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Abstract

Exact metrics on some totally geodesic submanifolds of the moduli
space of static hyperbolic N -vortices are derived. These submanifolds, de-
noted Σn,m, are spaces of Cn-invariant vortex configurations with n single
vortices at the vertices of a regular polygon and m = N − n coincident
vortices at the polygon’s centre. The geometric properties of Σn,m are
investigated, and it is found that Σn,n−1 is isometric to the hyperbolic
plane of curvature −(3πn)−1. Geodesic flow on Σn,m, and a geometrically
natural variant of geodesic flow recently proposed by Collie and Tong, are
analyzed in detail.
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1 Introduction

Many aspects of the dynamics of topological solitons of Bogomol’nyi type can be
understood in terms of the geometry of the moduli space MN of static N -solitons.
This approach, originally due to Manton, addresses such diverse issues as low
energy soliton scattering, the thermodynamics of soliton gases, and the quantum
mechanics of solitons. For a comprehensive review, see [7]. Mathematically, the
main object of study is the L2 metric γ, a Riemannian metric on MN which can be
thought of as the restriction of the kinetic energy of the parent field theory. There
are comparatively few situations in which explicit formulae for γ are known, and
one usually must make do with only partial or qualitative information.

This paper considers one of the rare cases where explicit progress is possible,
namely Ginzburg-Landau vortices moving on the hyperbolic plane. In this case,
the Bogomol’nyi equations for static N -vortices can be reduced to Liouville’s
equation on a disk, which is integrable. Strachan exploited this fact [11] to
obtain an implicit formula for γ in terms of the analytic behaviour of the Higgs
field near the vortex centres. From this he deduced explicit formulae for the
metric on M1 and M2, but the calculations become intractable for N ≥ 3. In
this paper, we will find exact formulae for the induced metric on certain totally
geodesic submanifolds of MN for all N , obtained by imposing invariance under
certain symmetry groups. Each submanifold Σn,m ⊂ MN has (real) dimension
2 and consists of static N -vortex solutions wherein n single vortices occupy the
vertices of a regular polygon, and 0 ≤ m ≤ n − 1 coincident vortices sit at
the polygon’s centre (so m + n = N). The two dimensions correspond to the
orientation and radius of the polygon. Geodesics in Σn,m are conjectured to
correspond to low-energy N -vortex scattering trajectories in the case of slow,
rotationally equivariant initial data.

We will discuss the curvature properties of Σn,m and show that Σn,n−1 is
isometric to the hyperbolic plane of curvature − 1

3πn
. This fact was already known

(and is rather trivial) in the case n = 1, but its generalization to any n ≥ 1 is new
and extremely surprising. It follows that Σn,n−1 is isometric to a hyperboloid of
one sheet in (2 +1)-dimensional Minkowski space (one of the standard models of
hyperbolic space). It turns out that, for m sufficiently close to but different from
n−1, Σn,m can still be isometrically embedded as a surface of revolution in R(2,1),
and we construct the generating curves for some of these surfaces numerically.
Geodesic motion on Σn,n−1 can be understood very directly, and we obtain explicit
formulae fixing the relationship between scattering angle and impact parameter
for two–vortex scattering with a stationary third vortex at the origin (geodesic
motion in Σ2,1). Finally, we consider a variant of the moduli space dynamics
recently proposed (for Euclidean vortices) by Collie and Tong [3] in which the
vortices experience an effective magnetic field determined by the Ricci curvature
of MN . This flow is analyzed numerically on Σ2,0 and exactly on Σn,n−1.
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2 Vortices on the hyperbolic plane

In this section we review Ginzburg-Landau vortices on the hyperbolic plane of
curvature −1

2
[11, 7], which we denote H, with metric G. It is convenient to use

the Poincaré disk model of H, so H = {z ∈ C : |z| < 1} and

G = Ω dzdz, Ω =
8

(1 − |z|2)2
. (2.1)

Then (critically coupled) Ginzburg-Landau vortices on H are minimals of the
potential energy

V (φ,A) =
1

2

∫

H

(

dA ∧ ∗dA + dAφ ∧ ∗dAφ+
1

4
(1 − φ̄φ)2 ∗ 1

)

