement through unification, in: J. Jürjens, B. Rumpe,
R. France and E. Fernandez, editors, Critical Systems Development with UML - Proceedings of the
UML’03 workshop, TUM-I0323 (2003), pp. 47–62.
URL http://www.cs.kent.ac.uk/pubs/2003/1742

[6] Boiten, E. and J. Derrick, Formal program development with approximations, in: H. Treharne, S. King,
M. Henson and S. Schneider, editors, ZB 2005, Lecture Notes in Computer Science 3455 (2005), pp.
375–393.

[7] Boiten, E. A. and J. Derrick, IO-refinement in Z, in: A. Evans, D. J. Duke and T. Clark, editors, 3rd
BCS-FACS Northern Formal Methods Workshop (1998).
URL http://www.bcs.org/server.php?show=ConWebDoc.4354

14However, see [1] for a report on a specific verification in this framework, mechanised in PVS.

12

http://www.cs.kent.ac.uk/pubs/2003/1742
http://www.bcs.org/server.php?show=ConWebDoc.4354


Boiten and Grundy

[8] Canetti, R., Universally composable security: A new paradigm for cryptographic protocols, Cryptology
ePrint Archive, Report 2000/067 (2000).
URL http://eprint.iacr.org/

[9] Cook, S., The complexity of theorem proving procedures, in: Proceedings of the third annual ACM
Symposium on Theory of Computing (STOC), 1971, pp. 151–158.

[10] Derrick, J. and E. Boiten, “Refinement in Z and Object-Z: Foundations and Advanced Applications,”
FACIT, Springer Verlag, 2001.

[11] Grundy, D., Ph.D. thesis, Computing Laboratory, University of Kent (Forthcoming).

[12] Halevi, S., A plausible approach to computer-aided cryptographic proofs, Cryptology ePrint Archive,
Report 2005/181 (2005), http://eprint.iacr.org/.

[13] Levin, L., Universal’nye perebornye zadachi, Problemy Peredachi Informacii 9 (1972), pp. 265–266, in
Russian; an English translation appears in ”Universal Search Problems”, in B.A. Trakhtenbrot, ”A
Survey of Russian Approaches to Perebor (Brute-Force Searches) Algorithms”, IEEE Annals of the
History of Computing, 6(4):384–400, 1984.

[14] Mao, W., “Modern Cryptography – Theory & Practice,” Hewlett-Packard Professional Books, Prentice
Hall, 2004.

[15] Morgan, C. C., “Programming from Specifications,” International Series in Computer Science, Prentice
Hall, 1994, 2nd edition.

[16] Pfitzmann, B. and M. Waidner, Composition and integrity preservation of secure reactive systems., in:
ACM Conference on Computer and Communications Security, 2000, pp. 245–254.

[17] Rivest, R., A. Shamir and L. Adleman, A method for obtaining digital signatures and public-key
cryptosystems, Communications of the ACM 21 (1978), pp. 120–126.

[18] Shoup, V., Sequences of games: a tool for taming complexity in security proofs, Cryptology ePrint
Archive, Report 2004/332 (2004).
URL http://eprint.iacr.org/

13

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

	Introduction
	Reduction
	Refinement and Implementation
	Wide Spectrum Languages
	Specifications and Programs, Separately

	Refinement as Reduction
	Refinement is Reduction
	IO-Refinement

	Refinement with Context
	Further Work
	References

