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a b s t r a c t

This paper presents a simple but informative mathematical model to describe the mixing of three dissim-
ilar components of particulate solids that have the tendency to segregate within one another. A nonlinear
Markov chain model is proposed to describe the process. At each time step, the exchange of particulate
solids between the cells of the chain is divided into two virtual stages. The first is pure stochastic mixing
accompanied by downward segregation. Upon the completion of this stage, some of the cells appear to
be overfilled with the mixture, while others appear to have a void space. The second stage is related to
upward segregation. Components from the overfilled cells fill the upper cells (those with the void space)
according to the proposed algorithm. The degree of non-homogeneity in the mixture (the standard devi-
ation) is calculated at each time step, which allows the mixing kinetics to be described. The optimum
mixing time is found to provide the maximum homogeneity in the ternary mixture. However, this “com-
mon” time differs from the optimum mixing times for individual components. The model is verified using
a lab-scale vibration vessel, and a reasonable correlation between the calculated and experimental data
is obtained.

Introduction

The mixing of powders and granular materials is of central
importance for the quality and performance of a wide range of
products. Bridgwater (2010, 2012) emphasized the difficulty of
designing and operating the mixing process, which is largely based
on judgment rather than science. The next stage of development is
to build on the emerging knowledge and methods so as to clarify
the basics for such designs. This will enable the process to be con-
ducted in such a way that the mixing operation can be effectively
controlled. One of the key problems in mixing dissimilar granu-
lar materials is their segregation into one another. The segregation
occurs because of differences in the physical properties of the com-
ponents, such as particle size, density, and shape. The action of
gravity, which is always present in mixing, varies for different sorts
of particles, and also leads to their segregation. With no segregation,
achieving a homogeneous mixture simply involves determining
an adequate mixing time. Very often, it is virtually impossible to
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achieve a homogeneous mixture if segregation occurs. First, the
homogeneity of a mixture increases, reaches a maximum, and then
decreases again. There have been a number of studies, mostly
experimental, on the influence of the segregation effect on mixture
quality (e.g., Jha & Puri, 2010; Jha, Gill, & Puri, 2008; Tang & Puri,
2007). However, the effect of segregation on the mixing kinetics
has received less attention. In particular, it is important to estimate
this effect for the mixing of multi-component dissimilar materials,
when segregation becomes very complex. In a binary mixture, one
component experiences downward segregation and the other com-
ponent experiences upward segregation. In a ternary mixture, an
intermediate component experiences both downward and upward
segregation, and the evolution of its distribution becomes difficult
to predict.

One way to understand the process better is to build a suit-
able mathematical model. Different approaches have been used to
model the mixing of solids. Danckwerts (1953) and Sommer (1996)
developed models based on the forced diffusion equation. These
models played an important role in better understanding the mix-
ing process and estimating the quality of mixtures. However, the
analytical solutions obtained by this approach are mainly of purely
academic interest. This is because of several unrealistic assump-



Nomenclature

D Dispersion coefficient, m2/s
d Probability of pure stochastic (diffusion) transition
j Cell number counted from the top of the mixture
k Transition number
H Mixture height
m Total number of cells in the chain
P, Pij Matrix of transition probabilities and its entries
S, Sj State vector and its entries
Smax Maximum content of mixture that a cell can contain
t Time, s
V Velocity of segregation, m/s
v Probability (rate) of segregation transition

Greek symbols
! Standard deviation
"t Transition duration, s
"x Height of a cell, m

Indices
1 Fine fraction
2 Middle fraction
3 Coarse fraction

tions and the neglect of important physical features of the process.
Kinetic theory was used by Iddir, Arastoopour, and Hrenya (2005) to
model the granular mixture of components with different mechan-
ical properties (size, density, and/or restitution coefficient), where
each particle group was considered as a separate phase with differ-
ent average velocity and granular energy. This model was applied
to the simple shear flow of binary and ternary mixtures of particles.
However, this model mostly concerned the dynamic properties of
already formed mixtures rather than the kinetics of their formation.
Bridgwater (2010, 2012) used discrete element methods (DEMs)
to solve the main problems of mixing. However, this approach
is very time consuming, which becomes a serious problem when
calculating and comparing numerous process regimes and mixer
configurations.