, (2.2)

where φ : H → C is a complex scalar field, A ∈ Ω1(H) is the gauge potential
one-form, dAφ = dφ− iAφ, and ∗ is the Hodge isomorphism. The standard Bo-
gomol’nyi argument shows that, among fields satisfying the boundary condition
|φ| = 1 for |z| = 1, with winding number N ≥ 0, the potential energy V satisfies

V ≥ πN,

with equality if and only if

(dAφ) (∂/∂z) = 0, (2.3)

dA− ∗1

2
(1 − φ̄φ) = 0. (2.4)

Hence solutions of (2.3), (2.4) minimize V in their homotopy class. Such solutions
are called N -vortices, and the zeros of φ are interpreted as individual vortex
positions.

Equations (2.3) and (2.4) can be reduced to a single gauge invariant equation

by setting φ = e
1

2
h+iχ. One obtains

4
∂2h

∂z∂z
+ Ω − Ωeh = 0. (2.5)

Setting h = 2g+2 log 1
2
(1−|z|2) the equation for h becomes Liouville’s equation,

4
∂2g

∂z∂z
− e2g = 0, (2.6)

which can be solved exactly. The solution is

g = − log
1

2

(

1 − |f |2
)

+
1

2
log

∣

∣

∣

∣

df

dz

∣

∣

∣

∣

2

, (2.7)
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where f(z) is an arbitrary, complex analytic function. With a simple choice of
phase the scalar field is given by

φ =
1 − |z|2
1 − |f |2

df

dz
. (2.8)

Then the first Bogomol’nyi equation (2.3) is satisfied, if and only if

A = − ∗ d log

(

1 − |z|2
1 − |f |2

)

. (2.9)

Note that φ vanishes at the zeros of df
dz

.
To ensure that |φ| → 1 as |z| → 1, φ is nonsingular for |z| < 1 and has

winding number N , one must choose

f(z) =
N+1
∏

i=1

(

z − ai
1 − āiz

)

, (2.10)

where a1, . . . , aN+1 are arbitrary complex constants with |ai| < 1. Naively, it
seems that the moduli space of static N -vortices should have complex dimension
N + 1, but this overcounts, since meromorphic functions f(z) and gauge equiv-
alence classes of solutions of the Bogomol’nyi equations are not in one-to-one
correspondence. In fact, the transformation

f 7→ f − c

1 − c̄f
, (2.11)

where |c| < 1 leaves (φ,A) unchanged up to gauge. One can use this freedom to
set aN+1 = 0, so

f(z) = z
N
∏

i=1

(

z − ai
1 − āiz

)

, (2.12)

where |ai| < 1. Note that the denominator of this rational map is uniquely
determined by its numerator. So, hyperbolic N -vortices are in one-to-one corre-
spondence with degree N polynomials

P (z) =
N
∏

i=1

(z − ai) (2.13)

all of whose roots lie in the open unit disk, and one concludes that MN has real
dimension 2N . The coefficients ai are not natural complex coordinates on MN ,
however, as we shall see.

It is useful to think of f as a holomorphic mapping of the Riemann sphere C∪
{∞} to itself. Clearly f has exactly 2N critical points, counted with multiplicity.
Note that f commutes with the involution ι : z 7→ z̄−1 (reflexion in the equator)
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so if z is a critical point of f , so is ι(z). Since f has no critical points on
the equator, |z| = 1, it follows that it has exactly N critical points inside the
unit disk, and N outside. Let us denote the N (not necessarily distinct) critical
points inside the unit disk Zr, r = 1, 2, . . . , N . These are interpreted as the vortex
positions. They provide local complex coordinates on MN\∆N , where ∆N is the
coincidence set, that is, the set ofN -vortices for which the vortex positions are not
all distinct. Good global complex coordinates are provided by the coefficients of
the polynomial

∏N
r=1(z−Zr). This equips MN with a canonical complex structure

which coincides, off ∆N , with the structure defined by the coordinates Zr. Note
that the critical points Zr of f depend non-holomorphically on the parameters
ai, so this canonical complex structure is different from the complex structure
defined by the coordinates ai on MN .

There is a natural Riemannian metric γ on MN defined by restricting the
kinetic energy of the abelian Higgs model

T =
1

2

∫

H

(

∂0A ∧ ∗∂0A+ |∂0φ|2 ∗ 1
)

(2.14)

to TMN . We here choose to work in temporal gauge (A0 = 0), so must impose
Gauss’s law

δ∂0A =
i

2
(φ∂0φ− φ∂0φ) (2.15)

as a constraint on (∂0φ, ∂0A), where δ = − ∗ d∗ is the coderivative on (H, G). It
is known that γ is Kähler with respect to the canonical complex structure just
defined. This follows from a formula for γ first obtained by Strachan [11] and later
generalized and reinterpreted by Samols [10] and Romao [8]. The formula gives γ
on MN\∆N . In the next section, we will need to compute the induced metric on
certain totally geodesic submanifolds Σn,m ⊂ Mn+m which (for 2 ≤ m ≤ n−1) lie
entirely in ∆n+m, so we must make a small modification to Samols’ calculation.

Rather than compute γ on MN\∆N , we fix the positions of m of the vortices
(not necessarily distinct) and allow only the other n = N −m vortices to move,
along trajectories Z1(t), . . . , Zr(t) which remain distinct from one another, and
the fixed zeros. This, then, defines an n-dimensional complex submanifold of
Mn+m, which we denote by M

p(z)
n , where p(z) is the unique monic degree m

polynomial whose roots are the fixed zeros (so M
1
n ≡ Mn). Samols’ argument

generalizes immediately to this setting, and one finds that the kinetic energy of
a trajectory in M

p(z)
n is

T =
1

2
π

n
∑

r,s=1

(

Ω(Zr)δrs + 2
∂bs
∂Zr

)

Żr
˙̄Zs. (2.16)

Here br are coefficients in the expansion of h = log |φ|2 around the zero Zr of φ,

h = 2 log |z − Zr| + ar +
1

2
b̄r(z − Zr) +

1

2
br(z̄ − Z̄r) + . . . (2.17)
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On hyperbolic space, |φ|2 is known explicitly, so the dependence of br on the vortex
positions Z1, . . . , Zn can also be determined explicitly, in principle. In practice,
as we shall see, this is very difficult, but some properties of the coefficients br are
immediate. First, since T is manifestly real, one must have

∂br
∂Zs

≡ ∂b̄s
∂Z̄r

. (2.18)

It follows that the metric on M
p(z)
n induced by T ,

γ = π

n
∑

r,s=1

(

Ω(Zr)δrs + 2
∂bs
∂Zr

)

dZrdZ̄s, (2.19)

is Hermitian with respect to the canonical complex structure, with Kähler form

ω =
i

2
π

n
∑

r,s=1

(

Ω(Zr)δrs + 2
∂bs
∂Zr

)

dZr ∧ dZ̄s. (2.20)

Clearly, dω = 0, by (2.18), that is, γ is Kähler. Following Romao, it is convenient
to define the (0, 1) form

b =
n
∑

r=1

brdZ̄r (2.21)

on M
p(z)
n , which is known to satisfy ∂̄b = 0, [8]. The Kähler form on M

p(z)
n may

then be compactly written

ω =
i

2
π

(

2db+
n
∑

r=1

Ω(Zr)dZr ∧ dZ̄r
)

. (2.22)

3 Totally geodesic submanifolds of MN

We shall use formula (2.22) to deduce the induced metric on certain totally
geodesic submanifolds of MN which we now define. Recall that points in MN

are in one-to-one correspondence with monic degree N polynomials with roots
only in the unit disk. We can choose to identify a N -vortex with the polynomial
whose roots are the vortex positions, but it is somewhat more convenient to iden-
tify it instead with the monic polynomial P (z) defined by the numerator of the
rational map f(z), whose coefficients we denote βi ∈ C,

P (z) = zN + β1z
N−1 + · · · + βN . (3.1)

There is an obvious action of U(1) on such polynomials, whose associated action
on MN is clearly isometric (it just rotates the vortex positions about z = 0),
namely,

P (z) 7→ λ−NP (λz) (3.2)
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for each λ ∈ U(1). In terms of the coefficients of P (z), the action is

(β1, β2, . . . , βN) 7→ (λ−1β1, λ
−2β2, . . . , λ

−NβN). (3.3)