From the authors’ viewpoint, one tool that is capable of solving
these problems is the theory of Markov chains, which is related to
the process of mixing as it describes the evolution of the state of a
stochastic system. The basic idea of the Markov chain approach con-
sists of separating the operating volume of the mixer into small but
finite zones (cells) and then observing the evolution of the key com-
ponent concentration in these zones at discrete moments in time,
with a small but finite time step between them. This approach was
used by Wang and Fan (1976) to describe the state of a mixture after
passing through a static mixer. However, their work neglected the
evolution of the process parameters, and did not describe the physi-
cal features of the mixing zone. In later studies by these researchers
(Fan, Lai, Akao, Shinoda, & Yoshizawa, 1978; Wang & Fan, 1977), a
model was developed in which transitions were only permitted to
the neighboring cells.

Doucet et al. (2008)Doucet, Hudon, Bertrand, and Chaouki
(2008) attempted to combine the DEM method with Markov chain
theory. They computed the transition probability matrix directly
using results obtained from a discrete element model. This work
shows that, if accurate measurements of the state of the system are
available, the associated Markov operator leads to a good estimate
of the particle dynamics in the mixing system.

The general strategy of applying the theory of Markov chains to
modeling different processes in powder technology was described
by Berthiaux, Mizonov, and Zhukov (2005). It was demonstrated by

Mizonov, Berthiaux, Arlabosse, and Djerroud (2008) that the theory
can be successfully used to model heat and mass transfer between
stochastically moving particulate and gas flows. The results pre-
sented below for the modeling of the kinetics of ternary mixture
formation are mainly based on the approach described by Mizonov,
Berthiaux, and Gatumel (2016), who modeled and optimized the
mixing of two dissimilar components of particulate solids.

Theory

Suppose that it is necessary to mix three dissimilar components
of particulate solids, for instance, in a vibration vessel. According
to the strategy of Markov chain modeling, the total height of the
mixture inside the vessel H is divided into m perfectly mixed cells
of height "x =H/m that can exchange components after agitation.
The transition of a component from a cell can occur because of
pure stochastic (symmetrical) migration of particles, characterized
by the transition probability d, and because of segregation, char-
acterized by the transition probability v. The latter can be directed
downward or upward depending on the component properties and
their environment. The process is observed at discrete moments of
time tk = (k − 1)"t, where "t is the time step, or transition dura-
tion, and k is the transition number, which can be interpreted as
the discrete analog of time. The transition probabilities can then be
calculated as follows: d = D"t/"x2, v = V"t/"x, where D is the
dispersion coefficient and V is the dimensional velocity of segre-
gation. For the sake of determinacy, let us suppose that the only
difference between the components is their size, and assign index
numbers of 1–3 to the fine, middle, and coarse fractions, respec-
tively.

At any moment of time tk, the distribution of the volume content
of the fractions over the cells of the chain is presented by the state
column vectors Sk

1, Sk
2, and Sk

3 of size m × 1 containing elements
Sk

1j , Sk
2j , and Sk

3j , where j = 1, . . ., m is counted from the top of the
mixture.

Let us now assume that the total volume of the fractions inside
each cell Smax remains constant with time, regardless of the com-
position of each fraction inside the cell. Thus, if a cell loses some of
its matter during a time transition, this loss must be immediately
compensated by inflows from neighboring cells. Let us assume that
the value of Smax is equal to the conditional unit. This condition
gives the following constraint

Sk
1j + Sk

2j + Sk
3j = 1, j = 1, . . ., m (1)

The state vectors Sk
1, Sk

2, and Sk
3 vary with time, i.e., from one tran-

sition to another. Their evolution can be described by the recurrent
matrix equations

Sk+1
1 =Pk

1(Sk
1, Sk

2, Sk
3)Sk

1, (2)

Sk+1
2 =Pk

2(Sk
1, Sk

2, Sk
3)Sk

2, (3)

Sk+1
3 =Pk

3(Sk
1, Sk

2, Sk
3)Sk

3, (4)

where P1, P2, and P3 are matrices of the transition probabilities that
control the process. It is emphasized that the matrices vary from
one time transition to another and depend on the current state of
the mixture. Each matrix is a tridiagonal matrix of size m × m. In
the general case, they have the following form

P =

⎡

⎢⎢⎢⎢⎢⎢⎣

P11 P12 0 0 ...

P21 P22 P23 0 ...