From now on we consider the case where λ = e2πi/n, for n some positive integer,
so that λ generates the cyclic group Cn. Then P (z) is a fixed point of λ if and
only if βk = 0 for all k not divisible by n. So the fixed point set of λ consists of
all polynomials of the form

P (z) = zN + βnz
N−n + β2nz

N−2n + · · ·+ βpnz
N−pn, (3.4)

where p =
⌈

N
n

⌉

. The corresponding submanifold of MN has complex dimension
p and is totally geodesic by a standard symmetry argument [9]. In particular, if
N
2
< n ≤ N , so that p = 1, the fixed point set has complex dimension one and

consists of polynomials

P (z) = zm(zn + βn), |βn| < 1, 0 ≤ m < n. (3.5)

Let us denote this totally geodesic submanifold Σn,m ⊂ Mn+m. In order to cal-
culate the metric on Σn,m we first need to find the vortex positions, that is, the
critical points of

f(z) =
zm+1 (zn − an)

1 − anzn
, (3.6)

which arises from (3.5) (replacing βn = −an for later convenience). Recall f has
exactly n+m critical points, counted with multiplicity, in the unit disk H. Now
f(λz) ≡ λm+1f(z), so z is a critical point of f if and only if λz is a critical point.
Hence, f has n critical points Zr at the vertices of some regular n-gon,

Zr = α λr−1, (3.7)

and the other m critical points must be coincident at 0 (the only fixed point in
H of λ). So Σn,m consists of vortex configurations with m vortices coincident at
z = 0 and n vortices located at the vertices of a regular polygon centred on 0.

We next determine how the vortex position α = Z1 ∈ C is related to the
complex parameter a. If a is real positive, then f clearly has a real postive
critical point, and f remains unchanged under a 7→ λa. It follows that

a = αν(|α|) (3.8)

where ν is a positive real function of |α| only. A short calculation leads to a
quadratic equation in νn. We choose the solution which satisfies |a| < 1 provided
|α| < 1 and obtain

νn =
(m+ 1) (1 + |α|2n) −

√

(m+ 1)2 (1 − |α|2n)2 + 4n2|α|2n

2|α|2n (m+ 1 − n)
(3.9)
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for n > m+ 1. For n = m+ 1 the solution simplifies considerably, namely,

νn =
2

1 + |α|2n . (3.10)

We can now eliminate the parameter a from f(z) in favour of α which, being
one of the vortex positions, is a good (local) complex coordinate on Σn,m with
respect to the canonical complex structure:

f(z) =
zm+1(zn − νnαn)

1 − νnᾱnzn
. (3.11)

By the Kähler property and rotational invariance, we know that the metric on
Σn,m must take the form

γ = F (|α|)dαdᾱ (3.12)

for some conformal factor F (|α|). To compute F , we require information on the
coefficients br, and hence a formula for h = log |φ|2. Now f ′(z) has zeros at λrα
and λrᾱ−1 (recall critical points of f are paired z ↔ z̄−1), and a zero of order m
at 0. It follows that

f ′(z) =
(m+ 1)νnzm(zn − αn)(1 − ᾱnzn)

(1 − νnᾱnzn)2
. (3.13)

In order to avoid the logarithmic singularities of h near z = Z1 = α, we define
the regularized version of (2.17) as

hreg = log |φ|2 − log (z − α) − log (z̄ − ᾱ) . (3.14)

Since α is a simple zero we can calculate the coefficient b1 in (2.17) as

b1 =
2∂hreg
∂z̄

∣

∣

∣

∣

z=α

, (3.15)

which leads to

b1 =
1

ᾱ

(

2m+ n− 1 − 2nαnᾱn

1 − αnᾱn
+

4nνnαnᾱn

1 − νnαnᾱn
− 4αᾱ

1 − αᾱ

)

. (3.16)

We have calculated b1 only, but we can deduce br for r ≥ 2 by rotational
symmetry. From the definition of the coefficient br in (2.17), it follows that if we
simultaneously rotate all the zeros by λ′ ∈ U(1), the br coefficients transform as

br(λ
′Z1, . . . , λ

′Zn) = λ′br(Z1, . . . , Zn). (3.17)

In the case λ′ = λ = e2πi/n, this rotation just cyclically permutes the vortices, so
we see that

br(α) = λr−1b1(α). (3.18)
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It also follows from (3.17) that ᾱb1(α) is a function of |α| only, which is a consis-
tency check on our formula (3.16).

To complete the calculation of the metric, we note that Σn,m (with the point
α = 0 removed, strictly speaking) is a submanifold of M

zm

n , on which the formula
(2.22) for the Kähler form holds. Let us introduce the real vector fields1

X =
n
∑

r=1

(

Zr
∂

∂Zr
+ Z̄r

∂

∂Z̄r

)

, Y = JX = i
n
∑

r=1

(

Zr
∂

∂Zr
− Z̄r

∂

∂Z̄r

)

(3.19)

on M
zm

n , and note that on Σn,m these coincide with

X = |α| ∂
∂|α| , Y =

∂

∂ψ
, (3.20)

where α = |α|eiψ. Hence, the conformal factor we seek is

F (|α|) =
1

|α|2ω(X, Y ) =
π

|α|2
(

i(db)(X, Y ) + n|α|2Ω(|α|)
)

=
iπ

|α|2
(

X[b(Y )] − Y [(b(X)]
)

+ nπΩ(|α|) (3.21)

since [X, Y ] = 0. Now

b(X) =

n
∑

r=1

brdZ̄r(X) =

n
∑

r=1

Z̄rbr (3.22)

and b(Y ) = b(JX) = −ib(X) since b is a (0, 1) form. Since X and Y are
tangential to Σn,m, to compute X[b(Y )] = −iX[b(X)] and Y [b(X)] it suffices to
know b(X) only on Σn,m, where Zr = λr−1α. But using (3.18) we see that, on
Σm,n, b(X) = nᾱb1(α) which, as we have remarked, is a function of |α| only.
Hence, Y [b(X)] = 0, and we find that

F (|α|) = πn

(

Ω(|α|) +
1

|α|
d

d|α|(ᾱb1(α))

)

. (3.23)

The derivation for this formula used only rotational invariance and (2.22), so
it holds equally well for vortex polygons on the Euclidean plane, or any other
surface of revolution.

Now, we can evaluate the metric using equations (3.23), (3.16), (3.9) and
(3.10), obtaining

γ =
4πn3|α|2n−2

(1 − |α|2n)2

(

1 +
2n(1 + |α|2n)

√

(m+ 1)2(1 − |α|2n)2 + 4n2|α|2n

)

dαdᾱ (3.24)

1In [2], Chen and Manton used the vector field X to derive an interesting integral formula
for the Kähler potential.
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for n > m+ 1. For n = m+ 1, the metric simplifies and we have

γ =
12πn3|α|2n−2

(1 − |α|2n)2
dαdᾱ. (3.25)

In the case m = 0, equation (3.24) agrees with previous results of Strachan [11]
for n = 1, 2, and Krusch and Sutcliffe [5] for general n. For |α| close to 1, the
moving vortices are very far apart, so one expects the metric to approach the
metric induced on Σm,n by the product metric on (M1)

n

γproduct =
n
∑

r=1

12π

(1 − |Zr|2)2
dZrdZ̄r, (3.26)

which is

γ∞ =
12πn

(1 − |α|2)2
dαdᾱ, (3.27)

the metric on the hyperbolic plane of curvature κ = − 1
3πn

. Indeed, the full metric
is asymptotic to γ∞:

γ =

(

12πn

(1 − |α|2)2
− nm(m+ 2)π +O(1 − |α|)

)

dαdᾱ. (3.28)

Much more surprising is the fact that Σn,n−1 is exactly isometric to the hyperbolic
plane of curvature κ = − 1

3πn
. To see this, one should introduce the global complex

coordinate χ = αn, which is in one-to-one correspondence with points in Σn,m

(recall that α 7→ λα just permutes the vortex positions, so maps each point in
Σn,m to itself). The metric is then

γ =
4πn

(1 − |χ|2)2



1 +
2n (1 + |χ|2)

√

(m+ 1)2 (1 − |χ|2)2 + 4n2|χ|2



 dχdχ̄. (3.29)

Note that this is nondegenerate at χ = 0. For m = n− 1, it simplifies to

γ =
12πn dχdχ̄

(1 − |χ|2)2 , (3.30)

which, as promised, is the metric on the hyperbolic plane with curvature κ =
− 1

3πn
.