0 P32 P33 P34 ...

0 0 P43 P44 ...

... ... ... ... ...

⎤

⎥⎥⎥⎥⎥⎥⎦
, (5)



Fig. 1. Schematic representation of component migration between two neighboring cells as a result of segregation during a single transition.

where Pj+1,j is the probability of a downward transition during "t
(i.e., those particles that leave cell j and transit to cell j + 1), Pj−1,j is
the probability of upward transition during "t (i.e., those particles
that leave cell j and transit to cell j − 1), and Pj ,j is the probability of
remaining within cell j during "t. It is obvious that Pj,j is equal to
one minus all other elements in the j-th column.

If downward segregation occurs, Pj,j+1 > Pj−1,j . As mentioned
above, it is convenient to separate the transitions caused by the
symmetrical factor d that is determined by pure stochastic mixing
from the transitions caused by the non-symmetrical factor v that
is determined by segregation, i.e., Pj,j+1 = d + v and Pj−1,j = d. Thus,
an adequate description of v becomes the key point of the modeling.

The difficulty is that the fine fraction almost never segregates
into the pure coarser fraction—it is only found in very small con-
centrations, or at the very beginning of the mixing process, when
the fractions are completely separated. Mizonov et al. (2016) pro-
posed the following description for the segregation rate based on
the assumption that the fine fraction cannot segregate inside itself,
that is,

vk
j = v0

(
1 −

Sk
j+1

Smax

)
= v0

(
1 − Sk

j+1

)
, (6)

where v0 is the segregation rate of the fine fraction into the pure
coarser fraction. In fact, this assumption means that the segregation
only propagates into the part of the lower cell that is not occupied
by the fine fraction. Substituting Eq. (6) into the cell model of binary
mixture formation allows some of the physical contradictions that
appear in models with constant vk

j to be excluded. Thus, the objec-
tive of the present paper is to generalize this approach to the case
of a ternary mixture.

The physical sense of the proposed model and its basic assump-
tions are illustrated in Fig. 1. Despite the fact that the model deals
with perfectly mixed cells, it is convenient to present the fraction
content as vertical boxes within the cells.

The evolution of the mixture over some transition time is sep-
arated into two virtual stages that occur simultaneously. The first
is downward segregation combined with pure stochastic mixing.
Consider v12 and v13 as the rate of segregation of the fine frac-
tion into the pure middle fraction and into the pure coarse fraction,
respectively, and v23 as the rate of segregation of the middle frac-
tion into the pure coarse fraction. It is assumed that the segregation

of the fine fraction from cell j into cell j + 1 occurs only into the

volume
(

1 − Sk
1,j+1

)
that is free from the fine fraction and is occu-

pied by the middle and coarse fractions with relative contents of

Sk
2,j+1/

(
Sk

2,j+1 + Sk
3,j+1

)
and Sk

3,j+1/
(

Sk
2,j+1 + Sk

3,j+1

)
, respectively.

It is also assumed that the fine fraction transits into cell j + 1 pro-
portionally to these relative contents with segregation rates v12 and
v13. This interpretation of Stage 1 of the process elicits the following
formulae for the elements of the transition probability matrices P1,
P2, and P3 in Eqs. (2)–(4).

Matrix Р1:

Pk
1,j+1,j = d +

(
1 − Sk

1,j+1

) v12Sk
2,j+1 + v13Sk

3,j+1

Sk
2,j+1 + Sk

3,j+1

(7)

Pk
1,j,j+1 = d (8)

Matrix Р2:

Pk
2,j+1,j = d + v23

(
1 − Sk

1,j+1 − Sk
2,j+1

)
(9)

Pk
2,j,j+1 = d (10)

Matrix Р3:

Pk
3,j,j+1 = Pk

3,j+1,j = d (11)

Here j = 1, . . ., m − 1 and the probability of pure stochastic (sym-
metrical) transitions d is assumed to be identical for all fractions.
The diagonal elements of each matrix can be found from the con-
dition of the element normalization in each column

Pk
j,j = 1 − Pk

j+1,j − Pk
j−1,j. (12)

If the transition probabilities are known, the evolution of the
mixture after the first virtual stage can be calculated using Eqs.
(2)–(4). This state is shown in the middle column of Fig. 1. Cell j + 1
is overfilled with the mixture, and cell j has a void volume, i.e., the
condition given by Eq. (1) is not satisfied.