4 The geometry of Σn,m

It follows immediately from (3.29) that Σn,m is geodesically complete and has
infinite volume. The radial curves χ(t) = tλ, λ ∈ U(1), −1 < t < 1 are pre-
geodesics corresponding to the dual polygon scattering trajectories characteristic
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of topological solitons in two dimensions. It is straightforward to compute the
Gauss curvature of the surfaces Σm,n using the formula

κ (|χ|) = − 1

2|χ|F (|χ|)
d

d|χ|

( |χ|
F (|χ|)

dF

d|χ|

)

. (4.1)

In all cases

lim
|χ|→1

κ = − 1

3πn
,

and for m close to n−1, κ is uniformly negative. As already noted, for m = n−1,
κ = − 1

3πn
for all χ. By contrast, for m small, κ is positive close to χ = 0. For

example, on Σn,0 one has

κ(0) =
2n3 − 4n− 1

π n (1 + 4n+ 4n2)
(4.2)

which is positive for all n ≥ 2.
For purposes of visualization, it would be useful to find an isometric embed-

ding of Σm,n as a surface of revolution in R
3, along the lines of the “rounded

cone” picture of the Euclidean two-vortex moduli space discussed by Samols [10].
In our case, each Σn,m is asymptotic to a complete space of constant negative
curvature, so it is clear that no such isometric embedding exists. However, we
certainly can find an isometric embedding of Σn,n−1 as a surface of revolution in
R(2,1) (that is, R3 equipped with the Lorentzian metric dx2

1 +dx2
2−dx2

3), invariant
under rotations about the timelike x3 axis. The image of this embedding is the
hyperboloid on which

x2
1 + x2

2 − x2
3 = −3πn, x3 > 0. (4.3)

Of course, this is just the hyperboloid model of the hyperbolic plane. One expects
to be able to generalize this to Σn,m at least for m close to n − 1. A short
calculation shows that any surface of revolution which intersects the symmetry
axis must have κ ≤ 0 at the intersection point, so isometric embeddings of Σn,m

for m small certainly do not exist, as κ(0) > 0 and χ = 0 is a fixed point of the
rotation action. Using a straightforward modification of the method described in
[6], one can obtain generating curves for the embedded surfaces of revolution for
m close to n− 1. Some examples are depicted in figure 1.

The geodesic flow on Σ2,0 was considered in detail in [11]. It is a simple matter
to analyze geodesic motion in Σn,n−1 for any n ≥ 1, since each of these spaces is
isometric to a hyperbolic plane, and geodesic flow is invariant under homothety.
Hence, the geodesic trajectories in Σn,n−1 are the standard geodesics in the hyper-
bolic plane. In the Poincaré disk model, these are circular (or straight) arcs which
intersect the boundary of the unit disk orthogonally. The vortex trajectories in
physical space H corresponding to a geodesic in Σn,n−1 are the preimage of the

11
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Figure 1: Generating curves for the spaces Σ8,m isometrically embedded as sur-
faces of revolution in R(2,1) for m = 5, 6, 7 (solid curves, top to bottom). The full
surfaces are swept out by rotating about the x3 axis. The m = 7 curve coincides
with the hyperbola x2

1 − x2
3 = −24π. The dashed lines mark the light cone. No

isometric embeddings of Σ8,m for m = 0, . . . , 4 exist since these have positive
Gauss curvature at the fixed point of the rotation action.

geodesic under the map z 7→ zn of the unit disk to itself. Since this map is confor-
mal, the vortex trajectories also intersect the unit circle orthogonally. Consider
the case n = 2 in detail. Without loss of generality, we may restrict attention
to the geodesics in Σ2,1 which intersect the boundary at e±iψ where 0 < ψ ≤ π

2
.

Each geodesic χ(t) corresponds to a 3-vortex motion in which one vortex remains
stationary at the origin and the other two move towards each other, scatter and
recede, following the trajectories z(t) = ±χ(t)

1

2 . We may derive an explicit for-
mula for the scattering angle Θ and impact parameter b associated with the ψ
geodesic as follows. First we determine the geodesic in H which makes second or-
der contact with the incoming vortex trajectory where it intersects the boundary,
at eiψ/2. Simple trigonometry shows that this is a circular arc of radius 1

2
tanψ.

This is the path that this vortex would follow if it did not interact with the other
two. Call its exit point eiξ. Then the scattering angle is the angle one must rotate
the disk so that this free exit point shifts to the actual vortex exit point e−iψ/2,
that is, Θ such that ξ+Θ = −ψ

2
. One can similarly construct the initial free path

of the other moving vortex: it is the image of the first under a rotation by π about
the origin. We define the impact parameter to be the hyperbolic distance (with
respect to metric G on H) between these two free trajectories. The geometry is

12
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e − i ψ/2

e i ξ

b

Figure 2: The geometry of vortex scattering: the solid curves are the vortex
trajectories in physical space, while the dashed curves are the free trajectories
which the vortices would describe if they did not interact with one another. By
definition, these are the geodesic arcs which have second order contact with the
incoming trajectories at their entry points on the boundary of H.

summarized in figure 2. Straightforward calculation shows that

b(ψ) = 4
√

2 tanh−1

(
√

4 − 3 sin2 ψ − sinψ

2 cosψ

)

,

Θ(ψ) = 2 tan−1

(

1

2
tanψ

)

− ψ. (4.4)

Note that ψ = π
2

gives the expected 90◦ head-on scattering process (i.e. b = 0
and Θ = π

2
), and that Θ decreases monotonically towards 0 as b increases.

5 The Collie-Tong flow

Motivated by a supersymmetric extension of the Abelian Higgs model with a
Chern-Simons term, Collie and Tong have derived a new geometrically natural
moduli space dynamics for Euclidean vortices [3]. This geometric flow is well
defined on any Kähler soliton moduli space, and it is interesting to consider
the dynamics of hyperbolic vortices under this flow, in comparison with their
Euclidean counterparts. Recall that on a Kähler manifold M one has a closed
2-form ρ constructed from the Ricci curvature R and almost complex structure
J in the same way that the Kähler form is constructed from the metric and J ,
that is,

ρ(X, Y ) = R(JX, Y ). (5.1)

A trajectory χ(t) ∈ M is a solution of the flow if

∇d/dtχ̇− λ♯ιχ̇ρ = 0 (5.2)
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where λ is a real constant, ♯ denotes the metric isomorphism T ∗
M → TM and ι

denotes interior product, (ιXρ)(Y ) = ρ(X, Y ). A very similar flow has, in fact,
been derived previously by Kim and Lee [4], but it is the geometrically natural
formulation given above which is significant for our purposes, and this is due to
Collie and Tong. For this reason, we will call equation (5.2) the Collie-Tong flow.
It follows from (5.2) that

d

dt
〈χ̇, χ̇〉 = 2λ〈χ̇, ♯ιχ̇ρ〉 = 2λρ(χ̇, χ̇) = 0, (5.3)

so this flow, like geodesic flow, conserves speed ‖χ̇‖. Given a solution χ(t) of
(5.2), χ(λ0t) satisfies (5.2) with parameter λ′ = λ/λ0, so we can rescale λ to
any convenient value. Note that, in contrast to geodesic motion, the trajectories
depend on ‖χ̇(0)‖, not just the direction of χ̇(0). If λ = 0, one recovers geodesic
flow, so one expects trajectories under (5.2) to approach geodesics when the initial
speed is taken to infinity.

Collie and Tong investigated the qualitative properties of this flow on the
moduli space of centred Euclidean 2-vortices [3], finding scattering trajectories,
bound orbits and bound orbits with Larmor precession. In this section we will
make an analogous analysis of the flow on Σ2,0 numerically, and Σn,n−1 exactly.
First, we note that Σn,m is a totally geodesic complex submanifold of Mn+m, so
its Ricci form coincides with the restriction of the Ricci form of Mn+m to TΣn,m.
Hence, solutions of the flow on Σn,m are solutions of the flow on Mn+m. Now on
any two-dimensional Kähler manifold, ρ = 1

2
κω where κ is, as before, the scalar

curvature, and ω is the Kähler form. Hence (5.2) (with λ = 2) becomes

∇d/dtχ̇− κJχ̇ = 0. (5.4)

We have solved this equation numerically on Σ2,0 for various initial data using
the ODE solver package in Matlab. The corresponding vortex trajectories are
depicted in figure 3. Appropriate choices of initial data yield scattering trajecto-
ries, bound orbits and Larmor precession, as predicted by Collie and Tong in the
Euclidean context. One can also find complicated cycloid-like trajectories.