The second virtual stage consists of upward segregation, which
can be interpreted as the void volume in cell j being filled by the
overflowing fractions from cell j + 1. It is assumed that the void vol-



ume is filled by these fractions in proportion to their content in cell
j + 1. This process can be described by the following formulae:

"Sk+1
j = 1 − Sk+1

1,j − Sk+1
2,j − Sk+1

3,j , (13)

Sk+1
2,j := Sk+1

2,j + "Sk+1
j

Sk+1
2,j+1

Sk+1
2,j+1 + Sk+1

3,j+1

, (14)

Sk+1
3,j := Sk+1

3,j + "Sk+1
j

Sk+1
3,j+1

Sk+1
2,j+1 + Sk+1

3,j+1

, (15)

Sk+1
2,j+1 := Sk+1

2,j+1 − "Sk+1
j

Sk+1
2,j+1

Sk+1
2,j+1 + Sk+1

3,j+1

, (16)

Sk+1
3,j+1 := Sk+1

3,j+1 − "Sk+1
j

Sk+1
3,j+1

Sk+1
2,j+1 + Sk+1

3,j+1

, (17)

Sk+1
3,m := 1 − Sk+1

1,m − Sk+1
2,m , (18)

where Sk+1
j is the void space in the j-th cell after the first stage of the

k-th transition (The assignment operator := is used here because all
the transformations occur during one time transition.).

Upon the completion of the second stage as described by Eqs.
(13)–(18), the condition given by Eq. (1) is automatically satisfied.

Thus, the model given by the above equations describes the
evolution of the ternary mixture state, i.e., the evolution of the
distribution of its components. These equations show that a com-
ponent of the mixture is solely identified by its segregation rate;
the size fraction, density fraction, or fraction of another property
that can influence the segregation makes no actual difference.

Some results from numerical experiments with the proposed
model are presented in Figs. 2–4. The calculations were performed
with m = 7 and v12 = 0.2, v13 = 0.3, v23 = 0.1, and d = 0.2. The initial dis-
tribution of the fractions can be represented by the vectors S0

1 = [1
0 0 0 0 0 0]T, S0

2 = [0 1 1 0 0 0 0]T, S0
3 = [0 0 0 1 1 1 1]T, where the

index T denotes the transpose of a vector.
Fig. 2 shows the evolution of the content of each component

during the mixing process. The fine fraction experiences only
downward segregation, and the coarse fraction experiences only
upward segregation. The middle fraction experiences both upward
and downward segregation, causing its distribution to be more sta-
ble and homogeneous. It follows from the physics of the process
that, with no pure stochastic mixing (d = 0), the initial distribution
should asymptotically be inverted by the segregation. Calculations
show that the model does indeed give such an inverse distribution,
which validates the proposed approach.

The component distribution in the mixture at different
moments of time is shown in Fig. 3. The upper-left graph shows
the initial distribution of the components, and the upper-right one
shows the distribution in the perfectly mixed state. The lower-left
graph is the component distribution after k time transitions, and
the lower-right graph is the asymptotical distribution. It can be
seen that the non-homogeneity of the mixture first decreases, and
then, after a certain amount of time, begins to increase. If d = 0, the
mixture asymptotically tends to the initial state.

The non-homogeneity of the mixture can be estimated by the
standard deviation of the component distribution from the ideal
mixture, !. This standard deviation can be calculated for the whole
mixture or for individual components. Fig. 4 illustrates the variation
of ! with time. It can be seen that the minimum non-homogeneity
occurs at different moments of time for the individual components
and for the whole mixture. The component distribution corre-
sponding to the optimum k = 20 is shown in Fig. 3.

Note that if identical values of v are assigned to components 1
and 2, the model for the ternary mixture transits to the model for a

Fig. 2. Evolution of content distribution of each fraction during the mixing process.

binary mixture. The results obtained under this assumption com-
pletely coincide with the results obtained with the binary mixture
model described by Mizonov et al. (2016).

The computation time for calculating the kinetics of mixing
under any given conditions does not exceed 2 s.