We can make a more complete analysis of the flow on Σn,n−1, since this is
isometric to the hyperbolic plane of curvature −1/3πn, so κ is constant. By
rescaling t we can scale away κ in (5.4), so it suffices to consider the flow on, say,
the hyperbolic plane of curvature −1. In the upper half plane model this has
metric

γ =
1

y2
(dx2 + dy2). (5.5)

To translate back to the disk model, we note that

χ =
z − i

−iz + 1
, z = x+ iy. (5.6)
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(a) (b) (c) (d)

Figure 3: Vortex trajectories under the Collie-Tong flow on Σ2,0. The curves show
the trajectory of one of the vortices in each two vortex motion, and illustrate a
variety of behaviours: (a) scattering, (b) an almost-circular bound orbit, (c)
Larmor precession, (d) a cycloid-like bound orbit.

The vortex trajectories are then given by the n-th roots of χ(t). In the z coordi-
nate system (5.4) becomes

ẍ− 2

y
ẋẏ + ẏ = 0,

ÿ +
1

y
(ẋ2 − ẏ2) − ẋ = 0, (5.7)

which has two conserved charges,

E =
1

2y2
(ẋ2 + ẏ2), P =

ẋ− y

y2
. (5.8)

Consider the trajectory with initial data z(0) = i, ż(0) = iv for v > 0. This has
P = −1, so its projection to the (y, ẏ) phase plane is the energy level curve

ẏ2 = y2(v2 − (1 − y)2). (5.9)

For 0 < v < 1 the trajectories are periodic, with 1 − v ≤ y(t) ≤ 1 + v while
for v ≥ 1 the trajectories are unbounded, escaping from and to the boundary at
infinity (y = 0) as t → ±∞. Between critical points of y(t), we can determine
the trajectory x(y) by solving

dx

dy
=
ẋ

ẏ
= ± 1 − y

√

v2 − (1 − y)2
. (5.10)

One finds that
(x+ v)2 + (y − 1)2 = v2 (5.11)

so the trajectory is a circle of radius v centred on (−v, 1), or, if v ≥ 1, the portion
of this circle in the upper half plane. Note, in the latter case, that the trajectory
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Figure 4: Vortex trajectories under the Collie-Tong flow on Σ2,1. One vortex
moves along the trajectory α(t) depicted, another moves along −α(t) while a
third vortex remains stationary at the origin. In each case α(t)2 describes a circle
with centre in the unit disk. In case (b) this circle passes through 0 so the vortices
undergo 90◦ scattering at the origin. The circle captures 0 in cases (c) and (d),
but not in case (a). Note that all trajectories are periodic or escape to infinity.

intersects the boundary acutely, not orthogonally, though the trajectories tend
to a geodesic as v → ∞, as one would expect. By acting on this one-parameter
family of circles with the isometry group of the hyperbolic plane (SL(2,R) acting
by fractional linear transformations, in the upper half plane model), we obtain
all circles centred in the upper half plane (note that geodesics have centres on the
boundary y = 0). Under the Möbius transformation (5.6), these are mapped to
circles with centres in the unit disk, and every such (arc of a) circle is a trajectory
of the flow. The corresponding vortex trajectories in H (in the disk model) are
then obtained by taking n-th roots. Clearly the behaviour is much simpler than
that found numerically in Σ2,0: all trajectories are either periodic or unbounded
(both as t→ ∞ and t→ −∞). Some examples are depicted in figure 4.

It would be interesting to make a systematic analysis of the flow (5.2) on a
general Kähler manifold. One expects, for example, that the flow is complete if
and only if the manifold is metrically complete. A natural generalization of the
case Σn,n−1 considered in detail above would be to assume that M is a homoge-
neous Einstein manifold, for example M = CPN . This is potentially relevant to
vortex dynamics on the two-sphere close to the Bradlow limit [1].
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