Experimental

An experimental validation of the model was carried out using
a custom vibration stand that generates vertical vibrations of con-
trolled amplitude and frequency. Glass beads with diameters of 2,
4, and 6 mm (with a different color for each size) were used to simu-
late the components to be mixed. The mixing vessel was a box with
a transparent front wall of size 100 × 150 mm. The gap between
the front and back walls was 20 mm. A photo of the experimental
set-up is shown in Fig. 5.

Using the ruler on the front wall of the box, the components
were arranged in layers. After the experiment had started, the mix-



Fig. 3. State of the mixture at different moments of time.

Fig. 4. Variation of ! with time for individual components and the whole mixture.

ture was photographed every 30 s. These pictures were analyzed
using special image analysis software that allowed the content dis-
tribution of each fraction to be determined. Each experiment was
repeated at least five times to obtain reproducible results, and then
the average content of the fractions was calculated.

To operate the model, it was necessary to determine the down-
ward segregation velocity of the fractions into the pure coarse
fraction. This was done as follows. The thin layer of the tested
fraction was placed on top of the coarser fraction, and the mix-
ing process was launched. By analyzing the pictures, the time at
which 50% of the tested fraction had migrated to the bottom cell
was determined. The velocity of segregation was calculated as the
distance between the coarse fraction in the top and bottom cells
divided by this time period. Note that such experiments are labor

Fig. 5. Photo of the experimental set-up.

and time consuming, and it would be far more convenient to use
the DEM simulation.

Results and discussion

The average segregation velocities found for the glass bead
fractions according to the approach described in the previous sec-
tion were broadly similar: V12 = 2.1 cm/min, V13 = 2.95 cm/min, and
V23 = 1.1 cm/min. At the accepted transition duration "t = 0.1 min
and a cell height of "x = 1 cm, the corresponding segregation rates
were 0.21, 0.295, and 0.11, respectively (v = V"t/"x). The rate
of pure stochastic mixing d was adjusted to minimize the sum



Fig. 6. Pictures of the mixture state at different moments of time.

of squared deviations of the experimental data from the model-
calculated data over the entire range of the experiment (the
least-squares method).

Fig. 6 shows the mixture state at different points in time. The
upper picture shows the initial state of the mixture, the middle
picture shows the intermediate state after 2 min, when the mixture
has reached the best quality (minimum !), and the bottom picture
shows the state after 10 min, when the distribution has practically
stopped changing.

A comparison of the model-calculated and experimental data
for the fraction content distributions is shown in Fig. 7. It is clear
that there is a reasonable correspondence between these data.

Despite the fact that the mixture reaches its maximum quality
after 2 min of mixing, the distribution of the individual compo-
nents at this moment is actually very far from homogeneous. If
the homogeneity of the distribution of one particular component
is more important than that of the others, it is possible to deter-
mine the optimum mixing time for this specific component, or the
mixing time that yields an acceptable compromise in terms of mix-
ing quality with the other components (see, for instance, Fig. 4).
Nevertheless, reaching a good mixing quality for multi-component
mixtures is a complex technological problem.

It is important to remember that, according to the basic model
assumptions, the phenomenon of segregation is fully determined
by the downward segregation rate of a component into another

pure component, regardless of whether this is due to differences
in size, density, or shape. In any case, the experimental values of Vj
determined here allow the model to run and the mixing kinetics to
be described.

Conclusions and perspectives

A Markov chain model of the kinetics of ternary mixture for-
mation has been proposed. This allowed the evolution of a ternary
mixture state to be calculated and the characteristics of its non-
homogeneity to be identified. It was shown that the optimum
mixing time, when the mixture reaches its maximum homogeneity,
does not coincide with the optimum mixing time for the individual
components. Although some of the assumptions made in building
the model can be disputed, the computational results are plausible
because they do not contradict the physical essence of the process,
yield correct asymptotic distributions, and transit to the cell model
for binary mixtures after simplification. An experimental investi-
gation with a ternary mixture of glass beads in a vertically vibrating
vessel was used to validate the model, and a reasonable correlation
between the experimental and calculated data was observed. The
model has a very small computation time, but the experimental
determination of the segregation velocities is a labor and time-
consuming process, and could be effectively replaced by a DEM
simulation. Some possible avenues for model development are its



Fig. 7. Calculated (solid lines) and experimental (black circles) fraction distributions at different moments of time.

generalization to the case of an arbitrary number of dissimilar par-
ticulate solids and its use in improving the mixing quality.
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